高中必修一数学选择题含答案详细(选择题)
高一数学必修一综合测试题(含答案)
高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。
2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。
4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。
5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。
高中数学必修一《幂函数》精选习题(含详细解析)
高中数学必修一《幂函数》精选习题(含详细解析)一、选择题1.下列函数中,是幂函数的是( )A.y=2xB.y=2x3C.y=D.y=2x22.若幂函数y=(m2-3m+3)x m-2的图象不过原点,则m的取值范围为( )A.1≤m≤2B.m=1或m=2C.m=2D.m=13.函数y=x-2在区间上的最大值是( )A. B. C.4 D.-44若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?5.在下列函数中,定义域为R的是( )A.y=B.y=C.y=2xD.y=x-16函数y=|x(n∈N,n>9)的图象可能是( )7下列幂函数在(-∞,0)上为减函数的是( )A.y=B.y=x2C.y=x3D.y=8下列幂函数中过点(0,0),(1,1)且为偶函数的是( )A.y=B.y=x4C.y=x-2D.y=9.在同一坐标系内,函数y=x a(a≠0)和y=ax-的图象可能是( )二、填空题10幂函数f(x)=xα过点,则f(x)的定义域是.11若y=a是幂函数,则该函数的值域是.12若函数f(x)是幂函数,且满足=3,则f的值等于.13.设a=,b=,c=,则a,b,c的大小关系是.14已知幂函数f=(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f的解析式是.三、解答题15.比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.16.已知幂函数y=x3-p(p∈N*)的图象关于y轴对称,且在(0,+∞)上为增函数,求满足条件(a+1<(3-2a的实数a的取值范围.17幂函数f的图象经过点(,2),点在幂函数g的图象上,(1)求f,g的解析式.(2)x为何值时f>g,x为何值时f<g?18已知幂函数f(x)=(m2-m-1)·x-5m-3在(0,+∞)上是增函数,又g(x)=lo(a>1).(1)求函数g(x)的解析式.(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.参考答案与解析1【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.2【解析】选D.由题意得解得m=1.3【解析】选C.y=x-2在区间上单调递减,所以x=时,取得最大值为4.4【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.5【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).6【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.7【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数. 8【解析】选B.函数y=x4是过点(0,0),(1,1)的偶函数,故B正确;函数y=x-2不过点(0,0),故C 不正确;函数y=,y=是奇函数,故A,D不正确.9【解析】选C.当a<0时,函数y=ax-在R上是减函数,此时y=x a在(0,+∞)上也是减函数,同时为减的只有D选项,而函数y=ax-与y轴相交于点,此点在y轴的正半轴上,故D选项不适合.当a>0时,函数y=ax-在R上是增函数,与y轴相交于点,此点在y轴的负半轴上,只有A,C适合,此时函数y=x a在(0,+∞)上是增函数,进一步判断只有C适合.10【解析】因为幂函数f(x)过点,所以=2α,所以α=-1,所以f(x)=x-1=,所以函数f(x)的定义域是(-∞,0)∪(0,+∞).答案:(-∞,0)∪(0,+∞)11【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).答案:[0,+∞)3,12【解析】依题意设f(x)=xα,则有=3,得α=log2则f(x)=,于是f====.答案:13【解析】因为y=在x∈(0,+∞)上递增,所以>,即a>c,因为y=在x∈(-∞,+∞)上递减,所以>,即c>b,所以a>c>b.答案:a>c>b14【解析】因为函数的图象与x轴,y轴都无交点,所以m2-1<0,解得-1<m<1;因为图象关于原点对称,且m∈Z,所以m=0,所以f=x-1.答案:f=x-115【解析】(1)由于函数y=x0.1在第一象限内单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.16【解析】因为幂函数y=x3-p(p∈N*)的图象关于y轴对称,所以函数y=x3-p是偶函数.又y=x3-p在(0,+∞)上为增函数,所以3-p是偶数且3-p>0.因为p∈N*,所以p=1,所以不等式(a+1<(3-2a化为:(a+1<(3-2a.因为函数y=是[0,+∞)上的增函数,所以⇒⇒-1≤a<,故实数a的取值范围为.17【解析】(1)设f=xα,则()α=2,所以α=2,所以f=x2.设g=xβ,则(-2)β=,所以β=-2,所以g=x-2(x≠0).(2)从图象可知,当x>1或x<-1时,f>g;当-1<x<0或0<x<1时,f<g.18【解析】(1)因为f(x)是幂函数,且在(0,+∞)上是增函数,所以解得m=-1,所以g(x)=loga.(2)由>0可解得x<-1或x>1,所以g(x)的定义域是(-∞,-1)∪(1,+∞).又a>1,x∈(t,a),可得t≥1,设x1,x2∈(1,+∞),且x1<x2,于是x2-x1>0,x1-1>0,x2-1>0,所以-=>0, 所以>.由a>1,有loga >loga,即g(x)在(1,+∞)上是减函数.又g(x)的值域是(1,+∞),所以得g(a)=loga=1,可化为=a, 解得a=1±,因为a>1,所以a=1+,综上,a=1+,t=1.。
高中高一数学必修一试卷习题及含答案
高一数学必修一试卷及答案一、选择题(本大题共 12 小题 , 每题 5 分 , 共 60 分 . 在每题给出的四个选项中是切合题目要求的 , 请把正确答案的代号填入答题卡中), 只有一项1. 已知全集U0,1,2,3,4 , M0,1.2 , N2,3 ,则 C U M NA.2B.3C.2,3,4D.0。
1,2,3,42.以下各组两个会合 A 和 B, 表示同一会合的是A.A=,B= 3.14159B. A=2,3 ,B=(2,3)C. A= 1,3,,B=,1,3D. A=x 1x 1, x N ,B=13.函数 y x 2的单一递加区间为A.(,0]B. [0, )C.(0, )D. (, )4.以下函数是偶函数的是1A.y xB.y 2x 23C.y x 2D. y x2 , x[ 0,1]5.已知函数f x x1, x 1,则 f(2) =x3, x1B,26. 当0 a 1 时,在同一坐标系中,函数y a x与 y log a x 的图象是.y y y y1x 111x x xo o11o11oA B C D7.假如二次函数y x2mx( m 3) 有两个不一样的零点, 则 m的取值范围是A. ( -2,6)B.[-2,6]C.2,6D., 26.8.若函数 f ( x)log a x(0 a1) 在区间a,2 a 上的最大值是最小值的2倍,则a的值为()A 、2 B、2 C、1D、142429. 三个数 a 0.32 , b log 2 0.3, c 20 .3 之间的大小关系是A a c b .B.a b cC.b a cD.b c a10. 已知奇函数 f ( x) 在 x 0 时的图象如下图,则不等式xf ( x)0 的解集为A. (1, 2)B. ( 2, 1)C. ( 2, 1) U (1, 2) D. ( 1, 1)11. 设 f x3 x 3x 8 , 用二分法求方程 3x3x 8 0在 x 1,2 内近似解的过程中得f 1 0, f1.50, f 1.250, 则方程的根落在区间A. ( 1, )B.( , )C.( ,2 )D.不可以确立12. 计算机成本不停降低 , 若每隔三年计算机价钱降低1, 则此刻价钱为 8100 元的计算机 93年后价钱可降为元元元元二、填空题 (每题 4 分 , 共 16 分 . )13. 若 幂 函 数 y = fx 的 图 象 经 过 点 ( 9,1) ,则 f(25)的 值 是 _________-314. 函数 f x4 x log 3 x 1 的定义域是x 115. 给出以下结论( 1) 4( 2) 42(2) 1log 312 log 3 2 122(3)函数 y=2x-1 , x[1 ,4] 的反函数的定义域为[1 ,7 ]1(4)函数 y= 2 x 的值域为 (0,+) 此中正确的命题序号为16. 定义运算 a ba ab , 则函数 f (x)1 2x的最大值为.b ab .三、解答题 (本大题共6 小题 ,共 74分 . 解答应写出文字说明, 证明过程或演算步骤)17. ( 12 分) 已知会合A{ x | 2x40}, B{ x | 0x 5} , 全集 UR ,求:(Ⅰ) AI B ;(Ⅱ)(C U A) I B.18.计算 : (每题 6 分 , 共 12 分)( 1) 2 361233219.( 12 分)已知函数 f ( x) x 1,( Ⅰ )证明 f ( x)在[1,)上是增函数;x( Ⅱ) 求f (x)在[1,4]上的最大值及最小值.20.已知 A、B 两地相距地 , 在 B 地逗留一小时后离 y(千米)表示为时间象 . (14 分)150 千米 , 某人开车以 60 千米/小时的速度从 A 地到 B , 再以 50 千米/小时的速度返回 A地 . 把汽车与 A地的距 t (小时)的函数(从 A 地出发时开始) , 并画出函数图21.(本小题满分 12 分)二次函数 f (x)知足且 f (0)=1.(1)求 f (x)的分析式 ;(2)在区间上 , y=f(x) 的图象恒在 y=2x+m的图象上方 , 试确立实数 m的范围 .22. 已知函数 f (x)对一确实数x, y R 都有 f ( x y) f ( y) x(x 2 y1) 建立,且f (1) 0 .(Ⅰ)求 f (0) 的值;(Ⅱ)求 f ( x) 的分析式;(Ⅲ)已知 a R ,设 P :当0 x 12x a恒建立;时,不等式 f ( x) 32Q:当x[2,2] 时, g (x) f ( x)ax 是单一函数。
高一数学必修1测试卷(含详细答案)
则 f ( 0 ) f (x ) f ( x )
f ( x)
f ( x)
(0)
,, 3 分
所以 f ( x ) 为 R 上的奇函数
,, 6 分
(3 )令 x y 1
则 f (1 1) f (2) f (1) f (1) 2
,, 8 分
f ( 2 a ) f (a 1 ) 2 f ( a2 ) f a( 1 ) f
( D ) { x x 0}
1 (C ) y
2
x
(D) y
2
( x)
2
x
3. 集合 A {( x, y ) y x} ,集合 B {( x, y )
2x y 1 } 之间的关系是
x 4y 5
( A) A B
(B) B A
(C ) A B
(D ) B A
4. 已知函数 f ( x ) log 2 x 1 , 若 f ( a ) 1, 则 a
取值范围 .
22(本小题分 A,B 类,满分 14 分,任选一类,若两类都选,以 A 类记分) ( A 类) 定义在 R 上的函数 y f ( x ) ,对任意的 a, b R ,满足
f ( a b) f (a ) f (b ) ,当 x 0 时,有 f ( x ) 1,其中 f (1) 2 .
( 1) 求 f ( 0 ) 、 f ( 1) 的值; ( 2) 证明 y f ( x ) 在 (0, ) 上是增函数;
10. 已知 f ( x)
2
1 1
x x2
,则
f
( x ) 不.满.足. 的关系是
( A) f ( x) f ( x )
1 (C ) f ( )
x
f (x)
高一数学必修一试题含答案
高一数学必修一试题含答案一、选择题(每题4分,共48分)1、下列哪个选项正确地表示了直线、平面、体之间的关系?A.直线与平面是平行关系B.平面与平面是垂直关系C.两个平面可能相交也可能平行D.以上说法都不正确2、在下列四个选项中,哪个选项的图形是由旋转得到的?A.圆锥体B.正方体C.球体D.圆柱体3、下列哪个函数在区间[0, 1]上是增函数?A. y = sin(x)B. y = cos(x)C. y = x^2D. y = log(x)4、下列哪个选项能正确表示函数y = x^3在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增5、对于集合A和B,如果A ∪ B = A,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∩ B = ∅D. A = B6、下列哪个选项能正确表示函数y = x^2在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增7、下列哪个选项能正确表示函数y = log(x)在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增8、对于集合A和B,如果A ∩ B = B,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∪ B = BD. A = B二、填空题(每题4分,共16分)9、在空间四边形ABCD中,E、F分别是AB、AD的中点,则用符号表示空间中下列向量之间的关系:向量____________与____________是共线向量。
高一数学必修一试卷与答案一、选择题1、下列选项中,哪个选项是正确的?A. (1,2)和 (2,3)是同一个集合B. {1,2,3}和 {3,2,1}是同一个集合C. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}是同一个集合D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合答案:D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合。
人教版高一数学必修一第一章测试题含答案
人教版高一数学必修一第一章测试题含答案一、选择题1.下列数中,是正数且有理数的是____。
A.根号2B.根号3C.-0.8D.- 3/4答案:D2.在数轴上,数-3,-2,0,2所在的点的次序是____。
A.-2 < -3 < 0 < 2B.-3 < -2 < 2 < 0C.-3 < -2 < 0 < 2D.-2 < -3 < 2 < 0答案:C3.下列各数中,最小的是____。
A.-0.8B.-1/2C.-1D.-0.9999答案:C4.已知-3<x<5,则-2x的取值范围是____。
A.6<x<30B.15<x<30C.-30<x<-6D.-30<x<15答案:D二、填空题1.将-0.25用分数表示为________。
答案:-1/42.-13的绝对值是________。
答案:133.已知-5<x<4,那么|x+7|的取值范围是________。
答案:2<|x+7|<124.如果a>b>0,那么a²和b²的大小关系是________。
答案:a²>b²三、解答题1.已知x<2y,2y≤4z,z≤5,求满足以上条件的x的取值范围。
解:由条件可得:x<2y≤4z≤20故x<20。
2.已知-2<x<3,求满足0<2x-1<5的x的取值范围。
解:0<2x-1<51<2x<6由x的取值范围-2<x<3得1/2<x<3,故满足条件的x的取值范围为1/2<x<3。
3.小明的体重是58kg,如果减轻了1/8,减轻后的体重是多少?解:减轻了1/8,体重减轻的量为1/8×58=7.25kg。
减轻后的体重为58-7.25=50.75kg。
高中数学必修一集合习题大全含答案
《集合》练习一一、选择题 :( 每小题 5分共 60分)1. 下列命题正确的有()( 1)很小的实数可以构成 集合;( 2)集合 y | y x 2 1 与集合 x, y | y x 2 1 是同一个集合 ;(3)1,3,6,1,0.5 这些数组成 的集合有 5 个元素;2 42( 4)集合 x, y | xy0, x, y R 是指第二和第 四象限内的点集。
A . 0 个B .1个C .2个D .3个2. 若全集 U0,1,2,3 且 C U A 2 ,则集合 A 的真子集共有()A .3个B .5个C . 7个D . 8个3. 若集合 A{ 1,1} , B { x | mx 1},且 ABA ,则 m 的值为()A . 1B . 1C . 1或 1D . 1或 1或 04. 若集合 M( x, y) x y 0 , N( x, y) x 2 y 2 0, xR, y R ,则有()A .M N MB .M N NC .M N MD .M Nxy 1B . 5, 4C .5,4 D . 5, 4 。
5. 方程组y 2的解集是() A . 5,4x 296. 下列式子中,正确的是( )A . RR B .Zx | x 0, xZ C .空集是任何集合 的真子集 D .7. 下列表述中错误的是()A .若 A B,则AB A B .若 A B B ,则A BC . (A B)A (A B)D .C U A BC U A C U B8. 若集合 X{ x | x1} ,下列关系式中成立的为()A .0 XB . 0 XC . XD .0X9. 已知集合 Ax | x 2mx 1 0,若A R ,则实数 m 的取值范围是()A . m 4B . m 4C . 0 m 4D . 0 m 410.下列说 法中, 正确的是( )A. 一个集合必有两个子集;B. 则 A, B 中至少有一个为C.集合必有一个真子集;D. 若 S 为全集,且 AB S, 则 A B S,11.若 U 为全集,下面三个命题中真命题的个数是()(1)若A B ,则C U AC U B U(2)若A B U,则 C U AC U B(3)若A B ,则 A BA.0个 B.1个 C.2个 D.3个12.设集合M { x | x k 1 Z},N k 1, k Z},则()2,k { x | x24 4. M N .M N . NM. M NA B C D二、填空题 ( 每小题 4 分, 共 16 分 )13.某班有学生55 人,其中体育爱好者43 人,音乐爱好者34 人,还有4 人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为人_______。
(高一)高一数学必修1习题及答案5篇
高一数学必修1习题及答案5篇进入高中一之后,第一个学习的重要数学知识点就是集合,学生需要通过练习稳固集合内容,那么,高一数学必修1习题及答案怎么写以下是我精心收集整理的高一数学必修1习题及答案,下面我就和大家分享,来欣赏一下吧。
高一数学必修1习题及答案1一、选择题:(在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.假设集合,那么m∩p= ( )a. b. c. d.2.以下函数与有相同图象的一个函数是( )a. b. c. d.3. 设a={x|0≤x≤2},b={y|1≤y≤2},在以下各图中,能表示从集合a 到集合b的映射的是( )4设,,,那么,,的大小关系为( ). . . . .5.定义为与中值的较小者,那么函数的值是( )6.假设,那么的表达式为( )a. b. c. d.7.函数的反函数是( )a. b.c. d.8假设那么的值为( )a.8b.c.2d.9假设函数在区间上的图象为连续不断的一条曲线,那么以下说法正确的选项是( )a.假设,不存在实数使得;b.假设,存在且只存在一个实数使得;c.假设,有可能存在实数使得;d.假设,有可能不存在实数使得;10.求函数零点的个数为( ) a. b. c. d.11.定义域为r的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么以下式子一定成立的是( )a.f(-1)f(9)f(13) p=b.f(13)f(9)f(-1)c.f(9)f(-1)f(13) p=d.f(13)f(-1)f(9)12.某学生离家去,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,假设以纵轴表示离家的距离,横轴表示离家后的时间,那么以下四个图形中,符合该学生走法的是( )二、填空题:本大题共6小题,每题4分,共24分.把答案直接填在题中横线上.13、,那么的取值范围是14.实数满足等式,以下五个关系式:(1) ,(2) ,(3) ,(4) ,(5)其中可能成立的关系式有.15.如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的下方,那么函数的图象给我们向上凸起的印象,我们称函数为上凸函数;反之,如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的上方,那么我们称函数为下凸函数.例如:就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:16.某批发商批发某种商品的单价p(单位:元/千克)与一次性批发数量q(单位:千克)之间函数的图像如图2,一零售商仅有现金2700元,他最多可购置这种商品千克(不考虑运输费等其他费用).三、解答题:.解容许写出文字说明、证明过程或演算步骤.17.(本小题总分值12分)全集u=r,集合,,求,,。
人教版高一数学必修1测试题(含答案)
人教版高一数学必修1测试题(含答案) 人教版数学必修I测试题一、选择题(共10题,每题5分,共50分)1、设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(CU B)=()A、{2}B、{2,3}C、{3}D、{1,3}2、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN ()A、{}B、{0,1}C、{1,2}D、{0,2}3、函数y=1+log2x,(x≥4)的值域是()A、[2,+∞)B、(3,+∞)C、[3,+∞)D、(-∞,+∞)4、在y=1/x2,y=2x,y=x2+x,y=3x5四个函数中,幂函数有()A、1个B、2个C、3个D、4个5、如果a>1,b<-1,那么函数f(x)=ax+b的图象在()A第一、二、三象限 B第一、三、四象限C第二、三、四象限 D第一、二、四象限6、设集合M={x|x2-6x+5=0},N={x|x2-5x=0},则MN等于()A.{}B.{5}C.{1,5}D.{-1,-5}7、若102x=25,10x则等于()A、-15B、5C、11/50D、6258、函数y=ax+2(a且a≠1)图象一定过点()A(0,1)B(0,3)C(1,0)D(3,0)9、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟。
骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则与故事情节相吻合是()10、若f(2x)=x2,则f(3)=()A、9B、49/4C、9/4D、3/2二、填空题(共4题,每题4分,共16分)11、函数y=x+1+1/(2-x)的定义域为(-∞,2)U(2,∞)。
12、f(x)=x2+1,x≤0;f(x)= -2x,x>0.若f(x)=10,则x=-2.13、函数f(x)=2+log5(x+3)在区间[-2,2]上的值域是[2,3]。
高中数学必修一测试题(含答案)
数学必修一测试题一、选择题(本大题共14小题,共70.0分)1.已知集合A={x|x<1},B={x|3x<1},则()2.如图所示,I为全集,M,P,S为I的子集,则图中阴影部分所表示的集合为()3.为为4.函数的图象是()5.命题“若x2<1,则-1<x<1”的逆否命题是()A. 若x2≥1,则x≥1或x≤-1B. 若-1<x<1,则x2<1C. 若x>1或x<-1,则x2>1D. 若x≥1或x≤-1,则x2≥16.一个扇形的面积为3π,弧长为2π,则这个扇形中心角为()7.若实数a,b满足a>b>1,m=log a(log a b),m,n,l的大小关系为()A. m>l>nB. l>n>mC. n>l>mD. l>m>n8.函数y=A sin(ωx+φ)(A>0,|φ|<π如图所示,则()A. y=2sin(2xB. y=2sin(2x)C. y=2sin(x)D. y=2sin(x9.已知函数f(x)=4x2+kx-1在区间[1,2]上是单调函数,则实数k的取值范围是()10.A,B,C的对边分别为a,b,c,已知sin B+sin A(sin C-cos C)=0,a=2,c=C=()11.要得到函数的图象,只需将函数的图象上所有的A. 横坐标伸长到原来的2B. 横坐标伸长到原来的2C.D.12.在区间上的最大值与最小值之和为10,则aB. 313.对函数( )A.B. 函数y=sin2xC. f(x)D. f(x)的一个对称中心14.已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1-x)的解集是()A. +∞)B. (-∞C. (-∞,0)∪(0D. (0二、填空题(本大题共6小题,共30.0分)15.将函数f(x)(2x-11个单位长度,得到函数g(x)的图象,则函数g(x)具有性质______.(填入所有正确性质的序号)x②图象关于y轴对称;③最小正周期为π;0)对称;⑤在(0)上单调递减.16.等比数列{a n}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=______.17.已知f(x)是定义在R上的偶函数,并满足f(x+2)1≤x<2时,f(6.5)=______.18.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.19.______ 条件填“充分不必要”、“必要不充分”、“充分必要”或“既不充分也不必要”之一20.某班进行集体活动,为活跃气氛,班主任要求班上60名同学从唱歌、跳舞、讲故事三个节目中至少选择一个节目为大家表演,已知报名参加唱歌、跳舞、讲故事的人数分别为40,20,30,同时参加唱歌和讲故事的有15人,同时参加唱歌和跳舞的有10人,则同时只参加跳舞和讲故事的人数为______.三、解答题(本大题共6小题,共72.0分)21.如图,为加强社区绿化建设,欲将原有矩形小花坛ABCD适当扩建成一个较大的矩形花坛AMPN.要求B点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米.若设DN=x,则DN为多少时,矩形花坛AMPN的面积最小?并求出最小值.22.(Ⅰ)函数f(x)的最小正周期为______;(将结果直接填写在答题卡的相应位置上)(Ⅱ)求函数f(x23.已知命题p a>0)表示双曲线,命题q示焦点在y轴上的椭圆.(1)若命题q为真命题,求m的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.24.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.25.如图为函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|x∈R)的部分图象.(1)求函数解析式;(2)求函数f(x)的单调递增区间;(3)若方程f(x)=m m的取值范围.26.如图,在平面四边形ABCD中,AD=1,CD=2,AC(Ⅰ)求cos∠CAD的值;(Ⅱ)若cos∠BAD∠CBA求BC的长.答案和解析1.【答案】A【解析】【分析】本题考查交集和并集的求法,考查指数不等式的解法,属于基础题.先求出集合B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},所以A正确,D错误,A∪B={x|x<1},所以B和C都错误,故选A.2.【答案】C【解析】【分析】本题主要考查Venn图的识别和判断,正确理解阴影部分与已知中三个集合的关系,是解答的关键.根据Venn图分析阴影部分与集合M,P,S的关系,进而可得答案.【解答】解:由已知中的Venn图可得:阴影部分的元素属于M,属于P,但不属于S,故阴影部分表示的集合为(M∩P)∩(C I S),故选C.3.【答案】B【解析】【分析】本题考查导函数的图象的应用,函数的极值点的判断,考查计算能力,属于基础题. 利用导函数的图象判断极值点,推出结果即可.【解答】,函数是减函数,x∈(-3,1)时,,函数是增函数,的极小值点,故排除A,又x∈(1,2.5)时,所以x=1为f(x)的极大值点,故B正确,C和D,故选B.4.【答案】A【解析】【分析】本题考查函数的作法以及图象变换,属于基础题.先判断出函数y=lg(x+1)的图象可由函数y=lg x的图象左移一个单位而得到,再根据函数图像即可推出结论.【解答】解:由于函数y=lg(x+1)的图象可由函数y=lg x的图象左移一个单位而得到,函数y=lg x的图象与x轴的交点是(1,0),故函数y=lg(x+1)的图象与x轴的交点是(0,0),即函数y=|lg(x+1)|的图象与x轴的公共点是(0,0),考察四个选项中的图象只有A选项符合题意,故选A .5.【答案】D【解析】解:原命题的条件是““若x2<1”,结论为“-1<x<1”,则其逆否命题是:若x≥1或x≤-1,则x2≥1.故选:D.根据逆否命题的定义,直接写出答案即可,要注意“且”形式的命题的否定.解题时,要注意原命题的结论“-1<x<1”,是复合命题“且”的形式,否定时,要用“或”形式的符合命题.6.【答案】D【解析】解:设这个扇形中心角的弧度数是θ,半径等于r,则由题意得θr=2π,r2=3π,解得r=3,故选:D.由扇形面积公式得θr=2πr2=3π,先解出r值,即可得到θ值.本题考查扇形的面积公式,弧长公式的应用,得到θr=2πr2=3π,是解题的关键,属于基础题.7.【答案】B【解析】【分析】推导出0=log a1<log a b<log a a=1,由此利用对数函数的单调性能比较m,n,l的大小.本题考查三个数的大小的比较,考查对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【解答】解:∵实数a,b满足a>b>1,m=log a(log a b∴0=log a1<log a b<log a a=1,∴m=log a(log a b)<log a1=0,01,ba∴m,n,l的大小关系为l>n>m.故选:B.8.【答案】A【解析】【分析】本题考查由y=A sin(ωx+φ)的部分图象确定其解析式,确定各个参数的值是解答的关键,属于基础题.根据已知中的函数y=A sin(ωx+φ)的部分图象,求出满足条件的A,ω,φ值,可得答案.。
(完整版)高中数学必修一练习题及解析非常全
必修一数学练习题及解析第一章练习一、选择题(每小题5分,共60分)1.集合{1,2,3}的所有真子集的个数为()A.3 B.6C.7 D.8解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.答案:C2.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②Ø{0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=ØA.1 B.2C.3 D.4解析:②③正确.答案:C3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值集合可表示为()A.M∪F B.M∩F C.∁M F D.∁F M解析:根式x-1+x-2有意义,必须x-1与x-2同时有意义才可.答案:B4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于()A.N B.M C.R D.Ø解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.答案:A5.函数y=x2+2x+3(x≥0)的值域为()A.R B.[0,+∞) C.[2,+∞) D.[3,+∞)解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.答案:D6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于()A.20-2x(0<x≤10) B.20-2x(0<x<10)C.20-2x(5≤x≤10) D.20-2x(5<x<10)解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y=20-2x,x>5.答案:D7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的()甲乙图1解析:水面升高的速度由慢逐渐加快.答案:B8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()①y=f(|x|) ②y=f(-x) ③y=xf(x) ④y=f(x)+xA.①③B.②③C.①④D.②④解析:因为y=f(x)是定义在R上的奇函数,所以f(-x)=-f(x).①y=f(|x|)为偶函数;②y =f(-x)为奇函数;③令F(x)=xf(x),所以F(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x).所以F(-x)=F(x).所以y=xf(x)为偶函数;④令F(x)=f(x)+x,所以F(-x)=f(-x)+(-x)=-f(x)-x =-[f(x)+x].所以F(-x)=-F(x).所以y=f(x)+x为奇函数.答案:D9.已知0≤x ≤32,则函数f (x )=x 2+x +1( ) A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.答案:C10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图2解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.答案:B11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( ) A .f (-32)<f (-1)<f (2) B .f (-1)<f (-32)<f (2) C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1).答案:D12.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎢⎡⎦⎥⎤f (52)的值是( )A .0 B.12 C .1 D.52解析:令x =-12,则-12f (12)=12f (-12),又∵f (12)=f (-12),∴f (12)=0;令x =12,12f (32)=32f (12),得f (32)=0;令x =32,32f (52)=52f (32),得f (52)=0;而0·f (1)=f (0)=0,∴f ⎣⎢⎡⎦⎥⎤f (52)=f (0)=0,故选A.答案:A第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 解析:∁U A ∩∁U B =∁U (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U . 答案:Ø14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________. 解析:A ∩B ={x |1≤x <2},∴∁R (A ∩B )={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.解析:函数f (x )的对称轴为x =1-a ,则由题知:1-a ≥3即a ≤-2. 答案:a ≤-216.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.解析:∵f (x )=(m -1)x 2+6mx +2是偶函数,∴m =0.∴f (x )=-x 2+2.∴f (0)=2,f (1)=1,f (-2)=-2,∴f (-2)<f (1)<f (0). 答案:f (-2)<f (1)<f (0)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}, (1)当x ∈N *时,求A 的子集的个数;(2)当x ∈R 且A ∩B =Ø时,求m 的取值范围. 解:(1)∵x ∈N *且A ={x |-2≤x ≤5},∴A ={1,2,3,4,5}.故A 的子集个数为25=32个. (2)∵A ∩B =Ø,∴m -1>2m +1或2m +1<-2或m -1>5, ∴m <-2或m >6.18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求a ,b 的值.解:(1)当B =A ={-1,1}时,易得a =0,b =-1; (2)当B 含有一个元素时,由Δ=0得a 2=b , 当B ={1}时,由1-2a +b =0,得a =1,b =1 当B ={-1}时,由1+2a +b =0,得a =-1,b =1.19.(12分)已知函数f (x )=xax +b(a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.解:∵f (x )=xax +b且f (2)=1,∴2=2a +b . 又∵方程f (x )=x 有唯一实数解. ∴ax 2+(b -1)x =0(a ≠0)有唯一实数解.故(b -1)2-4a ×0=0,即b =1,又上式2a +b =2,可得:a =12,从而f (x )=x 12x +1=2xx +2,∴f (-4)=2×(-4)-4+2=4,f (4)=86=43,即f [f (-4)]=43.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.解:f (x )=4⎝ ⎛⎭⎪⎫x -a 22+2-2a .(1)当a2<0即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得:a =1- 2. (2)0≤a 2≤2即0≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=2-2a =3,解得:a =-12(舍去).(3)a2>2即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得:a =5+10, 综上可知:a 的值为1-2或5+10.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选择.若该货物在运输过程中(含装卸时间)的损耗为300元/小时,其他主要参考数据如下:问:如何根据运输距离的远近选择运输工具,使运输过程中的费用与损耗之和最小? 解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2. 由题意得两种工具在运输过程中(含装卸)的费用与时间如下表:于是y 1=8x +1000+(x50+2)×300=14x +1600, y 2=4x +1800+(x100+4)×300=7x +3000. 令y 1-y 2<0得x <200.①当0<x <200时,y 1<y 2,此时应选用汽车; ②当x =200时,y 1=y 2,此时选用汽车或火车均可; ③当x >200时,y 1>y 2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)f (1)=f (1)+f (1),∴f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=2+1=3. (2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8),又∵对于函数f (x )有x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.∴⎩⎨⎧x >0x -2>0x (x -2)≤8⇒2<x ≤4.∴x 的取值范围为(2,4].第二章 练习一、选择题(每小题5分,共60分)1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5D .6解析:原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6. 答案:D2.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2D .3解析:f (2)=log 3(22-1)=1,f (f (2))=2e 1-1=2e 0=2. 答案:C3.如果log 12x >0成立,则x 应满足的条件是( ) A .x >12 B.12<x <1 C .x <1D .0<x <1解析:由对数函数的图象可得. 答案:D4.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调解析:由复合函数的单调性可以判断,内外两层单调性相同则为增函数,内外两层的单调性相反则为减函数.答案:B5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( ) A .0.015克B .(1-0.5%)3克C .0.925克D.1000.125克解析:设该放射性元素满足y =a x (a >0且a ≠1),则有12=a 100得a =(12)1100.可得放射性元素满足y =[(12)1100]x =(12)x 100.当x =3时,y =(12)3100=100(12)3=1000.125. 答案:D6.函数y =log 2x 与y =log 12x 的图象( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称D .关于y =x 对称解析:据图象和代入式判定都可以做出判断,故选B. 答案:B 7.函数y =lg(21-x -1)的图象关于( ) A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称解析:f (x )=lg(21-x -1)=lg 1+x 1-x ,f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)关于原点对称,故选C.答案:C8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a c C .c a >c bD .log b c <log a c解析:y =x c 在(0,+∞)上递增,因为a >b ,则a c >b c ;y =log a x 在(0,+∞)上递增,因为b>c,则log a b>log a c;y=c x在(-∞,+∞)上递增,因为a>b,则c a>c b.故选D.答案:D9.已知f(x)=log a(x+1)(a>0且a≠1),若当x∈(-1,0)时,f(x)<0,则f(x)是() A.增函数B.减函数C.常数函数D.不单调的函数解析:由于x∈(-1,0),则x+1∈(0,1),所以a>1.因而f(x)在(-1,+∞)上是增函数.答案:A10.设a=424,b=312,c=6,则a,b,c的大小关系是()A.a>b>c B.b<c<a C.b>c>a D.a<b<c解析:a=424=12243,b=12124,c=6=1266.∵243<124<66,∴12243<12124<1266,即a<b<c.答案:D11.若方程a x=x+a有两解,则a的取值范围为() A.(1,+∞) B.(0,1)C.(0,+∞) D.Ø解析:分别作出当a>1与0<a<1时的图象.(1)当a>1时,图象如下图1,满足题意.图1图2 (2)当0<a<1时,图象如上图2,不满足题意.答案:A1112.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A .(110,1)B .(0,110)∪(1,+∞) C .(110,10)D .(0,1)∪(0,+∞)解析:由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎨⎧x >0,-1<lg x <1,解得110<x <10.答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________. 解析:由互为反函数关系知,f (x )过点(-1,2),代入得a -1=2⇒a =12. 答案:1214.方程log 2(x -1)=2-log 2(x +1)的解为________. 解析:log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),∴x = 5.答案: 515.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________. 解析:f 1(f 2(f 3(2007)))=f 1(f 2(20072))=f 1((20072)-1)=[(20072)-1]12=2007-1.答案:1200716.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________. 解析:设2x =t (1≤t ≤4),则y =12·4x -3·2x +5=12t 2-3t +5=12(t -3)2+12.12 当t =3时,y min =12;当t =1时,y max =12×4+12=52. 答案:52 12三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值. 解:(a +1)-2+(b +1)-2=(12+3+1)-2+(12-3+1)-2=(3+32+3)-2+(3-32-3)-2=16(7+432+3+7-432-3)=16[(7+43)(2-3)+(7-43)(2+3)]=16×4=23. 18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.解:将x =2代入方程中,得42·a -(8+2)·22+42=0,解得a =2. 当a =2时,原方程为 4x ·2-(8+2)2x +42=0,将此方程变形化为2·(2x )2-(8+2)·2x +42=0. 令2x =y ,得2y 2-(8+2)y +42=0. 解得y =4或y =22.当y =4时,即2x =4,解得x =2; 当y =22时,2x =22,解得x =-12. 综上,a =2,方程其余的根为-12.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.证明:设任意x 1,x 2∈(-∞,+∞)且x 1<x 2,则13f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2x 1-2x 2-(2x 2-2x 1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,即2x 1-2x 2<0.∴f (x 1)<f (x 2).∴f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解:f (x )是偶函数,且f (x )在[0,+∞)上递增,f (12)=0,∴f (x )在(-∞,0)上递减,f (-12)=0,则有log a x >12,或log a x <-12. (1)当a >1时,log a x >12,或log a x <-12,可得x >a ,或0<x <aa ; (2)当0<a <1时,log a x >12,或log a x <-12,可得0<x <a ,或x >aa . 综上可知,当a >1时,f (log a x )>0的解集为(0,aa )∪(a ,+∞); 当0<a <1时,f (log a x )>0的解集为(0,a )∪(aa ,+∞).21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.解:(1)令x =1,y =0,则f (1)=f (0)+(1+1)×1,∴f (0)=f (1)-2=-2. (2)令y =0,则f (x )=f (0)+(x +1)x ,∴f (x )=x 2+x -2.(3)由f (x )+3<2x +a ,得a >x 2-x +1.设y =x 2-x +1,则y =x 2-x +1在(-∞,12]上是减函数,所以y =x 2-x +1在[0,12]上的范围为34≤y ≤1,从而可得a >1.22.(12分)设函数f (x )=log a (1-ax ),其中0<a <1.14 (1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.解:(1)证明:设任意x 1,x 2∈(a ,+∞)且x 1<x 2,则f (x 1)-f (x 2)=log a (1-a x 1)-log a (1-ax 2)=log a1-ax11-a x 2=log a 1-a x 2+a x 2-a x11-a x2=log a ⎣⎢⎡⎦⎥⎤1+a x 2-a x 11-a x 2=log a (1+ax 1-ax 2x 1x 2-ax 1)=log a [1+a (x 1-x 2)x 1(x 2-a )].∵x 1,x 2∈(a ,+∞)且x 1<x 2,∴x 1-x 2<0,0<a <x 1<x 2,x 2-a >0.∴a (x 1-x 2)x 1(x 2-a )<0,∴1+a (x 1-x 2)x 1(x 2-a )<1,又∵0<a <1,∴log a [1+a (x 1-x 2)x 1(x 2-a )]>0,∴f (x 1)>f (x 2),所以f (x )=log a (1-a x )在(a ,+∞)上为减函数.(2)因为0<a <1,所以f (x )>1⇔log a (1-ax )>log a a ⇔⎩⎪⎨⎪⎧1-a x >0,①1-ax <a .②解不等式①,得x >a 或x <0.解不等式②,得0<x <a 1-a .因为0<a <1,故x <a 1-a ,所以原不等式的解集为{x |a <x <a 1-a}.15第三章 练习一、选择题(每小题5分,共60分)1.二次函数f (x )=2x 2+bx -3(b ∈R )的零点个数是( ) A .0 B .1 C .2D .4解析:∵Δ=b 2+4×2×3=b 2+24>0,∴函数图象与x 轴有两个不同的交点,从而函数有2个零点. 答案:C2.函数y =1+1x 的零点是( ) A .(-1,0) B .-1 C .1D .0解析:令1+1x =0,得x =-1,即为函数零点. 答案:B3.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )解析:把y =f (x )的图象向下平移1个单位后,只有C 图中图象与x 轴无交点. 答案:C4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部.16 答案:C5.函数f (x )=e x -1x 的零点所在的区间是( ) A .(0,12) B .(12,1) C .(1,32)D .(32,2)解析:f (12)=e -2<0, f (1)=e -1>0,∵f (12)·f (1)<0,∴f (x )的零点在区间(12,1)内. 答案:B6.方程log 12x =2x -1的实根个数是( ) A .0 B .1 C .2D .无穷多个解析:方程log 12x =2x -1的实根个数只有一个,可以画出f (x )=log 12x 及g (x )=2x -1的图象,两曲线仅一个交点,故应选B.答案:B7.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =0.1x 2-11x +3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x 等于( )A .55台B .120台C .150台D .180台解析:设产量为x 台,利润为S 万元,则S =25x -y =25x -(0.1x 2-11x +3000) =-0.1x 2+36x -3000=-0.1(x -180)2+240,则当x =180时,生产者的利润取得最大值. 答案:D8.已知α是函数f (x )的一个零点,且x 1<α<x 2,则( ) A .f (x 1)f (x 2)>0 B .f (x 1)f (x 2)<0 C .f (x 1)f (x 2)≥0D .以上答案都不对17解析:定理的逆定理不成立,故f (x 1)f (x 2)的值不确定. 答案:D9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水( )A .10吨B .13吨C .11吨D .9吨解析:设该职工该月实际用水为x 吨,易知x >8. 则水费y =16+2×2(x -8)=4x -16=20, ∴x =9. 答案:D10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图象为( )答案:A11.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( ) A .k =0B .k >1C .0≤k <1D .k >1,或k =0解析:令y 1=|x 2-6x +8|,y 2=k ,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:D12.利用计算器,算出自变量和函数值的对应值如下表:x0.20.61.0 1.41.82.22.63.0 3.4 … y =2x 1.149 1.516 2.0 2.639 3.4824.595 6.063 8.0 10.556 … y =x 20.04 0.361.01.963.244.846.769.011.56…18 那么方程2x=x2的一个根所在区间为()A.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)解析:设f(x)=2x-x2,由表格观察出x=1.8时,2x>x2,即f(1.8)>0;在x=2.2时,2x<x2,即f(2.2)<0.综上知f(1.8)·f(2.2)<0,所以方程2x=x2的一个根位于区间(1.8,2.2)内.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是__________.解析:设f(x)=x3-2x-5,则f(2)<0,f(3)>0,f(4)>0,有f(2)f(3)<0,则下一个有根区间是(2,3).答案:(2,3)14.已知函数f(x)=ax2-bx+1的零点为-12,13,则a=__________,b=__________.解析:由韦达定理得-12+13=ba,且-12×13=1a.解得a=-6,b=1.答案:-6 115.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l,则这块场地面积y与场地一边长x的关系为________.图1解析:由题意知场地的另一边长为l-2x,则y=x(l-2x),且l-2x>0,即0<x<l 2.19答案:y =x (l -2x )(0<x <l2)16.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)解析:设过滤n 次才能达到市场要求,则2%(1-13)n≤0.1% 即(23)n ≤0.12,∴n lg 23≤-1-lg2, ∴n ≥7.39,∴n =8. 答案:8三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.解:设二次函数f (x )=ax 2+bx +c (a ≠0).由题意知:c =3,-b2a =2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,∴(-b a )2-2c a =10,∴16-6a =10, ∴a =1.代入-b2a =2中,得b =-4.∴f (x )=x 2-4x +3. 18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 解:令f (x )=x 2+2x -5(x >0). ∵f (1)=-2,f (2)=3,∴函数f (x )的正零点在区间(1,2)内.取(1,2)中点x 1=1.5,f (1.5)>0.取(1,1.5)中点x 2=1.25,f (1.25)<0. 取(1.25,1.5)中点x 3=1.375,f (1.375)<0.取(1.375,1.5)中点x 4=1.4375,f (1.4375)<0.取(1.4375,1.5). ∵|1.5-1.4375|=0.0625<0.1,20 ∴方程x 2+2x =5(x >0)的近似解为x =1.5(或1.4375).19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.解:设所建矩形鱼池的长为x m ,则宽为800x m ,于是鱼池与路的占地面积为 y =(x +2)(800x +4)=808+4x +1600x =808+4(x +400x )=808+4[(x -20x )2+40].当x =20x,即x =20时,y 取最小值为968 m 2. 答:鱼池与路的占地最小面积是968 m 2.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.解:投入养殖加工生产业为60-x 万元.由题意可得,y =P +Q =x 3+10360-x , 由60-x ≥0得x ≤60,∴0≤x ≤60,即函数的定义域是[0,60].21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c 表示,其中a ,b ,c 为待定常数,今有实际统计数据如下表:(1)试确定成本函数y =f (x );(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)解:(1)将表格中相关数据代入y =ax 2+bx +c ,得⎩⎨⎧36a +6b +c =104100a +10b +c =160,400a +20b +c =370解得a =12,b =6,c =50.所以y =f (x )=12x 2+6x +50(x ≥0).(2)p =p (x )=-12x 2+14x -50(x ≥0). (3)令p (x )=0,即-12x 2+14x -50=0, 解得x =14±46,即x 1=4.2,x 2=23.8,故4.2<x <23.8时,p (x )>0;x <4.2或x >23.8时,p (x )<0, 所以当产品数量为420件时,能扭亏为盈; 当产品数量为2380件时由盈变亏.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:x 1 2 3 4 f (x )4.005.587.008.44(1)画出2000~2003年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:图2(1)散点图如图2:(2)设f (x )=ax +b .由已知得⎩⎨⎧a +b =43a +b =7,解得a =32,b =52,∴f(x)=32x+52.检验:f(2)=5.5,|5.58-5.5|=0.08<0.1;f(4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f(x)=32x+52能基本反映产量变化.(3)f(7)=32×7+52=13,由题意知,2006年的年产量约为13×70%=9.1(万件),即2006年的年产量应约为9.1万件.全册书综合练习题及解析一、选择题(每小题5分,共60分)1.集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=() A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}解析:∵A∩B={1,2},∴(A∩B)∪C={1,2,3,4}.答案:D2.如图1所示,U表示全集,用A,B表示阴影部分正确的是()图1A.A∪B B.(∁U A)∪(∁U B)C.A∩B D.(∁U A)∩(∁U B)解析:由集合之间的包含关系及补集的定义易得阴影部分为(∁U A)∩(∁U B).答案:D3.若f(x)=1-2x,g(1-2x)=1-x2x2(x≠0),则g⎝⎛⎭⎪⎫12的值为()A.1 B.3C.15 D.30解析:g(1-2x)=1-x2x2,令12=1-2x,则x=14,∴g⎝⎛⎭⎪⎫12=1-116116=15,故选C. 答案:C4.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,11解析:因为x <1时,f (x )=(x +1)2,所以f (-1)=0.当m -1<1,即m <2时,f (m -1)=m 2=1,m =±1.当m -1≥1,即m ≥2时,f (m -1)=4-m -2=1,所以m =11.答案:D5.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7)B .(5,7)C .(-4,-3)∪(5,7)D .(-∞,-4)∪(5,+∞)解析:将x =6代入不等式,得log a 9>log a 19,所以a ∈(0,1).则⎩⎨⎧x 2-2x -15>0,x +13>0,x 2-2x -15<x +13.解得x ∈(-4,-3)∪(5,7).答案:C6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( )A .单调递减无最小值B .单调递减有最大值C .单调递增无最大值D .单调递增有最大值解析:2x +1在(-∞,+∞)上递增,且2x +1>0, ∴12x +1在(-∞,+∞)上递减且无最小值. 答案:A7.方程(13)x =|log 3x |的解的个数是( ) A .0 B .1 C .2D .3解析:图2在平面坐标系中,画出函数y 1=(13)x 和y 2=|log 3x |的图象,如图2所示,可知方程有两个解.答案:C8.下列各式中,正确的是( ) A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)3解析:函数y =x 23在(-∞,0)上是减函数,而-43<-54,∴(-43)23>(-54)23,故A 错; 函数y =x 13在(-∞,+∞)上是增函数,而-45>-56,∴(-45)13>(-56)13,故B 错,同理D 错.答案:C9.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ解析:H 1⎝ ⎛⎭⎪⎫1102=10,∴H 1=103.答案:C10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图3解析:当h =H2时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S 随之减小,故排除A ,B ,D.答案:C11.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m 的取值范围是( )A .(0,12) B .(-1,1) C .(-1,12)D .(-1,0)∪(1,12)解析:f (1-m )<-f (-m ),∵f (x )在(-1,1)上是奇函数,∴f (1-m )<f (m ),∴1>1-m >m >-1, 解得0<m <12,即m ∈(0,12). 答案:A12.定义在R 上的函数f (x )满足f (x )=⎩⎨⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2解析:由题意可得:x >0时,f (x )=f (x -1)-f (x -2),从而f (x -1)=f (x -2)-f (x -3). 两式相加得f (x )=-f (x -3),f (x -6)=f [(x -3)-3]=-f (x -3)=f (x ), ∴f (2009)=f (2003)=f (1997)=…=f (5)=f (-1)=log 22=1. 答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.解析:log 2716log 34=23log 34log 34=23.答案:23 14.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.解析:kx 2+4kx +3恒不为零.若k =0,符合题意,k ≠0,Δ<0,也符合题意.所以0≤k <34.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫k ⎪⎪⎪0≤k <34 15.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.解析:∁U A ={x |1<x <3},又(∁U A )∩B =Ø, ∴k +1≤1或k ≥3, ∴k ≤0或k ≥3.答案:(-∞,0]∪[3,+∞)16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.解析:当x =1时,y =a log 22=a =100,∴y =100log 2(x +1), ∵2016-1986+1=31,即2016年为第31年, ∴y =100log 2(31+1)=500, ∴2016年麋鹿的只数约为500. 答案:500三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)用定义证明:函数g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数. 证明:设x 1<x 2<0,则g (x 1)-g (x 2)=k x 1-k x 2=k (x 2-x 1)x 1x 2.∵x 1<x 2<0,∴x 1x 2>0,x 2-x 1>0,又∵k <0,∴g (x 1)-g (x 2)<0,即g (x 1)<g (x 2),∴g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数.18.(12分)已知集合P ={x |2≤x ≤5},Q ={x |k +1≤x ≤2k -1},当P ∩Q =Ø时,求实数k 的取值范围.解:当Q ≠Ø,且P ∩Q =Ø时,⎩⎨⎧ 2k -1<2,2k -1≥k +1,或⎩⎨⎧k +1>5,2k -1≥k +1.解得k >4;当Q =Ø时,即2k -1<k +1,即k <2时,P ∩Q =Ø.综上可知,当P ∩Q =Ø时,k <2或k >4.19.(12分)已知f (x )为一次函数,且满足4f (1-x )-2f (x -1)=3x +18,求函数f (x )在[-1,1]上的最大值,并比较f (2007)和f (2008)的大小.解:因为函数f (x )为一次函数,所以f (x )在[-1,1]上是单调函数,f (x )在[-1,1]上的最大值为max{f (-1),f (1)}.分别取x =0和x =2,得⎩⎨⎧4f (1)-2f (-1)=18,4f (-1)-2f (1)=24,解得f (1)=10,f (-1)=11,所以函数f (x )在[-1,1]上的最大值为f (-1)=11.又因为f (1)<f (-1),所以f (x )在R 上是减函数,所以f (2007)>f (2008).20.(12分)已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . ①当a >0时,f (x )在[2,3]上单调递增.故⎩⎨⎧ f (2)=2f (3)=5,即⎩⎨⎧ 4a -4a +2+b =29a -6a +2+b =5,解得⎩⎨⎧a =1b =0 ②当a <0时,f (x )在[2,3]上单调递减.故⎩⎨⎧ f (2)=5f (3)=2,即⎩⎨⎧ 4a -4a +2+b =59a -6a +2+b =2,解得⎩⎨⎧a =-1b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2,g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, 由题意知2+m 2≤2或2+m2≥4,∴m ≤2或m ≥6. 21.(12分)设函数y =f (x ),且lg(lg y )=lg3x +lg(3-x ). (1)求f (x )的解析式和定义域; (2)求f (x )的值域; (3)讨论f (x )的单调性.解:(1)lg(lg y )=lg[3x ·(3-x )],即lg y =3x (3-x ),y =103x (3-x ).又⎩⎨⎧3x >0,3-x >0,所以0<x <3,所以f (x )=103x (3-x )(0<x <3).(2)y =103x (3-x ),设u =3x (3-x )=-3x 2+9x =-3⎝⎛⎭⎪⎫x 2-3x +94+274=-3(x -32)2+274.当x =32∈(0,3)时,u 取得最大值274,所以u ∈(0,274],y ∈(1,10274].(3)当0<x ≤32时,u =-3⎝ ⎛⎭⎪⎫x -322+274是增函数,而y =10u 是增函数,所以在⎝ ⎛⎦⎥⎤0,32上f (x )是递增的;当32<x <3时,u 是减函数,y =10u 是增函数,所以f (x )是减函数.22.(12分)已知函数f (x )=lg(4-k ·2x )(其中k 为实数), (1)求函数f (x )的定义域;(2)若f (x )在(-∞,2]上有意义,试求实数k 的取值范围. 解:(1)由题意可知:4-k ·2x >0,即解不等式:k ·2x <4, ①当k ≤0时,不等式的解为R ,②当k >0时,不等式的解为x <log 24k ,所以当k ≤0时,f (x )的定义域为R ; 当k >0时,f (x )的定义域为(-∞,log 24k ).(2)由题意可知:对任意x ∈(-∞,2],不等式4-k ·2x >0恒成立.得k <42x ,设u =42x ,4又x∈(-∞,2],u=2x的最小值1.所以符合题意的实数k的范围是(-∞,1).。
高中数学经典试题及详细答案
必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7C. 6D. 5MNAMNBNMCMND10.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
人教版高一数学必修1测试题(含答案)
人教版高一数学必修1测试题(含答案)人教版数学必修I测试题(含答案)一、选择题1、设集合U 1,2,3,4,5 ,A 1,2,3 ,B 2,5 ,则A CUB ()A、2B、2,3C、3D、1,32、已知集合M 0,1,2 ,N xx 2a,a M ,则集合M N (A、0 B、0,1C、1,23、函数y 1 log2x, x 4 的值域是()A、2,B、3,C、3, ,4、关于A到B的一一映射,下列叙述正确的是()① 一一映射又叫一一对应② A中不同元素的像不同③ B中每个元素都有原像④ 像的集合就是集合BA、①②B、①②③C、②③④ ①②③④ 5、在y1x2,y 2x,y x2x,y (A、1个B、2个C、3个4个)D、0,2D、D、)D、6、已知函数f x 1 x2 x 3,那么f x 1 的表达式是()A、x2 5x 9B、x2 x 3C、x2 5x 9D、x2 x 17、若方程ax x a 0有两个解,则a的取值范围是()A、0,B、1,C、0,1D、8、若102x 25,则10 x等于()A、1B1 C1 D、55501 6259、若loga a2 1 loga2a 0,则a的取值范围是()11A、0 a 1 B a 1 C、a 1 0 a D、2210、设a 40.9,b 80.481,c21.5,则a,b,c的大小顺序为()A、a b cB、a c bC、b a cD、c a b11、已知f x x2 2 a 1 x 2在,4 上单调递减,则a的取值范围是()A、a 3B、a 3C、a 3D、以上答案都不对12、若f lgx x,则f 3 ()A、lg3B、3 C、103D、310二、填空题13、设A x x 2 ,B xx a 0 ,若AB,则a的取值范围是;14、函数y 的定义域为;15、若x2,则x4的3x 值是;16lg20 log*****、。
三、解答题17、(本小题满分10分)设A 4,2a 1,a2 ,B a 5,1 a,9 ,已知A B 9 ,求a的值。
高中数学必修一集合150道选择题(含答案、解析、考点分析)
集合选择150题(含答案、解析、考点分析)选择题(共150小题)1.已知集合A={x|x−3x−6≤0},B={x|x2﹣3x﹣10<0},则∁R(A∩B)=()A.(﹣∞,3)∪[5,+∞)B.(﹣∞,3]∪(5,+∞)C.(﹣∞,3)∪(5,+∞)D.(﹣∞,3]∪[5,+∞)2.下列叙述错误的是()A.{x|x>1}⊆{x|x≥1}B.集合N中的最小数是1C.方程x2﹣6x+9=0的解集是{3}D.{4,3,2}与{3,2,4}是相同的集合3.已知集合A={1,2,3},B为A所有子集组成的集合,则下列不是集合B的子集的是()A.A B.B C.∅D.{∅}4.设U=A∪B,A={1,2,3,4,5},B={10以内的素数},则∁U(A∩B)=()A.{2,4,7}B.∅C.{4,7}D.{1,4,7} 5.已知集合A={x|y=√x+1},B={y|y=ln(x2+1)},则A∪B=()A.[﹣1,+∞)B.[0,+∞)C.(﹣1,0)D.[﹣1,0]6.已知集合A={x|0<log2(x+4)<2},B={y|y=√x−2+√2−x},则A∩B=()A.∅B.{0}C.{2}D.{x|﹣3<x<0} 7.设集合A={x∈Z|y=lg(﹣x2+3x+4)},B={x|2x≥4},则A∩B=()A.[2,4)B.{2,4}C.{3}D.{2,3}8.已知集合M={x|0<x+1<2},P={x|2x2−x<1},则M∩P=()A.(﹣∞,1)B.(0,1)C.(﹣1,0)D.(﹣1,1)9.设集合A={x|lgx<0},B={x|12<2x<2},则()A.A=B B.A⊆B C.B⊆A D.A∩B=∅10.已知集合A={x∈Z|y=√4x−x2−3},B={a,1},若A∩B=B,则实数a的值为()A.2B.3C.1或2或3D.2或311.已知集合A={x|x2+2>3x},B=(a,a+2],若A∪B=R,则实数a的取值范围为()A.[0,1)B.(1,2)C.(﹣∞,0]D.(1,+∞)12.已知集合M={x|y=log2(x﹣5)},N={y|y=x+1x,x>0},则M∪N=()A.(﹣∞,5)B.[2,+∞)C.[2,5)D.(5,+∞)13.若集合A={x|y=ln(x2﹣2x﹣3)},B={x||2﹣x|<3},则A∩B=()A.{x|x≤﹣1}B.{x|x>3}C.{x|﹣1<x<3}D.{x|3<x<5} 14.已知集合A={x|2x>6﹣x},B={0,2,4,6},则A∩B=()A.{0}B.{0,2}C.{2,4}D.{4,6} 15.已知集合M={x|y=ln(1﹣x)},N={x|x2﹣2x<0},则M∪N=()A.(0,2)B.(0,1)C.(﹣∞,1)D.(﹣∞,2)16.设集合A={x|x2﹣2x>0},B={y|y=2x+1},则B∪(∁U A)=()A.[1,2)B.(1,+∞)C.[0,+∞)D.R17.已知非零实数a,b,c,则代数式a|a|+b|b|+c|c|表示的所有的值的集合是()A.{3}B.{﹣3}C.{3,﹣3}D.{3,﹣3,1,﹣1} 18.已知全集U=R,集合M={x|2x2+x﹣6<0}与集合N={x|x=2k﹣1,k∈Z}的关系的V enn 图如图所示,则阴影部分所示的集合中的元素个数为()A.3个B.2个C.1个D.0个19.设集合A={x|lnx>0},B={x|1−1x<0},则A∩B=()A.(1,+∞)B.(﹣∞,1)C.(0,1)D.∅20.已知集合A={0,1,2,3,4},B={x|3x﹣x2>0},则集合A∩B的子集个数为()A.2B.3C.4D.821.设集合A={x|﹣4<x﹣1<5},B={x|x2>4},则A∩B=()A.{x|2<x<6}B.{x|﹣3<x<6}C.{x|﹣2<x<2}D.{x|﹣3<x<﹣2或2<x<6}22.已知集合A={x∈R|x2﹣kx+k+42≤0,k∈R},B={x∈R|1≤x≤4},若A⊆B,则k的取值范围为()A .(4,367]B .(﹣2,367]C .(﹣∞,367]D .(﹣2,4]23.已知集合A ={x |y =ln (x +1)},B ={x |x 2﹣4≤0},则A ∩B =( )A .{x |x ≥﹣2}B .{x |﹣1<x ≤2}C .{x |﹣1<x <2}D .{x |x ≥2}24.已知非空集合A ⊆{x ∈N |x 2﹣x ﹣2<0},则满足条件的集合A 的个数是( )A .1B .2C .3D .4 25.已知集合A ={x 2﹣3x +2<0},B ={x |log 8x >13},则( )A .A ⊆B B .B ⊆AC .A ∩∁R B =∅D .A ∩B =∅26.设全集U =R ,已知集合A ={x |x <3或x ≥9},集合B ={x |x ≥a },若(∁U A )∩B ≠∅,则a 的取值范围为( )A .a >3B .a ≤3C .a <9D .a ≤927.已知集合A ={x |y =ln (x ﹣1)},B ={x|y =√x −1},则( )A .A =B B .A ⊆BC .A ∩B =∅D .A ∪B =R28.若集合A ={x ∈N |(x ﹣3)(x ﹣2)<6},则A 中的元素个数为( )A .3B .4C .5D .629.已知非空集合A ,B 满足以下两个条件:(i )A ∪B ={1,2,3,4,5},A ∩B =∅;(ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素,则有序集合对(A ,B )的个数为( )A .7B .8C .9D .1030.已知集合A ={y |y =x 2+2x ,x ∈R },B ={x |x 2+y 2=2,x ∈R ,y ∈R },则A ∩B =( )A .[﹣1,2]B .(﹣1,2]C .(−1,√2]D .[−1,√2]31.已知集合A ={(x ,y )|x 2+y 2≤2,x ∈N ,y ∈N },则集合A 的子集个数为( )A .4B .9C .15D .1632.已知集合A ={﹣2,﹣1,0,1,2},B ={x |x 2≤1},则集合A ∩B 的子集个数为( )A .2B .4C .8D .1633.已知集合A ={x |1<2x ≤8},B ={0,1,2},则下列选项正确的是( )A .A ⊆B B .A ⊇BC .A ∪B ={0,1,2}D .A ∩B ={1,2}34.设集合A ={0,1},B ={m |m =y ﹣x ,x ∈A 且y ∈A },则A ∩B =( )A .∅B .{1}C .{0}D .{0,1}35.已知集合A ={x |y =ln (2﹣x )},B ={x |﹣3<x <3},则B ∩(∁R A )=( )A .(﹣3,2]B .[﹣3,2)C .(2,3]D .[2,3)36.已知集合M ={x |x 2+x >0},N ={x |ln (x ﹣1)>0},则( )A .M ⊇NB .M ⊆NC .M ∩N =(1,+∞)D .M ∪N =(2,+∞)37.已知全集U ={﹣2,﹣1,1,2,3,4},集合A ={﹣2,1,2,3},集合B ={﹣1,﹣2,2,4},则(∁U A )∪B 为( )A .{﹣1,﹣2,2,4}B .{﹣1,﹣2,3,4}C .{﹣1,2,3,4}D .{﹣1,1,2,4} 38.已知集合A ={x |log 4x <1},集合B ={{x |x 2﹣3≥0,x ∈Z }(其中Z 表示整数集),则A ∩(∁Z B )=( )A .{1,2,3}B .{﹣1,1}C .{1,2}D .{1}39.已知全集U =R ,集合M ={x ∈R |x 2﹣x ≤0},集合N ={y ∈R |y =cos x ,x ∈R },则(∁U M )∩N =( )A .[﹣1,0)B .(0,1)C .(﹣∞,0)D .∅40.已知集合A ={x |1n (x ﹣1)≤0},B ={x |0<x <3},则(∁R A )∩B =( )A .(0,1]∪(2,3)B .(2,3)C .(0,1)∪(2,3)D .[2,3) 41.已知M ={x |x 2﹣x ≤0},N ={x |x−1x ≤0},则集合M 、N 之间的关系为( ) A .M ∩N =∅ B .M =NC .N ⫋MD .M ⫋N 42.已知集合A ={x ||x ﹣2|<3},B ={x|y =1log 2x },则A ∪B =( ) A .(﹣1,+∞)B .(﹣1,5)C .(﹣∞,1)∪(1,5)D .(5,+∞)43.已知集合A ={x |x 2﹣x ﹣6>0},B ={y|y =x −8x ,x >4},则A ∩B =( )A .(﹣2,2)B .(﹣2,3]C .(﹣2,+∞)D .(3,+∞)44.设集合A ={x ||x ﹣a |=1},B ={﹣1,0,b }(b >0),若A ⊆B ,则对应的实数(a ,b )有( )A .1对B .2对C .3对D .4对45.已知集合A ={x |1<x <2},集合B ={x|y =√m −x 2},若A ∩B =A ,则m 的取值范围是()A.(0,1]B.(1,4]C.[1,+∞)D.[4,+∞)46.已知集合A={x∈N*|x2﹣2x﹣3<0},则满足条件B⊆A的集合B的个数为()A.2B.3C.4D.847.若全集U=R,集合A={y∈R|y=x2},B={x∈R|y=log3(x﹣1)},则A∩(∁R B)=()A.(﹣∞,1]B.[1,2]C.[0,1]D.[0,1)48.已知全集U={x∈Z|0<x≤10},M={1,2,3,4,5},N={5,6,7,8,9,10},则M ∪(∁U N)=()A.N B.M C.∁U M D.M∩N49.已知集合A={x|x2﹣x﹣2<0},B={x|a<x<a+3}.若A∩B={x|0<x<2),则A∪B=()A.{x|﹣2<x<3}B.{x|﹣1<x<3}C.{x|0<x<3}D.{x|﹣2<x<1} 50.设集合M={x|x2≤4},集合N={x|1≤x≤2},则∁M N=()A.{x|﹣2≤x<1}B.{﹣2,﹣1,0}C.{x|x≤﹣2}D.{x|0<x<2} 51.若集合A={x|log2x<3},B={x|x2﹣2x﹣8≤0},则A∪B=()A.{x|x<8}B.{x|﹣2≤x≤4}C.{x|﹣2≤x<8}D.{x|0<x≤4} 52.已知全集U={﹣1,0,1,2,3,4},集合A,B满足∁U A={0,2,4},∁U B=(﹣1,0,1,3},则A∩B=()A.{﹣1,0,1,2,3,4}B.{﹣1,1,2,3,4}C.{0}D.∅53.已知R为实数集,集合A={x|0<x<2},B={x|x<3},则(∁R A)∩B=()A.{x|2<x<3}B.{x|2≤x<3}C.{x|x<0或2≤x<3}D.{x|x≤0或2≤x<3}54.设集合A={x|2x≥8},集合B={x|y=lg(x﹣1)},则A∪B=()A.[1,3)B.(1,3]C.(1,+∞)D.[3,+∞)55.已知A={x∈N|y=ln(x2﹣x﹣2)},B={y∈N|y=e√1−|x|},则(∁N A)∩B=()A.{1,2}B.{0,1}C.{0,1,2}D.∅56.已知集合A={1,2,3,4,5},则集合A各子集中元素之和为()A.320B.240C.160D.8A.(0,3)B.(1,3)C.(0,2]D.(1,2]58.已知集合A={x∈R|x2﹣2x﹣3<0},B={﹣1,0,1,2,3,4},则()A.A∩B={x|﹣1<x<3}B.A∩B={0,1,2}C.A∪B={x|﹣1<x<4}D.A∪B={﹣1,0,1,2,3,4} 59.已知集合A={y|y=e x﹣1},B={x|y=ln(x+1)},则A∩B=()A.(1,+∞)B.(0,+∞)C.(﹣1,+∞)D.(﹣1,0)60.已知全集U=R,A={x|(x+1)(x﹣2)>0},B={x|2x≤2},则(∁U A)∩B=()A.{x|﹣1<x<1}B.{x|0≤x≤1}C.{x|﹣1≤x≤1}D.{x|x≤﹣1}61.全集U=R,集合A={x|xx−4≤0},集合B={x|log2(x﹣1)>2},图中阴影部分所表示的集合为()A.(﹣∞,0]∪[4,5]B.(﹣∞,0)∪(4,5]C.(﹣∞,0)∪[4,5]D.(﹣∞,4]∪(5,+∞)62.已知全集U=Z,M={x∈Z|x2+2x﹣3≤0},N={x∈R|x2=2﹣x},则M∩(∁U N)=()A.{﹣3,﹣1,2}B.{﹣3,﹣1,0}C.{﹣3,0,1}D.{﹣3,1,2} 63.已知集合A={x|﹣1≤x≤4},B={x|﹣2≤x≤2},则C(A∪B)(A∩B)=()A.(﹣1,2)B.(﹣2,4)C.[﹣2,﹣1]∪[2,4]D.[﹣2,﹣1)∪(2,4]64.已知集合P=已知集合P={x|2x<1,x∈R},Q={x|x2−x−2<0,x∈R},则P∩Q=()A.∅B.(1,2)C.(﹣1,0)D.(2,+∞)65.已知集合A={﹣1,0,1,2},B={y|y=2x},M=A∩B,则集合M的子集个数是()A.2B.3C.4D.866.已知集合A={x|x2﹣2x﹣3>0,x∈Z},集合B={x|x>0},则集合∁Z A∩B的真子集个数为()A.3B.4C.7D.8A.[0,1)B.(0,2)C.(﹣∞,1]D.[0,1]68.已知全集U=R,集合A={x|x2﹣3x+2≤0},B={x|3x﹣1≥1},(∁U A)∩B=()A.[1,2]B.(2,+∞)C.[1,+∞)D.(﹣∞,1)69.已知集合A={x|x>0},B={y|y=2|x|},则∁A B=()A.{x|x<0}B.{x|0<x<1}C.{x|0≤x≤1}D.{x|1≤x≤2} 70.已知集合A={x|2≤x≤4},B={x|x>1},则A∩B=()A.(1,2]B.[2,4]C.(4,+∞)D.(2,4)71.已知集合A={1,3,5},B={x∈Z|(x﹣1)(x﹣4)<0},则A∪B=()A.{3}B.{1,3}C.{1,2,3,5}D.{1,2,3,4,5}72.已知集合A={x∈Z|x2≤4},B={x|﹣4<x<2},则A∩B=()A.B={x|﹣2≤x<2}B.B={x|﹣4<x≤2}C.{﹣2,﹣1,0,1,2}D.{﹣2,﹣1,0,1}73.已知全集I={1,2,3,4,5,6,7,8,9},集合A={3,4,5,6},集合B={5,6,7,8},则图中阴影部分所表示的集合为()A.{3,4,7,8}B.{3,4,5,6,7,8}C.{1,2,9}D.{5,6}74.已知全集U={﹣1,0,1,2,3,4},集合A={x∈N|x2﹣4x+3≤0},集合B={x∈N+|y=√−x2+x+2},则∁U(A∪B)=()A.{﹣1,0,1,2,3}B.{﹣1,0,4}C.{4}D.{﹣1,0,3,4}75.已知集合A={(x,y)|y=2x﹣1},B={(x,y)|y=x2},则A∩B=()A.∅B.{1}C.{(1,1)}D.{(1,﹣1)} 76.设集合P={x|x+2≥x2},Q={x∈N||x|≤3},则P∩Q=()A.[﹣1,2]B.[0,2]C.{0,1,2}D.{﹣1,0,1,2}77.已知集合A ={x |a +1≤x ≤3a ﹣5},B ={x |3<x <22},且A ∩B =A ,则实数a 的取值范围是( )A .(﹣∞,9]B .(﹣∞,9)C .[2,9]D .(2,9) 78.已知集合A ={x |12<2x ≤2},B ={x |x 2﹣2x +34≤0},则A ∩(∁R B )=( )A .∅B .(﹣1,12)C .(12,1) D .(﹣1,1] 79.已知集合A ={x||x|⋅(1−x)≤0},B ={x|1−1x >0},则A ∪B =( )A .{x |x ≥1}B .{x |x ≥1,或x <0}C .{x |x ≥1,或x ≤0}D .{x |x ≥1,或x =0}80.设集合U ={x ∈Z |1<x <6},A ={3,5},B ={x |x 2﹣3x ﹣4<0},∁U (A ∩B )=( )A .{2,4}B .{2,4,5}C .{2,3,4,5}D .{2,3,4,6} 81.设集合A ={x ∈N ||x |<4},B ={x |2x ≤4},则A ∩B =( )A .{x |x ≤2}B .{x |﹣4<x ≤2}C .{0,1,2}D .{1,2}82.已知全集U =R ,集合A ={x |3x 2﹣13x <0},B ={y |y =3x +1},则A ∩(∁U B )=( )A .[1,133)B .(0,1]C .(1,133)D .(0,1)83.已知集合A ={2a ﹣1,a 2,0},B ={1﹣a ,a ﹣5,9},且A ∩B ={9},则( )A .A ={9,25,0}B .A ={5,9,0}C .A ={﹣7,9,0}D .A ∪B ={﹣7,9,0,25,﹣4}84.已知集合A ={x |x 2+2x ﹣3<0},B ={y |y =1﹣sin x ,x >0},则A ∩B =( )A .[﹣3,1)B .[0,1)C .[1,2]D .(﹣3,2)85.已知集合S ={x |2x =1},T ={x |ax =1}.若S ∩T =T ,则常数a 的值为( )A .0或2B .0或12C .2D .12 86.已知集合A ={x |x−1x−2≤0},B ={y |y =√4−x 2},则A ∩B =( ) A .∅ B .(﹣∞,2] C .[1,2) D .[0,2]87.已知全集U =R ,集合A ={x |x 2>x },则∁U A =( )A .[0,1]B .(0,1)C .(﹣∞,1]D .(﹣∞,1) 88.已知A ={x |x ≤1},B ={x |x−2x−a ≤0},若A ∪B ={x |x ≤2},则实数a 的取值范围是( ) A .[2,+∞) B .(﹣∞,2]C .[1,+∞)D .(﹣∞,1]89.设集合A ={x ∈Z |x 2﹣3x ﹣4≤0},B ={x |e x ﹣2<1},则A ∩B =( ) A .{﹣1,0,1,2} B .[﹣1,2) C .{﹣1,0,1} D .[﹣1,2]90.已知集合M ={x ∈N |log 2x <2},Q ={0,a ,3},且M ∪Q ={0,1,2,3,4},则M ∩Q =( )A .{3}B .{0,3,4}C .{0,1,3}D .{1,2,3}91.已知集合U ={x ∈Z |﹣3<x <8},∁U M ={﹣2,1,3,4,7},N ={﹣2,﹣1,2,4,5,7},则M ∩N 的元素个数为( )A .1B .2C .3D .4 92.设集合A ={x ∈Z |x 2﹣3x ﹣4>0},B ={x |e x ﹣2<1},则以下集合P 中,满足P ⊆(∁R A )∩B 的是( )A .{﹣1,0,1,2}B .{1,2}C .{1}D .{2} 93.已知集合A ={x |x (x +1)<0},B ={x |12x >1},则∁B A =( ) A .(﹣1,0] B .(﹣1,0) C .(﹣∞,﹣1] D .(﹣∞,0]94.设集合A ={x |y =√x −3},B ={y |y =2x ,x ≤3},则集合(∁R A )∩B =( )A .{x |x <3}B .{x |x ≤3}C .{x |0<x <3}D .{x |0<x ≤3}95.已知全集U =R ,集合A ={x |x 2﹣3x ﹣4<0},B ={x |x ﹣1≤0},则集合A ∩∁U B =( )A .{x |﹣4<x <1}B .{x |﹣1<x ≤1}C .{x |﹣1<x <4}D .{x |1<x <4}96.已知集合A ={x |2x 2+x ﹣1<0),B ={x |ln (3x ﹣1)<0},则A ∩B =( )A .(﹣1,23)B .(13,12)C .(13,23)D .(﹣1,13) 97.设集合P ={x ||x |>3},Q ={x |x 2>4},则下列结论正确的是( )A .Q ⫋PB .P ⫋QC .P =QD .P ∪Q =R98.已知集合A ={x |x >1},B ={x |ax >1},若B ⊆A ,则实数a 的取值范围为( )A .(0,1)B .(0,1]C .[0,1]D .[0,1)99.已知集合A ={x |log 2x <1},集合B ={x ∈N ||x |<2},则A ∪B =( )A .{x |0<x <1}B .{x |0≤x <2}C .{x |﹣2<x <2}D .{0,1}100.已知集合A ={x ∈N|y =√4−x},B ={x |x =2n ,n ∈Z },则A ∩B =( )A .[0,4]B .{0,2,4}C .{2,4}D .[2,4]101.若集合A ={1,2},B ={1,2,3,4,5},则满足A ∪X =B 的集合X 的个数为( )A .2B .3C .4D .8102.已知集合M={x|x2﹣2x﹣3<0},N={x|x2﹣mx<0},若M∩N={x|0<x<1},则m的值为()A.1B.﹣1C.±1D.2103.设集合A={﹣1,0,1,2,3,4},B={x|x∈A且2x∈A},则集合B中元素的个数为()A.1B.2C.3D.4104.已知集合A={x∈N*|0≤x<2},则集合A的子集的个数为()A.2B.3C.4D.8105.设A={1,2,3},B={x|x2﹣x﹣1<0},则A∩B=()A.{1,2}B.{1,2,3}C.{2,3}D.{1}106.已知集合A={x|x2﹣x﹣2>0},集合B={x|y=√x−2},则A∩B=()A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(1,+∞)107.已知集合A={y|y=1﹣x2,x∈[﹣1,1]},B={x|y=√x+2},则A∩B=()A.[0,1]B.[﹣1,1]C.(0,1)D.∅108.已知集合A={a|a⊆{1,2,3}},则A的真子集个数为()A.7B.8C.255D.256109.M={α|α=kπ4+π2,k∈Z},N={β|β=kπ2+π4,k∈Z},则有()A.M=N B.M⊆N C.M⫌N D.M⫋N110.已知集合M={y|y=3x,x>0},N={x|y=lg(3x﹣x2)},则M∩N为()A.∅B.(1,+∞)C.[3,+∞)D.(1,3)111.已知集合M={x|x2≤4},N={﹣a,a},若M∩N=N,则a的取值范围是()A.[2,+∞)B.(﹣∞,﹣2]∪[2,+∞)C.[﹣2,0)∪(0,2]D.[﹣2,2]112.已知集合A={x|x2﹣x﹣2<0},B={x|a﹣2<x<a},若A∩B={x|﹣1<x<0},则A∪B=()A.(﹣1,2)B.(0,2)C.(﹣2,1)D.(﹣2,2)113.已知集合A={x|x2<4},B={x|(12)x<2},则()A.A∩B={x|﹣2<x<1}B.A∩B={x|1<x<2} C.A∪B={x|x>﹣2}D.A∪B={x|x<1}114.设集合M={(x,y)|x29+y27=1},N={(x,y)|y=2x},则M∩N的子集的个数是()A.8B.4C.2D.0115.若全集U=R,集合A={0,1,2,3,4,5},B={x|x<3},则图中阴影部分表示的集合为()A.{0,1,2,3}B.{0,1,2}C.{3,4,5}D.{4,5} 116.已知集合A={y|y=1﹣2x},B={x|x2﹣2x﹣3>0},则A∩∁R B=()A.∅B.[﹣1,1)C.(1,3]D.[﹣3,1)117.已知A={x|y=√x−1},B={x|4x<2x+1},则A∩B=()A.(0,1)B.(0,1]C.R D.∅118.设集合A={x|(x+2)(x﹣3)≤0},B={a},若A∪B=A,则a的最大值为()A.﹣2B.2C.3D.4119.定义集合的商集运算为AB={x|x=mn,m∈A,n∈B},已知集合S={2,4,6},T={x|x=k2−1,k∈S},则集合ST∪T中的元素个数为()A.5B.6C.7D.8120.如图,已知R是实数集,集合A={x|y=√2−x},B={x|1<x<4},则阴影部分表示的集合是()A.[2,4]B.(2,4)C.[2,4)D.(2,4]121.设集合S={(x,y,z)|x y=y z=z x,实数x,y,z均大于1,且它们互不相等},则S中()A.元素个数为0B.元素个数为3C.元素个数为6D.含有无穷个元素122.设集合M={−1,1},N={x|1x<2},则下列结论正确的是()A .N ⊆MB .M ⊆NC .N ∩M =∅D .M ∩N =R123.若集合A ={x |x <0},且B ⊆A ,则集合B 可能是( ) A .{x |x >﹣1} B .R C .{﹣2,﹣3} D .{﹣3,﹣1,0,1}124.已知集合A ={x |﹣1≤x ≤1},B ={x |x ﹣a ≤0},若A ⊆B ,则实数a 的取值范围是( ) A .(﹣∞,1] B .[﹣1,+∞)C .(﹣∞,﹣1]D .[1,+∞)125.已知集合P ={x ||2x−13x−2|=2x−13x−2,x ∈R },则下列集合中与P 相等的是( ) A .{x |2x−13x−2>0,x ∈R }B .{x |(2x ﹣1)(3x ﹣2)≥0,x ∈R }C .{x |y =lg2x−13x−2}D .{x |y =√(2x −1)(3x −2)+(3x ﹣2)0}126.设全集U 是实数集R ,M ={x |x 2<4},N ={x |1<x <3},则图中阴影部分所表示的集合是( )A .{x |﹣2<x <1}B .{x |﹣2<x <2}C .{x |2≤x <3}D .{x |1<x <2}127.集合A ={x |sin x +lg cos x =1}是( ) A .∅B .单元素集C .二元素集D .无限集128.已知全集U =R ,集合A ={x |x 2﹣2x ﹣3≤0},集合B ={x |log 2x ≤1},则A ∩(∁U B )=( ) A .(2,3] B .∅ C .[﹣1,0)∪(2,3] D .[﹣1,0]∪(2,3]129.若集合A ={−1,0,12,1,2},集合B ={y |y =2x ,x ∈A },则集合A ∩B =( ) A .{−1,12,1,2} B .{0,12,1}C .{12,1,2}D .{﹣1,0,1}130.满足M ⊆{a ,b ,c ,d ,e },且M ∩{a ,c ,e }={a ,c }的集合M 的个数是( ) A .1B .2C .3D .4131.已知全集U =R ,P ={x ||x |+|x ﹣1|<3},Q ={x ||2x ﹣1|<3},则集合P ,Q 之间的关系为( )A .集合P 是集合Q 的真子集B .集合Q 是集合P 的真子集C .P =QD .集合P 是集合Q 的补集的真子集132.设a ∈R ,若{x |x 2﹣2ax +a +2≤0}⊆[1,3],则a 的取值范围是( ) A .(﹣1,3] B .[3,+∞)C .[2,115]D .(−1,115]133.集合M ={x |x =k 2−14,k ∈Z },N ={x |x =k 4+12,k ∈Z },则( ) A .M =NB .M ⫋NC .N ⫋MD .M ∩N =∅134.已知A ={x |x 2﹣1≥0},B ={y |y =e x },则A ∩B =( ) A .(0,+∞) B .(﹣∞,1]C .[1,+∞)D .(﹣∞,﹣1]∪[1,+∞)135.集合M ={x |2x 2﹣x ﹣1<0},N ={x |2x +1<0},U =R ,则M ∩∁U N =( ) A .[−12,1)B .(−12,1)C .(﹣1,−12)D .(﹣1,12]136.已知集合A ={(x ,y )|x 2+y 2≤√3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .4B .5C .8D .9137.设集合A ={x|x+2x−1≤0},B ={x |y =log 2(x 2﹣2x ﹣3)},则A ∩B =( ) A .{x |﹣2≤x <﹣1} B .{x |﹣1<x ≤1} C .{x |﹣2≤x <1} D .{x |﹣1≤x <1}138.设集合A ={x ∈N ||x |≤2},B ={y |y =1﹣x 2},则A ∩B 的子集个数为( ) A .2B .4C .8D .16139.已知集合A ={x |0<log 4x <1},B ={x |e x ﹣2≤1},则A ∪B =( ) A .(﹣∞,4)B .(1,4)C .(1,2)D .(1,2]140.设集合A ={x|(√x +1)(√x −2)<0},B ={x |﹣1<x <2},则( ) A .A ∩B ={x |﹣1<x <2} B .A ∪B ={x |0≤x <4} C .A ∩B ={x |0≤x <2} D .A ∪B ={x |﹣1<x <2}141.已知集合M ={x |x−3x−1≥0},N ={x |y =√2−x },则(∁R M )∩N =( )A .(1,2]B .[1,2]C .(2,3]D .[2,3]142.已知集合U =N ,A ={x |x =2n ,n ∈N *},B ={x |1<x ≤6},则(∁U A )∩B =( )A.{2,3,4,5,6}B.{2,4,6}C.{1,3,5}D.{3,5} 143.已知全集U=R,集合A={x|log2x≤1},B={x|x2+x﹣2≤0},则A∩B=()A.(0,1]B.(﹣2,2]C.(0,1)D.[﹣2,2] 144.已知集合P={0,1,2},Q={x|x<2},则P∩Q=()A.{0}B.{0,1}C.{1,2}D.{0,2} 145.已知集合A={x|x2<x+2},B={x|x<a},若A⊆B,则实数a的取值范围为()A.(﹣∞,﹣1]B.(﹣∞,2]C.[2,+∞)D.[﹣1,+∞)146.已知全集U=R,集合M={x|2x<1},集合N={x|log2x>1},则下列结论中成立的是()A.M∩N=M B.M∪N=N C.M∩(∁U N)=M D.(∁U M)∩N=N147.已知集合A={(x,y)|y=2x},B={(x,y)|y=x2−1x+1},则A∩B为()A.∅B.{﹣1,﹣2}C.{(1,2)}D.{(﹣1,﹣2)} 148.已知集合A={y|y=2x,x>0},B={x|y=log2(x﹣2)},则A∩(∁R B)=()A.[0,1)B.(1,2)C.(1,2]D.[2,+∞)149.已知函数f(x)=m•2x+x2+nx,记集合A={x|f(x)=0,x∈R},集合B={x|f[f(x)]=0,x∈R},若A=B,且都不是空集,则m+n的取值范围是()A.[0,4)B.[﹣1,4)C.[﹣3,5]D.[0,7)150.已知集合A={x|ax﹣6=0},B={x∈N|1≤log2x<2},且A∪B=B,则实数a的所有值构成的集合是()A.{2}B.{3}C.{2,3}D.{0,2,3}1.A;2.B;3.A;4.D;5.A;6.A;7.D;8.B;9.B;10.D;11.A;12.B;13.D;14.D;15.D;16.C;17.D;18.B;19.D;20.C;21.D;22.B;23.B;24.C;25.D;26.C;27.B;28.B;29.B;30.D;31.D;32.C;33.D;34.D;35.D;36.A;37.A;38.D;39.A;40.A;41.C;42.A;43.D;44.B;45.D;46.C;47.C;48.B;49.B;50.A;51.C;52.D;53.D;54.C;55.A;56.B;57.D;58.B;59.B;60.C;61.C;62.B;63.D;64.C;65.C;66.C;67.D;68.B;69.B;70.B;71.C;72.D;73.A;74.B;75.C;76.C;77.B;78.B;79.C;80.B;81.C;82.B;83.C;84.B;85.A;86.C;87.A;88.D;89.C;90.A;91.C;92.C;93.C;94.C;95.D;96.B;97.B;98.C;99.B;100.B;101.C;102.A;103.C;104.A;105.D;106.B;107.A;108.C;109.C;110.D;111.C;112.D;113.C;114.B;115.C;116.B;117.D;118.C;119.B;120.B;121.A;122.B;123.C;124.D;125.D;126.C;127.A;128.D;129.C;130.D;131.C;132.D;133.B;134.C;135.B;136.B;137.A;138.B;139.A;140.C;141.B;142.D;143.A;144.B;145.C;146.C;147.A;148.C;149.A;150.D;1.已知集合A={x|x−3x−6≤0},B={x|x2﹣3x﹣10<0},则∁R(A∩B)=()A.(﹣∞,3)∪[5,+∞)B.(﹣∞,3]∪(5,+∞)C.(﹣∞,3)∪(5,+∞)D.(﹣∞,3]∪[5,+∞)【考点】1H:交、并、补集的混合运算.【答案】A【分析】可以求出集合A,B,然后进行交集和补集的运算即可.【解答】解:∵A={x|3≤x<6},B={x|﹣2<x<5},∴A∩B={x|3≤x<5},∁R(A∩B)=(﹣∞,3)∪[5,+∞).故选:A.【点评】本题考查了分式不等式和一元二次不等式的解法,交集和补集的运算,考查了计算能力,属于基础题.2.(2019秋•顺义区校级期中)下列叙述错误的是()A.{x|x>1}⊆{x|x≥1}B.集合N中的最小数是1C.方程x2﹣6x+9=0的解集是{3}D.{4,3,2}与{3,2,4}是相同的集合【考点】11:集合的含义;18:集合的包含关系判断及应用.【答案】B【分析】通过集合的包含关系判断A,自然数集元素的大小判断B;方程的解判断C;集合的基本性质判断D.【解答】解:{x|x>1}⊆{x|x≥1},满足集合的包含关系,所以A正确;集合N中的最小数是0,不是1,所以B不正确;方程x2﹣6x+9=0的解集是{3},所以C正确;{4,3,2}与{3,2,4}是相同的集合,满足集合的基本性质,所以D正确;故选:B.【点评】本题考查集合的基本性质,集合的包含关系,是基本知识的考查.3.(2020•浙江模拟)已知集合A={1,2,3},B为A所有子集组成的集合,则下列不是集合B的子集的是()A.A B.B C.∅D.{∅}【考点】16:子集与真子集.【答案】A【分析】解:先求集合B,再求集合B的子集.【解答】解:A={1,2,3},A的子集为{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},∅;集合B为{{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},∅},则B,∅,{∅},为B的子集,故选:A.【点评】本体考查了集合的真子集,属于基础题.4.(2020•汕头校级三模)设U=A∪B,A={1,2,3,4,5},B={10以内的素数},则∁U (A∩B)=()A.{2,4,7}B.∅C.{4,7}D.{1,4,7}【考点】1H:交、并、补集的混合运算.【答案】D【分析】可以求出集合B,然后进行交集、并集和补集的运算即可.【解答】解:∵A={1,2,3,4,5},B={2,3,5,7},∴U=A∪B={1,2,3,4,5,7},A∩B={2,3,5},∴∁U(A∩B)={1,4,7}.故选:D.【点评】本题考查了列举法的定义,交集、并集和补集的运算,考查了计算能力,属于基础题.5.(2020•南岗区校级四模)已知集合A={x|y=√x+1},B={y|y=ln(x2+1)},则A∪B =()A.[﹣1,+∞)B.[0,+∞)C.(﹣1,0)D.[﹣1,0]【考点】1D:并集及其运算.【答案】A【分析】可以求出集合A,B,然后进行并集的运算即可.【解答】解:∵A={x|x≥﹣1},B={y|y≥0},∴A∪B=[﹣1,+∞).故选:A.【点评】本题考查了描述法、区间的定义,对数函数的单调性,并集的运算,考查了计算能力,属于基础题.6.(2020•红岗区校级模拟)已知集合A={x|0<log2(x+4)<2},B={y|y=√x−2+√2−x},则A∩B=()A.∅B.{0}C.{2}D.{x|﹣3<x<0}【考点】1E:交集及其运算.【答案】A【分析】可以求出集合A,B,然后进行交集的运算即可.【解答】解:∵A={x|1<x+4<4}={x|﹣3<x<0},B={0},∴A∩B=∅.故选:A.【点评】本题考查了描述法、列举法的定义,对数函数的单调性,交集的运算,考查了计算能力,属于基础题.7.(2020•新华区校级模拟)设集合A={x∈Z|y=lg(﹣x2+3x+4)},B={x|2x≥4},则A∩B =()A.[2,4)B.{2,4}C.{3}D.{2,3}【考点】1E:交集及其运算.【答案】D【分析】可以求出集合A,B,然后进行交集的运算即可.【解答】解:A={x∈Z|﹣x2+3x+4>0}={x∈Z|﹣1<x<4}={0,1,2,3},B={x|x≥2},∴A∩B={2,3}.故选:D.【点评】本题考查了对数函数的定义域,一元二次不等式的解法,描述法和列举法的定义,交集的运算,考查了计算能力,属于基础题.8.(2020•雨花区校级模拟)已知集合M={x|0<x+1<2},P={x|2x2−x<1},则M∩P=()A.(﹣∞,1)B.(0,1)C.(﹣1,0)D.(﹣1,1)【考点】1E:交集及其运算.【答案】B【分析】可以求出集合M ,P ,然后进行交集的运算即可.【解答】解:∵M ={x |﹣1<x <1},P ={x |x 2﹣x <0}={x |0<x <1}, ∴M ∩P =(0,1). 故选:B .【点评】本题考查了描述法、区间的定义,指数函数的单调性,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.9.(2020•杜集区校级模拟)设集合A ={x |lgx <0},B ={x|12<2x <2},则( ) A .A =BB .A ⊆BC .B ⊆AD .A ∩B =∅【考点】18:集合的包含关系判断及应用. 【答案】B【分析】先根据函数的单调性分别解对数不等式和指数不等式,将集合A 、B 化简,再根据集合的关系,可得本题的答案.【解答】解:对于集合A ,lgx <0得0<x <1,所以A ={x |0<x <1}, 而集合B ,解不等式12<2x <2,得﹣1<x <1,所以B ={x |﹣1<x <1}, 所以A ⊆B . 故选:B .【点评】本题给出含有指数和对数的不等式构成的集合,求集合的关系,着重考查了指、对数不等式的解法和集合的关系等知识,属于基础题.10.(2020•新华区校级模拟)已知集合A ={x ∈Z|y =√4x −x 2−3},B ={a ,1},若A ∩B =B ,则实数a 的值为( ) A .2B .3C .1或2或3D .2或3【考点】1E :交集及其运算. 【答案】D【分析】可求出A ={1,2,3},而根据A ∩B =B 可得出B ⊆A ,然后即可求出实数a 的值.【解答】解:A ={x ∈Z |4x ﹣x 2﹣3≥0}={x ∈Z |1≤x ≤3}={1,2,3},且B ={a ,1}, 由A ∩B =B ,知B ⊆A ∴实数a 的值为2或3.故选:D .【点评】本题考查了描述法、列举法的定义,一元二次不等式的解法,交集的定义及运算,子集的定义,考查了计算能力,属于基础题.11.(2020•河南模拟)已知集合A ={x |x 2+2>3x },B =(a ,a +2],若A ∪B =R ,则实数a 的取值范围为( ) A .[0,1)B .(1,2)C .(﹣∞,0]D .(1,+∞)【考点】1D :并集及其运算. 【答案】A【分析】可以求出A ={x |x <1或x >2},然后根据A ∪B =R 即可得出{a <1a +2≥2,然后解出a 的范围即可.【解答】解:A ={x |x <1或x >2},B =(a ,a +2], ∵A ∪B =R ,∴{a <1a +2≥2,解得0≤a <1, ∴实数a 的取值范围为[0,1). 故选:A .【点评】本题考查了一元二次不等式的解法,描述法、区间的定义,并集的定义及运算,考查了计算能力,属于基础题.12.(2020•沈河区校级模拟)已知集合M ={x |y =log 2(x ﹣5)},N ={y|y =x +1x ,x >0},则M ∪N =( ) A .(﹣∞,5)B .[2,+∞)C .[2,5)D .(5,+∞)【考点】1D :并集及其运算. 【答案】B【分析】可以求出集合M ,N ,然后进行并集的运算即可. 【解答】解:M ={x |x >5},N ={y |y ≥2}, ∴M ∪N =[2,+∞). 故选:B .【点评】本题考查了描述法、区间的定义,对数函数的定义域,基本不等式,并集的运算,考查了计算能力,属于基础题.13.(2020•武昌区校级模拟)若集合A ={x |y =ln (x 2﹣2x ﹣3)},B ={x ||2﹣x |<3},则A ∩B=()A.{x|x≤﹣1}B.{x|x>3}C.{x|﹣1<x<3}D.{x|3<x<5}【考点】1E:交集及其运算.【答案】D【分析】结合对数函数的定义域及含绝对值不等式的求解分别求A,B,进而可求.【解答】解:由x2﹣2x﹣3>0可得x>3或x<﹣1,∴A={x|y=ln(x2﹣2x﹣3)}={x|x>3或x<﹣1},B={x||2﹣x|<3}=(﹣1,5),则A∩B=(3,5).故选:D.【点评】本题以集合的运算为载体,主要考查了对数函数定义域的求解及含绝对值的不等式的求解,属于基础试题.14.(2020•吉林四模)已知集合A={x|2x>6﹣x},B={0,2,4,6},则A∩B=()A.{0}B.{0,2}C.{2,4}D.{4,6}【考点】1E:交集及其运算.【答案】D【分析】求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x|2x>6﹣x}={x|x>2},B={0,2,4,6},∴A∩B={4,6}.故选:D.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.15.(2020•香坊区校级三模)已知集合M={x|y=ln(1﹣x)},N={x|x2﹣2x<0},则M∪N=()A.(0,2)B.(0,1)C.(﹣∞,1)D.(﹣∞,2)【考点】1D:并集及其运算.【答案】D【分析】求出集合M,N,由此能求出M∪N.【解答】解:集合M={x|y=ln(1﹣x)}={x|x<1},N={x|x2﹣2x<0}={x|0<x<2},∴M∪N={x|0<x<1}=(0,1).故选:D.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.16.(2020•榆林四模)设集合A={x|x2﹣2x>0},B={y|y=2x+1},则B∪(∁U A)=()A.[1,2)B.(1,+∞)C.[0,+∞)D.R【考点】1H:交、并、补集的混合运算.【答案】C【分析】可以求出集合A,B,然后进行并集和补集的运算即可.【解答】解:∁U A={x|x2−2x≤0}=[0,2],B={y|y=2x+1}=(1,+∞),∴B∪(∁U A)=[0,+∞).故选:C.【点评】本题考查了一元二次不等式的解法,并集和补集的运算,考查了计算能力,属于基础题.17.(2020春•南关区校级期末)已知非零实数a,b,c,则代数式a|a|+b|b|+c|c|表示的所有的值的集合是()A.{3}B.{﹣3}C.{3,﹣3}D.{3,﹣3,1,﹣1}【考点】15:集合的表示法.【答案】D【分析】当a,b,c都是正数时,a|a|+b|b|+c|c|=3;当a,b,c中有2个正数1个负数时,a|a|+b|b|+c|c|=1;当a,b,c中有1个正数2个负数时,a|a|+b|b|+c|c|=−1;当a,b,c都是负数时,a|a|+b|b|+c|c|=−3.由此能求出代数式a|a|+b|b|+c|c|表示的所有的值的集合.【解答】解:非零实数a,b,c,当a,b,c都是正数时,a |a|+b|b|+c|c|=3,当a,b,c中有2个正数1个负数时,a |a|+b|b|+c|c|=1,当a,b,c中有1个正数2个负数时,a |a|+b|b|+c|c|=−1,当a,b,c都是负数时,a |a|+b|b|+c|c|=−3,∴代数式a|a|+b|b|+c|c|表示的所有的值的集合是{3,﹣3,1,﹣1}.故选:D.【点评】本题考查集合的求法,考查绝对值的意义等基础知识,考查运算求解能力,是基础题.18.(2020春•汕尾期末)已知全集U=R,集合M={x|2x2+x﹣6<0}与集合N={x|x=2k﹣1,k∈Z}的关系的V enn图如图所示,则阴影部分所示的集合中的元素个数为()A.3个B.2个C.1个D.0个【考点】1J:Venn图表达集合的关系及运算.【答案】B【分析】求出集合M,再由集合N={x|x=2k﹣1,k∈Z},求出阴影部分所示的集合M∩N,由此能求出阴影部分所示的集合中的元素的个数.【解答】解:∵全集U=R,集合M={x|2x2+x﹣6<0}={x|﹣2<x<3 2},集合N={x|x=2k﹣1,k∈Z},∴阴影部分所示的集合M∩N={﹣1,1},∴阴影部分所示的集合中的元素的个数为2.故选:B.【点评】本题考查交集中元素个数的求法,考查交集定义、韦恩图的性质等基础知识,考查运算求解能力,是基础题.19.(2020春•红河州期末)设集合A={x|lnx>0},B={x|1−1x<0},则A∩B=()A.(1,+∞)B.(﹣∞,1)C.(0,1)D.∅【考点】1E:交集及其运算.【答案】D【分析】可求出集合A,B,然后进行交集的运算即可.【解答】解:∵A={x|x>1},B={x|x−1x<0}={x|0<x<1},∴A∩B=∅.故选:D.【点评】本题考查了描述法的定义,对数函数的单调性,分式不等式的解法,考查了计算能力,属于基础题.20.(2020春•成都期末)已知集合A={0,1,2,3,4},B={x|3x﹣x2>0},则集合A∩B 的子集个数为()A.2B.3C.4D.8【考点】16:子集与真子集;1E:交集及其运算.【答案】C【分析】可以求出集合B,然后进行交集的运算求出A∩B,从而可得出A∩B子集的个数.【解答】解:∵A={0,1,2,3,4},B={x|0<x<3},∴A∩B={1,2},故其子集的个数是22=4.故选:C.【点评】本题考查了列举法、描述法的定义,一元二次不等式的解法,交集的运算,子集个数的计算公式,考查了计算能力,属于基础题.21.(2020春•新华区校级期末)设集合A={x|﹣4<x﹣1<5},B={x|x2>4},则A∩B=()A.{x|2<x<6}B.{x|﹣3<x<6}C.{x|﹣2<x<2}D.{x|﹣3<x<﹣2或2<x<6}【考点】1E:交集及其运算.【答案】D【分析】可以求出集合A,B,然后进行交集的运算即可.【解答】解:∵A={x|﹣3<x<6},B={x|x<﹣2或x>2},∴A ∩B ={x |﹣3<x <﹣2或2<x <6}. 故选:D .【点评】本题考查了描述法的定义,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.22.(2020春•慈溪市期末)已知集合A ={x ∈R |x 2﹣kx +k+42≤0,k ∈R },B ={x ∈R |1≤x ≤4},若A ⊆B ,则k 的取值范围为( ) A .(4,367] B .(﹣2,367] C .(﹣∞,367] D .(﹣2,4]【考点】18:集合的包含关系判断及应用. 【答案】B【分析】由已知A ⊆B ,分A =∅和A ≠∅两种情况分类讨论,即可解得k 的取值范围. 【解答】解:因为A ⊆B ,①A =∅,则△=k 2−4⋅k+42<0,解得﹣2<k <4;②A ≠∅,则需满足△≥0,1<k2<4,f (1)≥0,f (4)≥0,解得4≤k ≤367. 综上,可得k 的取值范围为(﹣2,367].故选:B .【点评】本题主要考查集合的包含关系,分类讨论思想,属于中档题.23.(2020春•云南期末)已知集合A ={x |y =ln (x +1)},B ={x |x 2﹣4≤0},则A ∩B =( ) A .{x |x ≥﹣2}B .{x |﹣1<x ≤2}C .{x |﹣1<x <2}D .{x |x ≥2}【考点】1E :交集及其运算. 【答案】B【分析】可以求出集合A ,B ,然后进行交集的运算即可. 【解答】解:∵A ={x |x +1>0}={x |x >﹣1},B ={x |﹣2≤x ≤2}, ∴A ∩B ={x |﹣1<x ≤2}. 故选:B .【点评】本题考查了描述法的定义,对数函数的定义域,交集的运算,考查了计算能力,属于基础题.24.(2020春•沙坪坝区校级月考)已知非空集合A ⊆{x ∈N |x 2﹣x ﹣2<0},则满足条件的集合A 的个数是( )A.1B.2C.3D.4【考点】18:集合的包含关系判断及应用.【答案】C【分析】根据题意即可得出:A⊆{0,1},并且集合A≠∅,并且{0,1}的子集个数为4,从而得出满足条件的集合A的个数.【解答】解:{x∈N|x2﹣x﹣2<0}={x∈N|﹣1<x<2}={0,1},又非空集合A⊆{x∈N|x2﹣x﹣2<0},又{0,1}的子集个数为22=4个,∴满足条件的集合A的个数是3.故选:C.【点评】本题考查了描述法的定义,一元二次不等式的解法,集合子集个数的计算公式,考查了计算能力,属于基础题.25.(2020春•广州期末)已知集合A={x2﹣3x+2<0},B={x|log8x>13},则()A.A⊆B B.B⊆A C.A∩∁R B=∅D.A∩B=∅【考点】1H:交、并、补集的混合运算.【答案】D【分析】可以求出集合A,B,然后进行交集和补集的运算即可判断每个选项的正误.【解答】解:∵A={x|1<x<2},B={x|log8x>log82}={x|x>2},∴∁R B={x|x≤2},A∩∁R B≠∅,A∩B=∅.故选:D.【点评】本题考查了描述法的定义,一元二次不等式的解法,对数的运算,对数函数的单调性,考查了计算能力,属于基础题.26.(2020春•湖北期末)设全集U=R,已知集合A={x|x<3或x≥9},集合B={x|x≥a},若(∁U A)∩B≠∅,则a的取值范围为()A.a>3B.a≤3C.a<9D.a≤9【考点】1H:交、并、补集的混合运算.【答案】C【分析】可以求出∁U A={x|3≤x<9},然后根据(∁U A)∩B≠∅即可得出a的取值范围.【解答】解:∁U A={x|3≤x<9},且(∁U A)∩B≠∅,∴a<9.故选:C.【点评】本题考查了交集和补集的定义及运算,描述法的定义,考查了计算能力,属于基础题.27.(2020•鹿城区校级模拟)已知集合A={x|y=ln(x﹣1)},B={x|y=√x−1},则()A.A=B B.A⊆B C.A∩B=∅D.A∪B=R【考点】18:集合的包含关系判断及应用.【答案】B【分析】本题考查的是集合包含关系的判断及应用问题.在解答时,应先将集合A、B元素具体化,进而根据元素的范围即可获得问题的解答.【解答】解:由题意知集合A={x|x>1}(真数位置x﹣1>0);集合B={x|x≥1}(根号底下的数大于等于零);所以A⊆B故选:B.【点评】明确集合中研究的元素是谁,将集合中的元素具体化.28.(2020•沙坪坝区校级模拟)若集合A={x∈N|(x﹣3)(x﹣2)<6},则A中的元素个数为()A.3B.4C.5D.6【考点】12:元素与集合关系的判断;1A:集合中元素个数的最值.【答案】B【分析】由题意利用不等式的解法,求出集合A的结果,可得结论.【解答】解:集合A={x∈N|(x﹣3)(x﹣2)<6}={x∈N|0<x<5}={1,2,3,4},则集合A中的元素个数为4,故选:B.【点评】本题主要考查元素与集合关系的判断,不等式的解法,属于基础题.29.(2020春•海淀区校级期末)已知非空集合A,B满足以下两个条件:(i)A∪B={1,2,3,4,5},A∩B=∅;(ii)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(A,B)的个数为()A.7B.8C.9D.10【考点】1E:交集及其运算.【答案】B【分析】利用集合A,B中含有元素的个数,分类讨论能求出结果.【解答】解:若集合A中只有1个元素,则集合B中只有4个元素,则1∉A,4∉B,∴4∈A,1∈B,此时只有C30=1;若集合A中只有2个元素,则集合B中只有3个元素,则2∉A,3∉B,∴3∈A,2∈B,此时有C31=3;若集合A中只有3个元素,则集合B中只有2个元素,则3∉A,2∉B,∴2∈A,3∈B,此时有C32=3;若集合A中只有4个元素,则集合B中只有1个元素,则4∉A,1∉B,∴1∈A,4∈B,此时有C33=1,∴有序集合对(A,B)的个数为:1+3+3+1=8.故选:B.【点评】本题考查满足条件的有序集合的个数的求法,考查交集定义等基础知识,考查运算求解能力,属于中档题.30.(2020•河南模拟)已知集合A={y|y=x2+2x,x∈R},B={x|x2+y2=2,x∈R,y∈R},则A∩B=()A.[﹣1,2]B.(﹣1,2]C.(−1,√2]D.[−1,√2]【考点】1E:交集及其运算.【答案】D【分析】可以求出集合A,B,然后进行交集的运算即可.【解答】解:∵y=x2+2x=(x+1)2﹣1≥﹣1,∴A={y|y≥﹣1},且B={x|−√2≤x≤√2},∴A∩B=[−1,√2].故选:D.【点评】本题考查了描述法和区间的定义,交集的定义及运算,考查了计算能力,配方求二次函数值域的方法,考查了计算能力,属于基础题.31.(2020春•渭滨区期末)已知集合A={(x,y)|x2+y2≤2,x∈N,y∈N},则集合A的子集个数为()A.4B.9C.15D.16【考点】16:子集与真子集.【答案】D【分析】可以求出集合A,并可确定集合A所含元素的个数,从而可得出A的子集个数.【解答】解:∵A={(0,0),(0,1),(1,0),(1,1)},∴集合A的子集个数为:24=16.故选:D.【点评】本题考查了描述法、列举法的定义,集合子集个数的计算公式,考查了计算能力,属于基础题.32.(2020•运城模拟)已知集合A={﹣2,﹣1,0,1,2},B={x|x2≤1},则集合A∩B的子集个数为()A.2B.4C.8D.16【考点】16:子集与真子集;1E:交集及其运算.【答案】C【分析】解出B集合,再利用集合交集的运算法则可得A∩B={﹣1,0,1},由含有n个元素的集合,其子集个数为2n个可得答案,【解答】解:易知B={x|x2≤1}={x|﹣1≤x≤1},又A={﹣2,﹣1,0,1,2},所以A∩B={﹣1,0,1}.所以集合A∩B的子集个数为23=8个.故选:C.【点评】本题主要考查利用集合交集的运算判断集合元素个数的应用,含有n个元素的集合,其子集个数为2n个,考查集合的子集,属于基础题,33.(2020•辽宁三模)已知集合A={x|1<2x≤8},B={0,1,2},则下列选项正确的是()A.A⊆B B.A⊇B C.A∪B={0,1,2}D.A∩B={1,2}【考点】18:集合的包含关系判断及应用.【答案】D【分析】解出集合A,再利用集合的关系和集合的运算对每一选项做出判断即可,【解答】解:已知集合A={x|1<2x≤8},解集合A可得:0<x≤3,即A={x|1<2x≤8}={x|0<x≤3},又因为B={0,1,2},所以A∩B={1,2},故选:D.【点评】本题考查了集合的运算及集合间的关系,是基础题.34.(2020•黑龙江三模)设集合A={0,1},B={m|m=y﹣x,x∈A且y∈A},则A∩B=()A.∅B.{1}C.{0}D.{0,1}【考点】1E:交集及其运算.【答案】D【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={0,1},B={﹣1,0,1},∴A∩B={0,1}.故选:D.【点评】本题考查了列举法、描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.35.(2020•北海一模)已知集合A={x|y=ln(2﹣x)},B={x|﹣3<x<3},则B∩(∁R A)=()A.(﹣3,2]B.[﹣3,2)C.(2,3]D.[2,3)【考点】1H:交、并、补集的混合运算.【答案】D【分析】先求出集合A以及A的补集,从而求出其和B的交集即可.【解答】解:∵B={x|﹣3<x<3},A={x|y=ln(2﹣x)}={x|2﹣x>0}={x|x<2},故∁R A={x|x≥2},∴B∩(∁R A)={x|2≤x<3}=[2,3),故选:D.【点评】本题考查了集合的化简与运算问题,是基础题目.36.(2020•葫芦岛模拟)已知集合M={x|x2+x>0},N={x|ln(x﹣1)>0},则()A.M⊇N B.M⊆N C.M∩N=(1,+∞)D.M∪N=(2,+∞)【考点】18:集合的包含关系判断及应用.【答案】A【分析】解不等式求出集合M,N,进而判断两集合间的关系.【解答】解:因为集合M={x|x2+x>0}={x|x<﹣1或x>0},N={x|ln(x﹣1)>0}={x|x >2},故选:A.【点评】本题考查解不等式和判断集合间的关系,属于基础题.37.(2020春•房山区期末)已知全集U={﹣2,﹣1,1,2,3,4},集合A={﹣2,1,2,3},集合B={﹣1,﹣2,2,4},则(∁U A)∪B为()A.{﹣1,﹣2,2,4}B.{﹣1,﹣2,3,4}C.{﹣1,2,3,4}D.{﹣1,1,2,4}【考点】1H:交、并、补集的混合运算.【答案】A【分析】利用补集运算求出∁U A,然后直接利用交集运算求解.【解答】解:因为集合A={﹣2,1,2,3},U={﹣2,﹣1,1,2,3,4},所以∁U A={﹣1,4},所以(∁U A)∪B={﹣1,4}∪{﹣1,﹣2,2,4}={﹣1,﹣2,2,4}.故选:A.【点评】本题考查了交、并、补集的混合运算,是基础的概念题.38.(2020•三模拟)已知集合A={x|log4x<1},集合B={{x|x2﹣3≥0,x∈Z}(其中Z表示整数集),则A∩(∁Z B)=()A.{1,2,3}B.{﹣1,1}C.{1,2}D.{1}【考点】1H:交、并、补集的混合运算.【答案】D【分析】求出集合A,B,然后进行交集和补集的运算即可.【解答】解:A={x|0<x<4},B={x|x≤−√3或x≥√3,x∈Z},∴∁Z B={x|−√3<x<√3,x∈Z}={﹣1,0,1},A∩(∁Z B)={1}.故选:D.【点评】本题考查了描述法、列举法的定义,交集和补集的运算,考查了计算能力,属于基础题.39.(2020•青岛模拟)已知全集U=R,集合M={x∈R|x2﹣x≤0},集合N={y∈R|y=cos x,x∈R},则(∁U M)∩N=()A.[﹣1,0)B.(0,1)C.(﹣∞,0)D.∅【考点】1H:交、并、补集的混合运算.。
高中数学新教材必修第一册第一章《集合》综合测试题(附答案)
新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。
其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。
高一数学必修一试题(带答案)
高中数学必修 1 检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共120分,考试时间90 分钟.第Ⅰ卷(选择题,共48 分)一、选择题:本大题共12 小题,每小题 4 分,共48 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U {1,2,3,4,5,6.7}, A { 2,4,6}, B {1,3,5,7}.则A ( C U B)等于()A.{2,4,6} B.{1,3,5} C.{2,4,5} D.{2,5}2.已知集合 A {x| x2 1 0} ,则下列式子表示正确的有()① 1 A ②{ 1} A ③ A ④{1, 1} AA.1 个B.2 个C.3 个D.4 个3.若 f : A B 能构成映射,下列说法正确的有()(1)A 中的任一元素在B中必须有像且唯一;(2)A 中的多个元素可以在B中有相同的像;(3)B中的多个元素可以在 A 中有相同的原像;(4)像的集合就是集合 B.A、1 个B、2 个C、3 个D、4 个4、如果函数 f (x) x2 2(a 1)x 2 在区间,4 上单调递减,那么实数a的取值范围是()A、a≤3B、a≥3C、a≤5D、a≥55、下列各组函数是同一函数的是()① f (x)2x3与g(x) x 2x;② f (x) x 与g(x) x2;1③ f (x) x0与g(x)0;④ f (x) x2 2x 1与g(t) t2 2t 1。
x0A、①②B、①③C、③④D、①④6.根据表格中的数据,可以断定方程e x x 2 0 的一个根所在的区间是()11.下表显示出函数值 y 随自变量 x 变化的一组数据,判断它最可能的函数模型是( )x4 5 6 7 8 9 10 y15171921232527A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给 4 个图象中,与所给 3 件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学组卷(选择题)一.选择题(共20小题)1.(2016•衡水校级四模)设全集U=R,函数f(x)=lg(|x+1|﹣1)的定义域为A,集合B={x|sinπx=0},则(∁U A)∩B的元素个数为()A.1 B.2 C.3 D.42.(2016•浙江)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3]B.(﹣2,3] C.[1,2)D.(﹣∞,﹣2]∪[1,+∞)3.(2016•山东)设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)4.(2015•安徽四模)设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=()A.{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}5.(2016•台州模拟)设x取实数,则f(x)与g(x)表示同一个函数的是()A.B.C.f(x)=1,g(x)=(x﹣1)0D.6.(2015•中山市校级二模)函数,则当f(x)≥1时,自变量x 的取值范围为()A. B. C.D.7.(2015•南宁一模)f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是()A. B. C.[3,+∞)D.(0,3]8.(2010•上海)(上海春卷18)已知函数f(x)=的图象关于点P对称,则点P的坐标是()A. B. C. D.(0,0)9.(2009•山东)已知定义在R上的奇函数f(x),满足f(x﹣4)=﹣f(x)且在区间[0,2]上是增函数,则()A.f(﹣25)<f(11)<f(80)B.f(80)<f(11)<f(﹣25)C.f(11)<f(80)<f(﹣25)D.f(﹣25)<f(80)<f(11)10.(2016•赤峰模拟)若函数,则f(f(1))的值为()A.﹣10 B.10 C.﹣2 D.211.(2016•天津)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)12.(2016•深圳校级一模)函数f(x)=|e x+|(a∈R)在区间[0,1]上单调递增,则a 的取值范围是()A.a∈[﹣1,1]B.a∈[﹣1,0]C.a∈[0,1]D.a∈[﹣,e] 13.(2016•大庆二模)若x∈(e﹣1,1),a=lnx,b=,c=e lnx,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.a>b>c D.b>a>c14.(2016•杭州模拟)在同一个坐标系中画出函数y=a x,y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是()A.B.C.D.15.(2016•临沂一模)已知a是常数,函数的导函数y=f′(x)的图象如图所示,则函数g(x)=|a x﹣2|的图象可能是()A.B.C.D.16.(2016•河西区二模)函数的定义域为()A.(0,2)B.[0,2)C.(0,2]D.[0,2]17.(2010•辽宁)设2a=5b=m,且,则m=()A. B.10 C.20 D.10018.(2011•新课标)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|19.(2013•天津)设函数f(x)=e x+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0 20.(2015秋•庄河市期末)已知指数函数f(x)=a x﹣16+7(a>0且a≠1)的图象恒过定点P,若定点P在幂函数g(x)的图象上,则幂函数g(x)的图象是()A.B.C.D.高中数学组卷(选择题)参考答案与试题解析1【解答】解:由|x+1|﹣1>0,得|x+1|>1,即x<﹣2或x>0.∴A={x|x<﹣2或x>0},则∁U A={x|﹣2≤x≤0};由sinπx=0,得:πx=kπ,k∈Z,∴x=k,k∈Z.则B={x|sinπx=0}={x|x=k,k∈Z},则(∁U A)∩B={x|﹣2≤x≤0}∩{x|x=k,k∈Z}={﹣2,﹣1,0}.∴(∁U A)∩B的元素个数为3.故选:C.2.【解答】解:Q={x∈R|x2≥4}={x∈R|x≥2或x≤﹣2},即有∁R Q={x∈R|﹣2<x<2},则P∪(∁R Q)=(﹣2,3].故选:B.3.【解答】解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.4.【解答】解:集合M={x|0≤x<2},N={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选B5.【解答】解:对于A,f(x)=x2(x∈R),与g(x)==|x|(x∈R)的对应关系不同,所以不是同一函数;对于B,f(x)==1(x>0),与g(x)==1(x>0)的定义域相同,对应关系也相同,所以是同一函数;对于C,f(x)=1(x∈R),与g(x)=(x﹣1)0=1(x≠1)的定义域不同,所以不是同一函数;对于D,f(x)==x﹣3(x≠﹣3),与g(x)=x﹣3(x∈R)的定义域不同,所以不是同一函数.故选:B.6.【解答】解:∵,∴分两种情况:①当x>2时,由f(x)≥1得,,解得2<x≤3,②当x≤2时,由f(x)≥1得,|3x﹣4|≥1,即3x﹣4≥1或3x﹣4≤﹣1,解得,x≤1或x≥,则x≤1或≤x≤2.综上,所求的范围是.故选D.7.【解答】解:设f(x)=x2﹣2x,g(x)=ax+2(a>0),在[﹣1,2]上的值域分别为A、B,由题意可知:A=[﹣1,3],B=[﹣a+2,2a+2]∴∴a≤又∵a>0,∴0<a≤故选:A8.(【解答】解:设P(m,n),任意给点M(x,y)关于P(m,n)的对称点为N(2m﹣x,2n﹣y),由,联立方程组:,解这个方程组得到,9.【解答】解:∵f(x﹣4)=﹣f(x),∴f(x﹣8)=﹣f(x﹣4)=f(x),即函数的周期是8,则f(11)=f(3)=﹣f(3﹣4)=﹣f(﹣1)=f(1),f(80)=f(0),f(﹣25)=f(﹣1),∵f(x)是奇函数,且在区间[0,2]上是增函数,∴f(x)在区间[﹣2,2]上是增函数,∴f(﹣1)<f(0)<f(1),即f(﹣25)<f(80)<f(11),10.【解答】解:f(1)=2﹣4=﹣2,f(f(1))=f(﹣2)=2×(﹣2)+2=﹣2,故选C.11.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.12.【解答】解:f(x)=;∵x∈[0,1];∴a≥﹣1时,f(x)=,;∴a≤1时,f′(x)≥0;即﹣1≤a≤1时,f′(x)≥0,f(x)在[0,1]上单调递增;即a的取值范围是[﹣1,1].故选A.13.【解答】解:∵x∈(e﹣1,1),a=lnx∴a∈(﹣1,0),即a<0;又y=为减函数,∴b=>==1,即b>1;又c=e lnx=x∈(e﹣1,1),∴b>c>a.故选B.14.(【解答】解:正弦函数的周期公式T=,∴y=sinax的最小正周期T=;对于A:T>2π,故a<1,因为y=a x的图象是减函数,故错;对于B:T<2π,故a>1,而函数y=a x是增函数,故错;对于C:T=2π,故a=1,∴y=a x=1,故错;对于D:T>2π,故a<1,∴y=a x是减函数,故对;故选D15.【解答】解:∵,∴f′(x)=x2+(1﹣a)x﹣a,由函数y=f′(x)的图象可知,∴a>1,则函数g(x)=|a x﹣2|的图象是把函数y=a x向下平移2个单位,然后取绝对值得到,如图.故可能是D.16.【解答】解:要使原函数有意义,则,解得:0≤x<2.所以原函数的定义域为[0,2).故选B.17.【解答】解:,∴m2=10,又∵m>0,∴.故选A18.【解答】解:对于A.y=2x3,由f(﹣x)=﹣2x3=﹣f(x),为奇函数,故排除A;对于B.y=|x|+1,由f(﹣x)=|﹣x|+1=f(x),为偶函数,当x>0时,y=x+1,是增函数,故B正确;对于C.y=﹣x2+4,有f(﹣x)=f(x),是偶函数,但x>0时为减函数,故排除C;对于D.y=2﹣|x|,有f(﹣x)=f(x),是偶函数,当x>0时,y=2﹣x,为减函数,故排除D.故选B.19.【解答】解:①由于y=e x及y=x﹣2关于x是单调递增函数,∴函数f(x)=e x+x﹣2在R 上单调递增,分别作出y=e x,y=2﹣x的图象,∵f(0)=1+0﹣2<0,f(1)=e﹣1>0,f(a)=0,∴0<a <1.同理g(x)=lnx+x2﹣3在R+上单调递增,g(1)=ln1+1﹣3=﹣2<0,g()=,g(b)=0,∴.∴g(a)=lna+a2﹣3<g(1)=ln1+1﹣3=﹣2<0,f(b)=e b+b﹣2>f(1)=e+1﹣2=e﹣1>0.∴g(a)<0<f(b).故选A.20.【解答】解:指数函数f(x)=a x﹣16+7(a>0且a≠1)的图象恒过定点P,令x﹣16=0,解得x=16,且f(16)=1+7=8,所以f(x)的图象恒过定点P(16,8);设幂函数g(x)=x a,P在幂函数g(x)的图象上,可得:16a=8,解得a=;所以g(x)=,幂函数g(x)的图象是A.。