正方形经典题型(培优提高)

合集下载

八年级数学培优——正方形

八年级数学培优——正方形

第22讲正方形考点•方法•破译1.有一组邻边相等且有一个角是直角的平行四边形叫正方形,即邻边相等的矩形或有一个角为直角的菱形叫正方形.2.熟练掌握正方形的性质,并能在解决问题时将正方形与等腰直角三角形进行替换思考.3.掌握正方形的判断方法,并应用它的对称性质解决问题.经典•考题•赏析【例1】如图,已知平行四边形ABCD中,对角线AC、BD交于点O, E是BD延长线上的点,且“CE是等边三角形.⑴求证:四边形ABCD是菱形;⑵若/AED=2Z EAD,求证:四边形ABCD是正方形.【变式题组】01.如图,已知正方形ABCD的对角线AC和BD相交于O,点M、N分别在OA、OD上, 且MN〃AD.探究:线段DM和CN之间的数童关系,写出结论并给出证明.A02.如图,点P是正方形ABCD对角线AC上的点,PE±AB, PF±BC, E、F是垂足,问PD与EF有怎样的关系?请说明理由.03 .如图,将正方形ABCD中的△ ABD绕对称中心O旋转至△ GEF的位置,EF交AB于M, GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.04.把一个正方形分成面积相等的四个三角形的方法有很多,除了可以分成相互全等的四个三角形外,你还能用三种不同的方法将正方形分成面积相等的四个三角形吗?请分别画出示意图.【例2】如图,正方形ABCD绕点A逆时针旋转废后得到正方形AEFG,边EF与CD交于点O.⑴以图中已标有字母的点为端点连接两条线段(正方形的对角线除外),要求所连接的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由;⑵若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为“ cm2,求旋转的角度.3【变式题组】01.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕点A顺时针旋转45°,则这两个正方形重叠部分的面积是_________ .02.我们给定两个全等的正方形ABCD、AEFG它们共顶点A(如图1),可以绕顶点A旋转,CD、EF相交于点P.⑴连接BE、DG(如图2),求证:BE=DG, BE±DG⑵连接BG、CF(如图),求证:BG//CF.【例3】数学课上,张老师提出了问题:如图1,四边形ABCD是正方形,点E是BC 边的中点.Z AEF = 90°,且EF交正方形外角N DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则似AM=EC, 易证△ AME/△ ECF,所以AE=EF.在此基础上,同学们进一步的研究:⑴小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B、C外)的任意一点”,其他条件不变,那么结论"AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是边BC的延长线上(除C点外)的任意一点,其他条件不变,结论" AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.图】图2 图3【变式题组】01.如图,已知正方形ABCD在直线MN上方,BC在直线MN上;E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.⑴连接GD,求证:△ ADG/△ ABE;⑵连接FC,观察并猜测Z FCN的度数,并说明理由.02.如图,在正方形ABCD中,点E、F分别是BC、DC边上的点,且AE± EF.⑴延长EF交正方形外角平分线CP于点P,试判断AE与EP的大小关系,并说明理由;⑵在AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.【例4】已知:正方形ABCD中,N MAN=45°,N MAN绕点A顺时针旋转,它的两边分别CB、DC(或它们的延长线)点M、N.当N MAN绕点A旋转至U BM=DN时(如图1), 易证BM+DN=MN.⑴当N MAN绕点A旋转至U BN W DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;⑵当N MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间有怎样的数量关系?写出猜想并明.【变式题组】01.如图,在正方形ABCD中,点E、F分别在BC、CD上移动,但A到EF的距离AH始终保持与AB长相等,问在E、F移动过程中:⑴N EAF的大小是否有变化?请说明理由;⑵^ECF的周长是否有变化?请说明理由.02.如图,有四个动点P、Q、E、F分别从边长为1的正方形ABCD的四个顶点出发,沿AB、BC、CD、DA以同样的速度向B、C、D、A各点移动⑴试判断四边形PQEF的形状,并证明;⑵PE是否总过某一定点,并说明理由;⑶四边形PQEF的顶点位于何处时,其面积最小和最大?各是多少?03.在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、%轴的正半轴上,点O在原点.现将正方形OABC绕点O顺时针旋转,当A点第一次落在直线y=%上时停止旋转,旋转过程中,AB边交直线y=%于点M,BC边交%轴于点N(如图).⑴旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;⑵设△ MBN的周长为p,在正方形OABC旋转的过程中,p值是否有变化?请证明你的结论.【例5】小杰和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到了这样一道题:“已知正方形ABCD,点E、F、G、H只分别在AB、BC、CD、DA上,若EG± FH ,则GE=FH”经过思考,大家给出了以下两个方案:(甲)过点A做AM〃HF交BC于点M,过点B作BN〃EG交CD于点N;(乙)过点A做AM〃HF交BC于点M,作AN〃EG交CD的延长线于点N;小杰和他的同学顺利的解决了该题后,人家琢磨着想改变问题的条件,作更多的探索.⑴对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1);⑵如果把条件中的“EG± HF"改为“EG与HF的夹角为45°”,并假设正方形ABCD的边长为1, FH的长为至(如图2),试求EG的长度.2【变式题组】01.若正方形ABCD的边长为4, E为BC边上一点,BE =3, M为线段AE上一点,射线BM交正方形的一边于点F,且BF = AE,则BM的长为.02.如图,已知正方形ABCD的边长为3, E为BC边上一点,BE=1.以点A为中心,把△ADE顺时针旋转90°,得4ADE',连接EE,,则EE'的长等于.03.已知正方形ABCD中,点E在边DC上,DE=2, EC=1(如图所示)把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为.04.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M 点正好在N NDG的平分线上,矩形ABCD长与宽的比值为.E B (! B C /? C B E C H E① ②③第之题图第W题掰第4噩图05.平面内有一等腰直角三角板(N ACB=90°)和一直线MN.过点C作以CE± MN于点E,过点B作BF± MN于点F.当点E与A重合时(如图1),易证:AF+BF=2CE.当三角板绕点A顺时针旋转至图2、图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,清直接写出你的猜想,并证明.演练巩固•反馈提高01.顺次连接菱形各边中点所得的四边形一定是()A .等腰梯形反 正方形C 平行四边形。

与正方形有关的计算及证明精选训练题(培优卷)

与正方形有关的计算及证明精选训练题(培优卷)

与正方形有关的计算及证明精选训练题(培优卷)一.选择题1.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x 轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015C.()2015D.()2014 2.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2B.3C.D.3.如图在一个3×3方格纸上,若以格点(即小正方形的顶点)为顶点画正方形,在该3×3方格纸上最多可画出的正方形的个数是()A.13B.14C.18D.204.用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形,一定可以拼成的图形是()A.(1)(2)(5)B.(2)(3)(5)C.(1)(4)(5)D.(1)(2)(3)5.下列说法中错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.四个角都相等的四边形是矩形D.对角线互相垂直平分的四边形是正方形二.填空题1.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…依次作下去,图中所作的第三个四边形的周长为;所作的第n个四边形的周长为.2.如图所示,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC=.3.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作第三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,则a n=.4.如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为.5.把三张大小相同的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1S2(填“>”、“<”或“=”).6.如图,正方形ABCD的边长为4,MN∥BC分别交AB,CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.三.解答题1.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG∥BD,BG=BD,连接BE,求∠BED的度数.2.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A 关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)直接写出GF与GC的数量关系:;(2)用等式表示线段BH与AE的数量关系,并证明.3.如图,B是线段AD上一点,在线段AD的同侧作正方形ABCG和正方形BDEF,连接AF,CD.求证:AF=CD.4.已知点E,F分别是正方形ABCD的边BC,CD上的动点,并且保持∠EAF=45°,请你证明△CEF的周长是一个只与正方形ABCD边长有关的定值.5.如图,在正方形ABCD中,点E是直线AC上任意一点(不与点A,C重合),过点E作EF⊥BE交直线CD于点F,过点F作FG⊥AC交直线AC于点G.(1)如图1,当点E在线段AC上时,猜想EG与AB的数量关系;(2)如图2,当点E在线段AC的延长线上时,补全图形,并判断(1)中EG与AB的数量关系是否仍然成立.如果成立,请证明;如果不成立,请说明理由.6.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,求∠PED的度数.7.如图,已知正方形ABCD,连接其对角线BD.在BC延长线上取一点E,使得BE=BD,连接DE.过B做DE的垂线,交DE于点O,交AD延长线于点F.(1)求证四边形BEFD是菱形.(2)求∠DPB的度数.8.如图,在正方形ABCD中,E为对角线AC上一点(AE>CE),连接BE,DE.(1)求证:BE=DE;(2)过点E作EF⊥AC交BC于点F,延长BC至点G,使得CG=BF,连接DG.①依题意补全图形;②用等式表示BE与DG的数量关系,并证明.9.对于平面直角坐标系xOy中的线段AB和图形M,给出如下的定义:若图形M是以AB 为对角线的平行四边形,则称图形M是线段AB的“关联平行四边形”.点A(8,a),点B(2,b),(1)当a=8,b=﹣2时,若四边形AOBC是线段AB的“关联平行四边形”,则点C的坐标是;(2)若四边形AOBC是线段AB的“关联平行四边形”,求对角线OC的最小值;(3)若线段AB的“关联平行四边形”AOBC是正方形,直接写出点C的坐标.10.在正方形ABCD中,F是线段BC上一动点(不与点B,C重合)连接AF,AC,分别过点F,C作AF、AC的垂线交于点Q.(1)依题意补全图1,并证明AF=FQ;(2)过点Q作NQ∥BC,交AC于点N,连接FN.若正方形ABCD的边长为1,写出一个BF的值,使四边形FCQN为平行四边形,并证明.11.如图,在正方形ABCD中,E为AB边上一点(不与点A,B重合),CF⊥DE于点G,交AD于点F,连接BG.(1)求证:AE=DF;(2)是否存在点E的位置,使得△BCG为等腰三角形?若存在,写出一个满足条件的点E的位置并证明;若不存在,说明理由.12.正方形ABCD中,点P是边CD上的任意一点,连接BP,O为BP的中点,作PE⊥BD 于E,连接EO,AE.(1)若∠PBC=α,求∠POE的大小(用含α的式子表示);(2)用等式表示线段AE与BP之间的数量关系,并证明.13.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.14.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.15.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO 并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当∠BAC=时,矩形AEBD是正方形.16.如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD,连接OE.(1)求证:OE=CD;(2)探究:当∠ABC等于多少度时,四边形OCED是正方形?并证明你的结论.17.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.18.(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.19.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?20.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)求证:四边形ABCD是正方形.(2)已知AB的长为6,求(BE+6)(DF+6)的值.(3)借助于上面问题的解题思路,解决下列问题:若三角形PQR中,∠QPR=45°,一条高是PH,长度为6,QH=2,则HR=.21.如图,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10.求CE的长度.22.已知四边形ABCD,以此四边形的四条边为边向外分别作正方形,顺次连接这四个正方形的对角线交点E,F,G,H,得到一个新四边形EFGH.(1)如图1,若四边形ABCD是正方形,则四边形EFGH(填“是”或“不是”)正方形;(2)如图2,若四边形ABCD是矩形,则(1)中的结论(填“能”或“不能”)成立;(3)如图3,若四边形ABCD是平行四边形,其他条件不变,判断(1)中的结论是否还成立?若成立,证明你的结论,若不成立,请说明你的理由.23.如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为cm2.24.如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点.(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.25.设E、F分别在正方形ABCD的边BC,CD上滑动保持且∠EAF=45°,AP⊥EF于点P.(1)求证:AP=AB;(2)若AB=5,求△ECF的周长.26.已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD边AB,CD,DA上,AH=2,连接CF.(1)当DG=2时,求△FCG的面积;(2)设DG=x,用含x的代数式表示△FCG的面积;(3)判断△FCG的面积能否等于1,并说明理由.27.如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.。

正方形练习题(培优训练)

正方形练习题(培优训练)

正方形练习题(培优训练)
正方形练题(培优训练)
正方形是一种独特的几何形状,在数学和几何学中经常被研究和应用。

下面是一些正方形练题,旨在帮助您加深对正方形的理解和掌握。

1. 求解正方形的面积公式。

面积是一个几何形状的表面所覆盖的单位面积的总量。

对于正方形而言,其面积公式为边长的平方。

若正方形的边长为a,则其面积为a^2。

2. 假设一个正方形的面积为25平方单位,求解其边长。

根据上述面积公式,设边长为a,则有a^2 = 25。

解这个方程可以得到a = 5,所以该正方形的边长为5单位。

3. 如果一个正方形的边长为6单位,求解其周长和对角线的长度。

周长是一个几何形状的边界长度的总和。

对于正方形而言,其
周长公式为4倍边长。

所以这个正方形的周长为4 * 6 = 24单位。

对角线是连接正方形两个对角线的线段。

根据勾股定理,若正
方形的边长为a,则其对角线的长度为a * √2。

所以这个正方形的
对角线长度为6 * √2单位。

4. 如果一个正方形的周长为36单位,求解其面积和边长。

根据周长公式,设边长为a,则有4a = 36。

解这个方程可以得
到a = 9,所以这个正方形的边长为9单位。

根据面积公式,该正方形的面积为9^2 = 81平方单位。

这些练题旨在帮助您加深对正方形相关概念和公式的理解。


续练和应用这些知识,将帮助您在数学和几何学中取得更好的成绩。

专题5-5正方形专项提升训练(重难点培优)--2023-2024学年八年级数学(0002)

专题5-5正方形专项提升训练(重难点培优)--2023-2024学年八年级数学(0002)

【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【浙教版】专题5.5正方形专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•阜平县期末)下列说法正确的是()A.菱形的四个内角都是直角B.矩形的对角线互相垂直C.正方形的每一条对角线平分一组对角D.平行四边形是轴对称图形2.(2022春•巴中期末)下列说法正确的是()A.四边相等的四边形是正方形B.对角线互相垂直且相等的四边形是正方形C.对角线互相垂直平分的四边形是菱形D.对角线相等的四边形是矩形3.(2022春•唐河县期末)已知:如图,M是正方形ABCD内的一点,且MC=MD=AD,则∠AMB的度数为()A.120°B.135°C.145°D.150°4.(2022春•青秀区校级期末)如图,正方形ABCD的对角线AC,BD交于点O,E、F分别为AO、AD的中点,若EF=3,则OD的长是()A.3B.4C.5D.65.(2022春•肥城市期中)如图,E、F分别是正方形ABCD的边CD、BC上的点,且CE=BF,AF、BE 相交于点G,下列结论中正确的是()①AF=BE;②AF⊥BE;③AG=GE;④S△ABG=S四边形CEGF.A.①②③B.①②④C.①③④D.②③④6.(2022秋•舞钢市期中)如图,正方形ABCD中,点P和H分别在边AD、AB上,且BP=CH,AB=15,BH=8,则BE的长是()A.B.5C.7D.7.(2022•大渡口区校级模拟)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若,则线段AC的长为()A.B.C.D.8.(2021秋•吉州区期末)如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线CF滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点B与点E重合时,四边形ACDF是菱形C.当点E为BC中点时,四边形ACDF是矩形D.四边形ACDF不可能是正方形9.(2022秋•金水区校级期中)已知四边形ABCD是平行四边形,下列结论中错误的有()①当AB=DC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.A.1个B.2个C.3个D.4个10.如图,在边长为15的正方形ABCD中,点E、点F分别是BC、AB上的点,连接DE、DF、EF,满足∠DEF=∠DEC.若AF=3,则EF的长为()A.12B.13C.14D.15二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2022春•北京期中)如果正方形的一条对角线长为3,那么该正方形的面积为.12.(2021秋•太原期末)添加一个条件,使矩形ABCD是正方形,这个条件可能是.13.(2022春•岱岳区期末)如图,在正方形ABCD中,点F为边CD上一点,BF与AC交于点E.若∠CBF =25°,则∠AED的大小为度.14.(2022秋•和平区校级期末)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,正方形ABCD的边长为3,BE=1,则DF的长为.15.(2022春•吴中区校级月考)如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG 为边作一个正方形AEFG,线段EB和GD相交于点H若AB=2,AG=,则EB=.16.如图,在正方形ABCD中,AB=6,点F在边DC上运动(不包含两个端点),点E是边BC的中点,连接AE,AF,EF.当△AEF为等腰三角形,AE为底边时,CF的长为.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•周至县期末)如图,在正方形ABCD中,点E、F分别在边BC、AB上,且AF=BE,AE、DF相交于点O.求证:∠BAE=∠ADF.18.(2022•越秀区校级一模)如图,正方形ABCD中,点P,Q分别为CD,AD边上的点,且DQ=CP,连接BQ,AP.求证:BQ⊥AP.19.(2021•陕西模拟)如图,正方形ABCD的对角线AC与BD交于点O.过点C作CE∥BD,过点D作DE∥AC,CE与DE交于点E,求证:DE=CE.20.(2022春•东莞市校级期中)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB 边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)21.(2022秋•牡丹区校级月考)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB 边上点,过点D作DE⊥BC交直线MN与E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形CDBE是什么特殊四边形?说明理由;(3)在满足(2)的条件下,当△ABC再满足条件时,四边形CDBE是正方形(直接填写答案).22.(2022•崂山区一模)如图,正方形ABCD,点P在边BC的延长线上,连接AP交BD于F,过点C作CG∥AP交BD于点G,连接AG,CF.(1)求证:△ADF≌△CBG;(2)判断四边形AGCF是什么特殊四边形?请说明理由.23.(2021秋•宁阳县期末)如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,且∠CGD=∠DGE,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)猜想:△DEH的形状,并说明理由.(2)猜想BH与AE的数量关系,并证明.。

正方形综合问题大题专练(重难点培优)

正方形综合问题大题专练(重难点培优)

正方形【要点梳理】要点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.要点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.要点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).要点四、特殊平行四边形之间的关系或者可表示为:要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.【典型例题】类型一、正方形的性质例1、如图,在正方形ABCD中,点P是对角线AC上一点,连接PB、PD,点E在BC的延长线上,且P E=PB.求证:(1)△BCP△△D CP;(2)△DPE =△ABC.举一反三:【变式1】如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分△ACD 交BD于点M,MN△CM,交AB于点N,(1)求△BMN的度数;(2)求BN的长.【变式2】已知,如图,在Rt△ABC 中,△BAC =90°,△ABC =45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边作正方形ADEF ,连接CF ,当点D 在线段BC 的反向延长线上,且点A ,F 分别在直线BC 的两侧时.(1)求证:△ABD △△ACF ;(2)若正方形ADEF 的边长为AE ,DF 相交于点O ,连接OC ,求OC 的长度.类型二、正方形的判定例2、如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC .(1)求证:BE DG =;(2)若60B ∠=︒,当BC =______AB 时,四边形ABFG 是菱形;(3)若60B ∠=︒,当BC =______AB 时,四边形AECG 是正方形.【变式】如图所示,在四边形ABCD中,AD△BC,△B=90°,AD=24cm,BC=26cm动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C出发沿着CB方向向点B以3cm/s的速度运动.点P,Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)若AB=8,如果Q点的移动速度不变,要使PQBA是正方形,则P点移动速度是多少?类型三、正方形中的折叠问题例3 如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG△△AFG;(2)求△EAG的度数;(3)求BG的长.【变式】如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,连接AG.(1)求证:△ABG△△AFG;(2)求BG的长.类型四、正方形中的最值问题例4.如图,在边长为2cm的正方形ABCD中,Q为BC边的中点,P为对角线AC上的一个动点,连接PB,PQ,求△PBQ周长的最小值.【变式】如图,正方形ABCD中,AB=O是BC边的中点,点E是正方形内一动OE=,连接DE,将线段DE绕点D逆时针旋转90︒得DF,连接AE,CF.点,2(1)若A、E、O三点共线,求CF的长;(2)求CDF的面积的最小值.正方形综合问题大题专练(重难点培优)例1.如图,正方形ABCD中,点E为边BC的上一动点,作AF⊥DE交DE、DC分别于P、F点,连PC(1)若点E为BC的中点,求证:F点为DC的中点;(2)若点E为BC的中点,PE=6,PC=4√2,求PF的长.例2.(2020•三门县一模)如图,点E,F分别在正方形ABCD的边DA,AB上,且BE⊥CF于点G.(1)求证:△ABE≌△BCF;(2)若四边形AECF的面积为12.①正方形ABCD的面积是;②当FG=2时,求EG的长.例3.(2018•安丘市模拟)如图1,在正方形ABCD中,点E在AD的延长线上,P是对角线BD上的一点,且点P位于AE的垂直平分线上,PE交CD于点F.猜测PC和PE有什么大小及位置关系,并给出证明.例4.如图,在△AFE中,∠F AE=90°,AB是EF边上的高,以AB为一边在AB的右侧作正方形ABCD,CD交AE于点M.(1)求证:△ABF≌△ADM;(2)若AF=13,DM=5,求CM的长;(3)连接DF交AB于点G,连接GM,若∠DFB=∠F AB,求证:四边形AGMD是矩形.例5.(2019•宽城区一模)问题探究:如图①,在正方形ABCD中,点E在边AD上,点F 在边CD上,且AE=DF.线段BE与AF相交于点G,GH是△BFG的中线.(1)求证:△ABE≌△DAF.(2)判断线段BF与GH之间的数量关系,并说明理由.问题拓展:如图②,在矩形ABCD中,AB=4,AD=6.点E在边AD上,点F在边CD 上,且AE=2,DF=3,线段BE与AF相交于点G.若GH是△BFG的中线,则线段GH的长为.例6.如图,在正方形ABCD中,点P在对角线AC上(不与点A、C重合),PM⊥AB于M,PN⊥BC于N,连接PD.(1)求证:四边形PMBN是矩形.(2)猜想PD、PM、PN之间的数量关系,并说明理由.例7.(2019•黑龙江)如图,BD是正方形ABCD的对角线,线段BC在其所在的直线上平移,将平移得到的线段记为PQ,连接P A,过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)如图①所示,求证:AP=√2OA;(2)如图②所示,PQ在BC的延长线上,如图③所示,PQ在BC的反向延长线上,猜想线段AP、OA之间有怎样的数量关系?请直接写出你的猜想,不需证明.例8.(2019春•沙河市期末)如图,矩形ABCD和正方形ECGF.其中E、H分别为AD、BC中点,连结AF、HG、AH.(1)求证:AF=HG;(2)求证:∠F AE=∠GHC;例9.(2020春•岳麓区校级期末)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)若PB=PQ,点F是BP的中点,连结EF、AF,①求证:四边形AFEP是平行四边形;②求PE的长.例10.如图,在正方形ABCD内有一点P满足AP=AB,PB=PC.连接AC、PD.(1)求证:△APB≌△DPC;(2)求∠P AC的度数.。

浙教版数学八年级下册5.3正方形培优练习(含解析)

浙教版数学八年级下册5.3正方形培优练习(含解析)

浙教版数学八年级下册5.3正方形培优练习一、选择题1.如图,四边形ABCD是平行四边形,下列说法不正确的是( )A.当AC=BD时,四边形ABCD是矩形B.当AB=BC时,四边形ABCD是菱形C.当AC平分∠BAD时,四边形ABCD是菱形D.当∠DAB= 90°时,四边形ABCD是正方形2.如图,在正方形ABCD中,E是AC 上的一点,且AB=AE,则∠EBC的度数为( )A.37.5°B.30°C.22.5°D.12.5°3.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于( )A.1B.12C.13D.144.如图,由两个直角三角形和三个正方形组成的图形,其中阴影部分面积是( )A.16B.25C.144D.1695.如图,在正方形ABCD中,E为CD边上一点,将△AED沿着AE翻折得到△AEF,点D的对应点F恰好落在对角线AC上,连接BF.若EF=2,则BF2=( )A.42+4B.6+42C.12D.8+426.将四个全等的三角形按如图所示的方式围成一个正方形ABCD,记△AED的面积为S1,四边形EFCG的面积为S2.若EG∥CF,EG=3,S1S2=16,则图中阴影部分的面积为( )A.23B.94C.32D.92二、填空题7.如图,在菱形ABCD中,对角线AC,BD相交于点O,不添加任何辅助线,请添加一个条件: ,使得四边形ABCD 是正方形.8.如图,A(0,2),D(1,0),以AD为边作正方形ABCD,则点B的坐标为 .9.勾股定理被合为“几何明珠”,在数学的发展历程中占有举足轻重的地位.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵夹弦图”(如图①所示).图②由弦图变化得到,它是由八个全等的直角三角形拼接而成的.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=129,则S2的值是 .10.如图,在Rt△ABC中,∠BAC=90°,以BC为边向上作正方形BCDE,以AC为边作正方形ACFG,点D落在GF上,连接AE,EG.若AB=9,BC+GD=9,则△AEG的面积为 .2三、解答题11.如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.12.如图,AD是△ABC的一条角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.(1)求证:四边形AEDF是菱形;(2)若∠B=35°,当∠C=▲度时,四边形AEDF为正方形并证明.13.如图,点E为正方形ABCD内一点,∠BEC=90°,将△BEC绕点B逆时针方向旋转90°得到△BFA (点E的对应点为点F),延长CE交AF于点G。

正方形培优题

正方形培优题

正方形培优题
正方形培优题是一种培训和提高学生思维能力的方法,通过解
决各种正方形相关的问题来帮助学生锻炼逻辑思维和分析能力。


文将介绍一些正方形培优题的例子和解题思路。

1. 正方形周长和面积
问题:一个正方形的周长是24cm,请问它的面积是多少平方
厘米?
解题思路:假设正方形的边长为x,根据正方形的性质,它的
周长=4x,所以4x=24,解得x=6。

因此,正方形的面积等于边长的平方,即6^2=36平方厘米。

2. 二次方程和正方形
问题:已知二次方程x^2+px+q=0的两个根互为正方形的边长,求p和q的值。

解题思路:设二次方程的两个根为a和-a,由于它们互为正方
形的边长,所以a=-a。

解得a=0。

根据二次方程的性质,p=-a-a=0,q=a*(-a)=0。

因此,p和q的值都是0。

3. 正方形的对角线
问题:一个正方形的边长是8cm,求它的对角线的长度。

解题思路:设正方形的边长为x,根据正方形的性质,它的对
角线的长度等于边长的平方根乘以√2。

所以对角线的长度
=8*√2≈11.31 cm。

通过解决这些正方形培优题,学生们可以培养逻辑思维和分析
问题的能力,提高数学解题的技巧和速度。

希望这些例子对学生们
有所帮助!。

正方形经典题型(培优提高)

正方形经典题型(培优提高)

正方形的性质及判定知识归纳1. 正方形的定义: 有一组邻边相等, 并且有一个角是直角的平行四边形叫做正方形.2. 正方形的性质正方形是特殊的平行四边形、矩形、菱形. 它具有前三者的所有性质: ① 边的性质: 对边平行, 四条边都相等. ② 角的性质: 四个角都是直角.③ 对角线性质:两条对角线互相垂直平分且相等, 每条对角线平分一组对角. ④ 对称性:正方形是中心对称图形, 也是轴对称图形. 平行四边形、矩形、菱形和正方形的关系: (如图) 3. 正方形的判定判定①: 有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形. 4. 重点:知晓正方形的性质和正方形的判定方法。

难点: 正方形知识的灵活应用例题讲解一、正方形的性质例1: 如图, 已知正方形 的面积为 , 点 在 上, 点 在 的延长线上, 且, 则 的长为FE D CBA变式1: 如图, 在正方形 中, 为 边的中点, , 分别为 , 边上的点, 若 , ,, 则 的长为 .变式2: 将 个边长都为 的正方形按如图所示摆放, 点 分别是正方形的中心, 则 个正方形重叠形成的重叠部分的面积和为例2: 如图, 是正方形 对角线 上的一点, 求证: .EDCBA变式1: 如图, 为正方形 对角线上一点, 于 , 于 .求证: .F EPDCB A例3: 如图, 已知 是正方形 内的一点, 且 为等边三角形, 那么PDCBA变式1: 如图, 已知 、 分别是正方形 的边 、 上的点, 、 分别与对角线 相交于 、 , 若 ,则 .变式2: 如图, 四边形 为正方形, 以 为边向正方形外作正方形 , 与 相交于点 ,则FEDCBA例4: 如图, 正方形 的边 在正方形 的边 上, 连接 , 求证: .GC FEDBA变式1: 如图, 在正方形 中, 为 边上的一点, 为 延长线上的一点, , , 求的度数.BDCAEF变式2: 已知: 如图, 在正方形 中, 是 上一点, 延长 到 , 使 , 连接 并延长交 于 .(1)求证: ;(2)将 绕点顺时针旋转 得到 , 判断四边形 是什么特殊四边形?并说明理由.例5: 若正方形 的边长为 , 为 边上一点, , 为线段 上一点, 射线 交正方形的一边于点 , 且 , 则 的长为 .ABCDEF EG变式1: 如图1, 在正方形 中, 、 、 、 分别为边 、 、 、 上的点, , 连接 、 , 交点为 .⑴ 如图2, 连接 , 试判断四边形 的形状, 并证明你的结论;⑵ 将正方形 沿线段 、 剪开, 再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形 的边长为 , , 则图3中阴影部分的面积为_________ .图3图1图2H DGC FEBAOH GFEDC BA变式2: 如图, 正方形 对角线相交于点 , 点 、 分别是 、 上的点, , 求证: (1);(2) . BO D CAQP例6: 如图, 正方形 中, 是 边上两点, 且 于 , 求证:G FEC DBA变式1: 如图, 点 分别在正方形 的边 上, 已知 的周长等于正方形 周长的一半,求 的度数NMDCBA变式2: 如图, 设 正方形 的对角线 , 在 延长线上取一点 , 使 , 与交于 , 求证: 正方形的边长.HEGCDFBA例7: 把正方形 绕着点 , 按顺时针方向旋转得到正方形 , 边 与 交于点 (如图).试问线段 与线段 相等吗? 请先观察猜想, 然后再证明你的猜想.GCHF EDB A变式1: 如图所示, 在直角梯形 中, , , 是 的垂直平分线, 交 于点 , 以腰为边作正方形 , 作 于点 , 求证 .lPM FE DC BA二、正方形的判定例1: 四边形 的四个内角的平分线两两相交又形成一个四边形 , 求证: ⑴四边形EFGH 对角互补;⑵若四边形 为平行四边形, 则四边形 为矩形.⑶四边形 为长方形, 则四边形 为正方形.HEFG DCBA变式1: 如图, 已知平行四边形 中, 对角线 、 交于点 , 是 延长线上的点, 且 是等边三角形. ⑴ 求证: 四边形 是菱形;⑵ 若 , 求证:四边形 是正方形.OEDCBA变式2: 已知: 如图, 在 中, , , 垂足为点 , 是 外角 的平分线, , 垂足为点 .⑴ 求证: 四边形 为矩形;⑵ 当 满足什么条件时, 四边形 是一个正方形?并给出证明.M ENCDBA例2: 如图, 是边长为 的正方形, 是内接于 的正方形, , 若 则 =H GFEDCBA例3: 如图, 若在平行四边形 各边上向平行四边形的外侧作正方形, 求证: 以四个正方形中心为顶点组成一个正方形.PRQ S NMFEDCBA1. 附加题:如图, 在线段 上, 和 都是正方形, 面积分别为 和 , 则 的面积为GFEDCB A如图, 在正方形 中, 、 分别是 、 的中点, 求证: .MFEDCBA如图, 正方形 中, 是对角线 的交点, 过点 作 , 分别交 于 , 若 , 则 OFE DC BA如图所示, 是正方形, 为 上的一点, 四边形 恰好是一个菱形, 则 ______.ABCDEF。

中考数学总复习《正方形》专项提升训练(带答案)

中考数学总复习《正方形》专项提升训练(带答案)

中考数学总复习《正方形》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________ 1. 如图,在四边形ABCD中,对角线AC,BD相交于点O .第1题图(1)若四边形ABCD是平行四边形,请添加条件__________,使四边形ABCD是正方形;【判定依据】__________________________;(2)若四边形ABCD是矩形,请添加一个条件________,使四边形ABCD是正方形;【判定依据】__________________________;(3)若四边形ABCD是菱形,请添加一个条件________,使四边形ABCD是正方形;【判定依据】__________________________.2. 如图,在正方形ABCD中,对角线AC,BD相交于点O.(1)∠ABC=________,∠BAC=________,∠COD=________;(2)若AB=3,则BC=________,CD=________;(3)若OA=2,则AC=________,BD=________,AD=________;(4)若OA=4,则正方形ABCD 的面积是________,周长是________.第2题图知识逐点过考点1 正方形的性质及面积边四条边都相等,对边平行角四个角都是直角1.对角线相等且互相①________;对角线2.每一条对角线平分一组对角对称性既是轴对称图形,又是中心对称图形,有4条对称轴,对称中心是两条②________的交点面积公式S=a2=12l2【温馨提示】正方形的两条对角线把正方形分成四个全等的等腰直角三角形考点2 正方形的判定边1.有一组邻边相等,并且有一个角是③________的平行四边形是正方形(定义);2.有一组邻边④________的矩形是正方形角有一个角是⑤________的菱形是正方形对角线1.对角线⑥________的矩形是正方形;2.对角线⑦________的菱形是正方形;3.对角线互相⑧__________的四边形是正方形考点3 平行四边形、矩形、菱形、正方形的关系从边、角的角度看从对角线的角度看考点4 中点四边形概念依次连接任意一个四边形各边中点所得的四边形原图形任意四边形矩形菱形正方形对角线相等的四边形对角线垂直的四边形对角线垂直且相等的四边形中点四边形形状平行四边形菱形矩形正方形菱形矩形正方形【温馨提示】连接特殊四边形中点的四边形面积是原图形的一半教材原题到重难考法与正方形有关的证明与计算例如图,在正方形ABCD中,点F为对角线AC上一点,连接BF,DF.你能找出图中的全等三角形吗?选择其中一对进行证明.例题图变式题1. 结合角度求线段长如图,正方形ABCD的边长为4,点F为对角线AC上一点,连接BF,当∠CBF=22.5°时求AF的长.第1题图2. 过点F作AB边的垂线如图,在正方形ABCD中,F是对角线AC上一点,作EF⊥AB于点E,连接DF,若BC=6,BE=2,求DF的长.第2题图3. 过点F分别作AB,BC边的垂线如图,F是正方形ABCD对角线AC上一点,过点F分别作FE⊥AB,FG⊥BC,垂足分别为点E,G,连接DF,EG.(1)求证:EG=DF;(2)若正方形的边长为3+3,∠BGE=30°,求DF的长.第3题图真题演练命题点正方形性质的相关计算1. 如图,正方形ABCD的边长为4,延长CB至点E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N,K .则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN∶S△ADM =1∶4.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个第1题图2. 边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为________.第2题图基础过关1. 正方形具有而菱形不具有的性质是()A. 对角线平分一组对角B. 对角线相等C. 对角线互相垂直平分D. 四条边相等2. 若顺次连接四边形ABCD各边的中点所得的四边形是正方形,则四边形ABCD的两条对角线AC,BD一定是()A. 互相平分B. 互相垂直C. 互相平分且相等D. 互相垂直且相等3.如图,边长为3的正方形OBCD两边与坐标轴正半轴重合,点C的坐标是()A. (3,-3)B. (-3,3)C. (3,3)D. (-3,-3)第3题图4. 如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于()A. 2αB. 90°-2αC. 45°-αD. 90°-α第4题图5.在矩形ABCD中,对角线AC,BD相交于点O,试添加一个条件_________________________ 使得矩形ABCD为正方形.6. 如图,在边长为2的正方形ABCD中,点E在AD上,连接EB,EC,则图中阴影部分的面积是__________.第6题图7. 七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4 dm的正方形纸板制作了一副七巧板,如图所示,由5个等腰直角三角形,1个正方形和1个平行四边形组成,则图中阴影部分的面积为__________dm2.第7题图8. 如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为__________.第8题图9. 如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=7,点F为DE的中点,若△CEF的周长为32,则OF的长为__________.第9题图10. 如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.第10题图综合提升11. 如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A. 23B. 352 C. 5+1 D. 10第11题图12. 如图,在正方形ABCD 中,点E 为BD 上一点,DE =3BE ,连接AE ,过点E 作AE 的垂线,交CD 于点F ,连接AF 交BD 于点G .下列结论:①sin ∠BAE =13 ;②∠EAF =45°;③点F 为CD 的中点;④BE +DG =GE .其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个第12题图13. 第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE ,△ABF ,△BCG ,△CDH )和中间一个小正方形EFGH 拼成的大正方形ABCD 中,∠ABF >∠BAF ,连接BE .设∠BAF =α,∠BEF =β,若正方形EFGH 与正方形ABCD 的面积之比为1∶n ,tan α=tan 2β,则n =( ) A. 5 B. 4 C. 3 D. 2第13题图参考答案1. (1)AC =BD ,且AC ⊥BD (答案不唯一);【判定依据】对角线互相垂直且相等的平行四边形是正方形(答案不唯一); (2)AC ⊥BD (答案不唯一);【判定依据】对角线互相垂直的矩形是正方形; (3)∠ABC =90°(答案不唯一)【判定依据】有一个角是直角的菱形是正方形.2. (1)90°,45°,90°;(2)3,3;(3)4,4,22 ;(4)32,162 . 教材原题到重难考法例 解:△ABC ≌△ADC ,△ABF ≌△ADF ,△CDF ≌△CBF ,理由如下: ∵四边形ABCD 是正方形∴AB =AD =BC =CD ,∠DAC =∠BAC =∠DCA =∠BCA =45° 在△ABC 和△ADC 中 ⎩⎪⎨⎪⎧AB =AD ∠BAC =∠DAC AC =AC∴△ABC ≌△ADC (SAS) 在△ABF 和△ADF 中 ⎩⎪⎨⎪⎧AB =AD ∠BAF =∠DAF AF =AF∴△ABF ≌△ADF (SAS) 在△DCF 和△BCF 中 ⎩⎪⎨⎪⎧DC =BC ∠DCF =∠BCF CF =CF∴△DCF ≌△BCF (SAS).(选择其中任意一对证明即可) 1. 解:在正方形ABCD 中,∠ABC =90°,AB =BC ∴∠BAC =∠BCA =45° ∵∠CBF =22.5°∴∠ABF =∠ABC -∠CBF =90°-22.5°=67.5°∴∠AFB =180°-∠BAC -∠ABF =180°-45°-67.5°=67.5° ∴∠ABF =∠AFB ∴AF =AB =4.2. 解:如解图,连接BF第2题解图∵四边形ABCD是正方形∴AB=BC=6,∠EAF=45°∵EF⊥AB∴EF=AE=AB-BE=6-2=4∴BF=BE2+EF2=25∵正方形ABCD关于AC对称∴DF=BF=25.3. (1)证明:如解图,连接FB.∵四边形ABCD为正方形∴DA=AB,∠DAC=∠BAC∵AF=AF∴△DAF≌△BAF∴DF=BF∵四边形ABCD为正方形∴∠ABC=90°∵FG⊥BC,FE⊥AB∴∠FGB=∠FEB=90°∴∠FGB=∠FEB=∠ABC=90°∴四边形FEBG是矩形∴EG=FB∴EG=DF;(2)解:∵正方形的边长为3+3,∠BGE=30°∴BC=3+3∴BG=BC-CG=3+3-CG∵∠BGE=30°∴BG=3BE∵AC为正方形ABCD的对角线∴∠DCF=∠BCF=45°∵FG⊥BC∴∠FGC=∠FGB=90°∴∠CFG=45°∴FG=CG∵四边形FEBG是矩形∴EB=FG∴FG=CG=EB设FG=CG=EB=x∴GE=2x∴BG=3BE=3x∵BG=BC-CG=3+3-x∴3+3-x=3x∴x=3∴GE=2x=23∴DF=BF=GE=23.第3题解图知识逐点过①垂直平分②对角线③直角④相等⑤直角⑥互相垂直⑦相等⑧垂直平分且相等真题演练1. C 【解析】∵四边形EFGB 是正方形,EB =2,∴FG =BE =2,∠FGB =90°,∵四边形ABCD 是正方形,H 为AD 的中点,∴AD =4,AH =2,∠BAD =90°,∴∠HAN =∠FGN ,AH =FG ,∵∠ANH =∠GNF ,∴△ANH ≌△GNF (AAS),故①正确;∴∠AHN =∠HFG ,∵AG =FG =2=AH ,∴AF =2 FG =2 AH ,∴∠AFH ≠∠AHF ,∵AD ∥FG ,∴∠AHF =∠HFG ,∴∠AFN ≠∠HFG ,故②错误;∵△ANH ≌△GNF ,∴AN =12 AG =1,∵GM=BC =4,∴AH AN =GM AG=2,∵∠HAN =∠AGM =90°,∴△AHN ∽△GMA ,∴∠AHN =∠AMG ,∠MAG =∠HNA ,∴AK =NK ,∵AD ∥GM ,∴∠HAK =∠AMG ,∴∠AHK =∠HAK ,∴AK =HK ,∴AK =HK =NK ,∵FN =HN ,∴FN =2NK ;故③正确;∵延长FG 交DC 于M ,∴四边形ADMG 是矩形,∴DM =AG =2,∵S △AFN =12 AN ·FG =12 ×2×1=1,S △ADM=12 AD ·DM =12×4×2=4,∴S △AFN ∶S △ADM =1∶4,故④正确. 2. 15 【解析】如解图,∵四边形ABCD ,ECGF ,IGHK 均为正方形,∴CD =AD =10,CE =FG =CG =EF =6,∠CEF =∠F =90°,GH =IK =4,∴CH =CG +GH =10,∴CH =AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ (AAS),∴CJ =DJ =5,∴EJ =1,∵GL ∥CJ ,∴△HGL ∽△HCJ ,∴GL CJ =GH CH =25,∴GL =2,∴FL =4,∴S阴影=S梯形EJLF=12 (EJ +FL )·EF =12(1+4)×6=15.第2题解图基础过关1. B2. D 【解析】如解图,点E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,则EH ∥DB ∥GF ,HG ∥AC ∥EF ,EF =12 AC ,FG =12 BD ,∴四边形EFGH 为平行四边形.要使其为正方形,即EF ⊥FG ,FE =FG ,则AC ⊥BD ,AC =BD ,即对角线一定互相垂直且相等.第2题解图3. C 【解析】 ∵边长为3的正方形OBCD 两边与坐标轴正半轴重合,∴OB =BC =3,∴C (3,3).4. A 【解析】如解图,将△ADF 绕点A 顺时针旋转90°得到△ABG ,则AF =AG ,∠DAF =∠BAG .∵∠EAF =45°,∴∠BAE +∠DAF =45°,∴∠GAE =∠EAF =45°.在△GAE 和△F AE 中,⎩⎪⎨⎪⎧AG =AF ∠GAE =∠F AE AE =AE ,∴△GAE ≌△F AE (SAS),∴∠AEF =∠AEG .∵∠BAE =α,∴∠AEB =90°-α,∴∠AEF =∠AEB =90°-α,∴∠FEC =180°-∠AEF -∠AEB =180°-2(90°-α)=2α.第4题解图5. AB =BC (答案不唯一,符合条件即可,如:AC ⊥BD ) 【解析】∵邻边相等的矩形是正方形,∴可添加条件AB =BC ;∵对角线互相垂直的矩形是正方形,∴还可以添加条件AC ⊥BD .6. 2 【解析】如解图,过点E 作EF ⊥BC 于点F .∵四边形ABCD 是正方形,∴AB =BC =2,AD ∥BC ,∴EF =AB =2,∴S △BCE =12 BC ·EF =12×2×2=2.∵S 正方形ABCD =BC 2=22=4,∴S阴影=S 正方形ABCD -S △BCE =4-2=2.第6题解图7. 2 【解析】如解图,依题意得OD =22 AD =22 ,OE =12OD =2 ,∴图中阴影部分的面积为OE 2=(2 )2=2(dm 2).第7题解图8. 3 【解析】如解图,过点P 作PF ⊥AB 于点F .∵四边形ABCD 是正方形,AC 是对角线,∴∠DAC =∠BAC .∵PE ⊥AD ,PF ⊥AB ,∴PE =PF .∵PE =3,∴点P 到直线AB 的距离为PF =3.第8题解图9.172【解析】∵CE =7,△CEF 的周长为32,∴CF +EF =32-7=25.∵点F 为DE 的中点,∴DF =EF .∵四边形ABCD 为正方形,∴∠BCD =90°,BC =CD ,∴CF =EF =DF =252,∴DE =25,∴在Rt △DCE 中,CD =DE 2-CE 2 =24,∴BC =CD =24.∵点O 为BD 的中点,∴OF 是△BDE 的中位线,∴OF =12 (BC -CE )=12 (24-7)=172 .10. (1)证明:∵四边形ABCD 为正方形 ∴AB =AD ,∠A =∠D =90°. ∵MF ∥AD ∴∠DFM =90° ∴四边形ADFM 为矩形 ∴MF =AD =AB . ∵MN 垂直平分BE ∴∠BOM =90° ∴∠ABE +∠BMO =90°. ∵∠FMN +∠BMO =90° ∴∠ABE =∠FMN . 在△ABE 和△FMN 中⎩⎪⎨⎪⎧∠A =∠MFN AB =FM ∠ABE =∠FMN∴△ABE ≌△FMN (ASA); (2)解:如解图,连接ME . ∵MN 垂直平分BE ∴ME =BM .设BM =x ,则AM =8-x ,ME =x .在Rt △AME 中,由勾股定理得ME 2=AE 2+AM 2,即x 2=62+(8-x )2. 解得x =254 ,即BM =254.在Rt △ABE 中,由勾股定理得BE =62+82 =10. ∵∠MBO =∠EBA ,∠MOB =∠A ∴△BOM ∽△BAE ∴OM AE =BMBE∴OM =AE ·BM BE =6×25410 =154 .由(1)知△ABE ≌△FMN ∴MN =BE =10∴ON =MN -OM =10-154 =254.第10题解图11. B 【解析】∵四边形ABCD 是正方形,∴BC ⊥AB ,CD ∥AB ,CD =AB .∵EF ⊥AB ,∴EF ∥BC ,∴AE EC =AF FB .∵AF =2,FB =1,∴AE EC =21 .∵CD ∥AB ,∴CD ∥AG ,∴∠DCE=∠GAE ,∠CDE =∠AGE ,∴△DCE ∽△GAE ,∴AG CD =AE CE =21,∴AG =2CD ,∴CD =AB =BG .∵∠DCM =∠GBM =90°,∠DMC =∠GMB ,∴△DCM ≌△GBM (AAS),∴DM=GM =12 DG .∵AF =2,FB =1,∴AB =3.∵AD =AB =3,∴AG =6,∴在Rt △DAG 中,DG =32+62 =35 ,∴MG =352.12. B 【解析】 如解图,延长AE 交BC 于点H .∵四边形ABCD 是正方形,∴AD =AB ,AD ∥BC ,∴△ADE ∽△HBE ,∴AD HB =DEBE ,∵DE =3BE ,∴AD =3HB ,∴AB =3HB ,在Rt △ABH 中,由勾股定理得AH =AB 2+HB 2 =10 HB ,∴sin ∠BAE =HB AH =1010 ,①错误;如解图,过点E 分别作AB ,CD 的垂线,交AB ,CD 于点M ,N ,∴∠AME =∠ENF =90°,∴∠AEM +∠MAE =90°,∵∠AEF =90°,∴∠AEM +∠NEF =90°,∴∠MAE =∠NEF ,∵∠MBE =45°,∴MB =ME ,∵AB =MN ,∴AM =EN ,∴△AME ≌△ENF ,∴AE =EF ,∵∠AEF =90°,∴∠EAF =45°,②正确;∵△AME ≌△ENF ,∴ME =NF =MB ,∵BE =2 ME ,∴CF =2ME =2 BE ,∵DE =3BE ,∴BD =4BE ,∴CD =22BD =22 BE ,∴CD =2CF ,∴点F 为CD 的中点,③正确;∵点F 为CD 的中点,∴DF =12 CD =12 AB ,∵AB ∥CD ,∴△FDG ∽△ABG ,∴DG BG =DF AB =12 ,∴DG =13 BD ,GB =23 BD ,设BE =x ,则DE =3x ,BD =4x ,∴DG =43 x ,GB =83 x ,∴GE =GB -BE =53 x ,∴BE +DG =73 x ≠GE ,④错误.第12题解图13. C 【解析】设BF =a ,AF =b ,则AB =a 2+b 2 ,EF =b -a ,∴tan α=tan ∠BAF =BFAF=a b ,tan β=tan ∠BEF =BF EF =a b -a .∵正方形EFGH ∽正方形ABCD ,∴S 正方形EFGH S 正方形ABCD =(EFAB )2=EF 2AB 2 =(b -a )2a 2+b 2 =1n .∵tan α=tan 2β,∴a b =a 2(b -a )2 .∴(b -a )2=ab ,b 2+a 2-2ab =ab ,∴a 2+b 2=3ab ,∴n =a 2+b 2(b -a )2=a 2+b 2ab =3abab =3.。

第12课时:正方形练习培优

第12课时:正方形练习培优

正方形专题练习一1、下列说法不正确的是()A、一组邻边相等的矩形是正方形B、对角线相等的菱形是正方形C、对角线互相垂直的矩形是正方形D、有一个角是直角的平行四边形是正方形2、给出下列4个命题中,正确的个数为()①平行四边形的对角线相互垂直平分;②两条对角线互相垂直的矩形是正方形;③菱形的对角线互相垂直;④对角线互相垂直的四边形是菱形.A、4B、3C、2D、13、四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则下列推理不成立的是()A、①④⇒⑥B、①③⇒⑤C、①②⇒⑥D、②③⇒④4、顺次连接下列各图形的中点,构成的图形一定是正方形的为()A、平行四边形B、矩形C、菱形D、对角线互相垂直的等腰梯形5、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部整点个数为()A、64 B、49 C、36 D、2S6、已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是()A、①③④B、①②⑤C、③④⑤D、①③⑤7、正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,且G为BC的三等分点,R为EF中点,正方形BEFG的边长为4,则△DEK的面积为()A、10 B、12 C、14 D、168、如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,则∠AEB的度数为()A、10°B、15°C、20°D、12.5°10、已知三个边长分别为10,6,4的正方形如图排列(点A,B,E,H在同一条直线上),DH交EF于R,则线段RN的值为()A、1B、2C、2.5D、39、如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF.你认为()A、仅小明对B、仅小亮对C、两人都对D、两人都不对10、如图,E ,F ,G ,H 分别为正方形ABCD 的边AB ,BC ,CD ,DA 上的点,且AE=BF=CG=DH=31AB ,则图中阴影部分的面积与正方形ABCD 的面积之比 为( ) A 、52 B 、94 C 、21D 、5311、用边长为1的正方形纸板,制成一幅七巧板(如图①),将它拼成“小天鹅”图案(如图②),其中阴影部分的面积为( )A 、83 B 、167 C 、21 D 、4312、如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A 、S 1>S 2B 、S 1=S 2C 、S 1<S 2D 、S 1、S 2的大小关系不确定 (二)填空题:13、如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B 、D 作DE ⊥a 于点E 、BF ⊥a 于点F ,若DE=4,BF=3,则EF 的长为 ________________. 14、如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去…,则正方形A 4B 4C 4D 4的面积为_______________.15、如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线A 1C 和OB 1交于点M 1;以M 1A 1为对角线作第二个正方形A 2A 1B 2M 1,对角线A 1M 1和A 2B 2交于点M 2;以M 2A 1为对角线作第三个正方形A 3A 1B 3M 2,对角线A 1M 2和A 3B 3交于点M 3;…,依次类推,这样作的第n 个正方形对角线交点Mn 的坐标为__________.16、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是______________. 17、如图,正方形ABCD 边长为1,动点P 从A 点出发,沿正方形的边按逆时针方向运动,当它的运动路程为2009时,点P 所在位置为____________点;当点P 所在位置为D 点时,点P 的运动路程为_______________(用含自然数n 的式子表示).18、已知:如图,正方形ABCD 中,对角线AC 和BD 相交于点O .E 、F 分别是边AB 、BC 上的点,若AE=4cm ,CF=3cm ,且OE ⊥OF ,则EF 的长为 ______________cm .19、现有若干张边长不相等但都大于4cm的正方形纸片,从中任选一张,如图从距离正方形的四个顶点2cm处,沿45°角画线,将正方形纸片分成5部分,则中间阴影部分的面积是____________cm2;若在上述正方形纸片中再任选一张重复上述过程,并计算阴影部分的面积,你能发现什么规律:。

正方形综合提高练习题

正方形综合提高练习题

正方形综合提高练习题
问题1
一个正方形的边长为5 cm,请计算该正方形的周长和面积。

问题2
一个正方形的周长为20 cm,请计算该正方形的边长和面积。

问题3
一个正方形的面积为36 cm²,请计算该正方形的边长和周长。

问题4
正方形A的面积是正方形B面积的2倍,正方形A的边长比正方形B的边长多3 cm。

请分别计算正方形A和正方形B的边长和周长。

问题5
正方形C的边长是正方形D的边长的2倍,正方形C的面积是正方形D面积的4倍。

请计算正方形C和正方形D的面积。

问题6
在一个正方形的四个角上分别连接线段,形成一个小正方形和4个等腰直角三角形。

已知小正方形的边长为2 cm,请计算大正方形的边长和面积。

问题7
在一个正方形的四个角上分别连接线段,形成一个小正方形和4个等腰直角三角形。

已知大正方形的面积为25 cm²,请计算小正方形的面积。

问题8
一个正方形的边长为x cm,请用x的代数式表达出该正方形的周长和面积。

问题9
已知正方形的面积为A cm²,请用A的代数式表示出该正方形的边长和周长。

问题10
已知正方形的周长为P cm,请用P的代数式表示出该正方形的边长和面积。

小结
通过这些练习题,你可以巩固和提高对正方形的周长和面积计算的能力。

通过多次练习,你会更加熟练地运用这些概念,并能够灵活解决与正方形相关的问题。

为了加强你的学习效果,可以自行编写更多类似的练习题进行练习。

祝你学习进步!。

正方形提高练习题

正方形提高练习题

1.已知,如图边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长为()A.B.C.D.22.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE =CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.7(第1题)(第2题)(第3题)3.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9B.3或5C.4或6D.3或64.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75°B.60°C.54°D.67.5°5.如图,ABCD是正方形,M是BC中点,将正方形折起,使点A与点M重合,设折痕为EF,若正方形面积是64,那么△AEM的面积是.(第5题)(第6题)6.如图,正方形ABCD的面积为18,菱形AECF的面积为6,则菱形的边长为.7.如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE=4a,CF=a,则正方形ABCD的面积为.8.如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为.(第7题)(第8题)(第9题)9.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是.10.如图所示,在三角形ABC中,∠ACB=90°,AC=8厘米,BC=6厘米.分别以AC、BC为边作正方形AEDC、BCFG,则三角形BEF的面积是平方厘米,AEDFGB 的面积是平方厘米.11.如图,在正方形ABCD中,点E,F分别在边AB,BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是怎样的四边形,并说明理由.12.如图,l1,l2,l3,l4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h,正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25.(1)连接EF,证明△ABE、△FBE、△EDF、△CDF的面积相等.(2)求h的值.13.正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上,分别连接BD、BF、FD,得到△BFD.(1)在图1﹣图3中,若正方形CEFG的边长分别为1、3、4,且正方形ABCD的边长均为3,请通过计算填写下表:正方形CEFG的边长 1 34△BFD的面积(2)若正方形CEFG的边长为a,正方形ABCD的边长为b,猜想S△BFD的大小,并结合图3证明你的猜想.14.已知:如图,在正方形ABCD中,AB=4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF,作EH⊥AB于点H.(1)若点G在点B的右边.试探索:EH﹣BG的值是否为定值,若是,请求出定值;若不是,请说明理由.(2)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求∠EBH的度数.15.如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.16.如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,AG=2,求EB的长.17.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线分别交边AB、CD、AD、BC于点E、F、G、H【感知】如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=S四边形ABCD,所以S四边形AEOG=S正方形ABCD(不要求证明);【拓展】如图②,若四边形ABCD是矩形,且S四边形AEOG=S矩形ABCD,若AB=a,AD =b,BE=m,求AG的长(用含a、b、m的代数式表示);【探究】如图③,若四边形ABCD是平行四边形,且S四边形AEOG=S▱ABCD,若AB=3,AD=5,BE=1,则AG=.18.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.19.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.20.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.21.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在CD的延长线上,且PC=PE,PE交AD于点F.(1)求证:P A=PC;(2)求∠APE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,当∠ABC=120°,连接AE,试探究线段AE与线段PC的数量关系,并给予证明.参考答案与试题解析1.A 2.C 3.D 4.B 5.10 6.7.17a2 8.+3 9.3﹣3 10.66;148.。

正方形综合提高练习题

正方形综合提高练习题

正方形综合提高练习题1. 题目描述本练题旨在提高学生对正方形的理解和运用能力。

题目涵盖了正方形的基本性质、特征和相关定理。

学生需要通过解答题目来巩固对正方形知识的掌握。

2. 练题题目1:已知正方形ABCD的边长为5cm,求:(a) 正方形的周长;(b) 正方形的面积。

题目2:已知正方形EFGH的对角线EF的长度为6√2cm,求:(a) 正方形的边长;(b) 正方形的面积。

题目3:正方形IJKL的顶点J在坐标轴上,坐标为(0, 4),求:(a) 正方形的边长;(b) 正方形的周长。

题目4:正方形MNOP的对角线MN与坐标轴的交点分别为M(2, 0)和N(0, -2),求:(a) 正方形的边长;(b) 正方形的面积。

题目5:正方形QRST中,点R的坐标为(-3, 4),求:(a) 正方形的边长;(b) 正方形的周长。

3. 答案解析题目1:(a) 正方形的周长等于4倍边长,所以周长为4 * 5cm = 20cm;(b) 正方形的面积等于边长的平方,所以面积为5cm * 5cm = 25cm²。

题目2:(a) 正方形的对角线等于边长的√2倍,所以边长为6√2cm ÷ √2 = 6cm;(b) 正方形的面积等于边长的平方,所以面积为6cm * 6cm = 36cm²。

题目3:由于顶点J位于坐标轴上,所以正方形的边长等于J的纵坐标,即边长为4;正方形的周长等于4倍边长,所以周长为4 * 4 = 16。

题目4:由已知条件可得正方形MNOP是边长为2的正方形,所以边长为2;正方形的面积等于边长的平方,所以面积为2 * 2 = 4。

题目5:由已知条件可得正方形QRST是边长为8的正方形,所以边长为8;正方形的周长等于4倍边长,所以周长为4 * 8 = 32。

4. 总结通过这些练习题,学生可以进一步巩固对正方形的性质和定理的理解,并能够灵活运用所学知识解决各种问题。

正方形是几何学中重要的基本形状,掌握好正方形的相关知识对于学生的数学学习非常重要。

部编数学八年级下册专题18.7正方形专项提升训练(重难点培优)【拔尖特训】2023年培优(解析版)【

部编数学八年级下册专题18.7正方形专项提升训练(重难点培优)【拔尖特训】2023年培优(解析版)【

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题18.7正方形专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•锡山区期末)下列说法正确的是( )A.菱形的四个角都是直角B.菱形的对角线相等C.矩形的对角线相等垂直D.正方形的对角线相等【分析】直接根据矩形,菱形,正方形的性质进行判断.【解答】解:∵菱形的四条边相等,但四个角不一定相等;对角线互相垂直且平分,但不一定相等,∴选项A,B错误;∵矩形的对角线相等,但不一定垂直.∴选项C错误;∵正方形的对角线相等且互相垂直平分.∴选项D正确.故选:D.2.(2022春•丹凤县期末)下列说法中,是正方形具有而矩形不具有的性质是( )A.两组对边分别平行B.对角线互相垂直C.四个角都为直角D.对角线互相平分【分析】根据正方形、矩形的性质即可判断.【解答】解:因为正方形的对角相等,对角线相等、垂直、且互相平分,矩形的对角相等,对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线互相垂直.故选:B.3.(2022春•安宁市期末)如图,在正方形ABCD外侧作等边△ADE,则∠AEB的度数为( )A.15°B.22.5°C.20°D.10°【分析】由四边形ABCD是正方形,△ADE是正三角形可得AB=AE,利用正方形和正三角形的内角性质即可得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,又∵△ADE是正三角形,∴AE=AD,∠DAE=60°,∴△ABE是等腰三角形,∠BAE=90°+60°=150°,∴∠ABE=∠AEB=15°.故选:A.4.(2022春•青秀区校级期末)如图,正方形ABCD的对角线AC,BD交于点O,E、F分别为AO、AD的中点,若EF=3,则OD的长是( )A.3B.4C.5D.6【分析】由题意可得,EF是△AOD的中位线,然后根据中位线的性质定理解答即可.【解答】解:∵E、F分别为AO、AD的中点,∴EF是△AOD的中位线.∴EF=OD,即OD=2EF.∵EF=3,∴OD=6.故选:D.5.(2022春•石家庄期末)如图,在正方形ABCD中,点E,F分别在边AB,CD上,∠EFC=120°,若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则∠AEB′为( )A.70°B.65°C.30°D.60°【分析】依据正方形的性质以及折叠的性质,即可得到∠AEB'=60°.【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠BEF+∠EFC=180°,∵∠EFC=120°,∴∠BEF=180°﹣∠EFC=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,故选:D.6.(2022春•唐河县期末)已知:如图,M是正方形ABCD内的一点,且MC=MD=AD,则∠AMB的度数为( )A.120°B.135°C.145°D.150°【分析】利用等边三角形和正方形的性质求得∠ADM=30°,然后利用等腰三角形的性质求得∠MAD的度数,从而求得∠BAM=∠ABM的度数,利用三角形的内角和求得∠AMB的度数.【解答】解:∵MC=MD=AD=CD,∴△MDC是等边三角形,∴∠MDC=∠DMC=∠MCD=60°,∵∠ADC=∠BCD=90°,∴∠ADM=30°,∴∠MAD=∠AMD=75°,∴∠BAM=15°,同理可得∠ABM=15°,∴∠AMB=180°﹣15°﹣15°=150°,7.(2022秋•苏州期中)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD 于点F,连接EF.若DF=3,则BE的长为( )A.2B.3C.4D.5【分析】如图,首先把△ADF旋转到△ABG,然后利用全等三角形的性质得到DF=BG,∠DAF=∠BAG,然后根据题目中的条件,可以得到△EAG≌△EAF,再根据DF=3,AB=6和勾股定理,可以求出BE的长,本题得以解决.【解答】解;如图,把△ADF绕A逆时针旋转90°得到△ABG,∴△ADF≌△ABG,∴∠ADF=∠ABG=∠ABE=90°,∴∠ABG+∠ABE=180°,∴G、B、E三点共线,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=FE,设BE=x,∵CD=6,DF=3,∴CF=3,则GE=BG+BE=3+x,CE=6﹣x,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,∴BE的长为2.故选:A.8.(2022春•肥城市期中)如图,E、F分别是正方形ABCD的边CD、BC上的点,且CE=BF,AF、BE 相交于点G,下列结论中正确的是( )①AF=BE;②AF⊥BE;③AG=GE;④S△ABG=S四边形CEGF.A.①②③B.①②④C.①③④D.②③④【分析】根据正方形的性质及全等三角形的判定定理和性质、垂直的判定依次进行判断即可得解.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABC=∠BCD=90°,在△ABF与△BCE中,,∴ΔABF≌ΔBCE,∴AF=BE,故①正确;∵∠BAF+∠BFA=90°,∠BAF =∠EBC ,∴∠EBC +∠BFA =90°,∴∠BGF =90°,∴AF ⊥BE ,故②正确;∵GF 与BG 的数量关系不清楚,∴无法得AG 与GE 的数量关系,故③错误;∵△ABF ≌△BCE ,∴S △ABF =S △BCE ,∴S △ABF ﹣S △BGF =S △BCE ﹣S △BGF ,即S △ABG =S 四边形CEGF ,故④正确;综上可得:①②④正确,故选:B .9.(2022春•鹿城区校级期中)如图,小聪用图1中的一副七巧板拼出如图2所示“鸟”,已知正方形ABCD 的边长为4,则图2中E ,F 两点之间的距离为( )A .B .2C .D .【分析】过E 作EG ⊥FG 于G ,由七巧板和正方形的性质可知,EG =1,FG =1+4=5,再利用勾股定理可得答案.【解答】解:如图,过E 作EG ⊥FG 于G ,由七巧板和正方形的性质可知:EG =1,FG =1+4=5,在Rt△FEG中,由勾股定理得,EF==,故选:A.10.(2022秋•市南区校级月考)如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=DF;②四边形PECF的周长为8;③EF的最小值为2;④AP⊥EF.其中正确结论的序号为( )A.①②B.①②④C.②③④D.①②③【分析】①先证△PDF是等腰直角三角形,则PD=DF,即可判断;②先证明△PEB是等腰直角三角形,再根据三个角是直角的四边形是矩形可得四边形PECF为矩形,则四边形PECF的周长=2BC=8,即可判断;③证明△ADP≌△CDP,则AP=PC,根据矩形对角线相等得PC=EF,当AP⊥BD时,垂线段最短,即可判断;④证明Rt△AMP≌Rt△FPE,得到∠BAP=∠PFE,进而求解.【解答】解:如图,连接PC,①∵正方形ABCD的边长为4,P是对角线BD上一点,∴∠PDC=45°,又∵PF⊥CD,∴∠PFD=90°,∴△PDF为等腰直角三角形,∴PD=DF,故①正确;②由①同理得:△BPE是等腰直角三角形,∴PE=BE,∵∠PEC=∠ECF=∠PFC=90°∴四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2(CE+BE)=2BC=2×4=8,故②正确;③∵四边形PECF为矩形,∴PC=EF,∵四边形ABCD为正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,,∴△ADP≌△CDP(SAS),∴AP=PC,∴AP=EF,当AP最小时,EF最小,∴当AP⊥BD时,垂线段最短,即AP=BD=2时,EF的最小值等于2;故③错误;④延长FP交AB于M,延长AP交EF于H,∵AB∥CD,PF⊥CD,∴FM⊥AB,∵BD平分∠ABC,PM⊥AB,PE⊥BC,∴PM=PE,∵AP=EF,∠AMP=∠EPF=90°,∴Rt△AMP≌Rt△FPE(HL),∴∠BAP=∠PFE,∵∠AMP=90°,∴∠BAP+∠APM=90°,∵∠APM=∠HPF,∴∠PFH+∠HPF=90°,∴∠PHF=90°,∴AP⊥EF,故④正确;综上,①②④正确.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022春•北京期中)如果正方形的一条对角线长为3,那么该正方形的面积为 9 .【分析】利用对角线乘积的一半即可求出正方形的面积.【解答】解:正方形的面积是:3×3×=9.故答案为:9.12.(2022春•嘉兴期末)已知矩形ABCD,请添加一个条件: AB=BC(答案不唯一) ,使得矩形ABCD 成为正方形.【分析】根据正方形的判定添加条件即可.【解答】解:添加的条件可以是AB=BC.理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形.故答案为:AB=BC(答案不唯一).13.(2022•新野县三模)在▱ABCD中,已知AC,BD为对角线,现有以下四个条件:①∠ABC=90°;②AC=BD;③AC⊥BD;④AB=BC.从中选取两个条件,可以判定▱ABCD为正方形的是 ①③(答案不唯一) .(写出一组即可)【分析】根据正方形的判断方法即可判断.【解答】解:根据正方形的判断方法可知:满足条件①③或①④或②③或②④时,▱ABCD是正方形.故答案为:①③(答案不唯一).14.(2022秋•通海县校级期中)如图,点E是正方形ABCD内一点,连接AE、BE、CE,若AE=1,BE=2,CE=3则∠AEB= 135 度.【分析】将△BCE绕点B顺时针旋转270°,△FBE是等腰直角三角形,可得∠FEB=45°,再证明△AFE是直角三角形,可得∠AEF=90°,进而可得∠AEB的度数.【解答】解:如下图,将△BCE绕点B逆时针旋转90°,∵△BCE绕点B顺时针旋转90°,∴∠FBE=90°,∵BE=BF=2,∴△FBE是等腰直角三角形,∴∠FEB=45°,FE=2,∵AF=CE=3,AE=1,FE=2,∴AF2=32=9,AE2+FE2=12+(2)2=1+8=9,∴AF2=AE2+FE2,∴△AFE是直角三角形,∴∠AEF=90°,∴∠AEB=∠FEB+∠AEF=45°+90°=135°.故答案为:135.15.(2022春•冠县期末)如图,菱形ABCD的边长为4,∠DAB=60°,对角线AC,BD相交于点O,点E,F同时从O点出发在线段AC上以0.5cm/s的速度反向运动(点E,F分别到达A,C两点时停止运动),设运动时间为ts.连接DE,DF,BE,BF,当t= 4 s时,四边形DEBF为正方形.【分析】根据等边三角形的性质,可以得到BD的长,然后根据菱形的性质可以得到OD的长和BD⊥EF,再根据正方形的性质,可以得到OD=OE,然后即可计算出t的值.【解答】解:∵四边形ABCD是菱形,∴AD=AB,∵∠DAB=60°,∴△ABD是边长为4cm的等边三角形,∴BD=4cm,∵四边形ABCD是菱形,∴AC⊥BD,∴OD=2cm,∵四边形DEBF为正方形,∴OD=OE,∴t=2÷0.5=4,即t=4时,四边形DEBF为正方形,故答案为:4.16.(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE是正方形.其中正确结论有 ①②③④ (填上所有正确结论的序号).【分析】①利用SAS证明△EFB≌△ACB,得出EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;根据两边分别相等的四边形是平行四边形得出四边形ADFE是平行四边形,即可判断结论①正确;②当∠BAC=150°时,求出∠EAD=90°,根据有一个角是90°的平行四边形是矩形即可判断结论②正确;③先证明AE=AD,根据一组邻边相等的平行四边形是菱形即可判断结论③正确;④根据正方形的判定:既是菱形,又是矩形的四边形是正方形即可判断结论④正确.【解答】解:①∵△ABE、△CBF是等边三角形,∴BE=AB,BF=CB,∠EBA=∠FBC=60°;∴∠EBF=∠ABC=60°﹣∠ABF;∴△EFB≌△ACB(SAS);∴EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD是平行四边形,∴平行四边形ADFE是矩形,故结论②正确;③由①知AB=AE,AC=AD,四边形AEFD是平行四边形,∴当AB=AC时,AE=AD,∴平行四边形AEFD是菱形,故结论③正确;④综合②③的结论知:当AB=AC,且∠BAC=150°时,四边形AEFD既是菱形,又是矩形,∴四边形AEFD是正方形,故结论④正确.故答案为:①②③④.17.(2022春•鄂州期中)如图,分别以△ABC的边AB,AC为边往外作正方形ABDE和正方形ACFG,连接BG,CE,EG,若AB=3,AC=1,则BC2+EG2的值为 20 .【分析】连接BE,CG,先证明△BAG≌△EAC,得∠ABG=∠AEC,可得BG⊥CE,最后由勾股定理可得结论.【解答】解:如图,连接BE,CG,∵正方形ABDE和正方形ACFG,∴AB=AE,AG=AC,∠BAE=∠CAG=90°,∴∠BAG=∠CAE,∴△BAG≌△EAC(SAS),∴∠ABG=∠AEC,∵∠AHB=∠OHE,∴∠EOH=∠BAH=90°,∴∠EOG=∠BOC=90°,∴BC2+EG2=OB2+OC2+OE2+OG2=BE2+CG2,∵AB=3,AC=1,∴BE2=32+32=18,CG2=12+12=2,∴BE2+CG2=18+2=20,∴BC2+EG2=20.故答案为:20.18.(2022春•番禺区校级期中)如图,正方形ABCD中,H为CD上一动点(不含C、D),连接AH交BD 于G,过点G作GE⊥AH交BC于E,过E作EF⊥BD于F,连接AE,EH.下列结论:①AG=EG;②GE平分∠FEC;③∠EAH=45°;④BD=2GF.正确的是 ①③④ (填序号).【分析】连接CG,由四边形ABCD是正方形,得AB=AD=CB=CD,∠BAD=∠BCD=90°,即可证明∠ABG=∠CBG=45°,进而证明△ABG≌△CBG,得AG=CG,∠BAG=∠BCG,再证明∠BCG=∠GEC,得EG=CG,所以AG=EG,可判断①正确;因为AG=EG,∠AGE=90°,∠EAH=∠AEG=45°,可判断③正确;连接AC交BD于点I,则AC⊥BC,而EF⊥BD,所以∠GFE=∠AIG=90°,得∠GEF=∠AGI=90°﹣∠EGF,即可证明△GEF≌△AGI,得GF=AI,由正方形的性质可证明BD=AC=2AI=2GF,可判断④正确;假设GE平分∠FEC,则∠FEG=∠CEG,可推导出∠DHG=∠DGH=67.5°,与已知条件“H为CD上一动点”相矛盾,可判断②错误.【解答】解:连接CG,∵四边形ABCD是正方形,∴AB=AD=CB=CD,∠BAD=∠BCD=90°,∴∠ABD=∠ADB=45°,∠CBD=∠CDB=45°,∴∠ABG=∠CBG=45°,在△ABG和△CBG中,,∴△ABG≌△CBG(SAS),∴AG=CG,∠BAG=∠BCG,∵AB∥CD,∴∠BAG=∠AHD,∴∠BCG=∠AHD,∵GE⊥AH,∴∠AGE=∠HGE=90°,∴∠GEC+∠AHC=180°,∴∠GEC=180°﹣∠AHC=∠AHD,∴∠BCG=∠GEC,∴EG=CG,∴AG=EG,故①正确;∵AG=EG,∠AGE=90°,∴∠EAH=∠AEG=45°,故③正确;连接AC交BD于点I,则AC⊥BC,∵EF⊥BD,∴∠GFE=∠AIG=90°,∴∠GEF=∠AGI=90°﹣∠EGF,在△GEF和△AGI中,,∴△GEF≌△AGI(AAS),∴GF=AI,∠FEG=∠IGA=∠DGH,∵AI=CI=AC,AC=BD,∴BD=AC=2AI,∴BD=2GF,故④正确;假设GE平分∠FEC,则∠FEG=∠CEG,∴∠DGH=∠CEG,∴∠DHG=180°﹣∠AHC=∠CEG,∴∠DHG=∠DGH==67.5°,显然与已知条件“H为CD上一动点”相矛盾,∴GE不一定平分∠FEC,故②错误,故答案为:①③④.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•青岛期中)已知:如图,在四边形ABCD中,AB⊥AC,DC⊥AC,∠B=∠D,点E,F分别是BC,AD的中点.(1)求证:△ABC≌△CDA;(2)求证:四边形AECF是菱形;(3)给三角形ABC添加一个条件 AB=AC ,使得四边形AECF是正方形,并证明你的结论.【分析】(1)根据AAS可证明△ABC≌△CDA;(2)证出AB=CD,AD=BC,则可得出四边形ABCD是平行四边形,由直角三角形的性质证出AE=BC=EC,则可得出结论;(3)根据正方形的判定可得出结论.【解答】(1)证明:∵AB⊥AC,DC⊥AC,∴∠BAC=∠ACD=90°,在△ABC和△CDA中,,∴△ABC≌△CDA(AAS);(2)证明:∵△ABC≌△CDA,∴AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AD∥BC,∵点E,F分别是BC,AD的中点,∴EC=BC,AF=AD,∴EC=AF,∴四边形AECF是平行四边形.∵∠BAC=90°,点E是BC的中点,∴AE=BC=EC,∴平行四边形AECF是菱形;(3)解:添加一个条件是AB=AC.∵AB=AC,点E是BC的中点,∴AE⊥BC,即∠AEC=90°,∵平行四边形AECF是菱形,∴四边形AECF是正方形.故答案为:AB=AC.20.(2022春•东莞市校级期中)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB 边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECF是正方形?(不必说明理由)【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)当∠A=45°,四边形BECD是正方形.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)解:当∠A=45°时,四边形BECD是正方形,理由:∵∠ACB=90°,∴∠ABC=45°,由(2)可知,四边形BECD是菱形,∴∠ABC=∠CBE=45°,∴∠DBE=90°,∴四边形BECD是正方形.21.(2022春•寻乌县期末)如图,△ABC中,AD是∠BAC的平分线,作DE∥AB交AC于点E,DF∥AC 交AB于点F.(1)求证:四边形AEDF是菱形;(2)当△ABC满足条件 ∠BAC=90° 时,四边形AEDF是正方形.【分析】(1)先证四边形AEDF是平行四边形,再证EA=ED,即可得出结论;(2)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.【解答】(1)证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EDA=∠FAD,∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∴∠EAD=∠EDA,∴EA=ED,∴平行四边形AEDF为菱形;(2)在△ABC中,当∠BAC=90°时,四边形AEDF是正方形,∵∠BAC=90°,∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).故答案为:∠BAC=90°.22.(2022秋•江阴市期中)如图,正方形ABCD的边长为8cm,点E在AD边上,AE=6cm,动点P从点A 出发,以2cm/s的速度沿A→B→C→D运动,设运动时间为t秒.(1)BE= 10cm ;(2)当点P在BE的垂直平分线上时,求t的值;(3)当t= 20 ,PE平分∠BED,试猜想此时PB是否为∠EBC的角平分线,并说明理由.【分析】(1)利用勾股定理求解即可;(2)如图1中,设BE的垂直平分线交AB于点P,交CD于点P′,连接PE.过点P′作P′T⊥AB 于点T.由题意PB=PE=8﹣t,利用勾股定理求出t,再证明PT=AE=6cm,求出BT,可得结论;(3)结论:PB是∠EBC的角平分线.如图2中,连接PB,过点P作PK⊥BE于点K.利用全等三角形的性质证明PD=PK=PC,可得结论.【解答】解:(1)∵四边形ABCD是正方形,∴∠A=90°,∴BE===10(cm),故答案为:10cm;(2)如图1中,设BE的垂直平分线交AB于点P,交CD于点P′,连接PE.过点P′作P′T⊥AB 于点T.由题意PB=PE=8﹣t,在Rt△APE中,则有t2+62=(8﹣t)2,∴t=.∵∠C=∠CBT=∠BTP′=90°,∴四边形CBTP′是矩形,∴CP′=BT,P′T=BC=AB,∵∠A=∠P′TB=90°,∠ABE+∠TPP′=90°,∠P′PT+∠PP′T=90°,∴∠ABE=∠PP′T,∴△P′TP≌△BAE(AAS),∴PT=AE=6cm,∴BT=AB﹣AP﹣PT=8﹣﹣6=,∴运动到P′时,t=8+8+=,综上所述,满足条件的t的值为或.(3)结论:PB是∠EBC的角平分线.理由:如图2中,连接PB,过点P作PK⊥BE于点K.∵PE平分∠BED,PK⊥BE.PD⊥ED,∴∠PED=∠PEK,∠D=∠PKE=90°,∵PE=PE,∴△PED≌△PEK(AAS),∴PD=PK,ED=EK=2cm,∵BE=10cm,∴BK=8cm=BC,∵PB=PB,∠C=∠PKB=90°,∴△BPK≌△BPC(AAS),∴PK=PC,∴PD=PC,∵PK⊥BE,PC⊥BC,∴∠PBK=∠PBC,∴PB平分∠EBC,∵PD=PC,∴t=8+8+4=20.故答案为:20.23.(2022•六合区校级开学)课本上有一道习题:如图1,在正方形ABCD中,点E在AB上,点F在BC 上,AF与DE相交于点G,AF=DE,求证:∠DGF=90°.(1)请完成上题的证明过程;(2)如图2,在菱形ABCD中,点E在AB上,点F在射线BC上,AF与DE相交于点G,AF=DE,求证:∠DGF=∠B.【分析】(1)根据正方形的性质和已知条件证明Rt△DAE≌Rt△ABF,再通过证明∠ADE+∠DAF=90°证明∠DGF=90°;(2)作AH⊥BC于点H,EK⊥CD于点K,根据同一个菱形的高相等证明EK=AH,再由AF=DE证明Rt△EKD≌Rt△AHF得到∠EDC=∠F,再推出∠DGF=∠B.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴DA=AB,∠DAE=∠B=90°,∵AF=DE,∴Rt△DAE≌Rt△ABF(HL),∴∠ADE=∠BAF,∴∠ADE+∠DAF=∠BAF+∠DAF=∠DAB=90°,∴∠DGF=∠ADE+∠DAF=90°.(2)证明:如图2,作AH⊥BC于点H,EK⊥CD于点K,则∠EKD=∠AHF=90°,设AF交CD于点R,∵四边形ABCD是菱形,∴BC=DC,=EK•DC=AH•BC,∴S菱形ABCD∴EK=AH,∵AF=DE,∴Rt△EKD≌Rt△AHF(HL),∴∠EDC=∠F,∴∠DRF﹣∠EDC=∠DRF﹣∠F,∵∠DGF=∠DRF﹣∠EDC,∠DCF=∠DRF﹣∠F,∴∠DGF=∠DCF,∵CD∥AB,∴∠DCF=∠B,∴∠DGF=∠B.24.(2022春•海陵区校级期末)如图,在正方形ABCD中,F为BC为边上的定点,E、G分别是AB、CD 边上的动点,AF和EG交于点H.有2个选项:①AF⊥EG②AF=EG.(1)请从2个选项中选择一个作为条件,余下一个作为结论,得到一个真命题,并证明.你选择的条件是 ① ,结论是 ② (只要填写序号);(2)若AB=6,BF=2.①若BE=3,求AG的长;②连结AG、EF,直接写出AG+EF的最小值.【分析】(1)条件是①,结论是②.过点G作GP⊥AB交于P,证明△ABF≌△GPE(ASA)即可;(2)①在Rt△APG中,求出AP=1,PG=6,利用勾股定理得出AG=;②过点F作FQ∥EG,过点G作GQ∥EF,当A、G、Q三点共线时,AG+EF的值最小,证明△AFQ是等腰直角三角形,由勾股定理即可求AQ的值即为所求.【解答】解:(1)(答案不唯一)选择的条件是①,结论是②.理由如下:如图1,过点G作GP⊥AB交于P,∵AH⊥EG,∴∠AEH+∠DAH=90°,∵∠PEG+∠PGC=90°,∴∠EAH=∠PGE.在△ABF与△GPE中,,∴△ABF≌△GPE(ASA),∴AF=EG.故答案为:①,②(答案不唯一);(2)①∵BF=2,∴PE=2,∵AB=6,BE=3,∴AE=3,∴AP=1,在Rt△APG中,AP=1,PG=6,∴AG==;②过点F作FQ∥EG,过点G作GQ∥EF,∴四边形EFQG为平行四边形,∴GQ=EF,∴AG+EF=AG+GQ≥AQ,∴当A、G、Q三点共线时,AG+EF的值最小,∵EG=AF,EG=FQ,∴AF=FQ,∵AF⊥EG,∴AF⊥FQ,∴△AFQ是等腰直角三角形,∵AF==2,∴AQ=4,∴AG+EF的最小值为4.。

中考数学复习《正方形》专项提升训练(附答案)

中考数学复习《正方形》专项提升训练(附答案)

中考数学复习《正方形》专项提升训练(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,平行四边形、矩形、菱形、正方形的包含关系可用如图表示,则图中阴影部分所表示的图形是( )A.矩形B.菱形C.矩形或菱形D.正方形2.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是( )A.22.5°B.25°C.23°D.20°3.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )A.16B.12C.24D.184.如图,E是正方形ABCD的边BC延长线上一点,且CE=AC,则∠E=( )A.90°B.45°C.30°D.22.5°5.将一正方形纸片按图中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是下面图案中的( )6.如图所示,两个含有30°角的完全相同的三角板ABC 和DEF 沿直线l 滑动,下列说法错误的是( )A.四边形ACDF 是平行四边形B.当点E 为BC 中点时,四边形ACDF 是矩形C.当点B 与点E 重合时,四边形ACDF 是菱形D.四边形ACDF 不可能是正方形 7.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形8.已知一个无盖长方体的底面是边长为1的正方形,侧面是长为2的长方形,现展开铺平.如图,依次连结点A ,B ,C ,D 得到一个正方形,将周围的四个长方形沿虚线剪去一个直角三角形,则所剪得的直角三角形较短直角边与较长直角边的比是( )A.12B.13C.23D.459.如图,正方形ABCD 的对角线交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点,而且这两个正方形的边长相等.无论正方形A 1B 1C 1O 绕点O 怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的( )A.12B.13C.14D.1510.如图,点O(0,0),A(0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 1A 2B 1,…,依此规律,则点A 2027的坐标是( )A.(0,21013)B.(21013,21013)C.(21014,0)D.(21014,﹣21014) 二、填空题11.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .12.如图.将正方形纸片ABCD 折叠,使边AB 、CB 均落在对角线BD 上,得折痕BE 、BF ,则∠EBF 的大小为 .13.如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图2.这个拼成的长方形的长为30,宽为20.则图2中Ⅱ部分的面积是.14.若正方形的面积是9,则它的对角线长是 .15.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于_______cm.16.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;则S3﹣S2=.三、解答题17.如图,已知点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE.求证:(1)EF=FP=PQ=QE;(2)四边形EFPQ是正方形.18.如图,菱形ABCD的对角线AC、BD相交于点O,分别延长OA、OC到点E、F,使AE=CF,依次连接B、F、D、E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=________°时,四边形BFDE是正方形.19.如图,已知在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.20.如图,在正方形ABCD中,E,F分别为AD,CD边上的点,BE,AF交于点O,且AE=DF.(1)求证:△ABE≌△DAF;(2)若BO=4,DE=2,求正方形ABCD的面积.21.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE 于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.22.如图,在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.23.在几何探究问题中,经常需要通过作辅助线(如,连接两点,过某点作垂线,作延长线,作平行线等等)把分散的条件相对集中,以达到解决问题的目的.(1)(探究发现)如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF.通过探究,可发现BE,EF,DF之间的数量关系为________(直接写出结果).(2)(验证猜想)同学们讨论得出下列三种证明思路(如图1):思路一:过点A作AG⊥AE,交CD的延长线于点G.思路二:过点A作AG⊥AE,并截取AG=AE,连接DG.思路三:延长CD至点G,使DG=BE,连接AG.请选择一种思路证明(探究发现)中的结论.(3)(应用)如图2,点E,F分别在正方形ABCD的边BC,CD上,且BC=3BE,∠EAF =45°,设BE=t,试用含t的代数式表示DF的长.参考答案1.D.2.A3.A.4.D5.B.6.B.7.D.8.C.9.C.10.B11.答案为:45°.12.答案为:45°.13.答案为:100.14.答案为:3 2.15.答案为:1或2.16.答案为:52 .17.证明:(1)∵四边形ABCD是正方形∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD ∵AF=BP=CQ=DE∴DF=CE=BQ=AP在△APF和△DFE和△CEQ和△BQP中∴△APF≌△DFE≌△CEQ≌△BQP(SAS)∴EF=FP=PQ=QE;(2)∵EF=FP=PQ=QE∴四边形EFPQ是菱形∵△APF≌△BQP∴∠AFP=∠BPQ∵∠AFP+∠APF=90°∴∠APF+∠BPQ=90°∴∠FPQ=90°∴四边形EFPQ是正方形.18.证明:(1)在菱形ABCD中,BA=BC∴∠BAC=∠BCA∴∠BAE=∠BCF.在△BAE与△BCF中BA=BC,∠BAE=∠BCF,AE=CF∴△BAE≌△BCF(SAS).(2)20.19.证明:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ20.证明:(1)∵四边形ABCD是正方形∴AB=AD,∠BAE=∠D=90°又AE=DF∴△ABE≌△DAF;(2)∵△ABE≌△DAF∴∠FAD=∠ABE又∠FAD+∠BAO=90°∴∠ABO+∠BAO=90°∴△ABO∽△EAB∴AB:BE=BO:AB,即AB:6=4:AB∴AB2=24所以正方形ABCD面积是24.21.解:(1)∵四边形ABCD是正方形∴∠ADG=∠C=90°,AD=DC又∵AG⊥DE∴∠DAG+∠ADF=90°=∠CDE+∠ADF∴∠DAG=∠CDE∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H∵E是BC的中点∴BE=CE又∵∠C=∠HBE=90°,∠DEC=∠HEB∴△DCE≌△HBE(ASA)∴BH=DC=AB,即B是AH的中点又∵∠AFH=90°∴Rt△AFH中BF=12AH=AB.22.解:(1)PB=PQ.证明:连接PD ∵四边形ABCD是正方形∴∠ACB=∠ACD,∠BCD=90°,BC=CD又∵PC=PC∴△DCP≌△BCP(SAS)∴PD=PB,∠PBC=∠PDC∵∠PBC+∠PQC=180°,∠PQD+∠PQC=180°∴∠PBC=∠PQD∴∠PDC=∠PQD∴PQ=PD∴PB=PQ(2)PB=PQ.证明:连接PD同(1)可证△DCP≌△BCP∴PD=PB,∠PBC=∠PDC∵∠PBC=∠Q∴∠PDC=∠Q∴PD=PQ∴PB=PQ.23.解:(1)EF=BE+DF.(2)思路三:延长CD至点G,使DG=BE,连接AG. ∵正方形ABCD∴AB=AD,∠B=∠ADC=90°∵BE=DG∴△ABE≌△ADG(SAS)∴AE=AG,∠BAE=∠DAG∵∠EAF=45°∴∠BAE+∠DAF=45°∴∠GAF=∠GAD+∠DAF=45°∴∠GAF=∠EAF∴AF=AF∴△EAF≌△GAF(SAS)∴EF=GF=BE+DF.(3)由题意可知,CE=2t,设DF=x,则CF=3t-x,EF=2t+x ∴在RtCEF中,EF2=CE2+CF2∴(x+t)2=(3t-x)2+(2t)2∴x=32t.即DF=32t.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正方形的性质及判定
知识归纳
1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质
正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质:
①边的性质:对边平行,四条边都相等.
②角的性质:四个角都是直角.
③对角线性质:两条对角线互相垂直平分且相等,每条对角线平分一组对角.
④对称性:正方形是中心对称图形,也是轴对称图形.
平行四边形、矩形、菱形和正方形的关系:(如图)
3.正方形的判定
判定①:有一组邻边相等的矩形是正方形.
判定②:有一个角是直角的菱形是正方形.
4.重点:知晓正方形的性质和正方形的判定方法。

难点:正方形知识的灵活应用
例题讲解
一、正方形的性质
例1:如图,已知正方形ABCD的面积为256,点F在CD上,点E在CB的延长线上,且20
AE AF AF
⊥=
,,则BE的长为
F
E
D
C
B
A
变式1:如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD,BC边上的点,若1
AG=,2
BF=,90
GEF
∠=︒,则GF的长为.



菱形
矩形
平行四边形
变式2:将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为
例2:如图,E 是正方形ABCD 对角线BD 上的一点,求证:AE CE =.
E
D
C
B
A
变式1:如图,P 为正方形ABCD 对角线上一点,PE BC ⊥于E ,PF CD ⊥于F .求证:
AP EF =.
F E
P
D
C
B A
例3:如图,已知P 是正方形ABCD 内的一点,且ABP ∆为等边三角形,那么DCP ∠=
P
D
C
B
A
变式1:如图,已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若50EAF ∠=︒, 则CME CNF ∠+∠= .
N
M
F
E
D
C
B
A
变式2:如图,四边形ABCD 为正方形,以AB 为边向正方形外作正方形ABE ,CE 与BD 相交于点F ,则AFD ∠=
F
E
D
C
B
A
例4:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接,BE DG ,求证:
BE DG =.
G
C F
E
D
B
A
变式1:如图,在正方形ABCD 中,E 为CD 边上的一点,F 为BC 延长线上的一点,
CE CF =,30FDC ∠=︒,求BEF ∠的度数.
B
D
C
A
E
F
变式2:已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .
(1)求证:BCG DCE ∆∆≌;
(2)将DCE △绕点D 顺时针旋转90︒得到DAE '∆,判断四边形E BGD '是什么特殊四
边形?并说明理由.
例5:若正方形ABCD 的边长为4,E 为BC 边上一点,3BE =,M 为线段AE 上一点,射
A
B
C
D
E
F E '
G
线BM 交正方形的一边于点F ,且BF AE =,则BM 的长为 .
变式1:如图1,在正方形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,HA EB FC GD ===,连接EG 、FH ,交点为O .
⑴ 如图2,连接EF FG GH HE ,,,,试判断四边形EFGH 的形状,并证明你的结论;
⑵ 将正方形ABCD 沿线段EG 、HF 剪开,再把得到的四个四边形按图3的方式拼接成一个
四边形.若正方形ABCD 的边长为3cm ,1cm HA EB FC GD ====,则图3中阴影部分的面积为_________2cm .
图3
图1图2
H D
G
C F
E
B
A
O
H G
F
E
D
C B
A
变式2:如图,正方形ABCD 对角线相交于点O ,点P 、Q 分别是BC 、CD 上的点,AQ DP ⊥,求证:(1)OP OQ =;(2)OP OQ ⊥.
B
O D C
A
Q
P
例6:如图,正方形ABCD 中,E F ,是AB BC ,边上两点,且EF AE FC DG EF =+⊥,于G ,求证:DG DA =
G F
E
C D
B
A
变式1:如图,点M N ,分别在正方形ABCD 的边BC CD ,上,已知MCN ∆的周长等于正方形ABCD 周长的一半,求MAN ∠的度数
N
M
D
C
B
A
变式2:如图,设EF ∥正方形ABCD 的对角线AC ,在DA 延长线上取一点G ,使AG AD =,
EG 与DF 交于H ,求证:AH =正方形的边长.
H
E
G
C
D
F
B
A
例7:把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.
G
C
H
F E
D
B A
变式1:如图所示,在直角梯形ABCD 中,AD BC ∥,90ADC ∠=︒,l 是AD 的垂直平分线,交AD 于点M ,以腰AB 为边作正方形ABFE ,作EP l ⊥于点P ,求证22EP AD CD +=.
l
P
M F
E D
C B
A
二、正方形的判定
例1:四边形ABCD 的四个内角的平分线两两相交又形成一个四边形EFGH ,求证:
⑴四边形EFGH 对角互补;
⑵若四边形ABCD 为平行四边形,则四边形EFGH 为矩形. ⑶四边形ABCD 为长方形,则四边形EFGH 为正方形.
H
E
F
G D
C
B
A
变式1:如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且ACE ∆是等边三角形.
⑴ 求证:四边形ABCD 是菱形;
⑵ 若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.
O
E
D
C
B
A
变式2:已知:如图,在ABC ∆中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC ∆外角
CAM ∠的平分线,CE AN ⊥,垂足为点E .
⑴ 求证:四边形ADCE 为矩形;
⑵ 当ABC ∆满足什么条件时,四边形ADCE 是一个正方形?并给出证明.
M E
N
C
D
B
A
例2:如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE a AF b ==,,

2
3
EFGH
S=,则b a
-=
H
G
F
E
D
C
B
A
例3:如图,若在平行四边形ABCD各边上向平行四边形的外侧作正方形,求证:以四个正方形中心为顶点组成一个正方形.
P R
Q
S N
M F
E
D
C
B
A
附加题:
1. 如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为27cm 和211cm ,则
CDE ∆的面积为
G
F
E
D
C
B A
2. 如图,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点,求证:AM AD =.
M
F
E
D
C
B
A
3. 如图,正方形ABCD 中,O 是对角线AC BD ,的交点,过点O 作OE OF ⊥,分别交
AB CD ,于E F ,,若43AE CF ==,,则EF = O
F
E D
C B
A
4. 如图所示,ABCD 是正方形,E 为BF 上的一点,四边形AEFC 恰好是一个菱形,则
EAB ∠=______.
A
B
C
D
E
F。

相关文档
最新文档