《低温工程》关于征集英文稿件的启事

合集下载

低温储罐英文文献

低温储罐英文文献

A rapid sample-exchange mechanism for cryogen-free dilution refrigerators compatible with multiple high-frequency signalconnectionsG.Batey,S.Chappell,M.N.Cuthbert,M.Erfani,A.J.Matthews ⇑,G.TelebergOxford Instruments Omicron NanoScience,Tubney Woods,Abingdon,Oxfordshire OX135QX,UKa r t i c l e i n f o Article history:Received 29October 2013Received in revised form 13January 2014Accepted 15January 2014Available online 24January 2014Keywords:Dilution refrigerator Sample exchange Cryogen-freea b s t r a c tResearchers attempting to study quantum effects in the solid-state have a need to characterise samples at very low-temperatures,and frequently in high magnetic fields.Often coupled with this extreme environ-ment is the requirement for high-frequency signalling to the sample for electrical control or measure-ments.Cryogen-free dilution refrigerators allow the necessary wiring to be installed to the sample more easily than their wet counterparts,but the limited cooling power of the closed cycle coolers used in these systems means that the experimental turn-around time can be longer.Here we shall describe a sample loading arrangement that can be coupled with a cryogen-free refrigerator and that allows sam-ples to be loaded from room temperature in a matter of minutes.The loaded sample is then cooled to temperatures $10mK in $7h.This apparatus is compatible with systems incorporating superconducting magnets and allows multiple high-frequency lines to be connected to the cold sample.Ó2014The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-NDlicense (/licenses/by-nc-nd/3.0/).1.IntroductionOver the past century studying condensed matter systems at extremely low temperatures,and often in extremely high magnetic fields,has lead to the discovery of several new states of matter,such as:superconductivity in mercury [1];superfluidity in 4He [2,3];superfluidity in 3He [4];the integer quantum Hall effect in silicon MOSFET devices [5];the fractional quantum Hall effect in GaAs–AlGaAs heterojunctions [6].More recently there has been a drive to harness these quantum systems to realise devices that exploit their quantum nature,for example in the field of quantum information processing [7],with the realisation of a general quantum computer [8]being the holy grail.Inevitably the development of these quantum devices re-quires temperatures <10mK,and possibly magnetic fields >10T,however in addition to these environmental constraints device characterisation and development also requires the necessary experimental services be installed at the sample position:most challengingly high-bandwidth,high-fidelity micro-wave cabling.In the following sections we describe briefly a suitable experi-mental environment for quantum device development (or any other experiments requiring high-frequency measurements atlow-temperatures),then we show that device characterisation is more convenient with a sample loading mechanism,and describe its realisation,operation and performance,before providing a brief conclusion.2.Experimental environmentPulse-tube precooled dilution refrigerators [9]are becoming increasingly popular.Initially this popularity stemmed from the fact that they were cryogen-free,meaning that they could be in-stalled at institutions without the associated low-temperature re-search infrastructure,such as a helium liquefaction plant,or in remote locations.Additionally,there are benefits from an opera-tional point of view as such systems can be automated to a higher degree than their ‘‘wet’’counterparts.It has also been found that these cryogen-free systems have further benefits when compared to wet systems with regards to the installation of experimental ser-vices,as will be discussed in the following sections,and this has driven the recent rise in their uptake.With the installation of high-frequency wiring these refrigera-tors have been developed into measurement systems for circuit quantum electrodynamics [10]and superconducting qubits [11].The integration of superconducting magnets [12],with the entire system able to be run from a single pulse-tube cooler,has enabled/10.1016/j.cryogenics.2014.01.0070011-2275/Ó2014The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license (/licenses/by-nc-nd/3.0/).⇑Corresponding author.Tel.:+441865393440;fax:+441865393333.E-mail address:Anthony.Matthews@ (A.J.Matthews).a wider range of experiments(those requiring magneticfields)to be performed using this cryogen-free technology[13].2.1.Low-temperatures and high magneticfieldsCryogenic systems using liquid helium are usually designed to minimise its consumption.This is because liquid helium is expen-sive,refilling the system can be time consuming,and refilling the system may perturb the experiment to an unacceptable level. The central neck of a cryostat is often responsible for the biggest single heat load into the helium bath,and as a result these necks are usually made as long and as narrow as possible.Dilution refrig-erators designed to be inserted into such a cryostat have to inherit this aspect ratio,which has tended to limit the experimental real estate available for the installation of services.With no boil-off considerations,cryogen-free systems have evolved to be much wider than their wet counterparts with exper-imental plates(to which services can be mounted)typically several hundred mm in diameter[12].This has enabled more and/or more complex services to be installed on dilution refrigerator systems,in particular bulky signal conditioning elements such as cryogenic amplifiers,microwave components(bias-tees,circulators, switches,etc.)andfiltering(such as metal powderfilters,for exam-ple[14]and the references therein).Cryogen-free systems can also be designed without the need for a low-temperature,vacuum-tight vessel,the so called inner vac-uum chamber(IVC),which makes the routing and heat-sinking of the installed services much more straightforward,see Section2.2.2.The range of magnets that are able to be produced for cryogen-free operation is also continually expanding with higherfields (>16T)and vector-rotation(>6–1–1T)available.For these reasons cryogen-free dilution refrigerators with inte-grated magnets have become the workhorse of quantum device development laboratories around the world.2.2.High-frequency wiringAs was noted in Section1high-fidelity,high-bandwidth wiring is an experimental requirement for quantum device development applications.In addition to the quality of the signal transmission performance of these cables,they also need to be thermally an-chored adequately to ensure that they do not affect adversely the base temperature performance of the system onto which they are installed.In this section we shall:review various options for the coaxial lines and some of the materials available for the lines themselves,and discuss their relative merits;describe a conve-nient method for mounting multiple high-frequency lines onto a dilution refrigerator;quantify the frequency dependence of signal transmission of installed lines with S12measurements made with a vector network analyser;comment on the heat load to the mix-ing chamber likely to result from the installation of the type of wir-ing described.2.2.1.Coaxial cables and materialsTo date,most high-frequency cabling installed in dilution refrigerators have been of‘‘semi-rigid’’construction with the UT-85cable(having an outer diameter of85/1000of an inch,approx-imately2.16mm)being commonly used.The optimal choice of coaxial cable,in terms of both size and material,depends on its in-tended application.Typically coaxial cables are used to(1)improve noise immunity for‘‘small’’signals and/or(2)transmit high-fre-quency signals to/from the sample.If using coaxial cables for either of these reasons one should en-sure that the cables themselves are suitable for the intended appli-cation.For dilution refrigerator based experiments,this suitability is generally determined by two key parameters:the heat load to the experiment due to the thermal conductivity of the cable;and its(frequency dependent)attenuation.Both of these parameters are affected by the choice of the cable geometry(size)and conduc-tor materials.The heat load conducted to the coldest parts of the dilution refrigerator is always to be minimised.For a given choice of coaxial cable material and geometry there is a lower limit to this heat load determined by the bulk thermal conductivity of the cable materi-als.This limit is approached as the cable(both the inner and outer conductor)is perfectly thermally connected to every available temperature stage in the refrigerator,of course the conducted heat load can be much higher than this limit if the thermal connections are inadequate.A convenient method of installing semi-rigid coax-ial cables into a dilution refrigerator that gives good thermal per-formance is discussed in Section2.2.4.The heat load can only be reduced further by using either cables with a smaller cross sec-tional area and/or cables made from materials with a lower ther-mal conductivity,however such changes may well have implications for the cable attenuation.The frequency dependent attenuation of a coaxial cable is deter-mined by the cable geometry(outer diameter of the inner conduc-tor and inner diameter out of the outer conductor),the (temperature and frequency dependent)resistivity of the conduc-tor materials and the dielectric losses[15].In general smaller diameter cables have higher attenuation at high frequencies than larger diameter ones,and cables manufactured from materials with higher bulk resistivity have higher attenuation(at a given fre-quency)than low resistance ones.Depending on the application, this increase in attenuation can be fortuitous or problematic.In applications where coaxial cables are used for noise immunity for small,low-frequency signals,having increased attenuation at high frequencies is advantageous:in fact‘‘lossy’’coax cables have been used as microwavefilters[16].However,for high-bandwidth signals the change in attenuation, a,with frequency,f,is undesirable as it results in the‘‘shape’’of signals(in the time-domain)being modified as they propagate along the cable and this can cause problems with,for example, high-fidelity qubit control.Techniques borrowed from the NMR/ MRI world for pulse preshaping using a posteriori knowledge of the cabling transfer function[17]can be applied to compensate for this effect,but it would still be advantageous to keep the fre-quency response of the cable asflat as ing(lots of) large-diameter low-resistance cables can be incompatible with experiments at dilution refrigerator temperatures,as the thermal and electrical conductivity of a normal metal are closely related [18].However,superconducting cables made from Nb,or prefera-bly NbTi(due to its higher criticalfield and temperature,and lower thermal conductivity),can be used.Below their superconducting transition temperature these cables provide very low attenuation and have a small thermal conductivity[15]so in many cases are the ideal solution to this problem.However,with cryogen free dilution refrigerators enabling experiments over extended temper-ature ranges[12]some care needs to be taken,as the electrical per-formance of these lines will change(attenuation will increase) dramatically above their transition temperature.Onefinal point is that the desire to keep d adf%0is not the same as keeping a%0.Indeed,the types of cables described here are very good at transmitting‘‘thermal noise’’from warmer parts of the refrigerator to colder ones,equating h m%K B T gives a photon fre-quency of20GHz at1K and UT-85cables operational range can extend to>60GHz[19],and so having some attenuation in the line is desirable to reduce these thermal perturbations.Attenuators with aflat frequency response,compatible with cryogenic temper-atures[20],can be used to increase the attenuation of a line whilst avoiding the complications of distorting high-bandwidth signals. Details of measurements of such lines will be given in Section2.2.3.G.Batey et al./Cryogenics60(2014)24–32252.2.2.High-frequency wiring cartridgesAs described in Section2.2.1,for some experiments small diam-eter coaxial cables with high attenuation at high-frequencies can be appropriate.For example,UT-13cables have an outer diameter of approximately330l m and can be installed and thermally an-chored likeflexible‘‘DC’’wiring.In this section we focus on semi-rigid cables and describe a convenient method of installing multiple,configurable,semi-rigid coaxial lines into a dilution refrigerator in a way that gives good electrical and thermal perfor-mance and allows for the cable assemblies to be rapidly demount-ed and modified if necessary.Cryogen-free dilution refrigerators typically have several large (40–100mm diameter)line-of-sight(LoS)ports that allow connec-tions between the room temperature top-plate and the mixing chamber plate.Whilst traditional wet dilution refrigerators also of-ten feature LoS ports they tend to be less numerous and of smaller diameter.Wet systems also require an IVC and so services need to be installed in vacuum tubes from room temperature to4K,mak-ing the thermal anchoring of the installed services more difficult (services can of course be thermalised by bringing them through the main helium bath,but then cryogenically compatible,hermet-ically sealed feed-throughs are required to bring the services into the IVC).A typical cryogen-free refrigerator will have experimental plates that can be used to thermally anchor wiring at temperatures of approximately50K,3K,0.8K,100mK and the mixing chamber at around10mK.The wiring cartridge shown in Fig.1has anchor-moved in one piece allows for bench testing of the microwave lines prior to installing them into the system.It also means,for example, that should there be a desire to change installed attenuators for ones with a different attenuation value the assembly can be re-moved from the refrigerator by simply opening one room temper-ature o-ring seal and loosening the clamping bolts.With the assembly removed,the microwave lines or attenuators,between the bulkhead connectors,can be reconfigured and tested before being refitted to the system.2.2.3.Transmission measurementsThe microwave performance of installed coaxial cable assem-blies has been measured with an Antitsu model MS2028C/2vector network analyser[22]which recorded the scattering parameters at frequencies up to12GHz.Typical curves between5kHz and8GHz are shown in Fig.2.The S12parameter can be associated with the total attenuation in the line and the measured values agree well with cable manufactures’data for expected values of the frequency dependent attenuation(per unit length)of the cables they produce [19,23],in this case the coaxial cable sections themselves were sil-ver-plated stainless steel inner conductor,stainless steel outer con-ductor from room temperature to the4K plate,and NbTi inner and outer from4K to the mixing chamber.Faults with the coaxial cables,such as loose connectors or cracked solder joints,can be identified from scattering parameter measurements[24],and for the cables installed on these systems typically result in additional attenuation(reflection)features at frequencies of a few GHz,Fig.2.Fig.1.A wiring cartridge for a cryogen-free dilution refrigerator:(a)Shows a fully assembled cartridge with hermetic feed-throughs on the room temperature top plate and additional attenuators installed above and below some of the thermal stages.(b)Shows the detail of a split clamp used to thermally anchor the cartridge to the refrigerator and the bulkhead connectors through the cartridge plate.(c) Shows how such a section of such a cartridge could be installed through a line-of-sight port of a dilution refrigerator.Scattering parameter measurements on coaxial cables installed The red and black traces show lines with no additionalThe green and blue traces show lines with an additional28dB attenuation.The reduction in the attenuation between room temperature being cooled is due principally to sections of superconducting coaxialbelow their transition temperature.The dip in the attenuation(circled)was due to a loose connector in the cartridge assembly, prior to the cartridge being installed into the system and cooled. interpretation of the references to color in thisfigure legend,the reader version of this article.)26G.Batey et al./Cryogenics60(2014)24–32leak extracted from the difference in these temperatures.For these measurements three wiring cartridges,each containing eight UT-85coaxial lines(24lines in total)manufactured from cupronickel conductors,were installed onto a Triton200[25]dilution refriger-ator system,as show in Fig.3.After the addition of the wiring car-tridges the temperature of the plate mounted at the end of the continuous heat exchanger,colloquially know as the‘‘100mK plate’’,had increased from65mK to120mK as measured with a resistive temperature sensor[26].The base temperature of the dilution refrigerator,measured using a nuclear orientation ther-mometer[27],was found to have risen to9.1mK,corresponding to an increased heat load of%600nW.Extrapolating available data for the thermal conductivity of cupronickel[28]to100mK and cal-culating the anticipated heat load conducted through24UT-85 coaxial lines with the geometry defined by manufactures[23]ac-counts for%200nW of this increase,with a further additional %300nW expected through the stainless steel refrigerator support structure,calculated using published values for the thermal con-ductivity[29],due to the increase in temperature of the100mK plate.3.Rapid sample exchangeIn Section2it was shown that cryogen-free dilution refrigera-tors integrated with superconducting magnets provide an ideal environment for quantum device development experiments due to their ease of use and the convenience of installing experimental services.These systems do,however,have one significant draw-back compared to their wet counterparts as the integrated super-conducting magnets become larger:the experimental turnaround time.High-field cryogen-free magnets can have masses well in ex-cess of50kg and require enthalpy changes of several MJ to cool from room temperature to4K.The pulse tube coolers used in these systems typically have cooling powers at the second stage of %140W at room temperature,falling to%1W at4K[30].This lim-ited cooling power means that the initial cool down from room 3.1.The sample exchange conceptAttaching a sample and experimental wiring directly to a probe and loading the entire assembly into a dilution refrigerator has been attempted,but it was found that the resulting thermal perfor-mance and limited space is incompatible with multiple high-fre-quency lines and additional microwave components(amplifies,filters,etc.),see Section II A of[31].An alternative approach to sample loading,as also implemented in[31],is to leave the experimental wiring on the refrigerator, where it can be efficiently thermally anchored,in this case by using the wiring cartridge design discussed in Section2.2,and to load a ‘‘sample holder’’to connect to this installed wiring.Additionally, this means that the full sample space of the refrigerator can be uti-lised to install other components into the experimental wiring cir-cuits which may notfit onto a smaller diameter probe.Loading only a sample holder into the refrigerator introduces the complica-tion of requiring demountable microwave connectors,but in the following sections we show that this requirement can be fulfilled. It is often also desirable to be able to bias or ground electrical con-nections to delicate samples during the cool down process to pre-vent,for example,electrostatic sample damage.This is accomplished with a‘‘make-before-break’’arrangement whereby all DC and microwave connections to the sample holder are indi-vidually connected to room temperature connectors on the loading probe.As will discussed in Section3.1.2the sample holder can also be made demountable,allowing the loading probe to be removed after the sample is attached to the refrigerator.With a cryogen-free system without an IVC there is no preferred direction for sample loading.Samples can either be introduced from the top of the system using a top-loading load-lock(TLLL) or from below using a bottom-loading load-lock(BLLL).TLLLs re-quire a(central)LoS access port through which the sample can be introduced,and BLLLs require access through the vacuum and radiation shields through which the sample can pass.The distance from the refrigerator top-plate to the magneticfield centre-line is normally longer than that from the bottom of the system tofieldimage showing how multiple coaxial cable cartridges can be installed onto a dilution refrigerator system.In-line attenuators are visible belowposition of the dilution refrigerator still.(b)A plot of the typical cooling capacity available at the mixing chamber of such a dilution refrigerator.y¼ax2Àb.G.Batey et al./Cryogenics60(2014)24–3227normal operation.For TLLL systems these can be controlled with a drive rod mechanically connected to the room temperature top plate.For BLLL systems it is more convenient to make these baffles spring-loaded as the baffles themselves are attached to demount-able radiation shields.3.1.1.ConnectorsThe choice of connectors is critical to the microwave perfor-mance of a cable assembly.With standard UT-85type cables the usual room temperate choices are SMA[32]connectors for opera-tion up to18GHz and SK[33]connectors for operation up to 40GHz.Both of these connectors are screw lock,so unsuitable for pushfit applications,the BMA[34]connector range is a blind-mate equivalent of the SMA connector,but suffers from being rated only to$20GHz and being rather bulky($10mm diameter)which limits the density of connections.SMP[35]connectors have the advantage of being blind-mate,Connectors for multiple DC lines were also trialled cryogenically and a nano d-type connector[36]was chosen,principally due to its extremely small footprint.3.1.2.The loading probeThe loading probe is essentially identical regardless of whether the system is top or bottom loading save for the direction of inser-tion.The loading probe consists of a vacuum lock which is mounted onto a gate valve on the top/bottom of the main vacuum chamber and evacuated prior to introducing the sample holder into the system.Optionally,the loading probe vacuum lock itself can be fitted with an additional gate valve to allow samples to be stored under vacuum prior to loading into the system,and after removal.The sample holder is mechanically connected to drive rods which enter the vacuum lock via piston seals,and electrically con-nected to the biasing/grounding wiring on the probe.The drivepiece for SMP connectors.(b)The round-trip attenuation through pairs of the connectors measured at room temperature as a function number.The data for thefirst25cycles are for one pair of connectors,the last25cycles are for the second pair.(c)The round-trip attenuation measured at room temperature as a function of the temperature of the connectors.28G.Batey et al./Cryogenics60(2014)24–323.1.3.The docking stationThe docking station provides the mating electrical and thermal connections for the sample holder.The cabling attached to the refrigerator is routed to the docking station.For TLLL systems the docking station is a ring around the(central)LoS port,for BLLL sys-tems it is a stand-off that brings the connectionflange into the bore the magnet.Typically48DC lines and14microwave cables can connected to the docking station,however we note that it straightforward to scale up the number of connectors,if required, particularly on TLLL systems as this can be achieved without the need for a larger magnet bore.A BLLL sample holder attached to its docking station is shown Fig.5.Microwave cable links arefitted between the wiring car-tridges,running through the refrigerator,and the docking station.3.1.4.The sample holderExamples of BLLL sample holders are shown in Fig.6.In thefig-ure,panel(b)is a design for integration with high-field magnets with57mm cold bore diameter,giving a clear diameter sample space inside the sample holder of$25mm(reduced from the diameter of the sample holder by the drive rods internal to the holder required to make the bolted connections to the docking sta-tion,visible in thefigure)by90mm long,symmetric about the field centre line of the magnet.Also shown(c)is a larger diameter sample holder for magnets with a90mm cold bore giving a clear sample space diameter of$50mm.Fig.6(a)shows the mating surface of the BLLL sample holder.In particular the SMP connector‘‘bullet’’adaptors can be seen(the bullet has been removed from the lower left shroud).On the sam-ple holder,‘‘full detent’’shrouds are used to retain the bullet.On the docking station smooth bore so called‘‘catcher’s mit’’shrouds are used which allow for a certain amount of radial and axial mis-alignment between the shrouds during loading.The sample holder features an integrated radiation shield, which also protects the sample mechanically during the loading and unloading process.3.2.Sample cool-down5.A bottom loading sample holder,with its integrated radiation shield,connected to the mixing chamber docking station.The microwave cable linksbetween the wiring cartridges and the docking station are visible.surface of a bottom loading sample holder showing the14SMP connectors and51-way nano d-connector.Two alignmentM4captive fasteners are visible at the top and bottom.(b)A bottom loading sample holder with the radiation shieldsample whilst loading can be seen entering the sample holder from the bottom,and the experimental wiring enteringcould be used for mounting a sample into the holder.(c)A larger diameter bottom loading sample holder connected to theload-lock.The four drive rods are visible at the base of the sample holder.60(2014)24–3229refrigerator equipped with eight of the silver-plated upper,NbTi lower coaxial lines described in Sec-further eight stainless steel lines.The base temper-the sample position is shown in the right panel of with a nuclear orientation thermometer over a days.The mean temperature at the sample posi-be9.85mK.turnaround timesdown time of a loaded sample can be seen to be Fig.7,the total turnaround time from removing having another cold is also of interest.As the loading holders are interchangeable the optimum turn-accomplished by having a second sample holder set loading probe whilst the cold sample is being re-removal of the mixture from the refrigerator and the cold sample can be completed in around loading probe is equipped with the additional gate Section3.1.2,or if the sample can be vented tocold,then the two loading probes can be ex-immediately,the vacuum seals can be demounted and re-min.Finally the small volume of the load-lockand leak tested in around20min.The loading 3.3.Cooling power at the sample stageall the experimental services are installed onto refrigerator,and thermally anchored there,the coolingof a bottom loading sample holder after being loaded onto a dilution refrigerator system.(left panel)The cool down from7h.The high-and low-range mixing temperature sensors are calibrated between325K and1.4K,and40K and50mK respectively.measurements with resistive sensors are replaced with a nuclear orientation thermometer.(right panel)Cool down and base temperature temperature stability at the sample position as measured with the nuclear orientation thermometer.Fig.8.The cooling power measured at the sample position on a top-loadedholder.Thefit,a second-order polynomial,is included as a guide.charge pumping in a graphene double quantum dot device.Single electron pumps operating a high frequencies could allow for straight lines represent I¼Æef.The measured current oscillates between the quantised values because of a phase difference betweenunequal lengths of coaxial line.(b)The fractional quantum Hall effect measured in two-dimensional electron system.Quantised features exemplify the low electron-temperatures attained in these measurements,from which a value of15–20mK can be inferred.。

scientific reports 文章征集

scientific reports 文章征集

scientific reports 文章征集下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, suchas educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!人类社会的进步离不开科学研究的不断推动。

《低温工程》理事会

《低温工程》理事会

密 涛

汪荣顺 陶乐仁
祝ห้องสมุดไป่ตู้ 宁
上海 交通大学制冷与低温工程研 究所 副所长 上海理 工大学动力工程学院低 温技术研究所所长 南京大学物 理系主任 西安交通 大学能源与动力工程学院教授 哈尔滨工业大学低 温与超 导技术研 究所 副所 长
冯全科 王 莉
李俊明
高洪涛 张小松

维普资讯

《 低温工程》理事会
刘灿荣
杨宏海 常务理事
航天晨光股份有限公司副总师
北京航天计量测试技术研究所副所长
董鹏 生
李 叶

中国航 空工业第一集团公 司第一飞机设计研 究院 主任 开封空分集 团有 限公 司董事长 开封开利成套空分设备有 限公 司总经理
解国珍 舒水明
清华大学工程热物理研 究所 热能工程系教授 大连海事大 学制冷 与低 温工程研 究所所 长 东南大学热 能工程研 究所 副所长 北京建筑工程学院城 市建 筑工程 系副主任
华中科技大学能源与动力工程学院副院长

2020年《低温工程》总目次

2020年《低温工程》总目次

2020年‘低温工程“总目次修改变温热源热声发动机驱动制冷机性能喻绍飞,等1(1)…………液化天然气温区大功率脉管制冷机模拟及实验研究郭兆瑞,等1(8)……………………………………………………驻波热声制冷机分层回热器的特性研究古小玲,等1(13)……………脉冲管制冷机智能测试与控制系统李金泽,等1(19)…………………合肥光源超导波荡器用二元电流引线的设计研究杨啸辰,等1(25)……………………………………………………基于液氦温区测试高真空多层绝热性能的量热器设计肖华,等1(30)………………………………………………………容量调节比对变容量复叠制冷系统性能影响研究申江,等1(36)……微通道环路热虹吸换热器传热性能及不稳定特性实验研究黄官正,等1(42)……………………………………………………液氢自润滑动压轴承空化特性的数值研究王昱,等1(50)……………泵与压缩机双动力直膨式制冷系统的理论分析与实验研究周会芳,等1(55)……………………………………………………不同液位下低温绝热气瓶漏热量研究朱华强,等1(61)………………冻结过程中流场分布改变对冻结特性的影响梁志鑫,等1(67)………微肋表面强化液氮温区冷凝传热特性的数值模拟研究黎艳,等2(1)………………………………………………………高能同步辐射光源氦低温系统流程初步设计与模拟优化李梅,等2(9)………………………………………………………镐型截齿温度场数值模拟与试验研究赵敏娜,等2(16)………………液氮温区高温超导滤波器的漏热分析吴姗姗,等2(22)………………凹陷阵列印刷电路板式换热器里超临界甲烷换热和流动特性模拟研究陈彦君,等2(28)…………………………………………利用数据采集系统研究斯特林发动机热效率秦哲,等2(34)…………泵内压降和水力损失耦合诱导泵内液氮空化研究刘浩鹏,等2(39)……………………………………………………不同空气侧风速下微通道蒸发器换热特性实验研究金妍,等2(46)………………………………………………………40英尺液化天然气铁路及其联运罐式集装箱静态蒸发率计算及测试研究何远新,等2(52)…………………………………………电子倍增CCD相机制冷绝热设计沈远航,等2(57)…………………大型高度-温度试验舱分布式送风流场仿真及分析刘然,等2(64)………………………………………………………Emerging opportunities in cryogenic engineeringJohn M.Pfotenhauer2(71)…………………………………………微型JT制冷机降温实验刘东立,等3(1)………………………………冷氦直接增压排放推进剂试验系统的研制及性能调试邹震峰,等3(5)……………………………………………………一种无液氦超导磁体在运输状态下的结构稳定性分析王校威,等3(11)……………………………………………………关键影响因素耦合作用下混凝土低温受压峰值应变试验研究时旭东,等3(17)……………………………………………………高压低温换热贮罐换热性能仿真计算吕秉坤,等3(24)………………薄壁低温容器加注过程降温及热应力特性研究马原,等3(31)………水份在低温液氧中溶解度的理论计算与分析梁益涛,等3(37)………变螺距诱导轮对液氢泵空化性能的影响房煦峰,等3(43)……………微通道蒸发器传热性能实验研究孙帅,等3(48)………………………自配电热泵系统变流量特性的理论与实验研究陈轶光,等3(54)……卧式壳管式冷凝器的仿真研究王启天,等3(61)………………………不同低温推进剂的泄漏扩散特性及安全性分析唐鑫邵,等3(69)……气泡在自由液面破裂时问分析及颗粒的影响高迅估,等4(1)………低温液体储运装备真空表征与监测研究熊珍艳,等4(7)……………箱形鱼骨式热沉的温度均匀性研究单晓杭,等4(12)…………………不同负荷下空气源冷水机组性能的实验分析司化,等4(19)…………基于热不平衡两流体模型气氧射流冷凝过程研究张淼,等4(25)……不同管材盘管蓄冰性能的模拟研究姜坪,等4(31)……………………冻融循环作用下纤维混凝土的性能演变规律王瑞珍,等4(38)………一种新型车用低温气瓶后端支撑结构性能分析张晓兵,等4(42)……制冷机和导热带耦合作用的低温容器内BOG蒸发过程模拟分析任金平,等4(47)……………………………………………………LNG接收站低温管道DR在线检测技术探讨王晓博,等4(52)………脉管制冷机用20kW直线电机性能模拟研究陈萌佳,等4(59)………城市LNG加注站真空绝热管道保冷性能评估方法及应用梁平,等4(68)………………………………………………………单侧式斯特林制冷机柱簧减振器研究寇翠翠,等4(74)………………低温工程领域的新机遇刘磊(译)4(80)………………………………液氮温区低温气体引射器的设计及实验研究贾启明,等5(1)………制冷机可插拔式固氮低温系统的设计与实验聂兴超,等5(7)………2500W@4.5K&500W@2K氦制冷机可靠性可用性分析李静,等5(12)………………………………………………………氢透平膨胀机叶栅流场数值模拟与试验验证李中,等5(19)…………低温液氮雾化喷嘴内部流动特性数值研究薛绒,等5(25)……………氖气液化工艺参数优化分析吴姗姗,等5(31)…………………………立式径向流吸附器流动特性的数值模拟研究徐攀,等5(36)…………室温固化超低温环氧密封胶研究廖宏,等5(43)………………………稳态法研究液态金属强化界面传热的特性方秀秀,等5(48)…………加热烘烤对玻璃纤维纸放气特性的影响郑晨,等5(54)………………一种适用于车载LNG低温绝热气瓶漏热量测量的方法研究李正清,等5(60)……………………………………………………人工冻结软土融沉对埋地管道影响的模型试验研究陈德升,等5(65)……………………………………………………带有横向微槽道的超临界LNG紧凑式换热器换热强化模拟研究赵星霖,等6(1)……………………………………………………混合制冷剂R32/R290在水平三维微肋管内沸腾换热模拟研究张茜茜,等6(9)……………………………………………………空间约束对液氢泄漏扩散过程的影响研究王雅文,等6(18)…………真空条件下氧化铂吸氢特性与微观结构研究陈叔平,等6(26)………天然橡胶的弹热制冷性能研究王骁扬,等6(33)………………………工业管道液氮冰塞试验及其应力分布研究谢林君,等6(38)…………深冷处理对W6高速钢表面残余应力的影响研究张玉婷,等6(44)…轨道车辆干冰清洗流场特性及试验研究伊建辉,等6(48)……………长航时无人机液氢储箱绝热方案与试验研究赵海龙,等6(54)………液氮供应系统高精度控制技术仿真研究郭敬,等6(62)………………低温余热朗肯循环发电系统的设计研究彭菊生6(69)………………空气源热泵-冷柜一体机组冬季制热和冷藏性能实验研究王猛,等6(74)………………………………………………………。

《低温工程》期刊关于征集英文稿件的启事

《低温工程》期刊关于征集英文稿件的启事

《低温工程》期刊关于征集英文稿件的启事
佚名
【期刊名称】《低温工程》
【年(卷),期】2017(0)2
【摘要】为进一步深入报道低温技术所取得的最新研究成果,加强低温技术在国际学术领域的交流与影响,促进各国低温学者间的相互交流,本刊面向国内外低温学术届征集英文论文稿件,具体征集事宜如下:
【总页数】1页(P40-40)
【关键词】《低温工程》;英文论文;征集;稿件;期刊;低温技术;研究成果;国内外【正文语种】中文
【中图分类】V4-55
【相关文献】
1.《低温工程》关于征集英文稿件的启事 [J],
2.《化学通报》征集英文稿件启事 [J],
3.《科技与法律(中英文)》征集英文稿件启事 [J],
4.《科技与法律(中英文)》征集英文稿件启事 [J],
5.《化学通报》征集英文稿件启事 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

关于《真空与低温》杂志投稿需提交英文图题、表题的通知

关于《真空与低温》杂志投稿需提交英文图题、表题的通知

关于《真空与低温》杂志投稿需提交英文图题、表题的通知本刊编辑部
【期刊名称】《真空与低温》
【年(卷),期】2017(23)3
【摘要】为了进一步加强《真空与低温》杂志在国际领域的交流与影响,跟上科技期刊国际化发展的趋势,本刊2017年起,论文中的所有图题、表题一律要有中英文对照.希望作者对编辑部的工作给予支持,在提交论文时将图题、表题给出相应的英文.
【总页数】1页(P135-135)
【关键词】中英文对照;杂志;低温;真空;期刊国际化;投稿;编辑部;论文
【作者】本刊编辑部
【作者单位】
【正文语种】中文
【中图分类】O513
【相关文献】
1.请作者自行补充图题、表题的英文翻译 [J], 本刊编辑部
2.请作者自行补充图题、表题的英文翻译 [J], 本刊编辑部
3.请作者自行补充图题、表题的英文翻译 [J], 本刊编辑部
4.关于《真空与低温》杂志投稿需提交英文图题、表题的通知 [J], 本刊编辑部
5.关于增加稿件“作者信息页”和“英文图题、表题”的通知 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

中国科学院理化所低温材料及低温技术研究中心招聘启事

中国科学院理化所低温材料及低温技术研究中心招聘启事

中国科学院理化所低温材料及低温技术研究中⼼招聘启事中国科学院理化技术研究所是⾪属于中国科学院的科研事业单位。

低温材料及低温技术研究中⼼因项⽬及其它相关研究⼯作需要,拟以项⽬聘任⽅式招聘科研岗位研究⼈员1名。

⼀、岗位职责及基本条件:主要职责:主要从事低温系统设计、研究以及相关的技术研发⼯作。

基本要求:1、具有制冷及低温专业或热能动⼒⼯程专业硕⼠或以上学位;2、具有坚实的专业基础知识与技能,具备独⽴从事科研⼯作的能⼒,有强烈的⼯作责任⼼、进取精神和团队协作精神;3、具有良好的沟通能⼒,较强的英⽂⽂献阅读、写作及⼝语交流能⼒;4、具有低温⼯程专业或热能动⼒⼯程专业5年以上⼯作经历者可优先考虑。

⼆、应聘者须提供以下材料:1、《中国科学院理化技术研究所应聘⼈员申请表》2、学历、学位证书、⾝份证复印件;3、能证明本⼈能⼒、⽔平的相关资料,如论⽂、专利和任职资格证书等复印件。

三、应聘⽅式1、⾃发布招聘通知之⽇起,符合上述条件的应聘者,请填写附件《中国科学院理化技术研究所应聘⼈员申请表》,并把《申请表》及能证明本⼈能⼒、⽔平的相关资料(如发表论⽂情况、有代表性论⽂PDF、以及其它资料)发送⾄lhgong@ 。

2、接收简历的截⽌时间:2011年9⽉10⽇3、初选合格者将通过Email或者电话通知本⼈参加⾯试。

4、参加⾯试者需提供:1)学历、学位证书及复印件;2)专家推荐信或其它可证明本⼈能⼒及⽔平的相关资料。

四、联系⽅式联系⼈:龚⽼师邮件:lhgong@电话:010-********, 010-********(⼈事教育处)地址:北京市海淀区中关村东路29号,邮编 100190中国科学院理化技术研究所应聘⼈员申请表.doc。

《低温工程》2010年总目次

《低温工程》2010年总目次
跨 临界 C ,制 冷 系 统 采用 透 平 膨 胀机 的可 行 性 分 析 O
迪 , 5 1) 等 (6
L G潜 液 泵 的研 制 N
… … … … …… … … … … …… … 孙 晓玲 , 2 2 ) 等 ( 0
超 导 磁 体 失 超 引起 的氦 泄 放过 程 分 析 …… … … … … 李 兰 凯 , 5 2 ) 等 (1

琳, 3 等 (7)
5k 0 A超 导变 压 器 的 设 计及 研 制
… …… … … … … … 刘 华 军 , 3 1 ) 等 ( 1
等 ( 1 铝 基体 超 疏 水 表 面 的抗 结 冰 结 霜 效果 分 析 … …… … 徐文 骥 , 6 1 )
低 温温 度 测 量 与 控 制 系统 研 究 … …… … … … … …… 王
G — 型脉 管 制 冷机 电磁 阀 和 旋 转 阀配 气 系 统 的 比较 实 验 研 究 M
… … … … … … … … … … … … … … … … … … … ・ 一
张 国渊 , 2 等 (8)

超, 5 等 (6)
双声 源 驱 动 热声 系统 的理 论 声 场 重构 与 实 验 验 证
细胞 及 组 织 的 玻璃 化 保 存 研 究进 展 … … …… … … … 海 峰 , 5 5 ) 徐 等 (9 中 国散 裂 中子 源低 温系 统 的 氢 安 全方 案 设 计 … … … 崇 超 , 6 何 等 (1) 可 视化 D C新 设 备及 其 在 低 温 冻存 研 究 领 域 的应 用 S
… … … … … … … ・ … … … … … … … … … … … … ・ ・
基于 P O R /Ⅱ的 液 态 甲烷 精 馏 设 计 与模 拟 … … … … 赵 耀 中 , 4 5 ) 等 ( 3 碳 纤 维 复合 材 料 低 温 热 导率 测 试 方 法 … … … … … …… 张建 可 4 5 ) ( 8 L G船用 B G再 液 化 装 置工 艺 流 程 模 拟 与优 化 P O … 黎志昌 , 4 6 ) 等 ( 2 lO z 冲 管 制冷 机 设 计 与 实验 研 究 … … … … … … 徐 娜娜 , 5 OH 脉 等 (1)

征稿启事作文英文

征稿启事作文英文

征稿启事作文英文英文:Looking for Submissions。

Hello everyone! We are currently seeking submissions for our upcoming publication. We are looking for original pieces of writing that are thought-provoking, inspiring, and engaging. We welcome submissions in both English and Chinese.If you are interested in submitting, please follow the guidelines below:1. The piece should be between 1500-3000 words in length.2. The piece should be original and not previously published.3. The piece should be submitted in either English or Chinese.4. The deadline for submissions is August 31st.5. Please include a brief bio and contact information with your submission.We are excited to read your work and look forward to receiving your submissions!中文:征稿启事。

大家好!我们目前正在寻找投稿作品,欢迎用英文或中文投稿。

我们寻找的作品应该是具有思想性、启发性和吸引力的原创作品。

如果您有兴趣投稿,请遵循以下准则:1. 文章长度应在1500-3000字之间。

《低温工程》关于征集英文稿件的启事

《低温工程》关于征集英文稿件的启事
1 9 9 2: 6 75 — 6 9 8 . 4 Ma r q u a r d t E, Ra d e ba u g h R, Ki t t e l P.D e s i g n e q u a t i o n s a n d s c a l i n g l a ws
宽 对于 3种 弹簧 力 学特 性 的影 响 。结 果 表 明相 同厚 度 和槽 宽条件 下 , 三 臂板 弹簧 有 最 大 的 轴 向 刚度 、 径 向刚度 和径轴 向刚度 比 , 五臂 板弹 簧有 最小 的轴 向刚 度、 径 向刚度 和径 轴 向 刚度 比 , 四臂 板 弹 簧介 于 两 者 之 间 。随着厚 度 的增加 , 3种臂 数 板 弹簧 的轴 向 刚度
第 6期
三种 不 同 臂数 板 弹 簧 的 力 学 特 性 分 析
5 5
向刚度 最大 , 五臂 的径 向刚度 最小 ; 然 而 随着 槽 宽 的 增加 , 3种臂 数 板弹 簧 的径 向刚度 差异越 来 越小 。 图 7为厚 度 同为 0 . 7 5 m m时 , 3种 臂数 板 弹簧 的 径轴 向刚度 比随槽 宽 的变化 。由图 7可知 , 随着 槽 宽 的增 加 , 3种 臂数 的板 弹簧 的径 轴 向刚 度 比 近似 成 线 性 降低 ; 然而 三臂 的降低 速 率 最 快 , 五臂 的 降低 速 率 最慢 。相 同槽 宽 时三臂 的径 轴 向刚度 比最 大 , 五臂 的 径轴 向刚 度 比最小 ; 然 而 随 着槽 宽 的增 加 , 3种 臂 数 板 弹簧 径轴 向刚 度 比的差 异逐渐 减 小 。


图 7 3种 臂 数 板 弹 簧径 轴 向 刚 度 比 随 槽 宽 的 变 化
Fi g. 7 Ra di al s t i f f ne s s - a x i a l s t i fn e s s r a t i o va r i a t i on

《低温工程》论文稿件文后参考文献常用著录格式

《低温工程》论文稿件文后参考文献常用著录格式
Ad a m Hi l g e r L t d, 1 9 8 4 . 1 4 B a i l e y P B ,Da d d M W ,Da v i s T M ,e t a 1 .Ga s s p r i n g l o s s e s i n l i n e a r
1 7 7. 1 8 2
3 李海伟 , 石林锁 , 李 亚 奇 .斯 特 林 发 动 机 的发 展 与应 用 [ J ] .能 源 技
术, 2 0 1 0 , 3 1 ( 4 ) : 4 2 45 .
l 2 钱 国柱 .热 气 机 [ M] .北 京 : 国防 工 业 出 版 社 , 1 9 8 2 . 1 3 U r i e l i I .B e r c h o w i t z D .S t i r l i n g c y c l e e n g i n e a n a l y s i s [ M] .B r i s t o l :
2 0 0 1, 4 2: 2 9 5 — 31 2.
1 0 许辉 , 张红 , 白稽 , 等 .碟 式 太 阳 能 热 发 电 技 术 综 述 [ J ] .热 力 发
电, 2 0 0 9 , 3 8 ( 5 ) : 5 — 9 .
1 1 Ri o s P A . An a p p r o x i ma t e s o l u t i o n t o t h e s h u t t l e h e a t t r a ns f e r l o s s e s i n
2 0 0 9.
减 小摩擦 , 从 而降低 间 隙密 封 损失 , 使 得 发 动 机 的性
能 得 以提高 。
参 考 文 献
1 Ka u s h i k S C ,Ku ma r S. Fi n i t e t i me t h e r mo d y n a mi c e v a l u a t i o n o f i r r e 。

低温工程格式

低温工程格式

低温工程》杂志社投稿总体要求1 论文稿件内容要求1.1论文稿件必须具有创新性、学术性、准确性、规范性和可读性,要求论点明确、数据可靠、逻辑严密、文字精炼。

1.2论文稿件内容应包括:标题、作者姓名(不同单位的作者用数字上角标标出)、作者单位(用数字标出以区分不同单位作者)、中文摘要、中文关键词、英文标题、英文作者姓名、英文单位名称、英文摘要、英文关键词、正文、参考文献、作者简介、联系方式,此外正文中的插图、表格需要同时提供中英文标题。

1.3论文稿件篇幅(含图表,用5号字撰写)限5000字以内,A4纸排版一般不超过7页。

1.4论文题名应恰当简明地反映文章的特定内容,要符合编制题录、索引和选定关键词等所遵循的原则,不使用非公知的缩略词、首字母缩写字符、代号等,一般不用副题名,且避免用“××××××的研究”等非特定词。

中文题名一般不超过20个汉字,英文题名应与中文题名含义一致。

1.5论文稿件中的中英文摘要一般为200-300字,内容要相互对应,一律采用第三人称表述,写成报道性摘要,包括目的、方法、结果和结论4部分,其内容独立于正文而存在,能准确、具体、完整地概括原文内容及创新之处。

不使用“本文”、“作者”等作为主语。

1.6中英文关键词3-8个,选词要规范,以最能反映论文内容且容易检索为原则,中英文关键词应一一对应。

1.7正文章节编号采用三级标题顶格排序。

一级标题形如1,2,3…排序,二级标题形如1.1,1.2,1.3…;2.1,2.2,2.3…排序;三级标题形如1.1.1,1.1.2,1.1.3…;2.1.1,2.1.2,2.1.3…排序。

1.8正文(含图表)中的量和单位(含名称、符号)要前后统一,必须符合中华人民共和国法定计量单位最新标准,文稿中外文字符的大小写、正斜体、黑白体、上下角标及易混淆的字母应打印清楚。

1.9正文中图、表应有自明性,且随文出现、先文后图。

征稿启事 英文作文模板

征稿启事 英文作文模板

征稿启事英文作文模板
English:
We are now looking for submissions for our upcoming magazine. If you have a passion for writing and want to see your work published, then this is your chance! We welcome all types of writing, including short stories, poetry, essays, and opinion pieces. Whether you are an experienced writer or a beginner, we encourage you to send in your work for consideration. This is a fantastic opportunity to showcase your talent and connect with a wider audience. So don't miss out - send us your best work today!
中文翻译:
我们现在正在征集即将出版的杂志投稿。

如果你热爱写作,希望看到自己的作品发表,那么这是你的机会!我们欢迎各种类型的写作,包括短篇小说,诗歌,散文和观点文章。

无论你是经验丰富的作家还是初学者,我们都鼓励你投稿。

这是一个展示你才华并与更广泛的读者群建立联系的绝佳机会。

所以不要错过 - 今天就把你的佳作寄给我们吧!。

《低温工程》论文参考文献著录格式

《低温工程》论文参考文献著录格式
1 参 考 文献为 图 书 、
作 者 1 作 者 2 作 者 , ,
3 等 . 文题 目[ ] 出版 物 名 称 , 版年 度 , 号 ( , 论 J. 出 卷 期
参 考样 例 : 李 1
琳, 余建 祖 , 朱放 昭 , .直 升 等
机 滑油 换热 器 的结 构优 化 设 计 [ ] 北 京 航 空航 天 大 J. 作者 1 作 者 2 作者 , ,
著 录格 式 : 考 文 献 序号 参
号 )起 止 页. :
W a g C L, W a g R S ,L . An e p rm e tlsu y o e t d a d n n iX D x e i n a t d n v n e n n n v n e l o r o e i e s l. I t r a in lCo g e so f g — o ・e td f l fc y g n c v se s n e n t a n r s fRe r e i o i
o q i hdoe [ ] fiud yrgn J .Adacsi C oei E gne n ,19 l vn e n r gnc nier g 9 2, y i
《 温 工 程 》 文参 考 文 献 著 录格 式 低 论
本 刊已对论文稿件 的文后参 考文献著 录格式 执行 G / 7 1 20 ( B T 74— 0 5 文后参 考文献 著 录规 则》 请 作 者在 , 来稿 前认真 、 仔细核 实参考文献 的准确性 和完整性 。 参考 文献 的 主要 京 : 防 工 业 出 版 社 ,9 9:2—5 . 国 19 3 8
优化 [ .武 汉 : 军 工程 大学 ,0 2 D] 海 20 .
4 参 考 文 献 为 会 议 论 文 、
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 期
仲 氢 转 化 对 液 氢 无 损 储 存 的影 响研 究
6 3
对于储 罐 内温 度场 的不 均匀 性 , 可能将 有利 于 仲
氢转 化制 冷 的效 果 , 提 高 液 氢 无 损 储 存 时 间 的延 长 率, 但 是无 损储 存 时 间绝 对 值 将 缩 短 , 这 将 在 后 续 的
1 _ 4.
为 了减 少 液 氢 储 存 蒸 发 损 失 , 延 长 无 损 储 存 时 间, 本项 目设 计 了一 种应 用 仲氢转 化制 冷 的液 氢无 损
5 化学物理研究所. 正 仲氢低温 转化所用催 化剂 的研究 [ R] . 低 温 技术选编 , 1 9 7 8 : 1 - 1 1 .
文献 中讨论 。 参 考 文 献
1 Me i e rR N,Ma r p l e J R ,L e e C J .A mi n i a t u r e h e a t e x c h a n g e rf o r s i m—
u ] t a n e o u s p a r a — o r t h o h y d r o g e n c o n v e r s i o n a n d h e a t t r a n s f e r [ J ] .A d —
Fi g. 5 Ef f e c t o f l i q ui d v ol um e f r ac t i o n on c o ol i n g
c a pac i t y a nd e nt ha l py di fe r e nc e r a t i o
4 J o n g B a i k . L o n g T e r m Z B O( Z e r o — b o i l - o f f )L i q u i d H y d r o g e n S t o r a g e
4 结 论
T a n k s [ R] . F l o r i d a U n i v e r s i t i e s H y d r o g e n R e v i e w . 2 0 0 5 , 2 0 0 5 ( 1 1 ) :
v a n c e s ,i n C r y o g e n i c En g i n e e i r n g, 1 9 6 8, 1 4:1 8 5 — 1 9 3.
p / MP a
2 S i mo n L R u s k i n .P r o c e s s f o r t h e C o n v e r s i o n o f H y d r o g e n [ P ] .U S P a — t e n t , 3 2 2 8 8 6 8 ,美 国 专 利 . 3 B e n n i n g M A.P r o g r e s s i n R e f r i g e r a t i o n S c i e n c e a n d T e c h n o l o g y [ C] .
研究 [ J ] . 低温工程 , 2 0 1 3 ( 5 ) : 2 4 — 2 7 .
An Ga n g,Ca o J i a n,Xi e Hu i ,e t a 1 .An a l y s i s r e s e a r c h o n t h e r e f r i g e r —
a t i n g e f f e c t o f t h e p a r a h y d r o g e n c o n v e r t i n g t o o th r o h y d r o g e n a d i a b a t i -
1 9 7 8: 1 — 1 1 . Mc Ca  ̄y RD. H y d r o g e n T e c h n o l o g i c a l S u r v e y— T h e r m。 p h y s i c a l P r o p e r -
t i e s f R] .NAS A. S P . 3 0 8 9.1 9 7 5.
等 因素的影 响 , 优化 无损储 存 的工作 参数 。结论 如下 :
( 1 ) 随着 充满 率 的增 大 , 仲 氢 转 化制 冷 量 与 无 仲 氢转 化 时液 氢焓 变 的 比值 增大 。
7 安
刚, 曹
建, 解 辉, 等. 仲 氢 绝 热 转 化 为 正 氢 的制 冷 效 应分 析
I n s t i t u t e o f Ch e mi s t y r a n d P h y s i c s . Re s e a r c h o n t h e Ca t a l y s t o f Or t h o -
储存 方案 。本 文 主要 是 针 对 液氢 无 损 储 存 ( 不放空) 模型 , 将 仲氢转化 制冷技术 与之相 结合 , 建立 转化过 程 的无损储 存数 学物 理 方程 , 进行 仲氢转 化 制 冷对 液 氢
无损储存 的影 响分 析 , 分析 了储 罐 压力 和 初 始充 满 率

p a r a H y. S e l e c t i o n o f C yo r g e n i c T e c h n o l o g y ,
P r o c e e d i n g o f t h e 1 3t h I n t e r n a t i o n a l Co n g r e s s o f Re f r i g e r a t i o n, 1 9 7 3, 5 7 7 - 5 8 8.
图5 充 满 率 对 制冷 量 与 焓 变 比 值 的 影 响
相关文档
最新文档