2018年春八年级数学下册19_2一次函数19_2_2一次函数特色训练题1新版新人教版

合集下载

2020-2021学年八年级数学人教版下册第十九章 19.2.2一次函数 同步练习题

2020-2021学年八年级数学人教版下册第十九章 19.2.2一次函数 同步练习题

19.2一次函数【知识点】1.一次函数的定义:一般地,形如____________(k,b是常数,k________0)的函数,叫做一次函数.当b=0时,y=kx+b即______________,所以说正比例函数是一种特殊的一次函数.2.一次函数y=kx+b(k≠0).(1)图象是____________________;(2)其性质有:①k>0,y随x增大而____________________;①k<0,y随x增大而____________________;(3)图象的平移规律:一次函数y=kx+b(k≠0)的图象可以由直线y = kx 平移____________个单位长度得到(当b > 0 时,向上平移;当b < 0 时,向下平移).3.求一次函数的解析式:(1)确定正比例函数的解析式需要______________个条件,确定一次函数的解析式需要______________个条件.(2)用待定系数法求一次函数解析式的一般步骤:①设:先设一次函数的解析式为____________________;①代:将已知条件代入解析式中,建立____________________;(3)解:解方程或方程组,确定____________________;(4)写:写出解析式.【例题讲解】1.已知y=(k-1)x∣k∣+(k2-4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.2.已知一次函数y=(2m+4)x+(2n-4).(1)m为何值时,y随x的增大而减小?(2)m,n为何值时,函数图象与y轴的交点在y轴的负半轴上?3.已知正比例函数y=kx的图象经过点P(2,3),如图19-27-1.(1)求这个正比例函数的解析式;(2)将该直线向上平移3个单位长度,求平移后所得直线的解析式.4.已知一个一次函数y=kx+b(k≠0),当自变量x=-2时,函数值y=-1;当x=3时,y=-3.求这个一次函数的解析式.5.如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式;(2)若该一次函数的图象与x轴交于点D,求△BOD的面积.【举一反三】1.已知y=(m-1)x2-|m|+n+3.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?2.已知函数y=(2m-1)x+m-4.(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.3.已知函数y=x+2.(1)画出这个函数的图象;(2)判断点A(-3,1)是否在该函数的图象上,并说明理由;(3)将该直线向下平移2个单位长度,则所得新直线的解析式为___________.4.如图,一次函数y=kx+b的图象经过A(2,4),B(-2,-2)两点,与y轴交于点C.(1)求k,b的值,并写出一次函数的解析式;(2)求点C的坐标.5.已知一次函数的图象经过点(1,1)和(-1,-5).(1)求此函数的解析式;(2)求此函数的图象与x轴、y轴的交点坐标及它的图象与两坐标轴所围成的三角形面积.【知识操练】1.下列函数中,不是一次函数的是()7A. y=x+4B. y=3xC. y=2-3xD. y=x2.表示一次函数图象的是()3.一次函数y=-2x+4的图象与y轴的交点坐标是()A. (0,4)B. (4,0)C. (2,0)D. (0,2)4.若3y-4与2x-5成正比例,则y是x的()A.正比例函数B.一次函数C.没有函数关系D.以上均不正确5.若点P(1,2)在正比例函数的图象上,则这个正比例函数的解析式是()A. y =-2xB. y =2xC. y =-4xD. y =4x6. 已知一次函数y =kx +b (k ≠0)的图象经过(2,-1),(-3,4)两点,则它的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 下列说法正确的是__________________(填序号).∣正比例函数一定是一次函数; ∣一次函数一定是正比例函数; ∣若y -1与x 成正比例,则y 是x 的一次函数; ∣若y =kx +b ,则y 是x 的一次函数.8. 已知函数y =-3x +b ,当x =-1时,y =-1,则b =______________.9. 已知一次函数y =-2x +b 的图象经过A(21,1),则此一次函数的表达式为________________.10. 如图,在平面直角坐标系x O y 中,四边形OABC 是平行四边形,且A(4,0),B(6,2),则直线AC 的解析式为____________.11. 已知一次函数的图象经过点(0,2)与(1,0). 求这个一次函数的解析式.12. 在一次函数y =2x +3中,y 随x 的增大而______________(填“增大”或“减小”),当0≤x ≤5时,y 的最小值为______________.13. 把直线y =2x -1向下平移4个单位长度,所得直线的解析式是__________________.14. 点A(-1,y 1),B(3,y 2)是直线y =kx +b (k <0)上的两点,则y 1-y 2__________0. (填“>”“<”或“=”)15. 已知直线y =2x +3与x 轴相交于点A ,与y 轴相交于点B.(1)求A ,B 两点的坐标;(2)过点B 作直线BP 与x 轴相交于点P ,且使OP=2OA ,求∣ABP 的面积.16. 已知函数y =(2m +1)x +m -3.(1)若函数图象经过原点,求m 的值;(2)若函数图象在y 轴的截距为-2,求m 的值;(3)若函数的图象平行于直线y =3x -3,求m 的值;(4)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.17. 已知y -1与x 成正比例,且x =2时,y =7.(1)求y 与x 的函数关系式;(2)当x =-2时,求y 的值.18. 陈明同学乘车从学校出发回家,他离家的路程y (km )与所用时间x (h )之间的关系如图.(1)求y 与x 之间的关系式;(2)求学校和陈明同学家的距离.19. 如图,一次函数232+-=x y 的图象分别与x 轴、y 轴交于点A ,B ,以线段AB 为边在第一象限内作等腰直角三角形ABC ,∠BAC=90°,求过B ,C 两点的直线的解析式.20. 有这样一个问题:探究函数y =x +∣x -2∣的图象与性质.小明根据学习函数的经验,对函数y =x +∣x -2∣的图象与性质进行了探究.下面是小明的探究过程,请补充完成:(1)化简函数解析式,当x ≥2时,y =___________;当x <2时,y =____________.(2)根据(1)中的结果,请在图19-27-4中的坐标系中画出函数y =x +∣x -2∣的图象;(3)结合函数的图象,写出该函数的一条性质:_______________21. 如图,在平面直角坐标系中,过点B(6,0)的直线与直线OA 相交于点A(4,2).(1)直线OA的解析式为________________;直线AB的解析式为_______________(直接写出答案,不必写过程);(2)求△OAC的面积;(3)一动点M沿路线O→A→C运动,当S△OCM=3时,求点M的坐标.。

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.2一次函数的图象与性质课件新人教版

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.2一次函数的图象与性质课件新人教版
初中数学(人教版)
八年级 下册
第十九章 一次函数
知识点一 正比例函数的定义
定义
举例
正比例 一般地,形如y=kx(k是常数,k≠0)的函数,叫做 函数 正比例函数,其中k叫做比例系数
如y=-3x,y= 12 x均为正比例函数,比例系数 分别为-3, 12
知识 详解
(1)如果两个变量的比值是一个常数,那么这两个变量之间的关系就是正比例函数关系. (2)正比例函数y=kx(k是常数,k≠0)必须满足两个条件:①比例系数k≠0;②自变量x的次数 是1
3
选项中符合条件的数只有2.故选B.
2.(2016浙江丽水中考)在平面直角坐标系中,点M,N在同一个正比例函 数图象上的是 ( ) A.M(2,-3),N(-4,6) B.M(-2,3),N(4,6) C.M(-2,-3),N(4,-6) D.M(2,3),N(-4,6)
答案 A 设过点M的正比例函数图象对应的解析式为y=kx(k≠0).
x
⑤y=-1+x,即y=x-1,也不能化为y=kx(k≠0)的形式.只有②是正比例函数. 故选B. 答案 B 解题归纳 (1)判断一个函数是不是正比例函数,就是判断该函数能否 化成y=kx(k≠0)的形式;(2)若一个函数是正比例函数,则必有k为常数,k ≠0且x的次数为1,关于自变量x的代数式必为单项式.
2
2
分析 先确定函数自变量的取值范围,然后依次列表、描点、连线,即 可得到函数图象,再进行比较.
解析 列表:
x

-4
-2
0
2
4

y= 1 x 2

-2
-1
0
1
2

y=-1 x

八年级数学下册第十九章一次函数19-2一次函数19-2-2一次函数第1课时一次函数新人教版

八年级数学下册第十九章一次函数19-2一次函数19-2-2一次函数第1课时一次函数新人教版
(1)放入一个小球后水桶中水面升高________ cm; (2)求放入小球后水桶中水面的高度 y(cm)与小球的个数 x(个) 之间的一次函数关系式;(不要求写出自变量的取值范围) (3)水桶中至少放入几个小球时有水溢出?
解:(1)2; (2)因为每放入一个小球后,水面升高 2 cm,所以 y=30+2x; (3)由 2x+30>49,得 x>9.5,即至少放入 10 个小球时有水溢 出.
3.若一次函数 y=kx+b,当 x=-2 时,y=7;当 x=1 时,y
=-11.则 k,b 的值为( C )
A.k=6,b=5
B.k=-1,b=-5
C.k=-6,b=-5
D.k=1,b=5
4.据调查,某地铁自行车存放处某星期天的存车量为 4000 辆 次,其中变速车存车费是每辆一次 0.30 元,普通自行车存车费 是每辆一次 0.20 元,若普通自行车存车数为 x 辆,存车费总收 入为 y 元,则 y 关于 x 的函数关系式为( D ) A.y=0.10x+800(0≤x≤4000) B.y=0.10x+1200(0≤x≤4000) C.y=-0.10x+800(0≤x≤4000) D.y=-0.10x+1200(0≤x≤4000)
(3)某车站规定旅客可以免费携带不超过 20 千克的行李,超过 部分每千克收取 1.5 元的行李费,则旅客需交的行李费 y(元) 与携带行李质量 x(千克)(x>20)的关系.
解:(1)y=0.53x,是; (2)y=10+5x,是; (3)y=1.5x-30,是.
10.某油箱容量为 60 L 的汽车,加满汽油后行驶了 100 km 时,油箱中的汽油大约消耗了15 ,如果加满汽油后汽车行驶 的路程为 x(km),油箱中剩油量为 y(L),则 y 与 x 之间的函数 解析式和自变量取值范围分别是( D ) A.y=0.12x,x>0 B.y=60-0.12x,x>0 C.y=0.12x,0≤x≤500 D.y=60-0.12x,0≤x≤500

新人教版八年级下《一次函数》测试题及答案

新人教版八年级下《一次函数》测试题及答案

2018—2019学年度第二学期八年级(下)第十九章一次函数单元检测题班级____姓名_____得分_____一、 选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

1. 若点A (2,4)在函数2y kx =-的图象上,则下列各点在此函数图象上的是( ).A .(0,2-)B .(32,0) C .(8,20) D .(12,12) 2.变量x,y 有如下关系:①x+y=10②y=x5-③y=|x-3④y 2=8x.其中y 是x 的函数的是 A. ①②②③④B. ①②③C. ①②D. ①3. 下列各曲线中不能表示y 是x 的函数是( ).A .B .C .D .4. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ).A . 4B . 5C . 6D . 7 5.已知正比例函数y=(k+5)x,且y 随x 的增大而减小,则k 的取值范围是 A.k >5 B.k <5C.k >-5D.k <-56.在平面直角坐标系xoy 中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是 A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线3x y =得到53x y +=的图象,那么直线3xy =必须( ). A .向上平移5个单位 B .向下平移5个单位 C .向上平移53个单位 D .向下平移53个单位8.经过一、二、四象限的函数是 A.y=7B.y=-2xC.y=7-2xD.y=-2x-79.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2B.0C.-2D. ±211. 根据如图的程序,计算当输入3x =时,输出的结果y = .12.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是 A. ①③④ B. ②③ C. ①②③④ D. ①②③二、填空题(本大题共5个小题,每小题4分,共20分。

人教版八年级下《第19章一次函数》专项训练(2)含答案

人教版八年级下《第19章一次函数》专项训练(2)含答案

第19章一次函数专项训练专训1.用一次函数巧解实际中方案设计的应用名师点金:做一件事情,有时有不同的方案,比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.解决这些问题时,先要弄清题意,根据题意构建恰当的函数模型,求出自变量的取值范围,然后再结合实际问题确定最佳方案.合理决策问题1.某商场计划投入一笔资金采购一批紧俏商品,经市场调研发现,如果本月初出售,可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售可获利25%,但要支付仓储费8 000元.设商场投入资金x元,请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多.选择方案问题2.某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选择哪家宾馆更实惠些?最佳效益问题3.甲、乙两个商场出售相同的某种商品,每件售价均为3 000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y元,乙商场收费为y2元.1(1)分别求出y1,y2与x之间的关系式.(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.专训2.全章热门考点整合应用名师点金:本章内容是中考的必考内容,主要考查一次函数的图象与性质,求函数解析式及建立一次函数模型解决利润大小、方案选择等实际问题,题型涉及选择题、填空题与解答题.其热门考点可概括为:三个概念,两个图象,一个性质,四个关系,一个方法,两个应用.三个概念概念1变量与常量1.(1)设圆柱的底面半径R不变,圆柱的体积V与圆柱的高h的关系式是V =πR2h,在这个变化过程中常量和变量分别是什么?(2)设圆柱的高h不变,在圆柱的体积V与圆柱的底面半径R的关系式V=πR2h中,常量和变量分别又是什么?概念2函数2.两个变量之间存在的关系式是y2=x+1(其中x是非负整数),y是不是x 的函数?如果变为用含y的代数式表示x的形式,x是不是y的函数?请说明原因.3.求下列函数中自变量的取值范围:(1)y=-12x2-x+6;(2)y=-112x-3;(3)y=16x-9 3x-2.概念3一次函数4.当m,n为何值时,y=(5m-3)x2-n+(m+n)是关于x的一次函数?当m,n为何值时,y是关于x的正比例函数?两个图象图象1函数的图象5.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象是( )图象2一次函数的图象6.(中考·阜新)对于一次函数y=kx+k-1(k≠0),下列叙述正确的是( )A.当0<k<1时,函数图象经过第一、二、三象限B.当k>0时,y随x的增大而减小C.当k<1时,函数图象一定交于y轴的负半轴D.函数图象一定经过点(-1,-2)7.若有理数a,b,c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是( )一个性质8.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1的图象上的两点,则a与b的大小关系是( )A.a>b B.a=bC.a<b D.以上都不对9.已知一次函数的解析式是y=(k-2)x+12-3k.(1)当图象与y轴的交点位于原点下方时,判断函数值随着自变量的增大而变化的趋势;(2)如果函数值随着自变量的增大而增大,且函数图象与y轴的交点位于原点上方,确定满足条件的正整数k的值.四个关系关系1一次函数与正比例函数的关系10.下列函数中,哪些是一次函数?哪些是正比例函数?①y=-2x-1;②y=12x;③y=2x;④y=-x2-1;⑤2x-y=0;⑥y=-2(x-1).11.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求一次函数的解析式;(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.(第11题)关系2 一次函数与一元一次方程的关系12.如图,在平面直角坐标系xOy 中,直线y =x +1与y =-34x +3交于点A ⎝ ⎛⎭⎪⎫87,157,两直线分别交x 轴于点B 和点C. (1)求点B ,C 的坐标; (2)求△ABC 的面积.(第12题)关系3 一次函数与二元一次方程(组)的关系13.下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程5x -1=2x +5,其中正确的是( )关系4 一次函数与不等式(组)的关系14.已知一次函数y =kx +3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x 的不等式kx +3≤6的解集.15.在同一平面直角坐标系中,画出一次函数y 1=2x -4,y 2=x +1的图象,根据图象求解下列问题:(1)二元一次方程组⎩⎨⎧y =2x -4,y =x +1的解;(2)一元一次不等式组⎩⎨⎧2x -4>0,x +1>0的解集.一个方法——待定系数法16.如图,一个正比例函数图象与一个一次函数图象交于点A(3,4),且一次函数的图象与y 轴相交于点B(0,-5).(1)求这两个函数的解析式; (2)求三角形AOB 的面积.(第17题)两个应用应用1给出解析式(或图象)解实际问题17.某游泳馆普通票价20元/张,暑期为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.(第18题)应用2只给语言叙述或图表情境解实际问题18.为改善生态环境,防止水土流失,某村计划在河堤坡面种植白杨树,现有甲、乙两家林场可提供相同质量的白杨树苗,其具体销售方案如下:(1)该村需要购买1 500棵白杨树苗,若都在甲林场购买所需费用为________元,若都在乙林场购买所需费用为________元;(2)分别求出y 甲、y 乙与x 之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?答案1专训 元,1y .解:设如果商场本月初出售,下月初可获利1 ,x 0.21=x 0.11+x 0.1=10%·x 0%)1+(1+x 10%=1y 则 8 000.-x 0.25=8 000-x 25%=2y 元,则2y 设如果商场下月初出售,可获利 ;200 000=x ,解得8 000-x 0.25=x 0.21时,2y =1y 当 ;<200 000x ,解得8 000-x >0.25x 0.21时,2y >1y 当 >200 000.x ,解得8 000-x <0.25x 0.21时,2y <1y 当 利相同;若商场投入资金少种出售方式获万元,两20所以若商场投入资金为售获利较万元,下月初出20万元,本月初出售获利较多;若投入资金多于20于多.<35时,选择两家宾馆是一样的;当35≤x 当人,x 人数是.分析:设总2x时,两家宾馆的收费可以表示成人数x>45时,选择甲宾馆比较实惠;当45≤x 的函数,比较两个函数值的大小即可.元,乙y 元,乙宾馆的收费为甲y 人,甲宾馆的收费为x 解:设总人数是 时,两家宾馆的费用是一样的;35≤x 当时,选择甲宾馆比较实惠;45≤35<x 当 108x=甲y ,即35)-(x ×120×0.9+120×35=甲y 时,甲宾馆的收费x>45当,420+ 1 080.+x 96=45)-120(x ×0.8+120×45=乙y 乙宾馆的收费 ;55=x ,解得1 080+96x =420+108x 时,乙y =甲y 当 ;x>55,解得1 080+420>96x +108x 时,乙>y 甲y 当 x<55.,解得1 080+420<96x +108x 时,乙<y 甲y 当 时,两家宾馆的费用是一样的;55=x 或35≤x 综上可得,当 时,选择甲宾馆比较实惠;35<x<55当 时,选择乙宾馆比较实惠.x>55当 ×1)-3 000(x +3 000=1y 时,1>x ;当3 000=1y 时,1=x 当(1).解:3900.+x 2 100=30%)-(1 ⎩⎨⎧3 000(x =1),2 100x +900(x >1,x 为整数).=1y 所以 .)为正整数x (x 2 250=25%)-(1x 3 000=2y 故6.=x ,解得x 2 250=900+x 2 100当甲、乙两个商场的收费相同时,(2)件.6甲、乙两个商场的收费相同时,所买商品为 2 100=900+x 2 100=1y 时,5=x ,理由如下:当乙商场更优惠应选择(3),所25011 >11 400,因为11 250=5×2 250=x 2 250=2y ,11 400=900+5×件时,应选择乙商场更优惠.5以当所买商品为 2专训 h.和V ,变量是R 和π常量是(1).解:1 R.和V ,变量是h 和π常量是(2) 的值有两个,y ,此时1的值为±y 时,0的值是x 中,当1+x =2y .解:在2的函数.x 不是y 并不是唯一确定的,因此 都有唯一确x 的每一个值,另一个变量y 后,对于1-2y =x 变形为1+x =2y 的函数.y 是x 定的值与其对应,因此A7. C 6. B .5 的图象上,1+2x =-y 在一次函数b),2N(和点a),M(1点拨:∵点 A .8的增大而减小,∴x 随y 中函数值1+2x =-y 由一次函数图象性质可知一次函数a>b.位于原点3k)-12,(0原点下方,即点轴的交点位于y 因为图象与(1).解:9,所以函数值随着自变量的增2>0-2>4-k 所以k>4.,解得3k<0-12下方,所以大而增大.k>2.,解得2>0-k 因为函数值随着自变量的增大而增大,所以(2) k<4.,解得3k>0-12轴的交点位于原点上方,所以y 因为函数图象与 2<k<4.的取值范围为k 所以 3.的值为k 所以满足条件的正整数 .解:一次函数:①②⑤⑥10 正比例函数:②⑤,2),(1的坐标是B ,则点2=y ,得1=x 中,令2x =y 在(1).解:11,0)≠b(k +kx =y 设一次函数的解析式是 ⎩⎨⎧b =3,k =-1.解得⎩⎨⎧b =3,k +b =2,则 3.+x =-y 故一次函数的解析式是 =x ,当3+x =-y 不在该一次函数的图象上.理由:对于2),-C(4点(2)不在该函数的图象上.2),-C(4,所以点2≠-1=-y 时,4 ,0),(3的坐标是D ,则点3=x ,得0=y 中,令3+x =-y 在(3)-=1的交点的横坐标,因此画出与y5x的图象即可.y5+=2x4),入(114y.解:(1)把点的坐标代4=+=中,得k33.kx+∴k=1.y∴一次函数的解析式为=+x3.(1)(2)由知k1,=+∴原不等式为x3≤6.∴x3.≤4)的坐标代入,点拨:y(1)把点(1kx=(2)k的值.中,用待定系数法求出+3kx值代入不等式把求出的k+中,求出不等式的解集.36≤15.解:图象略.3,所以横坐标为点因为A(2)点到A点纵坐标为-又因为B3.OB的距离为5,所以5.=OB20x.=y 普通票: ,150=y ,得150+10x =y 代入0=x 把(2) .150),A(0∴ ⎩⎨⎧y =20x ,y =10x +150,∵ ⎩⎨⎧x =15,y =300.∴ .300),B(15∴ 45.=x ,得150+10x =y 代入600=y 把 .600),C(45∴ ),也正确15<x ≤0注:若写成(时,选择购买普通票更合算;0<x<15当(3) 时,选择购买银卡、普通票的总费用相同,均比金卡合算;15=x 当 时,选择购买银卡更合算;15<x<45当 时,选择购买金卡、银卡的总费用相同,均比普通票合算;45=x 当 时,选择购买金卡更合算.x>45当 6 000;(1)5 900.解:18 ,4x =甲y 时,1 000≤x ≤0当(2) 时,x>1 000当 ,002+3.8x =1 000)-3.8(x +4 000=甲y =甲y ∴ ⎩⎨⎧4x (0≤x ≤1 000且x 为整数), 3.8x +200(x>1 000且x 为整数). 时,2 000≤x ≤0当 ,4x =乙y 时,x>2 000当 ,800+3.6x =2 000)-3.6(x +8 000=乙y =乙y ∴ ⎩⎨⎧4x (0≤x ≤2 000且x 为整数), 3.6x +800(x>2 000且x 为整数). 由题意,得(3) 一样,时,两家林场白杨树苗单价1 000≤x ≤0当 ∴到两家林场购买所需费用一样.时,甲林场有优惠而乙林场无优惠,2 000≤1 000<x 当 时,到甲林场购买合算;2 000≤1 000<x ∴当 ,200+3.8x =甲y 时,x>2 000当 ,800+3.6x =乙y 时乙y =甲y 当 ,800+3.6x =200+8x .3 ,3 000=x 解得 时,到两家林场购买所需费用一样;3 000=x ∴当 时,乙<y 甲y 当 ,800+3.6x <200+8x .3 x<3 000.解得 时,到甲林场购买合算;2 000<x<3 000∴当 时,乙>y 甲y 当 ,800+200>3.6x +x 8.3 x>3 000.解得 时,到乙林场购买合算.x>3 000∴当 时,到两家林场购买所需费用一样,3 000=x 或1 000≤x ≤0综上所述,当 时,到甲林场购买合算;1 000<x<3 000当 时,到乙林场购买合算.x>3 000当。

19-2-2 一次函数 基础习题 人教版八年级数学下册

19-2-2 一次函数 基础习题 人教版八年级数学下册

19.2.2 一次函数 基础习题一、选择题1.若一次函数y =x -3m +7的图象经过点(3,4),则m 的值为( ) A .2; B .-2; C .3; D .-3。

2.一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,则k 的值为( ) A .2 B .-2 C .-4或21 D .2或-23.一次函数y=kx+b 满足x=0时,y=-1;x=1时,y=1,则这个一次函数是( •) A .y=2x+1 B .y=-2x+1 C .y=2x-1 D .y=-2x-14.下列函数中,在同一坐标系内的图象与函数y=2x-1的图象相互平行的是 ( ) A.21y x =-+B. 2(1)y x =+C. 132y x =+ D. 122y x =-- 5.将直线y=2x 向上平移两个单位,所得的直线是 ( )A.y=2x+2B.22y x =-C. 2(2)y x =-D. 2(2)y x =+ 6.已知一次函数y=kx+b ,当x=1时,y=2,且它的图象与y•轴交点的纵坐标是3,则此函数的解析式为( )A .0≤x ≤3B .-3≤x ≤0C .-3≤x ≤D .不能确定 二、填空题7.函数y=2x -1经过 __________. 象限,y=-2x -1 经过 __________. 象限,y=2x+1经过 __________.象限 y=-2x+1经过 __________象限8.如果直线y=-2x+b 经过点(0,1),那么这条直线的解析式为 9.函数36-=x y 向上平移4个单位后得到新函数的解析式是 。

10.若y +3与x 成正比例,且x =2时,y =5,则x =5时,y = . 11.若2-y 与1+x 成正比例,比例系数是3,则y 与x 得关系式为__________,y 是x 的__________函数. 三、解答题12.已知一次函数图象过点(3,5)与(-4,-9),求这个一次函数的解析式.13.已知一次函数y=(1-2k)x+k 的函数值y 随x 的增大而增大,且与y 轴交于正半轴,求k的取值范围14.已知一次函数y=kx+b的图象与x轴交于点A(-6,0),与y轴交于点B•,•若△AOB的面积是12,且y随x的增大而减小,你能确定这个一次函数的关系式吗?15.玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子的价格打8折。

人教版数学八年级下册19.2.2 一次函数(1)同步练习(解析版)

人教版数学八年级下册19.2.2  一次函数(1)同步练习(解析版)

19.2.2 一次函数(1)基础闯关全练1.下列函数关系式:①y=-x;②y=2x+11;③y=x²+x+1;④y=x1,其中一次函数的个数是()A.1 B.2 C.3 D.42.函数y-(m-2)x+(m+1)是关于x的一次函数,那么m的取值范围是()A.m≠2 B.m≠-1 C.m=-1 D.m≠2且m≠-13.一次函数y=-2x+3的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在平面直角坐标系中,一次函数y=kx+b的图象如图19-2-2-1-1所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<O,b>0 D.k<0,b<0 5.一次函数y=kx+2(k为常数,且k≠0)的图象如图19-2-2-1-2所示,则k的可能值为_______.(写出一个即可)能力提升全练1.已知一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k>2,m<0 2.把函数y=x向上平移3个单位长度,下列点在该平移后的直线上的是()A.(2,2) B.(2,3) C.(2,4) D.(2,5)3.如图19-2-2-1-3,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大 B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小三年模拟全练一、选择题1.下列函数关系式:①y=-2x+1;②y=x;③y=2x²+1;④y=123x,其中一次函数有()A.1个 B.2个 C.3个 D.4个2.关于函数y=-2x+1,下列结论正确的是()A.图象必经过点(-2,1) B.图象经过第一、二、三象限C.当x>21时,y<0 D. y随x的增大而增大3.在如图19-2-2-1-4所示的计算程序中,y与x之间的函数关系所对应的图象应为()A .B .C.D .二、填空题4.若一次函数y=(1-2k)·x+k的图象经过第一、二、三象限,则k的取值范围是_______.三、解答题5.已知一次函数y=(3-m)x+m-5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.五年中考全练一、选择题1.若b>0,则一次函数y=-x+b的图象大致是()A .B .C .D .2.已知点(-1,y₁),(4,y₂)在一次函数y=3x-2的图象上,则y₁,y₂,0的大小关系是 ( )A.O<y₁<y₂B.y₁<O<y₂C.y₁<y₂<0 D.y₂<O<y₁二、填空题3.将直线y=x向上平移2个单位长度,平移后直线的解析式为_______.4.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P₁(x₁,y₁.),P₂(x₂,y₂)两点,若x₁<x₂,则y₁_______y₂(填“>”“<”或“=”).5.已知点A是直线y=x+1上一点,其横坐标为-21,若点B与点A关于y轴对称,则点B的坐标为_________.核心素养全练1.已知关于x的一次函数y=(a+3)x+(b-2).(1)当a为何值时,y随x的增大而减小?(2)当a,b为何值时,函数图象与y轴的交点在x轴上方?(3)当a,b为何值时,函数图象经过第一、三、四象限?(4)当a,b为何值时,函数图象经过原点?(5)当a,b为何值时,函数的图象与直线y=-3x平行?2.一次函数y=(m-2)x+m²-1的图象经过点A(0,3).(1)求m的值,并写出函数解析式;(2)若(1)中的函数图象与x轴交于点B,直线y=(n+2)x+n²-1也经过点A(0,3),且与x轴交于点C,求线段BC的长.19.2.2一次函数(1)1.B①y=-x是一次函数;②y=2x+11是一次函数;③④不符合一次函数的定义,故不是一次函数,故选B.2.A根据一次函数的定义知,一次项系数不等于0.即m-2≠0.解得m≠2.3.C ∵k=-2<0,∴一次函数y=-2x+3的图象必过第二、四象限,∴b=3,∴函数图象交y轴于正半轴,∴函数图象经过第一、二、四象限,不经过第三象限.故选C.4.A由图象可知,直线从左往右呈上升趋势,故k>0,图象与y轴的交点在y轴正半轴上,故b>0.5.答案 -2(答案不唯一)解析观察图象可知,OB<OA,k<0.当x=0时,y=kx+2=2,∴OA=2,令OB=1.则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.1.A整理得y=(k-2)x-m,因为函数图象与y轴负半轴相交,所以-m<0.即m>0,又函数值y随x的增大而减小,所以k-2<0.即k<2.故选A.2.D 一次函数的平移规律是“左加右减,上加下减”,故把函数y=x向上平移3个单位长度后的函数关系式为y=x+3,当x=2时.y=2+3=5.故选D .3.A 由函数图象可知,当x <1时,y 随x 的增大而增大,因此A 正确,B 错误;当1<x <2时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,因此C 、D 错误,故选A .一、选择题1.B ①y=-2x+1和②y=x 是一次函数,③④不符合一次函数的定义.故选B .2.C ∵k <0,所以y 随x 的增大而减小,故D 错误;∵k <0,b >0,∴图象经过一、二、四象限,故B 错误;当x=-2时,y=4+1=5,故A 错误.故选C .3.A 由题意得y=-2x+3,所以当x=0时,y=3;当y=0时,x=1.5,即图象经过点(0,3)和点(1.5,0),选项A 符合要求,故选A .二、填空题4.答案0<k <21解析 ∵一次函数y=(1-2k)x+k 的图象经过第一、二、三象限,∴⎩⎨⎧-,0,021>>k k ∴0<k<21. 三、解答题5.解析(1)∵一次函数图象过原点, ∴⎩⎨⎧,0=5-m ,0≠m -3解得m=5.(2)∵一次函数的图象经过第二、三、四象限,⎩⎨⎧,<<05-m ,0m -3∴3<m <5. 一、选择题1.C 对于一次函数y=kx+b(k ≠0),当k >0时,图象从左到右上升;当k <0时,图象从左到右下降;当b >0时,图象与y 轴的交点在y 轴正半轴;当b=0时,图象与y轴的交点在原点;当b <0时,图象与y 轴的交点在y 轴负半轴∵-1<0,∴图象从左到右下降,又b >0,∴图象与y 轴的交点在y 轴正半轴,故选C .2.B 解法一:将x=-1代入y=3x-2,得y=-5,∴y ₁=-5;将x=4代入y=3x-2,得y=10,∴y ₂=10,所以y ₁<O <y ₂.故选B .解法二:∵k=3>0,∴y 随x 的增大而增大,易知x=32时,y=0,又-1<32<4,∴y ₁<0<y ₁,故选B .二、填空题 3.答案y=x+2解析 由平移规律“左加右减,上加下减”,可知向上平移2个单位长度后,直线的解析式为y=x+2. 4.答案 >解析 一次函数y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,因为y=-2x+1中的k=-2<0,所以当x ₁<x ₂时,y ₁>y ₂. 5.答案(2121,)解析把x=-21代入y=x+1得y=21,∴点A 的坐标为(-2121,),∵点8和点A 关于y 轴对称,∴点B 的坐标为(2121,).1.解析(1)由一次函数的性质可知,当a+3<0,即a <-3时,y 随x 的增大而减小. (2)由题意知,当a+3≠0且b-2>0时,即当a ≠-3且b >2时,函数图象与y 轴的交点在x 轴上方.(3)因为函数图象经过第一、三、四象限,所以a+3>0且b-2<0.所以a >-3且b <2,即当a >-3且b <2时,函数图象经过第一、三、四象限.(4)由题意,得a+3≠0且b-2=0,解得a ≠-3且b=2.即当a ≠-3且b=2时,函数图象经过原点.(5)由题意,得a+3=-3且b-2≠0,解得a=-6且b ≠2.所以当a=-6且b ≠2时,函数图象与直线y=-3x 平行. 2.解析(1)由题意得m ²-1=3, 所以m=±2. 又m-2≠0,即m ≠2, 所以m=-2,所以y=-4x+3.(2)由题意可得B 点的坐标为(43,0). 因为直线y=(n+2)x+n ²-1经过点A(0,3), 所以n ²-1=3,所以n=±2. 又n+2≠0.即n ≠-2.所以n=2. 所以y=4x+3,所以C 点的坐标为(-43,0).所以BC=2343--43=⎪⎭⎫ ⎝⎛.。

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

5.(2017湖南邵阳一模)一次函数y=kx+2(k为常数,且k≠0)的图象如图19-
2-2-1-2所示,则k的可能值为
.(写出一个即可)
答案 -2(答案不唯一)
图19-2-2-1-2
解析 观察图象可知,OB<OA,k<0.
当x=0时,y=kx+2=2,∴OA=2,
令OB=1,则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.
4
4
故当k=-1时,直线与x轴交于点
3 4
,
0
.
(4)当
1 2k
3k 1
0, 即
0,
1 3
<k<
1 2
时,直线经过第二、三、四象限.
(5)当1-3k=-3,2k-1≠-5,
即k= 4 时,已知直线与直线y=-3x-5平行.
3
方法归纳 对于一次函数y=kx+b,(1)判断k值符号的方法:①增减性法, 当y随x增大而增大时,k>0;反之,k<0.②直线升降法,当直线从左到右上升 时,k>0;反之,k<0.③经过象限法,直线过第一、三象限时,k>0;直线过第 二、四象限时,k<0.(2)判断b值符号的方法:与y轴交点法,即直线y=kx+b 若与y轴交于正半轴,则b>0;若与y轴交于负半轴,则b<0;若与y轴交于原 点,则b=0.
例3 下列函数图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的 是( )
解析 一次函数y=mx-(m-3)中,x的系数m决定着直线从左至右呈上升或 下降的趋势,-(m-3)即3-m决定着直线与y轴的交点是在正半轴、负半轴 还是原点,这两个方面不得有矛盾之处,应该结合一次函数的图象进行 分析.

(部编本人教版)最新八年级数学下册 第十九章19.2.2 一次函数 第2课时 一次函数的图象与性质练习【经典练

(部编本人教版)最新八年级数学下册 第十九章19.2.2 一次函数 第2课时 一次函数的图象与性质练习【经典练

第2课时 一次函数的图象与性质知识点 1 一次函数的图象1.[2018·抚顺]一次函数y =-x -2的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限2.[2018·湘西州]一次函数y =x +2的图象与y 轴的交点坐标为( )A .(0,2)B .(0,-2)C .(2,0)D .(-2,0)3.若点(3,1)在一次函数y =kx -2的图象上,则k 的值是( )A .5B .4C .3D .14.分别在同一平面直角坐标系中画出下列各函数的图象,并指出各函数图象的共同之处.(1)y =12x +2;(2)y =-x +2;(3)y =2x +2.知识点 2 一次函数图象的平移5.[2018·南充]直线y =2x 向下平移2个单位长度得到的直线的解析式是( )A .y =2(x +2)B .y =2(x -2)C .y =2x -2D .y =2x +26.[2018·娄底]将直线y =2x -3向右平移2个单位长度,再向上平移3个单位长度后,所得的直线的解析式为( )A .y =2x -4B .y =2x +4C .y =2x +2D .y =2x -27.若直线y =kx +2是由直线y =-2x -1平移得到的,则k =________,即直线y =-2x -1沿y 轴向________平移了________个单位长度.知识点 3 一次函数的性质8.对于函数y =2x -1,下列说法正确的是( )A .它的图象过点(1,0)B .y 随x 的增大而减小C .它的图象经过第二象限D .当x >1时,y >09.已知一次函数y =(m +2)x +1,若y 随x 的增大而增大,则m 的取值范围是________.10.[2018·济宁]在平面直角坐标系中,已知一次函数y =-2x +1的图象经过P 1(x 1,y1),P2(x2,y2)两点,若x1<x2,则y1________y2(填“>”“<”或“=”).11.[2018·眉山]已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且该直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________(用“>”连接).12.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第________象限.13.[2018·上海]如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x值的增大而________(填“增大”或“减小”).14.已知关于x的函数y=(m-1)x+1-3m为一次函数,试根据下列各条件确定m的值或取值范围.(1)该函数图象经过原点;(2)该函数图象与y轴相交于点(0,2);(3)y随x的增大而减小.15.[2018·湘潭]若b>0,则一次函数y=-x+b的图象大致是( )图19-2-816.[2018·贵阳]一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可能为( )A.(-5,3) B.(1,-3)C.(2,2) D.(5,-1)17.两条直线y=ax+b与y=bx+a在同一平面直角坐标系中的位置可能是( )图19-2-918.写出一个图象过点(0,3),且函数值y随自变量x的增大而减小的一次函数解析式:________(填一个答案即可).19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y 随x的增大而减小,则k所有可能取得的整数值为________.20.若函数y=2x+3与y=4x-b的图象交x轴于同一点,则b的值为________.21.如图19-2-10,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A (1,-2),则k =________,b =________.图19-2-1022.已知直线y =-12x -6与x 轴交于点A ,与y 轴交于点B ,求这条直线与坐标轴围成的三角形的面积.23.已知直线y =(1-3k )x +2k -1.(1)当k 为何值时,该直线经过第二、三、四象限?(2)当k 为何值时,该直线与直线y =-3x -5平行?拓广探究创新练 冲刺满分24.如图19-2-11,已知直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,点P 在坐标轴上,且PO =2AO .求△ABP 的面积.图19-2-11教师详解详析1.D [解析] 由一次函数图象的特点可知,当k >0时,图象必过第一、三象限;当k <0时,图象必过第二、四象限;当b >0时,图象必过第一、二象限;当b <0时,图象必过第三、四象限.∵-1<0,-2<0,∴一次函数y =-x -2的图象经过第二、三、四象限.故选D.2.A 3.D4.解:图象略.共同点:函数图象都是一条直线,且均与y 轴交于点(0,2).5.C [解析] 直线y =2x 向下平移2个单位长度得到直线的解析式是y =2x -2,故选C.6.A [解析] 根据图象平移时“左加右减,上加下减”的规律,向右平移2个单位长度后为y =2(x -2)-3=2x -7,再向上平移3个单位长度后为y =2x -7+3=2x -4.故选A.7.-2 上 38.D [解析] A .把x =1代入解析式得到y =1,即函数图象经过点(1,1),不经过点(1,0),故本选项错误;B.函数y =2x -1中,k =2>0,则y 随x 的增大而增大,故本选项错误;C.函数y =2x -1中,k =2>0,b =-1<0,则该函数图象经过第一、三、四象限,故本选项错误;D.当x >1时,2x -1>1,则y >1,故y >0正确,故本选项正确.故选D.9.m >-210.> [解析] 因为y =-2x +1中的k =-2<0,所以y 随x 的增大而减小,所以当x 1<x 2时,y 1>y 2.11.y 1>y 2 [解析] 由于一次函数的图象经过第一、二、四象限,∴k <0,∴y 随x 的增大而减小,∴当x 1<x 2时,y 1>y 2.12.四 [解析] ∵在一次函数y =kx +2中,y 随x 的增大而增大,∴k >0.∵2>0,∴此函数的图象经过第一、二、三象限,不经过第四象限.13.减小 [解析] 因为一次函数图象经过点(1,0),故将其代入y =kx +3,得0=k +3,解得k =-3<0,所以y 的值随x 值的增大而减小.14.解:(1)由1-3m =0且m -1≠0,得m =13. (2)把点(0,2)代入,得1-3m =2,解得m =-13. (3)由m -1<0,得m <1.15.C [解析] ∵k =-1<0,∴图象从左到右是下降的.∵b >0,∴图象与y 轴的正半轴相交.故选C.16.C [解析] ∵一次函数y =kx -1中,y 的值随x 值的增大而增大,∴k >0.A .把(-5,3)代入y =kx -1,得k =-45<0,不符合题意; B .把(1,-3)代入y =kx -1,得k =-2<0,不符合题意;C .把(2,2)代入y =kx -1,得k =32>0,符合题意; D .把(5,-1)代入y =kx -1,得k =0,不符合题意.故选C.17.A [解析] 分四种情况:①当a >0,b >0时,直线y =ax +b 和y =bx +a 均经过第一、二、三象限,选项中不存在此情况;②当a >0,b <0时,直线y =ax +b 经过第一、三、四象限,直线y =bx +a 经过第一、二、四象限,选项A 符合此条件;③当a <0,b >0时,直线y =ax +b 经过第一、二、四象限,直线y =bx +a 经过第一、三、四象限,选项A 符合此条件;④当a <0,b <0时,直线y =ax +b 经过第二、三、四象限,直线y =bx +a 经过第二、三、四象限,选项中不存在此情况.故选A.18.答案不唯一,如y =-x +319.-1 [解析] 由题意得⎩⎪⎨⎪⎧2k +3>0,k <0,解得-32<k <0.∵k 为整数,∴k =-1. 20.-6 [解析] 函数y =2x +3的图象与x 轴的交点坐标是(-32,0),函数y =4x -b 的图象与x 轴的交点坐标是(b 4,0),所以-32=b 4,解得b =-6. 21.2 -4 [解析] ∵一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行, ∴k =2,∴y =2x +b ,把A (1,-2)代入y =2x +b ,得2+b =-2,解得b =-4.22.解:当x =0时,y =-6.当y =0时,即-12x -6=0,解得x =-12, 所以点A ,B 的坐标分别为(-12,0),(0,-6),所以OA =||-12=12,OB =||-6=6,所以这条直线与坐标轴围成的三角形的面积为12OA ·OB =12×12×6=36. 23.解:(1)当⎩⎪⎨⎪⎧1-3k <0,2k -1<0,即13<k <12时,该直线经过第二、三、四象限. (2)当⎩⎪⎨⎪⎧1-3k =-3,2k -1≠-5,即k =43时,该直线与直线y =-3x -5平行. 24.解:令y =0,则由0=2x +4得x =-2,∴A (-2,0),∴AO =2.令x =0,则y =2×0+4=4,∴B (0,4),∴BO =4.∵PO =2AO =4,点P 在坐标轴上,∴点P 有以下四种情况:(1)当点P 在x 轴的负半轴上时,AP =2,∴S △ABP =12AP ·BO =12×2×4=4; (2)当点P 在x 轴的正半轴上时,AP =6,∴S △ABP =12AP ·BO =12×6×4=12; (3)当点P 在y 轴的负半轴上时,PB =PO +BO =4+4=8,∴S △ABP =12PB ·AO =12×8×2=8; (4)当点P 在y 轴的正半轴上时,PO =4,点P ,B 重合,△ABP 不存在.。

人教版八年级下册八年级下第19章《一次函数》单元测试题及答案(1)

人教版八年级下册八年级下第19章《一次函数》单元测试题及答案(1)

新人教版八年级数学第19章《一次函数》单元测试(1)时间:10分钟 满分:120分一.选择题(每小题3分,共30分)1.函数y=21-x 中,自变量x 的取值范围是( )A.x >2B.x <2C.x ≠2D.x ≠-2 2.关于函数y=-2x+1,下列结论正确的是( )A.图形必经过点(-2,1)B.图形经过第一、二、三象限C.当x >21时,y <0 D.y 随x 的增大而增大 3.如图,一次函数y=kx+b(k ≠0) 的图象经过A,B 两点,则关于x 的不等式kx+b <0的解集是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤14.直线y=-2x+m 与直线y=2x-1的焦点在第四象限,则 m 的取值范围是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤1 5.若一次函数y=(1-2m)x+m 的图象经过点A(x 1, y 1)和点B(x 2,y2),当x 1<x 2时,y 1<y2,且与y 轴相交于正半轴,则 m 的取值范围是( )A.m >0B.m <21C.0<m <21D. .m >216.若函数y= 则当函数值y=8时,自变量x 的值是( ) A. 6±B.4C. 6±或4 D.4或-67.一艘轮船在同一航线上往返于甲、乙两地 ,已知轮船在静水中的速度为15㎞/h,水流速度为5 ㎞/h,轮船先从甲地顺水航行到乙地在乙地停留一段时间后,又从乙地逆水航行返回甲地,设轮船从甲地出发所用时间为 t(h),航行的路程s(㎞),则s 与t 的函数图象大致是( )C8.一次函数y=kx+b 的图象如图所示,当x <1时,y 的取值范围是( ) A.-2<y <0 B. -4<y <0 C. y <-2 D. y <-4 9.将直线y=-2x 向右平移2个单位所得直线的解析式为( )A.y=-2x+2B.y=-2(x+2)C.y=-2x-2D.y=-2(x-2)10.如图,小亮在操场上玩,一段时间内沿M →A →B →M 的路径匀速散步,能近似刻画小亮到出发点M 的距离y 与x 之间关系的函数图象是( )二. 填空题(每小题3分,共24分)11.将直线y=-2x+3向下平移2个单位得到的直线为 。

人教版八年级数学下册《19.2 一次函数》 同步练习 包含答案

人教版八年级数学下册《19.2 一次函数》 同步练习  包含答案

19.2 一次函数一.选择题(共10小题)1.若函数y=2x+(﹣3﹣m)是正比例函数,则m的值是()A.﹣3B.1C.﹣7D.32.若y=(m﹣1)x2﹣|m|+3是关于x的一次函数,则m的值为()A.1B.﹣1C.±1D.±23.如果y=(1﹣m)x是正比例函数,且y随x的增大而减小,则m的值为()A.m=﹣B.m=C.m=3D.m=﹣34.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的大致位置是()A.B.C.D.5.将直线y=﹣2x﹣2向上平移2个单位长度,可得直线的解析式为()A.y=2x B.y=﹣2x﹣4C.y=﹣2x D.y=﹣2x+46.已知一次函数y=mx+n的图象经过一、三、四象限,则一次函数y=mnx+m﹣n的图象大致是()A.B.C.D.7.一次函数y=2x﹣3与y轴的交点坐标为()A.(0,﹣3)B.(0,3)C.(,0)D.(﹣,0)8.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=19.在平面直角坐标系中,一次函数y=﹣2x+1的图象经过P1(﹣1,y1),P2(2,y2)两点,则()A.y1>y2B.y1<y2C.y1=y2D.y1≥y210.两个一次函数y1=ax+b与y2=bx+a(a,b为常数,且ab≠0),它们在同一个坐标系中的图象可能是()A.B.C.D.二.填空题(共4小题)11.如果正比例函数y=(k﹣3)x的图象经过第一、三象限,那么k的取值范围是.12.正比例函数的图象是,当k>0时,直线y=kx过第象限,y随x的增大而.13.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是.14.如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),则直线BC的函数表达式为.三.解答题15.已知一次函数y=kx+b(k≠0)的图象交x轴于点A(2,0),交y轴于点B,且△AOB 的面积为3,求此一次函数的解析式.16.正比例函数y=kx中,当x增加2时,y增加3,求该正比例函数的解析式.17.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离“,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)=;当k=1时,求d(L,△ABC)=;(2)若d(L,△ABC)=0.直接写出k的取值范围;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤1,求出b的取值范围.18.如图,直线y=x+4与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BC与x轴相交于点C,若△ABC的面积是16,求点C的坐标.19.已知正比例函数y=kx的图象经过点A(2,4),点B(6,0)为x轴正半轴上的一点.(1)求正比例函数的解析式;(2)点P为正比例函数图象上的一个动点,若△ABP为等腰三角形,求点P的坐标.20.在平面直角坐标系xOy中,函数y1=x﹣2的图象与函数y2=的图象在第一象限有一个交点A,且点A的横坐标是6.(1)求m的值;(2)补全表格并以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,补充画出y2的函数图象;x﹣3﹣2﹣101 1.2 1.523456789 y2﹣1157 5.2 3.52112(3)写出函数y2的一条性质:.(4)已知函数y1与y2的图象在第一象限有且只有一个交点A,若函数y3=x+n与y2的函数图象有三个交点,求n的取值范围.参考答案一.选择题(共10小题)1.A.2.B.3.B.4.C.5.C.6.A.7.A.8.C.9.A.10.B.二.填空题(共4小题)11.k>3.12.一条直线;一、三;增大.13.x<2.14.y=﹣x+1.三.解答题15.解:∵A(2,0),S△AOB=3,∴OB=3,∴B(0,3)或(0,﹣3).①当B(0,3)时,把A(2,0)、B(0,3)代入y=kx+b中得∴,解得:.∴一次函数的解析式为.②当B(0,﹣3)时,把A(2,0)、B(0,﹣3)代入y=kx+b中得,,解得:.∴.综上所述,该函数解析式为y=﹣x+3或y=x﹣3.16.解:∵当x增加2时,y增加3,∴y+3=k(x+2),y+3=kx+2k,∵y=kx,∴3=2k,解得:k=,∴正比例函数解析式为y=x.17.解:(1)一次函数y=kx+2的图象与y轴交点D(0,2),d(点D,△ABC)表示点D到△ABC的最小距离,就是点D到点A的距离,即:AD=2﹣1=1,∴d(点D,△ABC)=1当k=1时,直线y=x+2,此时直线L与AB所在的直线平行,且△ABC和△DOE均是等腰直角三角形,d(L,△ABC)表示直线L到△ABC的最小距离,就是图中的AF,在等腰直角三角形ADF中,AD=1,AF=1×=d(L,△ABC)=故答案为:1,;(2)若d(L,△ABC)=0.说明直线L:y=kx+2与△ABC有公共点,因此有两种情况,即:k>0或k<0,仅有一个公共点时如图所示,即直线L 过B点,或过C点,此时可求出k=2或k=﹣2,根据直线L与△ABC有公共点,∴k≥2或k≤﹣2,答:若d(L,△ABC)=0时.k的取值范围为:k≥2或k≤﹣2.(3)函数y=x+b的图象W与x轴、y轴交点所围成的三角形是等腰直角三角形,并且函数y=x+b的图象与AB平行,当d(W,△ABC)=1时,如图所示:在△AGM中,AG=GM=1,则AM=,OM=1+,M(0,1+);即:b=1+;同理:OQ=OP=1+,Q(0,﹣1﹣),即:b=﹣1﹣,若d(W,△ABC)≤1,即b的值在M、N之间∴﹣1﹣≤b≤1+答:若d(W,△ABC)≤1,b的取值范围为﹣1﹣≤b≤1+.18.解:(1)把x=0代入y=x+4得:y=4,即点B的坐标为:(0,4),把y=0代入y=x+4得:x+4=0,解得:x=﹣6,即点A的坐标为:(﹣6,0),S△AOB==12,即△AOB的面积为12,(2)根据题意得:点B到AC的距离为4,S△ABC==16,解得:AC=8,即点C到点A的距离为8,﹣6﹣8=﹣14,﹣6+8=2,即点C的坐标为:(﹣14,0)或(2,0).19.解:(1)把A(2,4)代入y=kx得2k=4,解得k=2,所以正比例函数的解析式为y=2x;(2)设P(t,2t),AP2=(t﹣2)2+(2t﹣4)2,PB2=(t﹣6)2+(2t)2,AB2=(6﹣2)2+(0﹣4)2=32,当AP=PB时,(t﹣2)2+(2t﹣4)2=(t﹣6)2+(2t)2,解得t=﹣2,此时P点坐标为(﹣2,﹣4);(t﹣2)2+(2t﹣4)2=32,解得t=,此时P点坐标为(,当AP=AB时,)或(,);当PB=AB时,(t﹣6)2+(2t)2=32,解得t1=,t2=2(舍去),此时P点坐标为(,).综上所述,满足条件的P点坐标为(﹣2,﹣4)或(,)或(,)或(,).20.解:(1)在y1=x﹣2中,令x=6,则y=2,即A(6,2),代入y=x+﹣6,可得2=6+﹣6,解得m=12;(2)∵y2=,∴当x=﹣1时,y2=3;当x=5时,y2=;如图所示:(3)由图可得,函数y2的一条性质:当x≤1时,y2随着x的增大而增大;故答案为:当x≤1时,y2随着x的增大而增大;(4)函数y1与y2的图象在第一象限有且只有一个交点A,当n=﹣2时,函数y3=x+n与函数y1=x﹣2的图象重合,此时函数y3=x+n与y2的函数图象有两个交点,当函数y3=x+n的图象经过(1,7)时,函数y3=x+n与y2的函数图象有两个交点,此时,把(1,7)代入y3=x+n,可得n=;∵函数y3=x+n与y2的函数图象有三个交点,∴n的取值范围为﹣2<n<.。

人教版八年级下数学《第19章一次函数》专项训练含答案

 人教版八年级下数学《第19章一次函数》专项训练含答案

人教版八年级下数学《第19章一次函数》专项训练含答案专训1.一次函数的两种常见应用名师点金:一次函数的两种常见应用主要体现在解决实际问题和几何问题.能够从函数图象中得到需要的信息,并求出函数解析式从而解决实际问题和几何问题,是一次函数应用价值的体现,这种题型常与一些热点问题结合,考查学生综合分析问题、解决问题的能力.利用函数图象解决实际问题题型1 行程问题(第1题)1.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距离y(km )与甲车行驶的时间t(h )之间的函数关系如图所示,则下列结论①A ,B 两城相距300 km ;②乙车比甲车晚出发1 h ,却早到1 h ;③乙车出发后2.5 h 追上甲车;④当甲、乙两车相距50 km 时,t =54或154. 其中正确的结论有( )A.1个B.2个C.3个D.4个2.甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了________h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.(第2题)题型2工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数解析式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(第3题)题型3实际问题中的分段函数4.某种铂金饰品在甲、乙两个商店销售.甲店标价为477元/g,按标价出售,不优惠;乙店标价为530元/g,但若买的铂金饰品质量超过3 g,则超出部分可打八折.(1)分别写出到甲、乙两个商店购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数解析式;(2)李阿姨要买一条质量不少于4 g且不超过10 g的此种铂金饰品,到哪个商店购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10 t以内(包括10 t)的用户,每吨收水费a元;一个月用水超过10 t的用户,10 t水仍按每吨a元收费,超过10 t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8 t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数解析式.(第5题)利用一次函数解几何问题题型4利用图象解几何问题6.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;(2)求出点P在CD上运动时S与t之间的函数解析式;(3)当t为何值时,三角形APD的面积为10 cm2?(第6题)题型5利用分段函数解几何问题(分类讨论思想、数形结合思想)7.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD 的面积为y.(当点P与点A或D重合时,y=0)(1)写出y与x之间的函数解析式;(2)画出此函数的图象.(第7题)专训2.二元一次方程(组)与一次函数的四种常见应用名师点金:二元一次方程(组)与一次函数的关系很好地体现了“数”与“形”的结合,其常见应用有:利用两条直线的交点坐标确定方程组的解;利用方程(组)的解求两直线的交点坐标;方程组的解与两个一次函数图象位置的关系;利用二元一次方程组求一次函数的解析式.利用两直线的交点坐标确定方程组的解1.已知直线y =-x +4与y =x +2如图所示,则方程组⎩⎪⎨⎪⎧y =-x +4,y =x +2 的解为( )(第1题)A .⎩⎪⎨⎪⎧x =3y =1 B .⎩⎪⎨⎪⎧x =1y =3 C .⎩⎪⎨⎪⎧x =0y =4 D .⎩⎪⎨⎪⎧x =4y =0 2.已知直线y =2x 与y =-x +b 的交点坐标为(1,a),试确定方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解和a ,b 的值.3.在平面直角坐标系中,一次函数y =-x +4的图象如图所示.(1)在同一坐标系中,作出一次函数y =2x -5的图象;(2)用作图象的方法解方程组⎩⎪⎨⎪⎧x +y =4,2x -y =5; (3)求一次函数y =-x +4与y =2x -5的图象与x 轴所围成的三角形的面积.(第3题)利用方程(组)的解求两直线的交点坐标4.已知方程组⎩⎪⎨⎪⎧-mx +y =n ,ex +y =f 的解为⎩⎪⎨⎪⎧x =4,y =6,则直线y =mx +n 与y =-ex +f 的交点坐标为( )A .(4,6)B .(-4,6)C .(4,-6)D .(-4,-6)5.已知⎩⎪⎨⎪⎧x =3,y =-2和⎩⎪⎨⎪⎧x =2,y =1是二元一次方程ax +by =-3的两个解,则一次函数y =ax +b 的图象与y 轴的交点坐标是( )A .(0,-7)B .(0,4)C .⎝ ⎛⎭⎪⎫0,-37D .⎝ ⎛⎭⎪⎫-37,0 方程组的解与两个一次函数图象位置的关系6.若方程组⎩⎪⎨⎪⎧x +y =2,2x +2y =3没有解,则一次函数y =2-x 与y =32-x 的图象必定( )A .重合B .平行C .相交D .无法确定7.直线y =-a 1x +b 1与直线y =a 2x +b 2有唯一交点,则二元一次方程组⎩⎪⎨⎪⎧a 1x +y =b 1,a 2x -y =-b 2的解的情况是( ) A .无解 B .有唯一解C .有两个解D .有无数解利用二元一次方程组求一次函数的解析式8.已知一次函数y =kx +b 的图象经过点A(1,-1)和B(-1,3),求这个一次函数的解析式.9.已知一次函数y =kx +b 的图象经过点A(3,-3),且与直线y =4x -3的交点B 在x 轴上.(1)求直线AB 对应的函数解析式;(2)求直线AB 与坐标轴所围成的三角形BOC(O 为坐标原点,C 为直线AB 与y 轴的交点)的面积.答案专训11.B2.解:(1)0.5(2)设线段DE对应的函数解析式为y=kx+b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y=kx+b可得,80=2.5k +b,300=4.5k+b.解得k=110,b=-195.所以y=110x-195(2.5≤x≤4.5).(3)设线段OA对应的函数解析式为y=k1x(0≤x≤5).将A(5,300)的坐标代入y=k1x可得,300=5k1,解得k1=60.所以y=60x(0≤x≤5).令60x=110x-195,解得x=3.9.故轿车从甲地出发后经过3.9-1=2.9(h)追上货车.3.解:(1)设甲组加工零件的数量y与时间x之间的函数解析式为y=kx,因为当x=6时,y=360,所以k=60.即甲组加工零件的数量y与时间x之间的函数解析式为y=60x(0≤x≤6).(2)a=100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8 h时共加工零件100+60×2.8=268(件),所以装满第1箱的时刻在2.8 h 后.设经过x 1 h 装满第1箱.则60x 1+100÷2×2(x 1-2.8)+100=300,解得x 1=3.从x =3到x =4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件),所以x>4.8时,才能装满第2箱,此时只有甲组继续加工. 设装满第1箱后再经过x 2 h 装满第2箱.则60x 2+(4.8-3)×100=300,解得x 2=2.故经过3 h 恰好装满第1箱,再经过2 h 恰好装满第2箱.4.解:(1)y 甲=477x ,y 乙=⎩⎪⎨⎪⎧530x (0≤x ≤3),424x +318(x >3). (2)当477x =424x +318时,解得x =6.即当x =6时,到甲、乙两个商店购买所需费用相同; 当477x<424x +318时,解得x<6,又x ≥4,于是,当4≤x <6时,到甲商店购买合算; 当477x>424x +318时,解得x>6,又x ≤10,于是,当6<x ≤10时,到乙商店购买合算.5.解:(1)当x ≤10时,由题意知y =ax.将x =10,y =15代入,得15=10a ,所以a =1.5.故当x ≤10时,y =1.5x.当x =8时,y =1.5×8=12. 故应交水费12元.(2)当x >10时,由题意知y =b(x -10)+15.将x =20,y =35代入,得35=10b +15,所以b =2.故当x >10时,y 与x 之间的函数解析式为y =2x -5.点拨:本题解题的关键是从图象中找出有用的信息,用待定系数法求出解析式,再解决问题.6.解:(1)6;2;18(2)PD =6-2(t -12)=30-2t ,S =12AD·PD=12×6×(30-2t)=90-6t ,即点P 在CD 上运动时S 与t 之间的函数解析式为S =90-6t(12≤t ≤15).(3)当0≤t ≤6时易求得S =3t ,将S =10代入,得3t =10,解得t =103;当12≤t ≤15时,S =90-6t ,将S =10代入,得90-6t =10,解得t =403.所以当t 为103或403时,三角形APD 的面积为10 cm 2. 7.解:(1)点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数解析式不相同,故应分段求出相应的函数解析式.①当点P 在边AB 上运动,即0≤x <3时,y =12×4x =2x ; ②当点P 在边BC 上运动,即3≤x <7时,y =12×4×3=6; ③当点P 在边CD 上运动,即7≤x ≤10时,y =12×4(10-x)=-2x +20. 所以y 与x 之间的函数解析式为y =⎩⎪⎨⎪⎧2x (0≤x <3),6 (3≤x <7),-2x +20 (7≤x ≤10).(2)函数图象如图所示.(第7题)点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数解析式不相同,分段求出相应的函数解析式,再画出相应的函数图象.专训21.B2.解:将(1,a)代入y =2x ,得a =2.所以直线y =2x 与y =-x +b 的交点坐标为(1,2),所以方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解是⎩⎪⎨⎪⎧x =1,y =2.将(1,2)代入y =-x +b ,得2=-1+b ,解得b =3.3.解:(1)画函数y =2x -5的图象如图所示.(2)由图象看出两直线的交点坐标为(3,1),所以方程组的解为⎩⎪⎨⎪⎧x =3,y =1.(第3题)(3)直线y =-x +4与x 轴的交点坐标为(4,0),直线y =2x -5与x 轴的交点坐标为⎝ ⎛⎭⎪⎫52,0,又由(2)知,两直线的交点坐标为(3,1),所以三角形的面积为12×⎪⎪⎪⎪⎪⎪4-52×1=34. 4.A 5.C 6.B 7.B8.解:依题意将A(1,-1)与B(-1,3)的坐标代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =-1,-k +b =3,解得k =-2,b =1, 所以这个一次函数的解析式为y =-2x +1.9.解:(1)因为一次函数y =kx +b 的图象与直线y =4x -3的交点B 在x 轴上,所以将y =0代入y =4x -3中,得x =34,所以B ⎝ ⎛⎭⎪⎫34,0,把A(3,-3),B ⎝ ⎛⎭⎪⎫34,0的坐标分别代入y =kx +b 中,得⎩⎪⎨⎪⎧3k +b =-3,34k +b =0,解得⎩⎪⎨⎪⎧k =-43,b =1.则直线AB 对应的函数解析式为y =-43x +1.(2)由(1)知直线AB 对应的函数解析式为y =-43x +1,所以直线AB 与y 轴的交点C 的坐标为(0,1),所以OC =1,又B ⎝ ⎛⎭⎪⎫34,0,所以OB =34.所以S 三角形BOC =12OB·OC=12×34×1=38.即直线AB 与坐标轴所围成的三角形BOC 的面积为38.。

人教版初中数学八年级下册第19章习题课件 19.2.2 正比例函数的图象和性质

人教版初中数学八年级下册第19章习题课件 19.2.2  正比例函数的图象和性质
【点拨】由题意可知-3m>0,∴m<0,∴P(m,5)在第二象限.
9.已知函数 y=(m-1)xm2-3 是正比例函数. (1)若 y 随 x 的增大而减小,求 m 的值;
解:由题意知m2-3=1且m-1<0,故m=-2.
(2)若函数的图象经过第一、三象限,求 m 的值; 解:由题意知m2-3=1且m-1>0,故m=2.
第十九章 一次函数
19.2 一次函数 第2课时 正比例函数的图象和性质
提示:点击 进入习题
1 原点;第三;第二 2C 3D 4C 5 (1)增大 (2)减小
6A 7B示
1.正比例函数 y=kx(k 是常数,k≠0)的图象是一条经过__原__点____ 的直线,也称它为直线 y=kx; 当 k>0 时,直线经过第一、__第__三____象限; 当 k<0 时,直线经过__第__二____、第四象限.
5.(1)当 k>0 时,函数 y=kx,y 随 x 的增大而__增__大____; (2)当 k<0 时,函数 y=kx,y 随 x 的增大而__减__小____.
6.已知在正比例函数 y=(a-1)x 中,y 随 x 的增大而减小,则 a 的取值范围是( A ) A.a<1 B.a>1 C.a≥1 D.a≤1
7.下列关于正比例函数 y=-5x 的说法中,正确的是( B ) A.当 x=1 时,y=5 B.它的图象是一条经过原点的直线 C.y 随 x 的增大而增大 D.它的图象经过第一、三象限
*8.在正比例函数 y=-3mx 中,函数 y 随 x 的增大而增大,则 P(m,5)在( B ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
(2)在 x 轴上是否存在一点 P,使△AOP 的面积为 5?若存在,求 点 P 的坐标;若不存在,请说明理由.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.2.2 一次函数(特色训练题1)
1.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( )
2.直线y=kx+b不经过第四象限,则( )
>0,b>0 <0,b>0 C.k>0,b≥0 <0,b≥0
3.一次函数y=kx-k(k<0)的图象大致是( )
4.已知直线y=mx+n,其中m、n是常数,且满足:m+n=6,mn=8,那么该直线经过( )
A.第二、三、四象限
B.第一、二、三象限
C.第一、三、四象限
D.第一、二、四象限
5.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第__________象限.
6.点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)的两点,则y1-y2__________0.(填“>”或“<”)
7.如图是一个正比例函数的图象,把该图象向左平移1个单位长度,得到的函数图象的解析式为__________.
8.已知一次函数y=kx-4,当x=2时,y=-3.
(1)求一次函数的解析式;
(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标.
9.作出一次函数y=2x-1的图象,根据图象回答问题:
(1)y的值随x的变化怎样变化?
(2)当x取何值时,y>0,y=0,y<0?
(3)指出图象与两坐标轴的交点坐标.
10.已知函数y=(2m+1)x+m-3.
(1)若函数图象经过原点,求m的值;
(2)若函数的图象平行直线y=3x-3,求m的值;
(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
11.如图,点B是直线y=-x+8在第一象限的一动点,A(6,0),设△AOB的面积为S.
(1)写出S与x之间的函数关系式,并求出x的取值范围;
(2)画出S与x之间函数关系式的图象;
(3)△AOB的面积能等于30吗?为什么?
参考答案 5.四 6.> =-2x-2
8.(1)一次函数的解析式为y=1
2
x-4;
(2)平移后的图象与x轴交点的坐标为(-4,0).
9.图象略.
(1)y随x的增大而增大.
(2)当x>1
2
时,y>0;当x=
1
2
时,y=0;当x<
1
2
时,y<0.
(3)与x轴交点坐标为(1
2
,0);与y轴交点坐标为(0,-1).
10.(1)把(0,0)代入y=(2m+1)x+m-3得m=3;
(2)由2m+1=3,解得m=1;
(3)由2m+1<0,解得m<-1
2
.
11.(1)S=-3x+24(0<x<8).
(2)图象略.
(3)不能.
理由:∵当S=30时,x=-2,点B在第二象限,与题设矛盾,∴△AOB的面积不能等于30.。

相关文档
最新文档