2019届九年级数学上册第四章图形的相似4.2平行线分线段成比例知能演练提升(新版)北师大版
2019九年级数学上册 第四章 图形的相似 2 平行线分线段成比例教案 (新版)北师大版
成 形 终 最 的 场 市 界 世 和 命 革 业 工 次 两 17讲 第 练 标 达 下 课 8) 满 钟 45分 : 间 (时 8) 4分 小 每 12, 共 大 (本 题 择 选 、 一 () 了 映 反 这 术 技 新 用 雇 少 耗 消 本 入 投 多 能 可 发 开 来 汁 脑 尽 绞 都 业 行 各 是 于 。 宜 便 为 极 却 格 价 的 炭 煤 而 惊 得 高 平 水 资 人 工 象 现 种 一 成 形 渐 逐 国 英 , 期 8中 到 纪 6世 1. 成 形 始 初 的 断 垄 业 行 A. 赖 依 的 炭 煤 对 动 启 化 代 近 B. 锐 尖 渐 日 的 盾 矛 资 劳 C. 件 条 特 独 的 启 命 革 力 动 D. 误 B错 化 近 映 反 未 并 除 排 体 无 在 AC两 ; 确 正 项 故 件 条 特 独 其 有 启 命 革 力 见 可 生 而 运 应 明 汽 蒸 动 劳 替 代 器 机 源 能 以 后 此 术 技 新 佣 雇 少 耗 消 多 出 发 开 投 法 设 方 想 业 行 各 是 于 , 象 现 的 宜 便 为 极 却 格 价 炭 煤 、 惊 得 高 资 人 工 了 成 形 渐 逐 国 英 8期 到 纪 16世 中 料 材 D。 选 : 析 解 () 期 初 命 革 业 出 映 反 这 。 恩 尼 奥 · 得 彼 头 他 和 特 科 主 厂 法 拌 搅 铁 熟 产 生 兼 个 顿 普 伦 克 骡 , 工 织 是 原 斯 夫 里 格 哈 者 明 发 的 机 纱 纺 妮 珍 2. 合 结 正 真 未 尚 术 技 和 学 科 A. 现 新 的 学 科 于 赖 依 明 发 术 技 B. 术 技 新 了 断 垄 主 场 工 手 C. 衡 平 不 而 慢 缓 程 进 播 传 术 技 新 D. D 关 无 程 进 播 传 新 符 不 原 斯 夫 里 格 哈 机 妮 珍 C与 误 B错 系 联 接 直 太 有 没 并 ; 确 项 故 合 结 正 真 未 尚 学 了 映 反 人 熟 娴 术 技 是 都 大 者 明 发 命 革 业 次 一 第 知 可 , 息 信 等 头 的 他 和 特 科 主 厂 兼 纱 纺 ” 工 织 “ 料 材 据 A。 选 : 析 解 () 这 力 持 保 能 又 时 同 闲 休 何 任 让 不 换 更 流 里 大 卜 萝 麦 小 、 菁 芜 植 种 上 土 块 的 场 在 别 分 即 ” 制 作 轮 四 “ 做 叫 新 项 一 中 其 。 命 革 术 技 业 农 了 生 发 区 地 部 东 国 英 7, 至 代 160年 3. 程 进 市 城 和 化 业 工 国 英 动 推 A. 给 自 食 粮 现 实 国 英 成 促 B. 大 扩 距 差 济 经 部 西 东 国 英 致 导 C. 幕 序 动 运 地 圈 国 英 开 揭 D. D 关 无 产 生 目 题 与 力 劳 由 量 大 供 它 ” 人 吃 羊 “ 动 运 C圈 较 比 展 发 济 经 西 不 行 进 部 东 仅 误 B错 给 自 食 粮 明 说 未 并 ; 确 正 项 故 础 基 定 奠 化 为 率 用 利 地 土 了 高 提 法 做 一 这 , 术 技 农 前 命 革 业 工 国 英 是 的 映 反 中 料 材 A。 选 : 析 解 () 确 准 最 解 理 点 观 者 作 对 ” 。 卒 为 成 则 钟 时 而 , 狱 监 的 新 种 一 是 厂 工 “ : 说 曾 斯 德 兰 · 卫 大 人 国 英 4. 方 地 的 发 频 罪 犯 了 成 厂 工 A. 段 手 理 管 的 狱 监 仿 模 厂 工 B. 削 剥 的 人 个 对 织 组 断 垄 判 批 C. 活 人 工 了 化 异 产 生 器 机 D. 确 正 活 了 化 异 产 生 器 机 下 度 制 知 可 C据 织 组 断 垄 出 已 明 说 能 B还 段 手 理 管 仿 模 迫 压 削 剥 人 对 现 体 要 主 卒 为 成 则 钟 时 而 ; 误 错 故 , 符 不 思 意 ” 狱 监 的 新 种 一 是 厂 工 “ 料 材 与 A项 D。 选 : 析 解 () ” 身 脱 中 其 能 人 无 界 卷 席 已 日 今 纪 世 个 过 广 推 欧 西 由 , 态 形 济 经 代 现 新 全 这 。 面 两 的 体 一 于 当 相 产 生 业 工 与 义 主 本 资 “ 5. 国 各 美 欧 的 期 晚 纪 19世 于 始 开 A. 路 道 义 主 本 资 了 上 走 国 各 界 世 使 B. 体 整 一 统 向 走 展 发 散 分 由 类 人 使 C. 段 阶 明 文 业 工 到 入 进 史 历 类 人 使 D. 确 正 期 时 明 文 入 进 会 社 动 展 发 义 主 本 资 指 ” 身 脱 其 能 无 界 卷 席 已 日 今 个 两 过 广 推 欧 西 态 形 济 经 代 现 全 一 这 “ 中 据 C根 辟 路 航 新 体 整 向 走 散 分 由 类 人 实 史 合 符 不 对 绝 太 法 B说 ; 误 错 A项 故 国 英 纪 19世 于 始 开 , 产 生 化 业 工 是 的 映 反 料 材 D。 选 : 析 解 () 是 式 形 织 组 符 相 这 与 此 据 , ” 变 转 矿 向 物 植 从 了 现 实 先 率 源 来 力 的 中 动 活 产 生 在 家 国 欧 西 “ 期 时 史 历 一 某 6. 坊 作 庭 家 A. 度 制 厂 工 C. D 二 织 组 断 垄 确 正 次 第 于 出 度 制 B厂 一 这 体 有 没 场 手 ; 误 错 A项 故 面 方 是 要 主 坊 作 庭 代 时 汽 蒸 入 进 命 革 业 工 始 开 英 知 可 , ” 变 转 矿 向 物 植 从 了 现 实 先 率 源 来 力 的 中 动 活 产 生 在 家 国 欧 西 “ 住 抓 C。 选 : 析 解 () 是 确 准 解 理 料 材 该 对 列 下 ” 供 提 品 成 制 余 剩 为 场 市 国 然 当 行 银 厂 电 山 矿 、 设 建 以 外 了 向 投 也 样 同 本 资 洲 欧 … 。 界 正 真 种 一 植 培 命 革 通 交 路 铁 和 输 运 洋 海 上 加 再 , 展 发 济 经 的 末 纪 19世 “ : 出 指 中 》 史 简 明 文 方 西 《 在 尔 格 瓦 皮 斯 7. 力 动 本 根 的 展 发 场 市 界 世 是 命 革 业 工 A. 程 进 的 累 积 始 原 本 资 了 快 加 场 市 界 世 B. 场 市 占 抢 外 海 到 始 开 家 国 义 主 本 资 C. 善 改 到 得 活 生 类 人 中 化 体 整 向 走 在 界 世 D. 9世 “ 中 据 根 选 : 析 解 ” 真 种 一 出 植 培 通 交 铁 和 输 运 洋 上 加 1再 确 A正 动 推 命 革 业 工 为 因 其 展 发 济 D。 现 体 未 并 善 改 活 生 民 人 于 至 起 崛 西 及 以 形 界 调 所 料 C材 辟 开 路 航 新 随 伴 是 场 市 占 强 外 海 �
近年-近年学年九年级数学上册第四章图形的相似4.2平行线分线段成比例教案北师大版(最新整理)
4.2平行线分线段成比例一、教学目标 1.知识目标:①了解平行线分线段成比例定理;②会用平行线分线段成比例定理解决实际问题. 2.能力目标:掌握推理证明的方法,发展演绎推理能力 二、教学过程分析 1。
复习提问(1)什么叫比例线段?答:四条线段 a 、b 、c 、d 中,如果 a :b =c:d ,那么这四条线段a 、b 、c 、d 叫做成比例的线段,简称比例线段. (2)比例的基本性质?答:如果 a :b =c :d ,那么ad =bc. 如果 ad =bc,那么 a :b =c :d .如果 a :b =c :d ,那么(a-b ):b =(c-d ):d ;(a+b ):b =(c+d):d 。
2。
引入新课 做一做在下图中,小方格的边长均为1,直线l 1 ∥ l 2∥ l 3,分别交直线m,n 与格点A 1,A 2,A 3,B 1,B 2,B 3。
(1)计算 的值,你有什么发现?12122323B B B B A A A A 与(2)将2l 向下平移到下图的位置,直线m ,n 与2l 的交点分别为21,B A ,你在问题(1)中发现结论还成立吗?如果将2l 平移到其它位置呢?(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?3.分组讨论,得出结论 平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例。
4。
想一想(一)如果把图1中l 1 , l 2两条直线相交,交点A 刚落到l 3上,如图2所得的对应线段的比会相等吗?依据是什么?(二)如果把图1中l 1, l 2两条直线相交,交点A 刚落到l 4上,如图2(2)所得的对应线段的比会相等吗?依据是什么?得出结论:(推论)平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的对应线段成比例。
5. 例题学习例1如图,在△ABC中,E,F分别是AB和AC上的点,且EF∥BC。
(1)如果AE=7 ,EB=5,FC=4。
九年级数学上册第四章图形的相似4.2平行线分线段成比例教案新版北师大版51
4.2平行线分线段成比例一、教学目标1.知识目标:①了解平行线分线段成比例定理;②会用平行线分线段成比例定理解决实际问题.2.能力目标:掌握推理证明的方法,发展演绎推理能力二、教学过程分析1.复习提问(1)什么叫比例线段?答:四条线段 a 、b 、c 、d 中,如果 a :b =c :d ,那么这四条线段a 、b 、c 、d 叫做成比例的线段,简称比例线段.(2)比例的基本性质?答:如果 a :b =c :d ,那么ad =bc.如果 ad =bc ,那么 a :b =c :d .如果 a :b =c :d ,那么(a-b):b =(c-d):d ;(a+b):b =(c+d):d.2.引入新课 做一做在下图中,小方格的边长均为1,直线l 1 ∥ l 2∥ l 3,分别交直线m ,n 与格点A 1,A 2,A 3,B 1,B 2,B 3.(1)计算 的值,你有什么发现?(2)将2l 向下平移到下图的位置,直线m,n 与2l 的交点分别为21,B A ,你在问题(1)中发现结论还成立吗?如果将2l 平移到其它位置呢?(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?12122323B B B B A A A A 与3.分组讨论,得出结论平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.4.想一想(一)如果把图1中l1 , l2两条直线相交,交点A刚落到l3上,如图2所得的对应线段的比会相等吗?依据是什么?(二)如果把图1中l1,l2两条直线相交,交点A刚落到l4上,如图2(2)所得的对应线段的比会相等吗?依据是什么?得出结论:(推论)平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的对应线段成比例.5. 例题学习例1如图,在△ABC中,E,F分别是AB和AC上的点,且EF∥BC。
(1)如果AE=7 ,EB=5,FC=4.那么AF的长是多少?(2)如果AB=10 ,AE=6,A F=5.那么FC的长是多少?例2 如图所示,如果D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.求证:OD∶OA=OE∶OB6.课时小结1、平行线分线段成比例定理:(1)两直线被一组平行线所截,所得的对应线段成比例(关键要能熟练地找出对应线段)(2)平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的对应线段成比例.7.课后作业。
九年级数学上册第4章精选《平行线分线段成比例》同步提升训练(北师大版)
《第二节 平行线分线段成比例》提升训练1.(教材P85习题T4变式)(上海中考)如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB =3:5,那么CF :CB 等于( )A .5:8B .3:8C .3:5D .2:52.(梧州中考)如图,AG :GD =4:1,BD :DC =2:3,则AE :EC 的值是( )A .3:2B .4:3C .6:5D .8:53.如图,直线1l ∥2l ∥3l ,AB =3,AD =2,DE =4,EF =7.5. 求BC ,BE 的长.4.如图,点F 是□ABCD 的边CD 上一点,连接BF 并延长交AD 的延长线于点E . 求证:DEDFAE DC .5.(南阳淅川县模拟)如图,在△ABC中,EF∥CD,DE∥BC.(1)求证:AF:FD=AD:DB;(2)若AB=15,AD:BD=2:1,求DF的长.链接河南中招6.(河南模拟)如图,在横格作业纸(横线等距)上一画条直线,与横格线交于A,B,C三点,则BC:AC等于( )A.2:3B.2:5C.3:4D.3:5微专题5作平行线转换线段的比【方法指导】求线段的比,通常利用平行线分线段成比例的基本事实及其推论得到比例线段,然后进行转化得到所求两条线段的比;遇到不能直接转化线段的比时,要联想到借助辅助线(作平行线)构造基本图形:A型与X型针对训练(郑州期中)如图,在△ABC中,AD是BC边上的中线,E在AC边上,且AE:EC=1:2,BE交AD于点P,则AP:PD等于( )A.1:1B.1:2C.2:3D.4:3【变式】如图,△ABC中,D在BC上,F是AD的中点,连接CF并延长交AB于点E,已知32CDBD=,则AEBE== .拔高题如图,△ABC中,AF:FD=1:3,BD=DC,求AE:EC的值.参考答案1.A2.D3.解:∵1l ∥2l ∥3l ,∴FB AB AD BE BC DE ==,即324BF BE BC ==.∴BC =6,BF =12BE . 又∵EF =BF +BE =7.5.∴12BE +BE =7.5. ∴BE =5. 4.证明:∵四边形ABCD 是平行四边形,∴CD ∥AB ,AD ∥BC . ∴DE EF AE EB =. 同理可得EF DF EB DC =.∴DE DF AE DC=. 5.解:(1)证明:∵EF ∥CD ,∴AF AE FD EC =. ∵DE ∥BC ,∴AD AE BD EC =. ∴AF AD FD BD=,即AF ∶FD =AD ∶DB . (2)103DF =6.C微专题 5针对训练 A变式 35拔高题解: 过点D 作DG ∥BE 交AC 于G ,则AF :FD =AE :EG =1:3,BD :CD =EG :CG = 1 :1,所以AE :EC =1:6.。
秋九年级数学上册第四章图形的相似4.2平行线分线段成比例预习课件新版北师大版
2 平行线分线段成比例
2 平行线分线段成比例
探究新知
活动1 知识准备
1.已知 M 是线段 AB 延长线上一点,且 AM∶BM=5∶2,则
AB∶BM 为( A )
A.3∶2
B.2∶3
C.3∶5
D.5∶2
2 平行线分线段成比例
2.若 2xLeabharlann - 5y = 0 , 则 y∶x = ___2∶__5___ , x+y = x
果将
l2
平移到其他位置,有A1A2__=____B1B2.
A2A3
B2B3
图 4-2-2
2 平行线分线段成比例
思考:在平面内任意作三条平行线,用它们截两条直线,截得的 线段成比例吗?
成比例
以
A1A2 A2A3
=
图 4-2-1
2 平行线分线段成比例
(2)将 l2 平移到如图 4-2-2 的位置时,由勾股定理可求得 A1A2
=_3___2____,A2A3=__2___2___,B1B2=_3___5____,B2B3=_2___5____, 所以AA12AA23=_32_______,BB12BB23=__32______,发现AA12AA23__=______BB12BB23.如
7
___5_____.
2 平行线分线段成比例
活动2 教材导学
阅读教材内容,并填空:
(1)如图 4-2-1,由勾股定理可求得 A1A2=_____2_____,A2A3
= ____4___2_ , B1B2 = _______5_ , B2B3 = ____4___5_ , 所 ______14__,BB12BB23=_______14___,发现AA12AA23___=_____BB12BB23.
九年级数学上册 第四章 图形的相似 4.2 平行线分线段成比例学案(新版)北师大版
2平行线分线段成比例【学习目标】知识与技能1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.使学生掌握三角形一边平行线的判定定理.过程与方法通过应用,培养识图能力和推理论证能力.情感、态度与价值观通过定理的教学,进一步培养学生类比的数学思想.【教学重难点】教学重点:是平行线分线段成比例定理和推论及其应用.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.【导学过程】【创设情景,引入新课】1. 什么是平行线等分线段定理?2.如图(1)中,AD∥BE∥CF,且AB=BC,则 的比值是多少?【自主探究】三条距离不相等的平行线截两条直线会有什么结果?【课堂探究】由上面例题我们可以得到: 1.平行线分线段成比例定理 : 两条直线被一组平行线所截,所得的对应线段成比例 说明:(1)画出定理的各种基本图形,对照图形写出相应的结论。
(2)写出其它的对应线段成比例的情况。
对应线段成比例可用下面的语言形象表示: 等等。
(3)由下面的定理的基本图形(1)和(2)得出推论?那么32若==EFDE ,,BC AB ?那么43若==EF DE ,,BC AB 你能否利用所学过的相关知识进行说明?2.推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例定理的基本图形和结论:3.例例:如图:在△ABC 中E,F 分别是AB 和CD 上的两点且EF//BC,(1)如果AE=7,EB=5,FC=4那么AF 的长是多少?(2)如果AB=10,AE=6,AF=5那么BE 的长是多少?【当堂训练】(1)已知线段PQ ,在PQ 上求一点D ,使PD :PQ=4:1;(2)已知线段PQ ,在PQ 上求一点D ,使PQ :DQ=4:1(本资料素材和资料部分来自网络,供参考。
请预览后才下载,期待您的好评与关注!)A 型基本图形 X 型基本图形(1) (4)(2) (3)。
北师大版九年级数学上册第四章图形的相似4.2平行线分线段成比例(教案)
(2)逆向思维的培养:在解决逆向问题,即已知线段比例求平行线问题时,学生往往感到困难。
举例:已知在三角形ABC中,AB/AC = 2/3,点D在BC上,使得AD//BC,求BD/DC的比例。
其次,在新课讲授环节,我采用了理论介绍、案例分析、重点难点解析的方式,逐步引导学生掌握平行线分线段成比例定理。在这个过程中,我发现图示和实际案例的分析对于学生理解这一概念非常有帮助。但在讲解过程中,我应该更加注意语言的简洁明了,避免让学生产生混淆。
在实践活动环节,我安排了分组讨论、实验操作和成果展示。通过这个环节,学生们的动手能力和团队合作能力得到了锻炼。但我也注意到,部分学生在操作过程中还存在一些问题,如对尺度的把握不准确等。因此,在以后的教学中,我可以增加一些关于几何作图的技巧讲解,提高学生们的实践能力。
北师大版九年级数学上册第四章图形的相似4.2平行线分线段成比例(教案)
一、教学内容
本节课选自北师大版九年级数学上册第四章“图形的相似”中的4.2节“平行线分线段成比例”。教学内容主要包括以下两点:
1.探索并掌握平行线分线段成比例定理,即:如果两条直线平行,那么它们所分得的对应线段成比例。
2.学会运用平行线分线段成比例定理解决相关问题,如:求线段比例、相似三角形等。通过对该定理的理解和应用,培养学生空间想象能力和解决问题的能力。
在学生小组讨论环节,我鼓励学生们提出自己的观点和想法,并进行交流。这个环节的效果还不错,学生们积极参与讨论,课堂氛围活跃。但我也注意到,部分学生过于依赖教材,缺乏独立思考的能力。为了培养学生的创新思维,我可以在今后的教学中多设置一些开放性的问题,引导学生进行深度思考。
九年级数学上册 第四章 图形的相似 4.2 平行线分线段成比例教学设计(1)(新版)北师大版
④[习题反思]_______
图4-2-11
计算 , ,你有什么发现?
(2)将直线b向下平移到如图4-2-12的位置,直线m,n与直线b的交点分别为A2,B2.你在问题(1)中发现的结论还成立吗?如果将直线b平移到其他位置呢?
图4-2-12
(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?
【探究2】(1)如何理解“对应线段”?
让学生通过试验来体会——如果一组平行线在一条直线上截得的线段相等,那么这组平行线在其他直线上截得的线段也相等的数学事实,以此来为学习平行线分线段成比例基本事实做铺垫.通过一个生活中的实例激发学生探究的欲望.
活动
二:
实践
探究
交流新知
【探究1】 (1)如图4-2-11,小方格的边长都是1,直线a∥b∥c,分别交直线m,n于格点A1,A2,A3,B1,B2,B3.
(续表)
活动
四:
课堂
总结
反思
【当堂训练】
1.课本P84中的随堂练习
2.课本P84习题4.3中的T1、T3、T4
当堂检测,及时反馈学习效果.
【板书设计】
2平行线分线段成比例
一、问题呈现
二、形成事实
三、深入探究
四、典例探讨
四、拓展延伸
投影区
提纲挈领,重点突出.
【教学反思】
①[授课流程反思]
本节课教学就是让学生在问题情境的引导下,积极主动地从事探究性的学习活动,经历策略形式的过程,能在活动中积累自己的经验,并逐步抽象为数学知识.在学习过程中,学生真正从被动接受知识转变为主动探究获取知识,使学生的学习方式发生了转变.
九年级数学上册第四章图形的相似4.2平行线分线段成比例同步练习
2 平行线分线段成比例知识点 1 平行线分线段成比例1.如图4-2-1,已知AB ∥CD ∥EF ,那么下列结论正确的是( )A.AD DF =BC CEB.CD EF =AD AFC.CD EF =BC BE D.BC CE =DF AD4-2-14-2-22.如图4-2-2,AD ∥BE ∥CF ,直线l 1,l 2分别与这三条平行线交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B .5图4-2-3C .6D .83.如图4-2-3,已知AD ∥BE ∥CF ,它们依次交直线l 1,l 2于点A ,B ,C 和点D ,E ,F ,如果DE ∶EF =3∶5,AC =24,那么BC =________.知识点 2 平行线分线段成比例的推论4.如图4-2-4,在△ABC 中,DE ∥BC ,若AD DB =23,则AE EC的值为( )A.13B.25C.23D.354-2-44-2-55.如图4-2-5,在△ABC 中,DE ∥BC ,AD =6,DB =3,AE =4,则EC 的长为( )A .1B .2C .3D .46.如图4-2-6,已知△ABC 中,DE ∥BC ,AD =5,EC =2,BD =AE =x ,求BD 的长.图4-2-67.如图4-2-7,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE ∥BC ,EF ∥AB .若AD =2BD ,则CF BF的值为( ) A.12 B.13 C.14 D.234-2-74-2-88.如图4-2-8,在△ABC中,AB>AC,AD是BC边上的高,F是BC的中点,EF⊥BC 交AB于点E,若BD∶DC=3∶2,则BE∶AB=________.9.如图4-2-9,在△ABC中,DG∥EC,EG∥BC.求证:AE2=AB·AD.图4-2-9详解1.A2.C [解析] 本题考查平行线分线段成比例基本事实的运用.∵AD ∥BE ∥CF ,∴AB BC =DE EF .又∵AB =1,BC =3,DE =2,∴EF =BC ·DE AB=6. 3.15 [解析] ∵AD ∥BE ∥CF ,∴AB BC =DE EF =35. ∵AC =24,∴BC =24×58=15. 故答案为15.4.C5.B [解析] ∵DE ∥BC ,∴AD DB =AE EC ,即63=4EC ,解得EC =2. 故选B.6.解:∵DE ∥BC ,∴AD BD =AE EC , ∴5x =x 2,∴x 2=10, ∴x =10或x =-10(不合题意,舍去),∴BD =10.7.A [解析] 由DE ∥BC ,EF ∥AB ,AD =2BD ,得AD BD =AE EC =2,AE EC =BF CF =2,∴CF BF =12.故选A.8.5∶6[解析] ∵AD是BC边上的高,EF⊥BC,∴AD∥EF.又∵F是BC的中点,且BD∶DC=3∶2,∴BF∶FD=5∶1.再根据平行线分线段成比例基本事实,得BE∶EA=BF∶FD=5∶1,即BE∶AB=5∶6.9.证明:∵DG∥EC,∴AD∶AE=AG∶AC.∵EG∥BC,∴AG∶AC=AE∶AB,∴AD∶AE=AE∶AB,即AE2=AB·AD.。
秋学期九年级数学上册第四章图形的相似4.2平行线分线段成比例导学案(北师大版)
第四章图形的相似2平行线分线段成比例【学习目标】1. 使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.2.使学生掌握三角形一边平行线的判定定理.3. 通过定理的教学,进一步培养学生类比的数学思想.【学习重点】是平行线分线段成比例定理和推论及其应用.【学习难点】是平行线分线段成比例定理的正确性的说明及推论应用。
【自主学习】自主学习阅读教材掌握基本事实:【合作探究】一、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行线等分线段定理可看作是这个定理的特例.根据此定理,我们可以写出六个比例,为了便于应用,在以后的论证和计算中,可根据情况选用其中任何一个,参见下图.,∴.其中后两种情况,为下一节学习推论作了准备.已知:如图所示,.求:BC.解:让学生来完成.注:在列比例式求某线段长时,尽可能将要求的线段写成比例的第一项,以减少错误,如本例列式为:已知:如图所示,求证:.出图观察其特点:与的交点A在直线上,根据平行线分线段成比例定理有:……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:平行于的边BC的直线DE截AB、AC,所得对应线段成比例.在黑板上画出左图,观察其特点:与的交点A在直线上,同样可得出:(六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:平行于的边BC的直线DE截边BA、CA的延长线,所以对应线段成比例.综上所述,可以得到:推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.如图,(六个比例式).此推论是判定三角形相似的基础.注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,如果已知,DE是截线,这个推论包含了下图的各种情况.这个推论不包含下图的情况.达标检测:1、已知,则=2、如果,那么的值是()A.7 B.8 C.9 D.103、已知:1、、2三个数,请你再添上个数,写出一个比例式 .4、如下图,BD:DC=5:3,E为AD的中点,求BE:EF的值.5、如下图,AC∥BD,AD、BC相交于E,EF∥BD,求证:6 、已知a、b、c均为非零的实数,且满足求的值.7、如下图,中,D是AB上一点,E是内一点,DE∥BC,过D作AC的平行线交CE的处长线于F,CF与AB交于P,求证BF∥AE.总结反思:。
九年级数学上册第四章图形的相似《平行线分线段成比例及相似多边形》知识讲解及例题演练北师大版(202
2018-2019学年九年级数学上册第四章图形的相似《平行线分线段成比例及相似多边形》知识讲解及例题演练(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第四章图形的相似《平行线分线段成比例及相似多边形》知识讲解及例题演练(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第四章图形的相似《平行线分线段成比例及相似多边形》知识讲解及例题演练(新版)北师大版的全部内容。
平行线分线段成比例及相似多边形【学习目标】1. 平行线分线段成比例及其推论.2。
平行线分线段成比例及其推论的应用.3. 相似多边形的有关概念.【要点梳理】要点一、平行线分线段成比例及其推论平行线分线段成比例,一般地,有如下基本事实:两条直线被一组平行线所截,所得的对应线段成比例.推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例.要点诠释:(1).对应线段成比例可用下面的语言形象表示: 右全左全右上左上全上全上下上下上===,,等等. (2)有推论可以得出以下结论:要点二、行线分线段成比例及其推论的应用行线分线段成比例及其推论的应用主要是来求线段的长度。
要点三、相似多边形的有关概念相似多边形:各角分别相等、各边成比例的两个多边形叫做相似多边形.它的符号是“∽”,读作“相似于".相似比:相似多边形的对应边的比叫做相似比.要点诠释:(1)相似图形就是指形状相同,但大小不一定相同的图形;(2)“全等"是“相似”的一种特殊情况,即当“形状相同”且“大小相同"时,两个图形是全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.平行线分线段成比例
知能演练提升
ZHINENG YANLIAN TISHENG
能力提升
1.已知线段a,b,求作线段x,使x=,正确的作法是()
2.
如图,l1∥l2∥l3,则下列说法错误的是()
A.由AB=BC可得FG=GH
B.由AB=BC可得OB=OG
C.由CE=2CD可得CA=2BC
D.由GH=FH可得CD=DE
3.如图,在△ABC中,AD是BC边上的中线,E在AC边上,且AE∶EC=1∶2,BE交AD于点P,则AP∶PD 等于()
A.1∶1
B.1∶2
C.2∶3
D.4∶3
(第3题图)
(第4题图)
4.如图,l1∥l2∥l3,CD=2BC=4AB,且AF=2,则EG的长为()
A.2
B.3
C.4
D.6
5.
如图,在△ABC中,AB=AC,E是AC的中点,EF⊥BC于点F,若CF=1.2 cm,则BC=.
6.在△ABC中,AB=6,AC=9,点D在边AB所在的直线上,且AD=2,过点D作DE∥BC,交边AC所在直线于点E,则CE的长为.
7.
如图,在△ABC中,DE∥BC,DF∥AC,小敏经过分析发现,你同意她的结论吗?说说你的想法.
8.
如图,ED∥GH∥BC.
(1)若EC=5,HC=2,DG=4,求BG的长;
(2)若AE=4,AC=6,AD=5,求BD的长.
创新应用9.
如图,DA⊥AB,CB⊥AB,M是DC的中点.求证:MA=MB.
答案:
能力提升
1.B
2.B
3.A
4.C
5.4.8 cm
6.6或12
7.解同意.因为DE∥BC,DF∥AC,所以四边形DFCE是平行四边形,所以DE=CF,由DE∥BC可得,由DF ∥AC可得,故.
8.解 (1)EH=EC-HC=3.
∵ED∥GH∥BC,
∴EH∶HC=DG∶BG,
即3∶2=4∶BG,解得BG=.
(2)∵ED∥BC,∴BA∶AD=CA∶AE,
即BA∶5=6∶4,解得BA=.
∴BD=+5=.
创新应用
9.证明作MN⊥AB,垂足为N(图略).
设AB与CD相交于点O,
∵DA⊥AB,CB⊥AB,
∴MN∥DA,MN∥BC.
∴.
∵M是DC的中点,∴AN=BN.
∴MN是AB的垂直平分线.∴MA=MB.。