中考数学填空压轴题大全

合集下载

中考数学填空题压轴题(含答案)

中考数学填空题压轴题(含答案)

根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。

题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。

【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。

中考数学填空压轴题选编(含答案)

中考数学填空压轴题选编(含答案)

中考数学填空压轴题选编1. 直角坐标系中直线AB 交x 轴,y 轴于点A (4,0)与 B (0,-3),现有一半径为1的动圆的圆心位于原点处,以每秒1个单位的速度向右作平移运动,则经过 秒后动圆与直线AB 相切.2.k 是整数,已知关于x 的一元二次方程kx 2+(2k -1)·x +k -1=0只有整数根,则k =________.3.对于实数u ,v ,定义一种运算“*”为u *v =uv +v .若关于x 的方程x *(a *x )=-41有两个相等的实数根,则满足条件的实数a 的值是________.4.按一定规律排列的一列数依次为:21,31,101,151,261,351…,按此规律排列下去,这列数中的第9个数是________.5. 如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _.6.如图,P 为边长为2的正三角形中任意一点,连接PA 、PB 、P C ,过P 点分别做三边的垂线,垂足分别为D 、E 、F ,则 PD+PE+PF= ;阴影部分的面积为__________.7. 如图,正方形OA 1B 1C 1的边长为2,以O 为圆心、OA 1为半径作弧A 1C 1交OB 1于点B 2,设弧A 1C 1与边A 1B 1、B 1C 1围成的阴影部分面积为1S ;然后以OB 2为对角线作正方形OA 2B 2C 2,又以O 为圆心、OA 2为半径作弧A 2C 2交OB 2于点B 3,设弧A 2C 2与边A 2B 2、B 2C 2围成的阴影部分面积为2S ;…,按此规律继续作下去,设弧n n A C 与边n n A B 、n n B C 围成的阴影部分面积为n S .则=1S ,=n S .8.如图所示,将一张矩形纸片对折,可得到一条折痕(图中的虚线),连续对折,对折时每次折痕与上次折痕保持平行,连续操作三次可以得到7条折痕,那么对折n 次可得到折痕的条数是________.…9.如图,在Rt △ABC 中,∠C =90°,BC =3,AC =4,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C′点,那么△ADC′的面积是___________________.o xyAB第1题图 (第5题)10. 在Rt △ABC 中,∠ACB=90°,BC <AC ,若214BC AC AB ⋅=,则∠A = °. 11. 如图,在平面直角坐标系xOy 中,1B (0,1),2B (0,3),3B (0,6),4B (0,10),…,以12B B 为对角线作第一个正方形1112A B C B ,以 23B B 为对角线作第二个正方形2223A B C B ,以34B B 为对角线作第三个正方形3334A B C B ,…,如果所作正方形的对角线1n n B B +都在 y 轴上,且1n n B B +的长度依次增加1个单位,顶点n A 都在第一象 限内(n ≥1,且n 为整数).那么1A 的纵坐标为 ;用n 的代数式表示n A 的纵坐标: .12.在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD 中,四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD 能覆盖的单位格点正方形的个数是 个;若菱形A n B n C n D n 的四个顶点坐标分别为(-2n ,0),(0,n ),(2n ,0),(0,-n )(n 为正整数),则菱形A n B n C n D n 能覆盖的单位格点正方形的个数为 (用含有n 的式子表示).13.一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).14. 下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_____________(请填图形下面的代号)。

填空压轴题(几何篇)-2023年中考数学压轴题专项训练(解析版)

填空压轴题(几何篇)-2023年中考数学压轴题专项训练(解析版)

2023年中考数学压轴题专项训练--填空压轴题(几何篇)一、压轴题速练1一.填空题(共40小题)1(2023•龙湾区二模)如图,在△ABC 中,AB =13,BC =14,AC =15,点D 是线段AC 上任意一点,分别过点A 、C 作直线BD 的垂线,垂足为E 、F ,AE =m ,CF =n ,则n +m 的最大值是15,最小值是12.【答案】15,12.【分析】根据S △ABC =S △ABD +S △CBD 即可得到m +n 关于x 的反比例函数关系式.根据垂直线段最短的性质,当BD ⊥AC 时,x 最小,由面积公式可求得;因为AB =13,BC =14,所以当BD =BC =14时,x 最大.从而根据反比例函数的性质求出y 的最大值和最小值.【详解】解:在△ABC 中,AB =13,BC =14,AC =15,AH ⊥BC 于点H ,∴设AH =x ,则CH =14-x ,∴AB 2-AH 2=AC 2-CH 2,即132-x 2=152-(14-x )2,解得x =5,即AH =5,∴BH =AB 2-BH 2=132-52=12,∴S △ABC =12BC •AH =12×14×12=84,由三角形面积公式,得S △ABD =12BD •AE =12xm ,S △CBD =12BD •CF =12xn ,∴m =2S △ABD x ,n =2S △CBDx,∴y =m +n =2S △ABD x +2S △CBD x =2S △ABC x =168x,即y =168x.∵△ABC 中AC 边上的高为2S △ABC AC=16815=565,∴x 的取值范围为565≤x ≤14.∵m +n 随x 的增大而减小,∴当x =565时,y 的最大值为15,当x =14时,y 的最小值为12.故答案为:15,12.【点睛】本题考查三角形的面积,掌握三角形的面积公式,反比例函数的应用是解题的关键.2(2023•湖北模拟)如图,正方形ABCD 的对角线交于点O ,AB =22,现有半径足够大的扇形OEF ,∠EOF =90°,当扇形OEF 绕点O 转动时,扇形OEF 和正方形ABCD 重叠部分的面积为2.【答案】2.【分析】根据四边形ABCD 为正方形,得到∠OAG =∠OBH =45°,OA =OB ,∠AOB =90°;推出△AOG ≌△BOH ,于是得到结论.【详解】解:∵四边形ABCD 为正方形,∴∠OAG =∠OBH =45°,OA =OB ,∠AOB =90°,由题意得:∠GOH =90°,∴∠AOG =∠BOH ;在△AOG 与△BOH 中,∠AOG =∠BOH OA =OB∠OAG =∠OBH ,∴△AOG ≌△BOH (ASA ),∴扇形OEF 和正方形ABCD 重叠部分的面积=S △AOB =14S 正方形ABCD =14×AB 2=14×(22)2=2.故答案为:2.【点睛】本题考查了全等三角形的判定和性质,正方形的性质,熟练掌握全等三角形的判定和性质是解题的关键.3(2023•榆树市二模)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH 组成,恰好拼成一个大正方形ABCD ,连结EG 并延长交BC于点M .若AB =13,EF =1,则GM 的长为 425 .【答案】425.【分析】由大正方形ABCD 是由四个全等的直角三角形和一个小正方形EFGH 组成,在直角三角形AEB 中使用勾股定理可求出BF =AE =GC =DH =2,过点M 作MN ⊥FC 于点N ,由三角形EFG 为等腰直角三角形可证得三角形GNM 也为等腰直角三角形,设GN =NM =a ,则NC =GC -GN =2-a ,由tan ∠FCB =BF CF =23=NM CN=a 2-a ,可解得a =45.进而可得GM =2MN =425.【详解】解:由图可知∠AEB =90°,EF =1,AB =13,∵大正方形ABCD 是由四个全等的直角三角形和一个小正方形EFGH 组成,故AE =BF =GC =DH ,设AE =x ,则在Rt △AEB 中,有AB 2=AE 2+BE 2,即13=x 2+(1+x )2,解得:x 1=2,x 2=-3(舍去).过点M 作MN ⊥FC 于点N ,如图所示.∵四边形EFGH 为正方形,EG 为对角线,∴△EFG 为等腰直角三角形,∴∠EGF =∠NGM =45°,故△GNM 为等腰直角三角形.设GN =NM =a ,则NC =GC -GN =2-a ,∵tan ∠FCB =BF CF =23=NM CN=a2-a ,解得:a =45,∴GM =2GN =425.故答案为:425.【点睛】本题考查了勾股定理的证明,正方形的性质、勾股定理、锐角三角函数、等腰三角形的性质、正确作出辅助线是解决本题的关键.4(2023•道外区二模)如图,在四边形ABCD 中,AB =BC ,∠A =∠ABC =90°,以CD 为斜边作等腰直角△ECD ,连接BE ,若CD =213,BE =2,则AB =6.【答案】6.【分析】过点E 作EF ⊥AD 交AD 于点F ,延长FE 交BC 于点M ,从而可判定四边形ABMF 是矩形,则有AB =FM ,可得∠DFE =∠CME =90°,再求得∠DEF =∠ECM ,利用AAS 可判定△DEF ≌△ECM ,则有EF =CM ,从而可求得BM =EM ,利用勾股定理求得EM ,CE ,即可求CM ,从而可求解.【详解】解:过点E 作EF ⊥AD 交AD 于点F ,延长FE 交BC 于点M ,如图,∵∠A =∠ABC =90°,∠AFM =90°,∴四边形ABMF 是矩形,∴AB =FM ,∠DFE =∠CME =90°,∵△ECD 是等腰三角形,∴DE =CE ,∠CED =90°,∵∠ECM +∠CEM =90°,∠FED +∠CEM =180°-∠CED =90°,∴∠DEF =∠ECM ,在△DEF 和△ECM 中,∠EFD =∠CME =90°∠DEF =∠ECMDE =EC,∴△DEF ≌△ECM (AAS ),∴EF =CM ,∵EM =FM -EF ,BM =BC -CM ,AB =BC ,∴BM =EM ,∴△BME 是等腰直角三角形,∵CD =213,BE =2,∴CE =26,EM =1,∴BM =1,CM =CE 2-EM 2=5,∴BC =BM +CM =6,∴AB =BC =6.故答案为:6.【点睛】本题主要考查全等三角形的判定与性质,勾股定理,等腰直角三角形,解答的关键是作出适当的辅助线.5(2023•包河区二模)Rt △ABC 中,点D 是斜边AB 的中点.(1)如图1,若DE ⊥BC 与E ,DF ⊥AC 于F ,DE =3,DF =4,则AB =10;(2)如图2,若点P 是CD 的中点,且CP =52,则PA 2+PB 2=62.5.【答案】(1)10:(2)62.5.【分析】(1)首先证明四边形DECF 为矩形,得DE =CF =3,在Rt △DFC 中,由勾股定理得,CD =5,再利用直角三角形斜边上中线的性质可得答案;(2)过点D 作DE ⊥BC ,DF ⊥AC ,垂足分别为点E 、F ,过点P 作PG ⊥BC ,PH ⊥AC ,垂足分别为点G 、H ,则四边形CGPH 为矩形,说明BG =BE +EG =3EG =3CG =3PH ,同理可得AH =3PG ,再利用勾股定理即可.【详解】解:(1)∵DE ⊥BC ,DF ⊥AC ,∴∠DEF =∠DFC =∠ACB =90°,∴四边形DECF 为矩形,∴DE =CF =3,在Rt △DFC 中,由勾股定理得,CD =5,∵点D 是斜边AB 的中点,∴AB =2CD =10,故答案为:10;(2)如图,过点D 作DE ⊥BC ,DF ⊥AC ,垂足分别为点E 、F ,过点P 作PG ⊥BC ,PH ⊥AC ,垂足分别为点G 、H ,则四边形CGPH 为矩形,∴PG =CH ,CG =PH ,∵点D 为Rt △ABC 的斜边AB 的中点,∴CD =BD ,∴BE =CE ,∵点P 为CD 的中点,DE ⊥BC ,PG ⊥BC ,∴点G 为CE 的中点,即CE =2EG =2CG ,∴BE =CE =2EG ,∴BG =BE +EG =3EG =3CG =3PH ,同理可得AH =3PG ,∴PA 2+PB 2=BG 2+PG 2+AH 2+PH 2=(3PH )2+PG 2+(3PG )2+PH 2=10×522=62.5,故答案为:62.5.【点睛】本题主要考查了直角三角形斜边上中线的性质,等腰三角形的性质,勾股定理等知识,熟练掌握勾股定理是解题的关键.6(2023•庐江县三模)如图,四边形ABCD 中,AB =AC =AD ,点M 、N 分别是BC 、CD 的中点,连接MN ,若∠DAM =105°,∠BAN =75°,若AM AN=3+12,则∠ANM =75°.【答案】75.【分析】根据三角形中位线定理和二元一次方程组解答即可.【详解】解:四边形ABCD 中,AB =AC =AD ,点M 、N 分别是BC 、CD 的中点,设∠BAM =∠CAM =α,∠DAN =∠CAN =β,2α+β=75°α+2β=105° ,解得:α+β=60°,即:∠MAN =60°,过N 作NH ⊥AM 于H ,如图:可得:∠ANH =30°,设AH =x ,可得:HN =3x ,AN =2x ,∵AM AN=3+12,∴AM =3+12⋅AN =3+12⋅2x =(3+1)x ,∴MH =3x =NH ,∴∠MNH =45°,∴∠ANM =30°+45°=75°,故答案为:75.【点睛】此题考查三角形中位线定理,关键是根据三角形中位线定理解答.7(2023•中山市二模)如图,△ABC 与△BDE 均为等腰直角三角形,点A ,B ,E 在同一直线上,BD ⊥AE ,垂足为点B ,点C 在BD 上,AB =4,BE =10.将△ABC 沿BE 方向平移,当这两个三角形重叠部分的面积等于△ABC 面积的一半时,△ABC 平移的距离为2-2或5.【答案】2-2或5.【分析】根据平移的性质和等腰直角三角形的性质解答即可.【详解】解:∵△ABC 与△BDE 均为等腰直角三角形,∴AB =BC =4,DB =BE =10,∴△ABC 的面积=12AB •BC =12×4×4=8,当这两个三角形重叠部分的面积等于△ABC 面积的一半时,∴△A 'BE 的面积=12A 'B ⋅BE =12A 'B ⋅A 'B =1,∴A 'B =2,∴AA '=AB -A 'B =2-2,即平移的距离为2-2,当当点B 平移到与点E 重合时,也满足,此时平移的距离为:5,故答案为:2-2或5.【点睛】此题考查等腰直角三角形的性质,关键是根据等腰直角三角形的面积公式解答.8(2023•新都区模拟)青朱出入图,是魏晋时期数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”,若图中DF =1,CF =2,则AE 的长为310 .【答案】310.【分析】由勾股定理求出AF 的长,由△ADF ∽△ECF ,得到AF :FE =DF :FC =1:2,求出FE 的长,即可求出AE 的长.【详解】解∵四边形ABCD 是正方形,∴AD =DC ,∠D =90°,∵DF =1,FC =2,∴AD =DC =DF +FC =3,∴AF =AD 2+DF 2=32+12=10,∵AD ∥BE ,∴△ADF ∽△ECF ,∴AF :FE =DF :FC =1:2,∴FE =2AF =210,∴AE =AF +FE =310.故答案为:310.【点睛】本题考查勾股定理,相似三角形的判定和性质,掌握以上知识点是解题的关键.9(2023•黄埔区一模)△ABC 为等腰直角三角形,AB =AC =6,∠BAC =90°,动点D 在边BC 上运动.以A 为直角顶点,在AD 右侧作等腰直角三角形△ADE (如图).M 为DE 中点,N 为BC 三等分点,CN =13BC ,连接MN ,则线段MN 的最小值为1.【答案】1.【分析】连接CE ,证明△ABD ≌△ACE (SAS ),可得∠ACE =∠B =45°,CE =BD ,证明CE ⊥BD ,得出点E 始终在过点C 垂直于BC 的射线上,当BD =13BC =2时,MN 最小,根据三角形中位线定理可得MN =12CE ,结合已知条件即可得线段MN 的最小值.【详解】解:如图,连接CE ,∵△ABC 、△ADE 为等腰直角三角形,AB =AC =6,∴∠BAC =∠DAE =90°,AD =AE ,∴∠BAD =90°-∠DAC =∠CAE ,在△ABD 和△ACE 中,AB =AC ∠BAD =∠CAE AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ACE =∠B =45°,CE =BD ,∵∠ACB =∠B =45°,∴∠ECB =45°+45°=90°,∴CE ⊥BD ,因为点D 在BC 上运动,所以点M 在直线上运动,当BD =13BC =2时∵N 为BC 三等分点,CN =13BC ,此时MN ∥CE ,∵M 为DE 中点,∴N 为CD 中点,∴MN =12CE =1,故答案为:1.【点睛】本题考查了全等三角形的判定与性质,三角形中位线定理,等腰直角三角形的性质,解决本题的关键是判断出△ABD ≌△ACE .10(2023•雁塔区校级模拟)如图,菱形ABCD 的边长为5,将一个直角的顶点放置在菱形的中心O 处,此时直角的两边分别交边AD ,CD 于点E ,F ,当OE ⊥AD 时,OE 的长为2,则EF 的长是 412 .​【答案】412.【分析】连接AC ,先证OF ∥AD ,再证OF 是△ACD 的中位线,得OF =12AD =52,然后在Rt △EOF 中,由勾股定理即可得出结论.【详解】解:如图,连接AC ,∵四边形ABCD 是菱形,∴OA =OC ,由题意可知,∠EOF =90°,∴OE ⊥OF ,∵OE ⊥AD ,∴OF ∥AD ,∵OA =OC ,∴DF =CF ,∴OF 是△ACD 的中位线,∴OF =12AD =52,在Rt △EOF 中,由勾股定理得:EF =OE 2+OF 2=22+522=412,故答案为:412.【点睛】本题考查了菱形的性质、平行线的判定与性质、三角形中位线定理以及勾股定理等知识,熟练掌握菱形的性质和三角形中位线定理是解题的关键.11(2023•奉贤区二模)如果四边形有一组邻边相等,且一条对角线平分这组邻边的夹角,我们把这样的四边形称为“准菱形”.有一个四边形是“准菱形”,它相等的邻边长为2,这两条边的夹角是90°,那么这个“准菱形”的另外一组邻边的中点间的距离是 2 .【答案】2.【分析】连接BD ,在Rt △ABD 中,由勾股定理得BD =22,再证EF 是△BCD 的中位线,即可得出结论.【详解】解:如图,四边形ABCD 是“准菱形”,且AB =AD ,∠BAD =90°,点E 、F 分别是CD 、BC 的中点,连接BD 、EF ,在Rt △ABD 中,由勾股定理得:BD =AB 2+AD 2=22+22=22,∵点E 、F 分别是CD 、BC 的中点,∴EF 是△BCD 的中位线,∴EF =12BD =2,即这个“准菱形”的另外一组邻边的中点间的距离是2,故答案为:2.【点睛】本题考查了“准菱形”的性质、勾股定理以及三角形中位线定理等知识,熟练掌握“准菱形”的性质和三角形中位线定理是解题的关键.12(2023•吕梁一模)如图,在正方形ABCD 中,点P 在对角线BD 上,点E ,F 分别在边AB 和BC 上,且∠EPF =45°,若CF =2DP =4,AE =12,则AB 的长度为 8+214 .【答案】8+214.【分析】过点P作MN⊥BC交BC于点M,交AD于点N;过点P作JG⊥AB交AB于点G,交DC 于点J;根据四边形ABCD是正方形,BD是对角线,则AD=BC=JG,AB=DC=MN;根据CF =2DP=4,由勾股定理得PJ=PN=2,则CM=MF=2,AG=2;过点E作EH⊥DB交BD于点H,设EH=x,根据勾股定理,EB=2x,根据相似三角形的判定和性质,得△PMF∽△PHE,得MF EH=PMPH,求出x,根据AB=AE+EB解答即可.【详解】解:过点P作MN⊥BC交BC于点M,交AD于点N;过点P作JG⊥AB交AB于点G,交DC于点J,∵四边形ABCD是正方形,BD是对角线,∴AD=BC=JG,AB=DC=MN,∠ADB=45°,∵CF=2DP=4,∴PJ=PN=2,∴CM=MF=2,AG=2,∵AE=12,∴GE=10,∵△PGB是等腰直角三角形,∴PG=GB,过点E作EH⊥DB交BD于点H,设EH=x,∴EH2+HB2=EB2,∴EB=2x,∴PG=GB=10+2x,∴PB=2(10+2x),∴PH=PB-HB=2(10+2x)-x,∵∠EPF=∠FPB+∠EPB=45°,∠MPB=∠MPF+∠FPB=45°,∴∠EPB=∠MPF,∴△PMF∽△PHE,∴MF EH=PM PH,∴2x=10+2x2(10+2x)-x,解得:x=27-22,∴EB=214-4,∴AB=8+214.故答案为:8+214.【点睛】本题考查正方形的性质,相似三角形的知识,解题的关键是掌握正方形的性质,相似三角形的判定和性质,勾股定理.13(2023•蚌埠二模)如图,点E为正方形ABCD的边CD上一点,以点A为圆心,AE长为半径画弧EF,交边BC于点F,已知正方形边长为1.(1)若∠DAE=15°,则DE的长为 2-3 ;(2)△AEF的面积为S的最大值是 12 .【答案】(1)2-3;(2)12.【分析】(1)由已知可证Rt △ADE ≌Rt △ABF (HL ),再利用勾股定理即可得出结论;(2)设DE =x ,表示出S =-12x 2+12,再利用二次函数的性质即可得出结论.【详解】解:(1)∵ABCD 是正方形,∴AD =AB ,∠D =∠B =90°,∵AE =AF ,∴Rt △ADE ≌Rt △ABF (HL ),∴∠DAE =∠BAF =15°,BF =DE ,∴∠EAF =60°,∴△AEF 为等边三角形,设DE =x ,则CE =CF =1-x ,在Rt △ADE 中,AE 2=AD 2+DE 2=1+x 2,在Rt △CFE 中,FE 2=CE 2+CF 2=2(1-x )2,∴1+x 2=2(1-x )2,解得:x =2±3,∵0≤x ≤1,∴x =2-3.故答案为:2-3,(2)设DE =x ,由(1)可知DE =BF =x ,则CE =CF =1-x ,∴S =S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF ,=1-12×1×x -12×1×x -12(1-x )2=-12x 2+12,∵0≤x ≤1,对称轴直线x =0,∴S 随x 增大而减小,∴当x =0时S 有最大值,此时S =12,故答案为:12.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、等边三角形的判定与性质、二次函数的应用,解题的关键是熟练掌握全等三角形的判定与性质、二次函数的性质等知识点.14(2023•兰考县一模)如图,方形ABCD 中,AB =8,点P 为射线BC 上任意一点(与点B 、C 不重合),连接AP ,在AP 的右侧作正方形APGH ,连接AG ,交射线CD 于E ,当ED 长为2时,点BP 的长为 245或403.【答案】245或403.【分析】由题可分两种情况,当交点E 在线段CD 上时,或当交点E 在线段CD 延长线上时,分别将△ADE 绕点A 顺时针旋转90°,可判定全等三角形,用勾股定理求出对应边的长度即可.【详解】解:由题意,分两种情况,如下(1)当交点E 在线段CD 上时,∵四边形ABCD 为正方形,∴将△ADE 绕点A 顺时针旋转90°,如图所示,AD 与AB 重合,且E ',B ,P 三点共线,∵四边形APGH 是正方形,∴∠PAG =45°,∴∠DAE +∠BAP =45°,由旋转可得,∴∠BAE '+∠BAP =45°,∴∠E 'AP =∠EAP =45°,连接EP ,在△E 'AP 和△EAP 中,∵AE '=AE ∠E 'AP =∠EAP AP =AP,∴△E 'AP ≌△EAP (SAS ),∴E 'P =EP ,设BP =x ,∵正方形ABCD 边长AB =8,DE =2,∴CE =8-2=6,PC =8-x ,EP =E 'P =2+x ,在Rt △ECP 中,有勾股定理得:PC 2+CE 2=EP 2,即:(8-x )2+62=(2+x )2,解得:x =245;(2)当交点E 在线段CD 延长线上时,同理旋转△ADE 到△ABE ',如图所示,并可得∠FAE =∠FAE '=45°,同理可证△FAE ≌△FAE ',∴E 'F =EF ,设CF =y ,∵正方形ABCD 边长AB =8,DE =2,∴CE '=8-2=6,E 'F =EF =DF +DE =8-y +2=10-y ,在Rt △E 'CF 中,有勾股定理得:CF 2+E 'C 2=E 'F 2,即:y 2+62=(10-y )2,解得:y =165;在△CPF 和△BPA 中,∵∠CPF =∠BPA ∠FCP =∠ABP =90°,∴△CPF ∽△BPA ,∴CP BP =CF AB ,即BP -8BP =1658,解得:BP =403;综上所述:BP =245或403.故答案为:245或403.【点睛】本题主要考查正方形的性质,利用旋转图形证三角形全等,根据勾股定理和相似图形求出对应线段的长度是解题的关键,本题难点在于利用旋转构造全等三角形.15(2023•本溪一模)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C ,D 都在格点上,∠A =60°,则cos ∠CDB 的值为 32 .【答案】32.【分析】根据菱形的性质证明△ECD 、△FCD 都是等边三角形,求得∠BCD =120°,利用等边对等角求得∠CDB =30°,据此即可求解.【详解】解:∵四边形ABCF 、CFDE 都是菱形,∠A =60°,∴△ECD 、△FCD 都是等边三角形,∴∠FCD =∠BCF =60°,CD =CF ,∴∠BCD =120°,BC =CF =CD ,∴∠CDB =12(180°-∠BCD )=30°,∴cos ∠CDB =cos30°=32,故答案为:32.【点睛】本题主要考查菱形的性质、等边三角形的性质与判定、锐角三角函数,熟练掌握相关理论是解答关键.16(2023•沂南县校级一模)如图,矩形ABCD 中,AC 、BD 相交于点O ,过点B 作BF ⊥AC 交CD 于点F ,交AC 与点M ,过点D 作DE ∥BF 交AB 于点E ,交AC 于点N ,连接FN 、EM ,则下列结论:①DN =BM ;②EM ∥FN ;③AE =FC ;④当AO =AD 时,四边形DEBF 是菱形.其中,正确结论的个数是4.【答案】4.【分析】根据矩形的性质得到AB =CD ,AB ∥CD ,∠DAE =∠BCF =90°,OD =OB =OA =OC ,AD =BC ,AD ∥BC ,根据平行线的性质得到DE ⊥AC ,根据垂直的定义得到∠DNA =∠BMC =90°,由全等三角形的性质得到DN =BM ,∠ADE =∠CBF ,故①正确;证△ADE ≌△CBF (ASA ),得出AE =FC ,DE =BF ,故③正确;证四边形NEMF 是平行四边形,得出EM ∥FN ,故②正确;证四边形DEBF 是平行四边形,证出∠ODN =∠ABD ,则DE =BE ,得出四边形DEBF 是菱形;故④正确;即可得出结论.【详解】解:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,∠DAE =∠BCF =90°,OD =OB =OA =OC ,AD =BC ,AD ∥BC ,∴∠DAN =∠BCM ,∵BF ⊥AC ,DE ∥BF ,∴DE ⊥AC ,∴∠DNA =∠BMC =90°,在△DNA 和△BMC 中,,∴△DNA ≌△BMC (AAS ),∴DN=BM,∠ADE=∠CBF,故①正确;在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=FC,DE=BF,故③正确;∴DE-DN=BF-BM,即NE=MF,∵DE∥BF,∴四边形NEMF是平行四边形,∴EM∥FN,故②正确;∵AB=CD,AE=CF,∴BE=DF,∵BE∥DF,∴四边形DEBF是平行四边形,∵AO=AD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠ADO=∠DAN=60°,∴∠ABD=90°-∠ADO=30°,∵DE⊥AC,∴∠ADN=∠ODN=30°,∴∠ODN=∠ABD,∴DE=BE,∴四边形DEBF是菱形;故④正确;故答案为:4.【点睛】本题考查了矩形的性质、菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的判定等知识;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.17(2023•琼海一模)如图,菱形ABCD,AE⊥BC,点E为垂足,点F为AE的中点,连接BF并延长交AD于点G,连接CG,CE=2,CG=211,则DG=2,AG=6,AF= 7 .【答案】2,6,7.【分析】过点G作GH⊥BC,垂足为H,连接EG,证明△AGF≌△EBF,得到AG=BE,则DG= CE=2,然后可得四边形ABEG为平行四边形,设AG=BE=x,则AD=AB=GE=2+x,求出CH=x-2,在Rt△AGE和Rt△GCH中用勾股定理列方程进行求解.【详解】解:如图所示,过点G作GH⊥BC,交BC的延长线于H,连接EG,∵F 是AE 中点,∴AF =EF ,∵四边形ABCD 是菱形,∴AD ∥BC ,∵AE ⊥BC ,∴∠GAF =∠BEF =90°,在△AGF 与△EBF 中,∠GAF =∠BEF AF =EF ∠AFG =∠EFB,∴△AGF ≌△EBF (ASA ),∴AG =BE ,∴DG =CE =2,又∵AG ∥BE ,∴四边形ABEG 为平行四边形,∴GE =AB ,设AG =BE =x ,则AD =AB =GE =2+x ,∵∠GAE =∠AEH =∠H =90°,∴四边形AEHG 是矩形,∴AG =EH ,AE =GH ,∴CH =EH -CE =AG -CE =x -2,在Rt △AGE 和Rt △GCH 中,AE 2=GE 2-AG 2,GH 2=GC 2-CH 2,∴(x +2)2-x 2=(211)2-(x -2)2,解得x =6,即AG =6,∴AE =(6+2)2-62=27,∴AF =12AE =7.故答案为:2,6,7.【点睛】本题考查了菱形的性质、平行四边形的判定和性质、全等三角形的判定和性质、勾股定理等知识,设出线段长,寻找等量关系列出方程是解题的关键.18(2023•镇江一模)如图,在矩形ABCD 中,AB =6,BC=8,△BEF 的顶点E 在对角线AC 上运动,且∠BFE =90°,∠EBF =∠BAC ,连接AF ,则AF 的最小值为 7225 .【答案】7225.【分析】过点B 作BH ⊥AC 于点H ,连接FH .由∠BFE =∠BHE =90°推出E ,B ,F ,H 四点共圆,证明∠AHF =∠ACD =定值,推出点F 在射线HF 上运动,当AF ⊥FH 时,AF 的值最小,求出AH ,sin ∠AHF ,可得结论.【详解】解:过点B 作BH ⊥AC 于点H ,连接FH ,如图,∵∠BFE =∠BHE =90°,∴E ,B ,F ,H 四点共圆,∴∠FHB =∠FEB ,∵∠AHF +∠FHB =90°,∠FBE +FEB =90°∴∠AHF =∠EBF ,∵四边形ABCD 是矩形,∴ABC ∥CD ,∴∠BAC =∠ACD ,∵∠EBF =∠BAC ,∴∠EBF =∠ACD ,∴∠AHF =∠ACD =定值,∴点F 在射线HF 上运动,当AF ⊥FH 时,AF 的值最小,∵四边形ABCD 是矩形,∴AB =CD =6,BC =AD =8,∠D =90°.∴AC =CD 2+AD 2=62+82=10,∴sin ∠AHF =sin ∠ACD =AD AC =810=45,∵S △ACB =12•AB •CB =12•AC •BH ,∴BH =245,∴AH =AB 2-BH 2=62-245 2=185,∴AF 的最小值=AH ⋅sin ∠AHE =185×45=7225.故答案为:7225.【点睛】本题考查了矩形的性质、锐角三角函数的定义、勾股定理、四点共圆、圆周角定理、轨迹、三角形面积以及最小值问题等知识,本题综合性强,熟练掌握矩形的性质,利用垂线段最短解决最值问题是解题的关键.19(2023•泉州模拟)如图,在菱形ABCD 中,∠A =60°,点E 在边AD 上,以BE 为边在菱形ABCD 的内部作等边三角形BEF ,若∠DEF =α,∠EBD =β,则α与β之间的数量关系可用等式表示为α+β=60°.【答案】α+β=60°.【分析】根据菱形的性质得到∠C =∠A =60°,AD =AB =CD =BC ,求得∠ADB =∠CDB =∠DBC=60°,得到BD=BC,根据等边三角形的性质得到BE=BF,∠EBF=60°,根据全等三角形的性质得到∠DBE=∠CBF=β,∠BFC=∠BED=60°+α,根据三角形的内角和定理即可得到结论.【详解】解:在菱形ABCD中,∠A=60°,∴∠C=∠A=60°,AD=AB=CD=BC,∴∠ADB=∠CDB=∠DBC=60°,∴△BCD是等边三角形,∴BD=BC,∵△BEF是等边三角形,∴BE=BF,∠EBF=60°,∴∠DBE=∠CBF,∴△BDE≌△BCF(SAS),∴∠DBE=∠CBF=β,∠BFC=∠BED=60°+α,∵∠BFC+∠C+∠CBF=180°,∴β+60°+α+60°=180°,∴α+β=60°.故答案为:α+β=60°.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握菱形的性质是解题的关键.20(2023•市南区一模)如图,正方形ABCD中,E、F分别为BC、CD边上的点,∠EAF=45°,则下列结论中正确的有①②③.(填序号)①BE+DF=EF;②tan∠AMD=CDDF; ③BM2+DN2=MN2;④若EF=1.5,S△AEF=3,则.S正方形ABCD=4.【答案】①②③.【分析】①将△ADF绕点A顺时针旋转90°使AD与AB重合,得△ABQ,根据正方形的性质及会等三角形的性质可得答案;②根据三角形的外角性质及三角函数可得答案;③在AQ上取一点H,使AH=AN.连接BH,利用全等三角形的性质及勾股定理可得答案;④过点A作AR⊥EF于点R,根据全等三角形的性质、角平分线的性质可得AR=AB,然后由三角形面积公式及正方形的面积公式可得答案.【详解】解:①将△ADF绕点A顺时针旋转90°使AD与AB重合,得△ABQ,∴△ABQ≌△ADF,∴∠QAB=∠DAF,AQ=AF,∠ABQ=∠ADF,BQ=DF,∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠C=90°,AB=BC=CD=AD,∵∠EAB+∠DAF+∠EAF=∠BAD=90°,且∠EAF=45°,∴∠DAF +∠EAB =45°,∴∠QAB +∠EAB =45°,∴∠QAE =∠FAE =45°,∵∠ABQ +∠ABE =90°+90°=180°,∴点Q 、B 、E 共线,在△AEQ 和△AEF 中,AQ =EF∠QAE =∠FAE AE =AE,∴△AEQ ≌△AEF (SAS ),∴EQ =EF ,∵EQ =BE +BQ =BE +DF ,∴EF =BE +DF ,故①正确;②∵∠AND =∠EAF +∠AMD =∠BDC +∠AFD ,∴∠AMD =∠AFD ,∴tan ∠AMD =tan ∠AFD ,在Rt △AFD 中,tan ∠AFD =AD DF ,∴tan ∠AMD =CD DF ,故②正确;③在AQ 上取一点H ,使AH =AN .连接BH ,在△AMH 和△AMN 中,AH =AN∠HAM =∠NAM =45°AM =MN,∴△AMH ≌△AMN (SAS ),∴MH =MN ,同理,△ABH ≌△ADN (SAS ),∴BH =DN ,∠ABH =∠ADN =45°,∴∠HBM =∠ABH +∠ABD =90°,在Rt △BMH 中,MH 2=BH 2+BM 2,∴MN 2=DN 2+BM 2,故③正确;④假设EF ∥BD 时,过点A 作AR ⊥EF 于点R ,∴AR 在正方形对角线上,∴∠RAE =∠BAE ,∴EB =ER ,∵AE =AE ,∴Rt △AEB ≌Rt △AER (HL ),∴∠AEB =∠AEF ,∵AB ⊥BC ,AR ⊥EF ,∴AR=AB,∵S△AEF=12EF•AR,∴3=12×1.5•AR,∴AR=4,=42=16,∴S正方形ABCD故④错误,∴①②③正确,故答案为:①②③.【点睛】此题考查的是正方形的性质、全等三角形的判定与性质、角平分线的性质、勾股定理有解直角三角形,正确作出辅助线是解决此题关键.21(2023•大连一模)学习菱形时,我们从它的边、角和对角线等方面进行研究,可以发现并证明:菱形的每一条对角线平分一组对角.小明参考平行四边形、矩形判定方法的研究过程,得出下面的猜想:①一条对角线平分一组对角的四边形是菱形;②每一条对角线平分一组对角的四边形是菱形;③一条对角线平分一组对角的平行四边形是菱形.其中正确的是②③(填序号,填写一个即可).【答案】见试题解答内容【分析】由菱形的判定以及平行四边形的判定与性质分别对各个猜想进行判断即可.【详解】解:①一条对角线平分一组对角的四边形不一定是菱形,如筝形,故①不正确;②如图1,∵AC平分∠BAD和∠BCD,∴∠BAC=∠DAC,∠BCA=∠DCA,∵∠BAC+∠BCA+∠ABC=180°,∠DAC+∠DCA+∠ADC=180°,∴∠ABC=∠ADC,同理:∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,∴∠BAC=∠BCA,∴AB=BC,∴平行四边形ABCD是菱形,故②正确;③一条对角线平分一组对角的平行四边形是菱形,故③正确;故答案为:②③.【点睛】本题考查了菱形的判定、等腰三角形的判定以及平行四边形的判定与性质,熟练掌握菱形的判定是解题的关键.22(2023•石景山区一模)如图,在菱形ABCD中,点E,F分别在BC,AD上,BE=DF.只需添加一个条件即可证明四边形AECF是矩形,这个条件可以是AE⊥BC(答案不唯一)(写出一个即可).【答案】AE⊥BC(答案不唯一).【分析】证四边形AECF是平行四边形,再证∠AEC=90°,然后由矩形的判定即可得出结论.【详解】解:这个条件可以是AE⊥BC,理由如下:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵BE=DF,∴BC-BE=AD-DF,即CE=AF,∴四边形AECF是平行四边形,又∵AE⊥BC,∴∠AEC=90°,∴平行四边形AECF是矩形,故答案为:AE⊥BC(答案不唯一).【点睛】本题考查了矩形的判定、菱形的性质以及平行四边形的判定与性质等知识,熟练掌握矩形的判定是解题的关键.23(2023•河东区一模)已知,如图,已知菱形ABCD的边长为6,∠ABC=60°,点E,F分别在AB,CB的延长线上,且BE=BF=13AB,G是DF的中点,连接GE,则GE的长是 39 .【答案】39.【分析】如图,延长EG到H,使GH=EG,连接CH,CG,DH,CE,过点F作PF∥DC,根据全等三角形的性质得到EF=HD,∠EFG=∠HDG,根据菱形的性质得到CD=CB,∠ADC=∠ABC= 60°,点A,B,E在同一直线上,根据全等三角形的性质得到CH=CE,∠DCH=∠BCE,根据等腰三角形的性质和含30°角的直角三角形的性质得到结论.【详解】解:如图,延长EG到H,使GH=EG,连接CH,CG,DH,CE,过点F作FP∥DC,过点E 作EQ⊥BC于Q,∵G是线段DF的中点,∴FG=DG,∵∠EGF=∠HGD,∴△GEF≌△GHD(SAS),∴EF=HD,∠EFG=∠HDG,∵∠EBF=∠ABC=60°,BE=BF,∴△BEF是等边三角形,∴∠BEF=60°,∵BE=BF=2,EQ⊥BC,∴∠QEB=30°,∴BQ=1,EQ=3,在Rt△CQE中,由勾股定理得:CE=CQ2+EQ2=72+(3)2=213,∵AB∥CD,CD∥FP,∴AB∥FP∥CD,∠GFP=∠CDG,∴∠AEF+∠EFP=180°,∴∠EFG+∠GFP=120°,∴∠CDH=∠HDG+∠GDC=120°,∵四边形ABCD是菱形,∴CD=CB=6,∠ADC=∠ABC=60°,点A,B,E在同一直线上,∴∠EBC=120°=∠CDH,∵△BEF是等边三角形,∴EF=BE,∴DH=BE,∴△HDC≌△EBC(SAS),∴CH=CE,∠DCH=∠BCE,∴∠DCH+∠HCB=∠BCE+∠HCB=120°,即∠HCE=120°,∵CH=CE,GH=GE,∴CG⊥GE,∠GCE=∠HCG=60°,∴∠GEC=30°,∵cos30°=EGCE=3 2,∴GE=32×213=39.故答案为:39.【点睛】本题主要考查了等边三角形的性质和判定,菱形的性质,全等三角形的判定和性质,解直角三角形,通过添加辅助线构造全等三角形是解题关键.24(2023•合肥模拟)如图,点P在正方形ABCD内,∠BPC=135°,连接PA、PB、PC、PD.(1)若PA=AB,则∠CPD=90°;(2)若PB=2,PC=3,则PD的长为 22 .【答案】(1)90°;(2)22.【分析】(1)根据正方形的性质得到AD=AB,求得PA=AD,设∠APB=α,则∠BAP=180°-2a,根据周角的定义即可得到结论;(2)如图,过C作CQ⊥CP,过P作PQ⊥PB,PQ与CQ相交于Q,连接BQ,推出△PCQ为等腰直角三角形,根据等腰直角三角形的性质得到PQ=32,根据全等三角形的性质得到BQ=PD,根据勾股定理即可得到结论.【详解】解:(1)∵四边形ABCD是正方形,∴AD=AB,∵PA=AB,∴PA=AD,设∠APB=α,则∠BAP=180°-2a,∴∠PAD=2α-90°,∠APD==135°-α,∵∠BPC=135°,∴∠CPD=360°-(135°-α)-a-135°=90°;故答案为:90°;(2)如图,过C作CQ⊥CP,过P作PQ⊥PB,PQ与CQ相交于Q,连接BQ,∵∠BPC=135°,∴∠CPQ=45°,∴△PCQ为等腰直角三角形,∵PC=3,∴PQ=32,∵CD=BC,∠PCD=∠QCB,PC=CQ,∴△DCP≌△BCQ(SAS),∴BQ=PD,在Rt△PBQ中,PB2+PQ2=BQ2,∵PB=2,∴PD=BQ=22.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,等腰三角形的性质,正确地作出辅助线是解题的关键.25(2023•鄞州区一模)如图,Rt△ABC中,∠C=90°,AC=BC=8,作正方形CDEF,其中顶点E在边AB上.(1)若正方形CDEF的边长为26,则线段AE的长是 42-4 ;(2)若点D到AB的距离是2,则正方形CDEF的边长是 25 .【答案】(1)42-4;(2)25.【分析】(1)连接CE,过点E作EH⊥AC于点H,根据正方形的性质,可得CE的长,根据等腰直角三角形的性质可得AH=EH,设AH=EH=x,在Rt△EHC中,根据勾股定理列方程,求出x的值,进一步可得AE的长;(2)过点D作DM⊥AB于点M,连接BD,AF,过点F作FN⊥AB于点N,先证△MDE≌△NEF (AAS),根据全等三角形的性质可得EN=DM,ME=NF,再证△BCD≌△ACF(SAS),根据全等三角形的性质可得BD=AF,∠CAF=∠CBD,然后再证明△BMD≌△FNA(AAS),根据全等三角形的性质可得BM=NF,MD=NA,进一步可得BM=ME,EN=NA=MD,求出ME的长度,根据勾股定理可得DE的长度,即可确定正方形DCFE的边长.【详解】解:(1)连接CE,过点E作EH⊥AC于点H,如图所示:则∠AHE=90°,在正方形CDEF中,CD=DE=26,∠CDE=90°,根据勾股定理,得CE=(26)2+(26)2=43,在Rt△ABC中,∠C=90°,∴∠A=∠B=45°,∴∠AEH=45°,∴AH=EH,设AH=EH=x,∵AC=BC=8,∴CH=8-x,在Rt△EHC中,根据勾股定理,得x2+(8-x)2=(43)2,解得x1=4+22(舍去),x2=4-22,∴AH=EH=4-22,在Rt△AEH中,根据勾股定理,得AE=(4-22)2+(4-22)2=42-4,故答案为:42-4;(2)过点D作DM⊥AB于点M,连接BD,AF,过点F作FN⊥AB于点N,如图所示:则∠DME=∠FNE=90°,∴∠MDE+∠MED=90°,在正方形DCEF中,∠DEF=90°,DE=EF,∴∠MED+∠FEN=90°,∴∠MDE=∠FEN,在△MDE 和△NEF 中,∠DME =∠FNE ∠MDE =∠FEN DE =EF,∴△MDE ≌△NEF (AAS ),∴EN =DM ,ME =NF ,在Rt △ABC 中,BC =AC ,∠ACB =90°,在正方形EDCF 中,∠DCF =90°,CD =CF ,∴∠BCD =∠ACF ,在△BCD 和△ACF 中,BC =AC ∠BCD =∠ACF CD =CF,∴△BCD ≌△ACF (SAS ),∴BD =AF ,∠CAF =∠CBD ,∵∠ABC +∠BAC =90°,∴∠MBD +∠DBC +∠BAC =90°,∴∠MBD +∠CAF +∠BAC =90°,即∠MBD +∠BAF =90°,∵∠MBD +∠MDB =90°,∴∠MDB =∠BAF ,在△BMD 和△FNA 中,∠BMD =∠FNA ∠BDM =∠FAN BD =AF,∴△BMD ≌△FNA (AAS ),∴BM =NF ,MD =NA ,∴BM =ME ,EN =NA =MD ,∵点D 到AB 的距离是2,∴EN =NA =2,在Rt △ABC 中,AC =BC =8,∠ACB =90°,根据勾股定理,得AB =82+82=82,∴BM +ME =82-2-2=62,∴ME =32,在Rt △MDE 中,根据勾股定理,DE =(32)2+(2)2=25,∴正方形CDEF 的边长是25,故答案为:25.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等,添加合适的辅助线构造全等三角形是解题的关键,本题综合性较强,难度较大.26(2023•郓城县校级模拟)如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O .点M 是BC 边的中点,连接AM 、OM ,作CF ∥AM .已知OC 平分∠BCF ,OB 平分∠AOM ,若BD =32,则。

中考数学填空题压轴题精选(含答案),初中数学50道经典难题汇总及答案解析

中考数学填空题压轴题精选(含答案),初中数学50道经典难题汇总及答案解析

名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版
名师编排 学习必备 可下载打印版

初三数学填空压轴16题简单总结

初三数学填空压轴16题简单总结

初三数学填空压轴16题16.如图,矩形ABCD 中,AB =4,BC =6,E 是边BC 的中点,点P 在边AD 上,设DP =x ,若以点D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点,则所有满足条件的x 的取值范围是 .16. 如图,在⊙O 中,半径OC=6,D 是半径OC 上一点,且 OD=4.A ,B 是⊙O 上的两个动点,∠ADB=90°,F 是AB 的中点,则OF 的长的最大值等于 .FBACDO16.如图,曲线AB 是抛物线2481y x x =-++的一部分(其中A 是抛物线与y 轴的交点,B 是顶点),曲线BC是双曲线(0)ky k x=≠的一部分.曲线AB 与BC 组成图形W .由点C 开始不断重复图形W 形成一组“波浪线”.若点(2020,)P m ,(,)Q x n 在该“波浪线”上,则m 的值为 ,的最大值为 .16. 如图,在平面直角坐标系xOy 中,已知点A (1,0), B (3,0),C 为平面内的动点,且满足∠ACB =90°,D 为直线y =x 上的动点,则线段CD 长的最小值为__________.16.如图,分别过第二象限内的点P 作x ,y 轴的平行线,与y ,x 轴分别交于点A ,B ,与双曲线6y x=分别交于点C ,D .下面三个结论,①存在无数个点P 使AOC BOD S S =△△;②存在无数个点P 使POA POB S S =△△; ③存在无数个点P 使ACD OAPB S S =△四边形.所有正确结论的序号是 .16.如图,在平面直角坐标系xOy 中,直角三角形的直角顶点与原点O 重合,顶点A ,B 恰好分别落在函数1(0)y x x =-<,4(0)y x x=>的图象上,则tan ∠ABO 的值为 .16.某游乐园的摩天轮(如图1)有均匀分布在圆形转轮边缘的若干个座舱,人们坐在座舱中可以俯瞰美景,图2是摩天轮的示意图.摩天轮以固定的速度绕中心O 顺时针方向转动,转一圈为18分钟.从小刚由登舱点P 进入摩天轮开始计时,到第12分钟时,他乘坐的座舱到达图2中的点 处(填A ,B ,C 或D ),此点距地面的高度 为 m .图1 图216.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是 步?”16.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值” .若等腰三角形腰长为5,“边长正度值”为3,则这个等腰三角形底角的余弦值等于 .88mA 100m CPBOD16.如图,抛物线222++=x x y 和抛物线222--=x x y 的顶点分别为点M 和点N ,线段MN 经过平移得到线段PQ ,若点Q 的横坐标是3,则点P 的坐标是__________,MN 平移到PQ 扫过的阴影部分的面积是__________.16.张华在网上经营一家礼品店,春节期间准备推出四套礼品进行促销,其中礼品甲45元/套,礼品乙50元/套,礼品丙70元/套,礼品丁80元/套,如果顾客一次购买礼品的总价达到100元,顾客就少付x 元,每笔订单顾客网上支付成功后,张华会得到支付款的80%.①当x =5时,顾客一次购买礼品甲和礼品丁各1套,需要支付 元;②在促销活动中,为保证张华每笔订单得到的金额均不低于促销前总价的六折,则x 的最大值为 .16.已知二次函数1-2+)+(-=2a a x y (a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.如图分别是当a 取四个不同数值时此二次函数的图象.发现它们的顶点在同一条直线上,那么这条直线的表达式是 .16.已知:∠BAC .(1)如图,在平面内任取一点O ;(2)以点O 为圆心,OA 为半径作圆,交射线AB 于点D ,交射线AC 于点E ; (3)连接DE ,过点O 作线段DE 的垂线交⊙O 于点P ;(4)连接AP ,DP 和PE .根据以上作图过程及所作图形,下列四个结论中:① △ADE 是⊙O 的内接三角形; ② AD=DP=PE ; ③ DE=2PE ; ④ AP 平分∠BAC . 所有正确结论的序号是 .。

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选一.选择题(共13小题)1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个2.(2013•连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A.B.C.D.3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有( )A.1个B.2个C.3个D.4个4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③B.②④C.①④D.②③5.(2008•荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为()A.5:3B.3:5C.4:3D.3:46.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B.C.D.7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是( )A.B.6C.D.38.(2013•牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①P M=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个9.(2012•黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①(BE+CF)=BC;②S△AEF≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个10.(2012•无锡一模)如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有() A.①④⑤B.①②④C.③④⑤D.②③④11.如图,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤12.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD 于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④13.(2013•钦州模拟)正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A.10B.12C.14D.16二.填空题(共16小题)14.如图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有_________ .15.(2012•门头沟区一模)如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去,可得到△A5B5C5,则其面积为S5= _________ .第n 次操作得到△A n B n C n,则△A n B n C n的面积S n= _________ .(2009•黑河)如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,16.使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_________ .17.(2012•通州区二模)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012= _________ .18.(2009•湖州)如图,已知Rt△ABC,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接BE1交CD1于D2;过D2作D2E2⊥AC于E2,连接BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点D4,D5,…,D n,分别记△BD1E1,△BD2E2,△BD3E3,…,△BD n E n的面积为S1,S2,S3,…S n.则S n= _________ S△ABC(用含n的代数式表示).19.(2011•丰台区二模)已知:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1= _________ ,S n= _________ (用含n的代数式表示).20.(2013•路北区三模)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________ .21.如图,已知Rt△ABC中,AC=3,BC=4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA1,A1C1,C1A2,…,则CA1= _________ ,= _________ .22.(2013•沐川县二模)如图,点A1,A2,A3,A4,…,A n在射线OA上,点B1,B2,B3,…,B n﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥A n﹣1B n﹣1,A2B1∥A3B2∥A4B3∥…∥A n B n﹣1,△A1A2B1,△A2A3B2,…,△A n﹣1A n B n﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为_________ ;面积小于2011的阴影三角形共有_________ 个.23.(2010•鲤城区质检)如图,已知点A1(a,1)在直线l:上,以点A1为圆心,以为半径画弧,交x轴于点B1、B2,过点B2作A1B1的平行线交直线l于点A2,在x轴上取一点B3,使得A2B3=A2B2,再过点B3作A2B2的平行线交直线l于点A3,在x轴上取一点B4,使得A3B4=A3B3,按此规律继续作下去,则①a=_________ ;②△A4B4B5的面积是_________ .24.(2013•松北区二模)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于_________ .25.(2007•淄川区二模)如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于_________ .26.(2009•泰兴市模拟)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3且S1+S3=4S2,则CD= _________ AB.27.如图,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形,图4中有30个菱形…,则第6个图中菱形的个数是_________ 个.28.(2012•贵港一模)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=15cm2,S△BQC=25cm2,则阴影部分的面积为_________ cm2.29.(2012•天津)如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为_________ .30.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,求线段AD的取值范围().参考答案与试题解析一.选择题(共13小题)1.(2013•蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为( )①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A.1个B.2个C.3个D.4个解答:解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC∴EC=EJ,∴△DJE≌△ECF∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22。

中考数学填空题压轴题(含答案)

中考数学填空题压轴题(含答案)

根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。

题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。

【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。

中考数学填空题压轴精选答案详细

中考数学填空题压轴精选答案详细

中考填空压轴题1.如图,在矩形纸片ABCD 中,AB =3,BC =5,点E 、F 分别在线段AB 、BC 上,将△BEF 沿EF 折叠,点B 落在B ′ 处.如图1,当B ′ 在AD 上时,B ′ 在AD 上可移动的最大距离为_________;如图2,当B ′ 在矩形ABCD 内部时,AB ′ 的最小值为______________.2.如图,乐器上一根弦固定在乐器面板上A 、B 两点,支撑点C 是靠近点B 的黄金分割点,若AB =80cm ,则AC =______________cm .(结果保留根号)3.已知抛物线y =ax 2-2ax -1+a (a >0)与直线x =2,x =3,y =1,y =2围成的正方形有公共点,则a 的取值范围是___________________.4.如图,7根圆柱形木棒的横截面圆的半径均为1,则捆扎这7根木棒一周的绳子长度为_______________.5.如图,已知A 1(1,0),A 2(1,-1),A 3(-1,-1),A 4(-1,1), A 5(2,1),…,则点A 2010的坐标是__________________.6.在R t△ABC 中,∠C =90°,AC =3,BC =4.若以C 点为圆心,r 为半径所作的圆与斜边AB 只有一个公共点,则r 的取值范围是_________________.7.已知⊙A 和⊙B 相交,⊙A 的半径为5,AB =8,那么⊙B 的半径r 的取值范围是_________________.8.已知抛物线F 1:y =x 2-4x -1,抛物线F 2与F 1关于点(1,0)中心对称,则在F 1和F 2围成的封闭图形上,平行于y 轴的线段长度的最大值为_____________.9.如图,四边形ABCD 中,AB =4,BC =7,CD =2,AD =x ,则x 的取值范围是( ). 10.已知正数a 、b 、c 满足a 2+c 2=16,b 2+c 2=25,则k =a 2+b 2的取值范围是_________________.A DBC B ′ E F 图1 A DB C B ′ E F 图2 C B A A 1 A 2A 6 A 10 A 3 A 7 A 4 A 5A 9 A 8 x y O Ax D B C 742 ADBCA DBCA DB y =xkP O C y =x 1y x 11.如图,在△ABC 中,AB =AC ,D 在AB 上,BD =AB ,则∠A 的取值范围是_________________.12.函数y =2x 2+4|x |-1的最小值是____________. 13.已知抛物线y =ax 2+2ax +4(0< a <3),A (x 1,y 1),B (x 2,y 2)是抛物线上两点,若x 1<x 2,且x 1+x 2=1-a ,则y 1 __________ y 2(填“>”、“<”或“=”)14.如图,△ABC 中,∠A 的平分线交BC 于D ,若AB =6,AC =4,∠A =60°,则AD 的长为___________.15.如图,R t△ABC 中,∠C =90°,AC =6,BC =8,点D 在AB 上,DE ⊥AC 交AC 于E ,DF ⊥AB 交BC 于F ,设AD =x ,四边形CEDF 的面积为y ,则y 关于x 的函数解析式为__________________________,自变量x 的取值范围是_____________________.16.两个反比例函数y =x k 和y =x 1在第一象限内的图象如图所示,点P 在y =x k的图象上,PC ⊥x 轴于点C ,交y =x 1的图象于点A ,PD ⊥y 轴于点D ,交y =x 1的图象于点B ,当点P 在y =x k的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_________________.(把你认为正确结论的序号都填上,少填或错填不给分).17.如图,△ABC 中,BC =8,高AD =6,矩形EFGH 的一边EF 在边BC 上,其余两个顶点G 、H 分别在边AC 、AB 上,则矩形EFGH 的面积最大值为___________.18.已知二次函数y =a (a +1)x 2-(2a +1)x +1,当a 依次取1,2,…,2010时,函数的图像在x 轴上所截得的线段A 1B 1,A 2B 2,…,A 2010B 2010的长度之和为_____________. 19.如图是一个矩形桌子,一小球从P 撞击到Q ,反射到R ,又从R 反射到S ,从S 反射回原处P ,入射角与反射角相等(例如∠PQA =∠RQB 等),已知AB =8,BC =15,DP =3.则小球所走的路径的长为_____________.20.如图,在平行四边形ABCD 中,点E 、F 分别在AB 、AD 上,且AE =31AB ,AF =41AD ,A CBFDEG A DB C EF AD B CEFGH K AC B SD QPR A BCG D E F连结EF 交对角线AC 于G ,则AC AG=_____________.21.已知m ,n 是关于x 的方程x 2-2ax +a +6=0的两实根,则(m -1)2+(n -1)2的最小值为_____________.22.如图,四边形ABCD 和BEFG 均为正方形,则AG : DF : CE =_____________.23.如图,在△ABC 中,∠ABC =60°,点P 是△ABC 内的一点,且∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB =________.24.如图,AB 、CD 是⊙O 的两条弦,∠AOB 与∠C 互补,∠COD 与∠A 相等,则∠AOB 的度数是________.25.如图,一个半径为2的圆经过一个半径为2的圆的圆心,则图中阴影部分的面积为_____________.26.如图,在R t△ABC 中,∠ACB =90°,∠B =30°,AC =2.作△ABC 的高CD ,作△CDB 的高DC 1,作△DC 1B 的高C 1D 1,……,如此下去,则得到的所有阴影三角形的面积之和为__________.27.已知抛物线y =x 2-(2m +4)x +m 2-10与x 轴交于A 、B 两点,C 是抛物线顶点,若△ABC 为直角三角形,则m =__________.28.已知抛物线y =x 2-(2m +4)x +m 2-10与x 轴交于A 、B 两点,C 是抛物线顶点,若△ABC 为等边三角形,则该抛物线的解析式为___________________________.29.已知抛物线y =ax 2+(34+3a )x +4与x 轴交于A 、B 两点,与y轴交于点C .若△ABC 为直角三角形,则a =__________.30.如图,在直角三角形ABC 中,∠A =90°,点D 在斜边BC 上,点E 、F 分别在直角边AB 、AC 上,且BD =5,CD =9,四边形AEDF 是正方形,则阴影部分的面积为__________.31.小颖同学想用“描点法”画二次函数y =ax 2+bx +c (a ≠0)的图象,取自变量x 的5个值,分别计算出对应的y 值,如下表:x … -2 -1 0 1 2 … y … 11 2 -1 2 5 …由于粗心,小颖算错了其中的一个y 值,请你指出这个算错的y 值所对应的x =__________. 32.等边三角形ABC 的边长为6,将其放置在如图所示的平面直角坐标系中,其中BC 边在x 轴上,BC 边上的高OA 在y 轴上。

数学中考填空选择压轴题

数学中考填空选择压轴题

中考数学选择、填空压轴题一、选择题(共15小题)1.如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A.1B.3﹣C.﹣1 D.4﹣2 2.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()12A.B.C.D.3.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12 C.32 D.64 4.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A.:1 B.:1 C.5:3 D.不确定5.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()4 5 6A.y=B.y=C.y=D.y= 6.如图,已知点A,B,C,D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为()A.cm2B.(π﹣)cm2C.cm2D.cm27.如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.20π﹣16 B.10π﹣32 C.10π﹣16 D.20π﹣132 8、如图,将半径为6的⊙O沿AB折叠,与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为()78 9A.B.C.6D.9.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=()A.B.C.D.210.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当P A+PD取最小值时,△APD中边AP上的高为()A.B.C.D.311.如图,在△ABC中,AB=AC,∠BAC=90°,点D为线段BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,CF交DE于点P.若AC=,CD=2,则线段CP的长()10 11 12A.1B.2C.D.12.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.413.如图,已知抛物线l1:y=﹣x2+2x与x轴分别交于A、O两点,顶点为M.将抛物线l1关于y轴对称到抛物线l2.则抛物线l2过点O,与x轴的另一个交点为B,顶点为N,连接AM、MN、NB,则四边形AMNB的面积()A.3B.6C.8D.10 14.如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.你认为其中正确的有()13 14 15A.4个B.3个C.2个D.1个15.如图,已知抛物线与x轴分别交于A、B两点,顶点为M.将抛物线l1沿x轴翻折后再向左平移得到抛物线l2.若抛物线l2过点B,与x轴的另一个交点为C,顶点为N,则四边形AMCN的面积为()A.32 B.16 C.50 D.40 二、填空题(共15小题)16.如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.17.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有个正方形.18.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.19.如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.18 19 2220.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(m,﹣2m)放入其中,得到实数2,则m= .21.对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.22.已知直线l:y=x,过点A(0,1)作轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2014的坐标为.(提示:∠BOX=30°)23.如上图4,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(6,),点C的坐标为(1,0),点P为斜边OB上的一个动点,则P A+PC的最小值为.24.如下左图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=6.将腰CD以D为旋转中心逆时针旋转90°至DE,连接AE,则△ADE的面积是.25.如上右图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4),记为C1,它与x轴交于点O,A1:将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于A3;…如此进行下去,直至得C10,若P(37,m)在第10段抛物线C10上,则m= .26.正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=(x >0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为.27.如上右图所示,在⊙O中,点A在圆内,B、C在圆上,其中OA=7,BC=18,∠A=∠B=60°,则tan∠OBC= .28.四边形ABCD、AEFG都是正方形,当正方形AEFG绕点A逆时针旋转45°时,如图,连接DG、BE,并延长BE交DG于点H,且BH⊥DG与H.若AB=4,AE=时,则线段BH的长是.29.如上右图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是.30.如图,梯形ABCD中,AD∥BC,BE平分∠ABC,且BE⊥CD于E,P是BE上一动点.若BC=6,CE=2DE,则|PC﹣P A|的最大值是.中考数学选择、填空压轴题一、选择题(共15小题)1.如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD =,E为CD 中点,连接AE,且AE =2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A.1B.3﹣C.﹣1 D.4﹣2解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD =,AE=EG =2,∴AG=AE+EG =2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD =,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选:D.本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.2.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC 的三个顶点分别在这三条平行直线上,则sinα的值是()A.B.C.D.考点:全等三角形的判定与性质;平行线之间的距离;等腰直角三角形;锐角三角函数的定义.解答:解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,在Rt△ACD中,AC ===,在等腰Rt△ABC中,AB =AC =×=,∴sinα==.选D.点评:本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.3.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12 C.32 D.64考点:等边三角形的性质;含30度角的直角三角形.解答:解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.4.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A.:1 B.:1 C.5:3 D.不确定考点:相似三角形的判定与性质;等边三角形的性质.解答:解:连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB =:1,∵∠DOE+∠EOA=∠BOA+∠EOA即∠DOA=∠EOB,∴△DOA∽△EOB∴OD:OE=OA:OB=AD:BE =:1.故选:A.点评:本题主要考查了相似三角形的判定及性质、等边三角形的性质,本题的关键在于找到需要证相似的三角形,找到对应边的比即可.5.如图所示,点P(3a,a)是反比例函数y =(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y =B.y =C.y =D.y =解;由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP ==A.于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y =,得:k=6×2=12.反比例函数解析式为:y =.6.如上右图,已知点A,B,C,D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为()A.cm2B.(π﹣)cm2C.cm2D.cm2解答:解:∵AC平分∠BCD ,∴=,∵AD∥BC,AC平分∠BCD,∠ADC=120°所以∠ACD=∠DAC=30°,∴=,∴∠BAC=90°∠B=60°,∴BC=2AB,∴四边形ABCD的周长=AB+BC+CD+AD =BC×3+BC=10,解得BC=4cm,∴圆的半径=×4=2cm,∴阴影部分的面积=[π×22﹣(2+4)×÷2]÷3=π﹣cm故选:B.点评:本题的关键是要证明BC就是圆的直径,然后根据给出的周长求半径,再求阴影部分的面积.7.如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A.20π﹣16 B.10π﹣32 C.10π﹣16 D.20π﹣132 考点:扇形面积的计算.分析:图中阴影部分的面积为两个半圆的面积﹣三角形的面积,然后利用三角形的面积计算即可.解答:解:设各个部分的面积为:S1、S2、S3、S4、S5,如图所示:∵两个半圆的面积和是:S1+S5+S4+S2+S3+S4,△ABC的面积是S3+S4+S5,阴影部分的面积是:S1+S2+S4,∴图中阴影部分的面积为两个半圆的面积减去三角形的面积.即阴影部分的面积=π×16+π×4﹣×8×4=10π﹣16.故选:C.点评:本题考查了扇形面积的计算,的关键是看出图中阴影部分的面积为两个半圆的面积﹣三角形的面积.8、如上右图,将半径为6的⊙O沿AB 折叠,与AB垂直的半径OC交于点D 且CD=2OD,则折痕AB的长为()A.B.C.6D.考点:垂径定理;勾股定理;翻折变换(折叠问题).分析:延长CO交AB于E点,连接OB,构造直角三角形,然后再根据勾股定理求出AB的长解答:解:延长CO交AB于E点,连接OB,∵CE⊥AB,∴E为AB的中点,∵OC=6,CD=2OD,∴CD=4,OD=2,OB=6,∴DE =(2OC﹣CD)=(6×2﹣4)=×8=4,∴OE=DE﹣OD=4﹣2=2,在Rt△OEB中,∵OE2+BE2=OB2,∴BE ===4∴AB=2BE =8.故选:B.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.9.如上右图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=()A.B.C.D.2考点:三角形的内切圆与内心;锐角三角函数的定义.解答:解:过O点作OE⊥AB OF⊥AC OG⊥BC,∴∠OGC=∠OFC=∠OED=90°,∵∠C=90°,AC=6 BC=8,∴AB=10∵⊙O为△ABC的内切圆,∴AF=AE,CF=CG(切线长相等)∵∠C=90°,∴四边形OFCG是矩形,∵OG=OF,∴四边形OFCG是正方形,设OF=x,则CF=CG=OF=x,AF=AE=6﹣x,BE=BG=8﹣x,∴6﹣x+8﹣x=10,∴OF=2,∴AE=4,∵点D是斜边AB的中点,∴AD=5,∴DE=AD﹣AE=1,∴tan∠ODA==2.故选:D.点评:此题要能够根据切线长定理证明:作三角形的内切圆,其中的切线长等于切线长所在的两边和与对边差的一半;直角三角形内切圆的半径等于两条直角边的和与斜边的差的一半.10.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当P A+PD取最小值时,△APD中边AP上的高为()A.B.C.D.3考点:轴对称-最短路线问题;勾股定理.解答:解:过点D作DE⊥BC于E,∵AD∥BC,AB⊥BC,∴四边形ABED是矩形,∴BE=AD=2,∵BC=CD=5,∴EC=3,∴AB=DE=4,延长AB到A′,使得A′B=AB,连接A′D交BC于P,此时PA+PD最小,即当P在AD的中垂线上,PA+PD取最小值,∵B为AA′的中点,BP∥AD∴此时BP为△AA′D的中位线,∴BP=AD=1,根据勾股定理可得AP==,在△APD中,由面积公式可得△APD中边AP上的高=2×4÷=.故选:C.11.如上右图,在△ABC中,AB=AC,∠BAC=90°,点D为线段BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,CF交DE于点P.若AC=,CD=2,则线段CP的长()A.1B.2C.D.考点:正方形的性质;全等三角形的判定与性质;等腰直角三角形.解答:解:过A作AM⊥BD于M,∵∠BAC=90°,AB=AC=4,∴∠B=∠ACB=45°,由勾股定理得:BC=8,∵CD=2,∴BD=8﹣2=6,∵∠BAC=90°,AB=AC,AM⊥BC,∴∠B=∠BAM=45°,∴BM=AM,∵AB=4,∴由勾股定理得:BM=AM=4,∴DM=6﹣4=2,在Rt△AMD中,由勾股定理得:AD==2,∵四边形ADEF是正方形,∴EF=DE=AF=AD=2,∠E=90°,∵ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAC=90°,∴∠BAD=∠CAF=90°﹣∠DA C.设CP=x,在△ABD和△ACF中∴△ABD≌△ACF(SAS),∴CF=BD=6,∠B=∠ACB=∠ACF=45°,∴∠PCD=90°=∠E,∵∠FPE=∠DPC,∴△FPE∽△DPC,∴=,∴=,x2+3x﹣4=0,x=﹣4(舍去),x=1,即CP=1,故选:A.点评:本题考查了正方形性质,全等三角形的性质和判定,相似三角形的性质和判定的应用,关键是能得出关于x的方程,题目比较好,但是有一定的难度.12.如上右图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.4考点:轴对称-最短路线问题;正方形的性质.解答:解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D ′=2,即DQ+PQ的最小值为2.故选:C.点评:本题考查的是轴对称﹣最短路线问题,根据题意作出辅助线是解答此题的关键.13.如上右图,已知抛物线l 1:y =﹣x 2+2x 与x 轴分别交于A 、O 两点,顶点为M .将抛物线l 1关于y 轴对称到抛物线l 2.则抛物线l 2过点O ,与x 轴的另一个交点为B ,顶点为N ,连接AM 、MN 、NB ,则四边形AMNB 的面积( ) A . 3 B . 6 C . 8 D . 10 14.如上右图所示的二次函数y =ax 2+bx +c 的图象中,刘星同学观察得出了下面四条信息:①a +b +c =0;②b >2a ;③ax 2+bx +c =0的两根分别为﹣3和1;④a ﹣2b +c >0.你认为其中正确的有( )解: 解:∵抛物线l 1的解析式为:y =﹣x 2+2x =﹣(x ﹣1)2+1,∴顶点坐标为:M (1,1),当y =0时,﹣x 2+2x =0,解得:x =0或x =2,则A 坐标为(2,0),∵l 2和l 1关于y 轴对称,∴AM =BN ,N 和M 关于y 轴对称,B 和A 关于y 轴对称,则N (﹣1,1),B (﹣2,0),过N 作NC ⊥AB 交AB 与点C ,∵AM =BN ,MN ∥AB ,∴四边形NBAM 是等腰梯形,在等腰梯形NBAM 中,MN ,1﹣(﹣1)=2,AB =2﹣(﹣2)=4,NC =1, ∴S 四边形NBAM =(MN +AB )•NC =3. 故选:A .1415 点评: 本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和等腰梯形的面积求法,根据对称图形得出N ,B 的坐标是解答本题的关键.A . 4个B .3个 C . 2个 D . 1个考点: 二次函数图象与系数的关系. 解答: 解:∵抛物线过点(1,0),∴a +b +c =0,所以①正确;∵抛物线的对称轴为直线x =﹣=﹣1,∴2a ﹣b =0,所以②错误;∵点(1,0)关于直线x=﹣1的对称点为(﹣3,0),∴抛物线与x轴两交点坐标为(﹣3,0),(1,0),∴ax2+bx+c=0的两根分别为﹣3和1,所以③正确;∵b=2a,a+b+c=0,∴a+2a+c=0,即c=﹣3a,∴a﹣2b+c=a﹣4a﹣3a=﹣7a,∵抛物线开口向上,∴a>0,∴a﹣2b+c=﹣7a<0,所以④错误.故选:C.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).也考查了一次函数的性质.15.如图,已知抛物线与x轴分别交于A、B两点,顶点为M.将抛物线l1沿x轴翻折后再向左平移得到抛物线l2.若抛物线l2过点B,与x轴的另一个交点为C,顶点为N,则四边形AMCN的面积为()A.32 B.16 C.50 D.40考点:二次函数综合题;轴对称的性质.解答:解:由y=x2﹣6x+5得y=(x﹣1)(x﹣5)或y=(x﹣3)2﹣4,∴抛物线l1与x轴两交点坐标为A(5,0),B(1,0),顶点坐标M(3,﹣4),∴AB=5﹣1=4,由翻折,平移可知,BC=AB=4,N(﹣1,4),∴AC=AB+BC =8,S四边形AMCN=S△ACN+S△ACM=×8×4+×8×4=32.故选:A.点评:本题主要考查了二次函数解析式的确定、函数图象交点的求法等知识点.主要考查学生数形结合的数学思想方法.二、填空题(共15小题)16.如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.考点:规律型:图形的变化类.专题:压轴题;规律型.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.如果是第n个图,则有2×3n﹣1个故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.17.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第6幅图中有个正方形.考点:规律型:图形的变化类.解答:解:观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,------------…第n个有:n(n+1)(2n+1)个正方形,第6个有1+4+9+16+25+36=91个正方形,故答案为:91点评:本题考查了图形的变化类问题,解题的关键是仔细关系图形并找到规律,本题采用了穷举法.18.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.考点:正方形的性质;全等三角形的判定与性质;等腰直角三角形.解答:解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO =90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=N B.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.点评:此题考查了正方形的性质,全等三角形的判定与性质,勾股定理,以及等腰直角三角形的判定与性质、角平分线的判定,利用了转化及等量代换的思想,根据题意作出相应的辅助线是解本题的关键.19.如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC 的解析式为,则tanA的值是.考点:一次函数综合题.解答:解:根据三角形内心的特点知∠ABO=∠CBO,∵已知点C、点B的坐标,∴OB=OC,∠OBC=45°,∠ABC=90°可知△ABC为直角三角形,BC=2,∵点A在直线AC上,设A点坐标为(x,x﹣1),根据两点距离公式可得:AB2=x2+,AC2=(x﹣2)2+,在Rt△ABC中,AB2+BC2=AC2,解得:x=﹣6,y=﹣4,∴AB=6,∴tanA===.故答案为:.点评:本题主要考查了三角形内心的特点,两点间距离公式、勾股定理,综合性较强,难度较大.20.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(m,﹣2m)放入其中,得到实数2,则m= .考点:解一元二次方程-因式分解法.解答:解:把实数对(m,﹣2m)代入a2+b﹣1=2中得m2﹣2m﹣1=2移项得m2﹣2m﹣3=0 因式分解得(m﹣3)(m+1)=0解得m=3或﹣1.故答案为:3或﹣1.点评:根据题意,把实数对(m,﹣2m)代入a2+b﹣1=2中,并进行因式分解,再利用积为0的特点解出方程的根.21.对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是.考点:概率公式;平行四边形的判定.解答:解:从四个条件中选两个共有六种可能:①②、①③、①④、②③、②④、③④,其中只有①②、①③和③④可以,所以其概率为=.故答案为:.点评:用到的知识点为:概率=所求情况数与总情况数之比;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.22.如图,已知直线l:y=x,过点A(0,1)作轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,则点A2014的坐标为.(提示:∠BOX=30°)考点:一次函数图象上点的坐标特征.解答:解:∵直线l的解析式为;y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴OB=2,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴A1O=4,∴A1(0,4),同理可得A2(0,16),…∴A2014纵坐标为42014,∴A2014(0,42014).故答案为:(0,42014).点评:本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A、A1、A2、A3…的点的坐标是解决本题的关键.23.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(6,),点C的坐标为(1,0),点P为斜边OB上的一个动点,则P A+PC的最小值为.考点:轴对称-最短路线问题;坐标与图形性质.解答:解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵B(6,2),∴AB=2,OA=6,∠B=60°,由勾股定理得:OB=4,由三角形面积公式得:×OA×AB=×OB×AM,∴AM=3,∴AD=2×3=6,∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=AD=3,由勾股定理得:DN=3,∵C(1,0),∴CN=6﹣1﹣3=2,在Rt△DNC中,由勾股定理得:DC==,即PA+PC的最小值是.故答案为:.点评:本题考查了三角形的内角和定理,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置,题目比较好,难度适中.24.如上右图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=6.将腰CD以D为旋转中心逆时针旋转90°至DE,连接AE,则△ADE的面积是.考点:直角梯形;全等三角形的判定与性质;旋转的性质.解答:解:作EF⊥AD交AD延长线于F,作DG⊥B C.如上图所示:∵CD以D为中心逆时针旋转90°至ED,∵AD=4,BC=6,∴DE=DC,DE⊥DC,∠CDG=∠EDF,∴△CDG≌△EDF,∴EF=CG.又∵DG⊥BC,所以AD=BG,∴EF=CG=BC﹣AD=6﹣4=2,∴△ADE的面积是:AD•EF=×4×2=4.故答案为:4.点评:本题考查梯形的性质和旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.25.如图,抛物线:y=﹣x(x﹣4)(0≤x≤4),记为C1,它与x轴交于点O,A1:将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于A3;----------…如此进行下去,直至得C10,若P(37,m)在第10段抛物线C10上,则m= .考点:二次函数图象与几何变换.解答:解:∵一段抛物线:y=﹣x(x﹣4)(0≤x≤4),∴图象与x轴交点坐标为:(0,0),(4,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;-------…如此进行下去,直至得C10.∴C10与x轴的交点横坐标为(36,0),(40,0),且图象在x轴下方,∴C10的解析式为:y10=(x﹣36)(x﹣40),当x=37时,y=(37﹣36)×(37﹣40)=﹣3.故答案为:﹣3.点评:本题考查了二次函数图象与几何变换,根据平移规律得出C10与x轴的交点坐标,进而得到解析式是解题关键.27 如上右图所示,在⊙O中,点A在圆内,B、C在圆上,其中OA=7,BC=18,∠A=∠B=60°,则tan∠OBC= .26.正方形的A1B1P1P2顶点P1、P2在反比例函数y =(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y =(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为.考点:反比例函数综合题.解答:解:作P1C⊥y轴于C,P2D⊥x轴于D,P3E⊥x轴于E,P3F⊥P2D于F,如图,设P1(a,),则CP1=a,OC=,∵四边形A1B1P1P2为正方形,∴Rt△P1B1C≌Rt△B1A1O≌Rt△A1P2D,∴OB1=P1C=A1D=a,∴OA1=B1C=P2D=﹣a,∴OD=a+﹣a=,∴P2的坐标为(,﹣a),把P2的坐标代入y=(x>0),得到(﹣a)•=2,解得a=﹣1(舍)或a=1,∴P2(2,1),设P3的坐标为(b,),又∵四边形P2P3A2B2为正方形,∴Rt△P2P3F≌Rt△A2P3E,∴P3E=P3F=DE=,∴OE=OD+DE=2+,∴2+=b,解得b=1﹣(舍),b=1+,∴==﹣1,∴点P3的坐标为(+1,﹣1).点评:本题考查了反比例函数,三角形全等的判定与性质以及解分式方程的方法28.四边形ABCD 、AEFG 都是正方形,当正方形AEFG 绕点A 逆时针旋转45°时,如图,连接DG 、BE ,并延长BE 交DG 于点H ,且BH ⊥DG 与H .若AB =4,AE =时,则线段BH 的长是 .考点: 旋转的性质;正方形的性质. 解答: 解:连结GE 交AD 于点N ,连结DE ,如图,∵正方形AEFG 绕点A 逆时针旋转45°,∴AF 与EG 互相垂直平分,且AF 在AD 上,∵AE =,∴AN =GN =1,∴DN =4﹣1=3, 在Rt △DNG 中,DG ==;由题意可得:△ABE 相当于逆时针旋转90°得到△AGD ,∴DG =BE =, ∵S △DEG =GE •ND =DG •HE ,∴HE ==,∴BH =BE +HE =+=.点评: 本题考查了旋转及正方形的性质,解题的关键是会运用勾股定理和等腰直角三角形的性质进行几何计算.考点: 垂径定理;等边三角形的判定与性质;勾股定理.解答: 解:过O 作OD ⊥BC ,延长AO ,交BC 于点E ,∵∠A =∠B =60°,∴∠OED =60°,∠EOD =30°,在Rt △ODE 中,设DE =x ,则OE =2x ,OD =x ,∵OD ⊥BC ,∴D 为BC 的中点,即BD =CD =BC =9,∵AE =BE ,∴7+2x =9+x ,解得:x =2,即OD =2,∴tan ∠OBC ==.点评: 此题考查了垂径定理,勾股定理,以及等边三角形的判定与性质29.如上右图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ⊥ED ;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是 ①③⑤ .考点: 正方形的性质;垂线;三角形的面积;全等三角形的判定与性质;勾股定理. 解答: 解:由边角边定理易知△APD ≌△AEB ,故①正确;由△APD ≌△AEB 得,∠AEP =∠APE =45°,从而∠APD =∠AEB =135°, 所以∠BEP =90°,过B 作BF ⊥AE ,交AE 的延长线于F ,则BF 的长是点B 到直线AE 的距离,在△AEP 中,由勾股定理得PE =, 在△BEP 中,PB =,PE =,由勾股定理得:BE =, ∵∠PAE =∠PEB =∠EFB =90°,AE =AP ,∴∠AEP =45°,∴∠BEF =180°﹣45°﹣90°=45°,∴∠EBF =45°,∴EF =BF ,在△EFB 中,由勾股定理得:EF =BF =, 故②是错误的;因为△APD ≌△AEB ,所以∠ADP =∠ABE ,而对顶角相等,所以③正确; 由△APD ≌△AEB ,∴PD =BE =, 可知S △APD +S △APB =S △AEB +S △APB =S △AEP +S △BEP =+,因此④是错误的;连接BD ,则S △BPD =PD ×BE =,所以S △ABD =S △APD +S △APB +S △BPD =2+, 所以S 正方形ABCD =2S △ABD =4+.综上可知,正确的有①③⑤.点评: 此题分别考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.30.如上右图,梯形ABCD中,AD∥BC,BE平分∠ABC,且BE⊥CD于E,P是BE上一动点.若BC=6,CE=2DE,则|PC﹣PA|的最大值是.考点:梯形;三角形三边关系;等腰三角形的判定与性质.解答:解:延长BA交CD的延长线于F,∵BE平分∠ABC,∴∠FBE=∠CBE,∵BE⊥CD,∴∠BEF=∠BEC=90°,∵在△FBE和△CBE中,∴△FBE≌△CBE(ASA),∴BF=BC=6,EF=EC,∵BE⊥CF,∴PC=PF,即|PC﹣PA|=|PF﹣PA|,根据两点之间线段最短得:|PF﹣PA|≤AF,即当|PC﹣PA|的最大值是AF,∴当P和B重合时,|PC﹣PA|=|BC﹣BA|=AF,∵EF=CE,CE=2DE,∴DF=DE=CE=CF,∵AD∥BC,∴△AFD∽△BFC,∴==,∴AF=BC=×6=,即|PC﹣PA|的最大值是,点评:本题考查了全等三角形的性质和判定,相似三角形的性质和判定,线段垂直平分线定理等知识点的应用,关键是找出最大值是指哪一条线段的长,题目具有一定的代表性,但是有一定的难度.。

中考数学28道压轴题含答案解析

中考数学28道压轴题含答案解析

中考数学选填压轴题练习一.根的判别式(共1小题)1.(2023•广州)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【分析】首先根据关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,得判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,由此可得k≤1,据此可对进行化简.【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二.函数的图象(共1小题)2.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米B.4800米C.5200米D.5400米【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.三.动点问题的函数图象(共1小题)3.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.【分析】如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,结合图象可知,当点P在AO上运动时,PB=PC,AO=,易知∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,可知AO=OB=,过点O作OD⊥AB,解直角三角形可得AD=AO•cos30°,进而得出等边三角形ABC的边长.【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OD⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.四.反比例函数系数k的几何意义(共1小题)4.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x 轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC =2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为12,a的值为9.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D (﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.五.反比例函数图象上点的坐标特征(共2小题)5.(2023•德州)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式()A.y=﹣B.C.D.【分析】先根据函数图象经过点B和点E,求出a和b,再由所得函数解析式即可解决问题.【解答】解:由题知,A(6,0),B(6,3),C(0,3),令直线AC的函数表达式为y1=k1x+b1,则,解得,所以.又因为点D为OA的中点,所以D(3,0),同理可得,直线BD的函数解析式为y2=x﹣3,由得,x=4,则y=4﹣3=1,所以点E坐标为(4,1).将B,E两点坐标代入函数解析式得,,解得.所以,则,将此函数图象向左平移3个单位长度,再向下平移4个单位长度,所得图象的函数解析式为:.故选:D.6.如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=k1x+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,,当D的坐标为(2+3,)时,BD2==9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣3,)时,BD2=+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.六.反比例函数与一次函数的交点问题(共1小题)7.(2023•湖州)已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠﹣2),点C(t,m)和点D(t+2,n)在函数的图象上.当p﹣m与q﹣n的积为负数时,t的取值范围是()A.或B.或C.﹣3<t<﹣2或﹣1<t<0D.﹣3<t<﹣2或0<t<1【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得k1=k2.令k1=k2=k,代入两个函数表达式,并分别将点A、B的坐标和点C、D的坐标代入对应函数,进而分别求出p﹣m与q﹣n的表达式,代入解不等式(p﹣m)(q﹣n)<0并求出t的取值范围即可.【解答】解:∵y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,∴k1=k2.令k1=k2=k(k>0),则y=k1x=kx,=.将点A(t,p)和点B(t+2,q)代入y=kx,得;将点C(t,m)和点D(t+2,n)代入y=,得.∴p﹣m=kt﹣=k(t﹣),q﹣n=k(t+2)﹣=k(t+2﹣),∴(p﹣m)(q﹣n)=k2(t﹣)(t+2﹣)<0,∴(t﹣)(t+2﹣)<0.∵(t﹣)(t+2﹣)=•=<0,∴<0,∴t(t﹣1)(t+2)(t+3)<0.①当t<﹣3时,t(t﹣1)(t+2)(t+3)>0,∴t<﹣3不符合要求,应舍去.②当﹣3<t<﹣2时,t(t﹣1)(t+2)(t+3)<0,∴﹣3<t<﹣2符合要求.③当﹣2<t<0时,t(t﹣1)(t+2)(t+3)>0,∴﹣2<t<0不符合要求,应舍去.④当0<t<1时,t(t﹣1)(t+2)(t+3)<0,∴0<t<1符合要求.⑤当t>1时,t(t﹣1)(t+2)(t+3)>0,∴t>1不符合要求,应舍去.综上,t的取值范围是﹣3<t<﹣2或0<t<1.故选:D.七.二次函数图象与系数的关系(共3小题)8.(2023•乐至县)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).现有以下结论:①abc<0;②5a+c=0;③对于任意实数m,都有2b+bm≤4a﹣am2;④若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,则y1<y2,其中正确的结论是()A.①②B.②③④C.①②④D.①②③④【分析】根据题意和函数图象,利用二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).∴﹣=﹣2,a+b+c=0,∴b=4a,∴a+b+c=a+4a+c=0,故5a+c=0,故②正确,∵当x=﹣2时,y=4a﹣2b+c取得最小值,∴am2+bm+c≥4a﹣2b+c,即2b+bm≥4a﹣am2(m为任意实数),故③错误,∵抛物线开口向上,对称轴为直线x=﹣2,若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,∴y1<y2,故④正确;故选:C.9.(2023•丹东)抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为A(﹣3,0),与y轴交于点C,点D是抛物线的顶点,对称轴为直线x=﹣1,其部分图象如图所示,则以下4个结论:①abc>0;②E(x1,y1),F(x2,y2)是抛物线y=ax2+bx(a≠0)上的两个点,若x1<x2,且x1+x2<﹣2,则y1<y2;③在x轴上有一动点P,当PC+PD的值最小时,则点P的坐标为;④若关于x的方程ax2+b(x﹣2)+c =﹣4(a≠0)无实数根,则b的取值范围是b<1.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:根据所给函数图象可知,a>0,b>0,c<0,所以abc<0,故①错误.因为抛物线y=ax2+bx的图象可由抛物线y=ax2+bx+c的图象沿y轴向上平移|c|个单位长度得到,所以抛物线y=ax2+bx的增减性与抛物线y=ax2+bx+c的增减性一致.则当x<﹣1时,y随x的增大而减小,又x1<x2,且x1+x2<﹣2,若x2<﹣1,则E,F两点都在对称轴的左侧,此时y1>y2.故②错误.作点C关于x轴的对称点C′,连接C′D与x轴交于点P,连接PC,此时PC+PD的值最小.将A(﹣3,0)代入二次函数解析式得,9a﹣3b+c=0,又,即b=2a,所以9a﹣6a+c=0,则c=﹣3a.又抛物线与y轴的交点坐标为C(0,c),则点C坐标为(0,﹣3a),所以点C′坐标为(0,3a).又当x=﹣1时,y=﹣4a,即D(﹣1,﹣4a).设直线C′D的函数表达式为y=kx+3a,将点D坐标代入得,﹣k+3a=﹣4a,则k=7a,所以直线C′D的函数表达式为y=7ax+3a.将y=0代入得,x=.所以点P的坐标为(,0).故③正确.将方程ax2+b(x﹣2)+c=﹣4整理得,ax2+bx+c=2b﹣4,因为方程没有实数根,所以抛物线y=ax2+bx+c与直线y=2b﹣4没有公共点,所以2b﹣4<﹣4a,则2b﹣4<﹣2b,解得b<1,又b>0,所以0<b<1.故④错误.所以正确的有③.故选:A.10.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴为直线x=0,抛物线y=﹣x2+m2x的对称轴为直线x=,∴这两个函数图象对称轴之间的距离==2.故选:A.八.二次函数图象上点的坐标特征(共1小题)11.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac 的值为()A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.九.二次函数与不等式(组)(共1小题)12.(2023•西宁)直线y1=ax+b和抛物线(a,b是常数,且a≠0)在同一平面直角坐标系中,直线y1=ax+b经过点(﹣4,0).下列结论:①抛物线的对称轴是直线x=﹣2;②抛物线与x轴一定有两个交点;③关于x的方程ax2+bx=ax+b有两个根x1=﹣4,x2=1;④若a >0,当x<﹣4或x>1时,y1>y2.其中正确的结论是()A.①②③④B.①②③C.②③D.①④【分析】根据直线y1=ax+b经过点(﹣4,0).得到b=4a,于是得到=ax2+4ax,求得抛物线的对称轴是直线x=﹣﹣=2;故①正确;根据Δ=16a2>0,得到抛物线与x轴一定有两个交点,故②正确;把b=4a,代入ax2+bx=ax+b得到x2+3x﹣4=0,求得x1=﹣4,x2=1;故③正确;根据a>0,得到抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,于是得到结论.【解答】解:∵直线y1=ax+b经过点(﹣4,0).∴﹣4a+b=0,∴b=4a,∴=ax2+4ax,∴抛物线的对称轴是直线x=﹣﹣=2;故①正确;∵=ax2+4ax,∴Δ=16a2>0,∴抛物线与x轴一定有两个交点,故②正确;∵b=4a,∴方程ax2+bx=ax+b为ax2+4ax=ax+4a得,整理得x2+3x﹣4=0,解得x1=﹣4,x2=1;故③正确;∵a>0,抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,∴当x<﹣4或x>1时,y1<y2.故④错误,故选:B.一十.三角形中位线定理(共1小题)13.(2023•广州)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3≤S≤4.【分析】依据题意,根据三角形中位线定理可得DE=AM=1.2;设AM=x,从而DE=x,由DE∥AM,且DE=AM,又FG∥AM,FG=AM,进而DE∥FG,DE=FG,从而四边形DEFG是平行四边形,结合题意可得DE边上的高为(4﹣x),故四边形DEFG面积S=4x﹣x2,进而利用二次函数的性质可得S的取值范围.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3≤S≤4.故答案为:1.2;3≤S≤4.一十一.矩形的性质(共2小题)14.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.15.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为2或1+.【分析】以点D,M,N为顶点的三角形是直角三角形时,分两种情况:如图1,当∠MND=90°时,如图2,当∠NMD=90°时,根据矩形的性质和等腰直角三角形的性质即可得到结论.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.一十二.正方形的性质(共2小题)16.如图,在边长为4的正方形ABCD中,点G是BC上的一点,且BG=3GC,DE⊥AG于点E,BF∥DE,且交AG于点F,则tan∠EDF的值为()A.B.C.D.【分析】由正方形ABCD的边长为4及BG=3CG,可求出BG的长,进而求出AG的长,证△ADE∽△GAB,利用相似三角形对应边成比例可求得AE、DE的长,证△ABF≌△DAE,得AF=DE,根据线段的和差求得EF的长即可.【解答】解:∵四边形ABCD是正方形,AB=4,∴BC=CD=DA=AB=4,∠BAD=∠ABC=90°,AD∥BC,∴∠DAE=∠AGB,∵BG=3CG,∴BG=3,∴在Rt△ABG中,AB2+BG2=AG2,∴AG=,∵DE⊥AG,∴∠DEA=∠DEF=∠ABC=90°,∴△ADE∽△GAB,∴AD:GA=AE:GB=DE:AB,∴4:5=AE:3=DE:4,∴AE=,DE=,又∵BF∥DE,∴∠AFB=∠DEF=90°,又∵AB=AD,∠DAE=∠ABF(同角的余角相等),∴△ABF≌△DAE,∴AF=DE=,∴EF=AF﹣AE=,∴tan∠EDF=,故选:A.17.(2023•湖州)如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是4cm.(2)若,则tan∠DAH的值是3.【分析】(1)将AE和FC用BE表示出来,再代入AE+FC=11cm,即可求出BE的长;(2)由已知条件可以证明∠DAH=∠CDG,从而得到tan∠DAH=tan∠CDG,设AH=x,DG=5k,GH =4k,用x和k的式子表示出CG,再利用tan∠DAH=tan∠CDG列方程,解出x,从而求出tan∠DAH 的值.【解答】解:(1)∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∵AE+FC=11cm,∴BE+BF=11cm,即BE+BE+EF=11cm,即2BE+EF=11cm,∵EF=3cm,∴2BE+3cm=11cm,∴BE=4cm,故答案为:4;(2)设AH=x,∵,∴可设DG=5k,GH=4k,∵四边形EFGH是正方形,∴HE=EF=FG=GH=4k,∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∠ABE=∠CBF=45°,∴CG=CF+GF=BF+4k=BE+8k=AH+12k=x+12k,∠ABC=∠ABE+∠CBF=45°+45°=90°,∵四边形ABCD对角互补,∴∠ADC=90°,∴∠ADH+∠CDG=90°,∵四边形EFGH是正方形,∴∠AHD=∠CGD=90°,∴∠ADH+∠DAH=90°,∴∠DAH=∠CDG,∴tan∠DAH=tan∠CDG,∴,即,整理得:x2+12kx﹣45k2=0,解得x1=3k,x2=﹣15k(舍去),∴tan∠DAH===3.故答案为:3.一十三.正多边形和圆(共1小题)18.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.一十四.扇形面积的计算(共1小题)19.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得r,连接OE,取ED的中点T,连接OT,在Rt△OET中,根据勾股定理即可求解.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.一十五.轴对称-最短路线问题(共1小题)20.(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM 是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB最小,即可得P A+PB 最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF 最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC =(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.一十六.翻折变换(折叠问题)(共2小题)21.(2023•乐至县)如图,在平面直角坐标系xOy中,边长为2的等边△ABC的顶点A、B分别在x轴、y 轴的正半轴上移动,将△ABC沿BC所在直线翻折得到△DBC,则OD的最大值为+1.【分析】过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,在Rt△ABO 中利用斜边中线性质求出OE,根据OE+DE≥OD确定当D、O、E三点共线时OD最大,最大值为OD =OE+DE.【解答】解:如图,过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,∵等边三角形ABC的边长为2,∴AB=2,∠ABC=60°,由翻折可知:∠DBC=∠ABC=60°,DB=AB=2,∴∠DBF=60°,∵DF⊥AB,∴∠DFB=90°,∴∠BDF=30°,∴BF=BD=1,∴DF=BF=,∵E是AB的中点,∴AE=BE=OE=AB=1,∴EF=BE+BF=2,∴DE===,∴OD≤DE+OE=+1,∴当D、E、O三点共线时OD最大,最大值为+1.故答案为:+1.22.(2023•南京)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD =90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE =5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.一十七.旋转的性质(共1小题)23.(2023•西宁)如图,在矩形ABCD中,点P在BC边上,连接P A,将P A绕点P顺时针旋转90°得到P A′,连接CA′,若AD=9,AB=5,CA′=2,则BP=2.【分析】过A′点作A′H⊥BC于H点,如图,根据旋转的性质得到P A=P A′,再证明△ABP≌△PHA′得到PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=4﹣x,然后在Rt△A′CH中利用勾股定理得到x2+(4﹣x)2=(2)2,于是解方程求出x即可.【解答】解:过A′点作A′H⊥BC于H点,如图,∵四边形ABCD为矩形,∴BC=AD=9,∠B=90°,∵将P A绕点P顺时针旋转90°得到P A′,∴P A=P A′,∵∠P AB+∠APB=90°,∠APB+∠A′PH=90°,∴∠P AB=∠A′PH,在△ABP和△PHA′中,,∴△ABP≌△PHA′(AAS),∴PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=9﹣x﹣5=4﹣x,在Rt△A′CH中,x2+(4﹣x)2=(2)2,解得x1=x2=2,即BP的长为2.故答案为:2.一十八.相似三角形的判定与性质(共2小题)24.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DF A,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DF A,∴∠FDE=∠DF A,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.25.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.一十九.相似三角形的应用(共1小题)26.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB 的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.二十.解直角三角形(共1小题)27.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x 轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为(﹣2,0);点D的坐标为(﹣1﹣2,2+)或(﹣1+2,2﹣).【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC =,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.二十一.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH 拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.。

中考数学备考填空压轴题精选(73题)学生版

中考数学备考填空压轴题精选(73题)学生版

2020年中考数学备考填空压轴题精选(73题)教师版1.(2019安徽省)在平面直角坐标系中,垂直于x 轴的直线l 分别与函数y =x ﹣a +1和y =x 2﹣2ax 的图象相交于P ,Q 两点.若平移直线l ,可以使P ,Q 都在x 轴的下方,则实数a 的取值范围是 . 2.(2019北京市)在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ 是平行四边形;②存在无数个四边形MNPQ 是矩形;③存在无数个四边形MNPQ 是菱形;④至少存在一个四边形MNPQ 是正方形.所有正确结论的序号是______.3.(2019福建省)如图,菱形ABCD 顶点A 在函数y =(x >0)的图象上,函数y =(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k = .4.(2019甘肃省)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n 幅图中有2019个菱形,则n = .5.(2019甘肃省)如图,在Rt △ABC 中,∠C =90°,AC =BC =2,点D 是AB 的中点,以A 、B 为圆心,AD 、BD 长为半径画弧,分别交AC 、BC 于点E 、F ,则图中阴影部分的面积为 .6.(2019甘肃省武威市)把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于 .7.(2019广东省)如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).8.(2019广东省广州市)如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =BE ,CF 与AD 相交于点G ,连接EC ,EF ,EG ,则下列结论:①∠ECF =45°;②△AEG 的周长为(1+)a ;③BE 2+DG 2=EG 2;④△EAF 的面积的最大值a 2. 其中正确的结论是 .(填写所有正确结论的序号)9.(2019广东省深圳市)如图,在Rt△ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xk y 上,且y 轴平分脚ACB ,求k= 。

中考数学部分选填压轴

中考数学部分选填压轴

选填压轴题选集一.选择题(共16小题)1.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A.①②③B.②③④C.①③④D.①②④2.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④当x>0时,y1随x的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1B.2C.3D.43.如图,A、B是双曲线上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=6.则k的值为()A.1B.2C.4D.无法确定4.如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④5.如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③B.①③④D.②④6.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是()A.①②④B.③④C.①③④D.①②7.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C 的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3B.C.D.48.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4B.6C.4﹣2D.10﹣49.如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有()A.2个B.3个C.4个D.5个10.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2B.11.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()B.C.D.A.B.12.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4B.5:2C.:2D.:13.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣4,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为()A.B.2C.3D.414.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()B.5C.6D.A.15.如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()A.B.C.D.16.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.二.填空题(共7小题)17.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为.18.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是.19.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x 轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.20.如图,点A1,A2依次在y=(x>0)的图象上,点B1,B2依次在x轴的正半轴上.若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.21.如图,若双曲线y=(k>0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB 分别交于C、D两点,且OC=2BD,则k的值为.22.如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数y=(x>0)的图象上,则△OAB的面积等于.23.如图,已知点A1,A2,…,A n均在直线y=x﹣1上,点B1,B2,…,B n均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,A n B n⊥x轴,B n A n+1⊥y 轴,…,记点A n的横坐标为a n(n为正整数).若a1=﹣1,则a2015=.2018年06月02日445****3977的初中数学组卷参考答案一.选择题(共17小题)1.C;2.C;3.C;4.C;5.C;6.A;7.B;8.D;9.C;10.A;11.A;12.A;13.A;14.B;15.D;16.B;二.填空题(共7小题)17.4;18.6;19.6+2;20.(6,0);21.;22.;23.2;。

2020年中考数学复习冲刺压轴题附详解(填空题200道)

2020年中考数学复习冲刺压轴题附详解(填空题200道)

2020年中考数学复习冲刺压轴题附答案解析填空题200道(满分必备)第一组(共50道题)1.某天,老刘与儿子大华、孙子小毛在甲、乙两地间进行匀速的往返跑.已知大华、小毛及老刘各自往返一趟分别耗时2分钟、5分钟和7分钟.最初,三人都在甲地,老刘出发2分钟后,孙子小毛立即出发,再经过3分钟后儿子大华随即出发.那么,大华出发分钟后,三人第二次同时汇合于甲地.2.设A0,A1,…,A n﹣1依次是面积为整数的正n边形的n个顶点,考虑由连续的若干个顶点连成的凸多边形,如四边形A3A4A5A6、七边形A n﹣2A n﹣1A0A1A2A3A4等,如果所有这样的凸多边形的面积之和是231,那么n的最大值是,此时正n边形的面积是.3.某航班每次约有100名乘客,一次飞行中飞机失事的概率为P=0.00005.一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿40万人民币.平均来说,保险公司为了不亏本,至少应该收取保险费元每人.4.已知关于x的一元二次方程x2+ax+nb=0(1≤n≤3,n为整数),其中a是从2、4、6三个数中任取的一个数,b是从1、3、5三个数中任取的一个数,定义“方程有实数根”为事件A n(n=1,2,3),当A n的概率最小时,n的所有可能值为.5.完全相同的4个小球,上面分别标有数字1、﹣1、2、﹣2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m、n,以m、n分别作为一个点的横坐标与纵坐标,定义点(m,n)在反比例函数上为事件Q k(﹣4≤k≤4,k为整数),当Q k的概率最大时,则k 的所有可能的值为.6.统计学规定:某次测量得到n个结果x1,x2,…,x n.当函数y=+ +…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为.7.若自然数n使得三个数的竖式加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”.例如,2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+53=156产生进位现象.如果从0,1,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是.8.将一个均匀的正方体骰子六个面上标有数字1,2,3,4,5,6,连续抛掷两次骰子,朝上的数字分别m、n,若把m、n作为点p的横、纵坐标,则点P(m,n)落在反比例函数图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的概率是.9.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限内的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①阴影部分的面积为(k1+k2);②若B点坐标为(0,6),A点坐标为(2,2),则k2=﹣8;③当∠AOC=90°时,|k1|=|k2|④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(填写正确结论的序号).10.如图,在一个与地面垂直的截面中建立直角坐标系(横坐标表示地面位移,纵坐标表示高度),一架无人机的飞行路线为y=ax2+bx+c(a≠0),在直角坐标系中x轴上的线段AB上的某点起飞,途经空中线段EF上的某点,最后在线段CD上的某点降落,其中A (﹣2,0)、B(﹣1,0)、C(3,0)、D(4,0)、E(0,3)、F(0,2),则下列结论正确的有(填序号)(1)abc<0;(2)从起飞到当x≤1时无人机一直是上升的;(3)2≤a+b+c≤4.5;(4)最大飞行高度不超过4.11.二次函数y=x2的函数图象如图,点A0位于坐标原点,点A1,A2,A3…A10在y轴的正半轴上,点B1,B2,B3…B10在二次函数y=x2位于第一象限的图象上,△A0B1A1,△A1B2A2,△A2B3A3…△A9B10A10都是直角顶点在抛物线上的等腰直角三角形,则△A9B10A10的斜边长为.12.如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为y=,在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O′B′.设P(t,0),若O′B′某一端点在双曲线上,则t的值为.13.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于.14.如图,两个反比例函数y=和y=在第一象限的图象如图所示,当P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,则四边形P AOB的面积为.15.如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线∁n(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为;抛物线C8的顶点坐标为.16.已知双曲线y=与直线y=x交于A、B两点(点A在点B的左侧).如图,点P是第一象限内双曲线上一动点,BC⊥AP于C,交x轴于F,P A交y轴于E,则的值是.17.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A4的坐标为,点A n.18.如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…,P n(n,P n)….作x轴的垂线,垂足分别为A1,A2,…,A n…,连接A1P2,A2P3,…,A n﹣1P n,…,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3,依此类推,则点B n的纵坐标是.(结果用含n代数式表示)19.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x 应取的值为cm.20.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的坐标是.21.两个反比例函数y=,y=在第一象限内的图象如图所示.点P1,P2,P3、…、P2007在反比例函数y=上,它们的横坐标分别为x1、x2、x3、…、x2007,纵坐标分别是1,3,5…共2007个连续奇数,过P1,P2,P3、…、P2007分别作y轴的平行线,与y=的图象交点依次为Q1(x1′,y1′)、Q1(x2′,y2′)、…、Q2(x2007′,y2007′),则|P2007Q2007|=.22.若抛物线y1=a1x2+b1x+c1与y2=a2x2+b2x+c2满足=k(k≠0,1),则称y1,y2互为“相关抛物线”.给出如下结论:①y1与y2的开口方向,开口大小不一定相同;②y1与y2的对称轴相同;③若y2的最值为m,则y1的最值为k2m;④若y2与x轴的两交点间距离为d,则y1与x轴的两交点间距离也为d.其中正确的结论的序号是(把所有正确结论的序号都填在横线上).23.如图,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2,G 为矩形对角线的交点,经过点G的双曲线与BC相交于点M,则CM:MB=.24.如图,直线y=﹣x+b与双曲线y=(x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,AC⊥x轴于点C,BD⊥y轴于点D,当b=时,△ACE、△BDF与△ABO面积的和等于△EFO面积的.25.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A n的坐标为.26.如图,在平面直角坐标系中,直线交x轴于A点,交y轴于B点,点C 是线段AB的中点,连接OC,然后将直线OC绕点C逆时针旋转30°交x轴于点D,再过D点作直线DC1∥OC,交AB与点C1,然后过C1点继续作直线D1C1∥DC,交x轴于点D1,并不断重复以上步骤,记△OCD的面积为S1,△DC1D1的面积为S2,依此类推,后面的三角形面积分别是S3,S4…,那么S1=,若S=S1+S2+S3+…+S n,当n无限大时,S的值无限接近于.27.如图,直线y=﹣3x+3与x轴交于点B,与y轴交于点A,以线段AB为边,在第一象限内作正方形ABCD,点C落在双曲线y=(k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y=(k≠0)上的点D1处,则a=.28.如图,直线y=﹣2x+2与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T nP n﹣2P n﹣1的面积,则当n=2015时,S1+S2+S3+…+S n﹣1=.﹣129.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为.30.如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为.31.如图,反比例函数y=(x>0)的图象经过点M(1,﹣1),过点M作MN⊥x轴,垂足为N,在x轴的正半轴上取一点P(t,0),过点P作直线OM的垂线l.若点N关于直线l的对称点在此反比例函数的图象上,则t=.32.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为.33.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA1=1,则OA2015的长为.34.在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…S n,则S n的值为(用含n的代数式表示,n为正整数).35.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(6,2),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则第4个正方形的边长是,S3的值为.36.已知:如图,三个半圆依次相外切,它们的圆心都在x轴的正半轴上并与直线y=x 相切,设半圆C1、半圆C2、半圆C3的半径分别是r1、r2、r3,则当r1=1时,r3=.37.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数x的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的横坐标是.38.如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的命题的序号是(写出所有正确命题的序号).39.如图,在平面直角坐标系中,抛物线的顶点为A,与x轴交于O,B两点,点P(m,0)是线段OB上一动点,过点P作y轴的平行线,交直线y=于点E,交抛物线于点F,以EF为一边,在EF的左侧作矩形EFGH.若FG=,则当矩形EFGH 与△OAB重叠部分为轴对称图形时,m的取值范围为.40.如图,每个底边长为2的等腰三角形顶角的反比例函数y=(x>0)的图象上,第1个等腰三角形顶角的顶点横坐标为1,第2个等腰三角形顶角的顶点横坐标为3…以此类推,则第n个等腰三角形底边上的高为(用含n的式子表示).41.在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=x2﹣2交于A,B两点,且A点在y轴左侧,P点的坐标为(0,﹣4),连接P A,PB.有以下说法:①PO2=P A•PB;②当k>0时,(P A+AO)(PB﹣BO)的值随k的增大而增大;③当k=时,BP2=BO•BA;④△P AB面积的最小值为.其中正确的是.(写出所有正确说法的序号)42.A:观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第k个数是.B:如图的平面直角坐标系中有一个正六边形ABCDEF,其中C、D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A.B.C.D.E、F中,会过点(45,2)的是点.43.二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…∁n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n∁n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠A n﹣1B n A n=60°,菱形A n﹣1B n A n∁n的周长为.44.如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B (点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为.45.如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1=,S n=.(用含n的代数式表示)46.如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是,A92的坐标是.47.如图,点P1(x1,y1),点P2(x2,y2),…,点P n(x n,y n)在函数(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…,△P n A n﹣1A n都是等腰直角三角形,斜边OA1、A1A2、A2A3,…,A n﹣1A n都在x轴上(n是大于或等于2的正整数),则点P3的坐标是;点P n的坐标是(用含n的式子表示).48.如图,在平面直角坐标系中,点D的坐标为(6,14),过点D的直线y=kx+b交x轴、y轴于点M、N,四边形ABCD、A1B1C1C、A2B2C2C1,…均为正方形.(1)正方形ABCD的边长为;(2)若如此连续组成正方形,则正方形A3B3C3C2的边长为.49.如图所示,直线y=x+1与y轴交于点A1,以OA1为边作正方形OA1B1C1,然后延长C1B1与直线y=x+1交于点A2,得到第一个梯形A1OC1A2;再以C1A2为边作正方形C1A2B2C2,同样延长C2B2与直线y=x+1交于点A3得到第二个梯形A2C1C2A3;再以C2A3为边作正方形C2A3B3C3,延长C3B3,得到第三个梯形;…则第2个梯形A2C1C2A3的面积是;第n(n是正整数)个梯形的面积是(用含n的式子表示).50.如图,⊙O的半径为2,C1是函数的的图象,C2是函数的的图象,C3是函数的y=x的图象,则阴影部分的面积是.第一组(共50道题)答案解析1.某天,老刘与儿子大华、孙子小毛在甲、乙两地间进行匀速的往返跑.已知大华、小毛及老刘各自往返一趟分别耗时2分钟、5分钟和7分钟.最初,三人都在甲地,老刘出发2分钟后,孙子小毛立即出发,再经过3分钟后儿子大华随即出发.那么,大华出发72分钟后,三人第二次同时汇合于甲地.【分析】先求出大华出发多少分钟后三人第一次同时汇合于甲地,随后再求出三人同时从甲地出发又一次同时汇合于甲地所需的最短时间.【解答】解:依题意,若三人同时从甲地出发各自往返一趟,小毛晚于大华3分钟回到甲地,老刘晚于大华5分钟回到甲地.而现在小毛刚好早于大华3分钟出发,老刘刚好早于大华2+3=5(分钟)出发,则在大华耗时2分钟回到甲地时,三人第一次同时汇合于甲地.随后三人同时从甲地出发,经过最短时间2分钟、5分钟、7分钟的最小公倍数70分钟后,三人将又一次同时汇合于甲地.所以大华出发2+70=72(分钟)后,三人第二次同时汇合于甲地.故答案为72.2.设A0,A1,…,A n﹣1依次是面积为整数的正n边形的n个顶点,考虑由连续的若干个顶点连成的凸多边形,如四边形A3A4A5A6、七边形A n﹣2A n﹣1A0A1A2A3A4等,如果所有这样的凸多边形的面积之和是231,那么n的最大值是23,此时正n边形的面积是1.【分析】先通过找规律找出P与n的关系式P=n2﹣n+1,再化为P=(n﹣)2+,由于n≥3,故P值越大,n取值越大.在凸多边形面积之和为231时,由于正n边形的面积为整数,故其面积取最小值1时,P值最大,从而得出关于n的方程求解即可.【解答】解:用找规律找出P与n的关系式不难发现,P与n有下表所列的关系n 3 4 5 6P 1(0+1)=(3﹣3)×3÷2+13(2+1)=(4﹣3)×4÷2+16(5+1)=(5﹣3)×5÷2+110(6+3+1)=(6﹣3)×6÷2+1因此,P=(n﹣3)•n÷2+1,即P=n2﹣n+1.P=n2﹣n+1可以化为P=(n﹣)2+,由于n≥3,故P值越大,n取值越大.在凸多边形面积之和为231时,由于正n边形的面积为整数,故其面积取最小值1时,P值最大代入各值,得:231÷1=n2﹣n+1,整理得:n2﹣3n﹣460=0解得n=23或n=﹣20(不合题意,舍去)故n=23为最大值,此时正23边形的面积为1.故答案为:23,1.3.某航班每次约有100名乘客,一次飞行中飞机失事的概率为P=0.00005.一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿40万人民币.平均来说,保险公司为了不亏本,至少应该收取保险费20元每人.【分析】先求出飞机失事时保险公司应赔偿的金额,再根据飞机失事的概率求出赔偿的钱数即可解答.【解答】解:每次约有100名乘客,如飞机一旦失事,每位乘客赔偿40万人民币,共计4000万元,一次飞行中飞机失事的概率为P=0.00005,故赔偿的钱数为40000000×0.00005=2000元,故至少应该收取保险费每人=20元.4.已知关于x的一元二次方程x2+ax+nb=0(1≤n≤3,n为整数),其中a是从2、4、6三个数中任取的一个数,b是从1、3、5三个数中任取的一个数,定义“方程有实数根”为事件A n(n=1,2,3),当A n的概率最小时,n的所有可能值为2或3.【分析】算出相应的概率,判断n的值即可.【解答】解:(1)当n=1时,△=a2﹣4b,①a=2,b=1,△=a2﹣4b=4﹣4=0,有实根,②a=2,b=3,△=a2﹣4b=4﹣12=﹣8<0,无实根,③a=2,b=5,△=a2﹣4b=4﹣20=﹣16<0,无实根,④a=4,b=1,△=a2﹣4b=16﹣4=12>0,有实根,⑤a=4,b=3,△=a2﹣4b=16﹣12=4>0,有实根,⑥a=4,b=5,△=a2﹣4b=16﹣20=﹣4<0,无实根,⑦a=6,b=1,△=a2﹣4b=36﹣4=32>0,有实根,⑧a=6,b=3,△=a2﹣4b=36﹣12=24>0,有实根,⑨a=6,b=5,△=a2﹣4b=36﹣20=16>0,有实根.P(A n)=.(2)当n=2时,△=a2﹣8b,①a=2,b=1,△=a2﹣8b=4﹣8=﹣4<0,无实根,②a=2,b=3,△=a2﹣8b=4﹣24=﹣20<0,无实根,③a=2,b=5,△=a2﹣8b=4﹣40=﹣36<0,无实根,④a=4,b=1,△=a2﹣8b=16﹣8=8>0,有实根,⑤a=4,b=3,△=a2﹣8b=16﹣24=﹣8<0,无实根,⑥a=4,b=5,△=a2﹣8b=16﹣40=﹣24<0,无实根,⑦a=6,b=1,△=a2﹣8b=36﹣8=28>0,有实根,⑧a=6,b=3,△=a2﹣8b=36﹣24=12>0,有实根,⑨a=6,b=5,△=a2﹣8b=36﹣40=﹣4<0,无实根.P(A n)==.(3)当n=3时,△=a2﹣12b,①a=2,b=1,△=a2﹣12b=4﹣12=﹣8<0,无实根,②a=2,b=3,△=a2﹣12b=4﹣36=﹣32<0,无实根,③a=2,b=5,△=a2﹣12b=4﹣60=﹣56<0,无实根,④a=4,b=1,△=a2﹣12b=16﹣12=4>0,有实根,⑤a=4,b=3,△=a2﹣12b=16﹣36=﹣20<0,无实根,⑥a=4,b=5,△=a2﹣12b=16﹣60=﹣44<0,无实根,⑦a=6,b=1,△=a2﹣12b=36﹣12=24>0,有实根,⑧a=6,b=3,△=a2﹣12b=36﹣36=0,有实根,⑨a=6,b=5,△=a2﹣12b=36﹣60=﹣24<0,无实根.P(A n)==.由以上三种情况可知:A n的概率最小时,n的所有可能值为2或3.5.完全相同的4个小球,上面分别标有数字1、﹣1、2、﹣2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m、n,以m、n分别作为一个点的横坐标与纵坐标,定义点(m,n)在反比例函数上为事件Q k(﹣4≤k≤4,k为整数),当Q k的概率最大时,则k 的所有可能的值为±2.【分析】首先根据题意列出表格,然后根据表格求得k取不同值时的概率,比较大小即可确定k的所有可能的值.【解答】解:列表得:(1,﹣2)(﹣1,﹣2)(2,﹣2)(﹣2,﹣2)(1,2)(﹣1,2)(2,2)(﹣2,2)(1,﹣1)(﹣1,﹣1)(2,﹣1)(﹣2,﹣1)(1,1)(﹣1,1)(2,1)(﹣2,1)∴点(m,n)共有16种可能性,∵若点(m,n)在反比例函数上,则k=mn,∵P(k=﹣4)==,P(k=﹣1)==,P(k=﹣2)==,P(k=1)==,P(k=2)==,P(k=4)==,∴当Q k的概率最大时,k=±2.故答案为:±2.6.统计学规定:某次测量得到n个结果x1,x2,…,x n.当函数y=+ +…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为10.1.【分析】根据题意可知“最佳近似值”x是与其他近似值比较,根据均值不等式求平方和的最小值知这些数的底数要尽可能的接近,求出x是所有数字的平均数即可.【解答】解:根据题意得:x=(9.8+10.1+10.5+10.3+9.8)÷5=10.1;故答案为:10.1.7.若自然数n使得三个数的竖式加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”.例如,2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+53=156产生进位现象.如果从0,1,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是0.88.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵若自然数n使得三个数的竖式加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”,当n=0时,0+1=1,0+2=2,n+(n+1)+(n+2)=0+1+2=3,不是连加进位数;当n=1时,1+1=2,1+2=3,n+(n+1)+(n+2)=1+2+3=6,不是连加进位数;当n=2时,2+1=3,2+2=4,n+(n+1)+(n+2)=2+3+4=9,不是连加进位数;当n=3时,3+1=4,3+2=5,n+(n+1)+(n+2)=3+4+5=12,是连加进位数;故从0,1,2,…,9这10个自然数共有连加进位数10﹣3=7个,由于10+11+12=33没有不进位,所以不算.又13+14+15=42,个位进了一,所以也是进位.按照规律,可知0,1,2,10,11,12,20,21,22,30,31,32不是连加进位数,其他都是.所以一共有88个数是连加进位数.概率为0.88.故答案为:0.88.8.将一个均匀的正方体骰子六个面上标有数字1,2,3,4,5,6,连续抛掷两次骰子,朝上的数字分别m、n,若把m、n作为点p的横、纵坐标,则点P(m,n)落在反比例函数图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的概率是.【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与点P(m,n)落在反比例函数图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的情况,再利用概率公式求得答案.【解答】解:列表得:123456第一次第二次1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)∵共有36种等可能的结果,点P(m,n)落在反比例函数图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的有:(1,1),(1,2),(1,3),(2,1),(3,1),∴点P(m,n)落在反比例函数图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的概率是:.故答案为:.9.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限内的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①阴影部分的面积为(k1+k2);②若B点坐标为(0,6),A点坐标为(2,2),则k2=﹣8;③当∠AOC=90°时,|k1|=|k2|④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是②④(填写正确结论的序号).【分析】作AE⊥y轴于点E,CF⊥y轴于点F,①由S△AOM=|k1|,S△CON=|k2|,得到S阴影部分=S△AOM+S△CON=(|k1|+|k2|)=(k1﹣k2);②由平行四边形的性质求得点C的坐标,根据反比例函数图象上点的坐标特征求得系数k2的值.③当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;④若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=﹣k2,根据反比例函数的性质得两双曲线既关于x轴对称,也关于y轴对称.【解答】解:作AE⊥y轴于E,CF⊥y轴于F,如图,①∵S△AOM=|k1|,S△CON=|k2|,∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),而k1>0,k2<0,∴S阴影部分=(k1﹣k2),故①错误;②∵四边形OABC是平行四边形,B点坐标为(0,6),A点坐标为(2,2),O的坐标为(0,0).∴C(﹣2,4).又∵点C位于y=上,∴k2=xy=﹣2×4=﹣8.故②正确;③当∠AOC=90°,∴四边形OABC是矩形,∴不能确定OA与OC相等,而OM=ON,∴不能判断△AOM≌△CNO,∴不能判断AM=CN,∴不能确定|k1|=|k2|,故③错误;④若OABC是菱形,则OA=OC,而OM=ON,∴Rt△AOM≌Rt△CNO,∴AM=CN,∴|k1|=|k2|,∴k1=﹣k2,∴两双曲线既关于x轴对称,也关于y轴对称,故④正确.故答案是:②④④.10.如图,在一个与地面垂直的截面中建立直角坐标系(横坐标表示地面位移,纵坐标表示高度),一架无人机的飞行路线为y=ax2+bx+c(a≠0),在直角坐标系中x轴上的线段AB上的某点起飞,途经空中线段EF上的某点,最后在线段CD上的某点降落,其中A (﹣2,0)、B(﹣1,0)、C(3,0)、D(4,0)、E(0,3)、F(0,2),则下列结论正确的有(1)(4)(填序号)(1)abc<0;(2)从起飞到当x≤1时无人机一直是上升的;(3)2≤a+b+c≤4.5;(4)最大飞行高度不超过4.【分析】根据线段AB上的某点起飞,途经空中线段EF上的某点,最后在线段CD上的某点降落,以及由相关点的坐标和图象可得a,c的正负,由对称性可得b的正负,可判断(1)的对错;由相关起飞点与降落点坐标,可得对称轴的范围,从而可判断(2)的对错;由图象分析出,飞行最高时的起飞点和降落点及过点E,从而可判断(3)(4)的正误.从而本题可解.【解答】解:∵线段AB上的某点起飞,途经空中线段EF上的某点,最后在线段CD上的某点降落,且由所给点的坐标可知,对称轴位于y轴右侧,抛物线开口向下∴a<0,b>0(a,b符号左同右异),c>0(抛物线与y轴交于线段EF上某点)∴abc<0∴(1)正确;当起飞点位于点A,而降落点位于点C时,对称轴为x==<1∴(2)不正确;由图象可知,当抛物线过点B,点E,点C时,飞行高度最大设y=a(x+1)(x﹣3)将E(0,3)代入得:3=a(0+1)(0﹣3)∴a=﹣1∴y=﹣(x+1)(x﹣3)当x=1时,y=﹣2×(﹣2)=4,即最大飞行高度不超过4故(4)正确,(3)不正确.综上,(1)(4)正确.故答案为:(1)(4).11.二次函数y=x2的函数图象如图,点A0位于坐标原点,点A1,A2,A3…A10在y轴的正半轴上,点B1,B2,B3…B10在二次函数y=x2位于第一象限的图象上,△A0B1A1,△A1B2A2,△A2B3A3…△A9B10A10都是直角顶点在抛物线上的等腰直角三角形,则△A9B10A10的斜边长为20.【分析】如图所示,过点B1,B2,B3分别作y轴的垂线,垂足分别为C,D,E,分别写出直线A0B1、直线A1B2、直线A2B3的解析式,将它们分别与y=x2联立,求得点B1,B2,B3的坐标,从而可得A0A1=2,A1A2=4,A2A3=6,发现规律后,按照规律即可求得△A9B10A10的斜边长.【解答】解:如图所示,过点B1,B2,B3分别作y轴的垂线,垂足分别为C,D,E∵△A0B1A1,△A1B2A2,△A2B3A3…△A9B10A10都是直角顶点在抛物线上的等腰直角三角形∴∠B1A0A1=∠B2A1A2=∠B3A2A3=45°∴A0B1所在直线的解析式为:y=x由,得B1(1,1)∴A0A1=2B1C=2∴A1(0,2)∴直线A1B2为:y=x+2由,得B2(2,4)∴A1A2=2B2D=4∴A2(0,6)∴直线A2B3为:y=x+6由,得B3(3,9)∴A2A3=2B3E=6…由上面A0A1=2,A1A2=4,A2A3=6,可以看出这些直角顶点在抛物线上的等腰直角三角形的斜边长依次加2∴△A9B10A10的斜边长为2+9×2=20故答案为:20.12.如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为y=,在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O′B′.设P(t,0),若O′B′某一端点在双曲线上,则t的值为2或4或﹣2或﹣4.【分析】分2种情况讨论:①当点P在x轴正半轴上时:(Ⅰ)当B′在双曲线上时,连接BB′,B′P,作B′D⊥x轴于点D,由图形反折变换的性质可知直线l是线段BB′的垂直平分线,所以BP=B′P,再由OA⊥l可知OA∥BB′,所以∠B′BP=∠AOB=60°,故B′D是线段BP的垂直平分线,由待定系数法求出直线OA的解析式,故可得出直线BB′的解析式,由此可得出B′点的坐标,进而可得出t的值.(Ⅱ)当O′在双曲线上时,此时O′与点A重合,根据线段OO'的中点以及OA⊥l可得直线l与x轴的交点的横坐标即为t;②当点P在x轴负半轴上时,同①可得t的值.【解答】解:①当点P在x轴正半轴上时:(Ⅰ)当B′在双曲线上时,连接BB′,B′P,作B′D⊥x轴于点D,∵点B于点B′重合,∴直线l是线段BB′的垂直平分线,∴BP=B′P,∵OA⊥l,∴OA∥BB′,∴∠B′BP=∠AOB=60°,∴B′D是线段BP的垂直平分线,设直线OA的解析式为y=kx(k≠0),∵OB=2,AB=2,∴A(2,2),∴k=,∴直线OA的解析式为y=x,∵点A在反比例函数的图象上,∴反比例函数的解析式为:y=①.∵B(2,0),∴直线BB′的解析式为:y=x﹣2②,①②联立解得,∴B′(1+,﹣),∴BD=﹣1,∴BP=2BD=2﹣2,∴OP=BP+OB=2,∴P(2,0),即t=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学填空压轴题大全LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-2017全国各地中考数学压轴题汇编之填空题41.(2017贵州六盘水)计算1+4+9+16+25+……的前29项的和是. 【答案】8555,【解析】由题意可知1+4+9+16+25+……的前29项的和即为:12+22+32+42+52+…+292.∵有规律:21(11)(211)116+⨯+==,222(21)(221)1256+⨯++==,2223(31)(231)123146+⨯+++==,……,2222(1)(21)123146n n n n ++++++==….∴222229(291)(2291)123296+⨯+++++= (8555)2.(2017贵州毕节)观察下列运算过程: 计算:1+2+22+…+210.. 解:设S =1+2+22+…+210,① ①×2得2S =2+22+23+…+211,② ②-①,得S =211-1.所以,1+2+22+…+210=211-1.运用上面的计算方法计算:1+3+32+…+32017=______________.【答案】2018312-,【解析】设S =1+3+32+…+32017,① ①×3得3S =3+32+33+…+32018,② ②-①,得 2S =32018-1. 所以,1+3+32+…+32017=2018312-.3.(2017内蒙古赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P '(-y +1,x +2),我们把点P '(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为.【答案】(2,0),【解析】根据新定义,得P 1(2,0)的终结点为P 2(1,4),P 2(1,4)的终结点为P 3(-3,3),P 3(-3,3)的终结点为P 4(-2,-1),P 4(-2,-1)的终结点为P 5(2,0),P 5(2,0)的终结点为P 4(1,4),……观察发现,4次变换为一循环,2017÷4=504…余1.故点P 2017的坐标为(2,0). 4.(2017广西百色)阅读理解:用“十字相乘法”分解因式的方法. (1)二次项系数212=⨯;(2)常数项3131(3)-=-⨯=⨯-,验算:“交叉相乘之和”;(3)发现第③个“交叉相乘之和”的结果1(3)211⨯-+⨯=,等于一次项系数-1,即:22(x 1)(2x 3)232323x x x x x +-=-+-=--,则223(x 1)(2x 3)x x --=+-,像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法,仿照以上方法,分解因式:23512x x +-=______. 【答案】(x +3)(3x -4). 【解析】如图.5.(2017湖北黄石)观察下列各式: ……按以上规律,写出第n 个式子的计算结果n 为正整数).(写出最简计算结果即可) 【答案】1nn +,【解析】先看分子,左边是一个数,分子为1;左边两个数(相加),则为2;左边三个数(相加),则为3,…, 左边n 个数(相加),则分子为n .而分母,就是分子加1,故答案:1n n +. 6.(2017年湖南省郴州市)已知a 1=﹣32,a 2=55,a 3=﹣710,a 4=917,a 5=-1126,…… ,则a 8=. 【答案】1765,【解析】由前5项可得a n =(-1)n ·2211n n ++,当n =8时,a 8=(-1)8·228181⨯++=1765. 7.(2017江苏淮安)将从1开始的连续自然数按以下规律排列: 第1行 1 第二行 2 3 4 第三行98765第四行10 11 12 13 14 15 16第五行 25 24 23 22 21 20 19 18 17 ……则2017在第________行. 【答案】45,【解析】观察发现,前5行中最大的数分别为1、4,9、16、25,即为12、22、32、42、52,于是可知第n 行中最大的数是2n .当n =44时,2n =1936;当n =45时,2n =2025;因为1936<2017<2025,所以2017在第45行. 8.(2017山东滨州)观察下列各式:2111313=-⨯, ……请利用你所得结论,化简代数式213⨯+224⨯+235⨯+…+2(2)n n +(n ≥3且为整数),其结果为__________.【答案】2352(1)(2)n nn x +++,【解析】由这些式子可得规律:2(2)n n+=112n n-+.因此,原式=1111111111 132435112n n n n-+-+-++-+--++=1111111111 123134512n n n n+++++-------++=11111212n n+--++=2352(1)(2)n nn x+++.9.(2017甘肃武威)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为,第2017个图形的周长为.【答案】8,6053,【解析】根据图形变化规律可知:图形个数是奇数个梯形时,构成的图形是梯形;当图形的个数时偶数个时,正好构成平行四边形,这个平行四边形的水平边是3,两斜边长是1,则周长是8.第2017个图形构成的图形是梯形,这个梯形的上底是3025,下底是3026,两腰长是1,故周长是6053.10.(2017年贵州省黔东南州)把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3第三块三角板的斜边B1B2垂直且交y轴于点B3;……按此规律继续下去,则点B2017的坐标为.【答案】(0,-31009),【解析】由“含30°角的直角三角形三边关系”可得B的坐标为(0),则依次可得出B1(0,-3),B2(0),B3(0,9),B4(-0),B5(0,-27),…观察这组数据,不难发现坐标以4个为一周期,B2017位于周期中的第一个位置,这个位置的坐标规律为B n(0,1n+-),所以B2017(0,-31009).11.(2017贵州安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3,…,依次均为等腰直角三角形,直角顶点都在x 轴上,则第n 个等腰直角三角形A n B n ﹣1B n 顶点B n 的横坐标为___________. 【答案】2n +1-2,【解析】由题意得OA =OA 1=2,∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)…,2=22-2,6=23-2,14=24-2,…∴B n 的横坐标为2n +1-2.12.(2017黑龙江齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y 的正半轴上,且112=1OA A A =,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形34OA A ,……,依此规律,得到等腰直角三角形20172018OA A ,则点2017A 的坐标为.【答案】(0,10082)或(0)或(0,2016)【解析】∵112=1OA A A =,∴2OA ==,同理3OA =, ……2017OA13.(2017黑龙江绥化)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为。

【答案】2112n -,【解析】规律探究题,求出前面有限个面积,找出规律,根据规律,直接写出结果.腰长为2的等腰直角三角形各边中点的小三角形的两条直角边均为1,所以第一个小三角形的面积为1112⨯⨯=12;第2个小三角形的两条直角边长均为12,所以第2个小三角形的面积为111222⨯⨯=312;第3个小三角形的两条直角边长均为14,所以第3个小三角形的面积为111244⨯⨯=512;依次类推,第n 个小三角形的面积为2112n -,故填2112n -14.(2017年广西北部湾经济区四市)如图,把正方形铁片置于平面直角坐标系中,顶点的坐标为,点在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转,第一次旋转至图①位置,第二次旋转至图②位置……,则正方形铁片连续旋转2017次后,点P 的坐标为. 【答案】(4040,1)【解析】据题意可得1(5,2)P ,2(8,1)P ,3(10,1)P,4(13,2)P ,以此类推,可得旋转2017次后,点P 的坐标为(4040,1)15.(2017湖北天门)如图,在平面直角坐标系中,△ABC 的顶点坐标为A (﹣1,1),B (0,﹣2),C (1,0).点P (0,2)绕点A 旋转180°得到点P 1,点P 1绕点B 旋转180°得到点P 2,点P 2绕点C 旋转180°得到点P 3,点P 3绕点A 旋转180°得到点P 4,……,按此作法进行下去,则点P 2017的坐标为. 【答案】(﹣2,0),【解析】根据旋转可得:P 1(﹣2,0),P 2(2,﹣4),P 3(0,4),P 3(0,4),P 4(﹣2,﹣2),P 5(2,﹣2),P 6(0,2),故6个循环,2017÷6=336…1,故P 2017(﹣2,0). 16.(2017湖南衡阳)正方形111C A B O ,2221C C A B ,3332C C A B ,⋅⋅⋅按如图的方式放置,点1A ,2A ,3A ,⋅⋅⋅和点1C ,2C ,3C ,⋅⋅⋅分别在直线1y x =+和x 轴上,则点2018B 的纵坐标是. 【答案】22017,【解析】由图知,点B 1的坐标为(1,1);点A 2的坐标为(1,2);点B 2的坐标为(3,2);点A 3的坐标为(3,4);点B 3的坐标为(7,4);A 4的坐标为(7,8),……寻找规律知B 2018的纵坐标为22017,故填22017.17.(2017湖南永州)一小球从距地面1m 高处自由落下,每次着地后又跳回到原高度的一半再落下.(1)小球第3次着地时,经过的总路程...为________________m ;(2)小球第n 次着地时,经过的总路程...为________________m .【答案】(1)122; (2)2132n --,【解析】小球第1次着地时,经过的总路程为1m ;小球第2次着地时,经过的总路程为1+12×2=2(m );小球第3次着地时,经过的总路程为2+14×2=122(m );小球第n 次着地时,经过的总路程为1+12×2+212×2+312×2+…+112n -×2=2132n --(m ). 18.(2017湖南常德)如图,有一条折线11223344A B A B A B A B ,它是由过()10,0A ,()12,2B ,()24,0A 组成的折线依次平移4,8,12,个单位得到的,直线y =kx+2与此折线恰有2n (1n ≥,且为整数)个交点,则k 的值为_______________. 【答案】0或12n-(1n ≥), 【解析】①当k =0时,即直线为y =2,满足题意;②当直线经过点(0,2)与(4,0)时,满足题意,此时12k =-;③当直线经过点(0,2)与(8,0)时,满足题意,此时14k =-;以此类推,即答案为0或12n-(1n ≥). 19.(2017江苏徐州)如图,已知1OB =,以OB 为直角边作等腰直角三角形1A BO .再以1OA 为直角边作等腰直角三角形21A A O ,如此下去,则线段n OA 的长度为.n、22n算对)【解析】在Rt △AOB 中,OA 1=sin 45OB ︒OA 2=45OAsib =︒=2,……,∴OA n=n .20.(2017山东菏泽)如图AB ⊥y 轴,再将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点1B 落在直线y=-x 上,再将△AB 1O 1绕点1B 逆时针旋转到△AB 1O 2的位置,使点O 1对应点O 2落在直线y=-x 上,依次进行下去……若点B 的坐标是(0,1),则O 12的纵坐标为. 【答案】(9,9+【解析】过点O 2作O 2C ⊥x 轴于点C ,∵AB ⊥y 轴,点B 的坐标是(0,1),且点B 在直线y x ,∴点A),即OB =1,AB ∴OA =2,由题意知,AB1=AB AO 1=OA =2,O 2B 1=OB =1,∴OO 2=3∵tan ∠O 2OC =,∴∠O 2OC =30°,∴OC =O2O cos ∠O 2OC =(3O2C =O 2O sin ∠O 2OC =(312,∴O 2(),O 4(O 6(,……,O12(9,9+.21.(2017山东东营)如图,在平面直角坐标系中,直线l :y x -与x 轴交于点B 1,以OB 1为边长作等边三角形A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B 3,以A 2B 3为边长作等边三角形A 3A 2B 3,…,则点A 2017的横坐标是__________.【答案】2017212-【解析】把y =0代入y =x -x -=0.解得x =1. ∴B 1(1,0),OB 1=1.∴A 1B 1=OB 1=1.把x =0代入y =x ,得y .∴M (0, -),OM =.∵tan ∠OB 1M =OMOB 1=,∴∠OB 1M =30°.则∠A 1B 2O =∠A 2B 3O =30°. 又∵∠A 1B 1O =60°,∴∠A 1B 1M =60°+30°=90°.∴∠A 1B 1B 2=90°.则∠A 2B 2B 3=∠A 3B 3B 4=90°. ∴A 1B 2=2A 1B 1=2×1=2,A 2B 3=2A 2B 2=2A 1B 2=2×2=22, A 3B 4=2A 3B 3=2A 2B 3=2×22=23. ∴A 1的横坐标是:12OB 1=12×1=12;A 2的横坐标是:12OB 1+12A 1B 2=12+12×2=12+22;A 3的横坐标是:12OB 1+12A 1B 2+12A 2B 3=(12+22)+12×22=12+22+222; A 4的横坐标是:12OB 1+12A 1B 2+12A 2B 3+12A 3B 4=12+22+222+232; ……;A 2017的横坐标是:12+22+222+232+…+220162=2017212-.[注:设x =1+22+23+24+…+22016,则2x =(21+22+23+24+…+22016)+22017, ∴2x -x =(21+22+23+24+…+22016)+22017-(1+22+23+24+…+22016) ∴x =22017-1∴12+22+222+232+…+220162=x 2=2017212- 22.(2017山东聊城)如图,在平面直角坐标系中,直线l 的函数表达式为y x =,点1O 的坐标为(1,0),以1O 为圆心,1O O 为半径画圆,交直线l 于点P 1,交x 轴正半轴于点2O ,2O 以为圆心,2O O 为半径画圆,交直线l 于点2P ,交x 轴正半轴于点3O ,3O 以为圆心,3O O 为半径画圆,交直线l 与点3P ,交x 轴的正半轴于点4O ,按此做法进行下去,其中20172018P O 的长为.【答案】20152π,【解析】由题意知12PO 所对的圆心角度数为90°,半径为1,∴12PO 的长为9011802ππ⨯=;23P O 所对的圆心角度数为90°,半径为2,∴23P O 的长为902180ππ⨯=;34PO 所对的圆心角度数为90°,半径为4,∴34PO 的长为9042180ππ⨯=;45P O 所对的圆心角度数为90°,半径为8,∴45P O 的长为9084180ππ⨯=;∴20172018P O 的长为20172201522ππ-=. 23.(2017山东淄博)设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=13;如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=16;如图3.分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=110; ……按照这个规律进行下去,若分别将AC ,BC 边(n +1)等分,…,得到四边形CD n F n E n , 其面积S n =________. 【答案】2(1)(2)n n ++,【解析】法一:规律猜想:S 1=13=112+;S 2=16=1123++;S 3=110=11234+++;……S n =112341n ++++++=2(1)(2)n n ++. 法二:推理论证:如图连接D n E n .由平行线分线段成比例定理的逆定理,得D n E n ∥A B.∴n CE BC=n CD AC =11n +.∴n n n F D BD =12n +.∴S n =n n n AE C AF D S S ∆∆-=111(1)(2)nn n n -⋅+++=2(1)(2)n n ++.24.(2017四川广安)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2……按如图所示放置,点A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3……在x 轴上,则An 的坐标是______.【答案】(121n --,12n -),【解析】∵点点A 1、A 2、A 3…在直线y =x +1上,∴A 1的坐标是(0,1),即OA 1=1,∵A 1B 1C 1O 为正方形,∴OC 1=1,即点A 2的横坐标为1,∴A 2的坐标是(1,2),A 2C 1=2,∵A 2B 2C 2C 1为正方形,∴C 1C 2=2,∴OC 2=1+2=3,即点A 3的横坐标为3,∴A 3的坐标是(3,4),…, 观察可以发现:A 1的横坐标是:0=20-1,A 1的纵坐标是:1=20; A 2的横坐标是:1=21-1,A 2的纵坐标是:2=21; A 3的横坐标是:3=22-1,A 3的纵坐标是:4=22; ……据此可以得到A n 的横坐标是:121n --,纵坐标是:12n -. 所以点A n 的坐标是(121n --,12n -).25.(2017年四川资阳)按照如图8所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的块数是______.第1个第2个第3个ABE nCD n F n【答案】365【解析】图形和黑色小正方形地砖的块数如下表由此猜想第14个图案中黑色小正方形地砖的块数=1+1×4+2×4+…+13×4=1+(1+2+3+…+13)×4=1+364=365.26.(2017浙江衢州)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B在第二象限,△ABO 沿x 轴正方形作无滑动的翻滚,经一次翻滚后得△A 1B 1O ,则翻滚3次后点B 的对应点的坐标是,翻滚2017次后AB 中点M经过的路径长为 .【答案】(5896)π, 【解析】首先求出B 点坐标(-1应点横坐标加6,纵坐标不变,故B 点变换后对应点坐标为(-1+6(5M 点的变化在每个周期中,点M 分别沿着三个圆心角为120°的扇1、1,又2017÷3=672……1,故其运动路径长×(672+1)+23π896)π. 27.(2017海南)如图,AB 是⊙O 的弦,AB =5,点C 是⊙O 上的一个动点,且∠ACB =45°.若点M 、N 分别是AB 、AC 的中点,则MN 长的最大值是___________. 【答案】【解析】∵点M 、N 分别是AB 、AC 的中点,∴MN =12BC ,当BC 为⊙O 的直径时,MN 最长,此时△ABC 为等腰直角三角形,易得BC =MN =28.(2017湖南怀化)如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为cm.10.【答案】【解析】分三种情形讨论①若以边BC为底.②若以边PB为底.③若以边PC为底.分别求出PD的最小值,即可判断.连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P 与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC10;上时,AP最小,最小值为③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足10(cm).题意,故此种情况不存在;综上所述,PD的最小值为29.(2017山东威海)如图,△ABC为等边三角形,AB=2.若P为△ABC内的一动点,且满足∠PAB=∠ACP.则线段PB长度的最小值为【解析】将△APB绕点B顺时针旋转60°,如图,则△PBD是等边三角形,PB=P D.因为∠PAB=∠ACP,∴∠PCD=60°.在△PCD中,当∠PCD=60°最小时,PD最小,所以当△PCD时是等边三角形时PD=PB最小,此时PCDB是菱形.在直角△POB中,OB=1,∠PBO=30°,∴PB30.(2017四川德阳)如图,已知⊙C的半径为3,圆外一定点O满足OC =5,点P为⊙C上一动点,经过O的直线L上有两点A、B且OA = OB, ∠APB=90°,L不经过点C,则AB的最小值为.【答案】4,【解析】几何最值问题、三角形三边关系(两点之间,线段最短).如答图所示,连接OP 、OC 、PC ,则有OP ≥OC -PC ,当O 、P 、C 三点共线的时候,OP =OC -P C. ∵∠APB =90°,OA =OB ,∴点P 在以AB 位直径的圆上,∴⊙O 与⊙C 相切的时候,OP 取到最小值,则'OP 'OP =OC -'CP =2,∴AB -2'OP =431.(2017浙江金华)在一空旷场地上设计一落地为矩形ABCD 的小屋,AB +BC =10m .拴住小狗的10m 长的绳子一端固定在B 点出,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S (m 2). (1)如图1,若BC =4m ,则S =m 2.(2)如图2,现考虑在(1)中的矩形ABCD 小屋的右侧以CD 为边拓展一正△CDE 区域,使之变成落地为五边形ABCED 的小屋,其它条件不变.则在BC 的变化过程中,当S 取得最小值时,边BC 的长为m . 图1图2【答案】(1)88π;(2)52, 【解析】(1)当BC =4时,S =227010360π⨯+2906360π⨯+2904360π⨯=88π;(2)设BC =xm ,则S =227010360π⨯+230(10)360x π⨯-+290360x π=30360π[900+(10-x )2+3x 2]=12π(4x 2-20x +1000)=3π(x 2-5x +250)=3π(x -52)2+3254π.∴当x =52时,S 取得最小值.32.(2017浙江台州)如图,有一个边长不定的正方形ABCD ,它的两个相对的顶点A ,C 分别在边长为1的正六边形一组平行的对边上,另外两个顶点B ,D 在正六边形内部(包括边界),则正方形边长a 的取值范围是________.a 【解析】如图,根据题意,AC 为正方形对角线,即当A 、C 分别是正六边形平行的两边中点时,此时AC 取最小值,也即正方形边长最短,AC =3,∴正方形边长的最小值为OQ ⊥FP ,∠FOP=45°,∠FQP =60°,设FP =x ,则OP =x ,PQ ,∴OQ =x =1,∴x =3-3,∴正方形边长a 的取值范围是a 33.(2017湖北恩施)如图,在6×6网格内填如1至6的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a ×c = 【答案】2【解析】由题意,每行每列每个小粗线宫中的数字不重复,则a +b +c =7,a 、b 、c 的值为1、2、4,∵2、b 、c 在一列,∴a =、c 的值为1或4,当b =4,c =1时,如图1,此时a ×c =2;当b =1,c =4时,此时排列情形不存在;故a ×c =2. 34.(2017湖南湘潭)阅读材料设1122(,),(,),a x y b x y ==如果//a b ,则x 1·y 2=x 2·y 1.根据该材料填空已知(2,3),(4,)a b m ==,且//a b ,则m =_________. 【答案】6,【解析】由材料可以得到2m =3×4,从而求得m =6.35.(2017山东临沂)在平面直角坐标系中,如果点P 坐标为(),m n ,向量OP 可以用点P 的坐标表示为OP =(m ,n ).已知OA =(x 1,y 1),OB =(x 2,y 2),如果12120x x y y ⋅+⋅=,那么OA 与OB 互相垂直.下列四组向量 ①OC =(2,1),OB =(-1,2);②OE =(cos30°,tan45°),OF =(1,sin60°); ③OG 2),OH12);④OM =(π0,2),ON =(2,-1).其中互相垂直的是(填上所有正确答案的序号). 【答案】①③④【解析】原式利用题中的新定义计算即可得到结果.①OC =(2,1),OB =(-1,2)中,()2112220⨯-+⨯=-+=,所以垂直; ②OE =(cos30°,tan45°),OF =(1,sin60°)中,cos30°⨯1+tan45°⨯= ③OG 2),OH12)中, ()122+-⨯=()321-+-=0,所以垂直;④OM =(π0,2),ON =(2,-1)中()02210π⨯+⨯-=,所以垂直.36.(2017广东乐山)对于函数y =x n +x m ,我们定义y’=nx n -1+mx m -1(m 、n 为常数).例如y =x 4+x 2,则y’=4x 3+2x . 已知()322113y x m x m x =+-+.(1)若方程y’=0有两个相等实数根,则m 的值为; (2)若方程14y m '=-有两个正数根,则m 的取值范围为. 【答案】(1)12m =;(2)34m ≤且12m ≠,【解析】(1)y’=x 2+2(m -1)x +m 2,当y’=0时,有x 2+2(m -1)x +m 2=0.若方程y’=0有两个相等实数根,则△=0,即4(m -1)2-m 2=0,解得OA =(2)y’=x 2+2(m -1)x +m 2,当2π时,有x 2+2(m -1)x +m 2-m +AC ==0.若方程OA AC ==14,即122=42πππ⨯⨯≠,解得34m ≤且12m ≠. 37.(2017四川自贡)如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割后能拼成一个大正方形.请在如图所示的网格中(网格的边长为1)中,用直尺作出这个大正方形. 【答案】D ,【解析】∵13个小正方形的面积为13×12=13,∴所拼成的大正方形的边长为.38.(2017四川雅安)定义若两个函数的图象关于直线y =x 对称,则称这两个函数互为反函数.请写出函数y =2x +1的反函数的解析式_________.【答案】y =228181⨯++x -1765, 【解析】可取函数y =2x +1上任意两点,如(0,1)和(1,3),则这两个点关于直线y =x 对称的点为(1,0)和(3,1),则经过(1,0)和(3,1)两点的直线解析式为y =C 'x -3(,0)2.39.(2017四川宜宾)规定[x ]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近xn为整数),例如.[]=2,()=3,[)=2.则下列说法正确的是.(写出所有正确说法的序号) ①当x =时,[x ]+(x )+[x )=6;②当x =-时,[x ]+(x )+[x )=-7; ③方程4[x ]+3(x )+[x )=11的解为1<x <;④当-1<x <1时,函数y =[x ]+(x )+x 的图像与正比例函数y =4x 的图像有两个交点.【答案】②③④,【解析】①当x =时,[]=1,=2,[)=2,故[x ]+(x )+[x )=5;②当x =﹣时,[﹣]=﹣3,(﹣=﹣2,[﹣)=﹣2,故[x ]+(x )+[x )=-7; ③设x =a +b (a >0,且a 为整数,且0<b <1) (1)当0≤b <12时,4a +3(a +1)+a =11,解得a =1,故1<x <; (2)当12<b <1时,4a +3(a +1)+a +1=11,解得a =78(舍). ④当﹣1<x <12-,y =x ﹣1,当12-<x <0时,y =x ﹣1 当0<x <12时,y =x +1当12<x <1时,y =x +1,结合图像,可知,有2个交点.。

相关文档
最新文档