数学人教版六年级下册比例的复习
六年级下册数学比例知识点
六年级下册数学比例知识点
在六年级下册的数学课程中,比例是一个重要的知识点。
以下是一些关于比例的重要
知识和技能:
1. 比例的概念:比例是指两个或多个相同种类的量之间的关系,在比例中我们将这些
量用分数表示。
2. 比例的性质:比例的两个分数称为一个比例,比例中各个分数的相等关系称为比例
的性质。
例如:如果a:b = c:d,则称a、b、c、d构成一个比例。
3. 比例的基础运算:比例可以进行加、减、乘、除等运算。
例如:如果a:b = c:d,则有a+c:b+d = a-b:b-d = a/b:c/d。
4. 比例的化简和维持:在比例中,我们可以约分或扩大分数的值,得到一个全等的比例。
例如:将2:3化简为2/3:1,将2:3扩大为4:6。
5. 比例的图形应用:比例可以用来解决与图形形状和尺寸相关的问题。
例如:通过比
例可以计算矩形的边长、面积等。
6. 比例和百分数的关系:百分数是一种特殊的比例,其中分子是一个非负整数。
例如:25%表示为25/100或1/4。
7. 比例的应用:比例在日常生活中有很多应用,例如计算折扣、利率、比赛成绩等。
以上是六年级下册数学课程中关于比例的一些重要知识点。
学生可以通过练习题和实
际应用问题来巩固和应用这些知识。
人教版小学六年级数学下册知识点_数学知识点
人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7.比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:8.组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1。
5=y×1。
2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
比和比例整理和复习(教案)2023-2024学年数学六年级下册-人教版
比和比例整理和复习(教案)20232024学年数学六年级下册人教版作为一名经验丰富的教师,我很荣幸能和大家分享我的教学经验。
今天我要为大家带来的是六年级下册数学的复习课程——比和比例整理和复习。
一、教学内容本次复习课的内容主要涉及教材中关于比和比例的章节。
具体内容包括:比的概念、比的应用、比例的概念、比例的应用以及比例尺。
二、教学目标通过本次复习,使学生熟练掌握比和比例的基本概念和应用方法,提高他们在实际问题中运用比和比例解决问题的能力。
三、教学难点与重点教学难点:比例的应用和比例尺的理解。
教学重点:比的换算和比例的求解。
四、教具与学具准备教具:黑板、粉笔、PPT学具:练习本、尺子、圆规五、教学过程1. 情景引入:以实际生活中的比例问题引发学生对比例的思考,例如购物时商品的折扣问题。
2. 知识回顾:简要回顾比和比例的基本概念,引导学生自主复习。
3. 例题讲解:挑选具有代表性的例题进行讲解,让学生掌握比和比例的应用方法。
4. 随堂练习:针对讲解的例题,设计相应的随堂练习,巩固所学知识。
5. 互动环节:组织学生进行小组讨论,分享彼此在实际问题中运用比和比例的经验。
7. 课后作业:布置相关的作业,巩固所学知识。
六、板书设计板书内容主要包括:比的概念、比的应用、比例的概念、比例的应用、比例尺以及相关例题。
七、作业设计(1) 一桶水有18升,倾斜后流入另一个容器中,流入的量是原来的3/4,求另一个容器的容量。
(2) 一辆汽车以60公里/小时的速度行驶,行驶了3小时后,因故障停车修理了20分钟,之后继续行驶,最终在5小时后到达目的地,求汽车修理处的距离。
2. 答案:(1) 另一个容器的容量为12升。
(2) 汽车修理处的距离为150公里。
八、课后反思及拓展延伸通过本节课的复习,发现部分学生在比例尺的理解上还存在一定的困难,需要在今后的教学中加强对此方面的讲解和练习。
同时,可以引导学生将比和比例的知识运用到实际生活中,提高他们的实践能力。
六年级下册数学讲义-第四单元——比例:比例的应用人教版(含答案)
比例的应用【知识梳理】1.比例尺。
(1)意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺或实际距离图上距离=比例尺 (2)分类:①按表现形式分,可以分为数值比例尺和线段比例尺;② 按将实际距离缩小还是放大分,可以分为缩小比例尺和放大比例尺。
(3)已知图上距离和实际距离,求比例尺的方法。
先把图上距离和实际距离统一单位,再用图上距离比实际距离,然后把它化简成前项是1或后项是1的比,得出比例尺。
(4)已知比例尺和图上距离,求实际距离的方法。
可以根据“实际距离图上距离=比例尺”用解比例的方法求出实际距离,也可以利用“实际距离=图上距离÷比例尺”直接列式计算。
(5)已知比例尺和实际距离,求图上距离的方法。
可以根据“实际距离图上距离=比例尺”用解比例的方法求出图上距离,也可以利用“图上距离=实际距离×比例尺”直接列式计算。
(6)应用比例尺画图。
①确定比例尺;②根据比例尺求出图上距离;③画图;④ 标出所画图的名称和比例尺。
要点提示:①比例尺是一个比,表示两个同类量间的倍比关系,不能带单位名称。
②图上距离一般用厘米作单位,实际距离一般用米或千米作单位,计算比例尺时一定要先统一单位。
③为了计算方便,一般把比例尺写成前项或后项是1的形式。
2.图形的放大与缩小。
(1)特点:形状相同,大小不同。
(2)将图形放大或缩小的方法。
一看,看原图形各边占几格;二算,按已知比计算出放大图或缩小图的各边占几格;三画,按计算出的边长画出原图形的放大图或缩小图。
要点提示:把图形每条边按相同倍数放大(或缩小)后,形状不变,相对应的角的度数也不变。
3.用比例解决问题。
根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,再根据正、反比例关系列出相应的比例并求解。
要点提示:用正、反比例解决问题的关键是确定成什么比例关系。
【诊断自测】1.填空。
(1)在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是( )千米。
人教版六年级下册数学单元知识点归纳——第四单元 比例
4 比 例一、比例的意义表示两个比相等的式子叫做比例。
二、比例的基本性质1.组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
2.比例的基本性质:在比例里....,.两个外项的积等于两.........个内项的积。
......可以用字母表示比例的基本性质,如果a ∶b=c ∶d ,那么ad=bc 。
3.运用比例的意义和比例的基本性质可以判断两个比是否可以组成比例,也可以解比例。
三、解比例1.求比例中的未知项........,.叫做解比例。
......2.解比例的依据:比例的基本性质.......。
3.解比例的方法:利用比例的基本性质将比例转化..............为外项之积与内项之积相等的等式...............,.再通过解方程求出........未知项的值。
......四、正比例1.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
2.如果用字母y 和x 表示两种相关联的量,用k 表示它们的比值(一定),正比例关系可以表示为=k ..。
3.正比例的图象......:如果把成正比例关系的两个量中相对应的数都看作是一个数对,在方格纸上把写这些数对相对应的点连起来,形成一条射线..;反之,该射线上的每一个点对应的就是正比例关系中两个相关联的量的一组具体值。
五、反比例提示:组成比例的两个比既可以写成带比号的形式,也可以写成分数的形式,但读法相同。
例如:2.4×40=1.6×60提示:如果4个不同的数能组成比例,那么这4个数一共能组成8个不同的比例。
提示:应用比例的基本性质不是解比例唯一的方法,也可以用求比值的方法或其他方法解比例。
总结:判断两种量是否成正比例的方法:先找变量(两种相关联的量),再看定量(两种量是比值一定,还是乘积一定),最后作出判断。
小学六年级下册数学讲义第四章 比例 人教新课标版(含解析)
人教版小学六年级数学下册同步复习与测试讲义第四章比例【知识点归纳总结】故选:B.点评:本题主要考查比例的意义,注意判断能否组成比例可以用求比值的方法,求出比值,比值相等两个比就能组成比例.例2:在比例3:4=9:12中,若第一个比的后项加上8,要使比例仍然成立,则第二个比的后项应加上()A、8B、12C、24D、36分析:在比例3:4=9:12中,若第一个比的后项加上8,由4变成12,这样两内项的积就成了108,根据比例的性质,两外项的积也得是108,再用108除以前一个比的前项3即得后一个比的后项,进而求出第二个比的后项应加上几即可.解:比例3:4=9:12中,第一个比的后项加上8,由4变成12,则两内项的积:12×9=108,两外项的积也得是108,第二个比的后项应是:108÷3=36,第二个比的后项应加上:36-12=24;故选:C.点评:此题主要考查比例的基本性质:在比例里,两内项的积等于两外项的积.点评:此题属于辨识两种相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.例2:长方形的面积一定,长和宽()A、成正比例B、成反比例C、不成比例分析:根据正比例的意义x:y=k(一定)和反比例的意义xy=k(一定),因为长×宽=长方形的面积(一定),符合反比例的意义.解:根据长方形的面积公式,长×宽=长方形的面积(一定),符合反比例的意义xy=k(一定),所以长方形的面积一定,长和宽成反比例.故选:B.点评:此题主要考查正、反比例的意义,以及长方形的面积公式.3. 解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项.求比例中的未知项,叫做解比例.一般来说,求比例的未知项有以下两种情况:例2:如果比例的两个外项互为倒数,那么比例的两个内项()A、成反比例B、成正比例C、不成比例分析:根据互为倒数的定义和比例的两内项之积等于两外项之积,可得比例的两个内项之积等于1,再根据成反比例的定义即可求解.解:因为比例的两个外项互为倒数,那么比例的两个内项之积=1(为恒指),则比例的两个内项成反比例.故选:A.点评:本题考查了倒数的定义和成反比例的条件,两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量.它们的关系叫做反比例关系.4. 比例的应用根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,根据正、5. 比的应用1.按比例分配问题的解题方法:(1)把比看作分得的份数,用先求出每一份的方法来解答.解题步骤:a.求出总份数;b.求出每一份是多少;c.求出各部分相应的具体数量.(2)转化成份数乘法来解答.解题步骤:a.先根据比求出总份数;b.再求出各部分量占总量的几分之几;c.求出各部分的数量.2.按比例分配问题常用解题方法的应用:(1)已知一个数量的各部分的比和其中某一部分的量,求另外几个部分量;(2)已知两个量或几个量的比和其中两个量的差,求总量.【经典例题】例1:一个三角形与一个平行四边形的面积和底部都相等,这个三角形与平行四边形高的比是()A、2:1B、1:2C、1:1D、3:1分析:根据三角形和平行四边形的面积公式可得:三角形的高=面积×2÷底;平行四边形的高=面积÷底,由此即可进行比较,解答问题.解:三角形的高=面积×2÷底,平行四边形的高=面积÷底,当三角形和平行四边形的面积和底分别相等时,三角形的高是平行四边形的高的2倍.所以这个三角形与平行四边形高的比是2:1.故选:A.点评:考查了平行四边形的面积和三角形的面积公式,解题的关键是知道底相等、面积也相等的三角形和平行四边形中三角形的高是平行四边形的高的2倍.例2:甲、乙两人各走一段路,他们的速度比是3:4,路程比是8:3,那么他们所需时间比是()答:甲乙所需的时间比是32:9.故选:B.点评:关键是把速度和路程设出来,然后根据时间=路程÷速度,先求得各自用的时间,再写出所用的时间比并化简比.6.辨识成正比例的量与成反比例的量1.成正比例的量:(1)“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小.2.成反比例的量:(1)“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大.(2)相对应的两个数的乘积一定.(3)关系式:xy=k(一定).3.判断方法:关键是看着两种相关量中相对应的两个数是商一定还是积一定,如果商一定,所以xy=1,是乘积一定,x和y成反比例;故选:D.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,再做出选择.【同步测试】单元同步测试题一.选择题(共8小题)1.当:4=x:5时,x的值是()A.B.C.D.2.根据6×7=2×21,写出下面的比例中正确的一组是()A.6:7=2:24B.6:2=7:21C.6:2=21:7 3.如表,如果x和y成反比例,那么“?”处应填()x3?y56A.2B.3.6C.2.5D.104.语文书和数学书共40本,语文书的本数和数学书的本数的比可能是()A.4:3B.4:5C.5:3D.无法确定5.煤的总量一定,每天烧煤量和烧煤的天数()关系.A.成正比例B.成反比例C.不成比例D.无法判断6.A=,如果B一定,A和C这两种量成()关系.A.正比例B.反比例C.不成比例D.按比例分配7.一个三角形三个内角度数的比是1:3:4,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形8.一个长4cm,宽2cm的长方形按4:1放大,得到的图形的面积是()cm2.A.32B.72C.128二.填空题(共8小题)9.甲数与乙数的比例为5:3,甲数为60,乙数为.10.解比例:3.5:x=0.5:20%则x=11.表中x和y是两个成反比例的量,请将表格填写完整.x36120.18y10154012.一个最简分数的分母减去一个数,分子加上同一个数,所得的新分数可以约简为,这个数是.13.按照如图的配方,做5人份炒面,需要购买克面.14.利用正比例图象解决问题时,想找出已知量所在的数轴及位置,然后在另一数轴上找出已知量相的数值.15.一个比例中,两个内项的积是1,其中一个外项是1.25,另一个外项是.16.在3,15,12,5,9,30,20中,把可以组成的比例写出两组、.三.判断题(共5小题)17.比例2:a=b:3,那么a与b的积是6.(判断对错)18.甲数的与乙数的相等,且甲、乙均不为零,则甲数大于乙数..(判断对错)19.a:b=2:4,则b是a的2倍.(判断对错)20.小明上学,已经走的路程与剩下的路程,是两个相关联的量.(判断对错)21.如果小华与小红体重的比是7:8,那么小华就比小红轻.(判断对错)四.计算题(共1小题)22.解比例.=4:2.4x:=15:五.应用题(共6小题)23.一种酒精溶液,水和酒精的比是4:1.如果要调3.2升的酒精溶液,水和酒精分别需要多少毫升?24.学校体育组购进12根大绳,准备按年级学生人数分配给参加“蓓蕾计划”的一、二、三年级学生.一年级45人,二年级75人,三年级60人,二年级能分到多少根大绳?25.修路队修一段铁路,修了一天后,已修路程和未修路程的比是1:4,第二天修了3600米,正好修完这条铁路的一半,这段铁路长多少米?26.甜甜学习做面包,她搜索得知,做面包需要的面粉、全麦、黄油可以按10:4:1配制.如果三样食材配成后共重3000克,其中含有全麦多少克?如果这三样食材各有200克制作这种面包,当面粉全部用完时,黄油还剩多少克?27.六年级一、二、三3个班献爱心捐书,一班捐的本数是三个班总数的,二、三两个班捐的本数比是4:3.已知三个班捐书总数为700本.求三班捐了多少本?28.解决问题.参考答案与试题解析一.选择题(共8小题)1.【分析】根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,再进行选择.【解答】解::4=x:5,4x=×5,4x=3,x=.故选:B.【点评】此题考查比例性质的运用即解比例.2.【分析】根据比例的性质:两内项的积等于两外项的积,据此逐项写出等式,与等式6×7=2×21比较得解.【解答】解:A、因为6:7=2:24,6×24不等于7×2,所以选项A不正确.B、因为6:2=7:21,6×21不等于7×2,所以选项B不正确.C、因为6:2=21:7,所以6×7=2×21,所以选项C正确.由此得出C是正确的.故选:C.【点评】此题考查比例性质的灵活运用,即:两内项的积等于两外项的积.3.【分析】如果x和y成反比例,则x和y的乘积一定,由此列出比例解答即可.【解答】解:6x=3×56x=15x=2.5答:如果x和y成反比例,那么“?”处填2.5.故选:C.【点评】此题属于根据反比例的意义解题,如果两种相关联的量成反比例,则对应的乘积一定;再根据乘积一定列出比例,求得未知数的数值即可.4.【分析】要求这两种书的本数比是几比几,因为数的本数应该为整数,所以只要40能整除比的前项和后项份数的和即可.【解答】解:A、因为4+3=7,7不能整除40,所以这两种书的本数比不可能是4:3;B、因为4+5=9,9不能整除40,所以这两种书的本数比不可能是4:5;C、5+3=8,40能被8整除,所以这两种书的本数比可能是5:3;故选:C.【点评】此题考查了学生对比的应用以及分析判断的能力.5.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:因为:每天烧煤量×烧煤天数=煤的总量(一定),是乘积一定,所以每天烧煤量和烧煤天数成反比例;故选:B.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.6.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:A=,如果B一定,即AC=B(一定),是乘积一定,则A和C成反比例;故选:B.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.7.【分析】根据题意可得:三角形的三个内角分别占三角形内角和的、和,三角形的内角和是180度,根据一个数乘分数的意义分别求出三个角,进而进行判断即可.【解答】解:1+3+4=8180°×=22.5°180°×=67.5°180°×=90°所以该三角形是直角三角形.故选:B.【点评】解答此题的关键是先根据一个数乘分数的意义分别求出三个角,进而根据三角形的分类,判断即可.8.【分析】先根据按4:1放大,放大后长和宽是原来的4倍,求出放大后的长和宽,再求出面积.【解答】解:放大后的长:4×4=16(厘米);放大后的宽:2×4=8(厘米);面积:16×8=128(平方厘米);故选:C.【点评】先根据比例求出放大后的长和宽,再求出面积.二.填空题(共8小题)9.【分析】利用比例的基本性质即可求解,即两内项之积等于两外项之积.【解答】解:设乙数为x,则5:3=60:x,5x=180,x=36.故答案为:36.【点评】此题主要考查比例的基本性质.10.【分析】根据比例的基本性质,原式化成0.5x=3.5×20%,再依据等式的性质,方程两边同时除以0.5求解.【解答】解:3.5:x=0.5:20%0.5x=3.5×20%0.5x÷0.5=0.7÷0.5x=1.4;故答案为:1.4.【点评】本题主要考查学生依据等式的性质以及比例基本性质解方程的能力,解方程时注意对齐等号.11.【分析】根据x和y两个量成反比例关系,可知x和y这两个量对应的乘积一定,进而根据乘积一定得解.【解答】解:12×15=180180÷36=5180÷10=18180÷0.18=1000180÷40=4.5如图:x36180120.18 4.5y51015100040故答案为:5,180,1000,4.5.【点评】此题属于考查正、反比例的意义,如果两种相关联的量成反比例关系,那么它们对应的乘积一定相等.12.【分析】若设这个数为x,则的分母减去一个数,分子加上同一个数后,新分数的分子与分母的比是,据此就可以列比例求解.【解答】解:设这个数为x,则=,5×(13+x)=3×(27﹣x),65+5x=81﹣3x,8x=16,x=2;答:这个数是2.故答案为:2.【点评】解答此题的关键是明白的分母减去一个数,分子加上同一个数后,新分数与成比例,从而问题得解.13.【分析】通过观察配方表可知,2人份炒面需要600克面粉,由此可以求出1人份炒面需要面粉多少克,再根据乘法的意义,用乘法解答即可.【解答】解:600÷2×5=300×5=1500(克)答:需要购买1500克面粉.故答案为:1500.【点评】此题考查的目的是理解比的意义,掌握比与除法之间的联系及应用.14.【分析】根据正比例的定义,以及函数图象的对应关系即可求解.【解答】解:利用正比例图象解决问题时,想找出已知量所在的数轴及位置,然后在另一数轴上找出已知量相对应的数值.故答案为:对应.【点评】考查了正比例图象,关键是熟练掌握正比例的定义,以及利用正比例图象解决问题.15.【分析】根据比例的基本性质:在比例中,两个外项的积等于两个内项的积;已知两个内项的积是1,则两个外项的积也是1;用1除以1.25,即为另一个外项.【解答】解:因为两内项之积等于两外项之积,所以另一个外项是:1÷1.25=0.8.故答案为:0.8.【点评】本题主要考查比例基本性质的应用.16.【分析】根据比例的基本性质“两外项的积等于两内项的积”,只要找出四个数中任意两个数的积等于另外两个数的积,就说明这四个数能组成比例.据此解答.【解答】解:在3,15,12,5,9,30,20中3×20=12×5所以可以组成比例:3:12=5:20、3:5=12:20.故答案为:3:12=5:20、3:5=12:20.【点评】此题考查比例的意义和比例的性质的运用:验证所给的四个数能否组成比例,可以根据比例的性质:两外项的积等于两内项的积;也可以用求比值的方法,任意两个数的比值和另外两个数的比值相等,就能组成比例,否则就不能组成比例.三.判断题(共5小题)17.【分析】根据比例的性质,两个内项之积等于两个外项之积,进行判断即可.【解答】解:2:a=b:3,ab=2×3=6;所以原题计算正确;故答案为:√.【点评】此题考查比例性质的运用.18.【分析】利用比例的性质,将两个内项积等于两个外项积先改写成比例,再进一步化简比得解.【解答】解:甲数×=乙数×,则甲数:乙数=:=24:25,因为24份的数<25份的数,所以甲数<乙数.故答案为:错误.【点评】此题考查比例的运用,关键是把两个内项积等于两个外项积先改写成比例的形式.19.【分析】在比例中,两个外项的积等于两个内项的积,据此先把a:b=2:4改写成2b=4a,再根据等式的性质,两边同除以2得到b=2a,即b是a的2倍;据此判断即可.【解答】解:a:b=2:4,即2b=4a,则b=2a,即b是a的2倍;所以原题说法正确.故答案为:√.【点评】此题考查了比例的基本性质和等式性质的运用.20.【分析】已经走的路程与剩下的路程相加是总路程,它们是加数、加数与和的关系,所以已经走的路程与剩下的路程是两个相关联的量,据此判断.【解答】解:已经走的路程与剩下的路程相加是总路程,所以已经走的路程与剩下的路程是两个相关联的量.原题说法正确.故答案为:√.【点评】此题考查了两种相关联的量,成正比例、反比例,不成比例,有三种情况.21.【分析】如果小华与小红体重的比是7:8,把小华的体重看作7份数,把小红体重看作8份数,据此解答.【解答】解:小华与小红体重的比是7:8,把小华的体重看作7份数,把小红体重看作8份数,7<8,所以小华就比小红轻;原题说法正确.故答案为:√.【点评】此题考查了比的运用,把比看作份数比来理解.四.计算题(共1小题)22.【分析】(1)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程4x=0.2×2.4,再根据等式的性质,方程两边都除以4即可得到原比例的解.(2)根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程x=×15,再根据等式的性质,方程两边都除以即可得到原比例的解.【解答】解:(1)=4:2.44x=0.2×2.44x÷4=0.2×2.4÷4x=0.12(2)x:=15:x=×15x÷=×15÷x=8【点评】解比例时,先根据比例的性质,两外项之积等于两内项之积,把比例转化成一般方程,然后再根据解方程的方法解答.五.应用题(共6小题)23.【分析】先求出总份数,即4+1=5份,然后分别求出水和酒精各占3.2升的几分之几,最后根据分数乘法的意义解答即可.【解答】解:4+1=53.2×=2.56(升)3.2×=0.64(升)答:水需要2.56毫升;酒精需要0.64毫升.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.24.【分析】把大绳的根数看作单位“1”,先求出总人数,再求出二年级学生人数占总人数的几分之几,然后根据一个数乘分数的意义,用乘法解答.【解答】解:45+75+60=180(人)12×=5(根)答:二年级能分到5根大绳.【点评】此题考查的目的是理解掌握按比例分配应用题的结构特征及解答规律.即先求出总份数,再求出各部分占总数的几分之几,然后根据一个数乘分数的意义解答.25.【分析】把这段铁路的总长度看作单位“1”,修了1天后,已修的占总长度的,第二天修3600米,已修的占总长度的,则3600的对应分率是(﹣),用对应量除以对应分率,就是这段铁路的总长度.【解答】解:3600÷(﹣)=3600÷=12000(米)答:这段铁路长12000米.【点评】解答此题的关键是:求出3600的对应分率,用对应量除以对应分率,就是这条段路的总长度.26.【分析】已知一种面包需要的面粉、全麦、黄油可以按10:4:1配制.又知三样食材配成后共重3000克,先求出一份是多少克,进而求出含有全麦多少克;如果这三样食材各有200克制作这种面包,先求出面粉200克对应的黄油克数,再用200克减去对应的黄油克数即可求解.【解答】解:3000×=3000×=800(克)200﹣200÷10×1=200﹣20=180(克)答:其中含有全麦800克,黄油还剩180克.【点评】此题考查的目的是掌握按比例分配应用题的结构特征和解答规律,此题关键是求出一份是多少千克.进而求出缺少和剩余的各是多少千克.27.【分析】把六年级三个班捐书的总数看作单位“1”,一班捐的本数是三个班总数的,根据一个数乘分数的意义,用乘法即可得出一班捐的本数,用总数减去一班捐的本数就是二班和三班共捐书多少本,已知二、三两个班捐的本数比是4:3,也就是三班捐书的本数占二、三班捐书本数的,根据一个数乘分数的意义,用乘法即可求得三班捐了多少本.【解答】解:700×=280(本)(700﹣280)×=420×=180(本)答:三班捐书180本.【点评】此题考查的目的是理解掌握比的意义及应用,以及比与分数之间的联系及应用.28.【分析】根据高年级和低年级所分的本数比,求出各占剩余本数的几分之几,进而根据分数乘法解决问题.【解答】解:640×=400(本)640×=240(本)答:高年级分得400本图书,低年级分得240本图书.【点评】本题考查了分数问题和按比例分配的实际问题,按比例分配的方法求出两个年级的本数,是比较难的问题.。
人教版六年级数学下册 比例 讲义
比例知识点一、比例的概念和性质两个数( ),叫做两个的比,符号是“:”,所得的商叫做( )。
两个比( )的式子叫做比例。
组成比例的四个数,叫做比例的( )。
两端的项叫做比例的( ),中间的项叫做比例的( )。
例如:例1、在比例1:2=3:6中,外项是( )和( ),内项是( )和( )例2、在比例1.2:2.1=4:7中,( )和( )是外项,( )和( )是内项,将这个比例改写成分数形式是=()()()()比例的基本性质:在比例中,( ) 例3、在比例1:2=3:6中,有( )×( )= ( )×( ) 例4、在等式53=159中,有( )×( )= ( )×( )比例还有另外一个性质:在比例中,两个外项交换位置或者两个内项交换位置,比例( )。
例5、已知比例3:5=6:10,运用以上性质,写出另外3个比例:( )、( )、( ) 例6、已知等式23=812,运用以上性质,写出另外3个等式:( )( )=( )( ),( )( )=( )( ),( )( )=( )( )例3、在下面的括号里填上适当的数; (1)4:( )=0.5:0.7 (2)87:25=( ):( ) (3)2.1:3.5=( ):2.5 (4) ( ):2.4=1:0.2例4、在一个比例中,两个内项互为倒数,一个外项是25,另一个外项是( )例5、写出比值是0.2的两个比:( )和( )。
组成比例是( ):( )=( ):( ) 例6、大小齿轮齿数的比是5:3,小齿轮有15个齿,大齿轮有( )个齿 例7、用36的因数组成一个比例是1:( )=( ):( )例8、18的约数有( ),选出其中四个数组成一个比例是( ) 例9、如果7a=4b ,那么a:b=( ): ( ) 例10、x ×13=y ×15时,x :y =( )A 、13 :15B 、5:3C 、3:5例11、能与32:43组成比例的是( ) A 、2:3 B 、4:29 C 、1816:21 D 、21:31例12、解比例。
最新人教版六年级数学下册比例专项复习常考应用题
人教版六年级数学下册比例应用题(1)类型:应用题复习项:比例题量:50题年级:小学阶段1. 学校要给图书室的地面铺上方砖,如果用边长为30cm的方砖铺,需要600块,如果改用边长为60cm的方砖铺,需要多少块?2. 宏达书店购进30本《格林童话》,花了192元,由于供不应求,老板决定再购进80本,还需要多少元?3. 有一批树苗,原计划40人去栽,每人要栽15棵,后来增加10人去栽,每人要栽多少棵?4. 一辆汽车在公路上行驶,行驶的时间和路程如图。
(1) 10时行了多少千米?(2)行驶600千米,需要几时?5. 甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?6. 同学们做操,每行站15人,正好站12行。
如果每行站9人,可以站多少行?7. 甲乙两地间的距离是490千米,一辆汽车5小时行驶了350千米。
照这样计算,行完全程需要几小时?8. 某施工队,为工厂铺地面,4天铺了2400平方米,照这样计算,铺7200平方米需要几天完成。
(用比例解答)。
9. 城建工人修建一条自来水管道,用8米长的新管换原来5米长的旧管。
现在用新管200根,可以换旧管多少根?10. 修一条长200米的路,前6天修了全长的15%,照这样计算,修完全程还要多少天?11. 一运输队为云南干旱灾区抢运水,一次全部运完。
如果用载重量是10吨的车20辆即可运完。
如果用载重量是8吨的车,多少辆可以一次运完?12. 小红和同学们在操场上测量出旗杆影长时4米,同时测得直立的米尺影子长40厘米,学校的旗杆有多高?13. 下面是某辆汽车所行路程和耗油量的对应数值。
(1)表中的耗油量与所行路程成正比例吗?为什么?(2)在下图中表示出汽车所行路程与相应耗油量关系的图像,说一说有什么特点。
(3)利用图像估计一下,汽车行驶60km的耗油量是多少?14. 配制一种农药,药粉和水的质量比是1:500。
(1)现有水4500千克,配制这种农药需要药粉多少千克?(2)现有药粉1.2千克,配制这种农药需要水多少千克?15. 一艘货轮往返于A、B两港之间一次共用8小时,由于顺风,从A港开往B港每小时行45km,返回时每小时行35km,A、B两港相距多少km?16. 一列火车的实际长度是500米,它的长度与模型长度的比是800:1,模型长度是多少米?17. 早上九点钟时物体的高度与影子的长度比是5 :4,那么这时如果测得电线杆的影子长是4.8米,那么这根电线杆的高是多少米?18. 一张照片(如图1)可按一定比例放大到图2的尺寸,若要放到到图3 尺寸,照片的长需要放大到多少厘米?19. 小明买9本练习本花了4.5元,如果用20元钱买同样的练习本,可以买多少本?20. 修路队修一条公路,已修部分与未修部分的比是9:4,又知已修部分比未修部分长600米,这条路长多少米?21. 一个长8厘米,宽6厘米的长方形按3:1的比例放大后,得到的图形的面积是多少平方厘米?22. 在春游活动中,我班共创建了8个活动小组,每组5人。
人教课标版小学数学六年级下册第三单元《比和比例整理和复习》教学设计
〔1〕认真审题 ,分析数量关系 ,判断哪两种量成什么比例。
〔2〕设未知数X ,注明单位名称。
〔3〕根据正、反比例的意义列出等式 ,并解答。
〔4〕检验。〔5〕写答句。
4.上面的第〔1〕、〔2〕题还有其他解法式吗?生答师板书。
〔1〕90×20÷15 〔2〕90÷20×15 90× 90÷
板
书
设
全班练习 ,指名个别板演 ,后集体订正。
题〔1〕因为每天工作量×工作时间=工作总量〔一定〕
所以每天工作量和工作时间成反比例。
解:设实际每天安装X米。
15X=90×20
X=120答:略
人教版小学数学六年级下册●第三单元比例●整理和复习●第四课时教学设计
教
学
流
程
题〔2〕因为工作总量÷工作时间=每天工作量〔一定〕
教学
目标
1.使学生进一步理解比例的意义和性质 ,明确比和比例的联系与区别。
2.使学生能正确地、熟练地解比例。
3.使学生进一步理解、掌握正、反比例的意义 ,能正确进行判断。
教学
准备
习题卡
教
学
流
程
一、比、比例的意义
1.什么是比?
2.什么是比例?比例的根本性质是什么?
3.比和比例有什么联系和区别?
指名口答 ,出示表格填空。
1.说一说运用比例解决问题的步骤。
通过回忆与交流 ,学生概括出解决答步骤。如:
〔1〕找出相关联的两种量。
〔2〕判断两种量成什么比例。
〔3〕用等量关系表示数量关系。
〔4〕解设 ,并解比例
〔5〕检验。
2.完成课文“整理与复习〞第4题。
三、稳固练习
完成课文练习十第4、5题。
(期末专项复习)解答题-比例-2023学年小学数学六年级下册期末复习(人教版)
(期末专项复习)解答题-比例学校:___________姓名:___________班级:___________考号:___________一、解答题1.在一幅比例尺是1:5000000的地图上,量得甲、乙两城之间公路长6厘米。
一辆汽车以平均每小时60千米的速度从甲城开往乙城,需要多少小时才能到达?2.学校组织同学们参观科技博物馆,如果每辆车坐35人,需要12辆车;如果每辆车坐28人,需要多少辆车?(用比例解)3.齐才同学在西安市大雁塔参观时,他量得1米的小旗杆影长是1.2米,大雁塔的影长约为78米,请帮齐才同学算一算大雁塔高度。
(用比例解)4.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)5.一间会议室用面积为25平方分米的方砖铺地,需要540块,如果改用边长为6分米的方砖铺地,需要多少块?(用比例解)6.甲乙两地相距44千米,在一幅地图上量得图上距离是2.2厘米,求这幅地图的比例尺是多少?7.在比例尺是1:4000000的地图上,量的甲乙两地的距离是4.5厘米,一辆汽车以每小时40千米的速度从甲地到乙地,几小时到达?8.下面是某小学运动场的平面图(比例尺是1∶1000),运动场中间是长方形,两侧是16.用方砖铺地,若用边长30cm的方砖铺地,需要320块;若改用边长40cm的方砖铺地,则需要多少块?(用比例方法解)17.(用比例解)一种大豆,每20千克可以榨油5.5千克。
照这样计算,30吨大豆可以榨油多少吨?18.(宁波)电讯公司要铺设一条通讯光缆线,计划由20人12天完成,因任务紧急,必须提前2天完成任务,如果工效不变,应增加多少人才能按时完成?(用比例解答)19.新学期就要开学了,张华和李明买了一些学习用品,张华买了两支钢笔和两本活页夹,李明买了同样的三支钢笔和两本活页夹,他们所用去的钱数比是7:9,如果一本活页夹是6元,那么一支钢笔多少元钱?20.通常人的血液质量与体重的比约是1∶13,王刚的体重是52kg。
人教版六年级数学下册 比例 知识点归纳
人教版六年级数学下册比例知识点归纳
知识点一:比例的概念与性质
比例是由两个相等的式子组成的,其中四个数被称为比例的项。
比例的外项是指两端的项,而内项则是指中间的项。
比例具有两个基本性质:首先,比例中两个外项之积等于两个内项之积;其次,比例中两个外项或两个内项交换位置后,比例仍然成立。
知识点二:正比例与反比例
当两种量的变化是成正比例的,即一个量的变化会导致另一个量的变化,并且它们的比值保持不变时,这两种量就被称为正比例的量。
这种关系可以用字母表示为x=k(其中k是一个常数)。
另一方面,当两种量的变化是成反比例的,即一个量的变化会导致另一个量的变化,而它们的乘积保持不变时,这两种量就被称为反比例的量。
这种关系可以用字母表示为xy=k(其中k是一个常数)。
如果两种量既不成正比,也不成反比,那么它们就不成比例。
知识点三:比例尺
比例尺是指图上距离与实际距离之间的比例关系。
比例尺可以用数值比例尺、线段比例尺和文字比例尺三种方式表示,并且它们之间可以互相转换。
比例尺可以分为两类:放大比例尺和缩小比例尺。
当比例尺是放大比例尺时,图上的距离是实际距离的倍数;而当比例尺是缩小比例尺时,图上的距离是实际距离的几分之一。
在计算比例尺时,需要先将单位统一,然后使用比例的基本性质来解决比例问题。
人教版六年级数学下册第四单元 比例复习课件
1:5000000的地图上,这条公路的图上距离是多少?
(教材P66第3题)
5.5×2000000= 11000000(cm)
1
11000000÷
= 2.2(cm)
5000000
答:这条公路的图上距离是2.2 cm。
3
同一时间、同一地点测得旗杆高度和影长的数据如下表。
7 :14 和 6 :12
0.4 :1.6 和 3 :12
0.5
0.5
7 :14 = 6 :12
0.25
0.25
0.4 :1.6 = 3 :12
0.5 :2 和
0.25
1
4
1
:
16
1
3
1
:
4
和
4
3
4
1
3
1
:
4
=
1
6
1
:
8
4
3
1
1
:
6
8
2
解比例。
0.6 1.5
=
12
解:0.6x = 1.5×12
1.5×12
01 计算表中两种量的比值或乘积。
若两种量的比值一定,则成正比例;
02
若两种量的乘积一定,则成反比例。
(1)从甲地到乙地的路程是240km,汽车行驶的速度与时间如下表。
速度/(千米/时)
40
50
60
80
100
时间/时
6
4.8
4
3
2.4
(1)40×6 = 50×4.8 = 60×4=80×3 = 100×2.4 = 240
六年级下册数学课件-16整理和复习——比和比例人教版
(1)全班人数一定,出勤人数与缺勤人数。 (不成比例)
(2)已知
y x
=
3
,y
与
x
。
(3)三角形的面积一定,它的底与高。
(4)正方体的表面积与它的一个面的面积。
(5)已知 xy=1 , y 与 x 。
(6)出油率一定,花生油的质量与花生的质量。
判断下面各题中的两个量是否成正比例或反比例关系。
(1)全班人数一定比,值出一勤定人数与缺勤人数。 (不成比例)
整理与复习 比和比例 小学六年级 数学
各部分名称
0.6 ∶ 0.4
前项 后项
意义
比 两个数的比表 示两个数相除。
比的前项和后项同时乘 或除以相同的数(0除
外),比值不变。 基本性质
意义
表示两个比相等 的式子叫做比例。
比例
基本性质
在比例里,两个内项的 积等于两个外项的积。
0.6 : 0.4 = 3: 2
(1)全班人数一定,出勤人数与缺勤人数。 (不成比例)
(2)已知
y x
=
3
,y
与
x
。
(成正比例)
(3)三角形的面积一定,它的底与高。 (成反比例)
(4)正方体的表面积乘与积它一的定一个面的面积。 (成正比例)
(5)已知 xy=1 , y 与 x 。
(成反比例)
(6)出油率一定,花生油的质量与花生的质量。
×2
每天页数/页
每天页数 60
48
40
240 7
30
...
天数 4 5 6 7 8 ...
240
(1,240)
÷2
210
180
150
整理六年级数学下册比例尺、及比例的复习
6、用一台打字机打字,6小时 打36页,照这样计算,如果 再打4小时,一共可以打字多 少页?
谢谢!
整理六年级数学下册比例尺、及比例 的复习
比例尺
1.什么叫比例尺?
图上距离
★ 比例尺= 实际距离
2.比例尺有几种,分别是什么? 比的形式 1 :100
图上距离 实际距离
=比例尺
数值比例尺 (分数形式) 1
100
线段比例尺 0 100 200 300千米
3.比例尺1:1000000表示的具体含义是 什么? 比例尺 0 50Km 表示什么意义? 4.比例尺书写时要注意什么?
不成比例
15、小明的年龄和他的体重.
不成比例
16、梯形的面积一定时,上底和下底 的和与高. 不成比例
17、圆的周长和圆的半径. 正比例
18、大米的总量一定,吃掉的和剩下.
不成比例
19、三角形的面积一定时,底和高.
反比例
用比例解决问题
• 判根据题中的不变量找出两种相关联的量, 并判断这种相关联的量成什么比例;
的地图上,量得甲、乙两地相距
3.2cm。 (1)甲、乙两地之间的实际距离 是多少? (2)王老师从甲地开车驶往乙地, 如果每小时行80km,他能赶上在乙 地召开的会议吗?
数 学
整理与复习
重点知识归纳
• 比例的意义 • 比例的基本性质 • 解比例 • 正比例和反比例的意义 • 比例尺 • 用比例解决问题
2、工人装一批电杆,每天装12 根,30天可以完成。如果每天 多装6根,几天能够完成?
3、食堂运来一批煤,计划每天烧 180千克,可以烧25天。实际每天少 烧30千克,实际烧多少天?
人教版数学六年级下册第四单元《比例》第二讲-含解析-(知识精讲+典型例题+随堂作业+进门考)
人教版数学六年级下册第四单元《比例》第二讲知识点1:正、反比例的复杂应用复习:1.一台机床5小时抽水50立方米,照这个速度,9小时可抽水 90 立方米.2、一列火车从甲地到乙地,每小时行90千米,需4小时;若每小时行80千米,则需 4.5小时.知识点讲解:思考:已知2千克苹果的价钱与3千克梨的价钱相等分析1、重量、单价、总价之间的关系是:总价=单价x重量2、苹果的重量与梨的重量之比是: 2:3;3、总价一定,单价与重量成反比例关系:4、苹果的单价与梨的单价之比是3:2思考:小明买回一本书,连续12天可以看完.但实际小明每天比计划多看了20%,小明实际少看了多少天?小明原计划每天看书与实际看书之比是多少?1:(1+20%)=5:6.每天看书页数与天数成什么比例关系?(成反比例关系).原计划看书天数与实际天数之比是多少?(6:5)实际少看了多少天? 12+6x(6-5)=2(天)总结:利用反比例关系求出比小练习由于方法改进,施工队效率提升了10%,那么原来计划用22天完成的项目,现在少用多少天完成?(答案: 2天)笔记部分:正、反比例的复杂应用解题时,首先要找出题目中哪些量是相关联的量,“谁”是一定量,然后判断比例关系,解题.例题1(1)甲乙、丙三人进行100米赛跑(假设他们各自的速度保持不变),甲到达终点时,乙离终点还有20米,丙离终点还有25米.那么当乙到达终点时,丙离终点还有多少米?(2)红星化工厂由于改进烧煤方法,每天的用煤量节约20%,那么原来24天的用煤量,现在可以多用多少天?答案(1)甲、乙、丙三人的路程比是20:16:15,乙到达终点时,丙离终点还有:100-100+16x15=6.25(米);(2)改进烧煤方法后,现在每天用煤量:原来每天用煤量=(1-20%):1=4:5,现在可以用24x5÷4=30(天),那么现在可以多用30-24=6(天)练习11)小高走6小时的路程,小乐需要走7小时30分钟,若两人同时出发,当小高走了15千米时,小乐走了多少千米?(2)一架飞机经过2.25小时从甲地到乙地,回来时逆风飞行,速那么回到甲地比去时慢了几小时?度比原来降低了17答案解析 (1)当路程一定时,小高和小乐的时间比是4:5,所以速度比是5:4,两人同时出发,当小高走了15千米时,小乐走了15:5x4=12(千米);(2)顺风和逆风时速度比是7:6,那么时间比是6:7,所以回到甲地比去时慢了2.25÷6x7-2.25=0.375(时)例题2甲、乙两人现在从A地出发到B地,甲用了10小时,比乙多用了4小时,已知两人的速度差是每小时5千米,A、B两地的距离是多少千米?答案:当路程一定时,甲、乙的时间比是5:3,速度比就是3:5,速度差是每小时5千米,所以甲的速度是每小时5÷2x3=7.5(千米),所以AB两地的距离是7.5x10 =75(千米)练习2一堆煤,若用“八一”牌卡车运,18次可以运完;若用“红旗”牌卡车运,24次可以运完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容:比例的复习
教学目标:
1、情感目标:在复习活动中让同学体验数学与生活实际的密切联系,培养同学的数学应用意识,激发同学胜利学习数学和自信心和创新意识,渗透事物间是相互联系的辩证唯物主义观点。
2、能力目标:通过小组合作整理知识框架,提高学习的系统性,培养同学归纳、总结等自我复习能力和团队合作精神,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。
3、知识目标:(1)使同学进一步掌握比例的意义、性质,能正确迅速地解比例。
(2)进一步理解比例尺的意义,能应用比例尺的知识求出平面图的比例尺以和根据比例尺求图上距离和实际距离。
教学重点:理解比例的意义、性质,掌握关于和比例的一些实际运用和计算。
教学难点:能理清知识间的联系,建构起知识网络。
课前准备:
教学过程:
一、组内交流,形成共识
小组内逐成员进行发言,交流彼此课前整理的知识点,其他人进行补充和纠正,点明要求:在组内发言时音量要适中,要让组内成员听清,语言要有条理;组长要对成员的发言进行系统整理;
教师进行巡视,对于组内出现的问题进行及时的点拨。
二、组间展示
组间发言,逐小组进行发言,选派班内美术好的同学到台前构建知识树,这位同学根据每组的发言和这些知识点间的联系进行知识树的构建。
在活动过程中一小组进行发言,其余组可以进行适时纠正和补充,教师在旁可酌情补充,点评。
在此环节的最后教师课件展示网上关于知识树的优秀作品。
三、基本练习,适时巩固
课件出示相关知识点后,展示从课本上选取的习题,同学们进行当堂练习,组内纠正,组间列举本组出现的问题
四、归纳总结
教师归纳本节课所学内容,及本节课出现的问题,鼓励学生多学习构建知识树的方法。
教学反思
1、激发了同学主动学习的欲望,为学习的主动学习发明条件。
在宣布了这样的上课方式后,同
学们的兴致很高,在上课之前对比和比例已经进行了复习,而以前我安排的复习作业往往是无效的,难得有同学自身去复习数学。
2、增强合作意识,为学困生的参与和胜利发明机会。
上课以后我感觉到了,被提问到的首当其冲的是那些平时不敢回答问题的后进同学,这是同学可爱的"狡猾",因为这样,就可以使其它组的得分少一些,同学类似的这种狡猾在课中还会有不少,比方提得分低的那组同学,不给得分高的那组再得分的机会等,可是不论怎样,后进生不再是被遗忘的角落,用这种形式上课时,他们敢于说出自身所理解到的,哪怕是一点点,合作成为了一种需要而不是一种命令,也许我只是借鉴了一种形式,但同组间的合作与不同组之间的竞争让这种形式为同学们的学习设置了一个积极自主的陷阱,同学喜欢这样的学习方式,也喜欢这样的学习内容,这是我设计这堂课的动身点,也是我新课程理念下尝试的一种复习课的教学模式,效果不错。