PhysRevA_78_033617
HP HP-UX 说明书
vmd中心频率代码
vmd中心频率代码1.引言1.1 概述在分子动力学模拟中,VMD(Visual Molecular Dynamics)是一种常用的分子可视化和分析软件。
它不仅提供了三维分子结构的可视化工具,还具备强大的分析功能,能够帮助研究人员深入理解分子的结构与性质。
VMD中心频率代码是VMD软件中的一个重要功能模块,主要用于计算和分析分子的振动频率。
在原子或分子系统中,振动频率可以提供有关其动态行为、稳定性和结构的有用信息。
通过计算和分析分子的振动频率,我们可以了解分子内部原子之间的相互作用、键的强度以及某些化学反应的可能性。
VMD中心频率代码的实现基于分子力学和量子力学方法。
它利用分子动力学模拟中收集到的原子轨迹数据,以及相关的力场和势能函数,对分子进行力学振动频率的计算和分析。
通过VMD的图形界面和命令行功能,研究人员可以方便地使用中心频率代码,提取所需的振动频率信息,并通过可视化工具展示结果。
VMD中心频率代码还提供了一系列参数和选项,用于调节计算的精度和准确性。
研究人员可以选择不同的力场和近似方法,以满足不同研究需求。
此外,VMD还支持处理大型分子系统和复杂的化学反应网络,使其成为广泛应用于生物物理学、化学和材料科学等领域的强大工具。
通过对分子的振动频率进行计算和分析,VMD中心频率代码可以帮助研究人员深入理解分子的动态行为和结构特征。
它为科学家提供了一个非常有价值和有力的工具,用于研究分子的力学性质、热力学行为和化学反应。
无论是研究基础科学还是应用科学,VMD中心频率代码都发挥着重要的作用,为我们揭示无数复杂分子体系的奥秘。
1.2 文章结构本文将围绕VMD中心频率代码展开讨论,主要包括以下几个部分:1. 简介:首先对VMD(Visual Molecular Dynamics)进行简要介绍,VMD是一款常用于分子动力学模拟和分子可视化的软件工具,其强大的功能和灵活的可扩展性使其在生物物理学研究领域得到广泛应用。
± 6
a0(980)I G(J PC)=1−(0++)See our minireview on scalar mesons under f0(1370).(See the indexfor the page number.)983.4±0.9OUR A VERAGE Includes data from the2datablocks that follow this one.ηπFINAL STATE ONLYVALUE(MeV)EVTS DOCUMENT ID TECN CHG COMMENTp p→ωηπ0982±21AMSLER92CBAR0.0p p→7π•••We do not use the following data for averages,fits,limits,etc.•••987TORNQVIST96RVUEππ→ππ,KK,Kπ,ηπ980±1147CONFORTO78OSPK− 4.5π−p→p X−978±1650CORDEN78OMEG±12–15π−p→nη2π989±470WELLS75HBC− 3.1–6K−p→Λη2π970±1520BARNES69C HBC−4–5K−p→Λη2π980±10CAMPBELL69DBC± 2.7π+d980±1015MILLER69B HBC− 4.5K−N→ηπΛ980±1030AMMAR68HBC± 5.5K−p→Λη2π1From a single Breit-Wignerfit.2From f1(1285)decay.K K ONLYVALUE(MeV)EVTS DOCUMENT ID TECN CHG COMMENT982±33ABELE98CBAR0.0p p→f1(1285)ω•••We do not use the following data for averages,fits,limits,etc.•••1016±101004ASTIER67HBC±0.03T-matrix pole on sheet II,the pole on sheet III is at1006-i49MeV.a0(980)WIDTHVALUE(MeV)EVTS DOCUMENT ID TECN CHG COMMENTK,Kπ,ηπ202JANSSEN95RVUEηπ→ηπ,Kp p→ωηπ0 54±106AMSLER92CBAR0.0p p→7π40±15CAMPBELL69DBC± 2.7π+d60±3015MILLER69B HBC− 4.5K−N→ηπΛ80±3030AMMAR68HBC± 5.5K−p→Λη2π6From a single Breit-Wignerfit.7From f1(1285)decay.8Using a two-channel resonance parametrization of GAY76B data.K K ONLYVALUE(MeV)EVTS DOCUMENT ID TECN CHG COMMENT92±89ABELE98CBAR0.010ASTIER67includes data of BARLOW67,CONFORTO67,ARMENTEROS65.11Plus systematic errors.ModeFraction (Γi /Γ)K seen Γ3ρπΓ4γγseenΓ5e +e −a 0(980)BRANCHING RATIOSΓK K /Γ ηπΓ2/Γ1VALUEDOCUMENT IDTECNCHGCOMMENTp p →K 0L K ±π∓•••We do not use the following data for averages,fits,limits,etc.•••1.16±0.1813BUGG 94RVUEp →7π12Using π0π0ηfrom AMSLER 94D .•••We do not use the following data for averages,fits,limits,etc.•••<0.2570AMMAR70HBC±4.1,5.5K −p →Λη2πABELE98PR D573860 A.Abele,Adomeit,Amsler+(Crystal Barrel Collab.) TORNQVIST96PRL761575+Roos(HELS) JANSSEN95PR D522690+Pearce,Holinde,Speth(STON,ADLD,JULI) AMSLER94C PL B327425+Armstrong,Ravndal+(Crystal Barrel Collab.) AMSLER94D PL B333277+Anisovich,Spanier+(Crystal Barrel Collab.) BUGG94PR D504412+Anisovich+(LOQM) AMSLER92PL B291347+Augustin,Baker+(Crystal Barrel Collab.) ARMSTRONG91B ZPHY C52389+Barnes+(ATHU,BARI,BIRM,CERN,CDEF) OEST90ZPHY C47343+Olsson+(JADE Collab.) VOROBYEV88SJNP48273+Golubev,Dolinsky,Druzhinin+(NOVO) Translated from YAF48436.ANTREASYAN86PR D331847+Aschman,Besset,Bienlein+(Crystal Ball Collab.) ATKINSON84E PL138B459+(BONN,CERN,GLAS,LANC,MCHS,CURIN+) EVANGELISTA81NP B178197+(BARI,BONN,CERN,DARE,LIVP+) DEBILLY80NP B1761+Briand,Duboc,Levy+(CURIN,LAUS,NEUC,GLAS) GURTU79NP B151181+Gavillet,Blokzijl+(CERN,ZEEM,NIJM,OXF) CONFORTO78LNC23419+Conforto,Key+(RHEL,TNTO,CHIC,FNAL+) CORDEN78NP B144253+Corbett,Alexander+(BIRM,RHEL,TELA,LOWC) GRASSLER77NP B121189+(AACH3,BERL,BONN,CERN,CRAC,HEIDH+) FLATTE76PL63B224(CERN) GAY76B PL63B220+Chaloupka,Blokzijl,Heinen+(CERN,AMST,NIJM)JP WELLS75NP B101333+Radojicic,Roscoe,Lyons(OXF) DEFOIX72NP B44125+Nascimento,Bizzarri+(CDEF,CERN) AMMAR70PR D2430+Kropac,Davis+(KANS,NWES,ANL,WISC) BARNES69C PRL23610+Chung,Eisner,Bassano,Goldberg+(BNL,SYRA) CAMPBELL69PRL221204+Lichtman,Loeffler+(PURD) MILLER69B PL29B255+Kramer,Carmony+(PURD) Also69PR1882011Yen,Ammann,Carmony,Elsner+(PURD) AMMAR68PRL211832+Davis,Kropac,Derrick,Fields+(NWES,ANL) ASTIER67PL25B294+Montanet,Baubillier,Duboc+(CDEF,CERN,IRAD) Includes data of BARLOW67,CONFORTO67,and ARMENTEROS65.BARLOW67NC50A701+Lillestol,Montanet+(CERN,CDEF,IRAD,LIVP) CONFORTO67NP B3469+Marechal+(CERN,CDEF,IPNP,LIVP) ARMENTEROS65PL17344+Edwards,Jacobsen+(CERN,CDEF) ROSENFELD65Oxford Conf.58(LRL)ACHASOV97C PR D564084N.N.Achasov+ACHASOV97D PR D56203N.N.Achasov+AMSLER94D PL B333277+Anisovich,Spanier+(Crystal Barrel Collab.) TORNQVIST90NPBPS21196(HELS) WEINSTEIN89UTPT8903+Isgur(TNTO) ACHASOV88B ZPHY C41309+Shestakov(NOVM) WEINSTEIN83B PR D27588+Isgur(TNTO) TORNQVIST82PRL49624(HELS) BRAMON80PL93B65+Masso(BARC) TURKOT63Siena Conf.1661+Collins,Fujii,Kemp+(BNL,PITT)。
35670a dynamic signal analyzer datasheet说明书
Keysight Technologies35670A Dynamic Signal AnalyzerVersatile two- or four-channel high-per f or m anceFFT-based spectrum/network an a l yz e r122 µHz to 102.4 kHz 16-bit ADCData SheetSummary of Features on Standard InstrumentThe following features are standard with the Keysight Technologies, Inc. 35670A:Instrument modesFFT analysis Histogram/time Correlation analysis Time captureMeasurementFrequency domainFrequency response Power spectrumLinear spectrum CoherenceCross spectrum Power spectral density Time domain (oscilloscope mode)Time waveform AutocorrelationCross-correlation Orbit diagram Amplitude domainHistogram, PDF, CDFTrace coordinatesLinear magnitude Unwrapped phaseLog magnitude Real partdB magnitude Imaginary partGroup delay Nyquist diagramPhase PolarTrace unitsY-axis amplitude: combinations of units, unit value, calculated value, and unit format describe y-axis amplitude Units: volts, g, meters/sec2, inches/sec2, meters/sec, inches/sec, meters, mils, inches, pascals, Kg, N, dyn, lb, user-defined EUsUnit value: rms, peak, peak-to-peakCalculated value: V, V2, V2/Hz, √Hz, V2s/Hz (ESD)Unit format: linear, dB’s with user selectable dB reference, dBm with user selectable impedance.Y-axis phase: degrees, radiansX-axis: Hz, cpm, order, seconds, user-defined Display formatsSingleQuadDual upper/lower tracesSmall upper and largelowerFront/back overlay traces Measurement stateBode diagramWaterfall display with skew, -45 to 45 degrees Trace grids on/offDisplay blankingScreen saverDisplay scalingAutoscale Selectable reference Manual Scale Linear or log X-axis Input range tracking Y-axis logX & Y scale markers with expand and scrollMarker functionsIndividual trace markersCoupled multi-trace markersAbsolute or relative markerPeak searchHarmonic markersBand markerSideband power markersWaterfall markersTime parameter markersFrequency response markersSignal averaging (FFT mode) Average types (1 to 9,999,999 averages) RMS Time exponential RMS exponential Peak holdTimeKey SpecificationsFrequency range102.4 kHz 1 channel51.2 kHz 2 channel25.6 kHz 4 channelDynamic range90 dB typicalAccuracy ±0.15 dBChannel match±0.04 dB and ±0.5 degreesReal-time bandwidth25.6 kHz/1 channelResolution100, 200, 400, 800 & 1600 linesTime capture> 6 MsamplesSource types Random, burst random, periodic chirp, burst chirp, pink noise,sine, swept-sine (Option 1D2), arbitrary (Option 1D4)Math+,-,*, / Conjugate Magnitude Real and imaginary Square Root FFT, FFT -1LN EXP *jω or /jω PSD Differentiation A, B, and C weighting Integration Constants K1 thru K5 Functions F1 thru F5AnalysisLimit test with pass/failData table with tabular readout Data editingTime capture functionsCapture transient events for repeated analysis in FFT, octave, order, histogram, or correlation modes (except swept-sine). Time-captured data may be saved to internal or external disk, or transferred over GPIB. Zoom on captured data for detailed nar r ow b and analysis.Data storage functionsBuilt-in 3.5 in., 1.44-Mbyte flexible disk also supports 720-KByte disks, and 2 Mbyte NVRAM disk. Both MS-DOS and HP-LIF formats are available. Data can be formatted as either ASCII or binary (SDF). The 35670A provides storage and recall from the internal disk, internal RAM disk, internal NVRAM disk, or external GPIB disk for any of the following information:Instrument setup states Trace data User-mathLimit dataTime capture buffers Keysight Instrument BASIC Waterfall display data ProgramsData tablesCurve fit/synthesis tablesGPIB capabilitiesConforms to IEEE 488.1 /488.2Conforms to SCPI 1992Controller with Keysight Instrument Basic OptionCalibration & memorySingle or automatic calibration Built-in diagnostics & service tests Nonvolatile clock with time/dateTime/date stamp on plots and saved data filesOnline help Access to topics via keyboard or index FanOn/OffAveraging controlsOverload rejectFast averaging on/off Update rate selectSelect overlap process percentage Preview time recordMeasurement controlStart measurementPause/continue measurementTriggeringContinuous (Freerun)External (analog or TTL level)Internal trigger from any channel Source synchronized trigger GPIB trigger Armed triggers Automatic/manual RPM step Time stepPre- and post-trigger measurement DelayTachometer input±4 V or ±20 V range40 mv or 200 mV resolution Up to 2048 pulses/rev Tach hold-off controlSource outputsRandom Burst random Periodic chirp Burst chirp Pink noise Fixed sineNote: Some source types are not available for use in optional modes. See option description for details.Input channelsManual range Anti-alias filters On/Off Up-only auto range AC or DC coupling Up/down auto range LED half range and overload indicators Floating or grounded A-weight filters On/Off Transducer power supplies (4 ma constant current)Frequency20 spans from 195 mHz to 102.4 kHz (1 channel mode)20 spans from 98 mHz to 51.2 kHz (2 channel mode)Digital zoom with 244 µHz resolution throughout the 102.4 kHz frequency bands.Resolution 100, 200, 400, 800 and 1600 linesWindowsHann UniformKeysight 35670A SpecificationsInstrument specifications apply after 15 minutes warm-up and within 2 hours of the last self-calibration. When the internal cooling fan has been turned OFF, specifications apply within 5 minutes of the last self-cal i b ra t ion. All speci-fications are with 400 line frequency resolution and with anti-alias filters enabled unless stated otherwise.FrequencyMaximum range**1 channel mode102.4 kHz,51.2 kHz (opt AY6*)2 channel mode51.2 kHz4 channel mode (Option AY6 only) 25.6 kHzSpans1 channel mode195.3 mHz to 102.4 kHz2 channel mode97.7 mHz to 51.2 kHz 4 channel mode (Option AY6 only) 97.7 mHz to 25.6 kHz Minimimum resolution1 channel mode122 µHz (1600 linedisplay)2 channel mode61 µHz (1600 linedisplay)4 channel mode (Option AY6 only)122 µHz (800 linedisplay) Maximum real-time bandwidthFFT span for continuous data acquistion)(Preset, fast averaging)1 channel mode25.6 kHz2 channel mode12.8 kHz4 channel mode (Option AY6 only) 6.4 kHz Measurement rate(Typical) (Preset, fast averaging)1 channel mode≥ 70 averages/sec2 channel mode≥ 33 averages/sec4 channel mode (Option AY6 only)≥ 15 averages/sec Display update rateTypical (Preset, fast average off)≥ 5 updates/Sec Maximum ≥ 9 updates/Sec (Preset, fast average off, single channel, single display, undisplayed trace displays set to data registers)Accuracy±30 ppm (.003%)Single channel ampltudeAbsolute amplitude accuracy (FFT)(A combination of full scale accuracy, full scale flatness, and amplitude linearity.)±2.92% (0.25 dB) of reading±0.025% of full scaleFFT full scale accuracy at 1 kHz (0 dBfs)±0.15 dB (1.74%)FFT full scale flatness (0 dBfs) relative to 1 kHz±0.2 dB (2.33%)FFT amplitude linearity at 1 kHz measured on +27 dBVrms range with time avg, 0 to -80 dBfs±0.58% (0.05 dB) of reading±0.025% of full scaleAmplitude resolution(16 bits less 2 dB over-range) with averaging 0.0019% of full scale (typical)Residual DC response (FFT mode)Frequency display (excludes A-weight filter)<-30 dBfs or 0.5 mVdcFFT dynamic rangeSpurious free dynamic range(Includes spurs, harmonic distortion, intermodulation distortion, alias products). Excludes alias responses at extremes of span. Source impedence = 50 Ω.800 line display.90 dB typical (<-80 dBfs)* O ption AY6 single channel maximum range extends to 102.4 kHz without anti-alias filter protection.** S how all lines mode allows display of up to 131.1, 65.5 and 32.7 kHz respectively. Amplitudes accuracy is unspecified and not alias protected.Full span FFT noise floor (typical)Flat top window, 64 RMS averages, 800 line display.Harmonic distortion<-80 dBfs Single Tone (in band), ≤ 0 dBfs Intermodulation distortion<-80 dBfs Two tones (in-band), each ≤ -6.02 dBfs Spurious and residual responses <-80 dBfsSource impedence = 50 Ω.Frequency alias responsesSingle tone (out of displayed range), ≤ 0 dBfs, ≤ 1 MHz(≤ 200 kHz with IEPE transducer power supply On)2.5% to 97.5% of the frequency span <-80 dBfs Lower and upper 2.5% of frequency span<-65 dBfsInput noiseInput noise levelFlat top window, -51 dBVrms range Source impedance = 50 ΩAbove 1280 Hz <-140 dBVrms/√2Hz 160 Hz to 1280 Hz <-130 dBVrms/√2Hz Note: To calculate noise as dB below full scale:Noise [dBfs] = Noise [dB/√2Hz] + 10LOG(NBW) - Range [dBVrms]; where NBW is the noise equivalent BW of the window (see below).Window parametersUniformHannFlat top-3 dB bandwidth*0.125% of span 0.185% of span 0.450% of span Noise equivalent bandwidth*0.125% of span 0.1875% of span 0.4775% of span Attenuation at ±1/2 bin 4.0 dB 1.5 dB 0.01 dB Shape factor(-60 dB BW/-3 dB BW)7169.1 2.6* For 800 line displays. With 1600, 400, 200, or 100 line displays, multiply bandwidths by 0.5, 2, 4, and 8, respectively.dB below full scaleTypical noise floor vs. range for different frequency spans-51 -41 -31 -21 -11 27 0.0028 0.0089 0.028 0.089 0.28022.4-100 dB/0.001%Amplitude range (dBVrms / Vrms)-90 dB/0.003%-80 dB/0.01% -70 dB/0.03%51.2 kHz Span 6.4 kHz Span 800 Hz SpanSingle channel phasePhase accuracy relative to externaltrigger± 4.0 deg16 time averages center of bin,DC coupled 0 dBfs to -50 dBfs only0 Hz < freq ≤ 10.24 kHz onlyFor Hann and flat top windows, phase is relative to a cosine wave at the center of the time record. For the uniform, force, and exponential windows, phase is relative to a cosine wave at the beginning of the time record.Cross-channel amplitudeFFT cross-channel gain accuracy± 0.04 dB (0.46%) Frequency response modeSame amplitude rangeAt full scale: Tested with 10 RMSaverages on the -11 to +27 dBVrmsranges, and 100 RMS averages onthe -51 dBVrms rangeCross-channel phaseCross-channel phase accuracy(Same conditions as cross-channelamplitude)± 0.5 degInputInput ranges (full scale)(Auto-range capability)+27 dBVrms (31.7 Vpk) to -51 dBVrms(3.99 mVpk) in 2 dB steps Maximum input levels42 VpkInput impedance 1 MΩ ±10%90 µF nominalLow side to chassis impedance Floating modeGrounded mode 1 MΩ ±30% (typical) <0.010 µF≤100 ΩAC coupling rolloffSource impedance = 50 Ω<3 dB rolloff at 1 HzCommon mode rejection ratioSingle tone at or below 1 kHz-51 dBVrms to -11 dBVrms ranges>75 dB typical-9 dBVrms to +9 dBVrms ranges>60 dB typical+11 dBVrms to +27 dBVrms ranges>50 dB typical and unfiltered time displayDC amplitude accuracy ±5.0 %fs Rise time of -1 V to 0 V test pulse<11.4 µSec Settling time of -1 V to 0 V test pulse<16 µSec to 1% Peak overshoot of -1 V to 0 Vtest pulse<3% Sampling period1 channel mode 3.815 µSec to2 Sec in 2x steps2 channel mode 7.629 µSec to 4 Sec in 2x steps4 channel mode 15.26 µSec to 8 Sec in 2x steps (Option AY6 only)Pulses per RevolutionRPM 5 ≤ RPM ≤ 491,519 RPM Accuracy±100 ppm (0.01%)(typical)Tach level range Low range High range -4 V to +4 V -20 V to +20 VTach level resolution Low rangeHigh range 39 mV 197 mVMaximum tach input level ±42 Vpk Minimum tach pulse width600 nSec Maximum tach pulse rate400 kHz (typical)PC-style 101-keykeyboardGPIBConforms to the following standards:IEEE 488.1 (SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0,DC1, DT1, C1, C2, C3, C12, E2)EEE 488.2-1987Complies with SCPI 1992Data transfer rate (REAL 64 Format)< 45 mSec for a 401 point traceSerial port Parallel port External VGA portComputed order tracking – Option 1D0 Maximum order x Maximum RPM(—————————————— )≤ 60Online (real time)1 channel mode 25,600 Hz2 channel mode 12,800 Hz 4 channel mode 6,400 HzCapture playback 1 channel mode 102,400 Hz2 channel mode 51,200 Hz 4 channel mode 25,600 HzNumber of orders ≤ 200 5 ≤ RPM ≤ 491,519(Maximum useable RPM is limited by resolution, tach pulse rate,pulses/revolution and average mode settings.)Delta order 1/128 to 1/1Resolution ≤ 400(Maximum order)/(Delta order)Maximum RPM ramp rate 1000 RPM/second real-time(typical)1000 - 10,000 RPM run up Maximum order 10Delta order 0.1RPM step 30 (1 channel)60 (2 channel)120 (4 channel)Order track amplitude accuracy±1 dB (typical)Real time octave analysis – Option 1D1StandardsConforms to ANSI Standard S1.11 - 1986, Order 3, Type 1-D, extended and optional frequency rangesConforms to IEC 651-1979 Type 0 Impulse, and ANSI S1.41 second stable average Single tone at band center:≤ ± 0.20 dBReadings are taken from the linear total power spectrum bin. It is derived from sum of each filter.1/3-octave dynamic range > 80 dB (typical) per ANSI S1.11-1986Frequency ranges (at centers)Online (real time):Single channel 2 channel4 channel1/1 octave 0.063 - 16 kHz 0.063 - 8 kHz 0.063 - 4 kHz 1/3 octave 0.08 - 40 kHz 0.08 - 20 kHz 0.08 - 10 kHz 1/12 octave0.0997 - 12.338 kHz 0.0997 - 6.169 kHz 0.0997 - 3.084 kHz Capture playback1/1 octave 0.063 - 16 kHz 0.063 - 16 kHz 0.063 - 16 kHz 1/3 octave 0.08 - 31.5 kHz 0.08 - 31.5 kHz 0.08 - 31.5 kHz 1/12 octave0.0997 - 49.35 kHz0.0997 - 49.35 kHz0.0997 - 49.35 kHzOne to 12 octaves can be measured and displayed.1/1-, 1/3-, and 1/12-octave true center fre q uen c ies related by the formula: f(i+1)/f(i) = 2^(1/n); n=1, 3, or 12; where 1000 Hz is the reference for 1/1, 1/3 octave, and 1000*2^(1/24) Hz is the reference for 1/12 octave. The marker returns the ANSI standard preferred frequencies.Swept sine measurements – Option 1D2Dynamic range130 dBTested with 11 dBVrms source level at: 100 mSec integration Curve fit/synthesis – Option 1D320 Poles/20 zeroes curve filter frequency response synthesis pole/zero, pole residue & polynomical format Arbitrary waveform source – Option 1D4Amplitude rangeAC: ±5 V peak*DC: ±10 V** Vac pk + |Vdc| ≤ 10 VRecord length # of points = 2.56 x lines ofresolution, or # of complex points = 1.28 x lines of resolution DAC resolution0.2828 Vpk to 5 Vpk 0 Vpk to 0.2828 Vpk2.5 mV 0.25 mVGeneral specificationsSafety standards CSA certified for electronictest and measurementequipment per CSA C22.2, NO.231 This product is designedfor compliance to: UL1244,Fourth Edition IEC 348, 2ndEdition, 1978EMI / RFI standards CISPR 11Acoustic power LpA < 55 dB (Cooling fan athigh speed setting)< 45 dB (Auto speed settingat 25 °C)Fan speed settings of high, automatic, and off are available. The fan off setting can be enabled for a short period of time, except at higher ambient temperatures where the fan will stay on. Environmental operating restrictionsOperating: Disk in drive Operating:No disk in driveStorage &transportAmbient temp. 4 °C to 45 °C0 °C to 55 °C-40 °C to 70 °C Relative humidity(non-condensing)Minimum20%15%5%Maximum80% at 32 °C95% at 40 °C95% at 50 °C Vibrations (5 - 500 Hz)0.6 Grms 1.5 Grms 3.41 Grms Shock 5 G (10 mSec 1/2 sine) 5 G (10 mSec 1/2 sine)40 G (3 mSec 1/2 sine)Max. altitude4600 meters(15,000 ft.)4600 meters(15,000 ft.)4600 meters(15,000 ft.)AC power90 Vrms - 264 Vrms(47 - 440 Hz)350 VA maximumDC power12 VDC to 28 VDC nominal200 VA maximumDC current at 12 V Standard: <10 A typical4 channel: <12 A typical Warm-up time15 minutesWeight15 kg (33 lb) net29 kg (64 lb) shippingD imensions (Excluding bail handle and impact cover) Height190 mm (7.5")Width340 mm (13.4")Depth465 mm (18.3")AbbreviationsdBVrms dB relative to 1 Volt rms.dBfs dB relative to full scale amplitude range.Full scale is approx. 2 dB below ADC overload. Typical Typical, non-warranted, performance specification included to provide general product information.General SpecificationsThis information is subject to change without notice.© Keysight Technologies, 2009 - 2017Published in USA, December 1, 20175966-3064E10 | Keysight | 35670A Dynamic Signal Analyzer - Data Sheet/find/35670AmyKeysight/find/mykeysightA personalized view into the information most relevant to you. /find/emt_product_registrationRegister your products to get up-to-date product information and find warranty information.Keysight Services/find/serviceKeysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product qualityand lower costs.Keysight Assurance Plans/find/AssurancePlansUp to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.Keysight Channel Partners/find/channelpartnersGet the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.For more information on KeysightTechnologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:/find/contactus Americas Canada (877) 894 4414Brazil 55 11 3351 7010Mexico001 800 254 2440United States (800) 829 4444Asia Pacific Australia 1 800 629 485China800 810 0189Hong Kong 800 938 693India 1 800 11 2626Japan 0120 (421) 345Korea 080 769 0800Malaysia 1 800 888 848Singapore 180****8100Taiwan0800 047 866Other AP Countries (65) 6375 8100Europe & Middle East Austria 0800 001122Belgium 0800 58580Finland 0800 523252France 0805 980333Germany ***********Ireland 1800 832700Israel 1 809 343051Italy800 599100Luxembourg +32 800 58580Netherlands 0800 0233200Russia 8800 5009286Spain 800 000154Sweden 0200 882255Switzerland0800 805353Opt. 1 (DE)Opt. 2 (FR)Opt. 3 (IT)United Kingdom0800 0260637For other unlisted countries:/find/contactus(BP-9-7-17)/go/quality Keysight Technologies, Inc.DEKRA Certified ISO 9001:2015Quality Management SystemEvolving Since 1939Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology.From Hewlett-Packard to Agilent to Keysight.。
PhysRevB.81.153104
Optical evidence of strong coupling between valence-band holes and d-localized spinsin Zn1−x Mn x OV.I.Sokolov,1A.V.Druzhinin,1N.B.Gruzdev,1A.Dejneka,2O.Churpita,2Z.Hubicka,2L.Jastrabik,2and V.Trepakov2,3 1Institute of Metal Physics,UD RAS,S.Kovalevskaya Str.18,620041Yekaterinburg,Russia2Institute of Physics,AS CR,v.v.i.,Na Slovance2,18221Praha8,Czech Republic3Ioffe Institute,RAS,194021St-Petersburg,Russia͑Received3December2009;revised manuscript received2March2010;published30April2010͒We report on optical-absorption study of Zn1−x Mn x O͑x=0–0.06͒films on fused silica substrates takingspecial attention to the spectral range of the fundamental absorption edge͑3.1–4eV͒.Well-pronounced exci-tonic lines observed in the region3.40–3.45eV were found to shift to higher energies with increasing Mnconcentration.The optical band-gap energy increases with x too,reliably evidencing strong coupling betweenoxygen holes and localized spins of manganese ions.In the3.1–3.3eV region the optical-absorption curve inthe manganese-containedfilms was found to shift to lower energies with respect to that for undoped ZnO.Theadditional absorption observed in this range is interpreted as a result of splitting of a localized Zhang-Rice-typestate into the band gap.DOI:10.1103/PhysRevB.81.153104PACS number͑s͒:78.20.ϪeI.INTRODUCTIONDilute magnetic semiconductor Zn1−x Mn x O is one of themost promising materials for the development of optoelec-tronic and spin electronic devices with ferromagnetism re-tained at practical temperatures͑i.e.,Ͼ300K͒.However,researchers are confronted with many complex problems.Ferromagnetic ordering does not always appear and the na-ture of its instability is a subject of controversy.In addition,optical properties of Zn1−x Mn x O appreciably differ fromthose in Zn1−x Mn x Se and Zn1−x Mn x S related compounds,where the intracenter optical transitions of Mn2+ions areconventionally observed in the optical-absorption and photo-luminescence spectra.1,2In contrast,a very intense absorp-tion in the2.2–3.0eV region was reported in Zn1−x Mn x Owithout any manifestations of intracenter transitions,3–5and photoluminescence due to4T1→6A1optical transition of Mn2+is absent as well.Interpretation of this absorption bandas a charge transfer3,5is complicated by the fact that Mn2+forms neither d5/d4donor nor d5/d6acceptor levels in the forbidden gap of ZnO.6,7To resolve this contradiction,Dietl8put forward the con-cept that the oxides and nitrides belong to the little studiedfamily of dilute magnetic semiconductors with strong corre-lations.Characteristic features of such compounds are an in-crease in the band gap with the concentration of magneticions and emergence of a Zhang-Rice͑Z-R͒-type state in theforbidden gap9arising as a result of strong exchange cou-pling of3d-localized spin of the impurity centers andvalence-band holes.According to Ref.8,fulfillment ofstrong hybridization condition depends on the ratio of theimpurity-center potential U to a critical value U c;a coupledhybrid state can be formed when U/U cϾ1.Existence of such electronic state has been verified by ab initio theoretical treatment of electron correlations using the local spin-density approximation͑LSDA+U model͒and calculation of the ex-change coupling values.10In Zn1−x Mn x O the hole can origi-nate by electron transfer from the Mn2+adjacent oxygen to the conduction band.The resulting hole localizes as the Z-R state leading to appearance of additional broad,intense ab-sorption band.In this way the study of optical-absorptionspectra can be used as a probe to identify the Z-R states.It is known that the optical band-edge absorption spec-trum of Mn-doped ZnO is characterized by the onset of astrong rise of the absorption coefficient in theϳ3.1eV spec-tral region.11In Refs.11and12,this absorption inZn1−x Mn x Ofilms was treated as a product of direct interbandoptical transitions using conventional formula␣2ϳ͑ប−E g͒.The resulting magnitudes of band gap for composition with x=0.05have been estimated as E g=3.10eV͑Ref.11͒and3.25eV,12which is appreciably less than E g=3.37eV inZnO.13Such“redshift”of the band gap was considered inRef.12as a result of p-d exchange interaction,in analogy tothe shift of the excitonic lines in reflectivity and lumines-cence spectra observed in Ref.14for Zn1−x Mn x Se.At thesame time theory predicts an increase in E g͑x͒with x for Zn1−x Mn x O.8Also excitonic absorption spectrum in Zn1−x Mn x O nanopowders,15appeared to be located at ener-gies higher than that in ZnO nanopowders,that does not confirm the shift of E g to lower energies for Zn1−x Mn x O films.In this work we report on the optical-absorption spectrastudies in thin Zn1−x Mn x Ofilms deposited on fused silicaing suchfilms we succeed to detect the absorp-tion spectra of excitons and to determine reliably the widthof the optical gap E g.This allowed us to elucidate the natureof the additional absorption band appearing atបϽE g near the fundamental absorption edge as a result of splitting of one more Z-R-type state due to strong hybridization and ex-change coupling of3d-localized spin of the manganese and valence-band oxygen hole.II.EXPERIMENTALThin Zn1−x Mn x Ofilms with x=0–0.06,120–130,and 200–250nm of thicknesses were deposited on fused silica substrates by the atmospheric barrier-torch discharge tech-nique,as it was described in Refs.16and17.The substratePHYSICAL REVIEW B81,153104͑2010͒temperature during deposition was kept at ϳ200°C.Mn content was controlled by measurements of Mn and Zn emis-sion ͑em =4031Åand 4810Å,respectively ͒of plasma during deposition and crosschecked by the postgown EPMA ͑JEOL JXA-733device with Kevex Delta Class V mi-croanalyser ͒analysis with accuracy Ϯ0.3%.X-ray diffrac-tion ͑XRD ͒studies were performed with a Panalytical X’PertMRD Pro diffractometer with Eulerian cradle using Cu K ␣radiation ͑em =1.5405Å͒in the parallel beam ge-ometry.XRD profiles were fitted with the Pearson VII func-tion by the DIFPATAN code.18Correction for instrumental broadening was performed using NIST LaB6standard and V oigt function method.19Optical absorption within the 1.2–6.5eV spectral region was measured in unpolarized light at room temperature using a Shimadzu UV-2401PC spectrophotometer.The bare silica substrate and Zn 1−x Mn x O film on silica substrate were mounted into the reference and test channel,respectively.The optical density ␣d ͑product of optical-absorption coeffi-cient and film thickness ͒was calculated without taking into account multiple reflections as ␣d =ln ͑I 0/I ͒,where I 0and I are intensities of light passed through bare substrate and film/substrate structure.III.RESULTS AND DISCUSSIONFigure 1presents XRD pattern for ZnO and Zn 0.95Mn 0.05O films,as an example.All obtained films re-vealed crystalline block structure with dominant ͑002͒orien-tation of blocks’optical C -axes aligned normal to substrate.Observed reflexes correspond to wurtzite structure evi-dencing absence of extraneous phases.Both pure and Mn-doped ZnO films appeared to be compressively strained with 0.2%of strain,s =͑a 0−a S ͒/a 0,where a 0and a S are the lattice parameters of nonstrained and strained films.The analysis reveals that the value of compressive strain is controlled pre-dominantly by stresses,but not by presence of Mn ͑at least for Mn concentrations used ͒.Figure 2presents the optical-absorption spectra for Zn 1−x Mn x O films.A wide absorption line is seen in the re-gion of the band edge ͑Fig.2͒,whose energy appears to be shifted by about 100meV to higher energies in comparison with the excitonic line in ZnO ͓ϳ3.31eV at T =300K ͑Ref.13͔͒.The line shift is very likely connected with the com-pressive strain of Zn 1−x Mn x O films mentioned above.The wide and shifted line has been observed earlier in ZnO film on sapphire substrate 20,21and was identified as a shift of the excitonic line due to compressive strain of Zn 1−x Mn x O films.21The inset represents spectra of this line obtained in ZnO at T =300K and 77.3K.It is seen that the excitonic line is narrowed,split into two components and shifted to higher energies on lowering the temperature,clearly evidenc-ing its excitonic nature.The first line is a sum of A and B excitons,the second one is the C exciton appearing due to disorientation of blocks forming the film.16Analogous tem-perature evolutions have been reported for a wide excitonic line in ZnO nanocrystals.15As the concentration of Mn impurity increases,the exci-tonic line additionally broadens and shifts to higher energies.Figure 3shows the actual Mn concentration shift of the ex-citonic line energy បexc .It is seen that the increase in Mn concentration leads to not only changes in the excitonic spec-trum but also exhibits enhancement of the band-gap energy in Zn 1−x Mn x O films ͑band-gap magnitude can be estimated as E g =បexc +E exc ,where E exc =60meV is the excitonic binding energy 13͒.It is known that the band-gap magnitude in ZnO-MnO system varies from 3.37eV in ZnO up to 3.8eV in MnO.22According to the theoretical analysis 8per-formed taking into account inversion of ⌫7and ⌫9valence subbands in ZnO,23,24strong coupling of manganese spin and p states of valence band leads to appearance of a positiveI n t e n s i t y (c o u n t )2θ(degree)FIG.1.XRD pattern of ZnO ͑left scale ͒and Zn 0.95Mn 0.05O ͑right scale ͒films.E n e r g y (eV)αdFIG.2.Exciton absorption spectra of compressed Zn 1−x Mn x O films:1—x =0%,2—x =1.8%,and 3—x =5%;film thickness:d =͑120–130͒nm;and T =300K.Inset shows excitonic absorption lines for compressed ZnO:1—T =300K and 4—T =77.3K.01234563.403.413.423.433.44E n e r g y (e V )X (%)FIG.3.Mn-concentration dependence of the excitonic line en-ergies for Zn 1−x Mn x O films.additive in optical absorption of Zn 1−x Mn x O at small x val-ues.The sum of two contributions at sufficiently small x results in an increase in E g magnitude.The rise of the band-gap magnitude with the admixture of the second component E g ͑x ͒has been observed in Zn 1−x Co x O ͑Ref.25͒for exci-tonic lines registered in the reflection spectra at 1.6K.The shift of the excitonic line to higher energies was observed in Zn 0.99Fe 0.01O,too.20In the case of weak d -p coupling the additive into the band gap change appeared to be negative.8In this case the band-gap value E g decreases with x for x Յ0.1,as it was found for Zn 1−x Mn x Se ͑Fig.6in Ref.14͒and for Cd 1−x Mn x S.26Therefore,the observed rise of the E g ͑x ͒value with Mn addition provides the reliable experimental proof that the strong hybridization condition U /U c Ͼ1in Zn 1−x Mn x O is fulfilled.Figure 4presents optical absorption in Zn 1−x Mn x O films recorded in the spectral region 3.1–3.3eV .It is seen that the onset of optical absorption in Zn 1−x Mn x O films emerges at lower energies than that for ZnO ones.Analogous shift had been observed earlier in the spectrum of the photoluminescence excitation over deep im-purity centers in Zn 1−x Mn x O for Ref.15.Unlike authors of Refs.11and 12,we assume that addi-tional absorption of Zn 1−x Mn x O ͑in comparison with ZnO ͒in the 3.1–3.3eV range is a result of pushing the Z-R-type states out of valence band to the forbidden gap.9The essence of this state consists of localization of the valence-band hole within the first coordination sphere on the oxygen ions as a result of strong exchange interaction of manganese and hole spins.Such electronic state is similar to the Z-R-type state originally considered for La 2CuO 4oxidesuperconductor.9This state is a singlet one,because in La 2CuO 4the spins of d 9configuration of Cu 2+ion and oxy-gen holes are equal but of opposite direction.The situation is more complex in the case of Zn 1−x Mn x O since the top of valence band is formed by three close subbands:⌫7,⌫9,and ⌫7.23,24In such case we have serious reasons to assume that not only the presence of one deep Z-R-type state is respon-sible for optical absorption in the 2.2–3.0eV spectral region.We assume the presence of another,relatively shallow Z-R-type state too,which has been split off into the gap providing additional absorption in the 3.1–3.3eV region of Zn 1−x Mn x O.Tentatively,using results 11,12,15we estimate the splitting of the second Z-R level from the valence band as 0.12–0.27eV .More reliable determination of the split energy can be performed using more sensitive methods of absorp-tion spectra, e.g.,modulation methods,which are in progress.IV .CONCLUSIONThin Zn 1−x Mn x O films ͑x =0–0.06͒have been sintered and their optical-absorption spectra were investigated.The well-pronounced excitonic absorption lines in the fundamen-tal absorption spectral regions were observed.Position of excitonic absorption lines in Zn 1−x Mn x O films shifts to higher energies with increasing Mn content.This evidences an increase in the E g magnitude with x for small values x and reliably corroborates fulfillment of the strong coupling crite-rion ͑U /U c Ͼ1͒in Zn 1−x Mn x O.The last effect leads to emer-gence of an intense optical-absorption band in the 2.2–3.0eV region due to the presence of the band-gap Z-R-type state.The additional absorption observed in the range of 3.1–3.3eV is interpreted as a result of splitting of one more Z-R-type states into the band gap.ACKNOWLEDGMENTSAuthors thank T.Dietl,V .I.Anisimov,and A.V .Lukoy-anov for useful discussions and V .Valvoda for kind assis-tance in XRD experiments.This work was supported by Czech Grants No.A V0Z10100522of A V CR,No.KJB100100703of GA A V ,No.202/09/J017of GA CR,No.KAN301370701of A V CR,and No.1M06002of MSMT CR and Russian Grants No.08-02-99080r-ofiof RFBR,PP RAS “Quantum Physics of Condensed Matter”,and State Contract No.5162.nger and H.J.Richter,Phys.Rev.146,554͑1966͒.2T.Hoshina and H.Kawai,Jpn.J.Appl.Phys.19,267͑1980͒.3F.W.Kleinlein and R.Helbig,Z.Phys.266,201͑1974͒.4R.Beaulac,P.I.Archer,and D.R.Gamelin,J.Solid State Chem.181,1582͑2008͒.5T.Fukumura,Z.Jin,A.Ohtomo,H.Koinuma,and M.Kawasaki,Appl.Phys.Lett.75,3366͑1999͒.6K.A.Kikoin and V .N.Fleurov,Transition Metal Impurities in Semiconductors:Electronic Structure and Physical Properties ͑World Scientific,Singapore,1994͒,p.349.7T.Dietl,J.Magn.Magn.Mater.272-276,1969͑2004͒.8T.Dietl,Phys.Rev.B 77,085208͑2008͒.9F.C.Zhang and T.M.Rice,Phys.Rev.B 37,3759͑1988͒.10T.Chanier,F.Virot,and R.Hayn,Phys.Rev.B 79,205204͑2009͒.11V .Shinde,T.Gujar,C.Lokhande,R.Mane,and S.-H.Han,3.1253.2500.00.40.8αdEnergy (eV)12FIG.4.Spectral dependence of the optical density ␣d in the 3.1–3.3eV spectral region for Zn 1−x Mn x O,1—ZnO;2—x =0.3–0.5%;film thickness 200–250nm;and T =300K.Mater.Chem.Phys.96,326͑2006͒.12Y.Guo,X.Cao,n,C.Zhao,X.Hue,and Y.Song,J.Phys. Chem.C112,8832͑2008͒.13Zh.L.Wang,J.Phys.:Condens.Matter16,R829͑2004͒.14R.B.Bylsma,W.M.Becker,J.Kossut,U.Debska,and D. Yoder-Short,Phys.Rev.B33,8207͑1986͒.15V.I.Sokolov,A.Ye.Yermakov,M.A.Uimin,A.A.Mysik,V.A.Pustovarov,M.V.Chukichev,and N.B.Gruzdev,J.Lumin.129,1771͑2009͒.16M.Chichina,Z.Hubichka,O.Churpita,and M.Tichy,Plasma Processes Polym.2,501͑2005͒.17Z.Hubicka,M.Cada,M.Sicha,A.Churpita,P.Pokorny,L. Soukup,and L.Jastrabík,Plasma Sources Sci.Technol.11,195͑2002͒.18http://www.xray.cz/priv/kuzel/dofplatan/19R.Kuzel,Jr.,R.Cerny,V.Valvoda,and M.Blomberg,ThinSolid Films247,64͑1994͒.20Z.Jin,T.Fukumura,M.Kaasaki,K.Ando,H.Saito,T.Skiguchi, Y.Z.Yoo,M.Murakami,Y.Matsumoto,T.Hasegawa,and H. Koinuma,Appl.Phys.Lett.78,3824͑2001͒.21J.-M.Chauveau,J.Vives,J.Zuniga-Perez,ügt,M.Teis-seire,C.Deparis,C.Morhain,and B.Vinter,Appl.Phys.Lett.93,231911͑2008͒.d and V.E.Henrich,Phys.Rev.B38,10860͑1988͒. 23K.Shindo,A.Morita,and H.Kamimura,J.Phys.Soc.Jpn.20, 2054͑1965͒.24W.Y.Liang and A.D.Yoffe,Phys.Rev.Lett.20,59͑1968͒. 25W.Pacuski,D.Ferrand,J.Gibert,C.Deparis,J.A.Gaj,P.Ko-ssacki,and C.Morhain,Phys.Rev.B73,035214͑2006͒.26M.Ikeda,K.Itoh,and H.Sato,J.Phys.Soc.Jpn.25,455͑1968͒.。
异常及中断处理讲解
ARM 异常中断处理概述1、中断的概念中断是一个过程,是 CPU 在执行当前程序的过程中因硬件或软件的原因插入了另一段程序运行的过程。
因硬件原因引起的中断过程的出现是不可预测的,即随机的,而软中断是事先安排的。
2、中断源的概念我们把可以引起中断的信号源称之为中断源。
3、中断优先级的概念ARM 处理器中有 7 种类型的异常,按优先级从高到低的排列如下:复位异常( Reset)、数据异常(Data Abort )、快速中断异常 ( FIQ)、外部中断异常 (IRQ)、预取异常 (PrefetchAbort )、软件中断 (SWI)和未定义指令异常( Undefined instruction )ARM体系异常种类面是 ARM 的 7 种异常当异常发生时,处理器会把 PC设置为一个特定的存储器地址。
这一地址放在被称为向量表( vector table )的特定地址范围内。
向量表的入口是一些跳转指令,跳转到专门处理某个异常或中断的子程序。
当异常产生时, ARM core:拷贝CPSR 到SPSR_<mode> 设置适当的CPSR 位:改变处理器状态进入ARM 状态改变处理器模式进入相应的异常模式设置中断禁止位禁止相应中断(如果需要)保存返回地址到LR_<mode> 设置PC 为相应的异常向量返回时, 异常处理需要:从SPSR_<mode>恢复CPSR从LR_<mode>恢复PCNote:这些操作只能在ARM 态执行.当异常发生时,分组寄存器 r14 和 SPSR用于保存处理器状态,操作伪指令如下。
R14_<exception_mode> = return link SPSR_<exception_mode> = CPSRCPSR[4∶ 0] = exception mode numberCPSR[5] = 0 /* 进入 ARM状态 */If <exception_mode> = = reset or FIQ thenCPSR[6] = 1 /* 屏蔽快速中断 FIQ*/CPSR[7] = 1 /* 屏蔽外部中断 IRQ*/PC = exception vector address 异常返回时, SPSR内容恢复到 CPSR,连接寄存器 r14 的内容恢复到程序计数器 PC。
Materials-Studio论坛问答全
Materials-Studio论坛问答全Materials-Studio 论坛问答全集(精选众多论坛讨论贴)1、问:用MS构造晶体时要先确立空间群,可是那些空间群的代码是啥意思啊,看不懂,我想做的是聚乙烯醇的晶体,嘿嘿,也不知道去哪可以查到它的空间群答:A、要做晶体,首先要查询晶体数据,然后利用晶体数据再建立模型。
晶体数据来源主要是文献,或者一些数据库,比如CCDC。
你都不知道这个晶体是怎么样的,怎么指定空间群呢?要反过来做事情哦:)B、我不知道你指示的代码是数字代码还是字母代码,数字代码它对应了字母的代码,而字母的代码它含盖了一些群论的知识(晶系,对称操作等),如果要具体了解你的物质或者材料属于那一个群,你可以查阅一下相关的手册,当然你要了解一些基本的群论知识.MS自带了一些材料的晶体结构,你可以查询一下.2、问:各位高手,我用ms中的castep进行运算。
无论cpu是几个核心,它只有一个核心在工作。
这个怎么解决呢?答:请先确认以下几个问题:1,在什么系统下装,是否装了并行版本。
2,计算时设置参数的地方是否选择了并行。
3,程序运算时,并不是时时刻刻都要用到多个CPU3、问:我已经成功地安装了MS3.1的Linux版本,串行的DMol3可以成功运行。
但是运行并行的时候出错。
机器是双Xeon5320(四核)服务器,rsh和rlogin均开启,RHEL4.6系统。
其中hosts.equiv的内容如下:localhostibm-consolemachines.LINUX的内容如下:localhost:8现在运行RunDMol3.sh时,脚本停在$MS_INSTALL_ROOT/MPICH/bin/mpirun $nolocal -np $nproc $MS_INSTALL_ROOT/DMol3/bin/dmol3_mpi.exe $rootname$DMOL3_DATA这一处,没法执行这一命令并行运算时,出现以下PIxxxx(x为数字)输出ibm-console 0 /home/www/MSI/MS3.1/DMol3/bin/dmol3_mpi.exelocalhost 3 /home/www/MSI/MS3.1/DMol3/bin/dmol3_mpi.exe请问这是什么原因?谢谢!答:主要是rsh中到ibm-console的没有设置把/etc/hosts改为127.0.0.1 localhost.localdomain localhost ibm-console在后面加个ibm-console也希望对大家有帮助!4、问:在最后结果的dos图中,会显示不同电子spd的贡献,我想问的是,假设MS考虑的原子Mg的电子组态为2p6 3s2,那么最后的dos 结果中的s,p是不是就是2p,跟3s的贡献.比如更高能量的3p是否可能出现在dos中?如果可能的话,在这种情况下,如何区分2p和3p的贡献,谢谢.答:A、取决于你的餍势势里面没有3p电子,DOS怎么会有呢?自然,你的1p1s也不会出现在你的DOS中。
VSC8504 VSC8552 VSC8572 VSC8574 转变设计指南说明书
ENT-AN1281Application Note VSC8504/VSC8552/VSC8572/VSC8574 Transition DesignGuideSeptember 2018Contents1Revision History (1)1.1Revision 1.0 (1)2VSC8504/VSC8552/VSC8572/VSC8574 Transition Design Guide (2)2.1Pinout and Marking Changes (2)2.2Device ID Changes (2)2.3Unified API Software (2)2.4Errata Differences Between Revision D and Revision E (2)2.4.1Long Link-Up Times in Forced 100BASE-TX Mode (2)2.4.21588 Timestamp Out-of-Sync (OOS) FIFOs (3)2.4.31588 SPI Timestamping Design Considerations (3)2.5Energy-Efficient Ethernet (EEE) Differences Between Revision D and Revision E (6)1Revision HistoryThe revision history describes the changes that were implemented in the document. The changes arelisted by revision, starting with the most current publication.1.1Revision 1.0Revision 1.0 was published in September 2018. It was the first publication of this document.2VSC8504/VSC8552/VSC8572/VSC8574 Transition Design Guide This document highlights considerations for transitioning from revision D to revision E of the VSC8504/VSC8552/VSC8572/VSC8574 devices.2.1Pinout and Marking ChangesThere are no pinout changes to consider when migrating from revision D to revision E.Revision E devices are marked with new ordering part numbers, as listed in the following table.Table 1 • Revision D to E DevicesCurrent Revision (D)New Revision (E)VSC8504XKS-01VSC8504XKS-02VSC8504XKS-04VSC8504XKS-05VSC8552XKS-01VSC8552XKS-02VSC8552XKS-04VSC8552XKS-05VSC8572XKS-01VSC8572XKS-02VSC8572XKS-04VSC8572XKS-05VSC8574XKS-01VSC8574XKS-02VSC8574XKS-04VSC8574XKS-052.2Device ID ChangesAs a result of the change from revision D to E, an extended device revision identification has been addedto revision E silicon at bit 0 of the general purpose register 30G (Ext REV ID). In addition, for revision E ofthe VSC8572 and VSC8574 devices, register 3 was added in the 1588 PROC register space containing thevalue 0x21 (VERSION_CODE) in the revision E silicon. Customers are encouraged to ensure that thischange will have no impact on their software.Note: The device revision number in bits 3:0 (REV_ID) at register 3 is unchanged from revision D in anattempt to maintain software compatibility.Device revision readback through JTAG will not be able to differentiate between a revision D and Edevice.2.3Unified API SoftwareFor the non-1588 devices (VSC8504 and VSC8552), the device is software backwards compatible withexisting API stacks.For the 1588 devices (VSC8572 and VSC8574), the device is software backwards compatible with existingAPI stacks for applications that do not use the serial timestamp output interface pins. Customers using1588 with the PHY's serial timestamp output interface should review 1588 SPI Timestamping Designfor more details.Considerations2.4Errata Differences Between Revision D and Revision EThe following sections detail the differences in errata between revision D and revision E devices.2.4.1Long Link-Up Times in Forced 100BASE-TX ModeAlthough API 4.67.04’s new revision E “init script” introduces long link-up times in forced 100BASE-TXmode for revision E only, the resolution is automatically applied when customers use the complete API.Users who attempt to only run the revision E “init script” from API 4.67.04 will lack the additional longlink-up times fix and must address it.API 4.67.04 is fully backwards compatible with revision D as it uses the same “init script” as prior APIAPI 4.67.04 is fully backwards compatible with revision D as it uses the same “init script” as prior APIversions.The revision E “init script” improves performance to several compliance tests. For this reason, it is notrecommended to apply the prior “init script” to the revision E device.2.4.21588 Timestamp Out-of-Sync (OOS) FIFOsRevision E silicon includes a new 1588 processor that eliminates the OOS vulnerability described in ENT-AN1238 VSC8574 Out-of-Sync (OOS) Summary. Likewise, recent Unified API releases (starting with version 4.67.03) check for revision E VSC8574 and VSC8572 devices in order to skip the OOS softwareworkaround procedure described in ENT-AN1238. As a result, the customer experience for 1588applications is far superior with revision E silicon, so it is the recommended revision for all 1588 designsusing VSC8574 or VSC8572. For more information about the OOS issue present in revision D, pleaseconsult the relevant datasheets in addition to ENT-AN1238.2.4.31588 SPI Timestamping Design ConsiderationsAs documented in the VSC8574-02 and VSC8572-02 datasheets, the serial timestamp output interfacegenerates (or pushes) timestamp and frame signature pairs that have been enqueued and packed intotimestamp FIFOs to the external chip interface. The external chip interface consists of three output pins:1588_SPI_DO, 1588_SPI_CLK, and 1588_SPI_CS. These pins are shared by all ports of the VSC8574 andVSC8572 devices. The following illustration shows the output format.Figure 1 • VSC8572-02/VSC8574-02 SPI TS/Signal OutputNote: The silicon defaults to generating output bits on the falling edge of the SPI clock, so a SPI receiverimplementation will latch the bits at its input pin on the rising edge of the SPI clock.The VSC8572XKS-02, VSC8572XKS-05, VSC8574XKS-02, and VSC8574XKS-05 devices have an errataconcerning clock signal generation on the serial timestamp interface, which is also known as the push-out serial peripheral interface (SPI). The serial timestamp output interface may not generate the final1588_SPI_CLK cycle for certain timestamp push-out transactions. This issue can be worked around byprogramming the SI_CLK_LO_CYCS within the 1588 register configuration to value 0x1. This workaroundwas first introduced in PHY API version 4.67.04.2.4.3.1Failure ModeAs documented in the design considerations of the VSC8574-02 and VSC8572-02 datasheets, the serialtimestamp output interface may fail to provide a terminating SPI clock cycle. The failure may appearunder two conditions:An egress timestamp for a Delay_Req PTP message (T3) is processed on physical port 1 (and/or port3 for the VSC8574XKS-02 and VSC8574XKS-05 devices)T3 timestamps are concurrently processed on multiple physical ports of a single device These conditions are typically encountered when all ports of the device are processing PTP traffic. Thebug only impacts content on the serial output interface itself—that is, egress timestamps accessed overthe 1588 register interface that are stored in the TS FIFO are unaffected.The terminating SPI clock cycle is lost only when the SI_CLK_LO_CYCS value is programmed to 0x2 orThe terminating SPI clock cycle is lost only when the SI_CLK_LO_CYCS value is programmed to 0x2 orgreater, which is usually the case because the hardware default is a 50% duty cycle, 31.25 MHz SPI clock(SI_CLK_LO_CYCS and SI_CLK_HI_CYCS default to 0x2). However, a SI_CLK_LO_CYCS value of 0x1prevents the final SPI clock cycle from being lost, and so can be exploited as one workaround to this bug.2.4.3.2Receiver T3 Timestamp BehaviorAs a consequence of the SPI clock cycle termination failure, the final bit of a faulty serial timestamptransaction will not be latched at the receiver. The failure phenomenon can be inferred from thefollowing oscilloscope capture.Figure 2 • SPI Timestamp ErrorThe timestamp transaction shown utilizes a PTP Delay_Req message with a known T3 timestamp endingin nibble 0xE (serial output order is MSB→LSB). The scope capture shows the final three rising edges of1588_SPI_CLK (yellow) are all 1s, while the terminating 1588_SPI_DO (magenta) transition from 1→0lacks a corresponding rising edge of 1588_SPI_CLK. Instead, the transaction terminates prematurely,which results in the 1588_SPI_DO (magenta) returning to value 1.Depending on the SPI receiver implementation, the timestamp may be merged with bits in thesubsequent T3 timestamp or it might never be latched at the receiver. The failure effects can vary dueto unpredictable behavior at the SPI receiver, but the PTP Slave will generally not be able to lock withthe PTP Master as a result of corrupted Delay_Req timestamps.2.4.3.3Application WorkaroundsThe following sections describe the workarounds for affected device applications.2.4.3.3.1API-4.67.04 WorkaroundAPI-4.67.04 forcibly configures the 1588 serial timestamp output interface to have a SI_CLK_HI_CYCs of0x3 and SI_CLK_LO_CYCs of 0x1. In other words, a 31.25 MHz SPI clock with 24 ns high time and 8 ns lowtime. Other 1588 devices are unaffected.2.4.3.3.2API-4.67.03 PatchAPI code prior to version 4.67.04 can be patched with the following to implement the same functionalityon affected devices./* *************************** API 4.67.03 Released CODE *****************//* Function: vtss_phy_ts_init() *//* Approximate Line 16408 of the file vtss_phy_ts_api.c *//* ********************************************************************* */#ifdef VTSS_CHIP_CU_PHYif ((phy_type == VTSS_PHY_TYPE_8574) || (phy_type == VTSS_PHY_TYPE_8572)) {/* initialize all the 1588 engines: this should be done only oncei.e. engine initialization should be done through base port oralternate port (for 2-channel PHY); otherwise engine configfor one port might be lost by another port initialization.This is reqd for Tesla RevA, RevB fixed in HW.*/if (revision == VTSS_PHY_TESLA_REV_A) {if (vtss_state->phy_ts_port_conf[base_port_no].eng_init_done == FALSE) {VTSS_D("1588 Analyzer init, port_no %u", port_no);if ((rc = VTSS_RC_COLD(vtss_phy_ts_analyzer_init_priv(vtss_state,base_port_no))) != VTSS_RC_OK) {VTSS_E("1588 Analyzer init failed, port_no %u", port_no);break;}vtss_state->phy_ts_port_conf[base_port_no].eng_init_done = TRUE;}vtss_state->phy_ts_port_conf[port_no].eng_init_done = TRUE;}/* ***** Updated API 4.67.04 CODE Changes for Tesla Rev. E follow here ***** *//* Tesla Rev E needs these values to be configured with fixed values */if (revision >= VTSS_PHY_TESLA_REV_E) {VTSS_RC(VTSS_PHY_TS_READ_CSR(port_no, VTSS_PHY_TS_PROC_BLK_ID(0),VTSS_PTP_TS_FIFO_SI_TS_FIFO_SI_CFG, &value));/* clearing bitfields SI_CLK_HI_CYCS(10:6),SI_CLK_LO_CYCS(5:1) */value = VTSS_PHY_TS_CLR_BITS(value, 0x7fe);value |= VTSS_F_PTP_TS_FIFO_SI_TS_FIFO_SI_CFG_SI_CLK_HI_CYCS(3);value |= VTSS_F_PTP_TS_FIFO_SI_TS_FIFO_SI_CFG_SI_CLK_LO_CYCS(1);VTSS_RC(VTSS_PHY_TS_WRITE_CSR(port_no, VTSS_PHY_TS_PROC_BLK_ID(0),VTSS_PTP_TS_FIFO_SI_TS_FIFO_SI_CFG, &value));VTSS_I("Overwriting Push-SPI config for Tesla E on port %u ,CLK_HI_CYCS = 3, CLK_LO_CYCS = 1\n", port_no);/* ***** Updated API 4.67.04 CODE Changes for Tesla Rev. E precede here ***** *//* Set the PHY latency for Tesla, for 10G it is not reqd */if ((rc = vtss_phy_ts_phy_latency_set_priv(vtss_state, port_no)) != VTSS_RC_OK) {VTSS_E("1588 PHY Latency config fail!, port_no %u", port_no);break;}}#endif /* VTSS_CHIP_CU_PHY */2.4.3.4Reconfigurable SPI Receivers in FPGAsFor customer applications that implement the serial timestamp SPI receiver in an FPGA, anotherworkaround option involves programmable logic changes instead of a software workaround.As indicated previously, the pushed T3 timestamp has nanosecond units. Because these PHYs timestampwith a minimum 4 ns resolution, the least-significant bit of the pushed timestamp is not meaningful forPTP slave timing accuracy. In other words, the least-significant bit of the T3 timestamp can beunconditionally set to a 0 inside the FPGA receiver logic without degrading system accuracy. This way,the SPI receiver could ignore the last bit of every pushed timestamp, whether or not the least significantbit is made available by the serial timestamp interface of the PHY.This solution works across both revision D and revision E.2.5Energy-Efficient Ethernet (EEE) Differences Between Revision D andRevision ERevision E silicon contains several performance improvements related to Energy-Efficient Ethernet(EEE). While an anomalous PCS error indication errata exists in datasheets for both revisions, revision Esilicon offers superior performance. However, the level of packet error degradation in revision D EEEmode versus revision E has not been quantified due to interoperability testing limitations. In otherwords, actual EEE performance on revision D silicon may have more degradation than currentlyindicated by its EEE errata.Microsemi HeadquartersOne Enterprise, Aliso Viejo,CA 92656 USAWithin the USA: +1 (800) 713-4113Outside the USA: +1 (949) 380-6100Sales: +1 (949) 380-6136Fax: +1 (949) 215-4996Email:***************************© 2018 Microsemi. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www. .VPPD-04666。
IAR620编译错误
IAR620编译错误IAR 6.20编译错误清单1、①错误描述:Tool Internal Error:Internal Error: [CoreUtil/General]: Access violation (0xc0000005) at 007588A5 (reading from address 0x0)Internal Error: [CoreUtil/General]: Access violation (0xc0000005) at 007588A5 (reading from address 0x0)Error while running C/C++ Compiler②错误原因:High配置设置为Size,应该为Low2、①错误描述:Fatal Error[Pe1696]: cannot open source file "inc/hw_types.h" E:\StellarisWareM3_9D92\boards\dk-lm3s9b96\boot_demo2\boot_demo2.c 25②错误原因:C/C++ Complier(Assember)->Preprocessor->Additional include directories:$PROJ_DIR$\.$PROJ_DIR$\..$PROJ_DIR$\..\..\..3、①错误描述:Fatal Error[Pe1696]: cannot open source file "lwip/opt.h"E:\StellarisWareM3_9D92\utils\lwiplib.h 44②错误原因:C/C++ Complier-(Assember)>Preprocessor->Additional include directories:$PROJ_DIR$\..\..\..\third_party\lwip-1.3.2\apps$PROJ_DIR$\..\..\..\third_party\bget$PROJ_DIR$\..\..\..\third_party\lwip-1.3.2\ports\stellaris\include$PROJ_DIR$\..\..\..\third_party\lwip-1.3.2\src\include$PROJ_DIR$\..\..\..\third_party\lwip-1.3.2\src\include\ipv4$PROJ_DIR$\..\..\..\third_party\lwip-1.3.2\src\include\lwip$PROJ_DIR$\..\..\..\third_party4、①错误描述:Fatal Error[Pe035]: #error directive: Unrecognized COMPILER! E:\StellarisWareM3_9D92\boards\dk-lm3s9b96\drivers\set_pinout.h 59Error while running C/C++ Compiler②错误原因:C/C++ Complier-(Assember)>Preprocessor->Defined symbols: ewarm5、①错误描述:Error[Pe020]: identifier "ROM_pvAESTable" is undefined E:\StellarisWareM3_9D92\third_party\aes\aes.c 319②错误原因:6、①错误描述:Error[Li005]: no definition for "main" [referenced from cmain.o(rt7M_tl.a)]Error while running Linker②错误原因:定义函数:int main(void) { return (0); }7、①错误描述:Error[Li005]: no definition for "main" [referenced from cmain.o(rt7M_tl.a)]Error while running Linker②错误原因:如果是库是库函数,在:General Options->Output->Output file:选择:Library项4、①错误描述:Fatal Error[Pe1696]: cannot open source file "uip.h" E:\StellarisWareM3_9D92\third_party\uip-1.0\apps\dhcpc\dhcpc.c 37②错误原因:5、①错误描述:②错误原因:$PROJ_DIR$\..\..\..\third_party\lwip-1.3.2\apps$PROJ_DIR$\..\..\..\third_party\bget$PROJ_DIR$\..\..\..\third_party\lwip-1.3.2\ports\stellaris\include$PROJ_DIR$\..\..\..\third_party\lwip-1.3.2\src\include$PROJ_DIR$\..\..\..\third_party\lwip-1.3.2\src\include\ipv4$PROJ_DIR$\..\..\..\third_party$PROJ_DIR$\..\..\..\third_party\uip-1.0$PROJ_DIR$\..\..\..\third_party\uip-1.0\uip$PROJ_DIR$\..\..\..\third_party\uip-1.0\apps$PROJ_DIR$\..\..\..\third_party\\speex-1.2rc1\include$PROJ_DIR$\..\..\..\third_party\\speex-1.2rc1\include\speex$PROJ_DIR$\..\..\..\third_party\\speex-1.2rc1\stellaris6、①错误描述:Fatal Error[Pe035]: #error directive: You now need to define either FIXED_POINT or FLOATING_POINT E:\StellarisWareM3_9D92\third_party\speex-1.2rc1\libspeex\arch.h 65②错误原因:7、①错误描述:Fatal Error[Pe035]: #error directive: "Unrecognized/undefined driver for DISK0!"E:\StellarisWareM3_9D92\third_party\fatfs\port\dual-disk-driver.c 62Error while running C/C++ Compiler②错误原因:UART_BUFFEREDDISK0_DK_LM3S9B96DISK1_USB_MSCINCLUDE_BGET_STATS8、①错误描述:Error[Pe020]: identifier "ROM_pvAESTable" is undefined E:\SWM3_9D92(6.20)\third_party\aes\aes.c 359 Error while running C/C++ Compiler②错误原因:10、①错误描述:Fatal Error[Pe035]: #error directive: You now need to define either FIXED_POINT or FLOATING_POINT E:\SWM3_9D92(6.20)\third_party\speex-1.2rc1\libspeex\arch.h 65Error while running C/C++ Compiler②错误原因:11、①错误描述:Error[Li005]: no definition for "ROM_SysCtlClockSet" [referenced from E:\SWM3_9D92(6.20)\boards\dk-lm3s9b96\safertos_demo\Debug\Obj\safertos_demo.o] Error[Li005]: no definition for "ROM_FlashUserGet" [referenced from E:\SWM3_9D92(6.20)\boards\dk-lm3s9b96\safertos_demo\Debug\Obj\lwip_task.o] Error[Li005]: no definition for"ROM_IntPrioritySet" [referenced from E:\SWM3_9D92(6.20)\boards\dk-lm3s9b96\safertos_demo\Debug\Obj\lwip_task.o] Error[Li005]: no definition for "ROM_GPIOPinTypeGPIOOutput" [referenced from E:\SWM3_9D92(6.20)\boards\dk-lm3s9b96\safertos_demo\Debug\Obj\led_task.o]Error[Li005]: no definition for "ROM_GPIOPinWrite" [referenced from E:\SWM3_9D92(6.20)\boards\dk-lm3s9b96\safertos_demo\Debug\Obj\led_task.o]Error[Lp011]: section placement failed: unable to allocate space for sections/blocks with a total estimated minimum size of 0x11e54 bytes in<[0x20000000-0x2000ffff]> (total uncommitted space 0x10000).Error while running Linker②错误原因:12、①错误描述:Error[Lp011]: section placement failed: unable to allocate space for sections/blocks with a total estimated minimum size of 0x11e54 bytes in <[0x20000000-0x2000ffff]> (total uncommitted space 0x10000).Error while running Linker。
withanemphasison
MSU NSCL DAQ School—Notre Dame 2006
More to Read
• MSU NSCL DAQ:
– Everything: /daq/index.php
– Software project: /projects/nscldaq
– Tree parameter GUI for powerful manipulation of the definition of parameters, spectra, variables, and gates
– Xamine for easy display and operations of histograms – Tcl/Tk for user-tailorable control GUI and easy extension of
SpectroDaq Data Server
SpecTcl Xamine
Scalers
Scaler Configuration
offline analysis
MSU NSCL DAQ School—Notre Dame 2006
Disk
Hardware Setup
¾ Caen v785, 32-ch ADC ¾ Caen v775, 32-ch TDC ¾ Caen v830, 32-ch Scaler ¾ Trigger to be upgraded
• SpecTcl
– Home: /daq/spectcl/ – Project: /projects/nsclspectcl – Tree Parameters:
/daq/spectcl/treeparam/TreeParameter.html – Tcl/Tk: /
TM7707源代码
/**************************************************************************//**********************注意事项*********************///1.双极性电压计算:vol=2.50*1000.0*(a-8388650)/8388570;(可以进行零偏和满偏校准,或分段校准)// v=(F-0)/(B-Z)*(X-Z) F:满偏时电压,B:满偏时AD值。
Z:零偏时的AD值。
X:电压为V时的AD值//2.单极性电压计算:2.5*1000.0*b/16777220+0。
// 2.5时基准,1000表示结果是毫伏级,b时AD值,0是给AIN(-)的值/*******************注意事项*************************/sbit AD7707_DRDY=P2^4;sbit AD7707_DIN=P2^2;sbit AD7707_DOUT=P2^3;sbit AD7707_SCLK=P4^3;/****************************函数声明部分**********************************/ void write_byte1(uchar date);uchar read_byte1 ( );void init1();/*******************************************/// 函数:void init1();// 功能:通道,极性,增益,滤波等的选择// 描述:不带参数,不带返回值/*******************************************/void init2();unsigned long read_ch1_result();/***************************************/// 函数: unsigned long read_ch1_result();// 功能:获取24位的转换结果,用unsigned long来接收// 描述:带unsigned long 的参数/*****************************************/unsigned long read_ch2_result();/***************************函数定义部分*************************************/ void write_byte1(uchar date) //写一字节数据{uchar i;// CS=0; //CS拉低,for(i=0;i<8;i++){AD7707_SCLK=0; //SCLK拉低准备写数据_nop_();if(date&0x80)AD7707_DIN=1;elseAD7707_DIN=0;AD7707_SCLK=1; //SCLK拉高,写入一位数据date<<=1;}// CS=1; //写完一个字节后 CS拉高。
atphysaddress 解析 -回复
atphysaddress 解析-回复寻找表示物理地址的AT命令是计算机领域中的常见问题。
本文将深入探讨如何使用AT命令解析和获取物理地址,以及涉及的步骤和概念。
首先,让我们了解一下什么是物理地址。
在计算机网络中,每个网络接口卡(NIC)都有一个唯一的物理地址,也称为MAC地址。
物理地址是一个由数字和字母组成的标识符,用于识别设备在局域网(LAN)中的位置。
为了解析物理地址,我们需要使用AT命令。
AT命令是一组用于控制调制解调器和其他串行设备的指令集。
尽管AT命令主要用于调制解调器,但它也可用于其他串行设备,如串口以太网适配器。
首先,我们需要连接到我们的设备并打开串口连接。
这可以通过使用串口终端程序,如Tera Term或Putty等,来实现。
选择正确的串口和波特率,并确保与设备的串行通信参数相匹配。
一旦我们与设备成功建立了串行连接,我们就可以开始发送AT命令来获取物理地址了。
可用的AT命令会因设备而异,我们需要根据设备的规范和文档来确定正确的AT命令。
首先,我们可以使用AT命令"AT"来检查设备是否与我们的终端程序正常通信。
如果设备正常响应"OK",我们就可以进一步发送其他AT命令。
下一步,我们可以使用AT命令"AT+ADDRESS?"来请求设备的物理地址。
这个命令将会返回一个包含设备物理地址的字符串。
在某些设备上,AT命令可能需要执行一些其他操作才能获取物理地址。
例如,我们可能需要发送AT命令"AT+GET_ADDRESS"来触发设备的物理地址获取过程。
或者,我们可能需要执行一些AT命令来查找关于物理地址的其他信息,如厂商ID或产品序列号。
一旦我们收到了设备的物理地址,我们就可以在终端程序的输出中找到它。
物理地址通常以16进制形式显示,并且可能由两个冒号(:)分隔的字符对组成。
例如,物理地址"00:11:22:33:44:55"是一个常见的物理地址格式。
BIOS出错提示信息大全
BIOS出错提示信息大全Drive A error 驱动器A错误System halt 系统挂起Keyboard controller error 键盘控制器错误Keyboard error or no keyboard present 键盘错误或者键盘不存在BIOS ROM checksum error BIOS ROM校验错误Single hardisk cable fail 当硬盘使用Cable选项时硬盘安装位置不正确FDD Controller Failure BIOS 软盘控制器错误HDD Controller Failure BIOS 硬盘控制器错误Driver Error 驱动器错误Cache Memory Bad, Do not Enable Cache 高速缓存Cache损坏,不能使用Error: Unable to control A20 line 错误提示:不能使用A20地址控制线Memory write/Read failure 内存读写失败Memory allocation error 内存定位错误CMOS Battery state Low CMOS没电了Keyboard interface error 键盘接口错误Hard disk drive failure 加载硬盘失败Hard disk not present 硬盘不存在Floppy disk(s) fail (40) 软盘驱动器加载失败,一般是数据线插反,电源线没有插接,CMOS内部软驱设置错误CMOS checksum error-efaults loaded. CMOS校验错误,装入缺省(默认)设置二、BIOS刷新失败后,Bootblock启动时出现的提示信息Detecting floppy drive A media... 检测软驱A的格式Drive media is : 1.44Mb1.2Mb 720Kb 360K 驱动器格式是1.44Mb、12Mb、720kb、360kb 的一种DISK BOOT FAILURE, INSERT SYSTEM DISK AND PRESS ENTER 磁盘引导失败,插入系统盘后按任意键继续三、MBR主引导区提示信息Invalid partition table 无效的分区表Error loading operating system 不能装入引导系统Missing operating system 系统引导文件丢失说明:如果在计算机启动过程中,在硬件配置清单下方(也就时在平时正常启动时出现Starting Windows 98…的地方)出现不可识别字符,此时可判断硬盘分区表损坏。
max1978的仿真文档
max1978的仿真文档
MAX1978是用于Peltier热电冷却器(TEC)模块的最小,最安全,最精确完整的单芯片温度控制器。
片上功率FET和热控制环路电路可最大,限度地减少外部元件,同时保持高效率。
可选择的
500kHz/1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率,同时降低噪声。
内部MOSFET的开关速度经过优化,可降低噪声和EMI。
超低漂移斩波放大器可保持士0.001°C 的温度稳定性。
直接控制输出电流而不是电压,以消除电流浪涌。
独立的加热和冷却电流和电压限制提供最高水平的TEC保护。
MAX1978 采用单电源供电,通过在两个同步降压调节器的输出之间偏置TEC,提供双极性士3A输出。
真正的双极性操作控制温度,在低负载电流下没有“死区”或其他非线性。
当设定点非常接近自然操作点时,控制系统不会捕获,其中仅需要少量的加热或冷却。
模拟控制信号精确设置TEC电流。
映泰A770L3主板 BIOS说明书
免责说明
本手册内容系 BIOSTAR®知识产权,版权归 BIOSTAR®所有。我们本着对用户负 责的态度,精心地编写该手册,但不保证本手册的内容完全准确无误。BIOSTAR® 有权在不知会用户的前提下对产品不断地进行改良、升级及对手册内容进行修正, 实际状况请以产品实物为准。本手册为纯技术文档,无任何暗示及影射第三方之 内容,且不承担排版错误导致的用户理解歧义。本手册中所涉及的第三方注册商 标所有权归其制造商或品牌所有人。
SATA II
板载串行ATA控制器
数据传输率为3 Gb/s 符合SATA 2.5 规范
网络
Realtek RTL 8102EL
10 / 100 Mb/s自适应传输模式 半双工/全双工工作模式
音效
ALC662 / VT1708B
6声道音频输出 支持高清音频
PCI Express Gen2 x16 插槽
注意: 此附件内容可能会因区域或主板版本而异。
1
主板手册
1.3 主板特性
SPEC
CPU
Socket AM3 AMD Sempron / Athlon II / Phenom II处理器 (最大瓦数:95W)
AMD 64架构兼容32和64位 支持Hyper Transport 3.0技术
支持HyperTransport 3.0
amdsb710环境控制ite8721hw监控高级io控制器提供最基本的io功能风扇速度控制器低管脚数接口ites智能保护功能双通道模式ddr3内存模块ddr3dimm插槽x2支持ddr380010661333主内存最大内存容量为8gb支持ddr31600oc每个dimm支持512mb1gb2gb4gbddr3不支持registereddimm和eccdimmmultiworddma多字节dmaide板载ide控制器ultradma3366100133总线控制模式数据传输率为3gbssataii板载串行ata控制器符合sata25规范10100mbs自适应传输模式网络realtekrtl8102el半双工全双工工作模式6声道音频输出音效alc662vt1708b支持高清音频pciexpressgen2x16插槽x1支持pciegen2x16扩展卡插槽pciexpressgen2x1插槽x1支持pciegen2x1扩展卡pci插槽x3支持pci扩展卡软驱接口x1每个接口支持2个软驱打印机接口x1每个接口支持1个打印机端口板载接口ide接口x1每个接口支持2个ide设备sata接口x4每个接口支持1个sata设备2a770l3spec前置面板接口x1支持前置面板设备前置音频接口x1支持前置音频功能spdif输出接口x1支持数字音频输出功能cpu风扇接头x1cpu风扇电源智能风扇功能系统风扇接头x1系统风扇电源清空cmos数据接头x1清空cmos数据usb接口x2每个接口支持2个前置面板usb端口电源接口24pinx1连接电源电源接口4pinx1连接电源ps2键盘x1连接ps2键盘ps2鼠标x1连接ps2鼠标串行端口x1连接rs232端口后置面板接口lan端口x1连接rj45以太网数据线usb端口x4连接usb设备音频插孔x3提供音频输入输出和连接麦克风接口主板尺寸182mmwx305mmlatx特性支持raid0110如有增加或减少任何os支持biostar保留不预先通操作系统支持windowsxpvista7知的权利
大连日晟数据恢复平时使用udma 心得
Pinnacle 家族滴硬盘模块分析
大连日晟数据恢复中心
Pinnacle 家族滴硬盘电板号:2060-701537-003 rev:a spt=1311 ClySA:170(167)Head:1 Sec:1311
1.ROM滴组成:一般有0A(head map) 0B (Flash ROM dir) 30(SA Translator) 47(SA
Adaptives) OD (Flash configuration) 4F(Microprogram version)
2.影响数据滴模块
据实验分析31号(translator)直接影响数据滴偏移剩下滴模块造成滴影响就是硬盘大面积坏道剩下滴其他模块均可以替换!
2010年12月20日热交换SAMSUNG 80G笔记本盘。
客户一个SamsUNG MODEL:HM080GC SN: S15HJD0Q124699
现象是是盘检测不到转转后停转了外地发来一个盘后相同MODEL 热交换后。
检测11 81 82 8E 61 64模块红色
修复方法如下:热交换后检测模块直接清空A表(11 64就不提示错误了)。
然后直接写81 82模块(RLIST 可以替换)。
盘就可以识别了第一分区有部分坏道。
2010 12.28日
ST 12代1T硬盘FW: CC34 报如下错误。
直接进AT菜单报SMART 错误直接不能访问扇区直接/1 N1 直接就可以访问扇区了数据都在只是有部分坏道。
ReaxFF_LAMMPS_2010
Bond-orders adjusted to compensate for atomic over/under-coordination Atom charges computed using electro-negativity equalization i.e. minimizing
PETN Orientation-dependent Sensitivity
shock direction
slip plane ε = 10%
Dynamic Shear + Compression (DSC) simulation protocol:
γ
Zybin, Goddard, Xu, van Duin and Thompson, Appl. Phys. Lett. (2010)
Jade (ERDC): Cray XT-4 (2152 quad-core Opteron, 1.8 Ghz)
Charge Equilibration • Distributed CG implementation • Implemented distributed sparse matrix multiply • Low computation and communication cost • Small part of overall force time up to N ~ 106 • Requires global communication • Could be a problem for larger N
atphysaddress 解析 -回复
atphysaddress 解析-回复关于[atphysaddress 解析]的文章,我们将一步一步回答您的问题,帮助您了解它的含义和用途。
atphysaddress是一个计算机网络的工具,它用于解析和查找物理地址。
在本文中,我们将深入研究atphysaddress解析,并介绍它的功能、用途和工作原理。
第一部分:atphysaddress概述在这一部分,我们将对atphysaddress进行基本的概述,探讨它是什么以及它的主要功能。
第二部分:atphysaddress解析的用途这一部分我们将讨论atphysaddress解析在实际应用中的用途。
它通常用于网络诊断,以解决网络故障和问题。
我们将探讨在不同场景下如何使用atphysaddress解析,比如网络故障排查、安全审计和性能优化。
第三部分:atphysaddress解析的工作原理现在让我们深入研究atphysaddress解析的工作原理。
我们将解释在数据包传输过程中,atphysaddress如何解析和查找物理地址,并与网络中其他设备进行通信。
我们将涉及到网络协议、数据包结构以及物理地址的映射方式。
第四部分:实际示例-如何使用atphysaddress解析解决网络故障在这部分中,我们将提供一个实际的示例,介绍如何使用atphysaddress 解析来解决网络故障。
我们将描述故障场景、步骤和操作,以及atphysaddress解析如何帮助诊断和解决问题。
第五部分:其他类似工具的比较和结论在本部分,我们将与其他类似工具进行比较,并总结atphysaddress解析的优势和局限性。
我们还将提供一些建议,以帮助您选择最适合您需求的工具。
总结最后,我们将总结本文,并回顾atphysaddress解析的关键点和用途。
我们希望这篇文章能够帮助您更好地了解atphysaddress解析,并在您的网络管理和故障排查工作中发挥作用。
通过回答您提供的主题,我们将详细介绍atphysaddress解析的方方面面。
bluescreen
BluescreenA bluescreen, also known as a Blue Screen of Death (BSOD), is an error screen displayed by the Microsoft Windows operating system when it encounters a critical system error that it cannot recover from, forcing the computer to restart. This phenomenon has become synonymous with system crashes and is often a cause for frustration among users. In this document, we will explore the causes of bluescreens, methods of troubleshooting, and potential solutions for resolving them.Causes of BluescreensBluescreens can be caused by a variety of factors, including:1. Hardware IssuesFaulty hardware components such as RAM, hard drives, or graphics cards can cause bluescreens. Inconsistent power supply or overheating can also lead to system instability and crashes.2. Outdated DriversOutdated or incompatible device drivers can cause conflicts within the operating system, leading to bluescreens. It is important to regularly update drivers to ensure compatibility and stability.3. Software ConflictsConflicts between software applications, such as incompatible antivirus programs or faulty drivers, can result in bluescreens. Additionally, software bugs or corruption in the operating system itself can trigger system crashes.4. OverclockingOverclocking, which involves increasing the operating frequency of hardware components beyond their intended limits, can lead to system instability and bluescreens. This is especially true if the hardware is not properly cooled or if adequate power supply is not provided.Troubleshooting BluescreensWhen faced with a bluescreen error, there are several steps you can take to diagnose and troubleshoot the issue:1. Restart the SystemIn many cases, a simple reboot can resolve temporary system errors that triggered the bluescreen. If the issue persists, additional troubleshooting steps are necessary.2. Check for Recent Hardware or Software ChangesIf you recently installed new hardware or software, remove them temporarily to see if the bluescreen error disappears. If it does, there may be compatibility issues with the hardware or software you installed. Consider updating drivers or seeking support from the manufacturer.3. Scan for MalwareMalware infections can cause system instability and bluescreens. Use an antivirus program to scan and remove any malware that may be causing the issue.4. Update Drivers and SoftwareEnsure that all drivers and software are up to date. Visit the manufacturer’s website or use automatic update tools to check for the latest versions. Updating drivers and software can often resolve compatibility issues that lead to bluescreens.5. Check Hardware ComponentsIf the issue persists, it’s advisable to test the hardware components. This can involve running diagnostic tools to check the health of the RAM, hard drives, and graphics card. Any faulty components should be replaced.Resolving BluescreensIf none of the troubleshooting steps mentioned above resolve the bluescreen issue, consider the following options:1. Clean Install of the Operating SystemPerforming a clean install of the operating system can help resolve any software corruption or conflicts that might be causing the bluescreens. Backup your data before proceeding, as this process will erase everything on the system drive.2. Consult Professional HelpIf you are unable to identify the cause of the bluescreen or resolve the issue on your own, it is advisable to seek professional help. Certified technicians can provide in-depth diagnostics and solutions for the problem.ConclusionBluescreens can be a frustrating experience for Windows users. Understanding the potential causes and troubleshooting methods can help users resolve these issues efficiently. By taking the appropriate steps, such as updating drivers, scanning for malware, and performing necessary hardware tests, users can tackle bluescreens effectively and maintain a stable operating environment. In cases where self-help is not possible, seeking professional assistance can ensure a swift resolution.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
where fg is the frequency of the transition between the instantaneous eigenstates ͉ f ͑t͒͘ and ͉g͑t͒͘. Due to its fundamental importance in quantum theory and applications of quantum state control, the adiabatic theorem has been very actively studied under various practical conditions in the past years. Very recently, Pu and co-workers proposed an elegant way to derive an approximated adiabatic condition for a specific mean-field nonlinear system—i.e., the coherent creation of homonuclear diatomic molecules from a dilute ultracold Bose-condensed atomic gas under the collisionless limit ͓2͔. The basic idea of their method is to first find the coherent population trapping ͑CPT͒ state of the system by using the stimulated Raman adiabatic passage ͑STIRAP͒ technique, and then the deviations from the CPT evolution can form a set of linearized differential equations, which is quite easily solved to obtain an adiabaticity parameter ͓2͔. Then, by taking account of the particles collisions ͓3͔, Ling et al. confirmed the validity of the method of Pu et al. by achieving again a similar adiabatic condition. These pioneering works have motivated us to further study and compare the adiabatic conditions in coherent atom–heteronuclear-diatomic- or -triatomic-molecule conversions. The specific example of atom–homonuclear-dimer conversion considered by Pu et al. ͓2,3͔ is closely related to the fact that considerable interest has been stimulated recently in making and probing an ultracold molecular gas or even a molecular Bose-Einstein condensate ͑BEC͒ ͓4͔. By using a magnetic Feshbach resonance ͑FR͒ ͓5͔ or an optical photoassociation ͑PA͒ technique ͓6͔ within an atomic BEC, the coherent atom-dimer conversion has been extensively studied as a novel matter-wave analog of the simplest nonlinear quantum optical system ͑second-harmonic generation͒ ͓7,8͔. For example, Winkler et al. ͓9͔ experimentally studied the coherent two-color PA “superchemistry” process ͑Boseenhanced free-quasibound-bound transition͒ ͓10͔. By com1050-2947/2008/78͑3͒/033617͑8͒
PHYSICAL REVIEW A 78, 033617 ͑2008͒
Adiabatic condition for coherent atom–heteronuclear-molecule conversion
Department of Physics, Henan Normal University, Xinxiang 453007, People’s Republic of China 2 Institute and Department of Physics, The University of Arizona, Tucson, Arizona 85721, USA ͑Received 19 May 2008; revised manuscript received 12 August 2008; published 25 September 2008͒ Recently, Pu et al. developed an efficient strategy to find the adiabatic condition of a nonlinear system—i.e., the atom-homonuclear dimer conversion ͓Phys. Rev. Lett. 98, 050406 ͑2007͔͒. Here, by applying their method, we extend it to study the adiabatic condition of coherent atom–heteronuclear-diatomic- or -triatomic-molecule conversion. The different adiabatic evolutions in creating the homo- or heteronuclear dimers are compared. The impact of the two different reaction paths on the adiabatic conditions in creating the heteronuclear triatomic molecules is also discussed. DOI: 10.1103/PhysRevA.78.033617 PACS number͑s͒: 03.75.Pp, 42.50.Ϫp, 03.70.ϩk
1
H. Jing,1,2 F. Zheng,1 Y. Jiang,1 and Z. Geng1
I. INTRODUCTION
பைடு நூலகம்
The standard adiabatic theorem in quantum mechanics ͓1͔ is derived generally for a linear system with a sufficiently slowly changed Hamiltonian in comparison with typical level spacings, i.e., ˙ ͉ Ӷ ប͉ ͉ ͉H fg ͑for any f g͒ , ͑1͒
bining magneto-optic techniques, Ling et al. proposed a generalized atom-dimer dark-state method to achieve an efficient and stable atom-dimer conversion by minimizing the meanfield shift of particle collisions ͓11,12͔. We note that, although the focus of current research on coherent atom-molecule conversion has been largely on the atom-dimer coupling ͓13–18͔, more and more efforts are currently directed towards the assembly and manipulation of ultracold objects of increasing complexity, such as the atomtrimer conversion ͓19͔: 3a ͑or 2a + b͒ → g, where a ͑b͒ and d ͑g͒ denote atom a ͑b͒ and dimer ͑trimer͒. In fact, evidence of Efimov triatomic resonances ͓20,21͔ or tetramer molecules Cs4 ͓22͔ was observed recently. In view of their novel anisotropic properties ͓23,24͔, the formation and quantum control of heteronuclear trimers is of particular interest. A notable two-path quantum interference effect was also revealed in creating the heteronuclear trimers ͓25͔. The purpose of this paper is to study the adiabatic conditions of coherent atom–heteronuclear-molecule conversion, including the formation of heteronuclear diatomic or triatomic molecules ͑with two different reaction paths͒. In particular, we study the coherent assembly of the same type of heteronuclear trimers A2B from a two-species atomic Bose condensate via two different paths with an intermediate homonuclear or heteronuclear dimer state A2 or AB. An atom-molecule dark state is exploited to keep the dimer number as zero in the conversion process ͓11,13–15,20,25͔. This enables us to compare the adiabatic conditions of atom– heteronuclear-molecule conversions with that of creating homonuclear dimers ͓2͔.