CRH380AL型动车组受电弓工作原理浅析(可编辑修改版).
受电弓的工作原理
受电弓的工作原理受电弓是电力机车、电力动车组以及有轨电车等电气化铁路牵引车辆上的一种重要设备,它的作用是通过接触网吸收电能,然后将电能传输给车辆的牵引电动机,从而驱动车辆行驶。
受电弓是电气化铁路牵引系统中的重要组成部分,其工作原理的稳定性和可靠性对于铁路运输的安全和高效至关重要。
受电弓的工作原理可以分为以下几个方面来详细介绍:一、受电弓的结构和组成。
受电弓通常由受电弓主体、受电弓支架、受电弓杆、接触板、接触滑板等部件组成。
受电弓主体是受电弓的主要部分,它通过受电弓支架与车体连接,能够在运行时保持与接触网的良好接触。
受电弓杆是受电弓的伸缩部分,能够根据接触网的高度自动调节受电弓的位置。
接触板和接触滑板则是受电弓与接触网之间的电气连接部分,能够确保电能的传输稳定和可靠。
二、受电弓的工作原理。
当电力机车或者电力动车组行驶时,受电弓通过受电弓支架保持与接触网的接触,从而实现与接触网的电气连接。
接触网上的电能通过接触板和接触滑板传输到受电弓内部的牵引变流器中,然后再由牵引变流器转换成适合牵引电动机使用的电能。
牵引电动机接收到电能后,就能够驱动车辆行驶。
在行驶过程中,受电弓能够根据接触网的高度自动调节受电弓的位置,确保与接触网的良好接触,从而保证电能的传输稳定和可靠。
三、受电弓的工作原理特点。
受电弓的工作原理具有以下几个特点:1. 自动调节,受电弓能够根据接触网的高度自动调节受电弓的位置,确保与接触网的良好接触,从而保证电能的传输稳定和可靠。
2. 高效传输,受电弓能够将接触网上的电能高效传输到车辆的牵引电动机中,从而实现高效的牵引动力。
3. 稳定可靠,受电弓的工作原理稳定可靠,能够确保电能的传输稳定和可靠,保证铁路运输的安全和高效。
四、受电弓的维护和保养。
受电弓作为电气化铁路牵引系统中的重要设备,需要定期进行维护和保养,以确保其工作原理的稳定性和可靠性。
维护和保养工作主要包括对受电弓主体的检查、润滑和更换,对受电弓支架的调整和维修,对受电弓杆的清洁和润滑,以及对接触板和接触滑板的检查和更换等。
CRH380AL型动车组受电弓工作原理浅析
CRH380AL型动车组受电弓工作原理浅析 摘要:CRH380A动车组,编组16列,目前运行速度300km/h,如此高的运行速度,旅客们对动车组乘坐的舒适性和安全性也提出了很高的要求。
但要达到这一目标稳定的动力输出是必不可少的,要提供稳定动力输出,高压供电系统的稳定是基础。
而提到动车组高压供电系统,就不得不提到受电弓。
关键词:动车组;动力输出;高压供电系统;受电弓 高压供电系统是动车组关键技术之一,而受电弓的表现直接关系到动车组高压供电系统的稳定性。
在动车组的检修过程中,对受电弓的检查和试验是相当严格的,是绝对不能有半点失误的。
任何一点失误,都有可能对动车组的运行造成极其恶劣的影响。
现在结合日常的工作,对动车组受电弓的组成及工作原理进行简要的介绍。
一、受电弓概述 CRH380AL动车组使用的受电弓型号为DSA380,弓头长1950mm,滑板长1576mm,质量(不包括绝缘子和阀板)为117kg,其结构如下图: 图1 受电弓结构 主要参数: (1)最小绝缘距离:≥310mm (2)最大电流:1000A (3)短路电流:35kA(60ms) (4)车辆静止时最大电流:80A (5)受电弓落弓时高度:666mm (6)静态接触压力为80N、可调 (7)最大集电头(弓头)宽度:1950mm(+0/-10mm) (8)两根滑板中心线距离:约580mm (9)滑板材料:渗金属碳 (10)弓角材料:部分绝缘 (11)最大上升时间:10s (12)最大下降时间:10s (13)下降310mm的最大时间:3s (14)ADD释放后,故障受电弓降到考核高度下200mm处的最大时间:1.0s (15)输入空气压力:4~10bar (16)形式及管径:内螺纹/G 1/2’ 二、工作原理 1.升降弓工作原理 当受电弓的电磁阀得电时,压缩空气也经过减压阀、电控阀一路向气囊(17)充气,同时一路向受电弓的集电头上的滑板气腔内充气;当气囊内气压达到一定压力时,受电弓开始升弓,与接触网接触集取电流。
和谐号受电弓工作原理
和谐号受电弓工作原理
和谐号受电弓是一种用于电力牵引列车的设备,其工作原理可以描述如下:
1. 导电杆:和谐号受电弓的顶端装有一个导电杆,其主要作用是与接触网建立电气联系。
导电杆通常由导电材料制成,如铜或铝合金,具有良好的电导性能。
2. 弹簧装置:受电弓内部安装有弹簧装置,用于驱动导电杆与接触网之间保持合适的接触力。
通过调整弹簧的张力,可以确保导电杆与接触网之间始终保持压力适中的接触状态。
3. 牵引装置:和谐号受电弓通过牵引装置与列车的电力传输系统相连,将接触网上的电能传递给列车的牵引装置。
牵引装置通常由电流传感器和电缆组成,能够将受电弓接收到的电能有效地传输到列车内部的动力装置。
4. 自动控制系统:和谐号受电弓通常配备有自动控制系统,用于监测受电弓与接触网之间的电气状态,并根据需要调整受电弓的高度和倾角。
这样可以确保受电弓始终保持与接触网的良好接触,并在列车高速行驶时保持稳定的电力传输。
总之,和谐号受电弓通过导电杆与接触网建立电气联系,并通过弹簧装置保持适当的接触力。
通过牵引装置,受电弓将接触网上的电能传输给列车的动力装置,实现电力牵引。
自动控制系统可以监测和调整受电弓的工作状态,确保电力传输的稳定性和可靠性。
受电弓工作原理
受电弓工作原理受电弓是电力机车、电力动车组和有轨电车等电气牵引车辆上的重要部件,它的作用是通过接触网吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。
受电弓的工作原理是基于接触网和受电弓之间的接触和导电,下面将从接触网、受电弓结构和工作过程等方面详细介绍受电弓的工作原理。
接触网是电气牵引车辆供电系统的重要组成部分,它一般由一根或多根导线组成,悬挂在架空设备上,为电气牵引车辆提供电能。
接触网一般由铜、铝等材料制成,具有良好的导电性能和机械强度。
电气牵引车辆行驶时,受电弓通过接触网吸收电能,将电能传输给车辆的牵引电动机,从而驱动车辆运行。
受电弓的结构一般由受电弓支架、受电弓杆、受电弓头、接触板等部件组成。
受电弓支架一般安装在电气牵引车辆的车顶上,通过受电弓杆与受电弓头相连接,受电弓头上安装有接触板。
当电气牵引车辆行驶时,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。
受电弓的工作原理是基于接触网和受电弓之间的接触和导电。
当电气牵引车辆行驶时,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。
接触板与接触网之间的接触面积较大,接触压力较大,能够保证良好的导电性能。
受电弓通过接触网吸收电能,将电能传输给车辆的牵引电动机,从而驱动车辆运行。
受电弓的工作过程一般分为接触、牵引和分离三个阶段。
在接触阶段,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。
在牵引阶段,受电弓吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。
在分离阶段,受电弓通过受电弓支架和受电弓杆与接触网分离,完成电能的传输。
总之,受电弓是电气牵引车辆上的重要部件,它通过与接触网保持接触,吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。
受电弓的工作原理是基于接触网和受电弓之间的接触和导电,具有良好的导电性能和机械强度。
CRH380A型动车组受电弓无法升起原理及故障浅析
CRH380A 型动车组受电弓无法升起原理及故障浅析摘要:本文从动车组受电弓动作原理入手,通过对CRH380A 型动车组受电弓电路、气路等方面进行分析。
采用反向论证法,跳出原有故障处置流程,达到故障点的快速判断处置的目的,从而减少对运输秩序的影响。
关键字:CRH380A动车组;受电弓;电路;气路;反向论证CRH380A型动车组受电弓设置在M3-4车、M5-6车,通过空气回路控制升、降动作的铰接式机械构件,能够从接触网汲取电流,并将其传送到车辆电气系统的电气设备。
本文结合CRH380A型动车组实际运用情况、根据电路图、风路图分析受电弓无法升起的故障情况。
通过对升弓的原理分析,反向推出故障点所在位置,快速制定后续处置方案,从而有效指导线上应急处置,缩短应急处置时间,减少对运输秩序的影响。
1受电弓工作原理当受电弓升弓电磁阀得电时,压缩空气经过阀板的空气过滤、单向调速阀、调压阀一路向气囊充气,同时一路向受电弓的集电头上的滑板气腔内充气;当气囊内气压达到一定压力时,受电弓开始升弓,与接触网接触汲取电流。
当升弓电磁阀失电时,气囊中的压缩空气压力迅速减小,压缩气体由快排阀排向大气,受电弓靠自重降弓(见图1)。
1.1电路原理分析1.1.1升弓指令受电弓升弓指令可以通过操作主控端司机室的升弓旋钮,也可以通过MON屏远程切除界面发出。
下面分别就两种升弓方式的原理进行说明:远程控制(见图2):通过主控端MON屏上远程切除界面选择需要操作受电弓,由车辆信息控制终端装置使UR04继电器得电,得电后其辅助触点闭合使PanUR、PanUR1继电器得电。
图1受电弓工作原理图2远程升弓升弓旋钮控制(见图3):操作主控端司机室配电盘上的【受电弓切换开关】,对升04、06车受电弓进行选择选择。
升04车弓时106Y线得电,升06车弓时106X线得电。
106Y/106X线励磁条件有(见图3):①102线有电,司机室【受电弓·VCB】断路器闭合;②110线04、06车EGS限位开关处于闭合状态(升弓前04/06车EGS打开);③111线02、04、06车VCB限位开关处于闭合状态(升弓前02、04、06车VCB 打开);④主控端激活继电器MCR励磁;⑤控端VCB辅助继电器VCBRR励磁;⑥主控端接地保护开关继电器(EGSR)励磁;⑦非主控激活继电器MCRR励磁。
CRH380A型动车组自动降弓故障原因分析及措施处置
圈 5ADD 闷结 构 圈
3处 置 措 施 5.1途 中应急 处理
(1)装有受 电弓视 频监控 装置 的动 车组,随 车机械 师应立即通 过受 电弓视频监控 装置确认受 电弓外观状 态,并及时查 看回放视 频, 如能够确认受 电弓状态可见部 分无明显异 常或 不超限、无脱落风险时, 通 知 司 机 换 弓后 正 常运 行 。
圈 2受 电弓 自动 ■ 弓故 障 分 布 统 计 情 况 2受 电弓 自动 鼻 弓 原 因分 析 2.1正 常升 弓 2.1.1气 路原 理 在 司机 室按下受 电弓升弓按钮 ,升弓电磁阀得 电动作 ,向动车 组 受 电弓 供 应 压 缩 空气 。压 缩 空 气 首先 进 入 受 电 弓气 阀 板 ,依 次 经 过 气 阀板的空气过滤 、压力调整、流量调节,再经过车顶空气管路、受电弓 绝缘软管和受 电弓底架上的空气管路 的传输后’气路 分成为两条支路 , 一 条支路向受电弓升弓气囊供气 ,另一条支路经由 ADD阀向滑板、气 阀板压力开关 (DS2)供气 。受电弓升弓气路原理图如图 3所示。
(1)受 电弓供 风管受异物击打漏风 ; (2)碳滑板受异物击打漏风 ; (3)ADD 阀 自身故 障漏 风 ; 据不完 全统计,2017年全路 CRH380A型 动车组 自动降 弓故 障 33件 ,其 中供风管遭异 物击打漏风 共 27件 ,碳 滑板受异物 击打漏风 4件,ADD阀自身故障嘱风 2件,故障分布统计情况如图 2所 示。
火车受电弓工作原理
火车受电弓工作原理
火车受电弓是火车发电的重要设备,它的功能是在电力轨道上将供电线中的电能转换为电车辆所需的电能。
受电弓由夹杆形式的两个金属接触器、中空的软硅胶弓和由金属的支架组成的支架组件组成。
当车辆行驶时,接触器就会接触轨道上的供电线并转换电能。
弓型构件在接触器上刮走时会机械振动和热振动,从而产生电火花,这就是受电弓发出的“嘎嘎”声即传统火车列车的声音。
电火花会带动受电弓的软铜弓的上下运动,从而增强接触器的张力,充分发挥接触器夹紧裸导线的作用,使受电弓夹紧并形成一个可靠的电接触,从而实现火车辆供电和车辆安全行驶。
高速铁路受电弓的工作原理
高速铁路受电弓的工作原理高速铁路作为现代交通的重要组成部分,为人们提供了更快、更便捷的出行方式。
而高速铁路列车的正常运行离不开供电系统的支持,其中受电弓作为关键部件之一,起到了将电能传输给列车的重要作用。
本文将介绍高速铁路受电弓的工作原理。
一、受电弓的定义与分类受电弓是安装在高速铁路列车车顶上,并与电网接触的装置,通过与供电线路的接触来获得电能。
根据其构造和工作原理的不同,受电弓可以分为机械式受电弓和气动式受电弓两种类型。
1. 机械式受电弓:机械式受电弓通常由一对可伸缩的碳刷组成,碳刷通过与供电线路的直接接触来获取电能。
当列车行驶过程中,机械式受电弓会根据电网的高度自动调节碳刷的伸缩长度,以保持良好的电接触,从而保证高效的电能传输。
2. 气动式受电弓:气动式受电弓采用了气动技术,通过气动部件来控制受电弓的伸缩。
与机械式受电弓相比,气动式受电弓具有更高的稳定性和可靠性,适用于高速列车等复杂运行条件。
二、高速铁路受电弓的工作原理高速铁路受电弓的工作原理可以概括为以下几个步骤:1. 接触网供电:在高速铁路上,有一组并联的供电线路,称为接触网。
接触网通过变电站从电网中获得电能,并将电能传输到各个供电线路上。
2. 受电弓接触供电线路:当列车驶过供电线路时,受电弓会与供电线路接触,通过碳刷或气动部件与供电线路建立电接触,从而将电能传输给列车。
3. 受电弓调节高度:高速铁路路况复杂,供电线路的高度会有所变化。
为了保持受电弓与供电线路之间的良好接触,受电弓会根据电网高度的变化,通过机械或气动系统自动调节受电弓的高度。
4. 受电弓传输电能:当受电弓与供电线路建立电接触后,电能会通过受电弓传输到列车的电动机或牵引系统中,从而驱动列车正常运行。
三、高速铁路受电弓的特点与优势高速铁路受电弓作为供电系统的重要组成部分,具有以下特点与优势:1. 快速调节能力:高速铁路受电弓能够根据供电线路的高度变化快速调节高度,以确保稳定的电能传输,保证列车正常运行。
CRH380AL动车组直流电源系统分析
CRH380AL动车组直流电源系统分析摘要:对CRH380AL动车组直流电源系统工作原理、特点进行分析,结合其特性并根据运用中的问题提出想法,对实际检修工作进行理论探讨。
关键词:直流电源系统;蓄电池;102线;103线;115线直流电源系统是辅助电源系统的重要组成部分,主要向控制电源、蓄电池、照明等供电。
直流供电系统既是动车组的神经系统,也是动车组上所有直流负载的保障,与旅客的舒适性和行车安全密切相关,因此作为动车组检修人员有必要对其进行掌握。
本文对CRH380AL动车组的直流电源系统的原理与特性做出分析,管窥之见以求斧正。
1、直流电源系统的原理分析从电源系统的宏观角度看,低压直流电源系统是首要环节,它的启动才会接通高压电,继而牵引系统、辅助系统等一系列动车组的负载才能正常工作,当APU启动后,辅助整流器使用整流器变压器将APU的三相400V电压输出变压,通过三相全波整流器,输出稳压DC100V,向车辆的控制电源、车厢照明、蓄电池、插座、服务设备等供电。
直流电源系统中所有的直流负载其电源来自四根主线系统,本文首先对其原理进行详细分析。
1.1、102线系统102线系统由蓄电池提供的电源平时就成为接通的使用状态,随时为辅助电动空气压缩机、受电弓及真空断路器等与行车相关设备提供电源。
从原理图上分析,在1\2\4\7\9\11\13\15\16车的组合配电柜【直流电源2】NFB【ON】的前提下,即BatN2【ON】,蓄电池通过102A线向102线供电,102线共分9个单元1、2-3、4-5、6-7、8-9、10-11、12-13、14-15、16。
1.2、103线系统103线贯通全车,用于控制电路、监控器、开关门电路等主要的直流电源装置及机器。
通高压电前,103线使用蓄电池作为电源,同时辅助电源的启动需要103线→【辅助电源装置控制】NFB【ON】(APUCN)→113线提供电源;接通高压后,103线使用辅助电源作为电源。
动车组受电弓
5
4
3
2
如果出现以下情况,应更换弓角: 如果涂层磨损严重, 应更换弓角。
1、弓角 2、固定螺栓 3、弓头托架
2 13Biblioteka 1 1、碳结块 2、大裂缝 3、小裂缝 2
3
碳滑板的更换: 1. 拆除碳滑板两端ADD系统的压缩空气连接(3)。 2. 旋松带锥形弹簧垫圈的六角螺母M8(2),然后拆除碳滑板支 架(5)。 3. 小心地拆除碳滑板(1)。 4. 安装时按相反步骤操作即可。
1 1. 碳滑板 2. 带锥形弹簧 垫圈的M8六角 螺母 3. 压缩空气连 接(ADD系统) 4. 测试螺钉 5. 碳滑板支架
三、受电弓工作特点
3、升弓时滑板离开底架要快,贴近接触导线
要慢,防弹跳 ; 4、降弓时脱离接触导线要快,以防拉弧;落 在底架上要慢,以防对低架有过分的机械冲 击。
四、受电弓的结构
44
1.底架组成 2. 阻尼器 3.升弓装置 4.下臂组装 5.弓装配(支撑 装置) 6.下导杆 7.上臂组成 8.上导杆(平衡杆) 9.弓头 10.碳滑板 11.绝缘子
10 9 8 7 4 5 3
6
2
11 1
升弓装置
弓头
编织线
气动控制系统
1、TP/TPB 车的侧墙 2、阀板 3、空气滤清器 4、升弓节流阀 5、减压阀 6、压力表 7、降弓节流阀 8、安全阀
ADD自动降弓装置
自动降弓装置原理
9 停止阀
10 自动降弓阀 11 试验阀
12 升弓装置
13 碳滑板 14 电磁阀 15 压力开关
受电弓
二、弓网动力学
接触网 电力机车
1、增大弓网接触压力会减少离线率,但会加
速受电弓碳滑板的磨耗; 2、减小弓网接触压力随能降低设备损耗但弓 网离线率增大。
浅析CRH3型动车组受电弓工作原理及调试
浅析CRH3型动车组受电弓工作原理及调试摘要:CRH3型动车组受电弓是从接触网上受取电流的一种受流装置。
受电弓靠滑动接触受流,是动车组与固定供电装置之间连接的环节,其性能的优劣性直接影响到动车组工作的可靠性。
随着动车组运行速度的不断提高,对其受电弓性能,调试过程工作原理提出了越来越高的要求,探讨受电弓工作原理保证其性能稳定,实现动车组安全运行。
关键词:动车组;受电弓;原理;调试A brief analysis of the working principle and debugging of pantograph of CRH3emuAbstract:The model CRH3 pantograph is a current receiving device from the contact network.The pantograph receives the current by sliding contact, which is the link between the emu and the fixed power supply device.With the continuous improvement of the running speed of emu, higher and higher requirements are put forward for the pantograph performance and the working principle of the debugging process.Keyword:EMU;Pantograph;The principle;debugging引言受电弓是利用车顶接触网获取和传递电流的机械组成。
受电弓由气囊组成的气动平衡系统控制,该气囊的压力空气由气动控制单元提供。
在压力空气作用下气囊产生扭矩,通过凸轮及弹性连接轴作用在下臂的铰链处,从而使受电弓根据设定速度升弓。
浅谈 CRH380BL 型动车组受电弓原理
浅谈 CRH380BL 型动车组受电弓原理摘要:针对CRH380BL型动车组受电弓软连线、支持绝缘子磨损断裂较为严重问题,结合受电弓结构特点和CRH380BL型动车组运行实际情况进行分析,提出了相应的改进措施和建议,以确保动车组正常运用安全。
关键词:受电弓软连线;支持绝缘子;故障;改进措施引言:受电弓是动车组极其重要的电器部件,受电弓用于从接触网向电气操作的车辆供应电流,并使集电头适应接触网系统。
通过三个支承绝缘子连接到车辆。
CRH380型动车组采用SS400型单臂受电弓。
单臂受电弓由带支承绝缘子的底架升降传动装置框架集电头带有自动下降装置(ADD)的气动设备等主要部件组成:1 CRH380型动车组受电弓运行故障描述受电弓是动车组极其重要的电器部件,用来把接触网25kV的电能传导给车内高压设备。
经过车辆长期在线上运行,虽然受电弓具有较好的气动力模型和气流调整装置,能有效改善受电弓的气动力稳定性,保证弓头位置稳定,整体性能基本适应动车组运行需要。
但是受电弓各软连线、支持绝缘子由于设计和材料的原因,磨损断裂较为严重(软连线、绝缘子新品使用时间分别仅为6天与18天),这些不仅造成工作量和材料成本的增加,而且还容易造成受电弓各轴承的电蚀和绝缘距离的降低,影响受电弓的正常性能的发挥。
在车辆的正常运行中,换修率明显高于其他电器部件。
2 CRH380型动车组受电弓运行故障原因分析2.1 接触网硬点及弓网匹配产生的交变剪切应力接触网接触悬挂的一个重要指标就是弹性均匀,由于接触悬挂本身存在弹性差异,如果在接触悬挂或接触线的某些部位有附加重量、偏斜的线夹和安装不良的分相分段器,在电动车组高速运行情况下,受电弓就可能出现不正常波动或摆动,甚至出现撞弓、碰弓现象。
形成这种现象的本征状态称为硬点。
硬点是一种结构的本征缺欠,并且是相对的,在已定的接触网结构下列车速度越高硬点表现越明显。
硬点是一种有害的物理现象,它会加快接触导线和受电弓滑板的异常磨耗和撞击性损害,撞击力还会向受电弓其他部件传递。
高速铁路受电弓的工作原理
高速铁路受电弓的工作原理受电弓杆是受电弓的主要支撑部件,通常由导电材料制成。
它与列车车顶的导向系统连接,可以在列车运行时沿着导向系统上下移动。
牵引装置负责控制受电弓的升降和旋转。
它通常由电动机和传动装置组成,可通过列车上的控制系统进行控制。
当列车需要升起或收起受电弓时,牵引装置会启动电动机,从而牵引受电弓杆进行升降或旋转。
导电刷是受电弓的导电部分,通常由碳材料制成。
导电刷通过与接触线接触,将电能传输到受电弓杆,再通过传输装置传输到列车上的电机。
弹簧机构用于控制受电弓的接触力。
它通常由弹簧和张紧装置组成,可以调节受电弓与接触线之间的接触力。
足够的接触力可以确保受电弓与接触线之间的可靠接触,并减少电阻和电弧产生的可能性。
1.列车接近电力区域时,牵引装置会启动电动机,将受电弓杆从水平位置升起到接触线的高度。
这通常是由于受电弓杆上的导电刷接触到接触线并受到电力影响。
2.当受电弓接触到接触线时,导电刷通过电磁感应接收电能,并通过传输装置将电能传输到列车上的电机。
3.在列车运行过程中,受电弓始终保持与接触线的接触,以确保持续的电能传输。
4.当列车离开电力区域时,牵引装置会启动电动机,将受电弓杆从接触线的高度降低到水平位置。
这样可以确保受电弓在高速运行过程中不会与非电力区域的物体发生碰撞。
总结来说,高速铁路受电弓的工作原理是通过受电弓杆、牵引装置、导电刷和弹簧机构等部件的协作实现的。
它们通过电磁感应和接触导电的方式,将电能从接触线传输到列车上的电机,为高速列车的运行提供动力。
同时,弹簧机构可以确保受电弓与接触线之间保持足够的接触力,确保电能传输的可靠性。
高速铁路受电弓的高效工作对于高速列车的平稳运行和安全行驶具有重要的意义。
CRH380A型动车组受电弓故障分析及处理
CRH380A型动车组受电弓故障分析及处理摘要:近些年来,高铁以其速度快,守时性高而在客运中占有重要地位。
伴随着高速铁路速度的提高和新建高速铁路的开通运营以及新造动车组的投入运行,受电弓与接触网问题日益突出。
由于中国动车组的高速度和高密度,运行中的事故的发生严重影响了动车组列车的安全和正点。
所以,动车组的良好的弓网接触是确保动车组高速运行的必要条件。
为了保障动车组在运行过程中受电弓不出现故障,如何减少列车运行时受电弓组件的损耗,如何提高受电弓的检修质量,以及如何处理受电弓的故障,已成为当前的发展方向和维护动车组的重要问题。
关键词:高速动车组;受电弓;安全性一、CRH380A型动车组受电弓概述(一)CRH380A型动车组受电弓结构组成太原动车所的CRH380A型动车组的受电弓多以TSG19A型为主。
TSG19A 型受电弓为双臂式受电弓,由底架、上下臂、气囊升弓装置和弓头等组成,具有弓头重量小的特点。
小的弓头质量有益于受流和适应很高的运行速度。
受电弓的上下臂保证弓头相对于底架在垂直方向运动。
1.受电弓气阀板1-过滤阀;2-两位五通电磁阀(MV5/2);3-精密调压阀(DM3);4-压力开关(DS3);5-精密调压阀(DM2);6-梭阀;7-节流阀;8-安全阀;9-压力表;10-快排电磁阀(SA);11-压力开关(DS2)受电弓通过空气回路控制升降弓。
当司机旋动受电弓升弓旋钮时,动车组内的升弓电磁阀得电动作,向受电弓提供压缩空气。
压缩空气先进入受电弓阀板,依次经过气阀板的空气滤清器、压力调整阀、节流阀,再经过车顶空气管道、受电弓绝缘软管和受电弓底架上的气路的传输后,气路分成为两条支路,一条支路向受电弓升弓气囊供气,另一条支路经由自动降弓装置(ADD)向碳滑板、气阀板压力开关(DS2)供气。
2.绝缘子组装TSG19A型受电弓安装有三个支持绝缘子,如图1。
2013年起,CRH2C、CRH380A动车组用TSG19A受电弓绝缘子全部更改为400mm高支持绝缘子。
动车组主动控制受电弓工作原理及故障分析
动车组主动控制受电弓工作原理及故障分析引言:主动控制受电弓可以有效改善受电弓接触网之间的动态特性,既可以保证弓网之间的稳定受流,又可以有效降低弓网磨耗。
充分了解受电弓的结构特点、工作原理、调试试验,可以使我们更好的掌握受电弓检修技术,在运用维护、故障处理、工艺完善等方面积累经验,为制定合理、完善的检修规程提供现场实际指导。
1.受电弓的结构与工作原理分析主动控制型受电弓,以列车速度和受电弓位置参数为依据,通过电空集成的控制模块对受电弓气囊压力进行主动控制,进而间接的控制受电弓与接触网之间的接触压力。
其具体结构如下:(1)受电弓的主要的结构1.底架与铰链系统2.下臂3.上臂4.下拉杆5.上拉杆6.平衡系统-气囊7.集电头8.气动ADD阀9.APIM装置①底架与铰链系统底架(1)的刚性装置由焊接轮廓部分组成,包括:联合悬挂系统、阻尼器、平衡系统;铰链系统由焊接钢管组成,包括以下组件:下臂(2)、下拉杆(4)、上臂(3)上拉杆(5)这些组件确保了弓头的垂向运动。
②平衡系统平衡系统由气囊组成,气囊通过下臂的凸轮/弹性连接轴传递扭矩作用。
该平衡系统的一侧安装在支架上,另一侧悬挂在下臂(在弹性连接轴水平上)的凸轮上。
该系统的实现平衡联接,确保受电弓与接触网之间保持持续稳定的接触力。
③集电头集电头由带有弓头装置的铰链组成。
该弓头实现为受电弓传递电流的功能,并允许在相互运动状况下与接触网接触。
④ADD(自动降弓装置)系统ADD系统可以在碳滑板损坏时使受电弓自动快速地降弓。
降弓之后,如果碳滑板未修复,它可以阻止受电弓升弓。
它以安装在受电弓支架上的一个气动ADD阀(8)为基础,通过空气管(包括碳滑板)作用。
在正常运行情况下(碳滑板无损坏),气动阀是关闭的。
在碳滑板损坏的情况下,排出的空气气流将气动阀打开,实现自动降弓。
压力开关提供碳滑板(低电流接触)损坏的信息,气囊压力下降,受电弓自动降弓。
2.主动控制受电弓主动控制逻辑以及模块介绍(1)CRH380B(L)主要的控制逻辑首先根据线路接触网参数和以往的运营经验在控制单元内设置速度。
CRH380AL型动车组受电弓工作原理浅析
CRH380AL型动车组受电弓工作原理浅析摘要:CRH380A动车组,编组16列,目前运行速度300km/h,如此高的运行速度,旅客们对动车组乘坐的舒适性和安全性也提出了很高的要求。
但要达到这一目标稳定的动力输出是必不可少的,要提供稳定动力输出,高压供电系统的稳定是基础。
而提到动车组高压供电系统,就不得不提到受电弓。
关键词:动车组;动力输出;高压供电系统;受电弓高压供电系统是动车组关键技术之一,而受电弓的表现直接关系到动车组高压供电系统的稳定性。
在动车组的检修过程中,对受电弓的检查和试验是相当严格的,是绝对不能有半点失误的。
任何一点失误,都有可能对动车组的运行造成极其恶劣的影响。
现在结合日常的工作,对动车组受电弓的组成及工作原理进行简要的介绍。
一、受电弓概述CRH380AL动车组使用的受电弓型号为DSA380,弓头长1950mm,滑板长1576mm,质量(不包括绝缘子和阀板)为117kg,其结构如下图:图1 受电弓结构主要参数:(1)最小绝缘距离:≥310mm(2)最大电流:1000A(3)短路电流:35kA(60ms)(4)车辆静止时最大电流:80A(5)受电弓落弓时高度:666mm(6)静态接触压力为80N、可调(7)最大集电头(弓头)宽度:1950mm(+0/-10mm)(8)两根滑板中心线距离:约580mm(9)滑板材料:渗金属碳(10)弓角材料:部分绝缘(11)最大上升时间:10s(12)最大下降时间:10s(13)下降310mm的最大时间:3s(14)ADD释放后,故障受电弓降到考核高度下200mm 处的最大时间:1.0s(15)输入空气压力:4~10bar(16)形式及管径:内螺纹/G 1/2’二、工作原理1.升降弓工作原理当受电弓的电磁阀得电时,压缩空气也经过减压阀、电控阀一路向气囊(17)充气,同时一路向受电弓的集电头上的滑板气腔内充气;当气囊内气压达到一定压力时,受电弓开始升弓,与接触网接触集取电流。
动车组受电弓工作原理
动车组受电弓工作原理
嘿,朋友们!今天咱们要来聊聊动车组受电弓的工作原理,这可真是个神奇又有趣的东西啊!
你想想看,动车组那么快地在铁路上飞驰,它的动力从哪儿来呢?这就
得靠受电弓啦!就好像一个饥饿的人要吃东西才能有力气,动车组也要通过受电弓“吃”到电才能欢快地跑起来呀!
受电弓就像是动车组的“手臂”,它高高地伸起来,去和头顶上的电线亲密接触。
好比人伸手去拿喜欢的东西一样。
当受电弓和电线碰到一起时,电流就源源不断地流进了动车组,让它动力十足!比如说,你正在开着一辆电动汽车,那充电桩不就像是受电弓,给车输送着能量嘛。
你可能会问,那受电弓和电线接触的时候不会出问题吗?嘿,当然不会啦!工程师们可是想得很周到呢!受电弓上有各种精巧的设计,能让它和电线稳定又安全地接触。
这就像是两个好朋友,手牵手很和谐地在一起。
你知道吗,受电弓还有个很重要的任务,就是要适应不同的速度和环境。
就好像你去不同的地方,有时候要快走,有时候要慢跑,受电弓也得根据情
况调整自己呀!比如在高速行驶时,它得紧紧抓住电线;在遇到恶劣天气时,它也得稳稳当当的。
哇,想想看,动车组能够风驰电掣地行驶,受电弓可是功不可没啊!它就像一个默默奉献的小英雄,一直为动车组提供着强大的动力。
所以啊,朋友们,下次当你看到动车组呼啸而过的时候,可别忘了想想那神奇的受电弓,它可是让这一切成为可能的关键啊!受电弓的工作原理真的太奇妙了,让人不得不感叹科技的伟大和工程师们的智慧!这就是我的观点,怎么样,是不是很有意思呢?。
CRH380A型动车组受电弓升弓电路原理
故障 概述
2、升弓电磁阀故障
配属 XX 局 CRHXXXX 列动车组升 06 车受电弓 运行。运行途中司机反映 06 车受电弓自动降下并 停车。机械师下车检查 06 车受电弓可视部位无异 常,换升 04车受电弓维持运行。库内检查 06 车辅 助空气压缩机内升弓电磁阀指示灯点亮,测量电 磁阀线圈阻值为 11.317MΩ(标准值8.8kΩ±10%), 阻值异常。
故障 原因
分析为升弓电磁阀故障导致运行途 中升弓气路被切断使受电弓自动降下。
谢谢
(3)102线→PanUVN(【升弓】)闭合→106D线 →PanDCCS闭合→116F线→→PanDCCR得电。
②
升弓
(4)升弓继电器得电:【受电弓.VCB】空开→MCR 常开→VCBRR常开→EGSR常开→旋动受电弓升旋钮 PANUS→受电弓选择旋钮PANCGS→106Y(3车)线加压 →URO4常闭触点闭合→PanDWAR降弓辅助触点闭合 →PanIR互锁继电器触点闭合→PanUR(PanUR1)励磁触点 闭合;
故障 处理
110、111线异常断开: (1)故障现象应为4弓6弓都升不起,可换端操 作升弓验证,并检查总配继电器板;
(2)进行102B-110、102B-111短接开关短接处理。 并确认EGS及VCB处于断开状态,因为此时110、 111线不能检测EGS及VCB状态。 (3)确认各个受电弓可正常升起后,正常升弓 继续运行。
3、升弓操作流程图
事件 经过
二、相关案例
1、受电弓无法升起
CRH380A-25XX动车组00车主控,在运行途中 04车自受电弓自动降下,远程切除04车受电弓, 升06车受电弓,06车受电弓也无法升起。司机将 04车受电弓远程切除复位后,换01车主控分别重 新升04、06车受电弓,能够升起;保持受电弓升 起、VCB闭合状态之后再换回00车主控,继续行 车。
动车受电弓工作原理
动车受电弓工作原理
动车受电弓是动车组列车上用来接触供电网的装置,它的工作原理对于动车组列车的正常运行至关重要。
动车受电弓的工作原理主要包括受电弓的结构和工作过程两个方面。
首先,我们来看受电弓的结构。
动车受电弓通常由接触网接触装置、受电弓主体和升降机构三部分组成。
接触网接触装置位于受电弓的前端,用于接触供电网,其结构设计和材料选择直接关系到受电弓的使用寿命和接触网的安全可靠性。
受电弓主体是受电弓的核心部件,它通过升降机构与列车车顶连接,可以实现受电弓的升降和接触网的接触与脱离。
升降机构是受电弓的升降装置,通过液压或电动机构实现受电弓的升降,确保列车在行驶过程中受电弓能够与接触网保持适当的接触压力和角度。
其次,我们来了解受电弓的工作过程。
当动车组列车行驶至供电区段时,驾驶员通过控制系统将受电弓升起,使其与接触网接触。
受电弓与接触网接触后,列车上的牵引系统便可以通过受电弓从接触网上获取电能,驱动列车行驶。
在列车行驶过程中,受电弓会根据列车运行速度和接触网的高度自动调节接触压力和角度,以保证电气接触的可靠性和稳定性。
当列车驶出供电区段时,驾驶员会通过控制系统将受电弓降下,使其与接触网脱离,以确保列车在非供电区段行驶时不受受电弓的影响。
总的来说,动车受电弓的工作原理是通过受电弓的结构和工作过程实现列车与接触网之间的电气接触和能量传递。
受电弓的稳定性和可靠性直接关系到列车的正常运行和乘客的安全,因此在设计、制造和维护过程中都需要严格把关,确保受电弓的正常工作。
同时,受电弓的工作原理也是动车组列车运行的重要保障,只有深入了解和掌握受电弓的工作原理,才能更好地保障列车的安全运行和乘客的舒适出行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CRH380AL型动车组受电弓工作原理浅析
摘要:CRH380A动车组,编组16列,目前运行速度300km/h,如此高的运行速度,旅客们对动车组乘坐的舒适性和安全性也提出了很高的要求。
但要达到这一目标稳
定的动力输出是必不可少的,要提供稳定动力输出,高压
供电系统的稳定是基础。
而提到动车组高压供电系统,就
不得不提到受电弓。
关键词:动车组;动力输出;高压供电系统;受电弓
高压供电系统是动车组关键技术之一,而受电弓的表
现直接关系到动车组高压供电系统的稳定性。
在动车组的
检修过程中,对受电弓的检查和试验是相当严格的,是绝
对不能有半点失误的。
任何一点失误,都有可能对动车组
的运行造成极其恶劣的影响。
现在结合日常的工作,对动
车组受电弓的组成及工作原理进行简要的介绍。
一、受电弓概述
CRH380AL动车组使用的受电弓型号为DSA380,弓头长1950mm,滑板长1576mm,质量(不包括绝缘子和阀板)为117kg,其结构如下图:
图1 受电弓结构
主要参数:
(1)最小绝缘距离:≥310mm
(2)最大电流:1000A
(3)短路电流:35kA(60ms)
(4)车辆静止时最大电流:80A
(5)受电弓落弓时高度:666mm
(6)静态接触压力为80N、可调
(7)最大集电头(弓头)宽度:1950mm(+0/-
10mm)
(8)两根滑板中心线距离:约580mm
(9)滑板材料:渗金属碳
(10)弓角材料:部分绝缘
(11)最大上升时间:10s
(12)最大下降时间:10s
(13)下降310mm的最大时间:3s
(14)ADD释放后,故障受电弓降到考核高度下200mm处的最大时间:1.0s
(15)输入空气压力:4~10bar
(16)形式及管径:内螺纹/G 1/2’
二、工作原理
1.升降弓工作原理
当受电弓的电磁阀得电时,压缩空气也经过减压阀、电控阀一路向气囊(17)充气,同时一路向受电弓的集电头上的滑板气腔内充气;当气囊内气压达到一定压力时,
受电弓开始升弓,与接触网接触集取电流。
当电磁阀失电时,气囊中的压缩空气压力迅速减小,压缩气体由电磁阀口排向大气,受电弓靠自重落弓。
2.自动降弓工作原理
ED1:电控阀DS1:压力开关P1:测试口DIS1:绝缘管1
DIS2:绝缘管2 HU1:气囊SV1:快速降弓阀
AH1:关闭阀PH1:试验阀K01/K02:碳滑板
图3 自动降弓装置工作原理
压缩空气通过受电弓升弓装置进入到带有气腔的碳滑板,如果碳滑板出现空气泄漏,该故障会导致升弓装置(HU1)中的气体从快速降弓阀(SV1)中迅速排出,从而实现自动降弓。
3.受电弓阀板工作原理
F1:空气过滤器DB1:减压阀ED1:电控阀SI1:安全阀DS1:压力开关P1:测试口T1:直流电压B1:控制单元
图4 受电弓阀板
受电弓能的实现还有一个重要的组成部分就是升弓阀板,阀板安装在5、13号车内尽可能接近受电弓(短距离是为了受电弓/对受电弓的快速响应)的地方。
压缩空气流首先从阀板右侧进入空气过滤器F1。
然后压缩空气通过减
压阀DB1,进入压力电控阀ED1。
阀板上安装控制单元
B1,通过控制单元调制接触压力。
此外阀板是装有安全阀的。
在阀板上在ADD响应时用快速降弓阀。
在阀板装置上有两个压力开关。
阀板上有一个控制单元,控制单元的功能有:1.整个速度范围内的接触压力的调整;2.弹性接触网、简单接触网两种类型的接触压力的优化;3.双向(开口和闭口)下的接触压力的优化;4.自我诊断;5.通过控制单元上的按钮可相对于静态接触压力调节50N的压力;6.可以识别的车内受电弓位置调整;7.可通过按钮调整接触压力。
4. 受电弓接触压力的检查和设置
在受电弓升弓状态下,在工作高度从2m,1.5m和1m 慢慢上下移动中测量接触压力。
测量时移动的最大速度为0.1m/s,上升时接触压力在85N和90N之间。
下降时接触压力应该在70N和75N之间。
在相同的工作高度测量的升降之间的接触压力差应该最大是20N。
如需要对受电弓接触力进行调节时,可通过阀板上的B1控制单元进行调节。
三、日常检修与维护
CRH380AL动车组在每次一级检修时,都需要对受电弓各部进行重点检查。
具体检修要求如下:
(1)检查碳滑板是否有裂纹、缺损是否超限、碳滑板厚度和厚度差是否超限。
(2)检查供风管路连接状态,是否有漏气现象。
(3)检查受电弓上紧固螺栓是否有松动。
(4)检查受电弓弓头、集电头和阻尼器功能是否良好。
(5)检查受电弓的升降弓时间和升弓压力是否在规定范围内。