【K12教育学习资料】[学习]2018九年级数学下册 中考模拟卷 (新版)新人教版

合集下载

2018年初中毕业升学数学考试模拟试题(二)(附答案)

2018年初中毕业升学数学考试模拟试题(二)(附答案)

2018年中考密押卷(二)数学满分:120分 考试时间:120分钟第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.的倒数是( )A .﹣2B .2C .D .2.如图所示的几何体的主视图为( )A .B .C .D .3.下列各式计算正确的是( )A .a 2+2a 3=3a 5B .(2b 2)3=6b 5C .(3xy )2÷(xy )=3xy D .2x•3x 5=6x 64.如图,直线a ∥b ,∠1=85°,∠2=35°,则∠3=( )A .85°B .60°C .50°D .35° 5.函数y=kx 的图象经过点P (﹣1,3),则k 的值为( ) A .3B .﹣3C .D .﹣6.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为( )A .150°B .130°C .120°D .100°7.直线l 1和l 2在同一直角坐标系中的位置如图所示,点P 1(x 1,y 1)在直线l 1上,点P 2(x 2,y 2)在直线l 2上,点P 3(x 3,y 3)为直线l 1、l 2的交点,其中x3<x 1,x 3<x 2,则( )A .y 1<y 3<y 2B .y 2<y 1<y 3C .y 2<y 3<y 1D .y 3<y 1<y 28.如图,在正方形ABCD 中,△ABE 和△CDF 为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF 的长是( )A .7B .8C .7D .79.如图,⊙O 是正三角形ABC 的外接圆,点P 在劣弧AB 上,∠ABP=22°,则∠BCP 的度数为( )A .22°B .38°C .48°D .60°10.已知点A (x 1,y 1),B (x 2,y 2)均在抛物线y=ax 2+2ax +4(0<a <3)上,若x 1<x 2,x 1+x 2=1﹣a ,则( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .y 1与y 2大小不能确定第Ⅱ卷(非选择题,共90分)二、填空题(共4小题,每小题3分,计12分)第3页 共26页第4页 共26页11.当x 时,代数式﹣2x 的值是非负数.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A .如图,△AOB 中,∠AOB=90°,AO=3,BO=6,△AOB 绕顶点O 逆时针旋转到△A′OB′处,此时线段A′B′与BO 的交点E 为BO 的中点,则线段B′E 的长度为; B .用科学计算器计算:.(精确到0.1)13.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=﹣x +6于A ,B 两点,若反比例函数y=的图象与△ABC 有公共点,则k 的取值范围是 .14.在四边形ABCD 中,∠B +∠D=180°,AB=AD ,AC=1,∠ACD=60°,则四边形ABCD 的面积为 .三、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分) 计算:.16.(本题满分5分) 解方程:.17.(本题满分5分)如图,利用尺规,在△ABC 的边AC 上方作∠CAE=∠ACB ,在射线AE 上截取AD=BC ,连接CD 并证明:CD ∥AB (尺规作图要求保留作图痕迹,不写作法).18.(本题满分5分)某市为提倡节约用水,准备实行自来水“阶梯计费”的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?19.(本题满分7分)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.20.(本题满分7分)如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.21.(本题满分7分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?22.(本题满分7分)甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.第7页 共26页第8页 共26页23.(本题满分8分)如图,AB 是⊙O 的弦,点C 为半径OA 的中点,过点C 作CD ⊥OA 交弦AB 于点E ,连接BD ,且DE=DB .(1)判断BD 与⊙O 的位置关系,并说明理由; (2)若CD=15,BE=10,tanA=,求⊙O 的直径.24.(本题满分10分)如图,已知抛物线y=ax 2﹣5ax +2(a ≠0)与y 轴交于点C ,与x 轴交于点A (1,0)和点B . (1)求抛物线的解析式; (2)求直线BC 的解析式;(3)若点N 是抛物线上的动点,过点N 作NH ⊥x 轴,垂足为H ,以B ,N ,H 为顶点的三角形是否能够与△OBC 相似(排除全等的情况)?若能,请求出所有符合条件的点N 的坐标;若不能,请说明理由.25.(本题满分12分)如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O ,连接AO AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P PO ,我们称∠OAB 为“叠弦角”,△AOP 为“叠弦三角形”. 【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP )是等边三角形; (2)如图2,求证:∠OAB=∠OAE′. 【归纳猜想】(3)图1、图2中的“叠弦角”的度数分别为 , ; (4)图n 中,“叠弦三角形” 等边三角形(填“是”或“不是”) (5)图n 中,“叠弦角”的度数为 (用含n 的式子表示)2018年初中毕业升学数学考试模拟试题(二)参考答案与试题解析1.A 【分析】根据倒数的定义求解. 【解答】﹣的倒数是﹣2. 故选:A .【点评】本题主要考查了倒数的定义,解题的关键是熟记定义.2.B 【分析】利用主视图的定义,即从几何体的正面观察得出视图即可. 【解答】如图所示:几何体的主视图为:.故选:B .【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.3.D 【分析】根据积的乘方的性质、单项式除法和单项式乘法运算法则利用排除法求解. 【解答】A 、a 2与2a 3不是同类项的不能合并,故本选项错误; B 、应为(2b 2)3=8b 6,故本选项错误; C 、应为(3xy )2÷(xy )=9xy ,故本选项错误; D 、2x•3x 5=6x 6,正确; 故选D .【点评】本题考查积的乘方,单项式的除法法则,单项式的乘法法则,熟练掌握运算法则是解题的关键.4.C 【分析】先利用三角形的外角定理求出∠4的度数,再利用平行线的性质得∠3=∠4=50°. 【解答】在△ABC 中, ∵∠1=85°,∠2=35°, ∴∠4=85°﹣35°=50°, ∵a ∥b , ∴∠3=∠4=50°, 故选C .【点评】本题考查了平行线的性质和三角形的外角定理,比较简单;运用了三角形的一个外角等于与它不相邻的两个内角的和,及两直线平行,内错角相等;本题的解法有多种,也可以利用直线b 下方的三角形和对顶角相等来求解.5.B 【分析】根据一次函数解析式的特点,可得出方程,从而求出k 的值. 【解答】由题意得:3=﹣k , 解得:k=﹣3. 故选B .【点评】本题主要考查了函数解析式与图象的关系.函数的图象上的点满足函数解析式,反之,满足解析式的点一定在函数的图象上.6.C【分析】由在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,易证得∠AEB=∠ABE ,又由∠BED=150°,即可求得∠A 的大小. 【解答】∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴∠AEB=∠CBE , ∵BE 平分∠ABC , ∴∠ABE=∠CBE , ∴∠AEB=∠ABE , ∵∠BED=150°, ∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE ﹣∠AEB=120°. 故选C .【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.7.A 【分析】根据题意把三个点都表示到图象上,可以直观的得到y 1、y 2、y 3的大小. 【解答】根据题意把P 1(x 1,y 1)、点P 2(x 2,y 2)、点P 3(x 3,y 3)表示到图象上,如图所示: 故y 1<y 3<y 2, 故选:A .【点评】此题主要考查了一次函数图象上点的坐标特征,凡是图象经过的点必能满足解析式. 8.C 【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD ,由SSS 证明△ABE ≌△CDF ,得出∠ABE=∠CDF ,证出∠ABE=∠DAG=∠CDF=∠BCH ,由AAS 证明△第11页 共26页第12页 共26页ABE ≌△ADG ,得出AE=DG ,BE=AG ,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH 是正方形,即可得出结果. 【解答】如图所示: ∵四边形ABCD 是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD , ∴∠BAE+∠DAG=90°, 在△ABE 和△CDF 中,,∴△ABE ≌△CDF(SSS ), ∴∠ABE=∠CDF ,∵∠AEB=∠CFD=90°, ∴∠ABE+∠BAE=90°, ∴∠ABE=∠DAG=∠CDF ,同理:∠ABE=∠DAG=∠CDF=∠BCH , ∴∠DAG+∠ADG=∠CDF+∠ADG=90°, 即∠DGA=90°, 同理:∠CHB=90°, 在△ABE 和△ADG 中,,∴△ABE ≌△ADG (AAS ), ∴AE=DG ,BE=AG ,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12, ∴EG=GF=FH=EF=12﹣5=7, ∵∠GEH=180°﹣90°=90°, ∴四边形EGFH 是正方形, ∴EF=EG=7;故选:C .质,证明三角形全等是解决问题的关键.9.B 【分析】根据圆周角定理求出∠ACP=∠ABP ,再根据等边三角形的性质得∠ACB=60°得∠BCP 的度数.【解答】∵△ABC 为正三角形,∴∠ACB=60°,∵∠ACP=∠ABP ,∠ABP=22°, ∴∠ACP=22°,∴∠BCP=60°﹣22°=38°, 故选B .【点评】本题考查了圆周角定理,以及等边三角形的性质,是基础知识比较简单.10. B 【分析】将点A (x 1,y 1),B (x 2,y 2)分别代入y=ax 2+2ax+4(0<a <3)中得y 1=ax 12+2ax 1﹣﹣﹣﹣①;y 2=ax 22+2ax 2+4﹣﹣﹣﹣②;利用作差法求出y 2﹣y 1>0,即可得到y 1>y 2. 【解答】将点A (x 1,y 1),B (x 2,y 2)分别代入y=ax 2+2ax+4(0<a <3)中,得: y 1=ax 12+2ax 1+4﹣﹣﹣﹣①, y 2=ax 22+2ax 2+4﹣﹣﹣﹣②, ②﹣①得:y 2﹣y 1=(x 2﹣x 1)[a (3﹣a )],因为x 1<x 2,3﹣a >0, 则y 2﹣y 1>0, 即y 1<y 2. 故选B .【点评】本题难度较大,要充分利用数据特点,进行计算.11.≤﹣1 【分析】根据题意列出不等式,然后根据一元一次不等式的解法求解即可. 【解答】∵﹣2x 的值是非负数,∴﹣2x≥0, 3x ﹣1﹣4x≥0, 3x ﹣4x≥1, ﹣x≥1, x≤﹣1.故答案为:≤﹣1.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变; (2)不等式的两边同时乘以或除以同一个正数不等号的方向不变; (3)不等式的两边同时乘以或除以同一个负数不等号的方向改变. 12.A 、;B 、301145.6.【分析】A 、作辅助线.构建直角△EMO ,设EM=a ,利用三角函数表示OM 的长,再利用勾股定理列方程,求出a 的值,则B′E=3﹣2a 代入计算;B 、利用计算器计算.【解答】A .过O 作OM ⊥A′B′,垂足为M , ∵A′O=OE=3, ∴A′M=EM ,由勾股定理得:A′B′=AB==3,设EM=a ,则B′M=3﹣a ,在Rt △B′MO 中,tan ∠MB′O===,∴OM=,由勾股定理得:a 2+=32,5a 2﹣6a+9=0, a 1=a 2=, ∴B′E=3﹣2a=3﹣=; B.135×sin13°≈301145.6;故答案为:A 、;B 、301145.6.【点评】本题考查了旋转的性质和使用计算器计算,明确旋转前后的边和角相等,利用等腰三角形三线合一的性质及三角函数表示各边的长,在不同的直角三角形中,同角的三角函数值相等这一结论要熟练掌握.13.2≤k≤9 【分析】把C 的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】当反比例函数的图象过C 点时,把C 的坐标代入得:k=2, 把y=﹣x+6代入y=得:﹣x+6=, x 2﹣6x+k=0,△=(﹣6)2﹣4k=36﹣4k , ∵反比例函数y=的图象与△ABC 有公共点,∴36﹣4k≥0, k≤9,即k 的范围是2≤k≤9, 故答案为:2≤k≤9.【点评】本题考查了反比例函数图象上点的坐标特征,根的判别式等知识点的应用,题目比较典型,有一定的难度.14.【分析】首先过A 点分别作AE ⊥BC 于E ,AF ⊥CD 于F 构造△AEB ,通过角边角定理证得△AEB ≌△AFD .再根据若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆判定ABCD 四点共圆.从而证得△ABD 是等边三角形.最后根据正弦定理求得S △AEC 、S △AEC 进而求得四边形ABCD 的面积.【解答】过A 点分别作AE ⊥BC 于E ,AF ⊥CD 于F ,连接BD ,第15页 共26页第16页 共26页∵∠ADF+∠ABC=180°,且∠ABE+∠ABC=180°, ∴∠ADF=∠ABE ,且A ,B ,C ,D 四点共圆, 又∠ACD=60°,∴∠ABD=∠ACD=60°,又AB=AD , ∴△ABD 是等边三角形, ∴∠BAD=60°,∴∠EAF=∠EAB+∠BAF ,∠BAD=∠FAD+∠BAF , ∴∠EAF=∠BAD=60°, ∴∠EAC=180°﹣60°=120°, ∴∠AEC=60°,∴S △AEC =EC•AE=AB•sin60°•AB•cos60°=,同理S △AFC =,在△ABE 与△ADF 中,∵∠ADF=∠ABE ,AB=AD ,∠AEB=∠AFD , ∴△AEB ≌△AFD ,∴S 四边形ABCD =S 四边形AECF =S △AEC +S △AFC =+=.故答案为:.【点评】本题考查圆的性质与判定、三角形的面积计算,是一道典型的几何综合题目.解决本题的关键是构造△AEB ≌△AFD ,根据四点共圆的性质与判定,求得∠AEC=60°.15.【分析】先分别根据0指数幂、负整数指数幂的运算法则及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可. 【解答】原式=1﹣2+3﹣5﹣2=﹣6+.【点评】本题考查的是实数的运算,熟知0答此题的关键.16.【分析】找出分式方程的最简公分母为(x+2)(x ﹣2)解得到x 的值,代入最简公分母中检验即可得到原分式方程的解.【解答】最简公分母为(x+2)(x ﹣2), 去分母得:(x ﹣2)2﹣(x+2)(x ﹣2)=16, 整理得:﹣4x+8=16, 解得:x=﹣2, 经检验x=﹣2是增根, 故原分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”程求解.解分式方程一定注意要验根.17.【分析】利用尺规作∠EAC=∠ACB 即可,先证明四边形ABCD 是平行四边形,再证明CD ∥即可.【解答】图象如图所示,∵∠EAC=∠ACB , ∴AD ∥CB ,∵AD=BC ,∴四边形ABCD 是平行四边形, ∴AB ∥CD .角等于已知角,属于基础题,中考常考题型.18. 【分析】(1)根据10~15吨部分的用户数和百分比进行计算;(2)先根据频数分布直方图中的数据,求得“15吨~20吨”部分的用户数,再画图,最后根据该部分的用户数计算圆心角的度数;(3)根据用水25吨以内的用户数的占比,求得该地区6万用户中用水全部享受基本价格的户数. 【解答】(1)∵10÷10%=100(户) ∴样本容量是100;(2)用水15~20吨的户数:100﹣10﹣36﹣24﹣8=22(户) ∴补充图如下:“15吨~20吨”部分的圆心角的度数=360°×=79.2°答:扇形图中“15吨~20吨”部分的圆心角的度数为79.2°. (3)6×=4.08(万户)答:该地区6万用户中约有4.08万户的用水全部享受基本价格.【点评】本题主要考查了频数分布直方图和扇形统计图,解决问题的关键是在图中获取相关的数据进行计算求解.注意:扇形圆心角的度数=360°×该部分在总数中的百分比,扇形统计图可以更清楚的了解各部分数量同总数之间的关系.此外,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.19.【分析】求出AD=BC ,根据ASA 推出△AED ≌△BFC ,根据全等三角形的性质得出即可. 【证明】∵AC=BD , ∴AC+CD=BD+CD ,∴AD=BC ,在△AED 和△BFC 中,,∴△AED ≌△BFC (ASA ),∴DE=CF .【点评】本题考查了全等三角形的性质和判定的应用,能求出△AED ≌△BFC 是解此题的关键,注意:全等三角形的对应边相等.20.【分析】设巡逻船从出发到成功拦截所用时间为x 小时,由题意得出∠ABC=120°,AB=12,BC=10x ,AC=14x ,过点A 作AD ⊥CB 的延长线于点D ,在Rt △ABD 中,由三角函数得出BD 、AD 的长度,得出CD=10x+6.在Rt △ACD 中,由勾股定理得出方程,解方程即可. 【解答】设巡逻船从出发到成功拦截所用时间为x 小时;如图所示, 由题意得:∠ABC=45°+75°=120°,AB=12,BC=10x ,AC=14x , 过点A 作AD ⊥CB 的延长线于点D , 在Rt △ABD 中,AB=12,∠ABD=60°, ∴BD=AB•cos60°=AB=6,AD=AB•sin60°=6,∴CD=10x+6.在Rt △ACD 中,由勾股定理得:,解得:(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为2小时.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由三角函数和勾股定理得出方程是解决问题的关键.21.【分析】(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y 甲关于x 的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y 乙关于x 的函数关系式;(2)分0<x≤1和x >1两种情况讨论,分别令y 甲<y 乙、y 甲=y 乙和y 甲>y 乙,解关于x 的方程或不等式即可得出结论. 【解答】(1)由题意知:当0<x≤1时,y 甲=22x ;当1<x 时,y 甲=22+15(x ﹣1)=15x+7.第19页 共26页第20页 共26页y 乙=16x+3.(2)①当0<x≤1时, 令y 甲<y 乙,即22x <16x+3, 解得:0<x <;令y 甲=y 乙,即22x=16x+3, 解得:x=;令y 甲>y 乙,即22x >16x+3, 解得:<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3, 解得:x >4;令y 甲=y 乙,即15x+7=16x+3, 解得:x=4;令y 甲>y 乙,即15x+7>16x+3, 解得:1<x <4.综上可知:当<x <4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x <或x >4时,选甲快递公司省钱.【点评】本题考查了一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)根据数量关系得出函数关系式;(2)根据费用的关系找出一元一次不等式或者一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系找出函数关系式是关键. 22. 【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果; (2)由(1)可求得出现平局的情况,再利用概率公式求解即可求得答案. 【解答】(1)画树状图得:则共有9种等可能的结果;(2)∵出现平局的有3种情况, ∴出现平局的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=23.【分析】(1)连接OB ,由圆的半径相等和已知条件证明∠OBD=90°,即可证明BD 是⊙O 线;(2)过点D 作DG ⊥BE 于G ,根据等腰三角形的性质得到EG=BE=5,△ACE ∽△DGE ,利用相似三角形对应角相等得到sin ∠EDG=sinA=,在Rt △EDG 定理求出DG 的长,根据三角形相似得到比例式,代入数据即可得到结果. 【证明】(1)连接OB , ∵OB=OA ,DE=DB ,∴∠A=∠OBA ,∠DEB=∠ABD , 又∵CD ⊥OA ,∴∠A+∠AEC=∠A+∠DEB=90°, ∴∠OBA+∠ABD=90°, ∴OB ⊥BD , ∴BD 是⊙O 的切线;(2)如图,过点D 作DG ⊥BE 于G , ∵DE=DB , ∴EG=BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED , ∴∠GDE=∠A , ∴△ACE ∽△DGE , ∴sin ∠EDG=sinA==,即DE=13,在Rt △ECG 中, ∵DG==12, ∵CD=15,DE=13, ∴CE=2,第21页 共26页第22页 共26页∵△ACE ∽△DGE , ∴=, ∴AC=•DG=,∴⊙O 的直径2OA=4AC=.【点评】此题考查了切线的判定,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.24.【分析】(1)把点A 坐标代入抛物线y=ax 2﹣5ax+2(a≠0)求得抛物线的解析式即可; (2)求出抛物线的对称轴,再求得点B 、C 坐标,设直线BC 的解析式为y=kx+b ,再把B 、C 两点坐标代入线BC 的解析式为y=kx+b ,求得k 和b 即可;(3)设N (x ,ax 2﹣5ax+2),分两种情况讨论:①△OBC ∽△HNB,②△OBC ∽△HBN ,根据相似,得出比例式,再分别求得点N 坐标即可.【解答】(1)∵点A (1,0)在抛物线y=ax 2﹣5ax+2(a≠0)上, ∴a ﹣5a+2=0, ∴a=,∴抛物线的解析式为y=x 2﹣x+2; (2)抛物线的对称轴为直线x=, ∴点B (4,0),C (0,2), 设直线BC 的解析式为y=kx+b ,∴把B 、C 两点坐标代入线BC 的解析式为y=kx+b ,得,解得k=﹣,b=2,∴直线BC 的解析式y=﹣x+2;(3) 方法一:设N (x ,x 2﹣x+2),分三种情况讨论: ①当△OBC ∽△HNB 时,如图1,=,即=,解得x 1=5,x 2=4(不合题意,舍去), ∴点N 坐标(5,2);②当△OBC ∽△HBN 时,如图2,=, 即=﹣,解得x 1=2,x 2=4(不合题意舍去), ∴点N 坐标(2,﹣1);③当N (x ,x 2﹣x+2)在第二象限时, H (x ,0)在x 轴的负半轴上, ∴BH=4﹣x , ∵△OBC ∽△HNB , ∴,即=,得到x 2﹣x ﹣12=0解得x 1=4(舍去); x 2=﹣3, ∴N 点的坐标为(﹣3,14)综上所述,N 点的坐标为(5,2)、(2,﹣1)或(﹣3,14). 方法二:第23页 共26页第24页 共26页以B ,N ,H 为顶点的三角形与△OBC 相似, ∴,,设N (2n ,2n 2﹣5n+2),H (2n ,0), ①||=,∴||=2,∴2n 1=5,2n 2=﹣3, ②||=,∴||=,∴2n 1=2,2n 2=0(舍)综上所述:存在N 1(5,2),N 2(2,﹣1),N 3(﹣3,14), 使得以点B 、N 、H 为顶点的三角形与△OBC 相似.形的相似,解答本题需要较强的综合作答能力,特别是作答(3易忽略的地方,此题难度较大.25.【考点】几何变换综合题.菁优网版权所有【分析】(1)先由旋转的性质,再判断出△APD ≌△AOD',最后用旋转角计算即可; (2)先判断出Rt △AEM ≌Rt △ABN ,在判断出Rt △APM ≌Rt △AON 即可;(3)先判断出△AD′O ≌△ABO ,再利用正方形,正五边形的性质和旋转的性质,计算即可;(4)先判断出△APF ≌△AE′F′,再用旋转角为60°,从而得出△PAO 是等边三角形; (5)用(3)的方法求出正n 边形的,“叠弦角”的度数. 【解答】(1)如图1,∵四ABCD 是正方形,由旋转知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°, ∴∠DAP=∠D'AO ,∴△APD ≌△AOD'(ASA ) ∴AP=AO , ∵∠OAP=60°,∴△AOP 是等边三角形,(2)如图2,作AM ⊥DE 于M ,作AN ⊥CB 于N .第25页 共26页第26页 共26页∵五ABCDE 是正五边形,由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60° ∴∠EAP=∠E'AO∴△APE ≌△AOE'(ASA ) ∴∠OAE'=∠PAE .在Rt △AEM 和Rt △ABN 中,∠AEM=∠ABN=72°,AE AE=AB ∴Rt △AEM ≌Rt △ABN (AAS ), ∴∠EAM=∠BAN ,AM=AN .在Rt △APM 和Rt △AON 中,AP=AO,AM=AN ∴Rt △APM ≌Rt △AON (HL ). ∴∠PAM=∠OAN , ∴∠PAE=∠OAB∴∠OAE'=∠OAB (等量代换). (3)由(1)有,△APD ≌△AOD', ∴∠DAP=∠D′AO , 在△AD′O 和△ABO 中,,∴△AD′O ≌△ABO , ∴∠D′AO=∠BAO , 由旋转得,∠DAD ′=60°, ∵∠DAB=90°,∴∠D′AB=∠DAB ﹣∠DAD′=30°, ∴∠D′AO=∠D′AB=15°, ∵图2的多边形是正五边形, ∴∠EAB==108°,∴∠E′AB=∠EAB ﹣∠EAE′=108°﹣60°=48° ∴同理可得∠E′AO=∠E′AB=24°, 故答案为:15°,24°.(4)如图3,∵六边形ABCDEF 和六边形A′B′C′E′F′是正六边形, ∴∠F=F′=120°,由旋转得,AF=AF′,EF=E′F′, ∴△APF ≌△AE′F′, ∴∠PAF=∠E′AF′,由旋转得,∠FAF′=60°,AP=AO ∴∠PAO=∠FAO=60°, ∴△PAO 是等边三角形. 故答案为:是(5)图n 中的多边形是正n 边形,同(3)的方法得,∠OAB=[(n ﹣2)×180°÷n ﹣60°]÷2=60°﹣.故答案:60°﹣.【点评】此题是几何变形综合题,主要考查了正多边形的性质旋转的性质,全等三角形的判定,等边三角形的判定,解本题的关键是判定三角形全等.。

新北师版初中数学九年级下册2018年中考模拟卷(二)和解析答案

新北师版初中数学九年级下册2018年中考模拟卷(二)和解析答案

2018年中考模拟卷(二)时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.12的倒数是( ) A.12 B .2 C .-2 D .-122.下列图形中,既是轴对称图形又是中心对称图形的是( )3.从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( ) A.15 B.25 C.35 D.454.如图,在等腰Rt △ABC 中,∠C =90°,AC =6,D 是AC 上一点,若tan ∠DBC =23,则AD的长为( )A .2B .4 C. 2 D.325.对于二次函数y =(x -1)2+2的图象,下列说法正确的是( )A .开口向下B .对称轴是x =-1C .顶点坐标是(1,2)D .与x 轴有两个交点 6.数据-2,-1,0,1,2的方差是( ) A .0 B. 2 C .2 D .47.对于两个不相等的实数a 、b ,我们规定符号Max{a ,b }表示a 、b 中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x ,-x }=2x +1x的解为( )A .1- 2B .2- 2C .1+2或1- 2D .1+2或-18.如图,已知一次函数y =-x +b 与反比例函数y =1x的图象有2个公共点,则b 的取值范围是( )A .b >2B .-2<b <2C .b >2或b <-2D .b <-2第8题图 第9题图 第10题图9.菱形OACB 在平面直角坐标系中的位置如图所示,点C 的坐标是(6,0),点A 的纵坐标是1,则点B 的坐标是( )A .(3,1)B .(3,-1)C .(1,-3)D .(1,3)10.如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC .若AB =8,CD =2,则EC 的长为( )A .210B .213C .215D .8 二、填空题(每小题3分,共24分) 11.分式方程1x =5x +3的解是________.12.“仁义礼智信孝”是我们中华民族的传统美德,小明同学将这六个字分别写在正方体的六个表面上,这个正方体的表面展开图如图所示,那么与“孝”所在面相对的面上的字是________.第12题图第14题图第15题图13.已知a+b=3,ab=-2,则a2+b2的值是________.14.如图,某小区规划在一个长为16m、宽为9m的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若草坪部分的总面积为112m2,求小路的宽度.若设小路的宽度为x m,则x满足的方程为__________________.15.如图,小明在楼上点A处测得旗杆BC顶部B的仰角为30°,测得旗杆底部C的俯角为60°,已知点A距地面高AD为12m,旗杆的高度为________m.第16题图第17题图16.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于D,若AC∶BC=4∶3,AB=10cm,则OD的长为________cm.17.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①当x≥1时,y随x的增大而减小;②b+2a=0;③x=3是关于x的方程ax2+bx+c=0(a≠0)的一个根;④4a-2b+c<0.其中正确的是________(填序号).18.在▱ABCD中,BC边上的高为4,AB=5,AC=25,则▱ABCD的周长等于____________.三、解答题(共66分)19.(6分)解下列方程:(1)2x2-x=1; (2)x2+4x+2=0.20.(8分)如图,在▱ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-6,0),B(-1,1),C(-3,3),将△ABC绕点B按顺时针方向旋转90°后得到△A1BC1.(1)画出△A1BC1,写出点A1、C1的坐标;(2)计算线段BA扫过的面积.22.(10分)某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件;第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图所示.(1)求y与x之间的函数表达式;(2)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?23.(10分)如图,△ABC内接于⊙O,AD平分∠BAC交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.(1)试判断DE与⊙O的位置关系,并证明你的结论;(2)若∠E=60°,⊙O的半径为5,求AB的长.24.(10分)某市高中招生体育考试前教育部门为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A.实心球(2kg);B.立定跳远;C.50米跑;D.半场运球;E.其他.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选“50米跑”的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目:B.立定跳远;C.50米跑;D.半场运球中各选一项,同时选择半场运球和立定跳远的概率是多少?请用列表法或画树状图的方法加以说明并列出所有等可能的结果.25.(14分)如图,在平面直角坐标系中,点A,B的坐标分别为(-3,0),(0,6).动点P 从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE =AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在第一、四象限.在运动过程中,设▱PCOD的面积为S.当M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t值.参考答案与解析1.B 2.B 3.C 4.A 5.C 6.C 7.D 8.C 9.B=90°,AC =BC =12AB =4.在Rt △ACO 中,由勾股定理得r 2=42+(r -2)2,解得r =5,∴AE =2r=10.∵AE 为⊙O 的直径,∴∠ABE =90°,由勾股定理得BE =6.在Rt △ECB 中,EC =BE 2+BC 2=62+42=213.故选B.11.x =34 12.义 13.13 14.(16-2x )(9-x )=11215.16 16.4 17.②18.12或20 解析:如图①所示.∵在▱ABCD 中,BC 边上的高为4,AB =5,AC =25,∴EC =AC 2-AE 2=2,BE =AB 2-AE 2=3,∴AD =BC =5,∴▱ABCD 的周长等于20.如图②所示.∵在▱ABCD 中,BC 边上的高为4,AB =5,AC =25,∴EC =AC 2-AE 2=2,BE =AB 2-AE 2=3,∴BC =3-2=1,∴▱ABCD 的周长等于1+1+5+5=12.综上可知▱ABCD 的周长等于12或20.19.解:(1)x 1=-12,x 2=1.(3分)(2)x 1=-2+2,x 2=-2- 2.(6分)20.(1)证明:∵AB =6,BC =8,AC =10,∴AB 2+BC 2=AC 2,∴∠ABC =90°.(3分)∵四边形ABCD 是平行四边形,∴▱ABCD 是矩形.(5分)(2)解:∵四边形ABCD 是矩形,∴BD =AC =10.(8分)21.解:(1)△A 1BC 1如图所示,(2分)A 1的坐标为(-2,6),C 1的坐标为(1,3).(4分)(2)BA =12+52=26,所以线段BA 扫过的面积为90·π·(26)2360=132π.(8分)22.解:(1)设y 与x 之间的函数表达式为y =kx +b ,将点(30,400)、(35,300)代入y =kx +b 中得⎩⎪⎨⎪⎧400=30k +b ,300=35k +b ,解得⎩⎪⎨⎪⎧k =-20,b =1000.(3分)∴y 与x 之间的函数表达式为y =-20x +1000.(4分)(2)设第二个月的利润为w 元,由已知得w =(x -20)y =(x -20)(-20x +1000)=-20x 2+1400x -20000=-20(x -35)2+4500.(7分)∵-20<0,∴当x =35时,w 取最大值,最大值为4500.故第二个月的销售单价定为35元时,可获得最大利润,最大利润是4500元.(10分)23.解:(1)DE 与⊙O 相切.(1分)理由:连接DO 并延长到圆上一点N ,交BC 于点F ,∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∴BD ︵=DC ︵,∴DF ⊥BC .(3分)∵DE ∥BC ,∴∠EDO =90°,∴DE 与⊙O 相切.(5分)(2)连接AO 并延长到圆上一点M ,连接BM ,∵BC ∥DE ,∴∠ACB =∠E =60°,∴∠M =60°.(7分)∵⊙O 的半径为5,∴AM =10.∵∠ABM =90°,∴AB =AM ·sin60°=10×32=5 3.(10分) 24.解:(1)被调查的学生总人数为150÷15%=1000(人),选择B 项目的人数为1000×(1-15%-20%-40%-5%)=1000×20%=200(人).(2分)补全统计图如图所示.(4分)(2)5500×40%=2200(人).(6分) (3)根据题意画出树状图如下:(8分)所有等可能结果有9种:BB 、BC 、BD 、CB 、CC 、CD 、DB 、DC 、DD ,同时选择B 和D 的有2种可能,即BD 和DB ,∴P (同时选择B 和D )=29.(10分)25.(1)解:∵OB =6,C 是OB 的中点,∴BC =12OB =3,∴2t =3,即t =32,∴OE =32+3=92,E ⎝⎛⎭⎪⎫92,0.(3分)(2)证明:连接CD 交OP 于点G ,在▱PCOD 中,CG =DG ,OG =PG .∵AO =PE ,∴AG =EG ,∴四边形ADEC 是平行四边形.(6分)(3)解:①当点C 在BO 上时,第一种情况:如图①,当点M 在CE 边上时,∵MF ∥OC ,∴△EMF ∽△ECO ,∴MF CO =EF EO ,即26-2t =23+t ,∴t =1.(8分)第二种情况:如图②,当点N 在DE 边FN EF 129②当点C 在BO 的延长线上时,第一种情况:如图③,当点M 在DE 边上时,∵MF ∥PD ,∴△EMF ∽△EDP ,∴MF DP =EF EP ,即22t -6=23,∴t =92.(12分)第二种情况:如图④,当点N 在CE 边上时,∵NF ∥OC ,∴△EFN ∽△EOC ,∴FN OC =EF EO ,即12t -6=23+t,∴t =5.综上可知t =1或94或92或5.(14分)。

2018中考数学模拟试题及答案解析(2)

2018中考数学模拟试题及答案解析(2)

2018中考数学模拟试题及答案解析(2)中考数学模拟试题及答案解析(2)第I 卷(选择题)评卷人得分 一、单选题1.﹣2的绝对值是( )A. 2B. ﹣2C. 12D. 12- 2.下列运算正确的是( )A. 336aa a += B. ()222ab a b -=- C. ()236a a -= D. 1226a a a ÷= 3.如图是某几何体的三视图,这个几何体是( )A. 圆锥B. 长方体C. 圆柱D. 三棱柱4.一组数据2,3,5,4,4的中位数和平均数分别是()A. 4和3.5B. 4和3.6C. 5和3.5D. 5和3.65.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A. 两点之间线段最短B. 两点确定一条直线C. 垂线段最短D. 经过直线外一点,有且只有一条直线与这条直线平行6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②A. 84株B. 88株C. 92株D. 121株9.对于二次函数223=--,下列结论错误的是y x mx()A. 它的图象与x轴有两个交点B. 方程223-=的两根之积为﹣3x mxC. 它的图象的对称轴在y轴的右侧D. x<m时,y随x的增大而减小10.如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N 为△ABM的外心.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个第II 卷(非选择题)评卷人得分 二、填空题11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为______.12.“抛掷一枚质地均匀的硬币,正面向上”是______事件(从“必然”、“随机”、“不可能”中选一个).13.如图,已知AB 是⊙O 的弦,半径OC 垂直AB ,点D 是⊙O 上一点,且点D 与点C 位于弦AB 两侧,连接AD、CD、OB,若∠BOC=70°,则∠ADC=______度.14.(2017湖北省随州市)在△ABC在,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=______时,以A、D、E为顶点的三角形与△ABC相似.15.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.16.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间t (h )之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是______(填写所有正确结论的序号).评卷人得分三、解答题 17.计算: ()()20212017323π-⎛⎫---- ⎪⎝⎭.18.解分式方程: 2311x x x x +=--. 19.如图,在平面直角坐标系中,将坐标原点O沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB =32. (1)求反比例函数的解析式;(2)若P (1x , 1y )、Q (2x , 2y )是该反比例函数图象上的两点,且12x x <时, 12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55°,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.(1)求证:AD平分∠BAC;(2)若CD=1,求图中阴影部分的面积(结果保留π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求AM的值;NE=k(k2的(3)在(2)的条件下,若AFAB的值.常数),直接用含k的代数式表示AMMF25.在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线2=++(a、b、c为常数,a≠0)y ax bx c的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线223432333y xx =--+与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.参考答案1.A【解析】解:﹣2的绝对值是2,即|﹣2|=2.故选A.2.C【解析】解:A.原式=2a3,不符合题意;B.原式=a2﹣2ab+b2,不符合题意;C.原式=a6,符合题意;D.原式=a10,不符合题意.故选C.3.C【解析】解:这个几何体是圆柱体.故选C.点睛:本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.4.B【解析】解:把这组数据按从大到小的顺序排列是:2,3,4,4,5,故这组数据的中位数是:4.平均数=(2+3+4+4+5)÷5=3.6.故选B.5.A【解析】∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C、点D到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选A.6.D【解析】解:用尺规作图作∠AOC =∠AOB 的第一步是以点O 为圆心,以任意长为半径画弧①,分别交OA 、OB 于点E 、F ,第二步的作图痕迹②的作法是以点E 为圆心,EF 长为半径画弧.故选D.7.B【解析】解:设每支铅笔x 元,每本笔记本y 元,根据题意得: 2010110{ 30585x y x y +=+=.故选B . 点睛:本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.8.B【解析】解:由图可得,芍药的数量为:4+(2n ﹣1)×4,∴当n =11时,芍药的数量为:4+(2×11﹣1)×4=4+(22﹣1)×4=4+21×4=4+84=88,故选B.点睛:本题考查规律型:图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化规律.9.C【解析】A、∵b2﹣4ac=(2m)2+12=4m2+12>0,∴二次函数的图象与x轴有两个交点,故A选项正确,不合题意;B、方程x2﹣2mx=3的两根之 =﹣3,故B选项正确,不合题意;C、积为:cam的值不能确定,故它的图象的对称轴位置无法确定,故C选项错误,符合题意;D、∵a=1>0,对称轴x=m,∴x<m时,y随x 的增大而减小,故D选项正确,不合题意;故选C.10.B【解析】解:∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;当AB=BC时,即四边形ABCD为正方形时,设DE=EC=1,BM=a,则AB=2,BF=4,AM=FM=4﹣a,在Rt△ABM中,22+a2=(4﹣a)2,解得a=1.5,即BM=1.5,∴由勾股定理可得AM=2.5,∴DE+BM=2.5=AM,又∵AB<BC,∴AM=DE+BM不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,MN BM<1,∴NAN AD不是AM的中点,∴点N不是△ABM的外心,故④错误.综上所述,正确的结论有2个,故选B.点睛:本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.11.1.17×107.【解析】解:11700000=1.17×107.故答案为:1.17×107.12.随机.【解析】解:“抛掷一枚质地均匀的硬币,正面向上”是随机事件,故答案为:随机.13.35.【解析】解:如图,连接OA.∵OC⊥AB,∴AC BC,∴∠AOC=∠COB=70°,∴∠ADC=12∠AOC=35°,故答案为:35.点睛:本题考查圆周角定理、垂径定理等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题.14.125或53.【解析】当AE ABAD AC=时,∵∠A=∠A,∴△AED∽△ABC,此时AE=·621255 AB ADAC⨯==;当AD ABAE AC=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE=·52563 AC ADAB⨯==;故答案是:12553或.15.(32,32).【解析】解:作N关于OA的对称点N′,连接N′M 交OA于P,则此时,PM+PN最小,∵OA垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M是ON的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M 是ON的中点,∴OM=1.5,∴PM3,∴P(32,3.故答案为:(32,3.点睛:本题考查了轴对称﹣最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P的位置.16.②③④.【解析】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;(h),∴③∵(240+200﹣60)÷(60+80)=527h时,两车相遇,结论③正确;乙车出发527④∵80×(4﹣3.5)=40(km),∴甲车到达C 地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.点睛:本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.17.9.【解析】试题分析:原式利用零指数幂、负整数指数幂法则,二次根式性质,以及绝对值的代数意义化简,即可得到结果.试题解析:解:原式=9﹣1+3﹣2=9.点睛:此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.18.x=3【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:解:去分母得:3+x2﹣x=x2,解得:x=3,经检验x=3是分式方程的解.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(1)3yx=-;(2)P在第二象限,Q在第三象限.【解析】试题分析:(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;试题解析:解:(1)由题意B(﹣2,32),把B(﹣2,32)代入kyx=中,得到k=﹣3,∴反比例函数的解析式为3yx=-.(2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x 的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.63米.【解析】试题分析:作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AH tan∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣10,根据BE=DE可得关于x的方程,解之可得.试题解析:解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AH tan∠CAH=tan55°•x,∴CE=CH﹣EH=tan5 5°•x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°•x﹣10+35,解得:x≈45,∴CH=tan55°•x=1.4×45=63.答:塔杆CH的高为63米.点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形..21.(1)40;(2)108°,15%;(3)23【解析】试题分析:(1)用A组人数除以A组所占百分比得到参加初赛的选手总人数,用总人数乘以B组所占百分比得到B组人数,从而补全频数分布直方图;(2)用360度乘以C组所占百分比得到C组对应的圆心角度数,用E组人数除以总人数得到E 组人数占参赛选手的百分比;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到一男生和一女生的情况,再利用概率公式即可求得答案.试题解析:解:(1)参加初赛的选手共有:8÷20%=40(人),B组有:40×25%=10(人).频数分布直方图补充如下:故答案为:40;(2)C 组对应的圆心角度数是:360°×1240=108°,E 组人数占参赛选手的百分比是: 640×100%=15%;(3)画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为812=23. 22.(1)证明见解析;(2)14π-. 【解析】试题分析:(1)连接DE ,OD .利用弦切角定理,直径所对的圆周角是直角,等角的余角相等证明∠DAO =∠CAD ,进而得出结论;(2)根据等腰三角形的性质得到∠B =∠BAC =45°,由BC 相切⊙O 于点D ,得到∠ODB =90°,求得OD =BD ,∠BOD =45°,设BD =x ,则OD =OA =x ,OB =2x ,根据勾股定理得到BD =OD 2,于是得到结论.试题解析:解:(1)证明:连接DE ,OD .∵BC 相切⊙O 于点D ,∴∠CDA =∠AED ,∵AE 为直径,∴∠ADE =90°,∵AC ⊥BC ,∴∠ACD =90°,∴∠DAO =∠CAD ,∴AD 平分∠BAC ;(2)∵在Rt △ABC 中,∠C =90°,AC =BC ,∴∠B =∠BAC =45°,∵BC 相切⊙O 于点D ,∴∠ODB =90°,∴OD =BD ,∴∠BOD =45°,设BD =x ,则OD =OA =x ,OB =2x ,∴BC =AC =x +1,∵AC 2+BC 2=AB 2,∴2(x +1)2=2x +x )2,∴x 2,∴BD =OD 2,∴图中阴影部分的面积=S △BOD ﹣S 扇形DOE =24521222360π⨯=14π-.点睛:本题主要考查了切线的性质,角平分线的定义,扇形面积的计算和勾股定理.熟练掌握切线的性质是解题的关键.23.(1)10%;(2)217.7352(19){ 36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)0.5.【解析】试题分析:(1)设这个百分率是x ,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;(2)根据两个取值先计算:当1≤x <9时和9≤x <15时销售单价,由利润=(售价﹣进价)×销量﹣费用列函数关系式,并根据增减性求最大值,作对比;(3)设第15天在第14天的价格基础上最多可降a 元,根据第15天的利润比(2)中最大利润最多少127.5元,列不等式可得结论.试题解析:解:(1)设该种水果每次降价的百分率是x ,10(1﹣x )2=8.1,x =10%或x =190%(舍去).答:该种水果每次降价的百分率是10%;(2)当1≤x <9时,第1次降价后的价格:10×(1﹣10%)=9,∴y =(9﹣4.1)(80﹣3x)﹣(40+3x )=﹣17.7x +352,∵﹣17.7<0,∴y 随x 的增大而减小,∴当x =1时,y 有最大值,y 大=﹣17.7×1+352=334.3(元);当9≤x <15时,第2次降价后的价格:8.1元,∴y =(8.1﹣4.1)(120﹣x )﹣(3x 2﹣64x +400)=﹣3x 2+60x +80=﹣3(x ﹣10)2+380,∵﹣3<0,∴当9≤x ≤10时,y 随x 的增大而增大,当10<x <15时,y 随x 的增大而减小,∴当x =10时,y 有最大值,y 大=380(元).综上所述,y 与x (1≤x <15)之间的函数关系式为: 217.7352(19){ 36080(915)x x y x x x -+≤<=-++≤<,第10天时销售利润最大;(3)设第15天在第14天的价格基础上最多可降a 元,由题意得:380﹣127.5≤(4﹣a )(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a )﹣115,a ≤0.5. 答:第15天在第14天的价格基础上最多可降0.5元.点睛:本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程,注意第2问中x 的取值,两个取值中的最大值才是最大利润.24.(1)证明见解析;(22;(322k-.【解析】试题分析:(1)证法一,利用菱形性质得AB=CD,AB∥CD,利用平行四边形的性质得AB=EF,AB∥EF,则CD=EF,CD∥EF,再根据平行线的性质得∠CDM=∠FEM,则可根据“AAS”判断△CDM≌△FEM,所以DM=EM;证法二,利用菱形性质得DH=BH,利用平行四边形的性质得AF∥BE,再根据平行线分线段成比例定理得到DH DMBH EM==1,所以DM=EM;(2)由△CDM≌△FEM得到CM=FM,设AD=a,CM=b,则FM=b,EF=AB=a,再证明四边形ABCD为正方形得到AC2a,接着证明△ANF为等腰直角三角形得到NF=a2,则NE=NF+EF=2a2b,然后计算AMNE的值;(3)由于AFAB =22a ba+ =22ba⋅=k,则a b =2k-,然后表示出AMMF =2a ba+21ab+,再把a b2k-代入计算即可.试题解析:解:(1)如图1,证法一:∵四边形ABCD为菱形,∴AB=CD,AB∥CD,∵四边形ABEF 为平行四边形,∴AB=EF,AB∥EF,∴CD=EF,CD∥EF,∴∠CDM =∠FEM,在△CDM和△FEM 中,∵∠CMD=∠FME,∠CDM=∠FEM,CD=EF,∴△CDM≌△FEM,∴DM=EM,即点M是DE的中点;证法二:∵四边形ABCD为菱形,∴DH=BH,∵四边形ABEF为平行四边形,∴AF∥BE,∵HM∥BE,∴DH DMBH EM==1,∴DM=EM,即点M是DE的中点;(2)∵△CDM≌△FEM,∴CM=FM,设AD=a,CM=b,∵∠ABE=135°,∴∠BAF=45°,∵四边形ABCD 为菱形,∴∠NAF=45°,∴四边形ABCD为正方形,∴AC=2AD=2a,∵AB∥EF,∴∠AFN=∠BAF=45°,∴△ANF为等腰直角三角形,∴NF=22AF=22(2a+b+b)=a+2b,∴NE=NF+EF=a+2b+a=2a+2b,∴AMNE=()222222a a a b a b=++ =22;(3)∵AF AB =22a b a+22b a⋅=k ,∴b a =(122k ,∴ab=2k -,∴AM MF 2a b+21a b+212k +-22k -.点睛:本题考查了相似形的综合题:熟练掌握平行线分线段成比例定理、平行四边形和菱形的性质;灵活利用全等三角形的知识解决线段相等的问题;会利用代数法表示线段之间的关系. 25.(1)2323y =(﹣2, 23;(1,0);(2)N 点坐标为(0, 33)或(32, 332);(3)E (﹣1,﹣433)、F (0, 233)或E (﹣1,﹣433)、F (﹣4, 33).【解析】试题分析:(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A 、B 的坐标;(2)当N 点在y 轴上时,过A 作AD ⊥y 轴于点D ,则可知AN =AC ,结合A 点坐标,则可求得ON 的长,可求得N 点坐标;当M 点在y 轴上即M 点在原点时,过N 作NP ⊥x 轴于点P ,由条件可求得∠NMP =60°,在Rt△NMP 中,可求得MP 和NP 的长,则可求得N 点坐标;(3)当AC 为平行四边形的一边时,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,可证△EFH ≌△ACK ,可求得DF 的长,则可求得F 点的横坐标,从而可求得F 点坐标,由HE 的长可求得E 点坐标;当AC 为平行四边形的对角线时,设E (﹣1,t ),由A 、C 的坐标可表示出AC 中点,从而可表示出F 点的坐标,代入直线AB 的解析式可求得t 的值,可求得E 、F 的坐标. (1)∵抛物线223433y xx =+的解析式为3333y x =-+,联立梦想直线与抛物线解析式可得: 22323{234323y x y x x =+=+,解得: 2{23x y =-=或1{ 0x y ==,∴A (﹣2, 3,B (1,0),故答案为: 32333y x =-+;(﹣2, 23;(1,0);(2)当点N 在y 轴上时,△AMN 为梦想三角形,如图1,过A 作AD ⊥y 轴于点D ,则AD =2,在223433y x x =+令y =0可求得x =﹣3或x =1,∴C (﹣3,0),且A (﹣2,3,∴AC ()()222323-++=13AN =AC 13Rt △AND 中,由勾股定理可得DN 22AN AD -134- =3,∵OD =3ON =33或ON =23,当ON =3时,则MN >OD >CM ,与MN =CM 矛盾,不合题意,∴N 点坐标为(0, 233);当M 点在y 轴上时,则M 与O 重合,过N 作NP ⊥x 轴于点P ,如图2,在Rt △AMD 中,AD =2,OD =3∴tan ∠DAM =MD AD3∴∠DAM =60°,∵AD ∥x 轴,∴∠AMC =∠DAO =60°,又由折叠可知∠NMA =∠AMC =60°,∴∠NMP =60°,且MN =CM =3,∴MP =12MN =32,NP =32MN =332,∴此时N 点坐标为(32, 332);综上可知N 点坐标为(0, 33)或(32,33);(3)①当AC为平行四边形的边时,如图3,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK 和△EFH中,∵∠ACK=∠EFH,∠AKC=∠EHF,AC=EF,∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=23x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F 点横坐标为0时,则F(0,23,此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2323 3=433,即E点纵坐标为﹣433,∴E(﹣1,﹣433);当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C(﹣3,0),且A(﹣2,23,∴线段AC的中点坐标为(﹣2.5,3,设E(﹣1,t),F(x,y),则x﹣1=2×(﹣2.5),y+t=23x=﹣4,y=3t,代入直线AB解析式可得23t=234)+23t=43,∴E(﹣143),F(﹣4,103);综上可知存在满足条件的点F,此时E(﹣1,﹣43)、F(0,23)或E(﹣143)、F(﹣4,103).3点睛:本题为二次函数的综合应用,涉及函数图象的交点、勾股定理、轴对称的性质、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中理解题目中梦想直线的定义是解题的关键,在(2)中确定出N点的位置,求得ON的长是解题的关键,在(3)中确定出E、F的位置是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度较大.。

中考数学试题-2018年中考数学模拟试卷参考答案 最新

中考数学试题-2018年中考数学模拟试卷参考答案 最新

2018年中考数学模拟试卷 参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. -4,2 12.(3,5) 13.12-14.31 15. n )23( 16. 6S 1≤≤ 三. 解答题(8小题共66分) 17. (本题6分)解:(1)上述两同学回答的均不全面,应该是300 , 1500 , 900 (遗漏一个扣1分) ………3分 (2)答案不唯一.如面对不确定的情况就要考虑进行分类讨论;考虑问题要全面呀等等,只要有这样的意思就得3分. …………………………3分 18. (本题6分)解:900,1350,1800 ,2700, 3600,只要举出其中两个角能够进行三等分, ……………………2分尺规作图正确,每个2分 ………………………4分19、(本题6分)解:(1)第一只 肉 香肠 红枣 红枣第二只 红枣 肉 红枣 红枣 肉 香肠 红枣 香肠 红枣∴P =61122= …………………………3分(2)这样模拟不正确 …………………………1分 理由如下:连续两次掷骰子点数朝上的情况有(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16种,而满足条件的情况有4种 …………………………2分 20. (本题8分)解:老板第二次售手链还是赚了. …………………………1分 设第一次批发价为x 元/条,则第二次的批发价为x+0.5元/条 依题意,得: )x1000.5)(10(x ++=150 解之得 5.2x ,2x 21== …………………………3分经检验,5.2x ,2x 21== 都是原方程的根 …………………………1分 由于当x=2.5时,第二次的批发价就是3元/条,而零售价为2.8元,所以x=2.5不合题意,舍去.故第一次的批发价为2元/条.第二次的批发价为2.5元/条第二次共批发手链605.21505.0x 150==+(条) …………………………1分第二次的利润为: 1.2150-5).08.260518.26054(=⨯⨯⨯+⨯⨯ …………………………1分故,老板第二次售手链赚了1.2元 . …………………………1分21.(本题8分)解:(1)如图,由题意得,∠EAD =45°,∠FBD =30°.∴ ∠EAC =∠EAD +∠DAC =45°+15°=60°. ∵ AE ∥BF ∥CD , ∴ ∠FBC =∠EAC =60°. ∴ ∠DBC =30°.又∵ ∠DBC =∠DAB +∠ADB , ∴ ∠ADB =15°.∴ ∠DAB =∠ADB . ∴ BD =AB =2.即B ,D 之间的距离为2km . ……………………………………………4分 (2)过B 作BO ⊥DC ,交其延长线于点O , 在Rt △DBO 中,BD =2,∠DBO =60°. ∴ DO =2×sin60°=2×323=,BO =2×cos60°=1. 在Rt △CBO 中,∠CBO =30°,CO =BO tan30°=33, ∴ CD =DO -CO =332333=-(km ). 即C ,D 之间的距离为332km . …………………………………………………4分 22. (本题10分)解:(1)这个样本的中位数为120(人),众数为100(人),平均数为150(人) ………3分 信息:①这一周每天参观人数不低于100人; ②周末参观人数逐渐增加;金③一周内参观人数在百人左右的天数最多;④星期日参观人数最多;⑤这一周每天参观人数不超过240人;⑥星期五参观人数最接近这一周的平均值;•⑦一周内多数天参观人数低于本周参观人数的平均值等等.…………………………2分(2)①由(1)知样本数据的中位数为120(人),则甲、乙两团共120人,其中甲团有x人,乙团有(120-x)人.∵0<120-x≤50,∴甲团人数超过50人…………………………1分ⅰ)当50<x•≤100,•0<120-x≤50时,W=60x+80(120-x)即W=9600-20x(70≤x≤100)ⅱ)当x>100,0<120-x•≤50时,W=40x+80(120-x)即W=9600-40x(100<x<120)∴当70≤x≤100时,W关于x的函数关系式为W=9600-20x;当100<x<120时,W关于x的函数关系式为:W=9600-40x.…………………………2分②依题意x≤100,∴W关于x的函数关系式应为:W=9600-20x(70≤x≤100)根据一次函数的性质知:当x=70时,W=9600-2×700=8200(元)而两团合起来购票应付费40×120=4800(元),∴两团合起来购票比分开购票最多可节约8200-4800=3400(元).…………………………2分23.(本题10分)证明:(1)连接AM,∵AB是半圆O的直径,∴∠BMA=90°…………………………1分又∵DE⊥AB,∠ABM=∠NBE,∴Rt△ABM∽Rt△NBE∴BN BEBA BM,即BN·BM=BE·BA …………………………2分(2)连接AD,BD(如图2),∵AB是⊙O的直径,∴∠ADB=90°…………………………1分又因∵DE⊥AB,∴BD2=BE·BA …………………………1分∵BC是⊙O1的切线,∴BC2=BN·BM …………………………1分由(1)知BN·BM=BE·BA,∴BC2=BD2,即BC=BD …………………………1分(3)连接O 1N 和OM (如图3),则OM 过点O 1, ∵OB=OM ,O 1N=O 1M ,∴∠MNO 1=∠NMO 1=∠MBO …………………………1分 ∴O 1N ∥OB …………………………1分而DE ⊥OB ,∴OE ⊥O 1N∵O 1N 是 ⊙O 1的半径,∴DE 是⊙O 1的切线.…………………………1分24.(本题12分)解:(1)①法一:由题可知1AO CQ ==.90AOH QCH ∠=∠=,AHO QHC ∠=∠,AOH QCH ∴△≌△.OH CH ∴=,即H 为AQ 的中点. …………………………1分法二:(01)A ,,(01)B -,,OA OB ∴=.又BQ x ∥轴,HA HQ ∴=. …………………………1分 由①可知AH QH =,AHR QHP ∠=∠,AR PQ ∥,RAH PQH ∴∠=∠, RAH PQH ∴△≌△.AR PQ ∴=,又AR PQ ∥,∴四边形APQR 为平行四边形.………………………1分②设214P m m ⎛⎫ ⎪⎝⎭,,PQ y ∥轴,则(1)Q m -,,则2114PQ m =+.过P 作PG y ⊥轴,垂足为G ,在Rt APG △中,2114AP m PQ ===+=.∴平行四边形APQR 为菱形. …………………………2分(2)设直线PR 为y kx b =+,由OH CH =,得,0)2m (H ,214P m m ⎛⎫⎪⎝⎭,代入得: 2021.4m k b km b m ⎧+=⎪⎪⎨⎪+=⎪⎩, 221.4m k b m ⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线PR 为2124m y x m =-.………………………1分 设直线PR 与抛物线的公共点为214x x ⎛⎫ ⎪⎝⎭,,代入直线PR 关系式得:22110424m x x m -+=,21()04x m -=,解得x m =.得公共点为214m m ⎛⎫ ⎪⎝⎭,. 所以直线PH 与抛物线214y x =只有一个公共点P . …………………………2分 (3)AN ∥GH ,AN 21GH =. …………………………2分由(1)知AP=PQ ,同理知AM=MN.M A N M N A ,A Q P PA Q ∠=∠∠=∠∴ BQ PQ ,BQ M N ⊥⊥∴MN ∥PQ ∴180MPQ NMA =∠+∠ ∵⊿AMN 和⊿APQ 的内角和都为180180MAN MNA AQP PAQ =∠+∠+∠+∠∴ 90MAN PAQ =∠+∠∴ AQ AN 90NAQ ⊥∴=∠∴…………………………2分由(1)知四边形APQR 为菱形,HQ AH PR AQ =⊥∴,PR ∴∥AN为GH ∴⊿ANQ 的中位线.∴AN ∥GH ,AN 21GH = …………………………1分。

2018届九年级中考数学模拟试卷及答案二

2018届九年级中考数学模拟试卷及答案二

2018届九年级中考数学模拟试卷(2)班级:______姓名:______考号:_____成绩______第I卷(选择题)一、单选题1.下列实数中,有理数是()A. B. C. D.2.下列方程有实数根的是()A. B. C. +2x-1=0 D.3.已知反比例函数下列结论正确的是()A. 图像经过点(-1,1)B. 图像在第一、三象限C. y 随着x 的增大而减小D. 当x > 1时,y < 14.用配方法解方程,配方后所得的方程是()A. B. C. D.5.“a是实数,”这一事件是()A. 不可能事件B. 不确定事件C. 随机事件D. 必然事件6.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A. 50.5~60.5 分B. 60.5~70.5 分C. 70.5~80.5 分D. 80.5~90.5 分第II卷(非选择题)二、填空题7.计算:________.8.因式分解:_________.9.函数的定义域是________.10.不等式的整数解是________.11.关于x 的方程ax=x+2(a1) 的解是________.12.抛物线的顶点坐标是_______ .13.掷一枚材质均匀的骰子,掷得的点数为合数的概率是__________ .14.如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么y1______ y2.(填“>”,“<”或“=”).15.如图,已知在平行四边形ABCD 中,E是边AB的中点,F 在边AD上,且AF︰FD=2︰1,如果,,那么________.16.如图,如果两个相似多边形任意一组对应顶点P、P′所在的直线都是经过同一点O,且有OP′=k·OP(k≠0),那么我们把这样的两个多边形叫位似多边形,点O叫做位似中心,已知△ABC与△A′B′C′是关于点O的位似三角形,OA′=3OA,则△ABC与△A′B′C′的周长之比是________.17.如图,在△ABC中,BC=7,,tanC=1,点P为AB边上一动点(点P不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆外,那么PB的取值范围______.18.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点D、E 分别在边AC、BC上,且CD:CE=3︰4.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点F处时,BF 恰好是∠ABC的平分线,此时线段CD的长是________.三、解答题19.计算:.20.先化简,在求值:,其中.21.如图,在Rt△ABC 中,∠C=90°,AC=3,BC=4,∠ABC 的平分线交边AC于点D,延长BD 至点E,且BD=2DE,连接AE.(1)求线段CD 的长;(2)求△ADE 的面积.22.如图,海中有一个小岛A,该岛四周11 海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:≈1.41,≈1.73)23.如图,在梯形ABCD中,AD∥BC,对角线AC、BD交于点M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.(1)求证:;(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.24.已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线AC的方向平移,当顶点C恰好落在y轴上的点D处时,点B落在点E处.(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积;(3)已知点F在x轴上,点G在坐标平面内,且以点C、E、F、G 为顶点的四边形是矩形,求点F的坐标.25.如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.参考答案与解析1.B【解析】分析:根据有理数的定义,即可解答.详解:,π,是无理数,.是有理数.故选B.点睛:本题考查了实数,解决本题的关键是熟记实数的分类.2.C【解析】分析:根据方程解的定义,一一判断即可解决问题;详解:A.∵x4>0,∴x4+2=0无解;故本选项不符合题意;B.∵≥0,∴=﹣1无解,故本选项不符合题意;C.∵x2+2x﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意;D.解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意.故选C.点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.B【解析】分析:直接利用反比例函数的性质进而分析得出答案.详解:A.反比例函数y=,图象经过点(﹣1,﹣1),故此选项错误;B.反比例函数y=,图象在第一、三象限,故此选项正确;C.反比例函数y=,每个象限内,y随着x的增大而减小,故此选项错误;D.反比例函数y=,当x>1时,0<y<1,故此选项错误.故选B.点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.4.A【解析】分析:根据配方法可以解答本题.详解:x2﹣4x+1=0,(x﹣2)2﹣4+1=0,(x﹣2)2=3.故选A.点睛:本题考查了解一元二次方程﹣配方法,解答本题的关键是熟练掌握解一元二次方程的方法.5.D【解析】分析:直接利用实数的性质以及必然事件的定义得出答案.详解:a是实数,a2≥0这一事件是必然事件.故选D.点睛:本题主要考查了必然事件,正确把握相关定义是解题的关键.6.C【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.a【解析】分析:先化简(﹣a)2,然后再依据同底数幂的除法法则计算即可.详解:原式=a3÷a2=a..故答案为:a.点睛:本题主要考查的是同底数幂的除法,熟练掌握相关法则是解题的关键.8.a(a-4)【解析】分析:直接把公因式a提出来即可.详解:a2﹣4a=a(a﹣4).故答案为:a(a﹣4).点睛:本题主要考查提公因式法分解因式,准确找出公因式a是解题的关键.9.x≥-3【解析】分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.详解:根据题意得:x+3≥0,解得:x≥﹣3.故答案为:x≥﹣3.点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑:(1)当函数表达式是整式时,定义域可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.-1、0、1【解析】分析:先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.详解:解不等式x+1≥0,得:x≥﹣1,解不等式2﹣x>0,得:x<2,则不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1、0、1.故答案为:﹣1、0、1.点睛:本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【解析】分析:依据等式的基本性质依次移项、合并同类项、系数化为1即可得出答案.详解:移项,得:ax﹣x=2,合并同类项,得:(a﹣1)x=2.∵a≠1,∴a﹣1≠0,方程两边都除以a﹣1,得:x=.故答案为:x=.点睛:本题主要考查解一元一次方程的能力,熟练掌握等式的基本性质及解一元一次方程的基本步骤是解题的关键.12.(3,1)【解析】分析:已知抛物线解析式为顶点式,可直接写出顶点坐标.详解:∵y=(x﹣3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(3,1).故答案为:(3,1).点睛:主要考查了抛物线顶点式的运用.13.【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为=.故答案为:.点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.14.>【解析】分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.详解:抛物线y=﹣x2+2x的对称轴是x=﹣=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.故答案为:>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.15.【解析】分析:根据=+,只要求出、即可解决问题.详解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴==.∵AF=2DF,∴=.=,AE=EB,∴=.=+,=﹣.故答案为:﹣.点睛:本题考查了平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.16.1:3【解析】分析:根据相似三角形的周长比等于相似比解答.详解:∵△ABC与△A′B′C′是关于点O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=3OA,∴△ABC与△A′B′C′的周长之比是:OA:OA′=1:3.故答案为:1:3.点睛:本题考查的是位似变换的性质,位似变换的性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.17.【解析】分析:根据题意作出合适的辅助线,然后根据题意即可求得PB的取值范围.详解:作AD⊥BC于点D,作PE⊥BC于点E.∵在△ABC中,BC=7,AC=3,tan C=1,∴AD=CD=3,∴BD=4,∴AB=5,由题意可得,当PB=PC时,点C恰好在以点P为圆心,PB为半径圆上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案为:0<PB<.点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.6【解析】分析:设CD=3x,则CE=4x,BE=12﹣4x,依据∠EBF=∠EFB,可得EF=BE=12﹣4x,由旋转可得DF=CD=3x,再根据Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(4x)2=(3x+12﹣4x)2,进而得出CD=6.详解:如图所示,设CD=3x,则CE=4x,BE=12﹣4x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣4x,由旋转可得DF=CD=3x.在Rt△DCE 中,∵CD2+CE2=DE2,∴(3x)2+(4x)2=(3x+12﹣4x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=6.故答案为:6.点睛:本题考查了相似三角形的判定与性质,勾股定理以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.19.2-1【解析】分析:直接利用分数指数幂、负指数幂、零指数幂的性质以及绝对值的性质分别化简即可.详解:原式=+﹣2﹣1+2=2﹣1.点睛:本题主要考查了实数运算,正确化简各数是解题的关键.20.,【解析】分析:根据分式的运算法则即可求出答案.详解:原式=()()()().当时,原式==.点睛:本题考查了分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.(1);(2).【解析】分析:(1)过点D作DH⊥AB,根据角平分线的性质得到DH=DC根据正弦的定义列出方程,解方程即可;(2)根据三角形的面积公式计算.详解:(1)过点D作DH⊥AB,垂足为点H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,则AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=5.∵,,,即CD=;(2)△.∵BD=2DE,∴△△,△.点睛:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.22.不会有触礁的危险,理由见解析.【解析】分析:作AH⊥BC,由∠CAH=45°,可设AH=CH=x,根据可得关于x的方程,解之可得.详解:过点A作AH⊥BC,垂足为点H.由题意,得∠BAH=60°,∠CAH=45°,BC=10.设AH=x,则CH=x.在Rt△ABH中,∵,,,解得:.∵13.65>11,∴货轮继续向正东方向航行,不会有触礁的危险.点睛:本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(1) 证明见解析;(2) 证明见解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出=,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MF•MB;(2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF 可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.∵AD∥BC,∴△AMD∽△CMB,∴=,=,即MD2=MF•MB.(2)设FM=a,则BF=3a,BM=4a.由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四边形ABED是平行四边形.点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”.24.(1)抛物线的解析式为;(2)12; (3)满足条件的点有F1(,0),F2(,0),F3(,0),F4(,0).【解析】分析:(1)根据对称轴方程求得b=﹣4a,将点A的坐标代入函数解析式求得9a+3b+3=0,联立方程组,求得系数的值即可;(2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到:∴平行四边形△.(3)联结CE.分类讨论:(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F3、F4,利用圆的性质解答.详解:(1)∵顶点C在直线x=2上,∴,∴b=﹣4a.将A(3,0)代入y=ax2+bx+3,得:9a+3b+3=0,解得:a=1,b=﹣4,∴抛物线的解析式为y=x2﹣4x+3.(2)过点C作CM⊥x轴,CN⊥y轴,垂足分别为M、N.∵y=x2﹣4x+3═(x﹣2)2﹣1,∴C(2,﹣1).∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=3.∵抛物线y=x2﹣4x+3与y轴交于点B,∴B(0,3),∴BD=6.∵抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,.∴平行四边形△(3)联结CE.∵四边形BCDE是平行四边形,∴点O是对角线CE与BD的交点,即.(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,,即a2=(a﹣2)2+5,解得:,∴点(,).同理,得点(,);(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F3、F4,可得:,得点(,)、(,).综上所述:满足条件的点有(,),(,),(,)),(,).点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键.25.(1)证明见解析;(2) .();(3).【解析】分析:(1)先判断出∠ABM=∠DOM,进而判断出△OAC≌△BAM,即可得出结论;(2)先判断出BD=DM,进而得出,进而得出AE=(),再判断出,即可得出结论;(3)分三种情况利用勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如图2,过点D作DE∥AB,交OM于点E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=().∵DE∥AB,∴,∴,.(<)(i)当OA=OC时.∵.在Rt△ODM中,.(3)∵,.解得,或(舍).(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.即:当△OAC为等腰三角形时,x的值为.点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.第11 页共11 页。

最新学2018届九年级第二次模拟考试数学试题(附答案)

最新学2018届九年级第二次模拟考试数学试题(附答案)

2018届九年级教学质量监测数学试卷答卷时间:120分钟 满分值:150分一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分) 1、5-的相反数是( )A .5B .5-C .51 D .51-2、下列四个几何体的俯视图中与众不同的是( )A. B. C. D.3、下列计算正确的是( ).A.224x x x +=B.824x x x ÷=C.236x x x ⋅=D.0)(22=--x x4、不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )5、下列事件为不可能事件的是( ). A. 某射击运动员射击一次,命中靶心 B. 掷一次骰子,向上的一面是5点 C. 找到一个三角形,其内角和为360°D. 经过城市中某一有交通信号灯的路口,遇到红灯6、如图,已知∠AOB =70°,OC 平分∠AOB ,DC ∥OB ,则∠C 为( ) A .20° B .35° C .45° D .70°7、如图,在Rt △ABC 中,∠ACB =90°,∠B =60°,BC =2,△A ′B ′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A ′与点A 是对应点,点B ′与点B 是对应点,连接AB ′,且A 、B ′、A ′在同一条直线上,则AA ′的长为( )AB .C .D .A . 6B . 4C . 3D . 38、在矩形ABCD 中,AD =2AB =4,E 是AD 的中点,一块足够大的三角板的直角顶点与点E 重合,将三角板绕点E 旋转,三角板的两直角边分别交AB ,BC (或它们的延长线)于点M ,N ,设∠AEM =α(0°<α<90°),给出下列四个结论:①AM =CN ; ②∠AME =∠BNE ; ③BN ﹣AM =2; ④α2cos 2=∆EMN S . 上述结论中正确的个数是( ) A .1 B .2 C .3D .4二、填空题(每小题3分,共24分)9、2016年9月26日,我国自主设计建造的世界最大球面射电望远镜落成启用.该望远镜理论上能接收到13 700 000 000光年以外的电磁信号.数据13 700 000 000光年用科学记数法表示为 光年.10、分解因式228a -= .11、在函数y =中,自变量x 的取值范围是 . 12、用彩色和单色的两种地砖铺地,彩色地砖14元/块,单色地砖12元/块,若单色地砖的数量比彩色地砖的数量的2倍少15块,买两种地砖共用了1340元,设购买彩色地砖x 块,单色地砖y 块,则根据题意可列方程组为 .13、过□ABCD 对角线交点O 作直线m ,分别交直线AB 于点E ,交直线CD 于点F ,若AB=4,AE =6,则DF 的长是 .14、如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,将Rt △ABC 绕点A 逆时针旋转30°后得到△ADE ,则图中阴影部分的面积为 。

2018初中数学中考模拟试卷[2]

2018初中数学中考模拟试卷[2]

2018初中数学中考模拟试卷(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018初中数学中考模拟试卷(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018初中数学中考模拟试卷(word版可编辑修改)的全部内容。

绝密★启用前2018年04月21日lht112的初中数学组卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共6小题)1.如图.将矩形ABCD绕点A旋转至矩形AEFG的位置.此时点D恰好与AF的中点重合。

AE交CD于点H。

若BC=.则HC的长为()A.4 B.C.D.62.在△ABC中.∠BAC=90°。

AB=2AC。

点A(2。

0)、B(0。

4)。

点C在第一象限内.双曲线y=(x>0)经过点C.将△ABC沿y轴向上平移m个单位长度。

使点A恰好落在双曲线上。

则m的值为()A.2 B.C.3 D.3.如图。

四边形ABCD中.AB=4.BC=6.AB⊥BC。

BC⊥CD。

E为AD的中点。

F为线段BE 上的点.且FE=BE.则点F到边CD的距离是( )A.3 B.C.4 D.4.如图。

正方形ABCD中.点E。

F分别在BC.CD上。

△AEF是等边三角形.连接AC 交EF于点G.过点G作GH⊥CE于点H。

若S△EGH=3.则S△ADF=()A.6 B.4 C.3 D.25.如图.若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k.则反比例函数y=(x>0)的图象是()A.B.C.D.6.已知正方形MNOK和正六边形ABCDEF边长均为1。

2018九年级数学下册 中考模拟卷 (新版)新人教版

2018九年级数学下册 中考模拟卷 (新版)新人教版

2018年中考模拟卷分一、选择题(每小题3分,共30分) 1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫作正数与负数.若气温为零上10℃记作+10℃,则-3℃表示气温为( )A .零上3℃ B.零下3℃ C.零上7℃ D.零下7℃ 2.不等式4-2x >0的解集在数轴上表示为( )3.下列运算正确的是( )A .3m -2m =1B .(m 3)2=m 6C .(-2m )3=-2m 3D .m 2+m 2=m 44.如图所示的几何体的俯视图为( )5.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15第5题图 第6题图6.如图,在▱ABCD 中,连接AC ,∠ABC =∠CAD =45°,AB =2,则BC 的长是( ) A. 2 B .2 C .2 2 D .47.若△ABC 的每条边长增加各自的10%得△A ′B ′C ′,则∠B ′的度数与其对应角∠B 的度数相比( )A .增加了10%B .减少了10%C .增加了(1+10%)D .没有改变8.如果点A (x 1,y 1)和点B (x 2,y 2)是直线y =kx -b 上的两点,且当x 1<x 2时,y 1<y 2,那么函数y =k x的图象位于( )A .一、四象限B .二、四象限C .三、四象限D .一、三象限9.如图,在Rt△ABC 中,∠ACB =90°,∠A =56°.以BC 为直径的⊙O 交AB 于点D .E是⊙O 上一点,且CE ︵=CD ︵,连接OE .过点E 作EF ⊥OE ,交AC 的延长线于点F ,则∠F 的度数为( )A .92° B.108° C.112° D.124°第9题图 第10题图10.如图,抛物线y 1=12(x +1)2+1与y 2=a (x -4)2-3交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于B 、C 两点,且D 、E 分别为顶点.则下列结论:①a =23;②AC=AE ;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2.其中正确结论的个数是( )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共24分)11.如图所示,在Rt△ABC 中,∠B =________.第11题图 第16题图12.《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为__________.13.化简:⎝ ⎛⎭⎪⎫x x -3+23-x ·x -3x -2=________.14.当x =________时,二次函数y =x 2-2x +6有最小值________. 15.方程3x (x -1)=2(x -1)的解为________.16.如图,B 在AC 上,D 在CE 上,AD =BD =BC ,∠ACE =25°,则∠ADE =________. 17.从-1,2,3,-6这四个数中任选两数,分别记作m ,n ,那么点(m ,n )在函数y =6x图象上的概率是________.18.已知矩形ABCD 的四个顶点均在反比例函数y =1x的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为________.三、解答题(共66分)19.(8分)(1)计算:|-3|-48+20170;(2)解方程:12x =2x -3.20.(8分)如图,点C ,F ,E ,B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论.21.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A .非常了解”、“B .了解”、“C .基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m =________,n =________; (2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A .非常了解”的程度.22.(10分)某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨;(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?23.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.24.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,2≈1.41,结果精确到0.1cm)25.(12分)定义:如图①,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P 在该抛物线上(P点与A、B两点不重合).如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.(1)直接写出抛物线y=-x2+1的勾股点的坐标.(2)如图②,已知抛物线y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,3)是抛物线的勾股点,求抛物线的函数表达式.(3)在(2)的条件下,点Q在抛物线上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.参考答案与解析1.B 2.D 3.B 4.D 5.D 6.C 7.D 8.D 9.C10.B 解析:∵抛物线y1=12(x+1)2+1与y2=a(x-4)2-3交于点A(1,3),∴3=a(1-4)2-3,解得a =23,故①正确;∵E 是抛物线的顶点,∴AE =EC ,∴无法得出AC =AE ,故②错误;当y =3时,3=12(x +1)2+1,解得x 1=1,x 2=-3,故B (-3,3),D (-1,1),则AB =4,AD =BD =22,∴AD 2+BD 2=AB 2,∴△ABD 是等腰直角三角形,故③正确;若12(x+1)2+1=23(x -4)2-3,解得x 1=1,x 2=37,∴当37>x >1时,y 1>y 2,故④错误.故选B.11.25° 12.1.2×10813.1 14.1 5 15.1或23 16.75°17.13解析:画树状图得:∵共有12种等可能的结果,点(m ,n )恰好在反比例函数y =6x图象上的有(2,3),(-1,-6),(3,2),(-6,-1),∴点(m ,n )在函数y =6x 图象上的概率是412=13.18.152 解析:如图所示,根据点A 在反比例函数y =1x的图象上,且点A 的横坐标是2,可得A ⎝ ⎛⎭⎪⎫2,12.根据矩形和双曲线的对称性可得B ⎝⎛⎭⎪⎫12,2,D ⎝⎛⎭⎪⎫-12,-2,由两点间距离公式可得AB =⎝ ⎛⎭⎪⎫2-122+⎝ ⎛⎭⎪⎫12-22=322,AD =⎝ ⎛⎭⎪⎫2+122+⎝ ⎛⎭⎪⎫12+22=522,∴S 矩形ABCD =AB ·AD =322×522=152.19.解:(1)原式=3-43+1=1-3 3.(4分)(2)方程两边同乘以2x (x -3)得,x -3=4x ,解得x =-1.(6分)检验:当x =-1时,2x (x -3)≠0,∴原方程的根是x =-1.(8分)20.解:CD ∥AB ,CD =AB ,(2分)证明如下:∵CE =BF ,∴CE -EF =BF -EF ,∴CF =BE .(3分)在△DFC 和△AEB 中,⎩⎪⎨⎪⎧CF =BE ,∠CFD =∠BEA ,DF =AE ,∴△DFC ≌△AEB (SAS),(6分)∴CD =AB ,∠C =∠B ,∴CD ∥AB .(8分)21.解:(1)500 12 32(3分)(2)对“社会主义核心价值观”达到“A .非常了解”的人数为32%×500=160(人),补全条形统计图如下.(5分)(3)100000×32%=32000(人).答:该市大约有32000人对“社会主义核心价值观”达到“A .非常了解”的程度.(8分)22.解:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨.由题意⎩⎪⎨⎪⎧x +y =100,4000x +1000y =160000,解得⎩⎪⎨⎪⎧x =20,y =80.(3分) 答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(4分)(2)设精加工m 吨,总利润为w 元,则粗加工(100-m )吨.由题意得m ≤3(100-m ),解得m ≤75,(6分)则利润w =1000m +400(100-m )=600m +40000.(8分)∵600>0,∴w 随m 的增大而增大,∴m =75时,w 有最大值为85000元.答:精加工数量为75吨时,获得最大利润,最大利润为85000元.(10分)23.证明:(1)由圆周角定理得∠B =∠E .∵∠B =∠D ,∴∠E =∠D .(2分)∵CE ∥AD ,∴∠D +∠ECD =180°,∴∠E +∠ECD =180°,∴AE ∥CD ,∴四边形AECD 为平行四边形.(5分)(2)作OM ⊥BC 于M ,ON ⊥CE 于N .∵四边形AECD 为平行四边形,∴AD =CE .∵AD =BC ,∴CE =CB .(7分)∵OM ⊥BC ,ON ⊥CE ,∴CN =CM .在Rt△NOC 和Rt△MOC中,⎩⎪⎨⎪⎧NC =MC ,OC =OC ,∴Rt△NOC ≌Rt△MOC ,∴∠NCO =∠MCO ,∴CO 平分∠BCE .(10分)24.解:(1)如图,过点F 作FN ⊥DK 于N ,过点E 作EM ⊥FN 于M .∵EF +FG =166cm ,FG =100cm ,∴EF =66cm.∵∠FGK =80°,∴FN =100·sin80°≈98cm.(2分)∵∠EFG =125°,∴∠EFM =180°-125°-10°=45°,∴FM =66·cos45°≈46.53cm ,∴MN =FN +FM ≈144.5cm.∴此时小强头部E 点与地面DK 相距约为144.5cm.(5分)(2)如图,过点E 作EP ⊥AB 于点P ,延长OB 交MN 于H .∵AB =48cm ,O 为AB 中点,∴AO =BO =24cm.∵EM =66·sin45°≈46.53(cm),∴PH ≈46.53(cm).(7分)∵GN =100·cos80°≈17(cm),CG =15cm ,∴OH =24+15+17=56(cm),OP =OH -PH =56-46.53=9.47≈9.5cm,∴他应向前9.5cm.(10分)25.解:(1)抛物线y =-x 2+1的勾股点的坐标为(0,1).(3分)(2)如图,作PG ⊥x 轴于点G .∵点P 的坐标为(1,3),∴AG =1,PG =3,∴PA =AG 2+PG2=12+(3)2=2.∵tan∠PAB =PG AG =3,∴∠PAG =60°.在Rt△PAB 中,AB =PAcos∠PAB =212=4,∴点B 的坐标为(4,0).(5分)设y =ax (x -4),将点P (1,3)代入得a =-33,∴y =-33x (x -4)=-33x 2+433x .(7分) (3)①当点Q 在x 轴上方时,由S △ABQ =S △ABP 知点Q 的纵坐标为3,则有-33x 2+433x =3,解得x 1=3,x 2=1(不符合题意,舍去),∴点Q 的坐标为(3,3).(9分)②当点Q 在x 轴下方时,由S △ABQ =S △ABP 知点Q 的纵坐标为-3,则有-33x 2+433x =-3,解得x 1=2+7,x 2=2-7,∴点Q 的坐标为(2+7,-3)或(2-7,-3).(11分)综上所述,满足条件的点Q 有3个,分别为(3,3)或(2+7,-3)或(2-7,-3).(12分)。

(最新)2018年初三模拟考试数学试题 答案

(最新)2018年初三模拟考试数学试题 答案

.
…3 分
5
…6 分
…10 分
6
(最新)2018 年初三模拟考试数学试题 答案
阅卷须知: 1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将 主要过程正确写出即可. 2. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3. 评分参考中所注分数,表示考生正确做到此步应得的累加分数. 4.答案及评分标准不当之处,敬请自行修改,批评指正。 一、选择题(本大题共 8 个小题,每小题 3 分,共 24 分. ) 题 号 答 案 1 A 2 C 3 B 4 D 5 D 6 A 7 A 8
1ห้องสมุดไป่ตู้
1 . …………6 分 3
(2)∵∠1=∠2, ∴EG=GF, ∵AB∥DC, ∴∠DEG=∠EG F, 由折叠得:EC′∥B′F, ∴∠B′FG=∠EGF, ∵DE=BF=B′F, ∴DE=B′F, ∴△DEG≌△B′FG, ∴DG=B′G.…………6 分 17. (1) 解:①设每台 A 型电脑的销售利润为 a 元,每台 B 型电脑的销售利润为 b 元, 则有
② ∵B(3,3) , ∴BN=ON=3, 设 MD=a,OM=b, ∵D 在双曲线 y=﹣ (x<0)上, ∴﹣ab=﹣4,
2
即 ab=4, 过 D 作 DM⊥x 轴于 M,过 B 作 BN⊥x 轴于 N, 则∠DMA=∠ANB=90°, ∵四边形 ABCD 是正方形, ∴∠DAB=90°,A D=AB, ∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°, ∴∠ADM=∠BAN, 在△ADM 和△BAN 中,
(2)作 OH⊥AC 于点 H, 由(1)知,BD⊥AC,EC=EB. ∵OA=OB,∴OE∥AC,且 OE

2018年中考数学模拟试卷及答案(共五套)

2018年中考数学模拟试卷及答案(共五套)

2018年中考数学模拟试卷及答案(共五套)2018年中考数学模拟试卷及答案(一)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列四个图形中,是轴对称图形但不是中心对称图形的有( )图M2-12.下列运算正确的是( )A .(x -y)2=x 2-y 2B .x 2·x 4=x 6C.(-3)2=-3 D .(2x 2)3=6x 63.下列二次根式中,与3是同类二次根式的是( ) A.13B.18C.24D.0.3 4.据统计,2013年河南省旅游业总收入达到约3875.5亿元,若将3875.5亿用科学记数法表示为3.8755×10n ,则n 等于( )A .10B .11C .12D .13图M2-25.如图M2-2,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A.34 B.43 C.35 D.456.把8a 3-8a 2+2a 进行因式分解,结果正确的是( ) A .2a(4a 2-4a +1) B .8a 2(a -1) C .2a(2a -1)2 D .2a(2a +1)27.不等式组⎩⎨⎧12x -1≤7-32x ,5x -2>3(x +1)的解集表示在数轴上,正确的是()图M2-3图M2-48.已知菱形OABC 在平面直角坐标系的位置如图M2-4所示,顶点A(5,0),OB =4 5,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)9.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是( )A .5,5,32B .5,5,10C .6,5.5,116D .5,5,5310.已知下列命题:①若||a =-a ,则a≤0;②若a>||b ,则a 2>b 2;③两个位似图形一定是相似图形;④平行四边形的对边相等.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个11.若x =-3是关于x 的一元二次方程x 2+2ax +a 2=0的一个根,则a 的值为( ) A .4 B .-3 C .3 D .-4图M2-512.二次函数y =ax 2+bx +c 的图象如图M2-5所示,对称轴是直线x =-1,有以下结论:①abc>0;②4ac<b 2;③2a+b =0;④a-b +c>2.其中正确的结论的个数是( )A .1B .2C .3D .4二、填空题(每小题3分,共24分)13.计算:2cos45°-()π+10+14+⎝ ⎛⎭⎪⎫12-1=________. 14.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别.现从袋中取走若干个白球,并放入相同数量的红球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是58,则取走的白球为________个.15.化简:(a2a-3+93-a)÷a+3a=________.16.如图M2-6,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=________.图M2-617.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图M2-7表示,当甲车出发________h时,两车相距350 km.图M2-718.若关于x的分式方程x+mx-2+2m2-x=3的解为正实数,则实数m的取值范围是________.19.如图M2-8,点A在双曲线y=5x上,点B在双曲线y=8x上,且AB∥x轴,则△OAB的面积等于________.图M2-820.如图M2-9,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF 交AC于点M,连接DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ︰S△BCM=2︰3.其中所有正确的结论的序号是________.图M2-9三、解答题(共60分)21.(8分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为s甲2=0.8、s乙2=0.4、s丙2=0.81)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能地传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)22.(8分)如图M2-11所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D 处测得大树顶端B的仰角为30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73)图M2-1123.(10分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?24.(10分)如图M2-12,在△ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC于点M、N,点P 在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2 5,sin∠BCP=55,求点B到AC的距离;(3)在(2)的条件下,求△ACP的周长.图M2-1225.(12分)如图M2-13①,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE.连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图M2-13②,若点E、F分别是CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请给出判断并予以证明;(3)如图M2-13③,若点E、F分别是BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.图M2-1326.(12分)如图M2-14,在平面直角坐标系中,已知抛物线y=32x2+bx+c与x轴交于A(-1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=-x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M′,点H的坐标为(1,0).若四边形OM′NH的面积为53.求点H到OM′的距离d的值.图M2-14参考答案1.B 2.B 3.A 4.B 5.D 6.C 7.A8.D [解析] 如图,连接AD ,交OB 于点P ,P 即为所求的使CP +DP 最短的点;连接CP ,AC ,AC 交OB 于点E ,过E 作EF⊥OA,垂足为F.∵点C 关于OB 的对称点是点A , ∴CP =AP ,∴CP +DP 的最小值即为AD 的长度; ∵四边形OABC 是菱形,OB =4 5, ∴OE =12OB =2 5,AC ⊥OB.又∵A(5,0), ∴在Rt △AEO 中,AE =OA 2-OE 2=52-(2 5)2=5; 易知Rt △OEF ∽Rt △OAE , ∴OE OA =EF AE, ∴EF =OE·AE OA =2 5×55=2,∴OF =OE 2-EF 2=(2 5)2-22=4. ∴E 点坐标为(4,2).设直线OE 的解析式为:y =kx ,将E(4,2)的坐标代入,得y =12x ,设直线AD 的解析式为:y =kx +b ,将A(5,0),D(0,1)的坐标代入,得y =-15x +1,⎩⎪⎨⎪⎧y =12x ,y =-15x +1,解得⎩⎪⎨⎪⎧x =107,y =57.∴点P 的坐标为⎝ ⎛⎭⎪⎫107,57.9.D 10.A 11.C12.C [解析] ①a<0,b<0,c>0,故正确,②Δ=b 2-4ac>0,故正确,③x =-1,即-b2a=-1,b =2a ,故错误.④当x =-1时,a -b +c>2.故正确.13.2+3214.715.a [解析] 先算小括号,再算除法.原式=(a 2a -3-9a -3)÷a +3a =a 2-9a -3÷a +3a =(a +3)·aa +3=a.故答案为a. 16.39217.32[解析] 由题意,得AC =BC =240 km ,甲车的速度为240÷4=60(km/h),乙车的速度为240÷3=80(km/h). 设甲车出发x 小时甲、乙两车相距350 km ,由题意,得 60x +80(x -1)+350=240×2,解得x =32,即甲车出发32h 时,两车相距350 km.故答案为32.18.m<6且m≠219.32 [解析] 设点A 的坐标为(a ,5a ).∵AB ∥x 轴, ∴点B 的纵坐标为5a.将y =5a 代入y =8x ,求得x =8a 5.∴AB =8a 5-a =3a 5.∴S △OAB =12·3a 5·5a =32.故答案为3 2 .20.①③④21.[解析] (1)众数是一组数据中出现次数最多的数,观察表格可以知道甲运动员测试成绩的众数是7分.中位数是一组数据按从大到小或从小到大的顺序排列,最中间的一个或两个数的平均数,观察表格并将数据按从小到大排列得5,6,7,7,7,7,7,8,8,8,可以知道甲运动员测试成绩的中位数是7分.(2)经计算x甲=7分,x乙=7分,x丙=6.3分,根据题意不难判断.(3)画出树状图,即可解决问题.解:(1)甲运动员测试成绩的众数和中位数都是7分.(2)选乙运动员更合适,理由:经计算x甲=7分,x乙=7分,x丙=6.3分,∵x甲=x乙>x丙,s丙2>s甲2>s乙2,∴选乙运动员更合适.(3)画树状图如图所示.由树状图知共有8种等可能的结果,回到甲手中的结果有2种,故P(回到甲手中)=28=14.22.解:过点D作DM⊥EC于点M,DN⊥BC于点N,设BC=h,在直角三角形DMA中,∵AD=6,∠DAE=30°,∴DM=3,AM=3 3,则CN=3,BN=h-3.在直角三角形BDN中,∵∠BDN=30°,∴DN=3BN=3(h-3);在直角三角形ABC中,∵∠BAC=48°,∴AC=htan48°,∵AM+AC=DN,∴3 3+htan48°=3(h-3),解之得h≈13.答:大树的高度约为13米.23.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1-x%)2=324,解得:x=10或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100-m)件,第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);第二次降价后的单件利润为:324-300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品23件.24.解:(1)证明:连接AN.∵AC是直径,∴∠ANC=90°.∵AB=AC,∴∠CAB=2∠CAN.∵∠CAB=2∠BCP,∴∠CAN=∠BCP.∵∠CAN+∠ACN=90°,∴∠BCP+∠ACN=90°,∴直线CP是⊙O的切线.(2)∵BC=2 5,∴CN= 5. 过B点作BD⊥AC交AC于点D.∵sin∠BCP=sin∠CAN=5 5,∴AC=5.∴AN=2 5.∵AC·BD=BC·AN,∴5·BD=2 5·2 5.∴BD=4.故点B到AC的距离为4.(3)∵AB=AC=5,BD=4,∴AD=3.∴C△ADB C△ACP =ADAC=35=12C△ACP,∴C△ACP=20.25.解:(1)相等平行[解析] ∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD. ∵CE=BF,∴△ECD≌△FBC,∴CF=DE,∠DEC=∠BFC.∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG=DE,∴FC∥GE,GE=CF,∴四边形GECF是平行四边形,∴GF∥CE,GF=CE.(2)成立.证明:∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD. ∵CE=BF,∴△ECD≌△FBC,∴CF=DE,∠DEC=∠BFC.∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG=DE,∴FC∥GE,GE=CF,∴四边形GECF是平行四边形,∴GF∥CE,GF=CE.(3)仍然成立.[解析] 证明方法同上.26.[解析] (1)由已知点的坐标,利用待定系数法求得抛物线的解析式为y=32x2-32x-3;(2)①利用待定系数法求出直线BC 解析式为y =32x -3,求出E 点坐标,将E 点坐标代入直线解析式y =-x +n中求出n =-2;②利用一次函数与二次函数解析式求出交点D 的坐标,再利用平行线的性质得角相等证明两个三角形全等;(3)先证明四边形OM′NH 是平行四边形,由面积公式,根据点M 、N 关于直线x =12对称,点M 与点M′关于y 轴对称,求解点M 、M′的坐标,最后由勾股定理和平行四边形面积公式求得d =5 4141. 解:(1)∵抛物线y =32x 2+bx +c 与x 轴交于A(-1,0),B(2,0)两点,∴⎩⎨⎧32-b +c =0,6+2b +c =0,解得⎩⎨⎧b =-32,c =-3,∴该抛物线的解析式为y =32x 2-32x -3.(2)①过点E 作EE′⊥x 轴于点E′. ∴EE ′∥OC , ∴BE′OE′=BE CE, ∵BE =4CE , ∴BE ′=4OE′.设点E 坐标为(x ,y),OE ′=x ,BE ′=4x. ∵点B 坐标为(2,0),∴OB =2,∴x +4x =2,∴x =25.∵抛物线y =32x 2-32x -3与y 轴交于点C ,∴当x =0时,y =-3,即C(0,-3).设直线BC 的解析式为y =kx +b 1. ∵B(2,0),C(0,-3), ∴⎩⎨⎧2k +b 1=0,b 1=-3,解得⎩⎨⎧k =32,b 1=-3,∴直线BC 的解析式为y =32x -3.∵当x =25时,y =-125,∴E(25,-125).∵点E 在直线y =-x +n 上, ∴-25+n =-125,得n =-2.②全等;理由如下:∵直线EF 的解析式为y =-x -2, ∴当y =0时,x =-2,即F(-2,0),OF =2. ∵A(-1,0),∴OA =1,AF =1. 由⎩⎨⎧y =32x 2-32x -3,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-23,y 1=-43,和⎩⎨⎧x 2=1,y 2=-3.∵点D 在第四象限,∴D(1,-3). ∵点C(0,-3), ∴CD ∥x 轴,CD =1,∴∠AFG =∠CDG,∠FAG =∠DCG, 又∵CD=AF =1, ∴△AGF ≌△CGD. (3)∵-b 2a =12.∴该抛物线的对称轴是直线x =12.∵直线y =m 与该抛物线交于M 、N 两点, ∴点M 、N 关于直线x =12对称,设N(t ,m),则M(1-t ,m),∵点M 与点M′关于y 轴对称, ∴M ′(t -1,m),∴点M′在直线y =m 上,∴M ′N ∥x 轴,M ′N =t -(t -1)=1,∵H(1,0),∴OH =1, ∴OH =M′N,∴四边形OM′NH 是平行四边形, 设直线y =m 与y 轴交于点P ,∵S ▱OM ′NH =53,即OH·OP=OH·m=53,得m =53,∴当32x 2-32x -3=53时,解得x 1=-43,x 2=73,∴点M 的坐标为(-43,53),M ′(43,53),∴OP =53,PM ′=43,在Rt △OPM ′中,∠OPM ′=90°, ∴OM ′=OP 2+PM′2=413.∵S ▱OM ′NH =53,∴OM ′·d =53,d =5 4141.2018年中考数学模拟试卷及答案(二)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分) 1.-2的相反数是( ) A .- 2 B.22 C. 2 D .-222.函数y =x -2x +3中自变量x 的取值范围是( ) A .x ≠-3 B .x≥2 C .x >2 D .x ≠03.统计显示,2016年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为( )A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×106 4.下列运算正确的是( ) A.a2+a3=a5B.(-2a2)3÷(a2)2=-16a4C.3a-1=13aD.(2 3a2-3a)2÷3a2=4a2-4a+1图M1-15.如图M1-1,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8 cm,CD=3 cm,则圆O的半径为( )A.256cm B.5 cmC.4 cm D.196cm6.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中摸出的2个球的颜色相同的概率是( )A.34B.15C.35D.257.方程(m-2)x2-3-mx+14=0有两个实数根,则m的取值范围为( )A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠28.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.32B.3 32C.32D.不能确定9.下列命题中,原命题与逆命题均为真命题的个数是( ) ①若a=b,则a2=b2;②若x >0,则|x|=x ;③一组对边平行且对角线相等的四边形是矩形; ④一组对边平行且不相等的四边形是梯形. A .1个 B .2个 C .3个 D .4个 10.如图M1-2,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,将Rt △ABC 绕点B 旋转90°至△DBE 的位置,连接EC 交BD 于F ,则CF∶FE 的值是( )图M1-2A .3∶4B .3∶5C .4∶3D .5∶311.定义新运算,a*b =a(1-b),若a 、b 是方程x 2-x +14m =0(m<0)的两根,则b*b -a*a 的值为( )A .0B .1C .2D .与m 有关方程图M1-312.反比例函数y =a x (a >0,a 为常数)和y =2x 在第一象限内的图象如图M1-3所示,点M 在y =ax 的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD⊥y 轴于点D ,交y =2x 的图象于点B ,当点M 在y =ax 的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3二、填空题(每小题3分,共24分)13.计算:8-312+2=________.14.不等式组⎩⎨⎧x -1≤2-2x ,2x 3>x -12的解集为________.图M1-415.如图M1-4,OP 为∠AOB 的平分线,PC ⊥OB 于点C ,且PC =3,点P 到OA 的距离为________. 16.小亮应聘小记者,进行了三项素质测试,测试成绩分别是:采访写作90分,计算机输入85分,创意设计70分,若将采访写作、计算机输入、创意设计三项成绩按5∶2∶3的比例来计算平均成绩,则小亮的平均成绩是________分.图M1-517.如图M1-5,Rt △A ′BC ′是由Rt △ABC 绕B 点顺时针旋转而成的,且点A ,B ,C ′在同一条直线上,在Rt △ABC 中,若∠C=90°,BC =2,AB =4,则斜边AB 旋转到A′B 所扫过的扇形面积为________.18.化简x x 2+2x +1÷(1-1x +1)=________.19.如图M1-6,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 最小的值为________.M1-6M1-720.如图M1-7,CB =CA ,∠ACB =90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG⊥CA,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC=FG ;②S △FAB ∶S四边形CBFG =1∶2;③∠ABC=∠ABF;④AD 2=FQ ·AC ,其中所有正确结论的序号是________.三、解答题(共60分)21.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分).A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100,并绘制如图M1-8两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有________名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是________,E组人数占参赛选手的百分比是________;(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.图M1-822.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图M1-9,老师测得升旗台前斜坡FC的坡比为iFC=1∶10(即EF∶CE=1∶10),学生小明站在离升旗台水平距离为35m(即CE=35 m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=37,升旗台高AF=1 m,小明身高CD=1.6 m,请帮小明计算出旗杆AB的高度.23.(10分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车按规定满载,并且只装一种水果).下表为装运甲、乙、丙三种水果的重量及利润.(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),设装运甲种水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?24.(10分)如图M1-10,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.图M1-1025.(12分)提出问题:(1)如图M1-11①,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH 于点O,求证:AE=DH.类比探究:(2)如图②,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上.若EF⊥HG 于点O.探究线段EF与HG的数量关系,并说明理由.综合运用:(3)在(2)问条件下,HF∥GE,如图③所示,已知BE=EC=2,OE=2OF,求图中阴影部分的面积.图-1126.(12分)如图M1-12,已知抛物线y =ax 2+bx +c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E 为抛物线上一动点,是否存在点E 使以A 、B 、E 为顶点的三角形与△COB 相似?若存在,试求出点E 的坐标;若不存在,请说明理由;(3)若将直线BC 平移,使其经过点A ,且与抛物线相交于点D ,连接BD ,试求出∠BDA 的度数.图M1-12参考答案1.C 2.B 3.C 4.D 5.A 6.D7.B [解析] 因为方程有两个实数根,所以⎩⎨⎧m -2≠0,(-3-m )2-4×14(m -2)≥0,解得m≤52且m≠2.故选B.8.B [解析] 如图,△ABC是等边三角形,AB=3,点P是△ABC内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于H.则BH=32,AH=AB2-BH2=3 32.连接PA,PB,PC,则S△PAB +S△PBC+S△PCA=S△ABC.∴12AB·PD+12BC·PE+12CA·PF=12BC·AH.∴PD+PE+PF=AH=3 32.故选B.9.A 10.A11.A [解析] b*b-a*a=b(1-b)-a(1-a)=b-b2-a+a2,因为a,b为方程x2-x+14m=0的两根,所以a2-a+14m=0,化简得a2-a=-14m,同理b2-b=-14m,代入上式得原式=-(b2-b)+a2-a=14m+(-14m)=0.12.D13.32214.-3<x≤115.3 [解析] 如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为3.16.8317.16π318.1x+119.320.①②③④ [解析] ∵∠G=∠C =∠FAD=90°, ∴∠CAD =∠AFG. ∵AD =AF ,∴△FGA ≌△ACD. ∴AC =FG , ①正确.∵FG =AC =BC ,FG ∥BC ,∠C =90°, ∴四边形CBFG 为矩形, ∴S △FAB =12FB·FG=12S 四边形CBFG ,②正确.∵CA =CB ,∠C =∠CBF=90°, ∴∠ABC =∠ABF=45°, 故③正确.∵∠FQE =∠DQB=∠ADC,∠E =∠C=90°, ∴△ACD ∽△FEQ ,∴AC ∶AD =FE∶FQ, ∴AD ·FE =AD 2=FQ·AC, ④正确.21.[解析] (1)由A 组或D 组对应频数和百分比可求选手总数为40,进而求出B 组频数;(2)C 组对应的圆心角=1240×360°,E 组人数占参赛选手的百分比是640×100%;(3)用列表或画树状图表示出所有可能的结果,注意选取不放回.解:(1)40,补全频数分布直方图如图;(2)108°,15%;(3)两名男生分别用A 1、A 2表示,两名女生分别用B 1、B 2表示.根据题意可画出如下树状图:或列表如下:的结果有8种.∴选中一名男生和一名女生的概率是812=23.22.解:∵i FC =1∶10,CE =35 m , EF =3510=3.5(m). 过点D 作BE 的垂线交BE 于点G.在Rt △BGD 中 ,∵tan α=37,DG =CE =35 m ,∴BG =15 m.又∵CD=1.6 m ,CD =EG , ∴FG =3.5-1.6=1.9(m). 又∵AF=1 m ,∴AB =BG -AF -FG =15-1-1.9=12.1(m).23.解:(1)设装运乙、丙两种水果的汽车分别为x 辆,y 辆,由题意得 ⎩⎨⎧x +y =8,2x +3y =22,∴⎩⎨⎧x =2,y =6.答:装运乙种水果有2辆车,装运丙种水果有6辆车. (备注:也可列一元一次方程)(2)设装运乙、丙两种水果的车分别为a 辆,b 辆,由题意得 ⎩⎨⎧m +a +b =20,4m +2a +3b =72,∴⎩⎨⎧a =m -12,b =32-2m. (3)设总利润为w 千元,w =4×5m+2×7(m-12)+4×3(32-2m) =10m +216,∵⎩⎨⎧m≥1,m -12≥1,32-2m≥1,∴13≤m ≤15.5. ∵m 为正整数, ∴m =13,14,15.在w=10m+216中,w随m的增大而增大,当m=15时,w最大=366千元.答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时,有最大利润,最大利润为366千元.24.解:(1)证明:连接OD.∵BC与⊙O相切于点D,∴OD⊥BC.又∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA.∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠BAD,∴AD平分∠CAB.(2)①DF=DH.理由如下:∵FH平分∠AFE,∴∠AFH=∠EFH,又∠DFG=∠EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA,即∠DFH=∠DHF,∴DF=DH.②设HG=x,则DH=DF=1+x.∵OH⊥AD,∴AD=2DH=2(1+x).∵∠DFG=∠DA F,∠FDG=∠ADF,∴△DFG∽△DAF,∴DFAD=DGDF,∴1+x2(1+x)=11+x,∴x=1.∴DF=2,AD=4.∵AF为直径,∴∠ADF=90°,∴AF=DF2+AD2=22+42=2 5,∴⊙的半径为 5.25.解:(1)证明:如图①,在正方形ABCD中,AD=AB,∠B=90°,∴∠1+∠3=90°,∵AE⊥DH,∴∠1+∠2=90°.∴∠2=∠3.∴△ADH≌△BAE(AAS).∴AE=DH.(2)相等,理由如下:如图②,过点D作DH′∥GH交AB于H′,过点A作AE′∥FE交BC于E′,AE′分别交DH′,GH于点S,T,DH′交EF于点R.∴四边形ORST为平行四边形.又∵EF⊥HG,∴四边形ORST为矩形,∴∠RST=90°.由(1)可知,DH′=AE′.∵AF∥EE′,∴四边形AE′EF是平行四边形,∴EF=AE′.同理,HG=DH′,∴EF=GH.(3)如图③,延长FH,CB交于点P,过点F作FQ⊥BC于点Q.∵AD∥BC,∴∠AFH=∠P,∵HF∥GE,∴∠GEC=∠P,∴∠AFH =∠GEC.又∵∠A=∠C=90°,∴△AFH ∽△CEG. ∴AF CE =HF EG =OF OE =OF 2OF =12. ∵BE =EC =2,∴AF =1, ∴BQ =AF =1,QE =1.设OF =x ,∴OE =2OF =2x ,∴EF =3x ,∴HG =EF =3x. ∵HF ∥GE ,∴OH OG =OF OE =12,∴OH =OF =x ,OG =OE =2x.在Rt △EFQ 中,∵QF 2+QE 2=EF 2, ∴42+12=(3x)2,解得x =173. ∴S 阴影=S △HOF +S △EOG =12x 2+12(2x)2=52x 2=52×(173)2=8518.26.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y =ax 2+bx +2, 将A(-1,0),B(4,0)代入,得 ⎩⎨⎧a -b +2=0,16a +4b +2=0, 解得⎩⎪⎨⎪⎧a =-12,b =32.∴该抛物线的解析式为y =-12x 2+32x +2.(2)存在.由图可知,以A ,B 为直角顶点的△ABE 不存在,所以△ABE 只可能是以点E 为直角顶点的三角形.在Rt △BOC 中,OC =2,OB =4, ∴BC =22+42=2 5.在Rt △BOC 中,设BC 边上的高为h , 则12BC×h=12×2×4,∴h =455.∵△BEA ∽△COB ,设E 点坐标为(x ,y), ∴AB BC =|y|455,∴y =±2,当y =-2时,不合题意舍去, ∴E 点坐标为(0,2),(3,2).(3)如图,连接AC ,作DE⊥x 轴于点E ,作BF⊥AD 于点F ,∴∠BED =∠BFD=∠AFB=90°. 设BC 的解析式为y =kx +b , 由图像,得⎩⎨⎧2=b ,0=4k +b ,∴⎩⎨⎧k =-12,b =2.∴y BC =-12x +2.由BC∥AD,设AD 的解析式为y =-12x +n ,由图象,得0=-12×(-1)+n ,∴n =-12,y AD =-12x -12,∴-12x 2+32x +2=-12x -12,解得:x 1=-1,x 2=5.∴D(-1,0)与A 重合,舍去, ∴D(5,-3).∵DE ⊥x 轴,∴DE =3,OE =5. 由勾股定理,得BD =10. ∵A(-1,0),B(4,0),C(0,2), ∴OA =1,OB =4,OC =2, ∴AB =5.在Rt△AOC,Rt△BOC中,由勾股定理,得AC=5,BC=2 5,∴AC2=5,BC2=20,AB2=25,∴AB2=AC2+BC2,∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=5,在Rt△BFD中,由勾股定理,得DF=5,∴DF=BF,∴∠ADB=45°.2018年中考数学模拟试卷及答案(三)[满分:120分考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列各实数中最小的是( )A.- 2 B.-12 C.0 D.|-1|2.下列等式一定成立的是( )A.a2·a5=a10 B.a+b=a+ bC.(-a3)4=a12 D.a2=a3.估计7+1的值( )A.在1和2之间 B.在2和3之间C.在3和4之间 D.在4和5之间4.3tan30°的值等于( )A. 3 B.3 3 C.33D.325.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A.13B.16C.518D.566.将下列多项式分解,结果中不含有因式a+1的是( ) A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+17.正六边形的边心距为3,则该正六边形的边长是( )A. 3 B .2 C .3 D .2 38.在平面直角坐标系中,将△AOB 绕原点O 顺时针旋转180°后得到△A 1OB 1,若点B 的坐标为(2,1),则点B 的对应点B 1的坐标为( )A .(1,2)B .(2,-1)C .(-2,1)D .(-2,-1)9.化简a 2-b 2ab -ab -b 2ab -a 2等于( )A.b aB.ab C .-b a D .-a b10.如图M3-1,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:图M3-1①DE BC =12;②S △DOE S △COB=12; ③AD AB =OE OB;④S △ODE S △ADE=13. 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 11.已知下列命题:①若a>0,b>0,则a +b>0; ②若a≠b,则a 2≠b 2;③角平分线上的点到角两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个 D .4个12.如图M3-2是二次函数y =ax 2+bx +c 图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①c>0;②若点B(-32,y1),C(-52,y2)为函数图象上的两点,则y1<y2;③2a-b=0;④4ac-b24a<0.其中,正确结论的个数是( )图M3-2 A.1 B.2C.3 D.4二、填空题(每小题3分,共24分)13.计算:(-5)0+12cos30°-(13)-1=________.14.已知一组数据:3,3,4,7,8,则它的方差为________.15.如图M3-3,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.图M3-316.如图M3-4,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是________图M3-417.如图M3-5,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.图M3-518.若关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2满足x1+x2=-x1·x2,则k=________.19.如图M3-6,在平面直角坐标系中,矩形ABCD的边AB∶BC=3∶2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为________.图M3-620.如图M3-7,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF =2S△ABE.其中正确结论有________.图M3-7三、解答题(共60分)21.(8分)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到下面频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24 ℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.图M3-822.(8分)如图M3-9,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E 在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度.(结果保留根号)23.(10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000 m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为y1=⎩⎨⎧k1x(0≤x<600),k2x+b(600≤x≤1000),其图象如图M3-10所示;栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).(1)请直接写出k1,k2和b的值;(2)设这块1000 m2空地的绿化总费用为W(元),请写出W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700 m2,栽花部分的面积不少于100 m2,请求出绿化总费用W的最小值.图M3-1024.(10分)如图M3-11,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC 的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当ABBC=43时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.图M3-1125.(12分)如图M3-12,在△ABC中,AB=AC,AD⊥BC于点D,BC=10 cm,AD=8 cm,点P从点B出发,在线段BC上以每秒3 cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2 cm的速度沿DA方向匀速平移,分别交AB,AC,AD于点E,F,H.当点P到达点C时,点P与直线m同时停止运动,设运动时间为t(t>0)秒.(1)当t=2时,连接DE,DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时t的值,若不存在,请说明理由.图M3-1226.(12分)如图M3-13,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.图M3-13参考答案1.A 2.C 3.C 4.A 5.A6.C [解析] A:原式=(a+1)(a-1),不符合题意;B:原式=a(a+1),不符合题意;C:原式=(a+2)(a-1),符合题意;228.D [解析] ∵△A 1OB 1是将△AOB 绕原点O 顺时针旋转180°后得到的图形, ∴点B 和点B 1关于原点对称, ∵点B 的坐标为(2,1),∴点B 1的坐标为(-2,-1). 故选D.9.B 10.C 11.B 12.B 13.114.4.4 [解析] 这组数据的平均数是:(3+3+4+7+8)÷5=5,则这组数据的方差为:15[(3-5)2+(3-5)2+(4-5)2+(7-5)2+(8-5)2]=4.4.15.216.3π [解析] ∵△ABC 是等边三角形, ∴∠C =60°,根据圆周角定理可得∠AOB=2∠C=120°, ∴阴影部分的面积是120π·32360=3π,故答案为:3π. 17.x>3 18.219.(2,7) [解析] 过点D 作DF⊥x 轴于点F ,则∠AOB=∠DFA=90°, ∴∠OAB +∠ABO=90°, ∵四边形ABCD 是矩形, ∴∠BAD =90°,AD =BC , ∴∠OAB +∠DAF=90°, ∴∠ABO =∠DAF, ∴△AOB ∽△DFA ,∴OA ∶DF =OB∶AF=AB∶AD,∵AB ∶BC =3∶2,点A(3,0),B(0,6), ∴AB ∶AD =3∶2,OA =3,OB =6, ∴DF =2,AF =4, ∴OF =OA +AF =7,∴点D 的坐标为(7,2),∴反比例函数的解析式为y =14x .①点C 的坐标为(4,8),设直线BC 的解析式为y =kx +b , 则⎩⎨⎧b =6,4k +b =8,解得:⎩⎨⎧k =12,b =6,联立①②得:⎩⎨⎧x =2,y =7或⎩⎨⎧x =-14,y =-1(舍去),∴点E 的坐标为(2,7).20.①②③⑤21.解:(1)这30天最高气温的平均数=14×8+18×6+22×10+26×2+30×430=20.4 (℃),中位数为22 ℃. (2)1630×90=48(天). 答:估计该地这个季度中最高气温超过(1)中平均数的天数为48天. (3)P =1230=25.22.解:(1)在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°, ∴DE =12DC =2米.(2)过D 作DF⊥AB,交AB 于点F , ∵∠BFD =90°,∠BDF =45°, ∴∠DBF =45°,即△BFD 为等腰直角三角形, 设BF =DF =x 米,∵四边形DEAF 为矩形,∴AF =DE =2米,即AB =(x +2)米, 在Rt △ABC 中,∠ABC =30°, ∴BC =AB cos30°=x +232=2x +43=3(2x +4)3米,BD =2BF =2x 米,DC =4米,∵∠DCE =30°,∠ACB =60°,∴∠DCB =90°, 在Rt △BCD 中,根据勾股定理得:BD 2=BC 2+CD 2, 即2x 2=(2x +4)23+16,解得:x =4+4 3或x =4-4 3(舍去), 则AB =(6+4 3)米.23.[解析] (1)利用待定系数法求解;(2)分0≤x<600和600≤x≤1000两种情况求出W 关于x 的函数关系式,分别求出两种情况下的最大值并进行比较;(3)先根据不等关系求出x 的取值范围,再结∵-0.01<0,W =-0.01(x -500)2+32500, ∴当x =500时,W 取最大值为32500元.当600≤x≤1000时,W =20x +6000+(-0.01x 2-20x +30000)=-0.01x 2+36000. ∵-0.01<0,∴当600≤x≤1000时,W 随x 的增大而减小. ∴当x =600时,W 取最大值为32400元. ∵32400<32500,∴W 的最大值为32500元. (3)由题意,1000-x≥100,解得x≤900. 又x≥700,∴700≤x ≤900.∵当700≤x≤900时,W 随x 的增大而减小. ∴当x =900时,W 取最小值为27900元. 24.解:(1)证明:∵∠ABC =90°, ∴∠ABD =90°-∠DBC, 由题意知:DE 是直径, ∴∠DBE =90°,∴∠E =90°-∠BDE, ∵BC =CD ,∴∠DBC =∠BDE, ∴∠ABD =∠E, ∵∠A =∠A, ∴△ABD ∽△AEB. (2)∵AB BC =43, ∴设AB =4k ,则BC =3k , ∴AC =AB 2+BC 2=5k , ∵BC =CD =3k ,∴AD =AC -CD =5k -3k =2k , 由(1)可知:△ABD∽△AEB, ∴AB AE =AD AB =BD BE, ∴AB 2=AD·AE, ∴(4k)2=2kAE , ∴AE =8k , 在Rt △DBE 中, tanE =BD BE =AB AE =4k 8k =12.(3)过点F 作FM⊥AE 于点M ,设AB =4x ,BC =3x ,由(2)可知:AE =8x ,AD =2x , ∴DE =AE -AD =6x , ∵AF 平分∠BAC, 可证BF EF =AB AE ,∴BF EF =4x 8x =12, ∵tanE =12,∴cosE =2 55,sinE =55,∴BE DE =2 55,∴BE =2 55DE =12 55x , ∴EF =23BE =8 55x ,∵sinE =MF EF =55,∴MF =85x ,∵tanE =12,∴ME =2MF =165x ,∴AM =AE -ME =245x , ∵AF 2=AM 2+MF 2, ∴4=(245x)2+(85x)2,解得x =108, ∴⊙C 的半径为3x =3 108. 25.解:(1)证明:当t =2时,DH =AH =4 cm , ∵AD ⊥BC ,AD ⊥EF ,∴EF ∥BC , ∴EH =12BD ,FH =12CD.又∵AB=AC ,AD ⊥BC ,∴BD =CD ,∴EH =FH ,∴EF 与AD 互相垂直平分, ∴四边形AEDF 为菱形.(2)依题意得DH =2t ,AH =8-2t ,BC =10 cm ,AD =8 cm , 由EF∥BC 知△AEF∽△ABC,即8-2t 8=EF10, 解得EF =10-52t ,∴S △PEF =12⎝ ⎛⎭⎪⎫10-52t ·2t=-52t 2+10t =-52(t -2)2+10,即当t =2秒时,△PEF 的面积存在最大值10 cm 2,此时BP =3×2=6(cm). (3)过E ,F 分别作EN⊥BC 于N ,FM ⊥BC 于M ,易知EF =MN =10-52t ,EN =FM ,由AB =AC 可知BN =CM =10-⎝⎛⎭⎪⎫10-52t 2=54t.在Rt △ACD 和Rt △FCM 中,由tanC =AD CD =FM CM ,即FM 54t =85, 解得FM =EN =2t ,又由BP =3t 知CP =10-3t , PN =3t -54t =74t ,PM =10-3t -54t =10-174t ,则EP 2=(2t)2+⎝ ⎛⎭⎪⎫74t 2=11316t 2,FP 2=(2t)2+⎝⎛⎭⎪⎫10-174t 2=353t 216-85t +100,EF 2=⎝⎛⎭⎪⎫10-52t 2=254t 2-50t +100.分三种情况讨论:①若∠EPF =90°,则EP 2+PF 2=EF 2,即11316t 2+35316t 2-85t +100=254t 2-50t +100,解得t 1=280183,t 2=0(舍去).②若∠EFP=90°,则EF 2+FP 2=EP 2,即254t 2-50t +100+35316t 2-85t +100=11316t 2,40。

2018年九年级数学模拟试卷及答案

2018年九年级数学模拟试卷及答案

2018年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算│-4+1│的结果是( ▲ )A .-5B .-3C .3D .52.计算(-xy 2)3的结果是( ▲ )A .x 3y 6B .-x 3y 6C .-x 4y 5D . x 4y 5 3.与17 最接近的整数为( ▲ )A .2B .3C .4D .54.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则 DEEF 的值为( ▲ )A .23B .25C .13D .355. 若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则 x 的值可以为( ▲ )A .12B .10C .2D .06.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,若CD=4,AC=12,则△ABC 的面积 为( ▲ )A .48B .50C .54D .60(第4题) A BCD (第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.9的平方根是 ▲ ;9的立方根是 ▲ . 8.使x +1 有意义的x 的取值范围是 ▲ .9.2016年南京全市完成全社会固定资产投资约55000000万元,将55000000用科学记数法表示为 ▲ . 10.分解因式x 3+6x 2+9x 的结果是 ▲ . 11.计算 33-13的结果是 ▲ . 12.已知关于x 的方程x 2-3x +m =0的一个根是2,则它的另一个根是 ▲ ,m 的值是 ▲ . 13.如图,∠A =∠C ,只需补充一个条件 ▲ ,就可得△ABD ≌△CDB .14. 如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于82°,则∠OBC = ▲ °.15.已知点A (-1,-2)在反比例函数y =kx 的图像上,则当x >1时,y 的取值范围是 ▲ .16.如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,使得弦AC =22,则∠BOC = ▲ °. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧ x +1≥ 0, x -12<x 3.,并写出它的整数解.18.(7分)化简:( 2m m 2-4- 1 m +2 )÷1 m 2-2m .(第14题)A BD(第13题)(第16题)19.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中a = ▲ ,初赛成绩为1.70m 所在扇形图形的圆心角为 ▲ °; (2)补全条形统计图;(3)这组初赛成绩的众数是 ▲ m ,中位数是 ▲ m ; (4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m 的运动员杨强能否进入复赛?为什么?20.(8分)在一个不透明袋子中有1个红球、1 个绿球和n 个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n 的值为 ▲ ;(2)当n =2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.21.(8分)如图,将矩形ABCD 绕点C 旋转得到矩形FECG ,点E 在AD 上,延长ED 交FG 于点H . (1)求证:△EDC ≌△HFE ; (2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论. ②当AB 与BC 的比值为 ▲ 时,四边形BEHC 为菱形.(第21题)ACDGFEH22.(8分)据大数据统计显示,某省2014年公民出境旅游人数约100万人次,2015年与2016年两年公民出境旅游总人数约264万人次. 若这两年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2017年仍保持相同的年平均增长率,请你预测2017年该省公民出境旅游人数约多少万人次?23.(8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)24.(8分)已知二次函数y =x 2-2m x +m 2+m +1的图像与x 轴交于A 、B 两点,点C 为顶点. (1)求m 的取值范围;(2)若将二次函数的图像关于x 轴翻折,所得图像的顶点为D ,若CD =8.求四边形ACBD 的面积。

(完整)2018年中考数学模拟试卷及答案,推荐文档

(完整)2018年中考数学模拟试卷及答案,推荐文档

2 2 2 2 2一、选择题(共 40 分)2018 年中考模拟卷(2018.05.31)1. 下列各式中,计算结果为 1 的是( ). A .-2-1B .1 ÷ 1⨯ 22C . -12D .1-12. 如果和互为余角,那么下列表示的补角的式子中,错误的是( ).A.0o -B . 90o +C .2+D .+ 23. 如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).从正面看ABCD4. 下列式子中,可以表示为 2—3 的是( ).A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2)5. △ABC 中,∠A ,∠B ,∠C 的度数之比为 2:1:1,则下列直线一定是△ABC 的对称轴的是( ).A. △ABC 的边 AB 的垂直平分线B .∠BAC 的角平分线所在的直线C .△ABC 的 AB 边上的中线所在的直线D .△ABC 的 AC 边上的高所在的直线6. 已知( -1)n = m ,若 m 是整数,则 n 的值可能是( ).A.B . -1C .1-D . +17. 如图,正方形网格中,每个小正方形的边长均为 1 个单位长度,A 、B 在格点上,现将线段 AB 向下平移 m 个单位长度,再向左平移 n 个单位长 度,得到线段 A ' B ',连接 A A ',B A ',若四边形 A A ' B ' B 是正方形, 则 m +n 的值是().A .3B .4C .5D .6第 7 题8. 若 A (x 1,y 1) 、B (x 2,y 2 ) 是某函数图象上的不同两点,且(x 1 - x 2 )( y 1 - y 2 ) < 0 .则该函数可能是( ).A . y = x 2 ( x > 0)B . y = 1 ( x < 0) xC . y = - 2 (x > 0) xD . y = x9. 若 x 1,x 2(x 1 <x 2)是方程(x -a )(x -b ) = 1(a < b )的两个根,则实数 x 1,x 2,a,b 的大小关系为( ).A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 210. 已知数据 x 1, x 2 , , x n 的平均数为 x ,数据 y 1, y 2 , , y m 的平均数为 y .( x ≠ y ).若数据x , x , , x , y , y , , y 的平均数 z = ax + (1- a ) y ,其中0 < a < 1.则 m ,n 的大小关系为( 1 2 n 1 2 m2). A. n = mB. n ≥ mC. n < mD. n > m二、填空题(共 24 分) 11.16 的算术平方根为.yAa212.截至 2016 年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600 亿美元。

2018年新人教版九年级下册中考数学期末试卷(附答案)

2018年新人教版九年级下册中考数学期末试卷(附答案)

新人教版九年级下册数学中考模拟试卷(附答案)时量:120分钟,满分:120分同学:希望你树立信心,迎难而上,胜利将一定会属于你的!一、细心填一填(每小题3分,共30分)1、掷一枚普通的正方体骰子,出现点数为偶数的概率为 。

2、约分x 2-4x+4x 2-4=3、一元二次方程(2x-1)2-7=x 化为一般形式 4、a 8÷a 2=5、如图1,点A 、B 、C 在⊙O 上,∠ACB =25°, 则∠AOB = 。

6、已知圆锥底面半径为2cm ,每线长为6cm ,则 该圆锥的侧面积是 。

7、已知如图2,△ABC 中,D 在BC 上,且∠1= ∠2,请你在空白处填一个适当的条件:当 时, 则有△ABD ≌△ACD 。

8、将“等腰三角形两底角相等”改写成“如果……,那么……”的形式是 。

9、方程x 2=x 的根是10、一段时间里,某学生记录了其中7天他每天完成家庭作业的时间,结果如下(单位:分钟)80、90、70、60、50、80、60,那么在这段时间内该生平均每天完成家庭作业所需时间约为 分钟。

30分)11、计算2006°+(13)-1的结果是:A 、200613 B 、2009C 、4D 、4312、能判定两个直角三角形全等的是: 图1C 、两条边分别相等D 、斜边与一直角边对应相等13、若x =1是方程x 2+kx +2=0的一个根,则方程的另一个根与K 的值是:A 、2,3B 、-2,3C 、-2,-3D 、2,-314、三角形的外心是指: A 、三角形三角平分线交点B 、三角形三条边的垂直平分线的交点C 、三角形三条高的交点D 、三角形三条中线的交点15、已知如图3,AC 是线段BD 的垂直平分线, 则图中全等三角形的对数是:A 、1对B 、2对C 、3对D 、4对16、分式1a-x ,5ay-xy的最简公分母是:A 、(a-x)(ay-xy)B 、a(a-x)C 、y(a-x)D 、a-x17、两圆半径分别是7和3,圆心距是4,则这两圆的位置关系是: A 、内含B 、内切C 、相交D 、外切18、一扇形面积是3π,半径为3,则该扇形圆心角度数是 A 、120°B 、90°C 、60°D 、150°19、从总体中抽取一部分数据作为样本去估计总体的某种属性,下面叙述正确的是 A 、样本容量越大,样本平均数就越大 B 、样本容量越大,样本的标准差就越大 C 、样本容量越小,样本平均标准差就越大 D 、样本容量越大,对总体的估计就越准确。

2018年中考九年级数学模拟试卷及答案

2018年中考九年级数学模拟试卷及答案

中考九年级数学模拟试卷(满分150分,考试时间100分钟)考生注意:考生务必按答题要求在答题纸规定的位置上作答,.本试卷含三个大题,共25题.答题时,1在草稿纸、本试卷上答题一律无效..除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或2计算的主要步骤.24分)题,每题4分,满分一、选择题(本大题共6a.下列二次根式中,与1是同类二次根式的是(▲)2a?4a42a a(;(CD)(A.));;(B)名学生报名参加班级选拔赛,他们72.某班要推选学生参加学校的“诗词达人”比赛,有名参加学校比赛.小红要判断自己能否参加学校3的选拔赛成绩各不相同,现取其中前名学生成绩的(▲)比赛,在知道自己成绩的情况下,还需要知道这7)方差.(D)平均数;(B)中位数;(C(A)众数;所示,这个13.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图不等式组是(▲),?2?2,xx?2,x?2,x????)(DC(B)()(A)????.3;x???3;x??3xx??3;?????1图那么下列平移过程正确的是(▲)l:,4.如果将直线l:平移后得到直线x2?2y?y?2x21个单位;l向右平移2向左平移2个单位;(B)将l(A)将11个单位.l向下平移2个单位;(D)将C()将l向上平移211所按如图230°和60°角的三角板ABC5.将一把直尺和一块含BAF的大小为(▲)=40°,那么∠示的位置放置,如果∠CDE(B)15°;(A)10°;.)25°(DC()20°; 2图O不重在射线OM上(点P与点AOD、直线ABCD相交于点O,射线OM平分∠,点P6.的位置关系是(▲)相离,那么圆ABP与直线CD合),如果以点P为圆心的圆与直线)不确定(D.C()相交;)相切;()相离;(A B分)分,满分二、填空题(本大题共12题,每题448共页第九年级数学1 4页11.计算:▲.7??aa222的值是▲.,且,那么8.如果8?a?bb?b?4?aa.方程的根是▲.9 22x?4?k y x10.已知反比例函数,在其图像所在的每个象限内,的值增大而减的值随)?y?0(k x小,那么它的图像所在的象限是第▲象限.2x2y?),那么所得新抛物线.如果将抛物线平移,使平移后的抛物线顶点坐标为(1,211▲.的表达式是如果将这样相同厚度的书叠起来的将12.6本相同厚度的书叠起来,它们的高度是9厘米.厘米,那么这些书有▲本.高度是42这八个数中,任意抽取一个数,这个数恰好是合数的概率84,5,6,7,,13.从12,3,是▲.名学生进行调查,14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100并绘成如图3所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的▲(填百分数).a?AD,的中点,设,AD//BCBC=2AD,E、F分别是边AD、BC415.如图,在梯形ABCD中,b?ABEFba 的线性组合表示)等于.▲(结果用,那么、4 ,那么它的一条对角线长是▲.16.如果一个矩形的面积是40,两条对角线夹角的正切值是3AA外,且圆在圆A、C为圆心画圆,如果点B17.已知正方形ABCD,AB=1,分别以点r的取值范围是▲.与圆C外切,那么圆C的半径长??)90????(0'AB绕,边AC,将△18.如图5ABC的边AB绕着点A顺时针旋转得到????)90?(0???'AC??90?′C′得到时,,联结B′着点A逆时针旋转C′.当我们称△A B a,那么它的“双旋三角形”的面.ABC的“双旋三角形”如果等边△ABC的边长为是△a.积是▲(用含的代数式表示)A人数30E DA B′24108′C C CB B F3 2 2.5 1 0.5 1.5 时间(小时)5图 4图图3三、解答题(本大题共7题,满分78分)九年级数学第2页共4页(本题满分10分)19.1312?1.计算:)(8??1)??(2232?3.(本题满分10分)20,?2x?y2?解方程组:?22.1?2xy?y?x?5分)21.(本题满分10分,每小题满分各5BD⊥AC,垂足为点,已知:如图6,在△ABC中,AB=13AC=8,D,,?cos?BAC13AAEBD的中点,联结并延长,交边BC于点F.E是EAD?求(1) 的余切值;BFD (2) 求的值.E CFCB F22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 6图某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.yy xx关于份,支付甲印刷厂的费用为写出(1)设该学校需要印刷艺术节的宣传资料元,的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD,DC∥AB,对角线AC平分∠BCD,CDA.EA⊥AC,垂足为点在边点ECB的延长线上,的中点;)求证:B是EC(12,若,相交于点(2)分别延长CD、EAFECAC??DCBA求证:.FC:ACAD:AF?7图 E分,每小题满分各4分)12.24(本题满分九年级数学第共3页4页x22xOy)?mx?3m0(my??x?2轴交于点(如图8)已知平面直角坐标系,抛物线与y,顶点为DB 左侧),与,对称轴轴交于点CA、B(点A在点yl,联结DC为直BC,过点C作直.的垂线,垂足为点E )时,C(0,3(1)当点求这条抛物线的表达式和顶点坐标;①1x;求证:∠②DCE=∠BC1m(2的值.)当CB平分∠DCO时,求8 图分)小题满分4小题满分5分,第(3)分,第25.(本题满分14分,第(1)小题满分5(2)的ACC 在半径OB上,中,∠已知:如图9,在半径为2的扇形AOBAOB=90°,点、CD.于点垂直平分线交OA于点D,交弧ABE,联结BE 的正弦值;(1)若C是半径OB中点,求∠OCD2BC?BO?BE AB是弧的中点,求证:;2()若E 的长.是以DCECD为腰的等腰三角形时,求CD)联结(3CE,当△ AA AEDBBBO OOC备用图备用图9图初三调研考数学卷参考答案九年级数学第4页共4页题,满分24分)一、选择题:(本大题共8 A.4.C;5.A;6.1.C ;2.B;3.D ;分)题,满分二、填空题:(本大题共124814x?.10 8.2;9..一、三;7;;a2322?1)y?2(x?14.28%;;28.;13..11 ;1281122-1?r?2ba?...10;17 .;15 .1816 ;a24 三.(本大题共7题,满分78分)分)(本题满分1019.13121?计算:.)??8?(2(?1)232?3 2解原式分=.……………………………………………各32?3?2?22?3?2 2分.……………………………………………………………………………=2?3 10分)20.(本题满分①2,x?y?2?解方程组:?22②1.?x2xy?y??21??x?y1y?x?1(x?)?y,得分…………………………或3解:将方程②变形为,2?y?y?2,2x2x???由此,原方程组可以化为两个二元一次方程组:分………3??.1;??x?yx?y?1??,?3?1,xx??21分别解这两个二元一次方程组,得到原方程组的解是:4分………??.?4;y?y?0??21分,每小题满分各5分)21. (本题满分10 AC1()∵BD⊥,∴∠ADB=.90°5在Rt△ADB中,,AB=13,cos?BAC?135 分∴.………………………………………………2513???cosAD?AB??BAC1322?ADAB12?BD?. (1)∵E是BD的中点,∴DE=6.AD5.…………………………………………2中,Rt在△ADE分??EAD?cot DE6九年级数学第5页共4页5.即的余切值是EAD?6 1分,………………………………………DQ//AF,交边BC于点Q (2)过点D作=3.∴CD=8,AD=5,∵AC3CQCD 分.………………………………………………………∵DQ//AF ,∴2??5ADFQ 分……………………………………1DQ,∴BF=FQ.∵E是BD的中点,EF//5BF 分.……………………………………………………………………………∴1?8CF分)(2)小题满分6分,第(1)小题满分4分,第22.(本题满分10%903x??100?0.y 分,……………………………………2解:(1)由题意可知,y x x270.y?100?之间的函数关系式是:分,………………………………∴1与x0x?分为整数.…………………………………………………且1它的定义域是:262??600?0.27y?100时,支付甲印刷厂的费用:分.…2(元)(2)当600?x256400??80%?30.?200?0.3100?3支付乙印刷厂的费用为:分(元).………256<262,∵1分∴当该学校需要印刷艺术节的宣传资料600份时,应该选择乙印刷厂比较优惠.…6分).(本题满分12分,每小题满分各23证明:(1)∵DC∥AB,∴∠DCB=∠CAB.……………………………………………1分∵AC平分∠BCD,∴∠DCB=∠BCA.∴∠CAB=∠BCA.………………………………………………………………………1分∴BC=BA.………………………………………………………………………………1分∵EA⊥AC,∴∠CAB+∠BAE=90°,∠BCA+∠E=90°. ∴∠BAE=∠E.…………1分∴BA=BE.…………………………………………………………………………………1分∴BC=BE,即B是EC的中点.………………………………………………………1分2,∴)∵.(2EC??DCACACEC::DC?AC∵∠DCA=∠ACE,∴△DCA∽△ACE.………………………………………………2分∴.……………………………………………………………………1分EC:AE?ACAD:∵∠FCA=∠ECA,AC=AC,∠FAC=∠EAC,∴△FCA≌△ECA.…………………2分∴AE=AF,EC=FC.∴.…………………………………………………………………1分FCAD:AF?AC:24.(本题满分12分,每小题4分)九年级数学第6页共4页22233m?)?m0(my??x?2mx?3)可得:,(0(1)①由抛物线,3经过点C1?m?∴分(负数不符合题意,舍去).......................................................123??2y??xx ∴抛物线的表达式:分. (1)分).…………………………………………………………………2∴顶点坐标D(1,42x3x??x??2y B左侧),A、B(点A与在点轴交于点②由抛物线1x?l是直线,………………………………………………,对称轴1分可得B(3,0)l DE=CE=1.1,3)∵CE⊥直线,即,∴E(DE中,△DEC∴在.Rt???1DCEtan CECO 中,,Rt∵在△BOC1tan?OBC?? BOOBC???DCE2分∴=45°.………………………………………………………………OBC???BCE.∵CE//OB,∴1分BCE.………………………………………………………………………∴∠DCE=∠x22y)0m?2mx?3m?(y??x与在点B左侧)与,轴交于点A、B(点A(2) 由抛物线222l)3mm)(Em,D(m,4)m0C(,3),0B(3m对称轴为直线可得:,,,,.,轴交点C,顶点为D22m?DE?m3COmBO?3?CEm .…………………………………,,1∴分,2mDEm??tan?DCE?在Rt△DEC中,.mCE2m3COm??OBC??tan中,BOC.在Rt△m3BO分OBC.…………………………………1OBC∵∠DCE、∠都是锐角,∴∠DCE=∠OBCBCE???.//OB,∴∵CE∠OBC.∴∠DCB=2∠BCE=2OBC.∠DCB=2∠OCB=∵CB 平分∠DCO,∴∠分OBC=30°.……………………………………………1∵∠OCB+∠OBC=90°,∴∠33?tan?OBC,∴.…………………………………………………1分∴?m333525114.25(本题满分分,第()小题分,第()小题分,第()小题4分)页7 九年级数学第4 共页OC=1.C是半径OB中点,BO=2,∴(1)∵.………………………………………………………1分∵DE垂直平分AC,∴AD=CD a aaDC?DO?2?设AD=,,则,5222222 2解得:在Rt△DOC 中,分.,即….DCOCDO??a12(?a)???a435?2?DO?∴.443DO中,△DOC2分在Rt.……………………………………………??OCDsin?5DC3.即∠OCD的正弦值是5. EO、EC、(2)联结AE 分AE=BE.……………………………………………………1∵E是弧AB的中点,∴分AE=EC.……………………………………………………1∵DE垂直平分AC,∴.EBC=∠ECB∴BE=EC.∴∠分.……………………………………………………1∵OE=OB,∴∠EBC=∠OEB ∠∴∠ECB=OEB.……………………………………………1分=∠EBO,∴△BCE∽△BEO.又∵∠CBEBEBC2BC?BO?BE ……………………………………………………1分∴..∴?BOBE、是以CD3)联结AE为腰的等腰三角形可得:OE,由△DCE(DEA.,∴ED=AD.∴∠DAE=∠①当CD=ED时,∵CD=AD B重合.D与点O重合,点C与点∵OA=OE,∴∠DAE=∠OEA.∴点2分CD=BO=2.…………………………………………………………………………∴.CD=AD=CE=AE时,∵②当CD=CECD=AD,CE=AE,∴∴四边形ADCE是菱形,∴AD//EC..90°,∴∠COE=90°∵∠AOB=2222,在设CD=Rt△COE中,.a?ECEO??4CO?a DOC 中,.在Rt△22222)a?CO??CDDO?(?a22222(负数舍去).∴.整理得,解得08?4?a?a22a??3?)a2aa??(??4 2分CD∴=.………………………………………………………………………2?32或时,△DCE是以CD2综上所述,当CD的长是为腰的等腰三角形.232?九年级数学第8页共4页九年级数学第9页共4页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考模拟卷分一、选择题(每小题3分,共30分) 1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫作正数与负数.若气温为零上10℃记作+10℃,则-3℃表示气温为( )A .零上3℃ B.零下3℃ C.零上7℃ D.零下7℃ 2.不等式4-2x >0的解集在数轴上表示为( )3.下列运算正确的是( )A .3m -2m =1B .(m 3)2=m 6C .(-2m )3=-2m 3D .m 2+m 2=m 44.如图所示的几何体的俯视图为( )5.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15第5题图 第6题图6.如图,在▱ABCD 中,连接AC ,∠ABC =∠CAD =45°,AB =2,则BC 的长是( ) A. 2 B .2 C .2 2 D .47.若△ABC 的每条边长增加各自的10%得△A ′B ′C ′,则∠B ′的度数与其对应角∠B 的度数相比( )A .增加了10%B .减少了10%C .增加了(1+10%)D .没有改变8.如果点A (x 1,y 1)和点B (x 2,y 2)是直线y =kx -b 上的两点,且当x 1<x 2时,y 1<y 2,那么函数y =k x的图象位于( )A .一、四象限B .二、四象限C .三、四象限D .一、三象限9.如图,在Rt△ABC 中,∠ACB =90°,∠A =56°.以BC 为直径的⊙O 交AB 于点D .E是⊙O 上一点,且CE ︵=CD ︵,连接OE .过点E 作EF ⊥OE ,交AC 的延长线于点F ,则∠F 的度数为( )A .92° B.108° C.112° D.124°第9题图 第10题图10.如图,抛物线y 1=12(x +1)2+1与y 2=a (x -4)2-3交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于B 、C 两点,且D 、E 分别为顶点.则下列结论:①a =23;②AC=AE ;③△ABD 是等腰直角三角形;④当x >1时,y 1>y 2.其中正确结论的个数是( )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共24分)11.如图所示,在Rt△ABC 中,∠B =________.第11题图 第16题图12.《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为__________.13.化简:⎝ ⎛⎭⎪⎫x x -3+23-x ·x -3x -2=________.14.当x =________时,二次函数y =x 2-2x +6有最小值________. 15.方程3x (x -1)=2(x -1)的解为________.16.如图,B 在AC 上,D 在CE 上,AD =BD =BC ,∠ACE =25°,则∠ADE =________. 17.从-1,2,3,-6这四个数中任选两数,分别记作m ,n ,那么点(m ,n )在函数y =6x图象上的概率是________.18.已知矩形ABCD 的四个顶点均在反比例函数y =1x的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为________.三、解答题(共66分)19.(8分)(1)计算:|-3|-48+20170;(2)解方程:12x =2x -3.20.(8分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.21.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m=________,n=________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.22.(10分)某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨;(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?23.(10分)如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC的外接圆O于点E,连接AE.(1)求证:四边形AECD为平行四边形;(2)连接CO,求证:CO平分∠BCE.24.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,2≈1.41,结果精确到0.1cm)25.(12分)定义:如图①,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P 在该抛物线上(P点与A、B两点不重合).如果△ABP的三边满足AP2+BP2=AB2,则称点P 为抛物线y=ax2+bx+c(a≠0)的勾股点.(1)直接写出抛物线y=-x2+1的勾股点的坐标.(2)如图②,已知抛物线y =ax 2+bx (a ≠0)与x 轴交于A ,B 两点,点P (1,3)是抛物线的勾股点,求抛物线的函数表达式.(3)在(2)的条件下,点Q 在抛物线上,求满足条件S △ABQ =S △ABP 的Q 点(异于点P )的坐标.参考答案与解析1.B 2.D 3.B 4.D 5.D 6.C 7.D 8.D 9.C10.B 解析:∵抛物线y 1=12(x +1)2+1与y 2=a (x -4)2-3交于点A (1,3),∴3=a (1-4)2-3,解得a =23,故①正确;∵E 是抛物线的顶点,∴AE =EC ,∴无法得出AC =AE ,故②错误;当y =3时,3=12(x +1)2+1,解得x 1=1,x 2=-3,故B (-3,3),D (-1,1),则AB =4,AD =BD =22,∴AD 2+BD 2=AB 2,∴△ABD 是等腰直角三角形,故③正确;若12(x+1)2+1=23(x -4)2-3,解得x 1=1,x 2=37,∴当37>x >1时,y 1>y 2,故④错误.故选B.11.25° 12.1.2×10813.1 14.1 5 15.1或23 16.75°17.13解析:画树状图得:∵共有12种等可能的结果,点(m ,n )恰好在反比例函数y =6x图象上的有(2,3),(-1,-6),(3,2),(-6,-1),∴点(m ,n )在函数y =6x 图象上的概率是412=13.18.152 解析:如图所示,根据点A 在反比例函数y =1x的图象上,且点A 的横坐标是2,可得A ⎝ ⎛⎭⎪⎫2,12.根据矩形和双曲线的对称性可得B ⎝ ⎛⎭⎪⎫12,2,D ⎝ ⎛⎭⎪⎫-12,-2,由两点间距离公式可得AB =⎝ ⎛⎭⎪⎫2-122+⎝ ⎛⎭⎪⎫12-22=322,AD =⎝ ⎛⎭⎪⎫2+122+⎝ ⎛⎭⎪⎫12+22=522,∴S 矩形ABCD =AB ·AD =322×522=152.19.解:(1)原式=3-43+1=1-3 3.(4分)(2)方程两边同乘以2x (x -3)得,x -3=4x ,解得x =-1.(6分)检验:当x =-1时,2x (x -3)≠0,∴原方程的根是x =-1.(8分)20.解:CD ∥AB ,CD =AB ,(2分)证明如下:∵CE =BF ,∴CE -EF =BF -EF ,∴CF =BE .(3分)在△DFC 和△AEB 中,⎩⎪⎨⎪⎧CF =BE ,∠CFD =∠BEA ,DF =AE ,∴△DFC ≌△AEB (SAS),(6分)∴CD =AB ,∠C =∠B ,∴CD ∥AB .(8分)21.解:(1)500 12 32(3分)(2)对“社会主义核心价值观”达到“A .非常了解”的人数为32%×500=160(人),补全条形统计图如下.(5分)(3)100000×32%=32000(人).答:该市大约有32000人对“社会主义核心价值观”达到“A .非常了解”的程度.(8分)22.解:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨.由题意⎩⎪⎨⎪⎧x +y =100,4000x +1000y =160000,解得⎩⎪⎨⎪⎧x =20,y =80.(3分) 答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(4分)(2)设精加工m 吨,总利润为w 元,则粗加工(100-m )吨.由题意得m ≤3(100-m ),解得m ≤75,(6分)则利润w =1000m +400(100-m )=600m +40000.(8分)∵600>0,∴w 随m 的增大而增大,∴m =75时,w 有最大值为85000元.答:精加工数量为75吨时,获得最大利润,最大利润为85000元.(10分)23.证明:(1)由圆周角定理得∠B =∠E .∵∠B =∠D ,∴∠E =∠D .(2分)∵CE ∥AD ,∴∠D +∠ECD =180°,∴∠E +∠ECD =180°,∴AE ∥CD ,∴四边形AECD 为平行四边形.(5分)(2)作OM ⊥BC 于M ,ON ⊥CE 于N .∵四边形AECD 为平行四边形,∴AD =CE .∵AD =BC ,∴CE =CB .(7分)∵OM ⊥BC ,ON ⊥CE ,∴CN =CM .在Rt△NOC 和Rt△MOC中,⎩⎪⎨⎪⎧NC =MC ,OC =OC ,∴Rt△NOC ≌Rt△MOC ,∴∠NCO =∠MCO ,∴CO 平分∠BCE .(10分)24.解:(1)如图,过点F 作FN ⊥DK 于N ,过点E 作EM ⊥FN 于M .∵EF +FG =166cm ,FG =100cm ,∴EF =66cm.∵∠FGK =80°,∴FN =100·sin80°≈98cm.(2分)∵∠EFG =125°,∴∠EFM =180°-125°-10°=45°,∴FM =66·cos45°≈46.53cm ,∴MN =FN +FM ≈144.5cm.∴此时小强头部E 点与地面DK 相距约为144.5cm.(5分)(2)如图,过点E 作EP ⊥AB 于点P ,延长OB 交MN 于H .∵AB =48cm ,O 为AB 中点,∴AO =BO =24cm.∵EM =66·sin45°≈46.53(cm),∴PH ≈46.53(cm).(7分)∵GN =100·cos80°≈17(cm),CG =15cm ,∴OH =24+15+17=56(cm),OP =OH -PH =56-46.53=9.47≈9.5cm,∴他应向前9.5cm.(10分)25.解:(1)抛物线y =-x 2+1的勾股点的坐标为(0,1).(3分)(2)如图,作PG ⊥x 轴于点G .∵点P 的坐标为(1,3),∴AG =1,PG =3,∴PA =AG 2+PG2=12+(3)2=2.∵tan∠PAB =PG AG =3,∴∠PAG =60°.在Rt△PAB 中,AB =PAcos∠PAB =212=4,∴点B 的坐标为(4,0).(5分)设y =ax (x -4),将点P (1,3)代入得a =-33,∴y =-33x (x -4)=-33x 2+433x .(7分) (3)①当点Q 在x 轴上方时,由S △ABQ =S △ABP 知点Q 的纵坐标为3,则有-33x 2+433x =3,解得x 1=3,x 2=1(不符合题意,舍去),∴点Q 的坐标为(3,3).(9分)②当点Q 在x 轴下方时,由S △ABQ =S △ABP 知点Q 的纵坐标为-3,则有-33x 2+433x =-3,解得x 1=2+7,x 2=2-7,∴点Q 的坐标为(2+7,-3)或(2-7,-3).(11分)综上所述,满足条件的点Q 有3个,分别为(3,3)或(2+7,-3)或(2-7,-3).(12分)。

相关文档
最新文档