高频电路实验指导书(图)

合集下载

高频电路实验指导书

高频电路实验指导书

高频电路实验指导书新疆农业大学计算机与信息工程学院电子实验室2009 年3 月目录第一部分高频电路实验系统介绍一、实验系统概述 (2)二、实验箱箱体结构说明 (2)三、高频实验模块介绍及实验说明 (4)第二部分高频电路实验部分实验一单调谐回路谐振放大器及通频带展宽实验 (5)实验二丙类功率放大器实验 (7)实验三(1)电容反馈三点式振荡器实验....................... •. (9)实验三(2)石英晶体振荡器实验.................. ... ................ .. (11)实验四幅度调制器实验 (13)实验五调幅波信号的解调实验 (15)实验六变容二极管频率调制电路实验 (17)实验七频率解调电路实验 (19)实验八相位调制器实验 (20)实验九集成混频器电路实验 (21)高频电路实验系统介绍一、高频电路实验系统概述本系统由实验箱和外接实验模块两部分组成,其中外接模块采用插拔式结构设计,便于功能的扩展。

实验箱带有一个0Hz~120KHz的低频信号源、一个20KHz~10MHz的高频信号源、一个音频接口单兀。

此外高频W型实验系统还带有一个频率计单兀(高频川型无此单元)。

实验箱可使用自带电源,也可通过右上角的4针电源接口从外部引入。

高频电路单元采用模块式设计,将有关联的单元电路放在一个模块内。

高频模块可插在实验箱的4个固定孔上,配合高、低频信号源和频率计即可进行高频电路实验。

二、实验箱箱体结构说明箱体结构如图一所示:图一1、电源接口实验箱提供-8V、+5V、-5V、-12V、+12V五组电源输出。

当电源正常时,各组电源对应的指示灯均被点亮。

2、低频信号源本实验箱采用集成函数发生器ICL8038产生正弦波、方波和三角波,频率为OHz —120KHZ连续可调。

使用时先选择波形,然后将“频率选择”开关打到合适的档位,再通过“频率调节”旋钮调出所需要的频率。

高频电路(仿真)实验指导书

高频电路(仿真)实验指导书

高频电路(仿真)实验指导书光电学院电子科学与技术系2014年2月实验一、共射级单级交流放大器性能分析一、实验目的1、学习单级共射电压放大器静态工作点的设置与调试方法。

2、学习放大器的放大倍数(A u)、输入电阻(R i)、输出电阻(R o)的测试方法。

3、观察基本放大电路参数对放大器的静态工作点、电压放大倍数及输出波形的影响。

4、熟悉函数信号发生器、示波器、数字万用表和直流稳压电源等常用仪器的使用方法。

二、实验原理如图所示的电路是一个分压式单级放大电路。

该电路设计时需保证U B>5~10U BE,I1≈I2>5~10I B,则该电路能够稳定静态工作点,即当温度变化时或三级管的参数变化时,电路的静态工作点不会发生变化。

U B=V CC I C I E由上式可知,静态工作时,U B是由R1和R2共同决定的,而U BE一般是恒定的,在0.6到0.7之间,所以I C、I E只和有关。

当温度变化时或管子的参数改变时(深究来看,三极管的特性并非是完全线性的,在很多的情况下,必须计入考虑),例如,管子的受到激发而I C欲要变大时,由于R E的反馈作用,使得U BE节压降减小,从而I B减小,I C减小,电路自动回到原来的静态工作点附近。

所以该电路不仅有较好的温度稳定性,还可以适应一定非线性的三极管,只要电路设计得当。

调整电阻R1、R2,可以调节静态工作点高低。

若工作点过高,使三极管进入饱和区,则会引起饱和失真;反之,三极管进入截止区,引起截止失真。

图1-1 分压式单级放大电路如图1-1,C1、C2为耦合电容,将使电路只将交流信号传输到负载端,而略去不必要的直流信号。

发射极旁路电容C E一般选用较大的电容,以保证对于交流信号完全是短路的,即相当于交流接地。

也是防止交流反馈对电路的放大性能造成影响。

电路的放大倍数A U=,输入电阻R i=R1∥R2∥r be,输出电阻R O=R L’,空载时R O=R C。

高频实验指导书

高频实验指导书

高频电路原理与分析实验指导书闽江学院物理学与电子信息工程系2013年10月实验一单调谐回路谐振放大器实验一、实验目的1.掌握单调谐回路谐振放大器的组成及电路中各元件的作用;2.通过对谐振回路的调试,对放大器处于谐振时的技术指标进行测试,包括电压放大倍数,通频带,矩形系数等;3.进一步掌握高频小信号调谐放大器的工作原理。

二、实验原理实验电路如图1-1所示。

电路采用共发射极接法,晶体管的集电极负载为LC并联谐振回路,该电路同时完成放大高频信号和选频作用。

晶体管的静态工作点由电阻WA1、RA2,RA3及RA6决定,其计算方法与低频单管放大器相同。

图1-1 单调谐回路谐振放大器三、调谐放大器的性能指标及测量方法高频小信号调谐放大器的主要性能指标有谐振频率f,谐振电压放大倍数0v A ,放大器的通频带BW 和选择性。

指标的测量方法如下:1、谐振频率0f放大器的调谐回路谐振时所对应的频率0f 称为放大器的谐振频率,其值为LC f π210=式中,L 为调谐回路电感线圈的电感量;C 为调谐回路的总电容,即ie oe C P C P C C 22211++=式中, Coe 为晶体管的输出电容;Cie 为晶体管的输入电容。

测量方法:采用函数信号发生器输出不同频率的等幅正弦波信号,测量输出端电压,找出输出幅值最大的频率点既为谐振频率点0f 。

2、电压放大倍数0v A放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。

A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量电路输出电压0u 和输入电压u i 的大小,然后通过下面的公式计算得到A V0。

iv u u A 00=(或dB u u A i v )lg(2000=) 3、通频带当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带B W ,其表达式为BW = 2△f 0.7 = fo/Q L其中,Q L 为谐振回路的有载品质因数。

高频电子线路实验指导书

高频电子线路实验指导书

实验一 LC 与晶体振荡器实验一、实验目的1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。

2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。

3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。

4)、比较LC 与晶体振荡器的频率稳定度。

二、实验预习要求实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。

三、实验原理说明三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。

1、起振条件1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质的电抗,且它们之间满足下列关系:2)、幅度起振条件: 图1-1 三点式振荡器式中:q m ——晶体管的跨导,LCX X X X Xc o C L ce be 1 |||| )(=-=+-=ω,即)(Au1* 'ie L oe m q q q Fu q ++>F U——反馈系数,A U——放大器的增益,q ie——晶体管的输入电导,q oe——晶体管的输出电导,q'L——晶体管的等效负载电导,F U一般在0.1~0.5之间取值。

2、电容三点式振荡器1)、电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。

L1L1(a)、考毕兹振荡器(b)、交流等效电路图1-2 考毕兹振荡器2)、串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。

C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。

(a )、克拉泼振荡器 (b )、交流等效电路图1-3 克拉泼振荡器3)、并联改进型电容反馈三点式电路——西勒振荡器电路如图1-4所示,它是在串联改进型的基础上,在L 1两端并联一个小电容C 4,调节C 4可改变振荡频率。

高频实验指导书

高频实验指导书

目录高频电子线路D1型实验箱总体介绍 ····························错误!未定义书签。

实验一高频小信号调谐放大器··································错误!未定义书签。

实验二高频谐振功率放大器·····································错误!未定义书签。

实验三LC电容反馈三点式振荡器·····························错误!未定义书签。

高频电子线路实验指导书

高频电子线路实验指导书

高频电子线路实验指导书(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高频电子线路实验指导书钓鱼岛及其附属岛屿自古以来就是中国的固有领土。

主权不容侵犯,领土不容抢夺。

上图为美丽的钓鱼岛。

实验地点:航海西楼 308 室实验要求1.实验前必须充分预习,完指定的预习任务,预习要求如下:1)。

认真阅读实验指导书,分析,掌握实验电路的工作原理,并进行必要的估算。

2)。

完成各实验“预习要求”中指定的内容。

3)。

熟悉实验任务。

4)。

复习实验中使用各仪器的使用方法及注意事项。

2.使用仪器和实验仪前必须了解其性能,操作方法和注意事项。

3.实验时接线要认真,相互仔细检查,确定无误后才能接通电源,初学或没有把握应经指导老师审查同意后再接通电源。

4.高频电路实验注意事项:1)。

卡式高频电路实验仪将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。

2)。

由于高频电路频率较高,分布参数及相会感应的影响较大,所以在接线时连接线要尽可能短,接地点必须接触良好,以减少干扰。

3)。

做放大器实验时如发现波形失真甚至变成方波,应检查工作设置是否正确,或输入信号是否过大。

5.实验中有焊接电路时注意事项:1)。

应先提前给电烙铁通电预热,电烙铁要远离仪器设备和各种测量线,以防烧坏仪器和测量线,导线等,做完实验要拔掉电烙铁,关断电源,防止火灾。

2)。

老师分发的元器件,根据元件列表进行清点,缺少的应让老师补齐。

3)。

有运算放大器电路,运算放大器不能直接焊在电路板上,应先焊上插座,等电路都焊接完成后,再插上运算放大器,电路检查无误后,才能接通电源。

4)。

焊接电路时要合理布局,地线和电源线要用不同颜色的导线,一般电源线要用红线,这样一来电源就不会接错。

5)。

尽量节约使用导线,焊锡,勤俭节约,注意环境卫生。

6)。

实验中故意损坏仪器设备,要按原价赔偿。

6.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟,发烫或有异味)应立即关断电源,保持现场,报告指导老师。

高频电子线路(通信电子线路)实验指导书

高频电子线路(通信电子线路)实验指导书

实验一 函数信号发生实验一、实验目的1)、了解单片集成函数信号发生器ICL8038的功能及特点。

2)、掌握ICL8038的应用方法。

二、实验预习要求参阅相关资料中有关ICL8038的内容介绍。

三、实验原理(一)、ICL8038内部框图介绍ICL8038是单片集成函数信号发生器,其内部框图如图2-1所示。

它由 恒流源I 2和I 1、电压比较器A 和B 、触发器、缓冲器和三角波变正弦波电路等组成。

外接电容C 可由两个恒流源充电和放电,电压比较器A 、B 的阀值分别为总电 源电压(指U CC +U EE )的2/3 和1/3。

恒流源I 2和I 1的大 小可通过外接电阻调节,但 必须I 2>I 1。

当触发器的输出为低电平时,恒流源I 2断开 图2-1 ICL8038原理框图,恒流源I 1给C 充电,它的两端电压u C 随时间线性上升,当达到电源电压的确2/3时,电压比较器A 的输出电压发生跳变,使触发器输出由低电平变外接电容E E为高电平,恒流源I 2接通,由于I 2>I 1(设I 2=2I 1),I 2将加到C 上进行反充电,相当于C 由一个净电流I 放电,C 两端的电压u C 又转为直线下降。

当它下降到电源电压的1/3时,电压比较器B 输出电压便发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源I 2断开,I 1再给C 充电,……如此周而复始,产生振荡。

若调整电路,使I 2=2I 1,则触发器输出为方波,经反相缓冲器由引脚9输出方波信号。

C 上的电压u c ,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。

将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从引脚2输出。

1、ICL8038引脚功能图图2-2 ICL8038引脚图供电电压为单电源或双电源: 单电源10V ~30V 双电源±5V ~±15V2、实验电路原理图如图2-3 所示。

高频电子线路实验指导书1

高频电子线路实验指导书1

高频电子线路实验指导书南京理工大学紫金学院二〇一一年十二月目录1. JH5007A+新型高频电子电路实验系统介绍 (3)2. 实验一小信号调谐放大器实验 (7)3. 实验二 LC、晶体正弦波振荡电路实验 (12)4. 实验三集成乘法器幅度调制实验 (17)5. 实验四二极管包络检波实验 (25)1. JH5007A+新型高频电子电路实验系统介绍一、电路组成及模块配置1、JH5007/A+新型高频电子电路综合实验系统由3个仪表模块、11块实验功能模块、高频与低频连接电缆、电源模块及机箱等组成。

原理性实验模块可根据用户需求任意选用与扩充(参见下部示意图)。

2、标配实验功能模块:模块A1 集成乘法器调幅实验模块A3 调幅信号同步解调实验模块A4 二极管包络检波电路实验模块A5 LC、晶体正弦波振荡电路实验模块A6 变容二极管调频实验模块A7 电容耦合相位鉴频实验模块A8 晶体三极管混频电路实验模块A9 小信号调谐放大器实验模块A10高频功率放大器实验模块A17集成锁相环测试及调频实验模块A18集成锁相环鉴频实验3、本新型高频电子电路综合实验系统可为教学提供的主要实验内容如下:实验一小信号调谐放大器实验(A9+A5)实验二 LC、晶体正弦波振荡电路实验(A5+频率计)实验三集成乘法器幅度调制实验(低频源+高频源+A1)实验四二极管包络检波实验(低频源+高频源+A1+A4)二、概述JH5007/A+新型高频电子电路综合实验系统内均配置了低频信号源模块、高频信号源模块和精密数字频率计模块,统称为“仪表模块”。

其中低频信号源模块可产生方波、正弦波和三角波等函数波形,信号频率及各波形的输出幅度均可独立调节,主要用于在各类调制/解调实验中产生发端原始调制信号。

频率范围按不同应用分为两档,第一档为10Hz~1.5KHz;第二档为10KHz~700KHz。

高频信号源模块可分多档粗调选择频率范围,每一档内又可进行连续细调。

《高频电子线路》实验指导书

《高频电子线路》实验指导书

《高频电子线路》实验指导书南昌工学院人工智能学院前言本高频电子试验箱共包含十个标配实验单元模块和三个选配实验单元模块.其中标配模块包含有信号源模块、频率计模块、小信号选频放大模块、正弦波振荡及VCO模块、AM调制及检波模块、FM鉴频1模块、收音机模块、混频及变频模块、高频功放模块、综合实验模块。

选配模块包含有FM鉴频2、码型变换模块和谐振回路及滤波模块。

本实验系统的实验内容是根据高等教育出版社的《高频电子线路》一书而设计的。

本试验箱共设置了二十个重要实验和四个选做实验:其中有十五个单元实验,是为配合课程而设计的,主要帮助学生理解和加深课堂所学的内容;五个系统实验是让学生了解每个复杂的无线收发系统都是由一个个单元电路组成的。

此外,还有选做实验,学生也可以根据我们所提供的单元电路自行设计系统实验。

本实验系统力求电路原理清楚,重点突出,实验内容丰富。

其电路设计构思新颖、技术先进、波形测量点选择准确,具有一定的代表性。

同时,注重理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高学生分析问题、解决问题的能力已及动手能力。

由于编者水平有限,书中难免存在一些缺点和错误,希望广大读者批评指正。

编者实验注意事项1、本实验系统接通电源前,请确保电源插座接地良好。

2、每次安装实验模块之前,应确保主机箱右侧的交流开关处于断开状态。

为保险起见,建议拔下电源线后再安装实验模块。

3、安装实验模块时,模块右边的电源开关要拨置上方,将模块四角的螺孔和母板上的铜支柱对齐,然后用螺钉固定。

确保四个螺钉拧紧,以免造成实验模块与电源或者地接触不良。

经仔细检查后方可通电实验。

4、各实验模块上的电源开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编码器均为磨损件,请不要频繁按动或旋转。

5、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。

6、各模块中的贴片可调电容是出厂前调试使用的。

出厂后的各实验模块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成严重影响。

(高 频 电 子 线 路)实验指导书-23页word资料

(高 频 电 子 线 路)实验指导书-23页word资料

高频电子线路电子信息与电气工程系通信教研室二00七年八月目录实验一调谐放大器 (3)实验二丙类高频功率放大电路 (8)实验三集成电路频率调制器 (16)实验四集成电路频率解调器 (19)实验五综合设计 (21)附录一常用高频电子仪器使用 (25)适用专业:通信、电子、信息类专业本科学生一、实验与实践课程的性质、目的与任务1.加深对高频电路课中各单元电路工作原理的理解,做到从实践中来,到实践中去,加深对理性知识的认识。

2.熟悉高频实验仪器的原理和使用。

3.熟悉各单元电路的组成,元件及参数的选择,掌握单元电路的基本设计方法。

4.熟练使用实验仪器,进行电路参数的测试。

5.正确分析实验数据,从而总结出符合实际的正确结论,全面掌握所学知识。

6.能自已设计制作一般电路。

二、实验与实践课程教学的基本要求加强实验与实践教学,理论联系实际,加深对知识的理解与掌握。

提高学生实践操作水平,进行创新性的培养;加强综合性和设计性实验以提高学生解决实际问题的能力。

为了达到以上目的,要求:1. 实验要求:(1)学生实验课前要认真阅读实验与实践指导书,写出预习实验报告。

(2)实验课上认真听老师讲解,回答老师提出的有关实验内容的相关问题。

(3)按要求正确开启实验仪器和设备。

(4)认真进行数据测量和记录。

(5)实验结束,请指导老师检查实验记录,做到实验数据正确,方可终止实验。

(6)关闭实验仪器,整理实验现场。

(7)填写实验记录,教师签字后方可离开。

(8)认真处理实验数据,写出实验报告。

(9)教师应仔细批改实验报告,并把有关情况以不同方式反馈学生。

2. 实践要求:(1)认真选择实践内容。

(2)若现场参观,要服从管理人员指导,认真观察,认真记录。

(3)若进行电子制作,要根据老师要求选择制作项目,研究制作原理,绘制电路原理图,进行印刷电路板制作,安装调试。

(4)上述各项结束后都要认真地写出实践报告。

三、考核办法1.基本要求实验课目的是为了提高学生的动手操作以及创新能力。

高频电路实验指导书(图)

高频电路实验指导书(图)

实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大。

在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数,通频带,矩形系数),进一步掌握高频小信号调谐放大器的工作原理。

学会小信号调谐放大器的设计方法。

二、实验内容1、调节谐振回路使谐振放大器谐振在10.7MHz。

2、测量谐振放大器的电压增益。

三、实验仪器1、20MHz模拟示波器一台2、数字万用表一块2、实验参考电路图1-4 单级调谐放大器五、实验步骤参考所附电路原理图G2。

先调静态工作点,然后再调谐振回路。

1、在主箱上正确插好接收模块,按照所附电路原理图G2,对照接收模块中的高频小信号调谐放大器部分,连接好跳线JA1,正确连接电路电源线,+12V孔接+12V,+5V孔接+5V,GND接GND(从电源部分+12V和+5V插孔用连接线接入),接上电源通电(若正确连接了,扩展板上的电源指示灯将会亮)。

2、K1向右拨;3、调整晶体管的静态工作点:在不加输入信号(即u i=0),将测试点INA1接地,用万用表直流电压档(20V档)测量三极管QA1射极的电压(即测R4靠近QA1端的电压),调整可调电阻WA1,使EQ U =2.25V (即使E I =1.5mA ),根据电路计算此时的BQ U ,CEQ U ,EQ U 及EQ I 值。

4、调谐放大器的谐振回路使它谐振在10.7MHz方法是用BT-3频率特性测试仪的扫频电压输出端和检波探头,分别接电路的信号输入端INA1及测试端TTA2,通过调节y 轴,放大器的“增益”旋钮和“输出衰减”旋钮于合适位置,调节中心频率刻度盘,使荧光屏上显示出放大器的“幅频谐振特性曲线”,根据频标指示用绝缘起子慢慢旋动变压器的磁芯,使中心频率o f =10.7MHz 所对应的幅值最大。

用示波器来观察调谐过程,方法是:在INA1处由高频信号源提供频率为10.7MHz 的载波(参考高频信号源的使用),大小为Vp-p-=20~100mV 的信号,用示波器探头在TTA2处测试(在示波器上看到的是正弦波),调节变压器磁芯使示波器波形最大(即调好后,磁芯不论往上或往下旋转,波形幅度都减小)。

高频电子技术实验指导书(简本)

高频电子技术实验指导书(简本)

目录实验一:扩展通频带 (1)实验二:小信号谐振放大器 (5)实验三:LC振荡电路 (8)实验四:高频谐振功率放大器 (12)实验五:调幅与检波 (17)实验六:三极管混频器 (24)实验一:扩展通频带实验目的1.掌握共射-共基组合电路法扩展通频带的原理和特性。

2.掌握负反馈法展宽通频带的方法与原理。

实验原理及说明在实际宽频带放大电路中,要展宽通频带,也就是要提高上限工作频率,主要使用组合电路法和反馈法。

组合电路法组合电路法广泛采用共射-共基组合电路,如图1.1所示。

共射电路的电流增益和电压增益都多比较大,但是,由于受到密勒效应的影响,它的上限截止频率比较低,从而带宽受到限制。

共基极电路没有密勒效应存在,所以其上限工作频率远高于共射电路。

在共射-共基组合电路中,上限截止频率由共射极的上限截止频率决定。

利用共基电路输入阻抗小的特点,将它作为共射电路的负载,使共射电路输出总阻抗大大减小,进而使密勒电容大大减小。

这样,共射-共基组合电路的综合高频性能有所改善,从而有效地扩展了共射电路的通频带,亦即拓展了整个组合电路的上限工作频率。

由于共射电路负载减小,所以共射电路的电压增益也会减小,但是,共基电路可以提供足够大的电压增益,以弥补电压增益的损失。

因此,组合电路的整体电流增益和电压增益都比较大。

负反馈法调节负反馈电路中的某些参数,可以改变反馈深度,从而调节负反馈放大器的增益和频带宽度。

如果以牺牲增益为代价,可以扩展放大器的通频带。

图1.2所示电路是由运算放大器构成的电压并联型负反馈放大电路。

将电路中的A 1、A 2点分别与A 点连接,可以得到不同负反馈电阻的反馈通路,构成“电压并联”型的负反馈放大器。

由于运算放大器内部电路由多级放大电路组成,它的电压放大倍数很高,一般可以达到105以上。

为了在深度负反馈时不产生自激振荡,在运算放大器内电路中通常都加有补偿电容。

SR 124.7kR 3R 4CC 图1.1 共射-共基通频带扩展电路对于内接补偿电容的运算放大器,它的开环上截止频率很低(一般只有几赫兹)。

高频电子线路实验指导书

高频电子线路实验指导书

高频电子线路实验箱简介THCGP-1型仪器介绍●信号源:本实验箱提供的信号源由高频信号源和音频信号源两部分组成,两种信号源的参数如下:1)高频信号源输出频率范围:0.4MHz~45MHz(连续可调);频率稳定度:10E–4;输出波形:正弦波;输出幅度:1Vp-p 输出阻抗:75Ω。

2)低频信号源:输出频率范围:0.2kHz~20 kHz(连续可调);频率稳定度:10E–4;输出波形:正弦波、方波、三角波;输出幅度:5Vp-p;输出阻抗:100Ω。

信号源面板如图所示使用时,首先按下“POWER”按钮,电源指示灯亮。

高频信号源的输出为RF1、RF2,频率调节步进有四个档位:1kHz、20kHz、500kHz、1MHz档。

按频率调节选择按钮可在各档位间切换,为1kHz、20kHz、500kHz档时相对应的LED亮,当三灯齐亮时,即为1MHz档。

旋转高频频率调节旋钮可以改变输出高频信号的频率。

另外可通过调节高频信号幅度旋钮来改变高频信号的输出幅度。

音频信号源可以同时输出正弦波、三角波、方波三种波形,各波形的频率调节共用一个频率调节旋钮,共有2个档位:2kHz、20kHz档。

按频率档位选择可在两个档位间切换,并且相应的指示灯亮。

调节音频信号频率调节旋钮可以改变信号的频率。

分别改变三种波形的幅度调节旋钮可以调节输出的幅度。

本信号源有内调制功能,“FM”按钮按下时,对应上方的指示灯亮,在RF1和RF2输出调频波,RF2可以外接频率计显示输出频率。

调频波的音频信号为正弦波,载波为信号源内的高频信号。

改变“FM频偏”旋钮调节输出的调频信号的调制指数。

按下“AM”按钮时,RF1、RF2输出为调幅波,同样可以在RF2端接频率计观测输出频率。

调节“AM调幅度”可以改变调幅波的幅度。

面板下方为5个射频线插座。

“RF1”和“RF2”插孔为400kHz ——45MHz的正弦波输出信号,在做实验时将RF1作为信号输出,RF2接配套的频率计观测频率。

高频电子线路实验指导书(八个实验)(精)

高频电子线路实验指导书(八个实验)(精)

目录实验一调谐放大器(实验板1 (1实验二丙类高频功率放大器(实验板2 (4实验三LR电容反馈式三点式振荡器(实验板1 (6实验四石英晶体振荡器(实验板1 (9实验五振幅调制器(实验板3 (11实验六调幅波信号的解调(实验板3 (14实验七变容二极管调频管振荡器(实验板4.............................. 错误!未定义书签。

实验八相位鉴频器(实验板4...................................................... 错误!未定义书签。

实验九集成电路(压控振荡器构成的频率调制器(实验板5 (17实验十集成电路(锁相环构成的频率解调器(实验板5 (20实验十一利用二极管函数电路实现波形转换(主机版面 ....... 错误!未定义书签。

实验一调谐放大器(实验板1一、预习要求1、明确本实验的目的。

2、复习谐振回路的工作原理。

3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。

4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内,计算回路中心频率f0。

二、实验目的1、熟悉电子元器件和高频电路实验箱。

2、熟悉谐振回路的幅频特性分析—通频带预选择性。

3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。

4、熟悉和了解放大器的动态范围及其测试方法。

三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图1-1 单调谐回路谐振放大器原理图四、实验内容(一单调谐回路谐振放大器1、实验电路图见图1-1(1按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线。

(2接线后,仔细检查,确认无误后接通电源。

2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1表 1-1E B 3.动态研究(1测放大器的动态范围V i ~V 0(在谐振点选R = 10K ,R 0 = 1K 。

高频电子线路实验指导

高频电子线路实验指导

图10-1(a)调幅发射机实验组成原理框图J36(J.H.OUT)图10-1 (b)调幅接收机实验组成原理框图ZD.OUTJ36(J.H.OUT)图11-1 (a )调频发射机实验组成原理框图图11-1 (b )调频接收机实验组成原理框图实验一基本仪器设备的使用一、实验目的1.熟悉TDS220型数字示波器、函数信号发生器的使用2.掌握高频电子线路实验箱的基本结构3.掌握无线电发射机与无线电接收机原理二、实验仪器1.TDS220型数字示波器2.函数信号发生器3.高频电子线路实验箱三、实验报告要求1.写明实验目的、实验仪器。

2.画出无线电发射机与无线电接收机原理图,并详细解释。

3.画出高频实验箱的组成原理框图。

实验二高频小信号调谐放大器一、实验目的1.掌握谐振放大器电压增益、通频带、选择性的定义。

2.掌握信号源内阻及负载对谐振回路的影响。

(电位器左旋变大,右旋变小)3.了解放大器的频率特性及其意义。

(拔码开关向上接通,向下断开)二、实验仪器1.TDS220型数字示波器2.EE1642B1型函数信号发生器3.高频电子线路实验箱三、实验内容1.测量负载电阻对谐振回路的影响。

2.测量放大器的频率特性四、基本原理:高频小信号谐振放大器是接收系统的前端电路,主要用于高频小信号或微弱信号的线性放大。

天线将接收到的电磁波转变为极其微弱的高频电信号,其功率非常小,并且成分非常复杂。

所以我们必须选出目标频段的信号并且对其进行功率放大,这两个任务就由高频小信号放大器来完成。

实验单元电路如图2-1所示。

该电路由晶体管VT7、选频回路CP2二部分组成。

它不仅对高频小信号放大,而且还有一定的选频作用。

本实验中输入信号的频率fs=10MHz左右。

R67、R68和射极电阻决定晶体管的静态工作点。

拨码开关S7改变回路并联电阻,即改变回路Q值,从而改变放大器的增益和通频带。

拨码开关S8改变射极电阻,从而改变放大器的增益。

图2-1 高频小信号放大器五、实验步骤熟悉实验板电路和各元件的作用,正确接通实验箱电源,断开J33、J48。

高频电路实验一 操作指导书

高频电路实验一 操作指导书

高频电路实验一操作指导书实验1 高频小信号调谐放大器实验―、实验准备1.做本实验时应具备的知识点: ? 放大器静态工作点 ? LC并联谐振回路 ? 单调谐放大器幅频特性 ? 双调谐回路? 电容耦合双调谐回路谐振放大器 ? 放大器动态范围 2.做本实验时所用到的仪器: ? 单、双调谐回路谐振放大器模块 ? 双踪示波器 ? 万用表 ? 频率计 ? 高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐回路谐振放大器的基本工作原理; 3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。

6.熟悉耦合电容对双调谐回路放大器幅频特性的影响; 7.了解放大器动态范围的概念和测量方法。

三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响; 4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

5.采用点测法测量双调谐放大器的幅频特性;7.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响; 8.用示波器观察放大器动态范围。

四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。

单调谐回路谐振放大器原理电路如图1-1所示。

图中,RB1、RB2、RE用以保证晶体管工作于放大区域,从而放大器工作于甲类。

CE是RE的旁路电容,CB、CC是输入、输出耦合电容,L、C是谐振回路,RC是集电极(交流)电阻,它决定了回路Q值、带宽。

为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图2.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。

高频电子线路实验指导书

高频电子线路实验指导书

实验一高频小信号调谐放大器实验一、实验目的1、掌握谐振放大器静态工作点、电压增益、通频带及选择性的测试、计算;2、掌握高频小信号放大器动态范围的测试方法;3、熟悉高频实验箱、示波器、信号源及万用表的使用方法。

二、实验仪器高频实验箱1台;双踪示波器1台;数字万用表1块;高频信号发生器1台;G1实验板一块。

三、实验内容及步骤(一)、单调谐回路谐振放大器1、电路连线根据电路原理图弄清实验板电路,并在电路板上找出与原理图相对应的的各测试点及可调器件,电路原理图参见图1。

图1单调谐回路谐振放大器电路图2、静态测量选Re = 1K,在不加输入信号时用万用表测量各静态工作点,将测量数据填入表1中。

根据表1测试结果判断三极管(9018)是否工作在放大区并说明原因。

提示:I CQ ≈I EQ;I EQ = V E / Re (Re = 1K)。

3、输入动态范围和Re变化对放大性能影响的测试(1)将谐振回路电阻R(10K)接入谐振回路,选R e = 1k。

将高频信号发生器输出接到电路输入端(IN段),高频信号发生器波形选择正弦波,频率调整到10.7MHz(谐振回路的谐振频率),把示波器探头接到电路的输出端(OUT端)。

(2)从小到大调整高频信号发生器输出信号,观察示波器显示波形,分别记下开始出现正常信号(正弦波)和最后出现失真时的输入信号值,将出现最小信号的输入信号值填入表2输入电压(U i)栏的第一个格里,出现失真时的电压值填入最后一个格里(两者之差即为放大器的输入动态范围),中间的格按等分填入。

(3)用信号源输入表2中输入电压(U i)的值,在Re为1K、500Ω、2K时将示波器显示的输出值(U o)填入表2中。

(4)根据测试结果分析Re变化对放大性能的影响。

4、放大器频率特性测试(1)选回路电阻R=10K,输入电压Ui取表2中的中间值,将高频信号发生器输出端接至电路输入端。

调节频率f使其为10.7MHz,调节C T(微调电容器)使回路谐振(输出电压幅度为最大),此时的回路谐振频率为f0=10.7MHz(为中心频率)。

高频电子线路实验指导书

高频电子线路实验指导书

《高频电子线路》实验指导书湖南工业大学电气与信息工程学院实验一高频单调谐回路放大器一、实验类型验证型实验二、实验目的与任务1、熟悉谐振放大器的幅频特性、通频带和选择性;2、熟悉信号源内阻及负载对谐振回路的影响,了解展宽频带的方法;3、掌握放大器的动态范围及其测试方法。

三、实验基本原理1. 单调谐回路放大器实验电路如图 1-1 所示图1-1单调谐小信号放大器在图 1-1 中 ,L2、C5、C6为π型滤波电路,其作用是为了减少交流高频信号对直流电源的影响。

+12V电源、R1、R2和R6、R7、R8为放大电路提供直流静态工作点,C3为发射极旁路电容。

L1、C2和Ct为选频回路(也称为谐振回路),改变Ct的值,可以改变回路的谐振频率。

三极管T及其输出阻抗相当于谐振回路的信号源和信号源内阻,R3、R4、R5相当于负载,改变R3、R4、R5的阻值,将对谐振回路产生影响。

C4为隔直电容,它能够有效防止不同放大级之间直流信号的相互影响,又可使交流信号顺利通过。

若忽略三极管输出电容和负载电容的影响,谐振频率为:LCf o π21=对于放大电路而言,L1、C2和Ct 回路相当于负载,当发生谐振时,选频回路的阻抗最大,为纯电阻性,这时放大电路的电压放大倍数最大;改变信号源频率,选频回路就会失谐,其阻抗值迅速减小,电压放大倍数也迅速减小,通常小信号调谐放大器就工作在谐振频率处,它允许与其频率一致的信号通过并进行放大,对于与其谐振频率不一致的频率信号,则不进行放大而被禁止通过,这就是“选频”的含义。

改变电容Ct ,可以改变选频回路的谐振频率,从而使得不同频率的信号通过。

调谐放大器的谐振频率,一般有两种测量方法,一是扫频法 ;一种是逐点法。

所谓扫频法,一般采用频率特性测试仪,先将频率特性测试仪提供的扫频信号接到单级放大器的输入端,单级放大器的输出端接到频率特性测试仪的输入端,然后调节中心频率旋钮,屏幕上就可显示出放大器的谐振曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大。

在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数,通频带,矩形系数),进一步掌握高频小信号调谐放大器的工作原理。

学会小信号调谐放大器的设计方法。

二、实验内容1、调节谐振回路使谐振放大器谐振在10.7MHz。

2、测量谐振放大器的电压增益。

三、实验仪器1、20MHz模拟示波器一台2、数字万用表一块2、实验参考电路图1-4 单级调谐放大器五、实验步骤参考所附电路原理图G2。

先调静态工作点,然后再调谐振回路。

1、在主箱上正确插好接收模块,按照所附电路原理图G2,对照接收模块中的高频小信号调谐放大器部分,连接好跳线JA1,正确连接电路电源线,+12V孔接+12V,+5V孔接+5V,GND接GND(从电源部分+12V和+5V插孔用连接线接入),接上电源通电(若正确连接了,扩展板上的电源指示灯将会亮)。

2、K1向右拨;3、调整晶体管的静态工作点:在不加输入信号(即u=0),将测试点INA1接地,用万用表直流电压档(20V档)测量三极管QA1i射极的电压(即测R4靠近QA1端的电压),调整可调电阻WA1,使EQ U =2.25V (即使E I =1.5mA ),根据电路计算此时的BQ U ,CEQU ,EQ U 及EQ I 值。

4、调谐放大器的谐振回路使它谐振在10.7MHz方法是用BT-3频率特性测试仪的扫频电压输出端和检波探头,分别接电路的信号输入端INA1及测试端TTA2,通过调节y 轴,放大器的“增益”旋钮和“输出衰减”旋钮于合适位置,调节中心频率刻度盘,使荧光屏上显示出放大器的“幅频谐振特性曲线”,根据频标指示用绝缘起子慢慢旋动变压器的磁芯,使中心频率o f =10.7MHz 所对应的幅值最大。

用示波器来观察调谐过程,方法是:在INA1处由高频信号源提供频率为10.7MHz 的载波(参考高频信号源的使用),大小为Vp-p-=20~100mV 的信号,用示波器探头在TTA2处测试(在示波器上看到的是正弦波),调节变压器磁芯使示波器波形最大(即调好后,磁芯不论往上或往下旋转,波形幅度都减小)。

5、电压增益A V0在有BT-3频率特性测试仪的情况下用频率特性测试仪测0v A 测量方法如下:在测量前,先要对测试仪的y 轴放大器进行校正,即零分贝校正,调节“输出衰减”和“y 轴增益“旋钮,使屏幕上显示的方框占有一定的高度,记下此时的高度和此时“输出衰减”的读数N 1dB ,然后接入被测放大器,在保持y 轴增益不变的前提下,改变扫频信号的“输出衰减”旋钮,使谐振曲线清晰可见。

记下此时的“输出衰减”的值N 2dB ,则电压增益为()12N N A VO -= dB由示波器直接测量。

方法如下:用示波器测输入信号的峰峰值,记为Ui 。

测输出信号的峰峰值记为Uo 。

则小信号放大的电压放大倍数为Uo/Ui 。

六、实验报告1、整理好实验数据,用方格纸画出幅特性曲线。

2、思考:引起小信号谐振放大器不稳的原因是什么?如果实验中出现自激现象,应该怎样消除?实验三谐振功率放大器一、实验目的1、进一步理解谐振功率放大器的工作原理及负载阻抗和激励信号电压变化对其工作状态的影响。

2、掌握谐振功率放大器的调谐特性、放大特性和负载特性。

二、实验内容1、调试谐振功放电路特性,观察各点输出波形。

2、改变输入信号大小,观察谐振功率放大器的放大特性。

3、改变负载电阻值,观察谐振功率放大器的负载特性。

三、实验仪器1、20MHz双踪模拟示波器一台2、万用表一块图3-1 高频功率放大器五、实验步骤参看附图G1,在主箱上正确插好发射模块,对照发射模块中的高频谐振功放部分,正确连接电路电源线,+12V孔接+12V, GND接GND(从电源部分+12V和GND插孔用连接线接入),接上电源通电(若正确连接了,扩展板上的电源指示灯将会亮)。

=2.2V(即用万用表测量QE1的发射极对1、开关K2向右拨,调节WE1,使QE1的发射极电压VE地的电压)。

2、连接JE3、JE6。

3、从INE1处输入10.7MHz的载波信号(此信号由高频信号源提供,参考高频信号源的使用),=250mV左右。

用示波器探头在TTE1处观察输出波形,调节TE1、TE2,使输出波形不信号大小为VP-P失真且最大。

=0mV开始增加,用示波器4、观察放大特性:从INE1处输入10.7MHz载波信号,信号大小从VP-P探头观察QE2的发射极电压波形,直至观察到有下凹的电流波形为止,此时说明QE2进入过压状态(如果下凹的电流波形左右不对称,则微调TE1可使其非对称性得到适当地改善)。

如果再继续增加输入信号的大小,则可以观测到下凹的电压波形的下凹深度增加。

(20Mhz示波器探头,如果用×1档看下凹不明显,则用×10档看。

)5、观察负载特性:输入信号为Vp-p=250mV左右(由高频信号源提供10.7M H z的载波)。

调中周TE1、TE2(此时负载应为50Ω,JE3、JE6均连上),使电路谐振在10.7M H z上(此时从TTE1处用示波器观察,波形应不失真,且最大)。

微调输入信号大小,在QE2的发射极处观察,使放大器处于临界工作状态。

改变负载(组合JE3、JE4、JE5的连接)使负载电阻依次变为25Ω(51Ω||51Ω)→51Ω→100Ω。

用示波器在QE2的发射极处能观察到不同负载时的电流波形(由欠压、临界至过压)。

在改变负载时,应保证输入信号大小不变(即在最小负载50Ω时处于临界状态)。

同时在不同负载下,电路应处于最佳谐振(即在TTE1处观察到的波形应最大且不失真。

20Mhz示波器探头,如果用×1档看下凹不明显,则用×10档看。

)6、测量负载特性(选做)用高频电压表测量负载电阻上的电压,改变负载电阻RL (参照步骤4),记下相应的电流ICO和电压VL ,并且计算当RL=50Ω时的功率和效率。

六、实验报告1、画出放大器三种工作状态的电流波形。

2、绘出负载特性曲线。

实验四正弦波振荡器一、实验目的1、掌握晶体管(振荡管)工作状态、反馈大小对振荡幅度与波形的影响。

2、掌握改进型电容三点式正弦波振荡器的工作原理及振荡性能的测量方法。

3、研究外界条件变化对振荡频率稳定度的影响。

4、比较LC振荡器和晶体振荡器频率稳定度,加深对晶体振荡器频率稳定度高的原因理解。

二、实验内容1、调试LC振荡电路特性,观察各点波形并测量其频率。

2、观察振荡状态与晶体管工作状态的关系。

3、观察反馈系数对振荡器性能的影响。

4、比较LC振荡器和晶体振荡器频率稳定度。

5、观察温度变化对振荡频率的影响。

三、实验仪器1、双踪示波器一台2、万用表一块五、实验步骤参照附图G4,在主箱上正确插好环形混频模块,对照环形混频模块中的正弦波振荡器部分,正确连接电路电源线,+12V孔接+12V, GND接GND(从电源部分+12V和GND插孔用连接线接入),接上电源通电(若正确连接了,扩展板上的电源指示灯将会亮)。

=2V(即测R4两端的电压)。

1、开关K2向下拨,调整静态工作点:断开J52、J53,调W1使VE2、(1)连接好J54、J52,调节可调电容CC2,通过示波器和频率计在TT1处观察振荡波形,并使振荡频率为10.7MHz;然后调节W2,使输出信号最大且不失真。

(2)断开J52、J54,连接J53、J55,微调CC1,使振荡频率为10.245MHz。

3、观察振荡状态与晶体管工作状态的关系。

断开J53,连好J52、J55,用示波器在TT1观察振荡波形,调节W1,观察TT1处波形的变化情。

况,并测量波形变化过程中振荡管的发射极电压(多测几个点)且计算对应的IE4、观察反馈系数对振荡器性能的影响(只作LC振荡)。

用示波器在TT1处观察波形。

分别连接J54、J55、J56或组合连接使反馈系数等于1/2、1/3、1/4、1/100时,观察幅度的变化并实测,反馈系数是否与计算值相符,同时,分析反馈大小对振荡幅度的影响。

5、比较LC振荡器和晶体振荡器频率稳定度。

分别接通J53、J52,在TT1处用频率计观察频率变化情况。

六、实验报告1、整理实验所测得的数据,并用所学理论加以分析。

2、比较LC振荡器与晶体振荡器的优缺点。

3、分析为什么静态电流Ieo增大,输出振幅增加,而Ieo过大反而会使振荡器输出幅度下降?实验五集电极调幅与大信号检波一、实验目的1、进一步加深对集电极调幅和二极管大信号检波工作原理的理解;2、掌握动态调幅特性的测试方法;的方法;3、掌握利用示波器测量调幅系数ma4、观察检波器电路参数对输出信号失真的影响。

二、实验内容1、调试集电极调幅电路特性,观察各点输出波形。

2、改变输入信号大小,观察电流波形。

3、观察检波器的输出波形。

三、实验仪器1、20MHz双踪模拟示波器一台集电极调幅的基本原理电路如图5—1所示:图5-1 集电极调幅原理电路五、实验步骤参照附图G3,在主箱上正确插好集电极调幅与大信号检波模块,对照集电极调幅与大信号检波模块部分,正确连接电路电源线,+12V孔接+12V, GND接GND(从电源部分+12V和GND插孔用连接线接入),接上电源通电(若正确连接了,扩展板上的电源指示灯将会亮)。

1、调整集电极调幅的工作状态。

开关K1向右拨,连接好跳线J1,J2,J5;调W1使Q1的静态工作点为UEQ=2.1V(即测其发射极对地的电压)。

2、从IN1处注入10.7MHz的载波信号(大小为Vp-p=450mV左右,此信号由高频信号源提供。

为了更好地得到调幅波信号,在实验过程中应微调10.7Mhz信号的大小。

),在TT1处用示波器观察输出波形,调节T1、T2的磁芯使TT1处输出信号最大且不失真。

3、测试动态调制特性用示波器从Q2发射极测试其输出电压波形,改变从IN1处输入信号的大小(即调W401,信号幅度从小到大),直到观察到电流波形顶点有下凹现象为止,此时,Q2工作于过压状态,保持输入信号不变,从IN3处输入1KHz 的调制信号(调制信号由低频信号源提供,参照低频信号源的使用),调制信号的幅度由0V 开始增加。

此时用示波器在TT1处可以看到调幅信号如图5-10。

改变调幅信号大小,记下不同的V Ω时的调幅系数ma ,并制表5-2。

从TT2用示波器观察检波器输出波形,分别连接J2、J3、J4、J5,J6在TT2处观察输出波形。

(1)观察检波器不失真波形(参考连接为J2、J5,可以相应的变动)。

(2)观察检波器输出波形与调幅系数ma 的关系。

(3)在检波器输出波形不失真的基础上,改变直流负载,观察“对角线切割失真”现象,若不明显,可加大ma (参考连接为J3、J5,可以相应的变动)。

相关文档
最新文档