2014届广东高考数学(文科)模拟试题(一)2份
2014年高考广东文科数学模拟试题
2014年高考广东文科数学模拟试题一、单项选择题(本大题共15小题,每题4分,共60分)1.将连续的立方体ABCD-A1B1C1D1中,ABCD为外面四棱锥体,A1B1C1D1为内部四棱锥体,外加表面积最小的把这两个四棱锥体连接起来,若外部表面积为48x,则内部表面积为(A)8x(B)16x (C)24x(D)32x2.已知圆C的圆心坐标(0,0),半径为2,直线l:y=2x-1与圆C的位置关系是(A)相切(B)外切(C)内切(D)相交3.在等腰梯形ABCD中,AD垂直AB,CE为AD的中线,AB=3,AD=2,BC=1,求该梯形的面积是(A)1(B)2(C)3(D)44.已知点M(1,3),N(-2,4),P(4,3),Q(-1,2),则MN 是(A)线段(B)矢线(C)射线(D)空间线段5.函数f(x)=x+lnx在区间[1,e] 内的值域是(A)[0,2](B)[1,2](C)[2,3](D)[3,4]二、填空题(本大题共5小题,每题4分,共20分)6.函数f(x)=ax+b,其导函数为_______ 。
7.函数f(x)=lnx,x>0,当x=e时,f(x)的值为_______ 。
8.已知|AC|=6,|BC|=4,|AB|=8,三角ABC的外接圆半径为_______ 。
9.下列函数中,f(x)=sinx的几何意义是_______ 。
10. 根据下列图形特征,判断它的几何形状为_______三、解答题(本大题共4小题,共70分)11.(本小题满分12分)已知x>0,则求函数f(x=x-ex的定义域及最大值。
解:定义域为x>0;设f(x)的最大值为M,即M=f(x0)=x0-ex0,当x0满足f'(x0)=0时,M取得最大值,即1-ex0=0,则x0=e,所以M=f(e)=e-ee=1,即函数f(x)的最大值为M=1.12.(本小题满分14分)曲线ABCD的极坐标方程为:Ǒ=2cos2象限,则此曲线的面积为_______ 。
2014年广东省高考模拟试题
2014年广东省高考模拟试题数学 (文科)本试卷共6页,共21小题,满分150分,考试用时120分钟参考公式:锥体的体积公式:13V Sh =,其中S 为底面的面积,h 为锥体的高一、选择题:本大题共10个小题,每题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(原创)已知集合{}2|20A x x x =--<,集合{}|0B x x =≥,则A B =I ( ) A .()1,2- B .[)0,2 C .()0,2 D .[]1,2- 2.(原创)复数ii-12的虚部为( ) A .iB .i -C .1D .1-3.(原创)已知命题p :函数()f x 在0x x =处有极值,命题q :可导函数()f x 在0x x =处导数为0,则p 是q 的( )条件。
A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要4.已知m 是两个正数8,2的等比中项,则圆锥曲线122=-my x 的离心率为( ) A .23或25 B .23 C .5 D .23或5 5.(原创)设,a b 是两条不同直线,,αβ是两个不同平面,则下列命题正确的是( ) A .若a ∥α,b ∥β且α∥β,则a ∥b B .若a ∥α,a ∥β且b ∥a ,则b ∥α C .若a α⊥,b β⊥且α∥β,则a ∥b D .若a α⊥,a β⊥且b ∥α,则b ∥β 6.一个几何体的三视图如图所示,则该几何体的体积为( )A .2B .1C .23D .137.设曲线1()n y x n N ++=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201312013220132012log log ....log x x x +++的值为 ( ) A . 2011log 2010 B . 1-C .2011log 20101-D . 1俯视图正(主)视图 侧(左)视图8.已知平面区域A :003230x y x y ⎧≥⎪≥⎨⎪+-≤⎩恰好被面积最小的圆()()222:C x a y b r -+-=及其内部所覆盖,现向此圆内部投一粒子,则粒子恰好落在平面区域A 内的概率为( ) A .22πB .32π C .2πD .3π 9.若n m -表示[,]()m n m n <的区间长度,函数()(0)f x a x x a =-+>的值域区间长度为21-,则实数a 的值为( )A .4B .2C .2D .110.(原创)在ABC ∆中,,E F 分别为,AB AC 的中点,P 为EF 上的任一点,实数,x y 满足0PA xPB yPC ++=u u u r u u u u r u u u r,设ABC ∆,PBC ∆,PCA ∆,PAB ∆的面积分别为123,,,S S S S ,记312123,,S S SS S Sλλλ===,则23λλg 取到最大值时,2x y +的值为( ) A .1- B .1 C .32- D .32二、填空题:本大题共4小题,每小题5分,满分20分。
2014年广州市一模数学试题答案(文科发排稿2)
数学(文科)试题参考答案及评分标准 第 1 页 共 9 页2014年广州市普通高中毕业班综合测试(一)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题,满分50分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题,满分20分.其中14~15题是选做题,考生只能选做一题.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分)(本小题主要考查古典概型等基础知识,考查化归与转化的数学思想方法,以及数据处理能力与应用意识)(1)解:记“从6瓶饮料中任意抽取1瓶,抽到没过保质期的饮料”为事件A ,从6瓶饮料中中任意抽取1瓶,共有6种不同的抽法.因为6瓶饮料中有2瓶已过保质期,所以事件A 包含4种情形. 则()4263P A ==. 所以从6瓶饮料中任意抽取1瓶,抽到没过保质期的饮料的概率为23. (2)解法1:记“从6瓶饮料中随机抽取2瓶,抽到已过保质期的饮料”为事件B ,随机抽取2瓶饮料,抽到的饮料分别记为x ,y ,则),(y x 表示第一瓶抽到的是x ,第二瓶抽到的是y ,则),(y x 是一个基本事件.由于是随机抽取,所以抽取到的任何基本事件的概率相等.不妨设没过保质期的饮料为1,2,3,4,数学(文科)试题参考答案及评分标准 第 2 页 共 9 页已过保质期的饮料为a ,b ,则从6瓶饮料中依次随机抽取2瓶的基本事件有:()1,2,()1,3,()1,4,()1,a ,()1,b ,()2,1,()2,3,()2,4,()2,a ,()2,b , ()3,1,()3,2,()3,4,()3,a ,()3,b ,()4,1,()4,2,()4,3,()4,a ,()4,b , (),1a ,(),2a ,(),3a ,(),4a ,(),a b ,(),1b ,(),2b ,(),3b ,(),4b ,(),b a .共30种基本事件.由于2瓶饮料中有1瓶已过保质期就表示抽到已过保质期的饮料,所以事件B 包含的基本事件有:()1,a ,()1,b ,()2,a ,()2,b ,()3,a ,()3,b ,()4,a ,()4,b ,(),1a ,(),2a , (),3a ,(),4a ,(),a b ,(),1b ,(),2b ,(),3b ,(),4b ,(),b a .共18种基本事件. 则183()305P B ==. 所以从6瓶饮料中随机抽取2瓶,抽到已过保质期的饮料的概率为35. 解法2:记“从6瓶饮料中随机抽取2瓶,抽到已过保质期的饮料”为事件B , 随机抽取2瓶饮料,抽到的饮料分别记为x ,y ,则),(y x 是一个基本事件.由于是随机抽取,所以抽取到的任何基本事件的概率相等.不妨设没过保质期的饮料为1,2,3,4, 已过保质期的饮料为a ,b ,则从6瓶饮料中随机抽取2瓶的基本事件有:()1,2,()1,3,()1,4,()1,a ,()1,b ,()2,3,()2,4,()2,a ,()2,b ,()3,4, ()3,a ,()3,b ,()4,a ,()4,b ,(),a b .共15种基本事件.由于2瓶饮料中有1瓶已过保质期就表示抽到已过保质期的饮料,所以事件B 包含的基本事件有:()1,a ,()1,b ,()2,a ,()2,b ,()3,a ,()3,b ,()4,a ,()4,b ,(),a b .共9种基本事件. 则93()155P B ==. 所以从6瓶饮料中随机抽取2瓶,抽到已过保质期的饮料的概率为35.数学(文科)试题参考答案及评分标准 第 3 页 共 9 页(本小题主要考查三角函数图象的周期性与单调性、同角三角函数的基本关系、三角函数的化简等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)因为函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,,所以03f π⎛⎫-= ⎪⎝⎭. 即ππsin cos 033a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.即02a+=.解得a =(2)由(1)得,()sin f x x x =+12sin 2x x ⎛⎫= ⎪ ⎪⎝⎭2sin cos cos sin 33x x ππ⎛⎫=+ ⎪⎝⎭π2sin 3x ⎛⎫=+ ⎪⎝⎭.所以函数()x f 的最小正周期为2π. 因为函数sin y x =的单调递增区间为2,222k k ππ⎡⎤π-π+⎢⎥⎣⎦()k ∈Z , 所以当πππ2π2π232k x k -≤+≤+()k ∈Z 时,函数()x f 单调递增, 即5ππ2π2π66k x k -≤≤+()k ∈Z 时,函数()x f 单调递增.所以函数()x f 的单调递增区间为5ππ2π,2π66k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .数学(文科)试题参考答案及评分标准 第 4 页 共 9 页(本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:连结11B D ,BD ,因为四边形1111A B C D 是正方形,所以1111AC B D ⊥. 在正方体1111ABCD A B C D -中,1DD ⊥平面1111A B C D ,11AC ⊂平面1111A B C D ,所以111AC DD ⊥.因为1111B D DD D = ,11B D ,1DD ⊂平面11BB D D , 所以11AC ⊥平面11BB D D .因为EF ⊂平面11BB D D ,所以11EF AC ⊥. (2)解:取1C C 的中点H ,连结BH ,则BH AE .在平面11BB C C 中,过点F 作FG BH ,则FG AE . 连结EG ,则A ,E ,G ,F 四点共面.因为11122CH C C a ==,11133HG BF C C a ===, 所以1C G 116C C CH HG a =--=.故当1C G 16a =时,A ,E ,G ,F 四点共面.(3)解:因为四边形EFBD 是直角梯形,所以几何体ABFED 为四棱锥A EFBD -.因为()2113222EFBDa a BF DE BD S ⎛⎫+ ⎪+⎝⎭===,点A 到平面EFBD的距离为12h AC ==,所以231153312236A EFBD EFBD V S h a a a -==⨯⨯=. 故几何体ABFED 的体积为3536a .1D ABCD EF 1A1B1C 1D ABCDEF 1A1B 1CG H数学(文科)试题参考答案及评分标准 第 5 页 共 9 页(本小题主要考查等差数列、分组求和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)解:(1)因为等差数列{}n a 的首项为10,公差为2,所以()1012n a n =+-⨯, 即28n a n =+. 所以62n n nb a n =-22n n =-. (2)由(1)知()()2228n n b a n n n -=--+()(24822n n n n ⎡⎤⎡⎤=--=+-+⎣⎦⎣⎦,因为526<+,所以当5n ≤时,n n a b >,当5n >时,n n b a >. 所以{}max ,n n n c a b =228,5,2, 5.n n n n n +≤⎧=⎨->⎩当5n ≤时,123n n S c c c c =++++ 123n a a a a =++++ ()10121428n =+++++()10282n n ++=⨯29n n =+.当5n >时,123n n S c c c c =++++()()12567n a a a b b b =+++++++()()()()()222225956267278282n n ⎡⎤=+⨯+-⨯+-⨯+-⨯++-⨯⎣⎦ ()()2222706782678n n ⎡⎤=+++++-++++⎣⎦()()()()22222222265701231234522n n n+-⎡⎤=+++++-++++-⎢⎥⎣⎦()()()()1217055656n n n n n ++⎡⎤=+--+-⎢⎥⎣⎦数学(文科)试题参考答案及评分标准 第 6 页 共 9 页3211545326n n n =--+. 综上可知,n S 2329,5,11545,5.326n n n n n n n ⎧+≤⎪=⎨--+>⎪⎩20.(本小题满分)(本小题主要考查函数的极值、函数的导数、函数的零点与单调性等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识) 解:(1)因为()32693f x x x x =-+-,所以()23129f x x x '=-+()()313x x =--.令'()0f x =,可得1x =或3x =. 则'(),()f x f x 在R 上的变化情况为:所以当1x =时,函数()f x 有极大值为1,当3x =时,函数()f x 有极小值为3-. (2)假设函数()f x 在()3,+∞上存在“域同区间”[],s t ()3s t <<,由(1)知函数()f x 在()3,+∞上单调递增.所以()(),.f s s f t t =⎧⎪⎨=⎪⎩即3232693,693.s s s s t t t t ⎧-+-=⎪⎨-+-=⎪⎩ 也就是方程32693x x x x -+-=有两个大于3的相异实根. 设32()683g x x x x =-+-()3x >,则2()3128g x x x '=-+. 令()g x '0=,解得123x =<,223x =+>. 当23x x <<时,()g x '0<,当2x x >时,()g x '0>,所以函数()g x 在区间()23,x 上单调递减,在区间()2,x +∞上单调递增.数学(文科)试题参考答案及评分标准 第 7 页 共 9 页因为()3 60g =-<,()()230g x g <<,()5120g =>, 所以函数()g x 在区间()3,+∞上只有一个零点.这与方程32693x x x x -+-=有两个大于3的相异实根相矛盾,所以假设不成立. 所以函数()f x 在()3,+∞上不存在“域同区间”.21.(本小题满分)(本小题主要考查直线的斜率、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力) (1)解:设双曲线E 的半焦距为c ,由题意可得2254.c a c a ⎧=⎪⎨⎪=+⎩解得a =.(2)证明:由(1)可知,直线2533a x ==,点()23,0F .设点5,3P t ⎛⎫⎪⎝⎭,()00,Q x y ,因为220PF QF = ,所以()0053,3,03t x y ⎛⎫----= ⎪⎝⎭.所以()00433ty x =-. 因为点()00,Q x y 在双曲线E 上,所以2200154x y -=,即()2200455y x =-. 所以20000200005533PQ OQy t y y ty k k x x x x --⋅=⋅=-- ()()2002004453453553x x x x ---==-.所以直线PQ 与直线OQ 的斜率之积是定值45.数学(文科)试题参考答案及评分标准 第 8 页 共 9 页(3)证法1:设点(),H x y ,且过点5,13P ⎛⎫⎪⎝⎭的直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,由(2)知()2211455y x =-,()2222455y x =-. 设PM MH PN HN λ==,则,.PM PN MH HN λλ⎧=⎪⎨=⎪⎩ . 即()()1122112255,1,1,33,,.x y x y x x y y x x y y λλ⎧⎛⎫⎛⎫--=--⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=--⎩整理,得()()()1212121251,31,1,1.x x y y x x x y y y λλλλλλλλ⎧-=-⎪⎪⎪-=-⎨⎪+=+⎪+=+⎪⎩①②③④由①×③,②×④得()()22221222221251,31.x x x y y y λλλλ⎧-=-⎪⎨⎪-=-⎩⑤⑥将()2211455y x =-,()2222455y x =-代入⑥,得2221224451x x y λλ-=⨯--. ⑦ 将⑤代入⑦,得443y x =-. 所以点H 恒在定直线43120x y --=上.证法2:依题意,直线l 的斜率k 存在. 设直线l 的方程为513y k x ⎛⎫-=- ⎪⎝⎭,由2251,31.54y k x x y ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪-=⎪⎩消去y 得()()()22229453053255690kxk k x k k -+---+=.因为直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,数学(文科)试题参考答案及评分标准 第 9 页 共 9 页则有()()()()()()()22222122212290053900455690,3053,95425569.954k k k k k k k x x k k k x x k ⎧⎪∆=-+--+>⎪⎪-⎪+=⎨-⎪⎪-+⎪=⎪-⎩设点(),H x y ,由PM MH PN HN=,得112125353x x x x x x --=--. 整理得()()1212635100x x x x x x -+++=.将②③代入上式得()()()()()2222150569303553100954954k k x k k x k k -++--+=--. 整理得()354150x k x --+=. ④ 因为点H 在直线l 上,所以513y k x ⎛⎫-=- ⎪⎝⎭. ⑤ 联立④⑤消去k 得43120x y --=. 所以点H 恒在定直线43120x y --=上.(本题(3)只要求证明点H 恒在定直线43120x y --=上,无需求出x 或y 的范围.)①② ③。
广东省广州市海珠区2014届高三入学摸底考试数学文试题 含答案
绝密★启用前2013学年高三调研测试(一)数学(文科) 2013.8本试卷共6页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁。
考试结束后,将答题卡一并交回。
参考公式:锥体体积公式Sh V 31=,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足()()21i 2z --=(i 为虚数单位),则z 的共轭复数z 为A.1i -B.1+ iC.3i -D.3+ i2.已知集合,A B 均为全集{}12U =,,3,4的子集,且()C UA B ⋃={}4,{}1B =,2,则C U A B ⋂=A .{}3B.{}4C. {}34,D.∅3.已知等差数列{}na 满足244aa +=,3510a a +=,则它的前10项和10S=A.85B.135C.95D.234.设0.220.20.2log2,log 3,2,0.2a b c d ====,则这四个数的大小关系是A.a b c d <<<B.d c a b <<<C.b a c d <<<D.b a d c <<<5.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥ ks5uB.若//,,,a b αβαγβγ==则//a bC.若//,a b b α⊂,则//a αD.若,,//,//a b a b ββαα⊂⊂,则//βα6.已知向量()2,1=→a ,()1,0=→b ,()2,-=→k c ,若(2+→a →b )⊥→c ,则k =A.2B. 2-C.8D.8-7.给出下列四个结论:ks5u①若命题200:,10p xx x ∃∈++<R ,则2:,10p x x x ⌝∀∈++≥R ;② “()()340x x --=”是“30x -=”的充分而不必要条件; ③命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=没有实数根,则m ≤0”;④若0,0,4a b a b >>+=,则ba 11+的最小 值为1.其中正确结论的个数为A.1B.2C. 3D.48.将函数()sin(2)6f x x π=+的图像向右平移 6π个单位,那么所得的图像所对应的函数解析式是A.sin 2y x =B.cos 2y x =C.2sin(2)3y x π=+ D.sin(2)6y x π=-9.某程序框图如图1所示,若该程序运行后输 出的值是95,则A.4a =B.5a =C.6a =D.7a =10.已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为A.1-B. 2-C. 2D.1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.在区间[]-33,上随机取一个数x ,使得函数()1f x =有意义的概率为 。
2014年高考文科数学广东卷及答案解析
数学试卷 第1页(共10页) 数学试卷 第2页(共10页)绝密★启用前2014年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一组数据1x ,2x ,…,n x 的方差2222121[()()()]n s x x x x x x n=-+-++-…, 其中x 表示这组数据的平均数.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,3,4}M =,{0,2,3,5}N =,则M N =( ) A .{0,2} B .{2,3}C .{3,4}D .{3,5} 2.已知复数z 满足(34i)25z -=,则z =( ) A .34i -- B .34i -+ C .34i - D .34i + 3.已知向量(1,2)=a ,(3,1)=b ,则-=b a( ) A .(2,1)-B .(2,1)-C .(2,0)D .(4,3)4.若变量x ,y 满足约束条件28,04,03,x y x y +⎧⎪⎨⎪⎩≤≤≤≤≤则2z x y =+的最大值等于( ) A .7B .8C .10D .11 5.下列函数为奇函数的是( ) A .122x x-B .3sin x xC .2cos 1x +D .22x x +6.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A .50 B .40 C .25 D .20 7.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a b ≤”是“sin sin A B ≤”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A .实半轴长相等 B .虚半轴长相等 C .离心率相等 D .焦距相等 9.若空间中四条两两不同的直线1l ,2l ,3l ,4l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是( ) A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定10.对任意复数1ω,2ω定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数1z ,2z ,3z ,有如下四个命题:①1231323()*(*)(*)z z z z z z z +=+; ②1231213*()(*)(*)z z z z z z z ++=+ ③123123(*)**(*)z z z z z z =; ④1221**z z z z =. 则真命题的个数是( )姓名________________ 准考证号_____________------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------------数学试卷 第3页(共10页) 数学试卷 第4页(共10页)A .1B .2C .3D .4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.曲线5e 3x y y =-+在点(0,2)-处的切线方程为 .12.从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为 . 13.等比数列{}n a 的各项均为正数,且154a a =,则212223log log log a a a +++2425log log a a += .(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为2cos sin ρθθ=与cos 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的交点的直角坐标为 . 15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中, 点E 在AB 上且2EB AE =,AC 与DE 交于点F ,则CDF AEF =△的周长△的周长 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数π()sin()3f x A x =+,x ∈R ,且5π()122f =. (Ⅰ)求A 的值;(Ⅱ)若()()f f θθ--=,π(0,)2θ∈,求π()6f θ-.17.(本小题满分13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)19 1 28329 3 30 5 31 4 32 3 40 1 合计20(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (Ⅲ)求这20名工人年龄的方差. 18.(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==.作如图3折叠:折痕EF DC ∥,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF CF ⊥.(Ⅰ)证明:CF ⊥平面MDF ; (Ⅱ)求三棱锥M CDE -的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足22(3)n n S n n S -+--23()0n n +=,*n ∈N .(Ⅰ)求1a 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有11221111+(1)(1)(1)3n n a a a a a a +++++…<.20.(本小题满分14分)已知椭圆C :22221(0)x y a b a b+=>>的一个焦点为,.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点数学试卷 第5页(共10页) 数学试卷 第6页(共10页)P 的轨迹方程.21.(本小题满分14分)已知函数321()1()3f x x x ax a =+++∈R .(Ⅰ)求函数()f x 的单调区间;(Ⅱ)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()()2f x f =.{2,3,4}{0,2,3,5}={2,3}N =D 2525(34i)25(3=34i (34i)(34i)+==--+【答案】B【解析】(3,1)b a -=-【答案】C,a b ,,【解析】05k <<)21k -=-【答案】D312313231323)()()()()()z z z z z z z z z z z z ++===+,故①是真命题;12312312312131213()()()()()()()z z z z z z z z z z z z z z z z +=+=+=+=+,②对;()()()z z z z z z z z z z z z =*==,右边,≠左边右边,③错;(2)茎叶图如下图(1928329330531432340)+⨯+⨯+⨯+⨯+⨯+CD PD D=,所以MF AD M=,所以CF⊥平面ADF,DFBC PC==60,30CDF∠,38CD DE=,211111111111()()()(1)2323525722121n na a n n++<+-+-++-+⨯-+数学试卷第7页(共10页)数学试卷第8页(共10页)数学试卷 第9页(共10页) 数学试卷 第10页(共10页)1,12⎫⎛⎫⎪ ⎪⎭⎝⎭,使得1124⎛+-+ ⎝ 1,12⎫⎛⎫⎪⎪⎭⎝⎭上有解1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上有解,1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上无解;11a -+-1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上有1,12⎫⎛⎫⎪ ⎪⎭⎝⎭上无解57,412⎫⎛⎫--⎪ ⎪⎭⎝⎭时1,12⎫⎛⎫⎪ ⎪⎭⎝⎭,。
广东省文科数学试题卷真题答案-2014高考
2014年全国各地文科数学试题(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.xx212-B.x x sin 3C.1cos 2+xD.xx 22+ 答案:A111:()2,(),()22(),222(), A.x xx x x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 333sin ,(0,),32f A A A f x x f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴--=+--+=+--+-===∴=∈解由得又6cos 36()3sin()3sin()3cos 3 6.66323f θππππθθθθ∴=∴-=-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,7214x x a x f x f x x a a a a a a ax x a +++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-若存在使得必须在上有解方程的两根为只能是依题意即000002574811,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a a a x a a x f x f a x f x <∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,110,()3,111,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,11),(11,1),5111),()(0,),(,1),422a a i a a f x x f x f ii a f x a a a f x <∴-+->≤--+-≤∈-<<-+--+-=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,111,,(11,1),4212525255(1)()0,0,,;222412124513)0,011,,(0,11),421775(0)()0,0,,2224124x a a x x a a f f a a x a a x x a a f f a -<<-<-+-<∈-+-->+>>--<<--<<<-+-<∈-+-->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。
2014年广东省高考文科数学模拟试卷及参考答案
17. (本小题满分 12 分)(本小题主要考查概率与统计的概念,考查运算求解能力等.
)
解( 1) ∵
x
0.19
2000
x 380
………………3 分
( 2)高三年级人数为 y+z=2000 -( 373+ 377+ 380+ 370)= 500, …………………5 分 现用分层抽样的方法在全校抽取 48 名学生,应在高三年级抽取的人数为:
棱锥的高为 2, 连结 AM ,则 AM=
2
AB
BM 2 =
2
2
BM 2 ,
由( 2)知 PA
AM
∴S
1 PAM= PA ? AM
2
1 2 22 BM 2 2
4 BM 2
∴ V D— PAM= 1 ? S PAM 3
?2= 1 ?
3
4
BM 2 ? 2 = 2 4 BM 2
3
…………………
11分
∵ S AMD
5
( 1)求 cos( A C ) 的值;
( 2)求 sin B
的值;
6
uuur uuur ( 3)若 BAgBC 20 ,求
ABC 的面积 .
.
17.(本小题满分 12 分) 某完全中学高中部共有学生
2000 名,各年级男、女生人数如下表:
女生
高一年级 373
高二年级 x
高三年级 y
男生
377
370
∴ GH//AD//EF ,
∴ E, F, G, H 四点共面。
…………………………2 分
又 H 为 AB 中点,∴ EH//PB 。
…………………………3 分
又 EH 面 EFG, PB 平面 EFG,
2014年广东省高考数学试卷(文科)(含解析版)
2014年广东省高考数学试卷(文科)一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5} 2.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)4.(5分)若变量x,y满足约束条件A.7B.8,则z=2x+y的最大值等于()C.10D.115.(5分)下列函数为奇函数的是()A.2x﹣B.x3sinx C.2cosx+1D.x2+2x6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.207.(5分)在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA ≤sinB”的()A.充分必要条件C.必要非充分条件8.(5分)若实数k满足0<k<5,则曲线A.实半轴长相等B.虚半轴长相等B.充分非必要条件D.非充分非必要条件﹣=1与﹣=1的()C.离心率相等D.焦距相等9.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4C.l1与l4既不垂直也不平行B.l1∥l4D.l1与l4的位置关系不确定10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω1对任意复数z1,z2,z3有如下命题:①(z1+z2)*z3=(z1*z3)+(z2*z3)②z1*(z2+z3)=(z1*z2)+(z1*z3)③(z1*z2)*z3=z1*(z2*z3);④z1*z2=z2*z1则真命题的个数是()A.1B.2C.3其中2,2是ω2的共轭复数,D.4二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5e x+3在点(0,﹣2)处的切线方程为.12.(5分)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为.13.(5分)等比数列{an }的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=.(二)(1415题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)191283293305314323401合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.18.(13分)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2作如图2折叠;折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M ﹣CDE 的体积.19.(14分)设各项均为正数的数列{a n }的前n 项和为S n 满足S n 2﹣(n 2+n ﹣3)S n ﹣3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有++…+<.20.(14分)已知椭圆C:为.+=1(a>b>0)的右焦点为(,0),离心率(1)求椭圆C的标准方程;(2)若动点P(x0,y)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.21.(14分)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈(0,)∪(,1),使得f(x)=f().2014年广东省高考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5}【考点】1E:交集及其运算.【专题】5J:集合.【分析】根据集合的基本运算即可得到结论.【解答】解:∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3},故选:B.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】由题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:∵满足(3﹣4i)z=25,则z===3+4i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)【考点】99:向量的减法;9J:平面向量的坐标运算.【专题】5A:平面向量及应用.【分析】直接利用向量的减法的坐标运算求解即可.【解答】解:∵向量=(1,2),=(3,1),∴﹣=(2,﹣1)故选:B.【点评】本题考查向量的坐标运算,基本知识的考查.4.(5分)若变量x,y满足约束条件A.7,则z=2x+y的最大值等于()C.10D.11B.8【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B(4,2)时,直线y=﹣2x+z的截距最大,此时z最大,此时z=2×4+2=10,故选:C.【点评】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.5.(5分)下列函数为奇函数的是()A .2x ﹣B .x 3sinxC .2cosx +1D .x 2+2x【考点】3K :函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的定,对各个选项中的函数进行判断,从而得出结论.【解答】解:对于函数f (x )=2x ﹣故此函数为奇函数.对于函数f (x )=x 3sinx ,由于f (﹣x )=﹣x 3(﹣sinx )=x 3sinx=f (x ),故此函数为偶函数.对于函数f (x )=2cosx +1,由于f (﹣x )=2cos (﹣x )+1=2cosx +1=f (x ),故此函数为偶函数.对于函数f (x )=x 2+2x ,由于f (﹣x )=(﹣x )2+2﹣x =x 2+2﹣x ≠﹣f (x ),且f (﹣x )≠f (x ),故此函数为非奇非偶函数.故选:A .【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为(),由于f (﹣x )=2x ﹣﹣=﹣2x =﹣f (x ),A .50B .40C .25D .20【考点】B4:系统抽样方法.【专题】5I :概率与统计.【分析】根据系统抽样的定义,即可得到结论.【解答】解:∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25.故选:C .【点评】本题主要考查系统抽样的定义和应用,比较基础.7.(5分)在△ABC 中,角A 、B 、C 所对应的边分别为a ,b ,c ,则“a ≤b”是“sinA ≤sinB”的()A .充分必要条件C .必要非充分条件B .充分非必要条件D .非充分非必要条件【考点】HP :正弦定理.【专题】5L :简易逻辑.【分析】直接利用正弦定理以及已知条件判断即可.【解答】解:由正弦定理可知⇒=,∵△ABC 中,∠A ,∠B ,∠C 均小于180°,角A 、B 、C 所对应的边分别为a ,b ,c ,∴a ,b ,sinA ,sinB 都是正数,∴“a ≤b”⇔“sinA ≤sinB”.∴“a ≤b”是“sinA ≤sinB”的充分必要条件.故选:A .【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.8.(5分)若实数k 满足0<k <5,则曲线A .实半轴长相等B .虚半轴长相等﹣=1与﹣=1的()C .离心率相等D .焦距相等【考点】KC :双曲线的性质.【专题】5D :圆锥曲线的定义、性质与方程.【分析】根据k 的取值范围,判断曲线为对应的双曲线,以及a ,b ,c 的大小关系即可得到结论.【解答】解:当0<k <5,则0<5﹣k <5,11<16﹣k <16,即曲线﹣=1表示焦点在x 轴上的双曲线,其中a 2=16,b 2=5﹣k ,c 2=21﹣k ,曲线﹣=1表示焦点在x 轴上的双曲线,其中a 2=16﹣k ,b 2=5,c 2=21﹣k ,即两个双曲线的焦距相等,故选:D .【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a ,b ,c 是解决本题的关键.9.(5分)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是()A .l 1⊥l 4C .l 1与l 4既不垂直也不平行B .l 1∥l 4D .l 1与l 4的位置关系不确定【考点】LO :空间中直线与直线之间的位置关系.【专题】5F :空间位置关系与距离.【分析】根据空间直线平行或垂直的性质即可得到结论.【解答】解:在正方体中,若AB 所在的直线为l 2,CD 所在的直线为l 3,AE 所在的直线为l 1,若GD 所在的直线为l 4,此时l 1∥l 4,若BD 所在的直线为l 4,此时l 1⊥l 4,故l 1与l 4的位置关系不确定,故选:D.【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω1对任意复数z 1,z 2,z 3有如下命题:①(z 1+z 2)*z 3=(z 1*z 3)+(z 2*z 3)②z 1*(z 2+z 3)=(z 1*z 2)+(z 1*z 3)③(z 1*z 2)*z 3=z 1*(z 2*z 3);④z 1*z 2=z 2*z 1则真命题的个数是()A.1其中2,2是ω2的共轭复数,B.2C.3D .4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】5L:简易逻辑;5N :数系的扩充和复数.【分析】根据已知中ω1*ω2=ω12,其中2是ω2的共轭复数,结合复数的运算性质逐一判断四个结论的真假,可得答案.【解答】解:①(z 1+z 2)*z 3=(z 1+z 2)确;=(z 1+z 2=(z 1*z 3)+(z 2*z 3),正②z 1*(z 2+z 3)=z 1(③(z 1*z 2)*z 3=z 1成立,故错误;④z 1*z 2=z 1,z 2*z 1=z 2)=z 1(+)=z 1+z 1=(z 1*z 2)+(z 1*z 3),正确;)=z 1z 3,等式不,z 1*(z 2*z 3)=z 1*(z 2)=z 1(,等式不成立,故错误;综上所述,真命题的个数是2个,故选:B .【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5e x +3在点(0,﹣2)处的切线方程为5x +y +2=0..【考点】6H :利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】利用导数的几何意义可得切线的斜率即可.【解答】解:y′=﹣5e x ,∴y′|x=0=﹣5.因此所求的切线方程为:y +2=﹣5x ,即5x +y +2=0.故答案为:5x +y +2=0.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题.12.(5分)从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为.【考点】C6:等可能事件和等可能事件的概率.【专题】5I :概率与统计.【分析】求得从字母a ,b ,c ,d ,e 中任取两个不同字母、取到字母a 的情况,利用古典概型概率公式求解即可.【解答】解:从字母a ,b ,c ,d ,e 中任取两个不同字母,共有取到字母a ,共有∴所求概率为故答案为:.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.13.(5分)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.=10种情况,=4种情况,=.【考点】4H :对数的运算性质;87:等比数列的性质;89:等比数列的前n 项和.【专题】54:等差数列与等比数列.【分析】可先由等比数列的性质求出a 3=2,再根据性质化简log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5log 2a 3,代入即可求出答案.【解答】解:log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2a 1a 2a 3a 4a 5=log 2a 35=5log 2a 3.又等比数列{a n }中,a 1a 5=4,即a 3=2.故5log 2a 3=5log 22=5.故选为:5.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易.(二)(14-15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为(1,2).【考点】Q8:点的极坐标和直角坐标的互化.【专题】5S:坐标系和参数方程.【分析】直接由x=ρcosθ,y=ρsinθ化极坐标方程为直角坐标方程,然后联立方程组求得答案.【解答】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,即y=2x2.由ρcosθ=1,得x=1.联立,解得:.∴曲线C1与C2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=3.【考点】%H:三角形的面积公式.【专题】58:解三角形.【分析】证明△CDF∽△AEF,可求.【解答】解:∵四边形ABCD是平行四边形,EB=2AE,∴AB∥CD,CD=3AE,∴△CDF∽△AEF,∴==3.故答案为:3.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f (x )=Asin (x +(1)求A 的值;(2)若f (θ)﹣f (﹣θ)=),x ∈R ,且f ()=.,θ∈(0,),求f (﹣θ).【考点】GP :两角和与差的三角函数.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】(1)通过函数f (x )=Asin (x +A 的值;(2)利用函数的解析式,通过f (θ)﹣f (﹣θ)=利用两角差的正弦函数求f (﹣θ).),x ∈R ,且f (,)=,,θ∈(0,),求出cosθ,),x ∈R ,且f ()=,直接求【解答】解:(1)∵函数f (x )=Asin (x +∴f (∴)=Asin (.+)=Asin=(2)由(1)可知:函数f (x )=3sin (x +∴f (θ)﹣f (﹣θ)=3sin (θ+=3[(=3•2sinθcos ∴sinθ=∴cosθ=,,=3sinθ=,),))])﹣3sin (﹣θ+)﹣(∴f(﹣θ)=3sin()=3sin()=3cosθ=.【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.17.(13分)某车间20名工人年龄数据如下表:年龄(岁)19282930313240合计工人数(人)133543120(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.【考点】BA:茎叶图;BB:众数、中位数、平均数;BC:极差、方差与标准差.【专题】5I:概率与统计.【分析】(1)根据众数和极差的定义,即可得出;(2)根据画茎叶图的步骤,画图即可;(3)利用方差的计算公式,代入数据,计算即可.【解答】解:(1)这20名工人年龄的众数为30,极差为40﹣19=21;(2)茎叶图如下:(3)年龄的平均数为:这20名工人年龄的方差为S 2=2=30.[(19﹣30)2+3×(28﹣30)2+3×(29﹣30)+5×(30﹣30)2+4×(31﹣30)2+3×(32﹣30)2+(40﹣30)2]=12.6.【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题.18.(13分)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2作如图2折叠;折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M ﹣CDE 的体积.【考点】LF :棱柱、棱锥、棱台的体积;LW :直线与平面垂直.【专题】5F :空间位置关系与距离;5G :空间角;5Q :立体几何.【分析】(1)要证CF ⊥平面MDF ,只需证CF ⊥MD ,且CF ⊥MF 即可;由PD ⊥平面ABCD ,得出平面PCD ⊥平面ABCD ,即证MD ⊥平面PCD ,得CF ⊥MD ;(2)求出△CDE 的面积S△CDE,对应三棱锥的高MD ,计算它的体积V M﹣CDE.【解答】解:(1)证明:∵PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD ;又平面PCD ∩平面ABCD=CD ,MD ⊂平面ABCD ,MD ⊥CD ,∴MD ⊥平面PCD ,CF ⊂平面PCD ,∴CF ⊥MD ;又CF ⊥MF ,MD 、MF ⊂平面MDF ,MD ∩MF=M ,∴CF ⊥平面MDF ;(2)∵CF ⊥平面MDF ,∴CF ⊥DF ,又∵Rt △PCD 中,DC=1,PC=2,∴∠P=30°,∠PCD=60°,∴∠CDF=30°,CF=CD=;∵EF ∥DC ,∴∴DE==,即,;=,,∴PE=∴S△CDE=CD•DE=MD===×=,.∴V M﹣CDE =S△CDE•MD=×【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.19.(14分)设各项均为正数的数列{a n }的前n 项和为S n 满足S n 2﹣(n 2+n ﹣3)S n ﹣3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有++…+<.【考点】8H :数列递推式;8K :数列与不等式的综合.【专题】54:等差数列与等比数列;55:点列、递归数列与数学归纳法.【分析】(1)本题可以用n=1代入题中条件,利用S 1=a 1求出a 1的值;(2)利用a n 与S n 的关系,将条件转化为a n 的方程,从而求出a n ;(3)利用放缩法,将所求的每一个因式进行裂项求和,即可得到本题结论.【解答】解:(1)令n=1得:∴(S 1+3)(S 1﹣2)=0.∵S 1>0,∴S 1=2,即a 1=2.(2)由.∵a n >0(n ∈N *),∴S n >0.∴.,得:,即.∴当n ≥2时,又∵a 1=2=2×1,∴.==<=<;(3)由(2)可知n ∈N *,当n=1时,显然有当n ≥2时,<+,=(),=﹣<.所以,对一切正整数n ,有【点评】本题考查了数列的通项与前n 项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.20.(14分)已知椭圆C :+=1(a >b >0)的右焦点为(,0),离心率为.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【考点】J3:轨迹方程;K3:椭圆的标准方程.【专题】5D :圆锥曲线的定义、性质与方程.【分析】(1)根据焦点坐标和离心率求得a 和b ,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k 的一元二次方程,利用韦达定理表示出k 1•k 2,进而取得x 0和y 0的关系式,即P 点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A 、B 两点分别位于椭圆长轴与短轴的端点,P 的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P (x 0,y 0)的切线为y=k (x ﹣x 0)+y 0,+=+=1,4x 2+9[k 2x 2+﹣2kx 0x ++2ky 0x ﹣2ky 0x 0]=36整理得(9k 2+4)x 2+18k (y 0﹣kx 0)x +9[(y 0﹣kx 0)2﹣4]=0,∴△=[18k (y 0﹣kx 0)]2﹣4(9k 2+4)×9[(y 0﹣kx 0)2﹣4]=0,整理得(x 02﹣9)k 2﹣2x 0×y 0×k +(y 02﹣4)=0,∴﹣1=k 1•k 2=∴x 02+y 02=13.=﹣1,把点(±3,±2)代入亦成立,∴点P 的轨迹方程为:x 2+y 2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x 和y 关系.21.(14分)已知函数f (x )=x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈(0,)∪(,1),使得f (x 0)=f ().【考点】6B :利用导数研究函数的单调性;6E :利用导数研究函数的最值.【专题】51:函数的性质及应用;53:导数的综合应用.【分析】对第(1)问,先求导,再通过一元二次方程的实根讨论单调性;对第(2)问,可将f (x 0)=f ()转化为f (x 0)﹣f ()=0,即将“函数问题”化为“方程是否有实根问题”处理.【解答】解:(1)由f (x )得f′(x )=x 2+2x +a ,令f′(x )=0,即x 2+2x +a=0,判别式△=4﹣4a ,①当△≤0即a ≥1时,f′(x )≥0,则f (x )在(﹣∞,+∞)上为增函数.②当△>0即a <1时,方程f′(x )=0的两根为当x ∈(﹣∞,﹣1﹣当当,即,)时,f′(x )>0,则f (x )为增函数;时,f′(x )<0,则f (x )为减函数;,+∞)时,f′(x )>0,则f (x )为增函数.综合①、②知,a ≥1时,f (x )的单调递增区间为(﹣∞,+∞),a <1时,f (x )的单调递增区间为(﹣∞,f (x )的单调递减区间为和.,+∞),(2)∵==21===∴若存在∪.,使得∪,即内必有实数解.,则关于x 的方程4x 2+14x +7+12a=0在∵a <0,∴△=142﹣16(7+12a )=4(21﹣48a )>0,方程4x 2+14x +7+12a=0的两根为∵x 0>0,∴依题意有即得∴当得当得,且,且∪成立;∪成立.∪{}时,不存在∪,使.时,存在唯一的∪,使,,且,,∴49<21﹣48a <121,且21﹣48a ≠81,,即,【点评】1.求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.2.对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.22。
2014年广东省高考数学模拟试卷(文科)
2014年广东省高考数学模拟试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.若集合A={-1,0},B={0,1},则A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}【答案】A【解析】解:由集合A={-1,0},B={0,1},得:A∩B={-1,0}∩{0,1}={0}.故选:A.直接由交集的运算得答案.本题考查了交集及其运算,是基础题.2.函数f(x)=的定义域是()A.(-∞,1)B.(-∞,1]C.(-∞,-1)∪(-1,1)D.(-∞,-1)∪(-1,1]【答案】D【解析】解:由,解得:.∴函数f(x)的定义域是(-∞,-1)∪(-1,1].故选:D.由根式内部的代数式大于等于0,分式的分母不等于0列式求解x的取值集合得答案.本题考查了函数的定义域及其求法,是基础的计算题.3.若复数z1=1+i,z2=2i,则=()A.-1+iB.1+iC.-2+2iD.2+2i【答案】B【解析】解:由题意可得,===i(1-i)=1+i,故选:B.由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质求得的值.本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.4.下列函数中,在其定义域内既是奇函数又是增函数的是()A.y=sinxB.y=C.y=x3D.y=lg【答案】C【解析】解:A是奇函数但不是增函数;B既不是奇函数也不是偶函数;C既是奇函数又是增函数;D是偶函数.故选:C根据正弦函数,指数函数,幂函数,对数函数的奇偶性和单调性,结合复合函数的单调性“同增异减”的原则,逐一判断可得答案.本题考查的知识点是函数单调性的判定与证明,函数奇偶性的判定,熟练掌握各种基本初等函数的图象和性质是解答的关键.5.已知平面向量=(1,2),=(2,y),且∥,则+2=()A.(5,-6)B.(3,6)C.(5,4)D.(5,10)【答案】D【解析】解:∵,∴y-2×2=0,解得y=4,∴=(1,2)+2(2,4)=(5,10).故选:D.利用向量共线定理和向量坐标运算即可得出.本题考查了向量共线定理和向量坐标运算,属于基础题.6.阅读程序框图,若输入m=4,则输出S等于()A.8B.12C.20D.30【答案】C【解析】解:根据程序框图,算法的功能是求S=2+4+…+2i的值,当输入m=4时,跳出循环的i值为4,∴输出S=2+4+6+8=20.故选:C.算法的功能是求S=2+4+…+2i的值,根据输入的m值,确定跳出循环的i值,计算输出S的值.本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键.7.“x>0”是“x2+4x+3>0”成立的()A.充分非必要条件B.必要非充分条件C.非充分非必要条件D.充要条件【答案】A【解析】解:由x2+4x+3>0解得x<-3或x>-1.∴“x>0”是“x2+4x+3>0”成立的充分非必要条件.故选:A.由x2+4x+3>0解得x<-3或x>-1.即可判断出.本题考查了充分必要条件的判定、一元二次不等式的解法,属于基础题.8.以点(3,-1)为圆心且与直线3x+4y=0相切的圆的方程是()A.(x+3)2+(y-1)2=1B.(x-3)2+(y+1)2=1C.(x+3)2+(y-1)2=2D.(x-3)2+(y+1)2=2【答案】B【解析】解:∵圆心到直线的距离为d==1,∴所求圆的方程是(x-3)2+(y+1)2=1.故选:B.求出圆心到直线的距离,可得半径,即可得出圆的方程.本题考查圆的方程,考查直线与圆的位置关系,求出圆的半径是关键.9.某几何体的三视图如图所示,则该几何体的体积是()A. B. C. D.πa3【答案】A【解析】解:根据三视图,该几何体为个圆锥,且底面半径为a,高为2a,∴该几何体的体积V=()=.故选:A.根据三视图,该几何体为个圆锥,且底面半径为a,高为2a,由此能求出它的体积.本题考查几何体的体积的求法,是中档题,解题时要认真审题,注意三视图的合理运用.10.已知变量x ,y 满足约束条件,目标函数z =mx +y 仅在点(0,1)处取得最小值,则m 的取值范围是( )A.(-∞,4B.(4,+∞)C.(-∞,1)D.(1,+∞) 【答案】 D【解析】解:作出不等式组对于的平面区域如图: 由z =mx +y ,得y =-mx +z ,则当y =-mx +z 截距最大时,z 也取得最大值, 要使若z =mx +y 仅在点A (0,1)处取得最小值则不等式组对应的平面区域在直线y =-mx +z 的上方, 则 < < ,即 > >, 解得m >1, 故选:D作出不等式组对于的平面区域,利用数形结合即可得到结论.本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.二、填空题(本大题共5小题,共25.0分)11.在等差数列{a n }中,已知a 3=3,a 2+a 8=10,则a n = ______ . 【答案】 n【解析】解:由a 3=3,a 2+a 8=10,得: , 解得:,∴a n =1+(n -1)=n . 故答案为:n .设出等差数列的首项和公差,由题意列方程组求出首项和公差,则答案可求. 本题考查等差数列的通项公式,考查了方程组的解法,是基础题.12.某校高三年级共1200人.学校为了检查同学们的健康状况,随机抽取了高三年级的100名同学作为样本,测量他们的体重(单位:公斤),体重的分组区间为[40,45),[45,50),[50,55),(55,60),[60,65],由此得到样本的频率分布直方图,如图.根据频率分布直方图,估计该校高三年级体重低于50公斤的人数为______ .【答案】480【解析】解:由频率分布直方图,估计该校高三年级体重低于50公斤的人数为:1200×(0.03×5+0.05×5)=480.故答案为:480.由频率分布直方图,先求出高三年级体重低于50公斤的频率,再求频数.本题考查满足条件的学生人数的求法,是基础题,解题时要认真审题,注意频率分布直方图的合理运用.13.已知a、b、c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=,∠B=60°,则AB= ______ .【答案】2【解析】解:∵△ABC中,a=1,b=,∠B=60°,∴cos B=,即cos60°==,解得:c=2(负值舍去),则AB=c=2.故答案为:2利用余弦定理列出关系式,将a,b,cos B的值代入求出c的值,即为AB 的长.此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.14.在极坐标系(ρ,θ)(ρ≥0,0≤θ<)中,曲线ρ=4cosθ-与ρ(cosθ+sinθ)=1的交点的极坐标为______ .【答案】(1,0)【解析】解:由ρ(cosθ+sinθ)=1化为直角坐标方程x+y=1.由曲线ρ=4cosθ-即ρ2=4ρcosθ-3,化为直角坐标方程x2+y2=4x-3.联立解方程组,解得或(舍去),∴交点为(1,0).∵ρ≥0,0≤θ<,∴ρ=1,θ=0.∴交点的极坐标为(1,0).把直线与曲线的极坐标方程分别化为直角坐标方程,再联立即可解出.本题考查了把直线与曲线的极坐标方程化为直角坐标方程、曲线的交点坐标,考查了计算能力,属于基础题.15.如图,圆O1和圆O2相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,已知AC=5,AD=8,AB=4,则BD= ______ .【答案】【解析】解:由AC与圆O2相切于A,得∠CAB=∠ADB,同理∠ACB=∠DAB,所以△ACB∽△DAB,∴=,∴BD==.故答案为:.由AC与圆O2相切于A,得∠CAB=∠ADB,同理∠ACB=∠DAB,从而△ACB∽△DAB,由此能求出结果.本题考查线段长的求法,是基础题,解题时要注意圆的性质和三角形相似的性质的合理运用.三、解答题(本大题共6小题,共80.0分)16.已知函数f(x)=2sin(x-),x∈R.(1)求f(0)的值;(2)求f(x)的最小正周期;(3)设α,β∈[0,],f(2α+)=,f(2β+)=.求sin(α-β)的值.【答案】解:(1)∵函数f(x)=2sin(x-),x∈R,∴f(0)=2sin(-)=-2sin=-1.(2)由f(x)的解析式可得它的最小正周期是T==4π.(3)∵f(2α+)=2sin[(2α+)-]=2sinα=,∴sinα=.f(2β+)=2sin[(2β+)-]=2sin(β+)=2cosβ=,∴cosβ=.∵α,β∈[0,],∴cosα==,sinβ==.∴sin(α-β)=sinαcosβ-cosαsinβ=-=.【解析】(1)根据函数f(x)的解析式求得f(0)的值.(2)由f(x)的解析式可得它的最小正周期.(3)由f(2α+)=,求得sinα的值;由f(2β+)=,求得cosβ的值,再根据α,β∈[0,],利用同角三角函数的基本关系求得cosα和sinβ的值,从而求得sin(α-β)=sinαcosβ-cosαsinβ的值.本题主要考查三角恒等变换、三角函数的周期性、同角三角函数的基本关系,属于中档题.17.某校高二年级在3月份进行一次质量考试,考生成绩情况如下表所示:已知在全体考生中随机抽取1名,抽到理科考生的概率是0.6.(1)求x的值;(2)读文科考生不低于550分的6名学生的语文成绩的茎叶图,计算这6名文科考生的语文成绩的平均分、中位数;(3)在(2)中的6名文科考生中随机地选2名考生,求恰有一名考生的语文成绩在130分以上的概率.【答案】解:(1)由题意可得=0.6,解得x=26;(2)6名文科考生的语文成绩的平均分为=(111+120+125+128+132+134)=125中位数为=126.5(3)从6名文科考生中随机地选2名考生,基本事件有:(111,120),(111,125),(111,128),(111,132),(111,134),(120,125),(120,128),(120,132),(120,134),(125,128),(125,132),(125,134),(128,132),(128,134),(132,134).共15种.记“恰有一名考生的语文成绩在130以上”为事件A,其中有(111,132),(111,134),(120,132),(120,134),(125,132),(125,134),(128,132),(128,134).共8种.∴恰有一名考生的语文成绩在13(0分)以上的概率为P(A)=【解析】(1)由概率可得x的方程,解方程可得x值;(2)由平均数和中位数的定义计算可得;(3)列举法可得总的基本事件共15种,符合条件的共8种,由古典概型的概率公式计算可得.本题考查古典概型及其概率公式,涉及茎叶图和平均数中位数,属基础题.18.如图,四棱锥P-ABCD中,PB⊥底面ABCD,AB∥CD,AD⊥AB,AB=2,AD=,PB=3,E为CD上一点,EC=3,DE=1.(1)证明:BE⊥平面PBC;(2)求三棱锥B-PAC的体积.【答案】(本小题满分14分)(1)证明:过B作CD的垂线交CD于F,则BF=AD=,EF=AB-DE=1,FC=2在R t△BFE中,BE==,在R t△BFC中,BD==.在△BCE中,∵BE2+BC2=BC2,∴BE⊥BC,∵PB⊥底面ABCD,BE⊂平面ABCD,∴PB⊥BE,又PB∩BC=B∴BE⊥平面PBC.…(8分)(2)解:∵AB∥CD,AD⊥AB,∴四边形ABCD是梯形,∴S梯形ABCD=,,∴S△ABC=S梯形ABCD-S△ADC=3-2=.∴V B-PAC=V P-ABC===.…(14分)【解析】(1)由公演股定理得BE⊥BC,由线面垂直得PB⊥BE,由此能证明BE⊥平面PBC.(2)由V B-PAC=V P-ABC,利用等积法能求出三棱锥B-PAC的体积.本题考查直线与平面平行的证明,考查三棱锥体积的求法,解题时要认真审题,注意空间思维能力的培养.19.数列{a n}(a n>0)的首项为1,且前n项和S n满足-=1(n≥2).(1)求数列{a n}的通项公式;(2)记b n=(n=1,2,…),求数列{b n}的前n项和T n.【答案】(本小题满分12分)解:(1)∵=1.∴数列{}构成一个首项为1,公差为1的等差数列,∴,∴,当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1,当n=1时,a1=S1=1,符合上式,∴a n=2n-1.…(6分)(2)∵,∴,①①×2得2T n=1+,②②-①得T n=1+1+=2+-=1+-.…(12分)【解析】(1)由已知条件推导出数列{}构成一个首项为1,公差为1的等差数列,从而得到,由此能示出a n=2n-1.(2)由,利用错位相减法能求出数列{b n}的前n项和T n.本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.20.已知点F(0,1),点M是F关于原点的对称点.(1)若椭圆C1的两个焦点分别为F,M,且离心率为,求椭圆C1的方程;(2)若动点P到定点F的距离等于点P到定直线l:y=-1的距离,求动点P的轨迹C2的方程;(3)过点M作(2)中的轨迹C2的切线,若切点在第一象限,求切线m的方程.【答案】解:(1)∵点F(0,1),点M是F关于原点的对称点,椭圆C1的两个焦点分别为F,M,且离心率为,∴依题意,设椭圆C1的方程为:,>>,∵,∴a2=4,b2=3,∴椭圆C1的方程为C1:.…(5分)(2)∵动点P到定点F的距离等于点P到定直线l:y=-1的距离,依题意,动点P的轨迹为焦点F(0,1)的抛物线,∴抛物线C2的方程为x2=4y.…(8分)(3)设切点Q(,),x0>0.由y=,得,∴抛物线在Q点处的切线斜率为,∴所求切线方程=,即y=.∵:的焦点F(0,1)关于原点的对称点M(0,-1).∴点M(0,-1)在切线上,∴-1=-,∴x0=2或x0=-2(舍去).∴所求切线方程为y=x-1.…(14分)【解析】(1)依题意,设椭圆C1的方程为:,>>,由题意知,由此能求出椭圆C1的方程.(2)依题意,动点P的轨迹为焦点F(0,1)的抛物线,由此能求出抛物线C2的方程.(3)设切点Q(,),x0>0.由,得所求切线方程y=.由此能求出切线方程.本题考查椭圆方程、抛物线方程的求法,考查切线方程的求法,解题时要认真审题,注意导数的几何意义的合理运用.21.已知函数f(x)=x3+ax+4.(1)讨论f(x)的单调性;(2)求函数f(x)在区间[0,3]上的最小值g(a).【答案】解:(1)f'(x)=x2+a.①当a≥0时,f'(x)=x2+a≥0,故f(x)在R上为增函数.②当a<0,f'(x)=x2+a,令f'(x)=0,解得x=-或x=所以函数f(x)在(-∞,)和(,+∞)内单调递增,在(,)内单调递减.(2)当a≥0时,f'(x)=x2+a≥0,故f(x)在R上为增函数.∴f(x)在[0,3]上单调递增,∴f(x)在x=0处取得最小值,且f(0)=4.②当a<0时,(i)当0<<3,即-9<a<0时,由(1)知f(x)在[0,]上单调递减,(,+∞)上单调递增,∴f(x)在x=处取得最小值,且f()=.(ii)当≥3,即a≤-9时,由(1)知f(x)在[0,3]上单调递减,∴f(x)在x=3处取得最小值,且f(3)=(x)=×33+3a+4=13+3a综上所述,g(a)=,,<<,【解析】(1)先求导,通过讨论a的取值,讨论函数的单调性.(2)利用导数通过分类讨论求出函数的最小值.本题的考点是函数的单调性和最值与导数之间的关系.对应含有参数的函数的单调性要对参数进行讨论.高中数学试卷第11页,共11页。
2014年广东省“十二校”高考数学二模试卷(文科)
2014年广东省“十二校”高考数学二模试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.设a∈R,若(a-i)2i(i为虚数单位)为正实数,则a=()A.2B.1C.0D.-1【答案】B【解析】解:∵(a-i)2i=(a2-1-2ai)i=2a+(a2-1)i为正实数,∴2a>0,且(a2-1)=0,∴a=1,故选B.化简复数到最简形式,由题意知,此复数的实部大于0,虚部等于0,解出a的值.本题考查两个复数代数形式的乘法,复数为正实数的条件.2.已知全集U={2,3,4,5},M={3,4,5},N={2,4,5},则()A.M∩N={4}B.M∪N=UC.(∁U N)∪M=UD.(∁U M)∩N=N【答案】B【解析】解:∵全集U={2,3,4,5},M={3,4,5},N={2,4,5},∴C U M={2},C U N=[3}.∴M∩N={4,5},故A错;M∪N={2,3,4,5}=U,故B对;(C U N)∪M={3,4,5},故C错;(C U M)∩N={2},故D错.故选B.由题意,由全集U={2,3,4,5},M={3,4,5},N={2,4,5},求出它们的交集、并集或补集即可得到答案.本题考查交并补集的运算,属于集合中的基本运算题,熟练掌握交、并、补运算的定义是解题的关键.3.下列命题中的假命题是()A.∃x∈R,x3<0B.“a>0”是“|a|>0”的充分不必要条件C.∀x∈R,2x>0D.若p∧q为假命题,则p、q均为假命题【答案】D【解析】解:当x=-1时,x3=-1<0,故A为真命题;∵“a>0”时,“|a|>0”成立,而“|a|>0”时,“a>0”不一定成立,故“a>0”是“|a|>0”的充分不必要条件,故B为真命题由对数函数的性质,2x>0恒成立,故C为真命题若p∧q为假命题,则p,q可能一个为真命题,一个为假命题,故D为假命题故选D利用特称命题的性质,充要条件的定义,全称命题的性质,及复合命题真假的判断方法,逐一分析四个答案,即可得到结论.本题考查逻辑语言,指数函数、幂函数的值域,充要条件的判断及复合命题真假性的判断.属于中等题4.若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交【答案】A【解析】解:直线l不平行于平面α,且l⊄α,则l与α相交l与α内的直线可能相交,也可能异面,但不可能平行故B,C,D错误故选A根据线面关系的定义,我们根据已知中直线l不平行于平面α,且l⊄α,判断出直线l 与α的关系,利用直线与平面相交的定义,我们逐一分析四个答案,即可得到结论.本题考查线线、线面位置关系的判定,考查逻辑推理能力和空间想象能力.其中利用已知判断出直线l与α的关系是解答本题的关键.5.在等差数列{a n}中,a2+a12=32,则2a3+a15的值是()A.24B.48C.96D.无法确定【答案】B【解析】解:设等差数列{a n}中首项为a1,公差为d,所以有:a2+a12=a1+d+a1+11d=32,即:a1+6d=16.∴2a3+a15=2(a1+2d)+a1+14d=3(a1+6d)=3×16=48.故选B.先设等差数列{a n}中首项为a1,公差为d,利用a2+a12=32求出首项a1和公差d之间的关系;再代入所求问题整理即可求得结论.本题主要考查等差数列中基本量之间的关系.因为已知条件中只有一个等式,没法求出首项a1和公差d;所以在求解本题时,用的是整体代入的思想.6.某程序框图如图所示,该程序运行后输出i的值是()A.63B.31C.27D.15【答案】A【解析】解:因为S赋值为0,0不大于50,S=S2+1=02+1=1,i=2i+1=2×1+1=3;1不大于50,S=S2+1=12+1=2,i=2×3+1=7;2不大于50,S=S2+1=22+1=5,i=2×7+1=15;5不大于50,S=S2+1=52+1=26,i=2×15+1=31;26不大于50,S=S2+1=262+1=667,i=2×31+1=63;667大于50,算法结束,输出i的值为63.故选A.题目首先给计数变量S和输出变量i赋值0和1,然后判断S与50的大小关系,S小于等于50进入执行框,S大于50时结束.本题考查的是程序框图题,解答的关键是清楚框图表达的意思,特别是当不满足条件是执行循环,满足条件时算法结束,输出i.7.动圆M经过双曲线x2-=1左焦点且与直线x=2相切,则圆心M的轨迹方程是()A.y2=4xB.y2=-4xC.y2=8xD.y2=-8x【答案】D【解析】解:双曲线x2-=1左焦点为(-2,0),则∵动圆M经过双曲线x2-=1左焦点且与直线x=2相切,∴M到(-2,0)的距离等于M到直线x=2的距离,∴M的轨迹是以(-2,0)为焦点的抛物线,∴圆心M的轨迹方程是y2=-8x.故选:D.求出双曲线的焦点,根据动圆M经过双曲线x2-=1左焦点且与直线x=2相切,可得M到(-2,0)的距离等于M到直线x=2的距离,利用抛物线的定义,即可得出结论.本题考查双曲线的几何性质,考查抛物线的定义,正确运用抛物线的定义是关键.8.O是△ABC所在的平面内的一点,且满足(-)•(+-2)=0,则△ABC 的形状一定为()A.正三角形B.直角三角形C.等腰三角形D.斜三角形【答案】C【解析】解:∵====0,∴∴△ABC为等腰三角形.故选C利用向量的运算法则将等式中的向量,,用三角形的各边对应的向量表示,得到边的关系,得出三角形的形状.此题考查了三角形形状的判断,涉及的知识有平面向量的平行四边形法则,平面向量的数量积运算,向量模的计算,以及等腰三角形的判定方法,熟练掌握平面向量的数量积运算法则是解本题的关键.9.已知平面直角坐标系xoy上的区域D由不等式组给定,若M(x,y)为D 上的动点,点A(,0),则z=||的最大值为()A.6B.C.4D.2【答案】B【解析】解:作出不等式组对应的平面区域如图:由图象可知当M位于点B(0,2)时,z=||取得最大值则d=,故选:B.作出不等式对应的平面区域,根据z=||的几何意义,利用距离公式即可得到结论.本题主要考查线性规划的应用,根据距离公式结合数形结合是解决本题的关键.10.已知a是函数f(x)=2x-x的零点,若0<x0<a,则f(x0)的值满足()A.f(x0)=0B.f(x0)>0C.f(x0)<0D.f(x0)的符号不确定【答案】C【解析】解:∵在(0,+∞)上是增函数,a是函数的零点,即f(a)=0,∴当0<x0<a时,f(x0)<0,故选C.a是函数的零点,函数是增函数,本题根据函数的单调性和零点的性质进行求解.函数是增函数,单调函数最多只有一个零点,a是函数的唯一零点.二、填空题(本大题共5小题,共25.0分)11.某单位有200名职工,现用系统抽样法,从中抽取40名职工作样本,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第9组抽出的号码应是______ .【答案】42【解析】解:∵从200名职工中,用系统抽样法,从中抽取40名职工作样本,则样本数据间隔为,若第5组抽出的号码为22,则第9组抽出的号码应是22+4×5=42,故答案为:42.根据系统抽样的定义可知样本数据间隔为5,然后根据第5组的号码即可得到结论.本题主要考查系统抽样的应用,根据条件确定样本数据间隔是解决本题的关键,比较基础.12.在△ABC中,a、b、c分别是角A、B、C所对的边,A=,a=,c=1,则△ABC的面积S= ______ .【答案】【解析】解:∵A=,a=,c=1,∴由正弦定理=得:sin C==,由a>c,得到A>C,∴C=,∴B=π-(A+C)=,即△ABC为直角三角形,则△ABC的面积S=ac=.故答案为:由A的度数求出sin A的值,再由a与c的值,利用正弦定理求出sin C的值,又a大于c,利用三角形的边角关系判断出A大于C,利用特殊角的三角函数值求出C的度数为,可得出三角形ABC为直角三角形,利用直角边乘积的一半即可求出三角形ABC的面积S.此题考查了正弦定理,三角形的面积,以及三角形的边角关系,熟练掌握正弦定理是解本题的关键.13.已知实数a≠0,函数f(x)=,<,,若f(1-a)=f(1+a),则a的值为______ .【答案】-【解析】解:当a>0时,1-a<1,1+a>1∴2(1-a)+a=-1-a-2a解得a=舍去当a<0时,1-a>1,1+a<1∴-1+a-2a=2+2a+a解得a=故答案为对a分类讨论判断出1-a,1+a在分段函数的哪一段,代入求出函数值;解方程求出a.本题考查分段函数的函数值的求法:关键是判断出自变量所在的范围.14.已知点P是曲线C:(θ为参数,π≤θ≤2π)上一点,O为原点.若直线OP的倾斜角为,则点P的直角坐标为______ .【答案】,【解析】解:由曲线C:(θ为参数,π≤θ≤2π)消去参数θ化为(-3≤y≤0).由直线OP的倾斜角为,可得直线OP的方程为y=x.联立,解得x=y=-.∴点P,.故答案为:,.利用平方关系把曲线C的参数方程化为直角坐标方程,与直线OP的方程联立即可得出.本题考查了把椭圆的参数方程化为直角坐标方程、直线与椭圆相交问题,属于基础题.15.如图,⊙O和⊙O′相交于A、B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB、CB,已知BC=3,BD=4,则AB= ______ .【答案】2【解析】解:由AC与⊙O′相切于A,得∠CAB=∠ADB,同理∠ACB=∠DAB,所以△ACB∽△DAB,从而,即AB2=BC•BD.因为BC=3,BD=4,所以AB=2.故答案为:2.先由AC与⊙O′相切于A,得∠CAB=∠ADB,同理得到∠ACB=∠DAB,即可得到△ACB∽△DAB,进而得到结论.本题主要考查与圆有关的比例线段、相似三角形的判定及切线性质的应用.属于基础题.三、解答题(本大题共6小题,共80.0分)16.已知函数f(x)=sinx+cos(x-π)(1)求函数f(x)的最小正周期和值域;(2)若函数f(x)的图象过点(α,),<α<.求f(+α)的值.【答案】解:(1)∵f(x)=sinx-cosx=2(sinx-cosx)=2sin(x-),∴函数f(x)的最小正周期T=2π,值域为[-2,2];(2)∵f(α)=2sin(α-)=,∴sin(α-)=,又<α<,∴0<α-<,∴cos(α-)==,∴f(+α)=2sin[(+α)-]=2sin[(α-)+]=2(sin(α-)cos+cos(α-)sin)=2(×+×)=.【解析】(1)利用三角函数中的恒等变换应用可求得f(x)=2sin(x-),利用正弦函数的性质即可求得f(x)的最小正周期和值域;(2)依题意易知,sin(α-)=,cos(α-)=,利用两角和的正弦即可求得f(+α)的值.本题考查三角函数中的恒等变换应用,考查同角三角函数间的关系与两角和的正弦,考查运算求解能力,属于中档题.17.为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.(Ⅰ)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;(Ⅱ)求调查中随机抽取了多少个学生的百米成绩;(Ⅲ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.【答案】解:(Ⅰ)百米成绩在[16,17)内的频率为0.32×1=0.32,则共有1000×0.32=320人;(Ⅱ)设图中从左到右前3个组的频率分别为3x,8x,19x依题意,得3x+8x+19x+0.32+0.08=1,∴x=0.02设调查中随机抽取了n个学生的百米成绩,∴n=50∴调查中随机抽取了50个学生的百米成绩.(Ⅲ)百米成绩在第一组的学生数有3×0.02×1×50=3,记他们的成绩为a,b,c百米成绩在第五组的学生数有0.08×1×50=4,记他们的成绩为m,n,p,q.则从第一、五组中随机取出两个成绩包含的基本事件有{a,b},{a,c},{a,m},{a,n},{a,p},{a,q},{b,c},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},{m,n},{m,p},{m,q},{n,p},{n,q},{p,q},共21个其中满足成绩的差的绝对值大于1秒所包含的基本事件有{a,m},{a,n},{a,p},{a,q},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},共12个,∴P=【解析】(1)根据频率分步直方图中小正方形的面积是这组数据的频率,用长乘以宽得到面积,即为频率.(II)根据所有的频率之和是1,列出关于x的方程,解出x的值做出样本容量的值,即调查中随机抽取了50个学生的百米成绩.(III)本题是一个古典概型,试验发生所包含的事件是从第一、五组中随机取出两个成绩,满足条件的事件是成绩的差的绝对值大于1秒,列举出事件数,根据古典概型概率公式得到结果.本题考查样本估计总体,考查古典概型的概率公式,考查频率分布直方图等知识,考查数据处理能力和分析问题、解决问题的能力.18.一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.(1)求证:AC⊥BD;(2)求三棱锥E-BCD的体积.【答案】(1)证明:因为EA⊥平面ABC,AC⊂平面ABC,所以EA⊥AC,即ED⊥AC.又因为AC⊥AB,AB∩ED=A,所以AC⊥平面EBD.因为BD⊂平面EBD,所以AC⊥BD.(4分)(2)解:因为点A、B、C在圆O的圆周上,且AB⊥AC,所以BC为圆O的直径.设圆O的半径为r,圆柱高为h,根据正(主)视图、侧(左)视图的面积可得,(6分)解得所以BC=4,.以下给出求三棱锥E-BCD体积的两种方法:方法1:由(1)知,AC⊥平面EBD,所以.(10分)因为EA⊥平面ABC,AB⊂平面ABC,所以EA⊥AB,即ED⊥AB.其中ED=EA+DA=2+2=4,因为AB⊥AC,,所以.(13分)所以.(14分)方法2:因为EA⊥平面ABC,所以.(10分)其中ED=EA+DA=2+2=4,因为AB⊥AC,,所以.(13分)所以.(14分)【解析】(1)由已知中EA⊥平面ABC,AB⊥AC,结合线面垂直的定义及线面垂直的判定定理,我们易求出AC⊥平面EBD,进而得到答案.(2)要求三棱锥E-BCD的体积,我们有两种办法,方法一是利用转化思想,将三棱锥E-BCD的体积转化为三棱锥C-EBD的体积,求出棱锥的高和底面面积后,代入棱锥体积公式,进行求解;方法二是根据V E-BCD=V E-ABC+V D-ABC,将棱锥的体积两个棱次的体积之差,求出两个辅助棱锥的体积后,得到结论.本题考查的知识点是棱锥的体积公式,简单空间图形的三视图,直线与平面垂直的性质,其中根据已知中三视图的体积,判断出几何体中相关几何量的大小,结合已知中其中量,进而判断出线面关系是解答本题的关键.19.已知数列{a n}有a2=P(常数P>0),其前N项和为S n,满足S n=(n∈N*)(1)求数列{a n}的首项a1,并判断{a n}是否为等差数列,若是求其通项公式,不是,说明理由;(2)令P n=+,T n是数列{P n}的前n项和,求证:T n-2n<3.【答案】(1)解:由S1=a1==0,得a1=0,当n≥2时,a n=S n-S n-1=-,故(n-2)a n=(n-1)a n-1,故当n>2时,a n==…•a2=(n-1)p,由于n=2时a2=p,n=1时a1=0,也适合该式,故对一切正整数n,a n=(n-1)p,a n+1-a n=p,由于p是常数,故数列{a n}为等差数列.a n=(n-1)p;(2)证明:S n==,P n=+=+=2+2(),∴T n=2n+2(1-+-+-+-+…+-+)=2n+2(1+--)=2n+3-2(+).∴T n=3-2(+)<3.【解析】(1)先利用a n=S n-S n-1(n≥2)求出数列的递推关系式(n-2)a n=(n-1)a n-1,再通过一步步代换求出数列的通项公式,最后看是否满足等差数列的定义即可证明结论.(2)先对数列的通项整理得P n=2+2(-),再利用裂项求和法求数列{P n}的前n项和T n,易作出判断;本题主要考查数列的求和以及数列的递推关系式的应用和数列与不等式的综合,是对知识的综合考查,属于中档题.20.如图,椭圆E:=1(a>b>0)的左焦点为F1,右焦点为F2,过F1的直线交椭圆于A、B两点,△ABF2的周长为8,且△AF1F2面积最大时,△AF1F2为正三角形.(1)求椭圆E的方程;(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q,证明:点M(1,0)在以PQ为直径的圆上.【答案】解:(1)∵过F1的直线交椭圆于A、B两点,且△ABF2的周长为8,∴4a=8,a=2.∵△AF1F2面积最大时,△AF1F2为正三角形,∴e=,即,∴c=1,∴b2=a2-c2=3.∴椭圆E的方程为;(2)由,消元可得(4k2+3)x2+8kmx+4m2-12=0.∵动直线l:y=kx+m与椭圆E有且只有一个公共点P(x0,y0),∴m≠0,△=0,∴(8km)2-4×(4k2+3)×(4m2-12)=0.∴4k2-m2+3=0.此时x0==,y0=,即P(,)由,得Q(4,4k+m).取k=0,m=,此时P(0,),Q(4,),以PQ为直径的圆为(x-2)2+(y-)2=4,交x轴于点M1(1,0)或M2(3,0).取k=-,m=2,此时P(1,),Q(4,0),以PQ为直径的圆为(x-)2+(y-)2=,交x轴于点M3(1,0)或M4(4,0).故若满足条件的点M存在,只能是M(1,0),证明如下∵,,,,∴故以PQ为直径的圆恒过y轴上的定点M(1,0).【解析】(1)已知△ABF2的周长为8,即4a=8,求得a,再由△AF1F2面积最大时,△AF1F2为正三角形可得椭圆的离心率,则c可求,进一步求得b,则椭圆方程可求;(2)联立直线和椭圆方程,化为关于x的一元二次方程后由判别式等于0得到k与m 的关系,从而求得直线与椭圆的公共点的坐标,再由直线y=kx+m与x=4联立求得Q 的坐标,然后利用取特殊值法求得以PQ为直径的圆与x轴的交点坐标,进一步证明得答案.本题椭圆方程的求法,考查直线与椭圆的位置关系的应用,体现了数学转化思想方法,训练了特值化思想在解题中的应用,考查了计算能力,是高考试卷中的压轴题.21.若函数y=在(m,+∞)上为增函数(m为常数),则称f(x)为区间(m,+∞)上的“一阶比增函数”,(m,+∞)为f(x)的一阶比增区间.(1)若f(x)=xlnx-2ax2是(0,+∞)上的“一阶比增函数”,求实数a的取值范围;(2)若f(x)=λx3-xlnx-x2(λ>0,λ为常数),且g(x)=有唯一的零点,求f(x)的“一阶比增区间”;(3)若f(x)是(0,+∞)上的“一阶比增函数”,求证:∀x1,x2∈(0,+∞),f (x1)+f(x2)<f(x1+x2).【答案】解:(1)若f(x)=xlnx-2ax2是(0,+∞)上的“一阶比增函数”,则y==lnx-2ax,则y'=,要使f(x)=xlnx-2ax2是(0,+∞)上的“一阶比增函数”,则y'=≥0恒成立,即a恒成立,∵x>0,∴a≤0.(2)若f(x)=λx3-xlnx-x2(λ>0,λ为常数),则g(x)==λx2-lnx-x,由g(x)==λx2-lnx-x=0,得λx2-x=lnx,设y=λx2-x和y=lnx,要使g(x)=有唯一的零点,则由y=λx2-x和y=lnx的图象可知当y=λx2-x经过点(1,0)时,函数g(x)=有唯一的零点,此时λ-1=0,解得λ=1,此时g(x)==x2-lnx-x,g'(x)=2x-1-=,由g'(x)=>0,得2x2-x-1>0,∴x>1或x<(舍去),即函数g(x)的单调区间为(1,+∞),∴f(x)的“一阶比增区间”是(1,+∞);(3)∵f(x)是“一阶比增函数”,即在(0,+∞)上是增函数,又∀x1,x2∈(0,+∞),有x1<x1+x2,x2<x1+x2,∴<,<,即<,<∴<=f(x1+x2).∴∀x1,x2∈(0,+∞),f(x1)+f(x2)<f(x1+x2)成立.【解析】(1)利用“一阶比增函数”的意义,利用导数和函数单调性之间的关系即可得出;(2)利用“一阶比增函数”的意义,利用g(x)=有唯一的零点先求出λ的值,即可得到f(x)的“一阶比增区间”;(3)利用“一阶比增函数”的意义及增函数的定义即可证明;本题主要考查函数单调性的应用,正确“一阶比增函数”的意义及增函数的定义及利用已经证明过的结论是解题的关键.涉及的知识点较多,综合性较强.。
广东省肇庆市2014届高三第一次模拟考试数学(文科)试题(解析版)
广东省肇庆市2014届高三第一次模拟考试(解析版)数 学(文科)第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.若全集{1,2,3,4,5}U =,集合{1,3,5}M =,{3,4,5}N =,则=)(N M C U ( )A .{2}B .{1,2}C .{1,2,4}D .{1,3,4,5}2.函数)1(log 4)(22-+-=x x x f 的定义域是( )A .(1,2]B .[1,2]C .(1,)+∞D .[2,)+∞3.设i 为虚数单位,则复数34iz i-=在复平面内所对应的点位于( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限 【答案】B 【解析】试题分析:根据复数的除法公式可得()()()343443i i i z i i i i ---===---,所以z 在复平面对应点的坐标为()4,3--在第三象限角,故选B.考点:复数除法 复平面4.下列函数中,在区间(,0)-∞上为减函数的是( )A .()2x f x =B .()|1|f x x =-C .()cos f x x =D .1()f x x x=+5.执行如图1所示的程序框图,若输入n 的值为4,则输出s 的值是( )A .2B .6C .24D .120【答案】C 【解析】试题分析:根据程序框图运行程序如下:4,1,1111,2122,3236,46424,5n i s s i s i s i s i =============== 所以输出24s =,故选C. 考点:程序框图6.某几何体的三视图如图2所示(单位:cm ),则该几何体的体积是( )A .5033cm B .503cm C .2533cm D .253cm7.已知圆C 的圆心是直线10x y -+=与x 轴的交点,且圆C 与直线30x y ++= 相切,则圆C 的方程是( )A .22(1)2x y ++= B .22(1)8x y ++= C .22(1)2x y -+= D .22(1)8x y -+= 【答案】A 【解析】试题分析:根据题意直线10x y -+=与x 轴的交点为()01,010y x y =⎧⇒-⎨-+=⎩,因为圆与直线30x y ++=相切,所以半径为圆心到切线的距离,即r d ===则圆的方程为()2212x y ++=,故选A考点:切线 圆的方程8.在锐角ABC ∆中,AB =3,AC =4,其面积ABC S ∆=BC =( )A .5BCD9.已知e 为自然对数的底数,设函数()xf x xe =,则( ) A .1是)(x f 的极小值点 B .1-是)(x f 的极小值点C .1是)(x f 的极大值点D .1-是)(x f 的极大值点10.设向量),(21a a =,),(21b b =,定义一种向量积:),(),(),(22112121b a b a b b a a =⊗=⊗.已知向量)4,21(=,)0,6(π=,点P 在cos y x =的图象上运动,点Q 在()y f x =的图象上运动,且满足+⊗=(其中O 为坐标原点),则()y f x =在区间]3,6[ππ上的最大值是( )A .B .C .2D .4第Ⅱ卷(共100分)二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知{}n a 是递增的等差数列,12a =,n S 为其前n 项和,若126,,a a a 成等比数列,则5S = ▲ . 【答案】7012.若曲线21232-+=x x y 的某一切线与直线34+=x y 平行,则切线方程为 ▲. 13.已知变量,x y 满足约束条件1,31x y y x y +≥⎧⎪≤⎨⎪-≤⎩,若z k x y =+的最大值为5,则实数k = ▲ . 【答案】1-=k 或21=k (对1个得3分,对2个得5分 【解析】试题分析:利用线性规划的知识画出不等式组表示的可行域如下图所示:14.(坐标系与参数方程选做题)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的参数方程为2cos 2(1sin )x ty t =⎧⎨=-⎩(其中t 为参数,且02t π≤<),则曲线C 的极坐标方程为 ▲ . 【答案】θρsin 4= 【解析】试题分析:把曲线C 的参数方程()2cos 21sin x ty t =⎧⎪⎨=-⎪⎩(t 为参数)化为普通方程可得()2224x y +-=,再利用直角坐标到极坐标的转化公式cos sin x y ρθρθ=⎧⎨=⎩可得()()()22222cos sin 24cos sin 4sin 44ρθρθρθθρθ+-=⇒+-+=24sin 4sin ρρθρθ⇒=⇒=,故填4sin ρθ=.考点:参数方程 极坐标方程15.(几何证明选讲选做题)如图3,在ABC ∆中,︒=∠90BAC ,BC AD ⊥,AE DE ⊥,D 、E 为垂足,若AE =4,BE =1,则AC = ▲ .三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)在∆ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且角A 、B 都是锐角,a =6,b =5 ,21sin =B . (1) 求sin A 和cos C 的值;(2) 设函数)2sin()(A x x f +=,求)2(πf 的值.【答案】(1)33sin ,cos 510A C -==7225f π⎛⎫= ⎪⎝⎭【解析】试题分析:(2)由(1)知4cos 5A =, ∴2sin 2cos 22cos 122f A A A ππ⎛⎫⎛⎫=+==-⎪ ⎪⎝⎭⎝⎭(11分) 24721525⎛⎫=⨯-= ⎪⎝⎭(12分)考点:正余弦值的关系正余弦值的和差角公式 诱导公式 余弦倍角公式17.(本小题满分13分)已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图4所示,求该样本的方差;(3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.试题解析:(1)由题意,得抽出号码为22的组数为3. (2分)因为2+10×(3-1)=22,所以第1组抽出的号码应该为02,抽出的10名学生的号码依次分别为:02,12,22,32,42,52,62,72,82,92. (4分)(2)这10名学生的平均成绩为:x =110×(81+70+73+76+78+79+62+65+67+59)=71, (6分) 故样本方差为:2110s =⨯(102+12+22+52+72+82+92+62+42+122)=52. (8分)18.(本小题满分13分)如图5,AB 是圆O 的直径,点C 是弧AB 的中点,点V 是圆O 所在平面外一点,D 是AC 的中点,已知2AB =,2VA VB VC ===. (1)求证:OD //平面VBC ; (2)求证:AC ⊥平面VOD ; (3)求棱锥C ABV -的体积.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3)3【解析】 试题分析:(1)要证明//OD 面VBC,只需要在面内找到一条线段与OD 平行即可,根据题目条件分析可得OD 平行于面VBC 内的线段BC,在三角形ABC 中根据D,O 是线段AC,AB 的中点,即可得到OD 为三角形BC 边的中位线,即可得到//OD BC ,进而通过线线平行得到线面平行.(3)由(2)知VO 是棱锥V ABC -的高,且VO == (10分) 又∵点C 是弧的中点,∴CO AB ⊥,且1,2CO AB ==, ∴三角形ABC 的面积1121122ABC S AB CO ∆=⋅=⨯⨯=, (11分)∴棱锥V ABC -的体积为111333V ABC ABC V S VO -∆=⋅=⨯, (12分)故棱锥C ABV -. (13分)考点:三棱锥体积 线面平行 线面垂直 中位线 三线合一19.(本小题满分14分)已知数列}{n a 的前n 项和为n S ,对一切正整数n ,点),(n n S n P 都在函数x x x f 2)(2+=的图象上.(1)求1a ,2a ;(2)求数列}{n a 的通项公式; (3)若211++=n n n n a a a b ,求证数列}{n b 的前n 项和601<n T . 【答案】(1)123,5a a == (2)21n a n =+ 【解析】 试题分析:(1)∵点),(n n S n P 都在函数x x x f 2)(2+=的图象上,∴2*2()n S n n n N =+∈, (1分) ∴113a S ==, (2分)又21222228a a S +==+⨯=,∴25a =. (4分) (2)由(1)知,2*2()n S n n n N =+∈,20.(本小题满分14分)在平面直角坐标系xOy 中,点P 到两圆C 1与C 2的圆心的距离之和等于4,其中C 1:023222=+-+y y x ,C 2:033222=-++y y x . 设点P 的轨迹为C .(1)求C 的方程;(2)设直线1y kx =+与C 交于A ,B 两点.问k 为何值时OA ⊥OB ?此时AB 的值是多少?【答案】(1)2214y x += (2)46517AB = 【解析】 试题分析:(1) 通过配方把圆1C 和圆2C 的普通方程化为标准方程,得到圆心的坐标,根据椭圆的定义可以判断C 点轨迹为椭圆,其中两个圆的圆心为焦点可得c =y 轴上,根据题意24a =,李永刚,,a b c 之间的关系即可求出b 的值,进而得到C 的方程.(2)联立直线与椭圆的方程消元得到二次方程,二次方程的根AB 两点的横坐标,利用二次方程根与系数的关系得到AB 两点横坐标之间的关系,利用0OA OB OA OB ⊥⇒=得到AB 横纵坐标之间的关系即可求出k 的值,再利用椭圆的弦长公式即可求出AB 的长度. 试题解析:(2)设1122()()A x y B x y ,,,,其坐标满足22141.y x y kx ⎧+=⎪⎨⎪=+⎩, 消去y 并整理得22(4)230k x kx ++-=, (5分)∵042≠+k ,222412(4)16(3)0k k k ∆=++=+>,∴1,2x =故1212222344k x x x x k k +=-=-++,. (6分) 又1)()1)(1(212122121+++=++=x x k x x k kx kx y y (7分)于是222121222223324114444k k k x x y y k k k k -++=---+=++++. (8分) 令041422=++-k k ,得21±=k . (9分) 因为2121y y x x +=⋅,所以当21±=k 时,有0=⋅,即⊥. (10分) 当12k =±时,12417x x +=,121217x x =-. (11分)(AB x == (12分)而22212112()()4x x x x x x -=+-23224124134171717⨯=+⨯=, (13分) 所以465AB =. (14分) 考点:弦长 内积 椭圆定义 圆21.(本小题满分14分) 设函数3211()(0)32a f x x x ax a a -=+-->. (1)若函数)(x f 在区间(-2,0)内恰有两个零点,求a 的取值范围; (2)当a =1时,求函数)(x f 在区间[t ,t +3]上的最大值.【答案】(1)10,3⎛⎫ ⎪⎝⎭(2)⎪⎪⎩⎪⎪⎨⎧-≤≤--->-<+++=)14(31)14(58331)(23maxt t t t t t x f 或【解析】 试题分析:试题解析: (1)∵3211()(0)32a f x x x ax a a -=+--> ∴()2()1(1)()f x x a x a x x a '=+--=+-, (1分)令()0f x '=,解得121,0x x a =-=> (2分) 当x 变化时,)(x f ',)(x f 的变化情况如下表:②当231≤+≤-t ,即14-≤≤-t 时,因为)(x f 在区间(]1,-∞-上单调递增,在区间[-1,1]上单调递减,在区间[1,2]上单调递增,且31)1()2(-=-=f f ,所以)(x f 在区间(]2,∞-上的最大值为31)1()2(-=-=f f . (10分) 由231≤+≤-t ,即14-≤≤-t 时,有[t ,t +3]⊂ (]2,∞-,-1∈[t ,t +3],所以)(x f 在[,3]t t +上的最大值为31)1()(max -=-=f x f ; (11分) ③当t +3>2,即t >-1时,。
2014年广东省高考数学试卷(文科)(含解析版)
2014年广东省高考数学试卷(文科)一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5} 2.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)4.(5分)若变量x,y满足约束条件A.7B.8,则z=2x+y的最大值等于()C.10D.115.(5分)下列函数为奇函数的是()A.2x﹣B.x3sinx C.2cosx+1D.x2+2x6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.207.(5分)在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA ≤sinB”的()A.充分必要条件C.必要非充分条件8.(5分)若实数k满足0<k<5,则曲线A.实半轴长相等B.虚半轴长相等B.充分非必要条件D.非充分非必要条件﹣=1与﹣=1的()C.离心率相等D.焦距相等9.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4C.l1与l4既不垂直也不平行B.l1∥l4D.l1与l4的位置关系不确定10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω1对任意复数z1,z2,z3有如下命题:①(z1+z2)*z3=(z1*z3)+(z2*z3)②z1*(z2+z3)=(z1*z2)+(z1*z3)③(z1*z2)*z3=z1*(z2*z3);④z1*z2=z2*z1则真命题的个数是()A.1B.2C.3其中2,2是ω2的共轭复数,D.4二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5e x+3在点(0,﹣2)处的切线方程为.12.(5分)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为.13.(5分)等比数列{an }的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=.(二)(1415题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)191283293305314323401合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.18.(13分)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2作如图2折叠;折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M ﹣CDE 的体积.19.(14分)设各项均为正数的数列{a n }的前n 项和为S n 满足S n 2﹣(n 2+n ﹣3)S n ﹣3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有++…+<.20.(14分)已知椭圆C:为.+=1(a>b>0)的右焦点为(,0),离心率(1)求椭圆C的标准方程;(2)若动点P(x0,y)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.21.(14分)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈(0,)∪(,1),使得f(x)=f().2014年广东省高考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5}【考点】1E:交集及其运算.【专题】5J:集合.【分析】根据集合的基本运算即可得到结论.【解答】解:∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3},故选:B.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】由题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:∵满足(3﹣4i)z=25,则z===3+4i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)【考点】99:向量的减法;9J:平面向量的坐标运算.【专题】5A:平面向量及应用.【分析】直接利用向量的减法的坐标运算求解即可.【解答】解:∵向量=(1,2),=(3,1),∴﹣=(2,﹣1)故选:B.【点评】本题考查向量的坐标运算,基本知识的考查.4.(5分)若变量x,y满足约束条件A.7,则z=2x+y的最大值等于()C.10D.11B.8【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B(4,2)时,直线y=﹣2x+z的截距最大,此时z最大,此时z=2×4+2=10,故选:C.【点评】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.5.(5分)下列函数为奇函数的是()A .2x ﹣B .x 3sinxC .2cosx +1D .x 2+2x【考点】3K :函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的定,对各个选项中的函数进行判断,从而得出结论.【解答】解:对于函数f (x )=2x ﹣故此函数为奇函数.对于函数f (x )=x 3sinx ,由于f (﹣x )=﹣x 3(﹣sinx )=x 3sinx=f (x ),故此函数为偶函数.对于函数f (x )=2cosx +1,由于f (﹣x )=2cos (﹣x )+1=2cosx +1=f (x ),故此函数为偶函数.对于函数f (x )=x 2+2x ,由于f (﹣x )=(﹣x )2+2﹣x =x 2+2﹣x ≠﹣f (x ),且f (﹣x )≠f (x ),故此函数为非奇非偶函数.故选:A .【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为(),由于f (﹣x )=2x ﹣﹣=﹣2x =﹣f (x ),A .50B .40C .25D .20【考点】B4:系统抽样方法.【专题】5I :概率与统计.【分析】根据系统抽样的定义,即可得到结论.【解答】解:∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25.故选:C .【点评】本题主要考查系统抽样的定义和应用,比较基础.7.(5分)在△ABC 中,角A 、B 、C 所对应的边分别为a ,b ,c ,则“a ≤b”是“sinA ≤sinB”的()A .充分必要条件C .必要非充分条件B .充分非必要条件D .非充分非必要条件【考点】HP :正弦定理.【专题】5L :简易逻辑.【分析】直接利用正弦定理以及已知条件判断即可.【解答】解:由正弦定理可知⇒=,∵△ABC 中,∠A ,∠B ,∠C 均小于180°,角A 、B 、C 所对应的边分别为a ,b ,c ,∴a ,b ,sinA ,sinB 都是正数,∴“a ≤b”⇔“sinA ≤sinB”.∴“a ≤b”是“sinA ≤sinB”的充分必要条件.故选:A .【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.8.(5分)若实数k 满足0<k <5,则曲线A .实半轴长相等B .虚半轴长相等﹣=1与﹣=1的()C .离心率相等D .焦距相等【考点】KC :双曲线的性质.【专题】5D :圆锥曲线的定义、性质与方程.【分析】根据k 的取值范围,判断曲线为对应的双曲线,以及a ,b ,c 的大小关系即可得到结论.【解答】解:当0<k <5,则0<5﹣k <5,11<16﹣k <16,即曲线﹣=1表示焦点在x 轴上的双曲线,其中a 2=16,b 2=5﹣k ,c 2=21﹣k ,曲线﹣=1表示焦点在x 轴上的双曲线,其中a 2=16﹣k ,b 2=5,c 2=21﹣k ,即两个双曲线的焦距相等,故选:D .【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a ,b ,c 是解决本题的关键.9.(5分)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是()A .l 1⊥l 4C .l 1与l 4既不垂直也不平行B .l 1∥l 4D .l 1与l 4的位置关系不确定【考点】LO :空间中直线与直线之间的位置关系.【专题】5F :空间位置关系与距离.【分析】根据空间直线平行或垂直的性质即可得到结论.【解答】解:在正方体中,若AB 所在的直线为l 2,CD 所在的直线为l 3,AE 所在的直线为l 1,若GD 所在的直线为l 4,此时l 1∥l 4,若BD 所在的直线为l 4,此时l 1⊥l 4,故l 1与l 4的位置关系不确定,故选:D.【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω1对任意复数z 1,z 2,z 3有如下命题:①(z 1+z 2)*z 3=(z 1*z 3)+(z 2*z 3)②z 1*(z 2+z 3)=(z 1*z 2)+(z 1*z 3)③(z 1*z 2)*z 3=z 1*(z 2*z 3);④z 1*z 2=z 2*z 1则真命题的个数是()A.1其中2,2是ω2的共轭复数,B.2C.3D .4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】5L:简易逻辑;5N :数系的扩充和复数.【分析】根据已知中ω1*ω2=ω12,其中2是ω2的共轭复数,结合复数的运算性质逐一判断四个结论的真假,可得答案.【解答】解:①(z 1+z 2)*z 3=(z 1+z 2)确;=(z 1+z 2=(z 1*z 3)+(z 2*z 3),正②z 1*(z 2+z 3)=z 1(③(z 1*z 2)*z 3=z 1成立,故错误;④z 1*z 2=z 1,z 2*z 1=z 2)=z 1(+)=z 1+z 1=(z 1*z 2)+(z 1*z 3),正确;)=z 1z 3,等式不,z 1*(z 2*z 3)=z 1*(z 2)=z 1(,等式不成立,故错误;综上所述,真命题的个数是2个,故选:B .【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5e x +3在点(0,﹣2)处的切线方程为5x +y +2=0..【考点】6H :利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】利用导数的几何意义可得切线的斜率即可.【解答】解:y′=﹣5e x ,∴y′|x=0=﹣5.因此所求的切线方程为:y +2=﹣5x ,即5x +y +2=0.故答案为:5x +y +2=0.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题.12.(5分)从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为.【考点】C6:等可能事件和等可能事件的概率.【专题】5I :概率与统计.【分析】求得从字母a ,b ,c ,d ,e 中任取两个不同字母、取到字母a 的情况,利用古典概型概率公式求解即可.【解答】解:从字母a ,b ,c ,d ,e 中任取两个不同字母,共有取到字母a ,共有∴所求概率为故答案为:.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.13.(5分)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.=10种情况,=4种情况,=.【考点】4H :对数的运算性质;87:等比数列的性质;89:等比数列的前n 项和.【专题】54:等差数列与等比数列.【分析】可先由等比数列的性质求出a 3=2,再根据性质化简log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5log 2a 3,代入即可求出答案.【解答】解:log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2a 1a 2a 3a 4a 5=log 2a 35=5log 2a 3.又等比数列{a n }中,a 1a 5=4,即a 3=2.故5log 2a 3=5log 22=5.故选为:5.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易.(二)(14-15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为(1,2).【考点】Q8:点的极坐标和直角坐标的互化.【专题】5S:坐标系和参数方程.【分析】直接由x=ρcosθ,y=ρsinθ化极坐标方程为直角坐标方程,然后联立方程组求得答案.【解答】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,即y=2x2.由ρcosθ=1,得x=1.联立,解得:.∴曲线C1与C2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=3.【考点】%H:三角形的面积公式.【专题】58:解三角形.【分析】证明△CDF∽△AEF,可求.【解答】解:∵四边形ABCD是平行四边形,EB=2AE,∴AB∥CD,CD=3AE,∴△CDF∽△AEF,∴==3.故答案为:3.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f (x )=Asin (x +(1)求A 的值;(2)若f (θ)﹣f (﹣θ)=),x ∈R ,且f ()=.,θ∈(0,),求f (﹣θ).【考点】GP :两角和与差的三角函数.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】(1)通过函数f (x )=Asin (x +A 的值;(2)利用函数的解析式,通过f (θ)﹣f (﹣θ)=利用两角差的正弦函数求f (﹣θ).),x ∈R ,且f (,)=,,θ∈(0,),求出cosθ,),x ∈R ,且f ()=,直接求【解答】解:(1)∵函数f (x )=Asin (x +∴f (∴)=Asin (.+)=Asin=(2)由(1)可知:函数f (x )=3sin (x +∴f (θ)﹣f (﹣θ)=3sin (θ+=3[(=3•2sinθcos ∴sinθ=∴cosθ=,,=3sinθ=,),))])﹣3sin (﹣θ+)﹣(∴f(﹣θ)=3sin()=3sin()=3cosθ=.【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.17.(13分)某车间20名工人年龄数据如下表:年龄(岁)19282930313240合计工人数(人)133543120(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.【考点】BA:茎叶图;BB:众数、中位数、平均数;BC:极差、方差与标准差.【专题】5I:概率与统计.【分析】(1)根据众数和极差的定义,即可得出;(2)根据画茎叶图的步骤,画图即可;(3)利用方差的计算公式,代入数据,计算即可.【解答】解:(1)这20名工人年龄的众数为30,极差为40﹣19=21;(2)茎叶图如下:(3)年龄的平均数为:这20名工人年龄的方差为S 2=2=30.[(19﹣30)2+3×(28﹣30)2+3×(29﹣30)+5×(30﹣30)2+4×(31﹣30)2+3×(32﹣30)2+(40﹣30)2]=12.6.【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题.18.(13分)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2作如图2折叠;折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M ﹣CDE 的体积.【考点】LF :棱柱、棱锥、棱台的体积;LW :直线与平面垂直.【专题】5F :空间位置关系与距离;5G :空间角;5Q :立体几何.【分析】(1)要证CF ⊥平面MDF ,只需证CF ⊥MD ,且CF ⊥MF 即可;由PD ⊥平面ABCD ,得出平面PCD ⊥平面ABCD ,即证MD ⊥平面PCD ,得CF ⊥MD ;(2)求出△CDE 的面积S△CDE,对应三棱锥的高MD ,计算它的体积V M﹣CDE.【解答】解:(1)证明:∵PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD ;又平面PCD ∩平面ABCD=CD ,MD ⊂平面ABCD ,MD ⊥CD ,∴MD ⊥平面PCD ,CF ⊂平面PCD ,∴CF ⊥MD ;又CF ⊥MF ,MD 、MF ⊂平面MDF ,MD ∩MF=M ,∴CF ⊥平面MDF ;(2)∵CF ⊥平面MDF ,∴CF ⊥DF ,又∵Rt △PCD 中,DC=1,PC=2,∴∠P=30°,∠PCD=60°,∴∠CDF=30°,CF=CD=;∵EF ∥DC ,∴∴DE==,即,;=,,∴PE=∴S△CDE=CD•DE=MD===×=,.∴V M﹣CDE =S△CDE•MD=×【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.19.(14分)设各项均为正数的数列{a n }的前n 项和为S n 满足S n 2﹣(n 2+n ﹣3)S n ﹣3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有++…+<.【考点】8H :数列递推式;8K :数列与不等式的综合.【专题】54:等差数列与等比数列;55:点列、递归数列与数学归纳法.【分析】(1)本题可以用n=1代入题中条件,利用S 1=a 1求出a 1的值;(2)利用a n 与S n 的关系,将条件转化为a n 的方程,从而求出a n ;(3)利用放缩法,将所求的每一个因式进行裂项求和,即可得到本题结论.【解答】解:(1)令n=1得:∴(S 1+3)(S 1﹣2)=0.∵S 1>0,∴S 1=2,即a 1=2.(2)由.∵a n >0(n ∈N *),∴S n >0.∴.,得:,即.∴当n ≥2时,又∵a 1=2=2×1,∴.==<=<;(3)由(2)可知n ∈N *,当n=1时,显然有当n ≥2时,<+,=(),=﹣<.所以,对一切正整数n ,有【点评】本题考查了数列的通项与前n 项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.20.(14分)已知椭圆C :+=1(a >b >0)的右焦点为(,0),离心率为.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【考点】J3:轨迹方程;K3:椭圆的标准方程.【专题】5D :圆锥曲线的定义、性质与方程.【分析】(1)根据焦点坐标和离心率求得a 和b ,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k 的一元二次方程,利用韦达定理表示出k 1•k 2,进而取得x 0和y 0的关系式,即P 点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A 、B 两点分别位于椭圆长轴与短轴的端点,P 的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P (x 0,y 0)的切线为y=k (x ﹣x 0)+y 0,+=+=1,4x 2+9[k 2x 2+﹣2kx 0x ++2ky 0x ﹣2ky 0x 0]=36整理得(9k 2+4)x 2+18k (y 0﹣kx 0)x +9[(y 0﹣kx 0)2﹣4]=0,∴△=[18k (y 0﹣kx 0)]2﹣4(9k 2+4)×9[(y 0﹣kx 0)2﹣4]=0,整理得(x 02﹣9)k 2﹣2x 0×y 0×k +(y 02﹣4)=0,∴﹣1=k 1•k 2=∴x 02+y 02=13.=﹣1,把点(±3,±2)代入亦成立,∴点P 的轨迹方程为:x 2+y 2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x 和y 关系.21.(14分)已知函数f (x )=x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈(0,)∪(,1),使得f (x 0)=f ().【考点】6B :利用导数研究函数的单调性;6E :利用导数研究函数的最值.【专题】51:函数的性质及应用;53:导数的综合应用.【分析】对第(1)问,先求导,再通过一元二次方程的实根讨论单调性;对第(2)问,可将f (x 0)=f ()转化为f (x 0)﹣f ()=0,即将“函数问题”化为“方程是否有实根问题”处理.【解答】解:(1)由f (x )得f′(x )=x 2+2x +a ,令f′(x )=0,即x 2+2x +a=0,判别式△=4﹣4a ,①当△≤0即a ≥1时,f′(x )≥0,则f (x )在(﹣∞,+∞)上为增函数.②当△>0即a <1时,方程f′(x )=0的两根为当x ∈(﹣∞,﹣1﹣当当,即,)时,f′(x )>0,则f (x )为增函数;时,f′(x )<0,则f (x )为减函数;,+∞)时,f′(x )>0,则f (x )为增函数.综合①、②知,a ≥1时,f (x )的单调递增区间为(﹣∞,+∞),a <1时,f (x )的单调递增区间为(﹣∞,f (x )的单调递减区间为和.,+∞),(2)∵==21===∴若存在∪.,使得∪,即内必有实数解.,则关于x 的方程4x 2+14x +7+12a=0在∵a <0,∴△=142﹣16(7+12a )=4(21﹣48a )>0,方程4x 2+14x +7+12a=0的两根为∵x 0>0,∴依题意有即得∴当得当得,且,且∪成立;∪成立.∪{}时,不存在∪,使.时,存在唯一的∪,使,,且,,∴49<21﹣48a <121,且21﹣48a ≠81,,即,【点评】1.求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.2.对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.22。
2014年普通高等学校招生全国统一考试(广东卷)文科数学模拟试题
2014年普通高等学校招生全国统一考试(广东卷)数学(文科)模拟试题一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只 有一项是符合题目要求的.)1. 已知集合{}2|560A x x x =--<,{}|2B x x =<,则()R A C B ⋂=A .()1,2-B .[)1,2-C .()2,6D .[)2,62. 四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不.正确..的结论的序号是 A .①② B .②③C .③④D .①④ 3.已知)2 , 1(-=a ,52||=b ,且b a //,则=bA .)4 , 2(-B .)4 , 2(-C .)4 , 2(-或)4 , 2(-D .)8 , 4(-4.a 、R b ∈,“b a ≠”是“ab b a 222>+”成立的 A .充要条件 B .充分非必要条件 C .必要非充分条件 D .非充分非必要条件 5.某几何体的三视图如图1所示,则该几何的体积为A. 168π+B. 88π+C. 1616π+D. 816π+ 6.定义某种运算a S b =⊗,运算原理如图2所示,则式子131100lg ln )45tan 2(-⎪⎭⎫⎝⎛⊗+⊗e π的值为A .4B .8C .11D .137.函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为8.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C ,若,,A B C 三点的横坐标成等比数列,则双曲线的离心率为A B C D 9.已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤ 且02OP OB ≤⋅≤ ,则点P 到点C 的距离大于14的概率为( )A .5164π-B .564πC .116π-D .16π10.(12)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是(A )(,0]-∞ (B )(,1]-∞ (C) [2,1]- (D) [2,0]- 二、填空题:(本大共4小题,每小题5分,满分30分 ) (一)必做题(11-13题)11.函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_________。
2014年普通高等学校招生全国统一考试(广东模拟卷)数学(文)试题(一) Word版含答案
2014年普通高等学校招生全国统一考试(广东模拟卷)数学(文科)试题参考答案及评分标准本试卷共5页,21小题, 满分150分.考试用时120分钟 参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 用最小二乘法求线性回归方程:()()()1122211.nniiiii i nniii i x x y y x y nx yb a y bx x x xnx====---===---∑∑∑∑,一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【原创题】已知集合{}{}210,230A x x B y y y =->=+->,则AB =A .()1+∞,B .()(),31-∞-+∞,C. ()1-∞, D .()3-∞-, 【命题意图:考查解简单不等式、集合运算等知识】2.【原创题】已知i 是虚数单位,则31i +=A .iB .i -C .1i +D .1i - 【命题意图:考查复数的化简】3.【原创题】函数()()()()1,0,00,0x x f x x x π+>⎧⎪==⎨⎪<⎩,则(){}1f f f -=⎡⎤⎣⎦A .0B .πC .1π+D .1 【命题意图:考查分段函数求值】 4.【原创题】若()=1,3a ,()=2,x b ,且1a b = ,则x = A .0 B .13 C .1 D .13- 【命题意图:考查向量及向量的数量积运算】5.【原创题】直线0x y -=截圆222210x y x y +--+=所得弦长为 A .2 B .1 C. D【命题意图:考查直线与圆的综合应用】6.【原创题】如果执行图1的程序框图,那么输出的S 是A .6B .24C .120D .720 【命题意图:考查程序框图】7.【原创题】已知某几何体的三视图如图2所示,则该几何体的表面积是 A .9 B .172 C .112D .1【命题意图:考查空间几何体的三视图、求表面积等知识】8.【原创题】设标量x ,y 满足约束条件,1,2,y x y x x k ≤⎧⎪⎪≥⎨⎪≤⎪⎩且目标函数2z x y =-的最大值为4,则k =A .4B .43 C .2 D .83【命题意图:考查直线、线性规划求最优解等知识】9.【改编题】设ABC ∆的内角A BC 、、所对的边分别是a b c 、、,若c o s c o s s i n a B b A c C +=,则ABC ∆的形状为A .直角三角形B .锐角三角形C .钝角三角形D .不确定 【命题意图:考查正弦定理、三角函数的诱导公式等知识】10.【原创题】已知方程()log 0,0,1a x b a a -=>≠有且只有二个解,则A .=1bB .=0bC .1b >D .0b >【命题意图:考查函数思想与数形结合思想的应用】二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.【原创题】设32παπ⎛⎫∈ ⎪⎝⎭,,且3tan 4α=,则sin α= . 【命题意图:考查同角异名三角函数求值】12.【原创题】某产品的广告费用x (万元)与销售额y (万元)的统计数据表如下表:根据上表得回归直线方程=9.4y x a +,据此模型预报广告费用为6万元的销售额为:_________万元.【命题意图:考查回归直线系数的计算,并能对回归直线方程进行简单应用】13.【原创题】已知数列{}n a ,满足113,21n n a a a +==+,则9=a . 【命题意图:考查递推数列】(二)选做题(14~15题,考生只能从中选做一题) 14.【原创题】(坐标系与参数方程选做题)在极坐标系中,圆2cos 2sin ρθθ=-的圆心O 到直线sin 4πρθ⎛⎫-= ⎪⎝⎭的距离为 . 【命题意图:考查极坐标系、直线、圆、点到直线的距离等知识】15.【原创题】(几何证明选讲选做题)如图3,AB 是圆O 的直径,AD DE =,10AB =,8BD =,则DC = . 【命题意图:考查圆周角定理、相似三角形的性质等知识】三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.【原创题】(本小题满分12分)已知函数()cos2cos f x x x x =-⋅. (1)求()f x 最小正周期及最值;(2)若2παπ⎛⎫∈⎪⎝⎭,,且()2f α=,求()3f πα+的值.【命题意图:考查三角函数的化简、三角函数的周期性与最值、同角三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力】 17.【原创题】(本小题满分12分)为了解某地区用电高峰期居民的用电量,抽取一个容量为200的样本,记录某天各户居民的用电量(单位:度),制成频率分布直方图,如图4. (1) 求样本数据落在区间[10,12]内的频数;(2) 若打算从[4,6)和[6,8)这两组中按分层抽样抽取4户居民作进一步了解,问各组分别抽取多少人?(3) 在(2)的基础上,为答谢上述4户居民的参与配合,从中再随机选取2户居民发放奖品,求这2户居民来不同组的概率是多少?【命题意图:考查统计、分层抽样、频率分布直方图、古典概型等基础知识,考查化归与转化的数学思想方法,以及数据处理能力与应用意识】 18.【原创题】(本小题满分14分)如图5,在四棱锥P ABCD -中,ABCD ,AB AD ⊥,2CD AB =,平面PAD ⊥平面ABCD ,PA AD ⊥.E 和F 分别是CD 和PC 的中点.(1)求证:PA ⊥底面ABCD ;(2)求证:BE平面PAD ;(3)若2PA =,1AB =,3AD =,求三棱锥B EFC -的体积.【命题意图:考查空间线面关系、求几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力】19.【原创题】本小题满分14分)已知数列{}n a 的前n 项和2=n S n ,*n ∈N ,数列{}n b 满足:2n n n b a =⋅,且{}n b 的前n项和记为n T .(1)求数列{}n a 与{}n b 的通项公式; (2)证明:对任意*n ∈N ,2n T ≥恒成立.【命题意图:考查等差数列、错位相减法求数列的前n 项和、不等式、恒成立等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识】20.【改编题】(本小题满分14分)已知直线:1l x my =+过椭圆C :()222210x y a b a b+=>>的右焦点F ,抛物线2x =的焦点为椭圆C 的上顶点,且直线l 交椭圆C 于A 、B 两点.(1)求椭圆C 的方程;(2)若直线l 交y 轴与点M ,且1M A AF λ=,2MB BF λ=,当m 变化时,12λλ+是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图:考查直线、椭圆的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力】21.【改编题】(本小题满分14分)已知函数()()3221132a f x x a x ax =+--. (1)若曲线()y f x =在点()()11f ,处的切线方程为820x y +-=,求a 的值; (2)当0a ≠时,求函数()f x 的单调区间与极值;(3)若=1a 时,存在实数m ,使得方程()f x m =恰好有三个不同的解,求m 的取值范围.【命题意图:考查函数的导数、曲线的切线方程、函数的极值、函数的单调性、函数的图象等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识】2014年普通高等学校招生全国统一考试(广东模拟卷)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准只给出了一种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题,满分50分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题,满分20分.其中14~15题是选做题,考生只能选做一题.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分)(本小题主要考查三角函数的化简、三角函数的周期性与最值、同角三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力)解:(1)1()cos 2cos =2sin 2cos 2=2sin 226f x x x x x x x π⎛⎫⎛⎫=-⋅--⋅-- ⎪ ⎪ ⎪⎝⎭⎝⎭, …3分所以2=2T ππ=.…………………………………………………………………………………………4分 ()max 2f x =⎡⎤⎣⎦;()min 2f x =-⎡⎤⎣⎦.………………………………………………………………………6分(2)由(1)得,()2sin 2=26f παα⎛⎫=--⎪⎝⎭, 得:sin 2=16πα⎛⎫-- ⎪⎝⎭,即32=2,62k k Z ππαπ-+∈.得:5=,6k k Z παπ+∈…………………8分又因为2παπ<<,所以5=6πα.………………………………………………………………………10分 577()()=()=2sin 2363666f f f ππππππα⎛⎫+=+-⋅- ⎪⎝⎭=132sin 6π⎛⎫-⎪⎝⎭=2sin6π-=12=12-⋅-……………………………………………………………………………………12分17.(本小题满分)(本小题主要考查统计、分层抽样、频率分布直方图、古典概型等基础知识,考查化归与转化的数学思想方法,以及数据处理能力与应用意识)解:(1)数据落在区间[10,12]的频率为:()10.0220.0520.1520.192=0.18-⨯+⨯+⨯+⨯……2分数据落在区间[10,12]的频数为:2000.18=36⨯ 人. …………………………………………………4分 (2)数据落在区间[4,6)的频数为:2000.052=20⨯⨯人; 数据落在区间[6,8)的频数为:2000.152=60⨯⨯人.二组频数之比为1:3,……………………………………………………………………………………6分故:从用电量在区间[4,6)度中抽取的人数为:14=14⨯人; (7)分从用电量在区间[6,8)度中抽取的人数为:34=34⨯人;……………………………………………8分(3)记“这2户居民来自不同组”为事件A ,用电量在区间[6,8)度中的3人编号为:1、2、3用电量在区间[4,6)度中的1人编号为:a ………………………………………………………9分则从4户居民中依次随机抽取2户的基本事件有:()1,2,()1,3,()1,a ,()2,3,()2,a ,()3,a 共6种. ………………………………………………………………………………………10分事件B 包含的基本事件有:()1,a ,()2,a ,()3,a ,共3种. ………………………………………………………………11分则31()62P B ==. 所以从4户居民中随机抽取2户,抽到的2户居民来自不同组的概率为12.………………12分18.(本小题满分)(本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明:PAD ABCD ⊥面面,且=PAD ABCD AD 面面又PA AD ⊥PA ABCD ∴⊥面………………………………………………………………………………………4分(2)证明:由已知得:AB DE ,ABCD ∴四边形为平行四边形.………………………………6分BE AD ∴,又AD PAD ⊂面,BE PAD ⊄面BE PAD ∴面……………………………………………………………………………………………8分(3)解:B EFC F BEC V V --=,且点F 到平面A B C D的距离等于PA 的一半. ………………………10分1131=13322B EFC F BEC BEC V V S h --=⨯=⨯⨯=.故几何体ABFED 的体积为12.………………………………………………………………………14分 19.(本小题满分)(本小题主要考查等差数列、错位相减法求数列的前n 项和、不等式、恒成立等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)解:(1)当1n =时,111a S ==;…………………………………………………………………2分当2n ≥时,()221121n n n a S S n n n -=-=--=-.…………………………………………4分21n a n ∴=-,*n N ∈ ………………………………………………………………………………6分()212n n b n ∴=-⋅,*n N ∈…………………………………………………………………………8分(2)123n n T b b b b =++++即()123123252212n n T n =⋅+⋅+⋅+⋅⋅⋅+-⋅------------○1 ○1⨯2:2()2341123252212n nT n +=⋅+⋅+⋅+⋅⋅⋅+-⋅ -----------------○2 ○1-○2:()12312222222212n n n T n +-=+⋅+⋅+⋅⋅⋅+⋅-- ()()123122222212n n n +=+++⋅⋅⋅+--()()114122221212n n n -+-=+---()6426nn =--……………………………………………………………………………12分()4626n n T n ∴=-+n T 随着n 的增大而增大,12n T T ∴≥=,2n T ∴≥,对任意n N *∈恒成立. …………………………………………………………………………14分20.(本小题满分)(本小题主要考查直线、椭圆的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:因直线:1l x my =+过椭圆()222210x y C a b a b +=>>:的右焦点F ,令0y =得1x =,所以()1,0F ,即1c =,又抛物线的焦点坐标为()0,3,,所以b =………………………………………1分由222a b c =+得:24a =,…………………………………………………………………………………2分所以椭圆C 的方程为:22143x y += ………………………………………………………………………4分 (2)证明:由题意知0m ≠,且直线l 交y 轴于点10M m ⎛⎫- ⎪⎝⎭,,………………………………………5分设直线l 交椭圆于点()11,A x y ,()22,B x y .联立方程221143x my x y =+⎧⎪⎨+=⎪⎩,消去x 得()2234690my my ++-=.所以()()()222=6363414410m m m ++=+>,由根与系数的关系知:122634m y y m +=-+,122934y y m ⋅=-+.………………………………………………………………9分 又由1MA AF λ=得()111111,1,x y x y m λ⎛⎫+=-- ⎪⎝⎭,所以111=1my λ--, 同理,221=1my λ--,所以1212111=2m y y λλ⎛⎫+--+ ⎪⎝⎭…………………………………………11分因为1222121211692===34343y y m my y y y m m +⎛⎫+-⋅- ⎪⋅++⎝⎭,…………………………………………12分 所以1212111=2m y y λλ⎛⎫+--+ ⎪⎝⎭=12128=233m m λλ+--=-. 即当m 变化时,12λλ+为定值83-.…………………………………………………………………14分21.(本小题满分)(本小题主要考查函数的导数、曲线的切线方程、函数的极值、函数的单调性、函数的图象等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识)解:(1)因为()()221f x ax a x a '=+--由题意可得()()211=8f a a a '=+---,2=9a ,解得=3a ±.………………………………………2分当=3a 时,()3243f x x x x =--,()16f =-,()2383f x x x '=+--,()18f '=-,故曲线()y f x =在点()()1,1f 处的切线方程为()681y x +=--.即820x y +-=; 当=3a -时,()3243f x x x x =--+,()12f =-,切点为()1,2-,曲线()y f x =在点()()1,1f 处的切线方程为()281y x +=--.即860x y +-=不合题意舍去.综上,=3a .……………………………………………………………………………………………………4分(2)()()221f x ax a x a '=+--=()()1x a ax -+=()1a x a x a ⎛⎫-+⎪⎝⎭.……………………………5分分二种情况讨论:当0a >时,令()0f x '=,解得11x a=-,2x a =.当x 变化时,()f x '、()f x 的变化情所以()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为增函数,在区间1,a a ⎛⎫- ⎪⎝⎭内为减函数. ……………6分 函数()f x 在2x a=处取得极小值()f a ,且()f a =()3224211113262a a a a a a a a ⨯+--⨯=--,函数()f x 在11x a=-出取得极大值1f a ⎛⎫- ⎪⎝⎭,且()3221111=1132a f a a a a ⎛⎫⎛⎫-⨯-+-⨯+ ⎪ ⎪⎝⎭⎝⎭ 21162a =+.………………………………………………………………………………………………………7分当0a <时,令()0f x '=,解得1x a =,21x a=-,当x 变化时,()f x '、()f x 的变化所以()f x 在区间(),a -∞,1,a ⎛⎫-+∞ ⎪⎝⎭内为减函数,在区间1a a⎛⎫- ⎪⎝⎭,内为增函数. ………………8分 函数()f x 在1x a=处取得极小值()f a ,且()f a =()3224211113262a a a a a a a a ⨯+--⨯=--,函数()f x 在21x a=-处取得极大值1f a ⎛⎫- ⎪⎝⎭,且()32211111=132a f a a a a a a ⎛⎫⎛⎫⎛⎫-⨯-+-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21162a =+.…………………………………………………………………………………………………10分 (3)当=1a 时,()313f x x x =-,()2=1f x x '-,由(2)知()313f x x x =-在区间()1-∞-,, ()1+∞,内为增函数,在区间()11-,内为减函数. ………………………………………………………11分 函数()f x 在21x =处取得极小值()1f ,且()1121=623f --=-,…………………………………12分函数()f x 在11x =-处取得极大值()1f -,且()1121=623f --=,…………………………………13分如图,分别作出()313f x x x =-与直线x m =的图象,从图象上可以看出当2233x -<<时,两个函数的图象有三个不同的交点,即方程()f x m =有三个不同的解.故m 的取值范围是2233⎛⎫- ⎪⎝⎭,.……………………………………………………………………………14分。
2014年普通高等学校招生全国统一考试(广东卷)数学试题(文科)解析版
2014年普通高等学校招生全国统一考试(广东卷)数学(文科)参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高。
一组数据12,,,n x x x L 的方差2222121()()()n s x x x x x x n ⎡⎤=-+-++-⎣⎦L ,其中x 表示这组数据的平均数。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{}2,3,4M =,{}0,2,3,5N =,则M N ⋂=A.{}0,2B.{}2,3C.{}3,4D.{}3,5 答案:B2、已知复数z 满足()3425i z -=,则z =A.34i --B.34+i -C.34i -D. 34i + 答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3、已知向量()()1,2,3,1==a b ,则-=b aA.()2,1-B.()2,1-C.()2,0D.()4,3 答案:B4、若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于A.7B.8 C .10 D.11 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C.5、下列函数为奇函数的是A.1 22 xx-B.2sinx x C.2cos1x+ D.22xx+答案:A111:()2,(),()22(),222(), A.x x xx x xf x f x R f xf xf x--=--=-=-=-∴提示设则的定义域为且为奇函数故选6、为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为A.50B.40C.25D.207、在ABC∆中,角,,A B C所对应的变分别为,,a b c,则a b≤“”是sin sinA B≤“”的A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8、若实数k满足05k<<,则曲线221165x yk-=-与曲线221165x k y--=的A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等9、若空间中四条两两不相同的直线1234,,,l l l l满足122334,//,l l l l l l⊥⊥,则下列结论一定正确的是A.14l l⊥ B.14//l l C.14l l与既不平行也不垂直 D.14l l与位置关系不确定10、对任意复数12,w w,定义1212w w w w*=,其中2w是2w的共轭复数.对任意复数123,,z z z,有如下四个命题:①()()()1231323z z z z z z z+*=*+*②()()()1231213z z z z z z z*+=*+*③()()123123z z z z z z**=**④1221z z z z*=*则真命题的个数是A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11:13题)11.曲线53x y e =-+在点(0,2)-处的切线方程为12.从字母,,,,a b c d e 中任取两个不同的字母,则取到字母a 的概率为13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log log log log log a a a a a ++++=212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则(二)选做题(14~15题,考生从中选做一题):14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且2EB AE =,AC与DE 交于点F ,则CDF AEF ∆∆的周长的周长=三.解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12 分) 已知函数 532()sin(),,()3122f x A x x R f ππ=+∈= (1)求A 的值;(2)若()()3,(0,),2f f πθθθ--=∈,求()6f πθ-. 5533232:(1)()sin()sin 2 3.121234(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336cos sin 33331cos ,()336f A A A f x x f f f πππππππθθθθππππθθθθπθθπθθ=+==∴===+∴+-=++-+=++-+-===∴=∴-=解由得1sin()3sin()3cos 3 1.6323πππθθθ-+=-==⨯=17.(本小题满分13 分)某车间20名工人年龄数据如下表:年龄(岁) 工人数(人)E F D C B A(1)求这20(2)以这十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (1)求这20名工人年龄的方差;:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)50413210201(121123412100)2012522012.6+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18. (本小题满分13 分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1,2AB BC PC ===,作如图3折叠,折痕EF ∥DC ,其中点,E F 分别在线段,PD PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M CDE -的体积1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0A BCDFPMPEDCBA00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴I I QQ 解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2112,,2211.33CDE M CDE CDE CF DE PE S CD DE P CP MD V S MD ∆-∆=∴=∴==⋅====∴=⋅==19.(本小题满分14分)设各项为正数的数列{}n a 的前n 和为n S ,且n S 满足222*(3)3()0,n n S n n S n n n N -+--+=∈ (1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有11221111(1)(1)(1)3n n a a a a a a +++<+++L221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣Q Q 解令得即即由得从而当时12211222,221,2().313(3),()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)(n k k n n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++L 又当时1)1111111()()11111141223(1)444444111111().11434331(1)44n n n n n +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-L20.(本小题满分14分)已知椭圆2222:1(0,0)x y C a b a b+=>>的一个焦点为), (1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆的两条切线相互垂直,求点P 的轨迹方程21.(本小题满分14分)已知函数321()1()3f x x x ax a R =+++∈.(1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在0110,,122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭U ,使得01()()2f x f ='22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为323200003322000200000020000200111111(2)()()1()()()12332221111()()()3222111111()()()()()3224222111()()23612211()(4122f x f x x ax a x x a x x x x x x a x x x x x a x x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-+00020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,0,,01,7x a x f x f x x a a a a x x ++∴∈=+++=<∴∆=-+=->>∴<<U U Q Q 若存在使得必须在上有解方程的两根为依题意即0000025711,492148121,,1212155,,,,24425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)()(1212422a a a x a a x f x f a x f x f ∴<-<-<<-=-≠-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭U U U U U 即得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1).2。
2014广东高考数学真题试卷
2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合,则=M N I ( )A. B. C. D.(2)已知复数满足,则( )A. B. C. D.(3)已知向量a (1,2),b (3,1),b-a===r r r r 则( )A. B. C. D.(4)若变量满足约束条件则的最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( )A. B. C. D.6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为() A.50 B.40 C.25 D.207.在中,角A,B,C 所对应的边分别为则“”是 “”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数满足,则曲线与曲线的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等9.若空间中四条两两不同的直线,满足则下列结论一定正确的是( )A . B. C.与既不垂直也不平行 D.与的位置关系不确定10.对任意复数定义其中是的共轭复数,对任意复数有如下四个命题:①②;③④;则真命题的个数是( )A.1B.2C.3D.4{}{}5,3,2,0,4,3,2==N M {}2,0{}3,2{}4,3{}5,3z 25)43(=-z i =z i 43--i 43+-i 43-i 43+)1,2(-)1,2(-)0,2()3,4(y x ,⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x y x z +=2x x 212-x x sin 31cos 2+x x x 22+ABC ∆,,,c b a b a ≤B A sin sin ≤k 05k <<221165x y k -=-221165x y k -=-1234,,,l l l l 122334,,,l l l l l l ⊥⊥∥14l l ⊥14l l ∥1l 4l 1l 4l 12,,w w 1212,ωωωω*=2ω2ω123,,z z z 1231323()()();z z z z z z z +*=*+*1231213()()()z z z z z z z *+=*+*123123()();z z z z z z **=**1221z z z z *=*二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.曲线在点处的切线方程为________. 12.从字母中任取两个不同字母,则取字母的概率为________.13.等比数列的各项均为正数,且,则 ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线与的方程分别为与,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,则曲线与的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形中,点在上且与交于点则三.解答题:本大题共6小题,满分80分16.(本小题满分12分)已知函数,且 (1) 求的值;(2) 若,求17(本小题满分13分)某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差.53xy e =-+()0,2-,,,,a b c d e a {}n a 154a a =2122232425log +log +log +log +log =a a a a a 1C 2C θθρsin cos 22=1cos =θρx 1C 2C ABCD E AB AC AE EB ,2=DE F ______=∆∆的周长的周长AEF CDF ()sin(),3f x A x x R π=+∈5()122f π=A ()()(0,)2f f πθθθ--=∈()6f πθ-18(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列的前项和为,且满足. (1)求的值;(2)求数列的通项公式;(3)证明:对一切正整数,有20(本小题满分14分) 已知椭圆的一个焦点为,离心率为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013届广东高考数学(文科)模拟试题(一)满分150分,考试用时120分钟。
一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、设复数z 满足2z i i ⋅=-,i 为虚数单位,则=z ( )A 、2i -B 、12i +C 、12i -+D 、12i --2、集合2{|20}A x x x =-≤,{|lg(1)}B x y x ==-,则A B 等于 ( )A 、{|01}x x <≤B 、{|12}x x ≤<C 、{|12}x x <≤D 、{|01}x x ≤< 3、已知向量,a b满足||1,||1a b a b ==⋅= ,则a 与b的夹角为 ( )A 、3π B 、34π C 、4π D 、6π 4、函数()()()f x x a x b =--(其中a b >)的图象如下面右图所示,则函数()x g x a b =+的图象是 ( )5、已知x ,y 满足不等式组22y x x y x ≤⎧⎪+≥⎨⎪≤⎩,则2z x y =+的最大值与最小值的比值为( )A 、12 B 、2 C 、32 D 、436、右边程序执行后输出的结果是S = ( ) A 、1275 B 、1250 C 、1225 D 、1326俯视图侧视图正视图7、已知x 、y 取值如下表:从所得的散点图分析可知:y 与x 线性相关,且ˆ0.95yx a =+,则a = ( ) A 、1.30 B 、1.45 C 、1.65 D 、1.808、已知方程221221x y k k +=--表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A 、1,22⎛⎫ ⎪⎝⎭B 、(1,)+∞C 、(1,2)D 、1,12⎛⎫⎪⎝⎭ 9、若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A 、B 、6 C、D、10、如下图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有(1,)n n n N *>∈个点,相应的图案中总的点数记为n a ,则233445201220139999a a a a a a a a ++++= ( )A 、20102011B 、20112012C 、20122013D 、20132012二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
(一)必做题(11-13题)11、若a ,b ,c 成等比数列,则函数c bx ax x f ++=2)(的图像与x 轴交点的个数为_______.12、如图,一不规则区域内,有一边长为1米的正方形,向区域 内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的 黄豆数为375颗,以此实验数据为依据可以估计出该不规则图形 的面积为 平方米.(用分数作答)13、已知函数)(x f y =)(R x ∈满足)()2(x f x f =+,且[1,1]x ∈-时,2)(x x f =,则)(x f y =与5()log g x x =的图象的交点个数为.(二)选做题(14(1)和14(2)题,考生只能从中选做一题,若两题都做,则只能计算14(1)题的得分)14(1)、(坐标系与参数方程选做题)已知直线l 的参数方程为:214x ty t =⎧⎨=+⎩(t 为参数),圆C的极坐标方程为ρθ=,则直线l 与圆C 的位置关系为14(2)、(几何证明选讲选做题)如图所示,过O 外一点P 作一条直线与O 交于,A B 两点,己知弦6AB =,点P 到O 的切线长4,PT =则PA =三、解答题:本大题共6小题,满分80分。
解答需写出文字说明、证明过程和演算步骤。
15、(12分)已知向量2(2cos ,)m x = ,(1,sin 2)n x = ,函数()f x m n =⋅(1)求函数()f x 的最小正周期;(2)在∆ABC 中,c b a ,,分别是角C B A ,,的对边,且3)(=C f ,1=c ,32=ab ,且b a >,求,a b 的值.第14(2)题图T16、(13分)某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在7.95米及以上的为合格。
把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.(1)求这次铅球测试成绩合格的人数;(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率.17、(13分)如图,直三棱柱111ABC A B C -中,90ABC ∠=,4AB =,4BC =,13BB =,M 、N 分别是11B C 和AC 的中点.(1)求异面直线1AB 与1C N 所成的角的余弦; (2)求三棱锥1M C CN -的体积.18、(14分)已知椭圆2222:1(0)x y C a b a b+=>>的右顶点A 为抛物线28y x =的焦点,上顶点为B ,离心率为2(1)求椭圆C 的方程;(2)过点且斜率为k 的直线l 与椭圆C 相交于,P Q 两点,若线段PQ 的中点横坐标是5-,求直线l 的方程。
19、(14分)已知2()3,(),()ln f x x x m x R g x x =-+∈=(1)若函数 ()f x 与 ()g x 的图像在 0x x =处的切线平行,求0x 的值;(2)求当曲线()()y f x y g x ==与有公共切线时,实数m 的取值范围;并求此时函数()()()F x f x g x =-在区间1,13⎡⎤⎢⎥⎣⎦上的最值(用m 表示)。
20、(14分)已知数列{}n a 是各项均不为0的等差数列,公差为d ,n S 为其前n 项和,且满足221nn a S -=,n *N ∈.数列{}n b 满足11n n n b a a +=⋅,n *N ∈, n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式n a 和数列{}n b 的前n 项和n T ;(2)若对任意的n *N ∈,不等式8(1)nn T n λ<+⋅-恒成立,求实数λ的取值范围; (3)是否存在正整数,m n (1)m n <<,使得1,,m n T T T 成等比数列?若存在,求出所有,m n 的值;若不存在,请说明理由.2013届广东高考数学(文科)模拟试题(一)参考答案一、选择题: 1-10: DDCAB ABCDB二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
(一)必做题(11-13题) 11、0 12、8313、4 14(1)相交 14(2) 2三、解答题:本大题共6小题,满分80分。
解答需写出文字说明、证明过程和演算步骤。
15、(12分)已知向量2(2cos ,)m x = ,(1,sin 2)n x = ,函数()f x m n =⋅(1)求函数()f x 的最小正周期;(2)在∆ABC 中,c b a ,,分别是角C B A ,,的对边,且3)(=C f ,1=c ,32=ab ,且b a >,求b a ,的值.解:(1)22()(2cos ,(1,sin 2)2cos 2f x m n x x x x =⋅=⋅=……2分cos 2122sin(2)16x x x π=+=++………4分∴函数()f x 的最小周期22T ππ== ………5分 (2)31)62sin(2)(=++=πC C f ∴1)62sin(=+πCC 是三角形内角,∴262ππ=+C 即:6π=C ………7分 ∴232cos 222=-+=ab c a b C 即:722=+b a . ………9分 将32=ab 代入可得:71222=+aa ,解之得:432或=a ∴23或=a ,∴32或=b ………11分b a >,∴2=a ,3=b . ………12分16、(13分)某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在7.95米及以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30 ,第6小组的频数是7.(1)求这次铅球测试成绩合格的人数;(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a 、b 的成绩均为优秀,求两人至少有1人入选的概率.解:(1)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,……1分∴此次测试总人数为7500.14=(人). ……2分 ∴第4、5、6组成绩均合格,人数为(0.28+0.30+0.14)×50=36(人).………4分 (2)直方图中中位数两侧的面积相等,即频率相等, ……6分而前三组的频率和为0.28,前四组的频率和为0.56,∴中位数位于第4组内. ……8分 (3)设成绩优秀的9人分别为,,,,,,,,,a b c d e f g h k 则从中任意选出2人所有可能的情况为:,,,,,,,;ab ac ad ae af ag ah ak ,,,,,,;bc bd be bf bg bh bk ,,,,,;cd ce cf cg ch ck,,,,;de df dg dh dk ,,,;ef eg eh ek ,,;fg fh fk ,;gh gk hk ,共36种 ……10分其中a 、b 至少有1人入选的情况有15种, ……12分 ∴a 、b 两人至少有1人入选的概率为155.3612P ==…………13分 17、(13分)如图,直三棱柱111ABC A B C -中,90ABC ∠=,4AB =,4BC =,13BB =,M 、N 分别是11B C 和AC 的中点.(1)求异面直线1AB 与1C N 所成的角的余弦; (2)求三棱锥1M C CN -的体积.解:(1)过A 作AQ ∥1C N 交11A C 于Q ,连结Q B 1,∴∠B 1AQ 为异面直线AB 1与C 1N 所成的角(或其补角).……2分根据四边形C C AA 11为矩形,N 是中点,可知Q 为11A C 中点 计算17,22,511===AQ Q B AB ……3分 由已知条件和余弦定理 可得517cos 1=∠AQ B ……5分C 1AC∴异面直线AB 1与C 1N …6分(2)方法一:过M 作11C A MH ⊥于H ,面⊥111C B A 面C C AA 11于11C A∴⊥MH 面C C AA 11 ……9分由条件易得:2=MH ……11分1NCC M V - MH C C NC ⨯⨯⨯=12131223222131=⨯⨯⨯⨯= ……13分 方法二:取BC 的中点P ,连结MP 、NP ,则MP ∥1BB∴MP ⊥ 平面ABC , ……9分又NP ABC ⊂平面,∴MP NP ⊥ 又∵//NP AB , ∴NP BC ⊥ ∴NP ⊥平面11BCC B ……11分122PN AB ==, CM C N NCC M V V 11--=NP C C MC ⨯⨯⨯=11213122322131=⨯⨯⨯⨯= ……13分18、(14分)已知椭圆2222:1(0)x y C a b ab+=>>的右顶点A 为抛物线28y x =的焦点,上顶点为B,离心率为2(1)求椭圆C 的方程;(2)过点且斜率为k 的直线l 与椭圆C 相交于,P Q 两点,若线段PQ 的中点横坐标是,求直线l 的方程 解:(1)抛物线28y x =的焦点为(2,0)A ,依题意可知2a =…………2分因为离心率c e a ==c =…………3分故2221b a c =-=…………5分所以椭圆C 的方程为:2214x y +=…………6分(2)设直线:l y kx =由2244y kx x y ⎧=+⎪⎨+=⎪⎩,消去y可得22(41)40k x +++=因为直线l 与椭圆C 相交于,P Q 两点, 所以2212816(41)0k k ∆=-+> 解得1||2k >…………9分又 1212224,4141x x x x k k -+==++ ……10分设1122(,),(,)P x y Q x y ,PQ 中点00(,)M x y 因为线段PQ 的中点横坐标是5-所以12022415x x x k +-===-+ ……12分 解得1k =或14k = ……13分 因为1||2k >,所以1k = 因此所求直线:l y x =…………14分19、(14分)已知2()3,(),()ln f x x x m x R g x x =-+∈=(1)若函数 ()f x 与 ()g x 的图像在 0x x =处的切线平行,求0x 的值;(2)求当曲线()()y f x y g x ==与有公共切线时,实数m 的取值范围;并求此时函数()()()F x f x g x =-在区间1,13⎡⎤⎢⎥⎣⎦上的最值(用m 表示)。