加强数学思想方法教学论文
数学思想方法在教学中的运用论文数学思想方法论文
数学思想方法在教学中的运用论文数学思想方法论文摘要:数学思想方法是一种独特的思维方式,在数学教学中的运用能够促进学生的数学思维能力和创新能力的培养。
本文通过探讨数学思想方法在教学中的运用,旨在为数学教师提供有效的教学策略,提高教学质量。
关键词:数学思想方法,教学,培养,思维能力,创新能力1.引言数学思想方法是一种高度抽象的思维方式,教学中的运用能够增强学生的逻辑思维和系统思维能力,培养学生的创新能力和解决问题的能力。
然而,在当前的数学教学实践中,很多教师仍然倾向于传统的教学模式,缺少对数学思想方法的应用和运用。
因此,本文将重点探讨数学思想方法在教学中的运用,以期提供一些有效的教学策略。
2.数学思想方法(1)抽象能力:数学思维方法强调抽象能力的培养,通过将具体问题抽象为数学模型,学生可以更好地理解问题的本质和内在规律。
(2)演绎推理:数学思维方法倡导使用演绎推理来解决问题,通过构建严密的推理过程,学生可以提高问题解决的准确性和逻辑性。
(3)创新能力:数学思维方法注重培养学生的创新能力,在解决问题的过程中,学生被鼓励提出新的思路和方法,不拘泥于传统的解题路径。
3.数学思想方法在教学中的运用(1)创设情境:在教学中,通过创设适当的情境,引导学生主动思考和发现问题,培养学生的问题意识和发现能力。
例如,在线性方程组的教学中,可以通过提供一组实际问题,引导学生抽象出线性方程组的数学模型。
(2)合作学习:合作学习是数学思想方法的重要组成部分,通过小组合作探讨,学生可以共同解决问题,交流思路和方法,激发彼此之间的创意和启发。
教师可以组织学生进行小组合作,通过共同探索和讨论,培养学生的创新能力。
(3)应用解决问题:在教学中,可以引导学生应用所学的数学知识解决实际问题。
通过将抽象的数学模型应用于实际问题,学生可以更好地理解数学的应用和意义,并培养解决问题的能力。
4.实例分析以三角函数的教学为例,可以通过以下方式应用数学思想方法:(1)创设情境:通过引导学生观察身边的实际现象,如太阳的高度变化,可以引导学生进一步思考太阳高度与时间的关系,从而引出三角函数的概念。
论文以数学思想方法为指导的教学实践
以数学思想方法为指导的教学实践所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。
通常认为数学思想包括方程思想、函数思想、数形结合思想、转化思想、分类讨论思想和公理化思想等。
这些都是对数学活动经验通过概括而获得的认识成果。
所谓数学方法,是指某一数学活动过程的途径、程序、手段,如消元法、换元法、配方法、待定系数法它具有过程性、层次性和可操作性等特点。
数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。
高中阶段的函数概念,便渗透了集合关系的思想,还可以是在现实数学基础上的概括和延伸,这就需要搞清楚应概括怎样的共性,如何准确地提出新问题,需要怎样的新工具和新方法等等。
对于这些问题,都需要进行预测和创造,而要顺利地完成这一任务,必须依靠数学思想作为指导。
有了深刻的数学思想作指导,才能做出智慧熠烁的创新设计来,才能引发起学生的创造性的思维活动来。
数学思想是我进行教学设计的指导思想,下面以课本练习题为例,浅谈本人体会。
题目:函数F(X)=KX 2-4X-8在〔5,20〕上是单调函数,求实数K 的取值范围。
当时考虑到学生讨论可能不全面于是找了个较认真的女同学上黑板做。
她的做法如下:(1)当K=0,F(X)=4X-8在〔5,20〕单调增;(2)当K >0时,对称轴X=k 2,若k2≥20即0<K ≤1/10在〔5,20〕单调减,若k 2≤5即K ≥52时 在〔5,20〕单调增(3)当K <0时k2<5恒成立在〔5,20〕单调减.综上所述K 的范围{K︳K≤101或K≥52}.她的做法几乎就是标准答案.本来这个题目就很圆满的解决了.可接着一个同学举手发言。
看着他迫切的眼神,我就让他上黑板讲了一下。
他的答案如下:(1) 当k=0,f(x)=4x-8,所以[5,20]增。
(2) 当k ≠0,对称轴X=k 2,所以2/K 不在(5,20)即可,只需解k2≤5或k 2≥20 综上所述{K︳K≤101或K≥52} 听完他的解法,觉得是一个非常不错的改进.同学们响起了热烈的掌声.我刚想总结一下;不想又一个同学站起来,说:“老师,我还有一个解法。
2022一学期数学思想教育教学工作总结及教学方法论文范文5篇
2022一学期数学思想教育教学工作总结及教学方法论文范文5篇一学期数学思想教育教学工作总结及教学方法论文范文一一学期即将过去,可以说紧张忙碌而收获多多。
总体看,全体数学教师认真执行学校教育教学工作方案,转变思想,积极探索,改革教学,在继续推进我校“自主——创新〞课堂教学模式的同时,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学,收到很好的效果。
一、课程标准走进教师的心,进入课堂我们怎样教数学,《国家数学课程标准》对数学的教学内容,教学方式,教学评估教育价值观等多方面都提出了许多新的要求。
无疑我们每位数学教师身置其中去迎接这种挑战,是我们每位教师必须重新思考的问题。
开学初组织攻关教师和教研组长参加处组织的新课程标准及新教材培训学习,并参加处研究性学习培训。
在各年级组织认真学习的根底上全体数学教师集中由黄丽娜陈艳红两位教师二次分学段培训,鲜明的理念,全新的框架,明晰的目标,有效的学习对新课程标准的根本理念,设计思路,课程目标,内容标准及课程实施建议有更深的了解,本学期各年级在新课程标准的指导教育教学改革跃上了一个新的台阶。
二、课堂教学,师生之间学生之间交往互动,共同开展。
本学期我们每位数学教师都是课堂教学的实践者,为保证新课程标准的落实,我们把课堂教学作为有利于学生主动探索的数学学习环境,把学生在获得知识和技能的同时,在情感、态度价值观等方面都能够充分开展作为教学改革的根本指导思想,把数学教学看成是师生之间学生之间交往互动,共同开展的过程,组织了第六届同组共研一课活动,在教研组长的带着下,紧扣新课程标准,和我校“自主——创新〞的教学模式。
在有限的时间吃透教材,分工撰写教案,以组讨论定搞,每个人根据本班学生情况说课、主讲、自评;积极利用各种教学资源,创造性地使用教材公开轮讲,反复听评,从研、讲、听、评中推敲完善出精彩的案例。
五年级教研组《循环小数》一课成功的展示,收到良好的效果得到领导和老师的肯定。
浅谈初中数学思想和数学方法的教学论文
浅谈初中数学思想和数学方法的教学-论文浅谈初中数学思想和数学方法的教学 [内容摘要] 数学教学中必须重视思想方法的教学,它是数学教育教学本身的需要,是以人为本的教育理念下培养学生素养为目标的需要,是提高学生解题能力的需要。
初中数学教学中要求教师重视并掌握各章节中蕴含的数学思想方法;要重视基本知识、基本技能的教学,并渗透数学思想方法;要引导促进学生对数学思想方法的内化;在循环教学中及时总结,明确介绍和突出体现某种思想方法,使学生对这一数学思想和数学方法得到强化和巩固。
关键词:数学思想方法重视渗透内化循环《全日制义务教育数学课程标准》明确指出义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
这意味着数学是人们生活、劳动、学习必不可少的工具,数学能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分;尤其是20世纪中叶以来,数学和计算机的结合,更使人们明白数学是一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
数学家乔治??波利亚说过:完善的思想方法犹如北极星,许多人通过它而找到正确的道路。
我国著名数学教育家姜伯驹院士曾多次强调,应该在教材和教学过程中注入数学思想,发挥数学思想方法的作用,培养应用意识和能力。
可见,数学思想和数学方法是数学知识应用的根基和源泉。
所谓数学思想,是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,是被人们反复运用和确认的、带有普遍意义和相对稳定的特征,它是对数学事实与数学理论的本质认识。
在高等数学教学中渗透数学思想方法论文
在高等数学教学中渗透数学思想方法论文在高等数学教学中渗透数学思想方法论文论文摘要:文章从高等数学教育改革的角度,论述了加强数学思想方法教学的必要性、重要性和高等数学中的基本数学思想和常用的数学方法,对加强数学思想方法的教学提出了几点建议。
论文关键词:高等数学,素质教育,数学思想方法“数学思想是指现实世界空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果,它是对数学事实与数学理论(概念、定理、公式、法则等)的本质认识。
数学方法是指人们从事数学活动时所使用的方法,即用数学语言描述与刻划事物的状态、关系和过程,经过推导、运算和分析,以形成解释、判断和预测的方法。
”数学思想和数学方法是密不可分的,数学思想是其相应数学方法的精神实质和理论基础,而数学方法则是实施其数学思想的技术手段和表现形式。
一、加强数学思想方法教育的必要性和重要性目前高等数学教学中普遍存在只注重纯数学知识与技能的传授而忽视对蕴涵于其中的数学思想方法的教学。
许多高等数学教材中表现的是经过逻辑加工的完美的数学形式,呈现为概念——定理——例题(习题)组成的纯数学系统,忽视了其中思想方法的产生、形成、发展直至完善的过程,掩盖了数学发现、数学创造、数学应用的思维活动。
在高等数学教学中加强数学思想方法教学有如下几方面的现实意义:1.数学思想方法的教学是高等数学教学中落实素质教育的有效途径。
恩格斯说“数学是辩证的辅助工具和表现方式”。
加强数学思想方法教学要求在讲授数学概念、定理和方法的同时,揭示其中的辨证思想方法及其产生的背景、内涵与外涎、与邻近概念的辩证联系以及概念辩证的发展过程,使学生形成辩证唯物主义的观点。
其次,数学的素质教育要求通过数学教学最终使学生具有正确的强烈的数学观念和可贵的数学精神。
“数学精神是指在数学活动中逐步形成和不断发展的主观状态,其实质是对理性的探索和追求,如求真求善求美,致力于发明发现、严整化、应用化和坚韧不拔等精神。
加强数学思想方法教学重要性论文
加强数学思想方法教学的重要性一、数学思想方法的含义及其关系数学思想是指现实世界的空间形式的数量关系反映在人的意识在经过思维活动而产生的结果,是对数学知识发生过程的提炼、抽象、概括和升会,是对数学规律的理性认识,是数学思维的结晶,并直接支配数学的实践活动,是解决数学问题的灵魂。
数学方法就是数学思想的表现形式,是指在数学思想的指导下,为数学活动提供思路和逻辑手段,以及具体操作原则的方法,是解决数学问题的根本策略和程序。
数学思想和数学方法既有联系又有区辊,因此,对于学习者来说,思想和方法都是他们思维活动的载体,运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种积累达到一定程度就会产生飞跃,从而上升为数学思想,一旦数学思想形成之后,便函对数学方法起着指导作用。
因此,人们通常将数学思想与方法看成一个整体概念——数学思想方法。
数学思想方法是形成学生的良好的认知结构的纽带,是由知识转化为能力的桥梁。
中学数学教学大纲中明确指出:数学基础知识是指数学中的概念、性质、法则、公式、公理、定理以及由其内容所反映出来的数学思想方法。
二、中学数学中的主要思想方法1.中学数学中的主要思想:函数与方程思想,数形结合思想,分类讨论思想,化归与转化思想。
(1)函数与方程思想:就是用函数的观点、方法研究问题,将非函数问题转化为函数问题,通过对函数的研究,使问题得以解决。
通常是这样进行的:将问题转化为函数问题,建立函数关系,研究这个函数,得出相应的结论。
中学数学中,方程、数列、不等式等问题都可利用函数思想得以简解;几何量的变化问题也可以通过对函数值域的考察加以解决。
(2)数形结合思想:数学是研究现实世界空间形式和数量关系的科学,因而数学研究总是围绕着数与形进行的。
“数”就是方程、函数、不等式及表达式,代数中的一切内容;“形”就是图形、图象、曲线等。
数形结合的本质是数量关系决定了几何图形的性质,几何图形的性质反映了数量关系。
数形结合就是抓住数与形之间的内在联系,以“形”直观地表达数,以“数”精确地研究形。
数学思想方法范文
数学思想方法范文数学是一门基于逻辑推理和证明的学科,其思想方法也是基于这一特点。
数学思想方法涵盖了数学的基本原则、解题思路和证明方法等方面。
下面将对数学思想方法进行详细的探讨。
首先,数学的思想方法是基于严密的逻辑推理的。
数学家们在进行数学研究时,需要遵循一定的逻辑规律和推理步骤。
数学的基本思想是建立在逻辑的基础上的,必须符合严格的逻辑关系。
数学家们通过逐步推理和演绎,将问题分解为一系列较为简单的部分,然后在这些部分上进行逻辑推理,最终得出问题的解答。
其次,数学的思想方法包括问题的抽象和建模。
数学家们在解决实际问题时,会首先将问题抽象成数学问题,然后通过建立适当的数学模型来描述问题的数学特征和关系。
这种思维方法可以将实际问题转化为更易于分析和求解的数学问题,从而更好地理解和解决问题。
另外,数学的思想方法还包括归纳和演绎两种基本推理方法。
归纳是指通过观察和实例的分析,概括出一般规律和定理。
数学家们通过对一系列特殊情况的研究和归纳总结,得出普遍定理的结论。
演绎则是指从已知条件出发,逐步推导出结论的过程。
演绎是数学证明的核心思想方法,它要求逻辑严密,每一步推理都必须有充分的理由和依据。
此外,数学思想方法还强调对数学对象的精确定义和性质的研究。
数学家们在研究一个数学对象时,首先需要对该对象进行准确的定义,并在此基础上研究其性质和特征。
精确定义是数学思想方法的基础,只有将问题和对象清晰地定义出来,才能进行正确的分析和推理。
最后,数学思想方法还强调创造性思维和发散思维。
数学是一门富于创造性的学科,数学家们在解决问题时需要发散思维,不断尝试各种可能的方法和思路。
创造性思维可以帮助数学家们发现隐藏在问题中的规律和特点,从而寻找到更优的解决方法。
总结起来,数学思想方法是一种基于逻辑推理和证明的思维方式。
它包括逻辑严密、问题的抽象与建模、归纳和演绎、精确定义和性质研究,以及创造性思维和发散思维等方面。
这些思想方法是数学家们研究和探索数学世界的重要工具,也是培养学生数学思维能力的基本途径。
浅谈数学思想方法的教学策略论文
浅谈数学思想方法的教学策略论文•相关推荐浅谈数学思想方法的教学策略论文摘要:随着新课改的实施,在数学课堂教学中有意识地进行数学思想方法的教学日益显得重要。
本文阐述了数学思想方法的涵义,指出了加强数学思想方法教学的重要性及如何在课堂教学中选准时机进行数学思想方法的教学。
关键词:数学思想方法渗透思想是对数学知识内容的本质认识,是对数学规律的理性认识。
数学方法是在数学提出问题、研究问题和解决问题的过程中所采用的各种手段和途径,思想是方法的升华,方法是思想的体现。
没有不含数学方法的数学思想,也没有不以数学思想为指导的数学方法,因此我们通常把数学思想方法视为一个整体。
纵观数学教学的现状,仍有一些数学课基本上还是在应试教育的惯性下运行,课堂上就题论题,致使我们的孩子至今仍被困惑在无边的题海之中。
究竟怎样走出题海,提高他们的数学能力,实现素质教育的目标呢?这就要求我们要更新观念,在数学教学中适时地渗透数学思想方法,所以在数学课堂教学中渗透数学思想方法的教学是新课改的要求。
1、几种常见的数学思想方法。
(1)函数的思想。
函数的思想就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决,诸如正比例、反比例概念中揭示的两种相关联的量之间的关系实质上就是函数关系。
(2)数形结合的思想。
数形结合思想是通过数形间的对应来研究解决问题的思想方法,数形结合的本质是数量关系决定了几何图形的性质,几何图形的性质又反映了数量关系。
数形结合就是抓住数与形之间的内在联系,以“形”直观地表达“数”,以“数”精确地研究“形”。
我国著名数学家华罗庚曾对数形结合的作用进行了高度的概括:“数缺形时少直观,形无数时难入微,数形结合百般好,割裂分家万事休。
”咱们熟悉的笛卡尔坐标系就是笛卡尔通过建立点与有序数组的对应,实现了“位置的量化”。
(3)分类讨论的思想。
分类讨论思想是根据数学对象的本质属性的相同点和不同点,将数学对象区分为不同种类的数学思想。
数学教学中应加强数学思想方法渗透论文
数学教学中应加强数学思想方法的渗透摘要:在小学数学教育中有意识地向学生渗透一些基本数学思想方法是提高学生数学能力和思维品质的重要手段,是数学教育中实现从传授知识到培养学生分析问题、解决问题能力的重要思维活动,且它本身也蕴涵了情感素养的熏染。
关键词:数学教学;数学思想方法前不久,我听了一位教师的研究课《平行四边形的面积》,上得非常精彩,也得到了大家的好评,但也引起了我深深的思考。
首先谈课堂教学的第一环节“情境导入”,这位教师较好地发挥了教材“平行四边形的面积”主题图的作用,激发学生学习兴趣和概括单元的知识。
但是,我听后,觉得少了教学内在的教学思想方法的渗透,其主题图实际上还隐含着更为重要的数学思想,研究问题从“单元”到“多元”,从“简单”到“复杂”的思想方法。
在课堂教学的第二环节“探究发现”,这位教师运用了多媒体课件,也让学生通过“剪”、“拼”操作,让学生推导出平行四边形的面积公式。
这些知识都是书本上呈现的,学生比较容易掌握,但其内在的东西—数学的化归思想,这位老师却忽视了。
事实上,学生学习知识是建构在已有经验之上,是把新问题转化为曾经解决过的问题。
比如,本单元后面要学习的多边形面积的计算,就是把多边形的面积转化为长方形面积、平行四边形面积来计算。
学习三角形面积公式,是把三角形转化为平行四边形;学习梯形面积公式,是把梯形转化为平行四边形。
这都是把新问题转化为曾经解决过的问题。
老师在平时课堂教学中注意渗透数学思想方法的教学,对学生数学问题的能力培养是有很大帮助的。
现列举两道小学生也能解答的高考试题,从一侧面来感受小学数学思想的力量。
题目1:某电脑用户计划使用不超过500元资金购买单价分别为60元、70元的单片软件和盒装磁带,根据需要,软件至少买3片,磁带至少买2盒,则不同的选购方式共有()种。
(1999年的一道高考题)分析:根据需要购买的单片软件和盒装磁带至少需要花费(60*3+70*2=)320元,剩余的资金还有(500-320=)180元,就是用这180元购买其他软件和磁盘。
数学教学中数学思想方法的渗透优秀获奖科研论文
数学教学中数学思想方法的渗透优秀获奖科研论文随着素质教育的深入开展, 数学思想方法作为数学教学的重要内容已引起广大教师的普遍关注和高度重视.数学思想是指人们对数学理论与内容的本质认识, 它直接支配着数学的实践活动.数学方法是指某一数学活动过程的途径、程序、手段, 它具有过程性、层次性和可操作性等特点.数学思想是数学方法的灵魂, 数学方法是数学思想的表现形式和得以实现的手段. 因此, 人们把它们合称为数学思想方法. 数学思想方法对于打好“双基”和加深学生对知识的理解, 培养学生的思维能力有着独到的优势, 它是学生形成良好认知结构的纽带, 是由知识转化为能力的桥梁.在数学教学中, 教师除了基础知识和基本技能的教学外, 还应重视教学思想方法的渗透, 注重对学生数学思想方法的培养.一、深入钻研教材, 挖掘渗透内容数学思想方法教学依附于数学知识的教学, 但又不同于数学知识的教学, 数学概念、法则、公式、性质等知识都明显地写在教材中, 是有“形”的, 而数学思想方法却隐含在数学知识体系里, 是无“形”的, 并且不成体系地散见于教材各章节中, 教师讲不讲, 讲多少, 随意性较大.首先, 教师要更新观念, 从思想上不断提高对渗透数学思想方法重要性的认识, 把传授数学知识和渗透数学思想方法同时纳入教学目标, 把数学思想方法教学的要求细化到备课环节.其次, 教师要深入钻研教材, 对于每一章每一节, 都要考虑如何结合具体内容进行数学思想方法的渗透, 渗透哪些数学思想方法, 怎么渗透, 渗透到什么程度, 应有一个总体设计, 提出不同阶段的具体教学要求, 使数学思想方法的渗透贯穿于整个教学过程中.1.在定理、公式和法则的教学中渗透数学思想方法.数学定理、公式、法则等结论, 都是具体的判断, 其形成大致分成两种情况:一是经过观察分析, 用不完全归纳或类比等方法得出猜想, 尔后再寻求逻辑证明;二是从理论推导出发得出结论.这些结论的取得都是数学思想方法运用的成功范例.例如, 圆周角定理从度数关系的发现到证明体现了特殊到一般、分类讨论、化归以及枚举归纳的数学思想方法.2.在数学问题的解决探索过程中揭示数学思想方法.应试教学环境中教师往往产生这样的困惑:题目讲得不少, 但学生总是停留在模仿型解题的水平上, 只要条件稍稍一变则不知所措, 学生一直不能形成较强解决问题的能力, 更谈不上创新能力的形成.究其原因就在于教师在教学中仅仅是就题论题, 殊不知授之以“渔”比授之以“鱼”更为重要.教学中教师应在数学问题探索中揭示数学思想方法, 使学生从中掌握关于数学思想方法方面的知识, 并使这种知识消化吸收成具有“个性”的数学思想, 逐步形成用数学思想方法指导思维活动.这样, 学生再遇到同类问题时才能胸有成竹, 从容对待.3.在知识的归纳总结中概括数学思想方法.数学思想方法贯穿在整个中学数学教材的知识点中, 以内隐的方式融入数学知识体系.要使学生把这种思想内化成自己的观点, 应用它去解决问题, 就要把各种知识所表现出来的数学思想适时作出归纳概括.概括数学思想方法要纳入教学计划, 要有目的、有步骤地引导参与数学思想的提炼概括过程, 特别是章节复习时在对知识复习的同时, 将统领知识的数学思想方法概括出来, 增强学生对数学思想的应用意识, 从而有利于学生更透彻地理解所学的知识, 提高学生独立分析、解决问题的能力.概括数学思想方法主要指两方面:一是揭示事物的普遍的必然的本质属性.二是要明确数学思想和数学知识之间的联系, 将抽取了不定期的共性, 推广到同类的对象中.二、把握渗透的可行性数学思想方法的教学必须通过具体的教学过程加以实现.教师必须把握好教学过程中进行数学思想方法教学的契机——概念形成的过程, 结论推导的过程, 方法思考的过程, 思路探索的过程, 规律揭示的过程等.同时, 进行数学思想方法的教学, 教师要注意有机结合、自然渗透, 要有意识地启发学生领悟蕴含于数学知识之中的种种数学思想方法, 切忌生搬硬套、和盘托出和脱离实际等.三、注重数学思想方法渗透的渐进性和反复性数学思想方法是在启发学生思维过程中逐步积累形成的.在教学中教师首先要特别强调解决问题以后的“反思”.因为在这个过程中提炼出来的数学思想方法, 对学生来说才是易于体会、易于接受的.其次要注意渗透的长期性.应该看到, 对学生数学思想方法的渗透不是一朝一夕就能见到学生数学能力提高的, 而是有一个过程.数学思想方法必须经过循序渐进和反复训练, 才能使学生真正地有所领悟.四、巩固运用, 加强指导, 形成能力学生数学思想方法的发展水平最终取决于自身参与教学活动的过程.数学思想方法既源于知识教学, 又高于知识教学.知识教学是认知结果的教学, 是学生记忆理解的静态教学.学生无独立思维活动过程, 具有鲜明个性特征的数学思想也无法形成.在课堂教学中, 教师要注重营造教学氛围, 通过设计练习, 给学生提供思维活动的素材, 引导学生积极主动地参与教学活动, 运用数学思想方法解决问题, 不断提炼数学思想方法, 活化数学思想方法, 形成用数学思想方法指导自己的思维活动和探索问题解答问题的良好习惯.在平时备课时, 教师必须多做题, 多思考, 多总结, 这样才能找出有规律性的东西.对于综合性较强的题目, 教师应在充分理解题意、全面思考的基础上, 概括出其中的数学思想方法, 从而有针对性地加强对学生练习的指导, 通过学生解题、教师指导形成能力, 达到对数学思想方法的灵活运用.。
数学思想数学论文3篇
数学思想数学论文3篇一、遵循认知规律,渗透数学思想和方法提炼“方法”,完善“思想”。
数学思想有很多种,一道题目也可能有多种数学思想、方法来解决。
除了老师的概括、分析,学生自身对数学方法、思想的揣摩、提炼能力更为重要。
教师在数学教学中要有意识地培养学生自主学习的能力,不断完善数学思想,提炼数学方法,找到属于自己的解题思路,提高自身数学能力。
二、数学思想和数学方法的具体应用1.分类讨论思想分类讨论思想即是在数学对象不能进行统一研究时,就需要针对对象属性的相同和不同点,进行分类讨论,逐一分析和解决的数学思想。
分类讨论数学思想是初中数学基本方法之一,广泛存在于各个知识点中,把握和运用好分类讨论思想可以使知识体系条理化,解题思路更加清晰。
例1.解方程|x+2|+|3-x|=5。
[分析]绝对值问题,一定要考虑到绝对值符号内对象的正负号。
这里有两个绝对值,那就必须进行分类讨论。
首先|x+2|对应x<-2x=-2x>-xxxxxxxxx2,|3-x|对应x<3x=3x >xxxxxxxxx3,解:当x<-2时,原方程无解;当-2≤x≤3时,原方程恒成立;当x >3时,原方程无解。
综上所述,原方程的解满足-2≤x≤3的任实数。
看似复杂,但其实分类讨论后,思路很清晰,很容易做出答案,由此可见分类讨论思想对解题很有帮助。
2.数形结合思想数学结合思想把数学关系、数学文字与直观的几何图形相结合,“以形助数”“以数解形”,综合抽象思维和形象思维,使得问题简单化、具体化,容易找到解题突破点优化解题途径的思想。
把握数形结合思想不仅能提高分析问题、解决问题的能力,还能通过数形变化提高学生数学思维能力,提高数学素养。
例2.若关于x的不等式0≤x2+mx+2≤1的解集仅有一个元素,求m的值。
[分析]如图:作出y=1和y=x2+mx+2的图像。
由图形的直观性质不难看出,这个交点只能在直线上,即y=1y=x2+mx+x2只有一解,则求得:△=m2-4×1=0→m=±2。
数学思想方法在高中教学中运用论文
数学思想方法在高中教学中的运用一、把数学思想方法渗透到教学中去1.在高中数学教学中,教师可以通过课堂情景的创设,有意识地把数学思想方法渗透到教学中去,创设良好的体验环境,激发学生的学习兴趣,激活学生思维,使学生在已有的生活经验之上,在合适的环境中体验体验数学思想方法。
需要注意的是,教师创设的这个情景,可以是真的,也可以是虚拟的、模仿的,只要能吸引学生的注意力就行。
2.可以让学生参加实践活动,亲身体验数学思想方法。
在数学教学中,教师在教授概念时,要经济引导学生重视基本思想方法的作用,充分挖掘并掌握数学概念中包含的数学思想方法。
3.在定理、公式、法则教学中,让学生体验数学思想方法。
数学的内容包含了大量的公式、定理等,它们是学习数学知识的基础,解决问题的依据,它们的形成都是数学家辛勤研究的结晶,其中蕴藏了数学家们深刻的数学思维过程,处处体现着创造性思维。
对这些公式定理的推导过程,有利于学生深化对公式定理的发现过程,并在发现过程张揭示数学思想方法。
比如在“三垂线定理”这节课的学习中,教师要重视“化归”思想的教授,使学生充分了解到怎样通过射影将空间问题转化为平面的问题,只有让学生把这种实质了解透彻了,才能真正掌握三垂线定理及其应用,并使学生真正感受到数学魅力,更好地将知识转化为技能。
二、正确运用数学思想方法解决数学问题在数学问题的解答中,掌握数学思想方法是解决问题的关键,数学问题的解决过程,实质是命题的不断变换和数学思想方法反复运用的过程。
数学问题的步步转化,无不体现出数学思想方法,它们是解决数学问题的的观念性成果,新大纲指出:“要加强对解题的正确指导,应引导学生从解题的思想方法上作必要的概括”。
在数学题的解答过程中,数学思想方法的应用时必不可少的,如果掌握了数学思想方法,我们就会发现,一道题中能够用到好几种数学思想方法。
例如:如果x2+y2-2y=0,不等式x+y+c≥0恒成立,求c 的取值范围。
在这个题中,我们可以至少用到两种数学思想方法来解题。
数学思想方法论文.docx
数学思想方法论文.docx浅谈数学思想方法在中学教学中的应用摘要:数学思想方法作为数学知识体系的灵魂,其在人的能力培养和素质提高方面具有重要作用.本文通过对数学思想方法在中学教学中渗透途径的探讨与研究,以此促使数学教师认识其在教学中的重要性,从而促进师生对数学的学习.关键词:数学思想方法;中学数学;应用The Infiltration of Mathematical Thought andMethod Teaching in Middle SchoolAbstract: Math thinking method act as the spirit of the mathematical knowledge. It plays an important role in the training of the students ' ability and the improvements of their quality. This article would use the primary discussion and research on the related problems of the math thinking method, deepen our math teachers ' realization on the importance of the mathematical thought and method in teaching activity, in order to make development on teachers and students about mathematics learning. Keyword: Math thinking method; secondary school teaching; infiltrate引言科学知识、科学思想和科学方法是人类知识宝库的三个基本内涵. 进入新世纪以来,我国的教育面貌发生了翻天覆地的深刻变化, 正逐步从应试教育的桎梏中解放出来进而迈向全面推进素质教育的轨道.面对21 世纪的机遇和挑战, 提高全民族的文化素质是摆在我们面前的紧迫任务. 数学思想作为科学思想、科学方法的一个重要部分,随着素质教育的实施, 其重要性已日益凸显出来. 关于数学思想方法,北京师范大学钱佩玲教授是这样说的:“数学思想方法是以数学内容为载体,基于数学知识, 又高于数学知识的一种隐性知识. ”数学思想方法是在数学科学的发展中形成的, 它伴随着数学知识体系的建立而确立, 是数学知识体系的灵魂所在,是数学中具有奠基性、总括性的基础部分.数学思想方法教学作为数学教育的重要内容,已日益引起人们的注意, 这恐怕与教育愈来愈重视人的能力培养与素质提高有密切关系.日本数学家和数学教育家米山国藏在从事多年的数学教育研究之后, 说过这样的一段话:“学生们在初中或高中所学到的数学知识,在进入社会后,几乎没有什么机会应用, 因而这种作为知识的教学, 通常在走出校门后一两年就忘掉了.然而不管他们从事什么业务工作, 那种铭刻于头脑中的数学精神和数学思想方法, 却长期地在他们的生活和工作中发挥着作用. ”倘若我们留意各行各业的某些专家或一般工作者,当感到他们思维敏锐、逻辑严谨说理透彻的时候,往往可以追溯到他们在中小学所受的数学教育, 尤其是数学思想方法的熏陶. 理论研究和人才成长的轨迹都表明, 数学思想方法在人的能力培养和素质提高方面具有重要作用.基础教育的核心是发展——使每一个受教育者在各方面都得到发展, 不是挑选——选拔出少数人去进行更高一级的学习.可是我们现在所面临的问题是, 数学思想方法在教学中渗透的重要性尚未完全被广大数学教师所认识. 这表现在数学教学中只注重数学知识的传授, 忽视知识发生过程中数学思想方法教学的“填鸭式”教学现象依然普遍存在, 特别是在素质教育发展比较薄弱的中西部地区, 这样的情况更是屡见不鲜.诚然, 按传统的教学方法进行数学教学, 也有一些学生掌握了数学思想方法, 并且在日后的工作中有所建树.但是我们要看到,这些学生是靠自己的艰苦努力, 经历了一个漫长的探索过程才能达到这样的境界, 而且只能是极少数的一部分人.我么今天所提倡的加强数学思想方法教学渗透, 其意义在于: 促使数学思想方法由盲目的、不自觉的应用向有意识的、自觉的应用转化, 大大缩短学生在黑暗中摸索的过程. 由只有少数人掌握数学思想方法变为多数人都掌握, 从而使数学教育更好地为提高国民素质服务.数学思想方法在教学活动中作为形成学生良好认知结构的纽带, 是由知识转化为能力的桥梁,同时作为基础知识在大纲中明确、肯定地提了出来. 因此, 数学的学习既是知识的学习,又是思想、方法的学习.虽然素质教育在我国提出已有多年,素质教育的实施也取得了一些显著的成果, 但是距离我们的最终目标创新型人才的培养仍有一段很长的路要走. 基于以上原因, 本文通过对数学思想方法在教学中渗透的相关内容的论述, 希望能给在一线工作的数学教师特别是即将或刚刚走上工作岗位的数学教师, 在教学活动中贡献一点建设性的建议, 以更好地发展自身, 从而使数学教育更好地服务大众.一、初中数学教学应渗透的思想方法1.分类讨论思想。
数学思想方法是数学知识精髓和核心论文
数学思想方法是数学知识的精髓和核心摘要:中学阶段是一个人一生中非常重要的学习阶段。
在数学教育方面,教师不应仅做知识的呈现者,更应该重视思想方法的教学,使学生在掌握数学基础知识的同时,初步形成数学的思维策略。
关键词:初中数学思想方法思维策略一、初中数学思想方法教学的重要性随着教育改革的不断深入,越来越多的教育工作者,特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴含的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识。
事实上,单纯的知识教学,只显见于学生知识的积累,是会遗忘甚至于消失的,而方法的掌握,思想的形成,才能使学生受益终生,正所谓“授之以鱼,不如授之以渔”。
不管他们将来从事什么职业和工作,数学思想方法,作为一种解决问题的思维策略,都将随时随地有意无意地发挥作用。
二、初中数学思想方法的主要内容初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。
(一)转化的思想方法转化的思想方法就是人们将需要解决的问题,通过某种转化手段,归结为另一种相对容易解决的或已经有解决方法的问题,从而使原来的问题得到解决。
初中数学处处都体现出转化的思想方法。
如化繁为简、化难为易,化未知为已知等,它是解决问题的一种最基本的思想方法。
具体说来,代数式中加法与减法的转化,乘法与除法的转化,换元法解方程,几何中添加辅助线等等,都体现出转化的思想方法。
(二)数形结合的思想方法数学是研究现实世界空间形式和数量关系的科学,因而研究总是围绕着数与形进行的。
“数”就是代数式、函数、不等式等表达式,“形”就是图形、图象、曲线等。
数形结合就是抓住数与形之间的本质上的联系,以形直观地表达数,以数精确地研究形。
“数无形时不直观,形无数时难入微。
”数形结合是研究数学问题的重要思想方法。
数学思想渗透数学教学论文
数学思想渗透数学教学之我见加强思想方法的渗透是实施数学创新教育的重要途径。
渗透方法是,在知识发展过程中挖掘和渗透,在练习过程中提炼和归纳,在应用中概括和深化。
笔者结合多年教学经验谈谈自己的几点看法:一、明确含义,充分挖掘所谓数学方法,就是解决数学问题的程序和策略,即解决具体数学问题所采用的方式、途径和手段,是学习数学知识、运用数学知识、解决实际问题的具体行为。
所谓数学思想,是对数学知识、方法、规律的本质认识,是比数学方法更抽象、更概括、更本质的认识。
所以,数学知识是数学的灵魂,是数学方法的理论基础。
例如,六年级上《圆》这一章,由于圆的知识具有综合性,因而数学思想和数学方法就体现得更为充分,蕴涵的主要数学思想和数学方法如下:主要的数学思想:分类讨论的思想、转化的思想、整体思想、分解组合思想、运动思想、方程思想、形数结合思想。
主要的数学方法:反证法、直接证法与间接证法、分析法、综合法、分析综合法(两头凑法)。
二、了解功能,制定目标重视数学思想方法的教学和训练,笔者认为有以下功能:1.有利于发展学生的认知能力一切数学概念、公式、定理、法则等均可视为数学模型。
在数学教学中从现实的原型出发,运用实验、操作、观察的方法,通过比较、分析与综合、抽象与概括等基本思维方法,并用数学语言表述思维过程,从而使学生获得准确的数学模型,以发展学生的认知能力。
例如数学“8加几的加法”,师生以计算“盒子里有8个苹果,盒子外有5个苹果,一共有几个苹果?”为原型,经过操作、观察、分析与综合、概括,得出了数学模型,并用数学语言表述思维过程,即“看到8,想到2,把5分成2和3,8加2等于10,10加3等于13”。
当学生掌握了这种“凑十法”的思维模型以后,就可以迁移到“9加几”、“7加几”、“6加几”等,大大地发展了学生学习数学的认知能力,提高了学习的效率。
2.有利于形成学生的思维结构在知识发生、形成过程中揭示数学思想方法,可以训练学生的数学思维,促进学生思维结构的形成。
初中数学教学论文 数学思想方法教学
初中数学教学论文数学思想方法教学初中数学教学论文数学思想方法教学数学思想方法教学摘要:全面推进素质教育是当今学校教育的发展方向,本文针对农村中学数学教育的思想方法,结合具体实际,提出自己一些有效的方法和措施。
其中包括初中数学蕴含的数学思想、、数学思想和方法的教学原则、数学思想和方法的教学策略及自己在山区中学数学教学中一些行之有效的方法和措施。
关键词:思想方法教学原则教学策略数学教学大纲指出“初中数学的基础知识,主要是概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。
”由此看来,掌握好数学思想和方法的学习,对培养学生的数学素养,提高数学素质非常重要。
遗憾的是,在数学教学过程中,教师没有引起足够的重视。
在知识生成的过程中,往往只注重知识的传授而忽视数学思维方法的传授。
数学思想和方法具有普遍性。
掌握数学思想比掌握正式的数学知识更重要。
学生们将在未来的生活和工作中受益终生。
一、初中数学蕴含的数学思想初中数学中蕴含着许多数学思想和方法。
最基本的数学思想和方法包括变换思想、数形结合思想、分类讨论思想、方程思想、函数思想等。
突出这些基本思想和方法就相当于掌握中学数学知识的精髓。
1、化归的思想方法“转变”就是转变和决心。
它是解决数学问题的基本方法:人们在解决数学问题时,往往通过某种转换手段将要解决的问题简化为另一个相对容易解决的问题或有解决方案的问题,从而得到问题的解。
中学数学处处体现着化繁为简、化难为易、化未知为已知、化高阶为低阶等思想,是解题的最基本思想。
在具体内容上,加减、乘除、乘方、辅助线和辅助元素的加法是实现变换的具体手段。
因此,在教学中,首先要让学生认识到许多常用的数学方法本质上都是变换方法,从而确定变换的可能性和必要性。
其次,要结合具体的教学内容进行有意识的训练,使学生掌握这一宝贵的思想方法。
在具体的教学过程中,设置问题供学生观察和探索转化的途径。
例如在求解分式方程时,运用化归的方法,将分式方程转化为整式方程,进而求得分式方程的解,又如求解二元一次方程组时的“消元”,解一元二次方程时的降次”都是化归的具体体现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈加强数学思想方法的教学
摘要掌握数学思想方法是学好数学、用好数学这个工具的关键之处。
本文探讨了数学思想方法的教学,着重从四个方面分析入手,让学生通过实践中的探索、探索中的学习,体会数学思想方法的重要性,提高学生学习的兴趣、培养学生自主学习和合作学习的能力,发展学生创新能力和实践能力。
关键词:数学思想数学方法
数学是一门工具性很强的学科,也是一门具有方法论性质的学科。
数学本身就是一种方法,它和其他学科相比还具有较高的抽象性等特征。
为了有效地把它们传授给学生,就必须对这门学科的思想方法有所掌握。
因此,加强数学思想方法的教学是数学教学任务中的关键。
以下我谈谈我的几点做法。
1、挖掘概念定理中的数学思想方法
有不少概念、定理本身蕴含某些数学思想方法,需要挖掘。
如立体几何中“异面线成角”、“线面成角”、“面面成角”都转化为平面角求解,柱体、锥体的侧面积可以转化为求侧面展开图形的面积,空间任意两元素的距离都转化为两点间距离求解。
这些概念定理中蕴含着化归这一数学思想。
例、正方体被其对角面一分为二所得的一部分,,、分别是和的中点,求和所成的角。
解: 取bc中点d,设如图所示
∵ ,bd ∴ bd ∴四边形是平行四边形∴∴为与所成的角。
在中, , ,
由余弦定理得∴∴和所成的角为
点拨:本题中利用中点得到中位线,通过平行公理及平行四边形的转化,得到,从而将异面直线所成角转化为两相交直线所成角,这样可以避免直接过作的平行线,无法将平行线定位的难处。
2、挖掘数学问题中的数学思想方法
在解决数学问题时教师要刻意引导学生怎么去寻找解题思路,不同的解题思路体现着不同的数学思想方法。
这种对数学问题灵活变通、引伸推广的做法,能有效地培养学生思维的发散性、灵活性、深刻性和抽象性。
例、求的值。
解法一:
解法二:
解法三:设的外接圆半径为1,,,则。
由正弦定理和余弦定理知
即
∴
本题解法一是解三角函数的常规方法---降幂法;解法二运用了配方法的思想;解法三运用了构造法的思想。
3、在小结复习中,提炼概括并运用巩固数学思想
同一内容可蕴含几种数学思想方法,而同一数学思想方法又常常分布在许多不同的基础知识之中,及时小结复习以进行强化刺激,让学生在脑海中有深刻的印象,这样有意识、有目的地结合数学基础知识,提炼概括数学思想方法,既可避免单纯追求数学思想方法教学欲速则不达的问题,又明快地促使学生的认识从感性到理性的飞跃。
例如,《数列》这一章,体现了函数与方程、等价转化、分类讨论等重要的数学思想以及待定系数法、配方法、换元法、消元法、“归纳一猜想一证明”等基本的数学方法。
在抓住学习重点、突破学习难点及解决具体数学问题中,数学思想方法是处理这些问题的精灵,这些问题的解决过程,无一不是数学思想方法反复运用的过程,因此,时时注意数学思想方法的运用既有条件又有可能,这是进行数学思想方法教学行之有效的普遍途径.数学思想方法也只有在反复运用中,得到巩固与深化。
4、教师要着力渗透数学思想方法
作为一名教师,首先自身必须具备数学思想方法知识,这样才能了解它们在教材中是如何渗透的,才能明确教材为什么这样编写,从而从整体上,本质上去理解和把握教材,有目的,有计划,循序渐进的渗透。
学生对数学思想方法的领会和掌握,遵循一般的认识规律,即从个别到一般,从具体到抽象,从感性到理性,从低级到高级的认识规律。
而数学思想方法是在启发学生思维过程中逐步积累和形成
的。
为此,在教学中,首先要特别强调解决问题以后的“反思”,在这个过程中提炼出来的数学思想方法,对学生来说才是易于体会、易于接受的。
其次由于数学思想方法的抽象,只表现为一种意识或观念,其形成和发展比知识形成和积累需要更长的时间,花更大的精力,不可能一蹴而就,要日积月累,坚持长期渗透。
另外由于个体差异的存在,对数学思想方法的掌握表现出不同的同步性。
因此,数学思想方法要不断深化,做到长期反复渗透。
总之,我们在数学教学的每一个环节中,都要重视数学思想方法的教学。
“授之以鱼”不如“授之以渔”,思想的形成,方法的掌握,能使学生受益终生。
参考文献:
[1] 俞平.试说数学方法在数学研究中的作用[j
[2] 张国杰.数学教育研究与协作导论[m]
[3] 徐有标.高考中的数学思想方法[m]。