2020-2021北京市昌平区第三中学初一数学上期末模拟试题(含答案)
北京市昌平区2020-2021学年七年级上学期期末数学试题及参考答案
北京市昌平区2020-2021学年七年级上学期期末数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果支出50元记作50-元,那么收入100元记作( )A .100+元B .100-元C .50+元D .50-元 2.6-的绝对值是( )A .6-B .6C .16-D .163.下列等式中成立的是( )A .a ﹣(b+c )=a ﹣b+cB .a+(b+c )=a ﹣b+cC .a+b ﹣c=a+(b ﹣c )D .a ﹣b+c=a ﹣(b+c )4.自2020年5月1日《北京市生活垃圾管理条例》实施以来,本市居民家庭厨余垃圾分出量大幅提升,分出量从《条例》实施前的每日309吨,增长至10月份的每日3946吨,增长了约12倍.预计2021年1月(31天)厨余垃圾的日均分出量约为5000吨,那么该月可分出厨余垃圾的总量用科学记数法表示为( )A .3510⨯B .40.510⨯C .51.5510⨯D .315510⨯ 5.下列各数中,是负整数的是( )A .32-B .0.1--C .13⎛⎫-- ⎪⎝⎭D .2(2)- 6.下列几何体中,其主视图是曲线图形的是( )A .B .C .D . 7.如果1m n a b --与234a b 是同类项,那么( )A .4m =,4n =B .4m =,3n =C .2m =,3n =D .2m =,4n = 8.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .6二、填空题9.﹣23的倒数是_____. 10.比较大小:-7_______-5.11.用列代数式表示“a 的3倍与b 的和”为________.12.如果关于x 的方程21x a +=的解是1x =-,那么a 的值是____________. 13.如图,已知OA OB ⊥于点O ,2020BOC '∠=︒,那么AOC ∠=________︒______′.14.已知2|3|(2)0m n ++-=,则n m 的值为___________.15.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.16.(问题)将0.1化为分数形式.(探求)步骤①设0.1x =.步骤②10100.1x =⨯.步骤③10 1.1x =,则1010.1x =+.步骤④101x x =+,解得:19x =. (回答)(1)0.3化为分数形式得________;(2)0.13化为分数形式得__________.三、解答题17.计算:(3)15(8)-+---.18.计算:531(12)624⎛⎫--+⨯- ⎪⎝⎭. 19.计算:421212(3)⎡⎤--÷--⎣⎦.20.解方程:315x x -=+.21.解方程:131148x x +--=. 22.在学习了整式的加减后,老师在课堂上布置了一道练习:已知:代数式()()32323533222021a a a a a a a a --++---+.当(1)1a =;(2)0a =;(3)1a =-时,从中选择a 的一个取值代入代数式求值,看谁算的快.小丹立马举手说:“我选0a =,结果是2021,因为0a =时,含a 的每一项都是0,0和任何有理数相加仍得这个有理数”;小良随后举手说:“代入1或1-的结果也是2021”;小涛思考后举手说:“代入任何一个数的结果都是2021”.你验证小涛的说法是正确的.23.补全解题过程.已知:如图,40AOB ∠=︒,60BOC ∠=︒,OD 平分AOC ∠.求BOD ∠的度数.解:∵40AOB ∠=︒,60BOC ∠=︒,∴AOC AOB ∠=∠+∠________=_________°.∵OD 平分AOC ∠,∴AOD ∠=__________AOC ∠.( )∴50AOD .∴BOD AOD ∠=∠-∠________=__________°.24.如图,已知一条笔直的公路l 的附近有A ,B ,C 三个村庄.(1)画出村庄A ,C 间距离最短的路线;(2)加油站D 在村庄B ,C 所在直线与公路l 的交点处,画出加油站D 的位置;(3)画出村庄C 到公路l 的最短路线CE ,作图依据是____________,测量CE ≈______cm (精确到0.1cm );如果示意图与实际距离的比例尺是1∶200000,通过你的测量和计算,在实际中村庄C 到公路l 的最短路线为________km .25.列方程解应用题.我国古代数学名著《算法统宗》中有这样一个问题:隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.问:人数多少?银子几何?意思是:有若干客人分银若干两,如果每人分7两,还多4两;如果每人分9两,还差8两(题中斤、两为旧制,1斤16=两).问:有多少位客人?多少两银子?26.已知直线l 上有A ,B ,C ,D 四点,5AB =,3BC =,点D 是线段AC 的中点,根据题意画出图形,并求线段AD 的长.27.数学课上李老师说:咱们一起来玩儿一个找原点的游戏吧!(1)如图1,在数轴上标有A ,B 两点,已知A ,B 两点所表示的数互为相反数. ①如果点A 所表示的数是5-,那么点B 所表示的数是____________;②在图1中标出原点O 的位置;(2)图2是小慧所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等. 根据小慧提供的信息,标出隐藏的原点O 的位置,写出此时点C 所表示的数是____________;(3)如图3,数轴上标出若干个点,其中点A ,B ,C ,D 所表示的数分别为a ,b ,c ,d .①用a ,c 表示线段AC 的长为____________;②如果数轴上标出的若干个点中每相邻两点相距1个单位(如1BC =),且210d a -=.判断此时数轴上的原点是A ,B ,C ,D 中的哪一点,并说明理由.28.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,; C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式 (1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________;(3)将(m 为大于等于2的整数)写成幂的形式为_________.参考答案1.A【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】根据题意,支出50元记作-50元,则收入100元记作+100元,故选:A.【点睛】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.B【分析】由绝对值的意义进行判断,即可得到答案.【详解】的绝对值是6;解:6故选:B.【点睛】本题考查了绝对值的意义,解题的关键是熟记绝对值的意义.3.C【分析】【详解】A. a−(b+c)=a−b−c,故此选项错误;B. a+(b+c)=a+b+c ,故此选项错误;C. a+b−c=a+(b−c),故此选项正确;D. a−b+c=a−(b−c),故此选项错误;故选C4.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数的绝对值≥10时,n 是正整数.【详解】因为2021年1月(31天)厨余垃圾的日均分出量约为5000吨则该月可分出厨余垃圾的总量为5000×31=155000吨 用科学计数法表示:1.55×105吨 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a| <10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.A【分析】先利用乘方的意义、绝对值的意义和相反数的定义对各数进行计算,然后利用有理数的分类进行判断.【详解】解:328-=-,0.10.1--=-,11=33⎛⎫- ⎪⎝⎭-, ()-=422故选:A .【点睛】本题考查了有理数的乘方:有理数乘方的定义:求n 个相同因数积的运算,叫做乘方.也考查了相反数和绝对值.6.B【分析】先判断出各图形的主视图,然后结合主视图的定义进行判断即可.【详解】解:A 、主视图是三角形,故本选项错误;B、主视图是圆,故本选项正确;C、主视图是矩形,故本选项错误;D、主视图是矩形,故本选项错误;故选:B.【点睛】本题考查了简单几何体的三视图,掌握主视图定义是解题的关键.7.D【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m和n的值.【详解】解:由同类项的定义可知m=2,n-1=3.得n=4,故选:D.【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.8.D【分析】要先根据题意,画出图形,通过对图形观察,思考,得出需要小木棍的根数,然后图形对比,选出最少需要小木棍的根数.【详解】图1没有共用部分,要6根小木棍,图2有共用部分,可以减少小木棍根数,仿照图2得到图3,要7根小木棍,同法搭建的图4,要9根小木棍,如按图5摆放,外围大的等边三角形,可以得到5个等边三角形,要9根小木棍,如按图6摆成三棱锥(西面体)就可以得到4个等边三角形,∴搭建4个等边三角形最少需要小木棍6根.故选:D【点睛】此题考查的是组成图形的边的条数,解答此题需要灵活利用立体空间思维解答.9.3 2 -.【分析】根据倒数的定义,即可求解. 【详解】∵(﹣23)×(32-)=1,∴﹣23的倒数是32-.故答案为32 -.【点睛】本题主要考查倒数的概念,掌握概念是解题的关键.10.<【分析】先求出绝对值,根据两个负数比较大小,其绝对值大的反而小比较即可.【详解】解:-7的绝对值是7,-5的绝对值是5,∵7>5,∴-7<-5.故答案为<.【点睛】本题考查了有理数的大小比较的应用,注意:两个负数比较大小,其绝对值大的反而小.+11.3a b【分析】根据句子的描述,直接列出代数式,即可.【详解】+,用列代数式表示“a的3倍与b的和”为:3a b+.故答案是:3a b【点睛】本题主要考查列代数式,准确理解句子的含义,是解题的关键.12.1【分析】首先将x=-1代入方程x+2a=1,然后解关于a的一元一次方程即可.【详解】把x=-1代入,得-1+2a=1,解得a=1.故答案为1.【点睛】本题主要考查了一元一次方程的解.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.13.69 40【分析】根据图可知∠AOB=90°,且∠BOC=∠AOB-∠AOC,直接计算即可.【详解】解:如右图所示,∵OA ⊥OB ,∴∠AOB=90°,∴∠AOC=∠AOB-∠BOC=90°-20°20′=69°40′.故答案是69;40.【点睛】本题考查了垂线的定义、余角、度分秒的换算.解题的关键是根据图得出∠BOC 、∠AOB 、∠AOC 的关系.14.9【分析】由非负数的应用,先求出m 、n 的值,再代入计算即可.【详解】解:∵2|3|(2)0m n ++-=,∴30m +=,20n -=,∴3m =-,2n =,∴2(3)9n m =-=;故答案为:9.【点睛】本题考查了乘方的运算、绝对值的非负性,解题的关键是掌握运算法则,正确求出m 、n 的值.15.两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为两点之间线段最短.16.13215 【分析】(1)利用等式的基本性质,设x=0.3,仿照材料中的探求过程,即可得出答案;(2)利用已知设x=0.13,进而得出10x=1+0.1 3,由(1)中得到的0.3=13代入得10x=1+13,进而求出x.【详解】(1)设x=0.3,则10x=10×0.3∴10x =3.3,则10x =3+0.3∴10x =3+x9x=3x=13.(2)设x=0.1310x=10×0.13,10x=1.3,则10x=1+0.3由(1)知,0.3=13,代入得10x=1+1 3解得x=2 15故答案为:①13;②215【点睛】此题考查了一元一次方程的应用以及等式的基本性质,根据题意得出等量关系是解题关键. 17.1【分析】先将代数式化成省略括号的和的形式,再进行有理数的加减法运算.【详解】原式3158=-+-+258=--+1=.【点睛】本题考查了有理数的加减混合运算,正确运用有理数的加减法法则是解题的关键. 18.25【分析】由乘法分配律进行计算,即可得到答案.【详解】解:原式10183=+-283=-25=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.19.2【分析】先算乘方、括号,再算除法,最后算减法即可.【详解】解:原式121(29)=--÷-121(7)=--÷-13=-+2=.【点睛】本题考查含乘方的有理数的混合运算,掌握运算顺序和运算法则是关键.20.3x =【分析】由移项、合并同类项、系数化为1,即可得到答案.【详解】解:351x x -=+.26x =.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法进行解题. 21.5x =-【分析】先去分母、去括号、移项合并同类项、系数化为1,即可得到答案.【详解】 解:131148x x +--=, 2(1)(31)8x x +--=,22318x x +-+=,5x -=,5x =-.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法进行解题. 22.见解析【分析】由题意,由去括号、合并同类项,把代数式进行化简,即可得到答案.【详解】解:原式32323533222021a a a a a a a a =-+-+---+2021=.【点睛】本题考查了整式的加减混合运算,整式的化简求值,解题的关键是掌握运算法则进行计算.23.BOC ;100;12;角平分线定义;AOB ;10 【分析】根据角的和差得到∠AOC =100°.根据角平分线的定义得到∠AOD =12∠AOC ,于是得到结论.【详解】解:∵40AOB ∠=︒,60BOC ∠=︒,∴100AOC AOB BOC ∠=∠+∠=︒.∵OD 平分AOC ∠, ∴12AOD AOC ∠=∠.(角平分线定义) ∴50AOD .∴10BOD AOD AOB ∠=∠-∠=︒.故答案为:BOC ,100,12,角平分线定义,AOB ,10. 【点睛】 本题考查了角平分线的定义和角的运算.要会结合图形找到其中的等量关系是解题的关键.24.(1)见解析;(2)见解析;(3)垂线段最短;1.6;3.2;见解析【分析】(1)根据两点之间线段最短,连接即可,(2)两条直线的交点就是加油站的位置,(3)依据点到直线的所有线段中,垂线段最短,和比例尺的意义可得.【详解】解:(1)如图所示.根据两点之间线段最短,连接AC ,(2)如图所示.连接直线BC,直线BC 与公路l 的交点,即为加油站D ,(3)如图所示.作图依据:垂线段最短.过点C 作CE ⊥l,交点为E,测量CE , 1.6cm CE ≈.∵示意图与实际距离的比例尺是1∶200000∴CE :实际距离=1:200000实际距离=200000×1.6=320000cm=3.2km 在实际中村庄C 到公路l 的最短线路为3.2km .【点睛】本题考查了两条直线的交点,垂线段最短,以及过直线外一点作已知直线的垂线,以及比例尺,解题的关键是掌握两点之间线段最短,以及垂线段最短.25.6位客人,46两银子【分析】设有x 位客人,根据不同的分法,银子数量相等列出方程求出结果.【详解】解:设有x 位客人,根据题意,得:7498x x +=-,解得:6x =,7442446x +=+=,答:有6位客人,46两银子.【点睛】本题考查一元一次方程的应用,解题的关键是找出等量关系列出方程求解.26.作图见解析,AD 的长为4或1【分析】根据题意,分两种情况:(1)当点C 在线段AB 上时;(2)当点C 在线段AB 的延长线上时;画出图形并求线段AD 的长是多少即可.【详解】解:(1)当点C 在线段AB 的延长线上时,∵5AB =,3BC =,∴538AC AB BC =+=+=.∵点D 为线段AC 的中点, ∴142AD AC ==. (2)当点C 在线段AB 上时,∵5AB =,3BC =,∴532AC AB BC =-=-=.∵点D 为线段AC 的中点, ∴112AD AC ==. 综上所述,线段AD 的长为4或1.【点睛】此题主要考查了两点间的距离的求法,以及线段的中点的特征和应用,要熟练掌握. 27.(1)①5;②见解析;(2)见解析;4;(3)①c-a ;②B 点,理由见解析【分析】(1)①由相反数的定义,即可得到答案;②取线段AB 的中点,即可得到原点的位置; (2)由AB 的距离和数轴上的点,先求出单位长度,确定原点的位置,即可得到答案; (3)①由数轴上两点之间的距离公式,即可得到答案;②由题意1BC =,得到7AD d a =-=,结合210d a -=,即可求出答案.【详解】解:(1)①∵点A 和点B 表示的数互为相反数,∴点B 表示的数为5;故答案为:5.②如图1所示.点O 为线段AB 的中点,即为原点.(2)∵20(8)28AB =--=,∴每一个小格代表的距离为:2874÷=,∴原点O 的位置如图2所示.∴点C 所表示的数是4;(3)①AC c a =-.②如图3,∵数轴上每相邻两点相距一个单位,∴7AD d a =-=.∵210d a -=,∴3a =-.∴0b =.即数轴上的原点是B 点.【点睛】本题考查了数轴的定义,数轴上两点之间的距离,以及数轴上表示的数,解题的关键是掌握数轴的相关知识,从而进行解题.28.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫ ⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案; (2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案; (2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③; 111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤; 故答案为:17;64-; (2)由题意:A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确; C 、7188888888888=÷÷÷÷÷÷÷÷=⑨, 619999999999=÷÷÷÷÷÷÷=⑧, ∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确; 故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥; 71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则答案第15页,总15页 将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.。
北京市昌平区第三中学人教版七年级上册数学期末综合测试题
北京市昌平区第三中学人教版七年级上册数学期末综合测试题一、选择题1.﹣3的相反数是( ) A .13- B .13C .3-D .32.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+3.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm4.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 5.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④6.若21(2)0x y -++=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-7.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3y D .若x 2=y 2,则x =y 8.已知一个多项式是三次二项式,则这个多项式可以是( )A .221x x -+B .321x +C .22x x -D .3221x x -+9.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚B .赚了9元C .赚了18元D .赔了18元10.如图的几何体,从上向下看,看到的是( )A.B.C.D.11.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-112.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB中点个数有()①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个二、填空题13.单项式2x m y3与﹣5y n x是同类项,则m﹣n的值是_____.14.如图,点A在点B的北偏西30方向,点C在点B的南偏东60︒方向.则ABC∠的度数是__________.15.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a斤重的西瓜卖A元,一个b斤重的西瓜卖B元时,一个()a b+斤重的西瓜定价为36abA B⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.16.如图,在长方形ABCD中,10,13.,,,AB BC E F G H==分别是线段,,,AB BC CD AD上的定点,现分别以,BE BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF与正方形DGIH的重合部分恰好是一个正方形,且,BE DG=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为123,,s s s.若2137SS=,则3S=___17.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 18.若∠1=35°21′,则∠1的余角是__.19.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)21.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示). 22.若2a +1与212a +互为相反数,则a =_____. 23.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、解答题25.(1)化简:3x 2﹣22762x x +; (2)先化简,再求值:2(a 2﹣ab ﹣3.5)﹣(a 2﹣4ab ﹣9),其中a =﹣5,b =32. 26.小明爸爸给小明出了一道题,说明他本月炒股的盈亏情况(单位:元) 股票每股净赚(元)股票招商银行 +23 500 浙江医药 ﹣(﹣2.8) 1000 晨光文具 ﹣1.5 1500 金龙汽车﹣1452000请你也来计算一下,小明爸爸本月投资炒股到底是赔了还是赚了?赔了或赚了多少元? 27.解方程:2112233x x-+=. 28.计算: -22×(-9)+16÷(-2)3-│-4×5│29.某中学学生步行到郊外旅行,七年级()1班学生组成前队,步行速度为4千米/小时,七()2班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.()1后队追上前队需要多长时间?()2后队追上前队的时间内,联络员走的路程是多少? ()3七年级()1班出发多少小时后两队相距2千米?30.小明每天早上要在7:40之前赶到距家1100米的学校上学,小明以60m /min 的速度出发,5min 后,爸爸以180m/min 的速度去追小明,并且在途中追上了他. (1)爸爸追上小明用了多长时间? (2)追上小明时距离学校有多远?四、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?32.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.33.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
2020学年北京市昌平区初一上期末数学考试题含答案
昌平区2020 - 2020学年第一学期初一年级期末质量抽测数学试卷(12020 满分100分)2020.1一、选择题(本题共10道小题,每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.-4的相反数是A.41 B .41C .4D .-4 2.计算-2×3结果正确的是A .6B .-6C .5D .-53.昌平万亩滨河森林公园占地3 980 000平方米,位于北京城市中轴线的北延线上,将北京城与十三陵水库通过绿轴有机地联系在一起,是名副其实的北京的“后花园”. 把数字3 980 000用科学记数法表示为A .39.8×105B .3.98×106C .3.98×107D .0.398×1074.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的数所对应的点是 A. 点A 与点DB. 点A 与点C C. 点B 与点CD. 点B 与点D5.圆锥侧面展开图可能是下列图中的A B C D321-1-2-316.下列四个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一个角的是AOBC DAOBCDA OB CAOB 1111A B C D7.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为A .58°B .59°C .60°D .61°8.如果代数式3x 2-4x 的值为6,那么6x 2-8x -9的值为A . 12B .3C .23D . -39.如果0)3(22=++-y x , 那么y x 的值为A . 9B .-9C .6D .-610.按一定规律排列的一列数依次为:-2,5,-10,17,-26,…,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是A .82,-n 2+1B .82,(-1)n (n 2+1)C . -82,(-1)n (n 2+1)D .-82,3n +1二、填空题(本题共6道小题,每小题3分,共18分)11.-3的倒数是 .12.小莉在办板报时,需要画一条直的隔线,由于尺子不够长,于是她和一名同学找来一根线绳,给线绳涂上彩色粉笔沫,两人拉紧线绳各按住一头,把绳子从中间拉起再松手便完成了,请写出他们这样做根据的数学事实为 .13.请写出一个次数为5的单项式 .14.如果a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么2x cdx a b +--的值是 .15.如图,将长和宽分别是a ,b 的长方形纸片的四个角都剪去一个边长为x 的正方形.用含a ,b ,x 的代数式表示纸片剩余部分的面积为 .16.请写出解方程12.015.03.02.0=---x x 的思路为 .三、解答题(本题共7道小题,第17,18,19小题各3分;第20203小题各4分,共25分)17.计算:-15 -(-4)+1.18.计算: 1+8÷(-2)×12.19.计算:12312234⎛⎫⨯-+ ⎪⎝⎭.2020算:()()22136314⎛⎫÷-⨯--- ⎪⎝⎭.21.先化简,再求值:ab b a a ab 2)2(2)32(+--+-,其中a=3,b=1.22.解方程:()()3225x x -+=-.23.解方程:53+11+42x x -=.x24.按照下列要求完成作图及问题解答.(1)分别作直线AB和射线AC;(2)作线段BC,取BC的中点D;(3)过点D作直线AB的垂线,交直线AB于点E;(4)测量点D到直线AB的距离为__________cm.25.列方程解应用题.为纪念红军长征胜利80周年,让人们更好地了解历史,开展爱国主义教育,传承和弘扬伟大的长征精神,军事博物馆举办“英雄史诗不朽丰碑——纪念中国工农红军长征胜利80周年主题展览”.展览图片、文物、艺术品共计572件,文物比艺术品的5倍还多27件,图片比文物、艺术品的和少22件,求展出的艺术品有多少件.26.补全解题过程.已知:如图,点C是线段AB的中点,AD=6,BD=4,求CD的长.解:∵AD=6,BD=4,∴AB=AD+ = . ∵点C是线段AB的中点,∴AC=CB= = . ∴CD=AD - = . A BC DACB27. 如图,数轴上点A 对应的有理数为2020P 以每秒2个单位长度的速度从点A 出发,点Q 以每秒4个单位长度的速度从原点O 出发,且P ,Q 两点同时向数轴正方向运动,设运动时间为t 秒.A 20O(1)当t =2时,P ,Q 两点对应的有理数分别是 , ,PQ = ; (2)当PQ =10时,求t 的值.28.已知:如图,OA ⊥OB ,∠BOC =50°,且∠AOD :∠COD =4:7.画出∠BOC 的角平分线OE ,并求出∠DOE 的度数.OABCD1-5B A 29.小聪和小敏在研究绝对值的问题时,遇到了这样一道题:当式子|x -1|+|x +5|取最小值时,x 应满足的条件是 ,此时的最小值是 . 小聪说:利用数轴求线段的长可以解决这个问题.如图,点A ,B 对应的数分别为-5,1,则线段AB 的长为6,我发现也可通过|1-(-5)|或|-5-1|来求线段AB 的长,即数轴上两点间的线段的长等于它们所对应的两数差的绝对值.小敏说:我明白了,若点C 在数轴上对应的数为x ,线段AC 的长就可表示为|x -(-5)|,那么|x -1|表示的是线段 的长.小聪说:对,求式子|x -1|+|x +5|的最小值就转化为数轴上求线段AC +BC 长的最小值,而点C 在线段AB 上时AC +BC =AB 最小,最小值为6.小敏说:点C 在线段AB 上,即x 取-5,1之间的有理数(包括-5,1),因此相应x 的取值范围可表示为-5≤x ≤1时,最小值为6.请你根据他们的方法解决下面的问题:(1)小敏说的|x -1|表示的是线段 的长;(2)当式子|x -3|+|x +2|取最小值时,x 应满足的条件是 ; (3)当式子|x -2|+|x +3|+|x +4|取最小值时,x 应满足的条件是 ;(4)当式子|x - a |+|x - b |+|x - c |+|x - d |(a<b<c<d )取最小值时,x 应满足的条件是 ,此时的最小值是 .昌平区2020学年第一学期初一年级期末质量抽测 数学试卷参考答案及评分标准 2020.1一、选择题(本题共10道小题,每小题3分,共30分)17.解:原式= -15 + 4 + 1 ………………………… 1分 = -15 + 5 ………………………… 2分 = -10 . ………………………… 3分 18. 解:原式= 1+(-4)×21………………………… 1分 =1- 2 ………………………… 2分 =-1. ………………………… 3分19.解:原式=431232122112⨯+⎪⎭⎫⎝⎛-⨯+⨯………………………… 1分 = 6 – 8 + 9 ………………………… 2分 = 7 . ………………………… 3分2020:原式=36÷9×⎪⎭⎫⎝⎛-41-(-1) ………………………… 2分 =4×⎪⎭⎫⎝⎛-41+1 ………………………… 3分 =0 . ………………………… 4分 21.解:原式= -2ab + 3a - 4a + 2b + 2ab………………………… 2分= -a + 2b . ………………………… 3分当a=3,b =1时, 原式= -3 + 2 = -1.………………………… 4分22.解方程:()()3225x x -+=-.解:-6 - 3x = 10 - 2x . ………………………… 1分 -3x + 2x = 10 + 6. ………………………… 2分-x = 16. ………………………… 3分 x = -16. ………………………… 4分23.解方程:53+11+42x x -=. 解:(5x -3)= 4 + 2(x +1).………………………… 1分5x – 3 = 4 + 2x + 2. ………………………… 2分 5x - 2x = 4 + 2 + 3. ………………………… 3分 x = 3. ………………………… 4分四、解答题(本题共3道小题,第24-26小题各4分,共12分)24.解:(1)如图,分别作直线AB和射线AC.…………1分Array(2)如图,作线段BC, 取BC的中点D. …………2分(3)如图,过点D做直线AB的垂线,交直线AB于点E.…………………3分(4)约1cm.…………………………………4分25. 解:设展出的艺术品有x件. ……………………………1分根据题意列方程,得 (5x + 27 + x -22)+ x + (5x + 27)= 572.…………………2分解方程得:x= 45.………………………………………3分答:展出的艺术品有45件.……………………4分26.解: BD, 10 .………………………………………………………………1分1AB,5.………………………………………………………………3分2AC ,1 . ………………………………………………………………4分五、解答题(本题共3道小题,每小题各5分,共15分)27.(1)P,Q两点对应的有理数分别是24 ,8 , PQ= 16. ………………………3分 (2)①当点P在点Q右侧时,∵PQ=(2020t) - 4t=10,∴解得,t = 5.………………………………………4分②当点P在点Q左侧时,∵PQ=4t-(2020t) =10,∴解得,t =15.…………………………………………………5分综上所述,t 的值为5秒或15秒.28.解:如右图. …………………………………………1分∵OA ⊥OB ,∴∠AOB = 90°. …………………………2分∵∠AOD :∠COD =4:7,∴设∠AOD =4x °,∠COD =7x °.∵∠AOB+∠AOD +∠COD+∠BOC =360°,且∠BOC =50°, ∴904750360x x +++=. ∴20x =.∴∠COD =140°. ………………………………………………3分 ∵OE 是∠BOC 的角平分线, ∴1252COE BOC ∠=∠=︒.……………………………………4分∴∠DOE=∠COD+∠COE =165°. ………………………………………5分29.解:(1)BC . ………………………………………1分(2)-2≤x ≤3. ………………………………………2分 (3)x=-3. ………………………………………3分(4)b ≤x ≤c , c - b + d -a . ………………………………………5分DCBAOE。
北京市昌平区第三中学人教版七年级上册数学期末综合测试题
北京市昌平区第三中学人教版七年级上册数学期末综合测试题一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10- B .10 C .5- D .5 5.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( )A .1B .2C .3D .4 6.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,37.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°8.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱9.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )10.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°11.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚 B .赚了9元C .赚了18元D .赔了18元12.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-13.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<014.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1B .﹣1C .±1D .a≠1二、填空题16.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 17.把53°30′用度表示为_____.18.把5,5,35按从小到大的顺序排列为______.19.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16 乘坐公交¥ 4.00- 10.17 转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-20.写出一个比4大的无理数:____________. 21.﹣30×(1223-+45)=_____. 22.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____. 23.若a a -=,则a 应满足的条件为______.24.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.25.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 26.52.42°=_____°___′___″.27.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.28.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程_____.29.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x人,依题意列方程得_____.30.方程x+5=12(x+3)的解是________.三、压轴题31.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.32.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
北京市昌平区第三中学七年级上册压轴题数学模拟试卷及答案
北京市昌平区第三中学七年级上册压轴题数学模拟试卷及答案一、压轴题1.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.2.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.3.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE .(1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数.(3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.4.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)5.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.6.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.7.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.8.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.9.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.10.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?11.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.12.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.13.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.14.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”.请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.15.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.16.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.17.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.18.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?19.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数;(3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)20.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-,解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.2.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.3.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.4.(1)是;(2)5cm或7.5cm或10cm;(3)10或607.【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C在中点的左边,点C在中点,点C在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P应在Q的右边,分别表示出AQ、QP、PB,求出t的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”.故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.5.(1)详见解析;(2)①16;②在移动过程中,3AC ﹣4AB 的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t =2时,先求出A 、B 、C 点表示的数,然后利用定义求出AB 、AC 的长即可; ②先求出A 、B 、C 点表示的数,然后利用定义求出AB 、AC 的长,代入3AC -4AB 即可得到结论.【详解】(1)A ,B ,C 三点的位置如图所示:.(2)①当t =2时,A 点表示的数为-4,B 点表示的数为5,C 点表示的数为12,∴AB =5-(-4)=9,AC =12-(-4)=16.②3AC -4AB 的值不变.当移动时间为t 秒时,A 点表示的数为-t -2,B 点表示的数为2t +1,C 点表示的数为3t +6,则:AC =(3t +6)-(-t -2)=4t +8,AB =(2t +1)-(-t -2)=3t +3,∴3AC -4AB =3(4t +8)-4(3t +3)=12t +24-12t -12=12.即3AC ﹣4AB 的值为定值12,∴在移动过程中,3AC ﹣4AB 的值不变.【点睛】本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.6.(1)20;(2)t =15s 或17s (3)43s. 【解析】【分析】(1)设P 、Q 速度分别为3m 、2m ,根据12秒后,动点P 到达原点O 列方程,求出P 、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A 、B 在相遇前且相距5个单位长度时;②当A 、B 在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P 运动到B 再到原点时,所用的时间,再算出Q 从B 到A 所需的时间,比较即可得出结论.【详解】(1)设P 、Q 速度分别为3m 、2m ,根据题意得:12×3m =36,解得:m =1,∴P 、Q 速度分别为3、2,∴BC =12×2=24,∴OC =OB -BC =44-24=20.(2)当A 、B 在相遇前且相距5个单位长度时:3t +2t +5=44+36,5t =75,∴ t =15(s );当A 、B 在相遇后且相距5个单位长度时:3t +2t -5=44+36,5t =85,∴ t =17(s ). 综上所述:t =15s 或17s .(3)P 运动到原点时,t =3644443++=1243s ,此时QB =2×1243=2483>44+38=80,∴Q 点已到达A 点,∴Q 点已到达A 点的时间为:3644804022+==(s ),故提前的时间为:1243-40=43(s ). 【点睛】本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.7.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论,(3)分两种情况,OC在∠AOB内部和外部结果都是∠DOE=12∠AOB试题解析:(1))∵AB=12cm,∴AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm;(2) 设AC=acm,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=12(AC+BC)=12AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变;(3)①当OC在∠AOB内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=12∠BOC,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.8.(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A、B两点表示的数,即可得出结论;(2)①点P运动的时间与A、B相遇所用时间相等,根据路程=速度×时间即可求得;②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的;③点P与点A的距离越来越小,而点P与点B的距离越来越大,不存在PA=PB的时候.【详解】解:(1)∵A、B所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P是AB的中点,∴AP=60=30,∴点P表示的数是-20+30=10;∵如图,点A、B对应的数值分别是a和b,∴AB=b-a,∵P是AB的中点,∴AP=(b-a)∴点P表示的数是a+(b-a) =(a+b).(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤7.5.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤7.5.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P 与点B的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.9.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 10.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;②当点P 运动到点B 的左侧时:∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP-NP=AP-BP=(AP-BP )=AB=15,∴综上所述,线段MN 的长度不发生变化,其值为15.(3)若点P 、Q 同时出发,设点P 运动t 秒时与点Q 距离为4个单位长度.①点P 、Q 相遇之前,由题意得4+5t=30+3t ,解得t=13;②点P 、Q 相遇之后,由题意得5t-4=30+3t ,解得t=17.答:若点P 、Q 同时出发,13或17秒时P 、Q 之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.11.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-.解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.12.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】 ()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦ 故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x203752-=,则x790=②抵扣金额为30元时,1x303752-=,则x810=故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x元,抵扣金额为b元,则优惠率1x b1b 2100%x2x+=⨯=+为了得到最高优惠率,则在每一范围内x均取最小值,可以得到2030405040080012001600>>>∴当商品标价为400元时,享受到最高的优惠率1155% 220=+=故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.13.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.15.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,。
北京市昌平区第三中学人教版七年级上册数学期末综合测试题
北京市昌平区第三中学人教版七年级上册数学期末综合测试题 一、选择题 1.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+C .23x =D .3-3x x = 2.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .3 3.在220.23,3,2,7-四个数中,属于无理数的是( ) A .0.23 B .3 C .2- D .2274.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠5.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )A .410 +415x -=1B .410 +415x +=1C .410x + +415=1D .410x + +15x =1 6.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( )A .50°B .130°C .50°或 90°D .50°或 130° 7.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1) 8.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×2 9.已知a =b ,则下列等式不成立的是( )A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣2 10.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限 11.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米 12.3的倒数是( )A .3B .3-C .13D .13- 13.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45° 14.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+ 15.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( )A .①②④B .①②③C .②③④D .①③④ 二、填空题16.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.17.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………18.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.19.把53°24′用度表示为_____.20.单项式﹣22πa b的系数是_____,次数是_____.21.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;22.因式分解:32x xy -= ▲ .23.若方程11222m x x --=++有增根,则m 的值为____. 24.化简:2x+1﹣(x+1)=_____. 25.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.26.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.27.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.28.若523m x y +与2n x y 的和仍为单项式,则n m =__________.29.若4a +9与3a +5互为相反数,则a 的值为_____.30.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、压轴题31.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.32.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.33.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.34.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.35.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.36.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.37.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.38.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P 点在数轴上所对应的数值;(2)若A 、B 、P 三点同时一起在数轴上做匀速直线运动,A 、B 两点相向而行,P 点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A 、B 两点相遇,停止运动.如果A 、B 、P 运动的速度分别是1个单位长度/s ,2个单位长度/s ,3个单位长度/s ,设运动时间为t .①求整个运动过程中,P 点所运动的路程.②若P 点用最短的时间首次碰到A 点,且与B 点未碰到,试写出该过程中,P 点经过t 秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A 【解析】【分析】把32x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.【详解】解:A中、把32x=-代入方程得左边等于右边,故A对;B中、把32x=-代入方程得左边不等于右边,故B错;C中、把32x=-代入方程得左边不等于右边,故C错;D中、把32x=-代入方程得左边不等于右边,故D错.故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可. 2.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.3.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,3是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,227是分数,是有理数,不符合题意,故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.4.A解析:A【解析】【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可.【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意,故选:A.【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.5.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x 天,由题意得方程:410+415x +=1. 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.6.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.7.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.8.A解析:A【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x 厘米.根据题意得:2×(10+x )=10×4+6×2.故选:A .【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.9.D解析:D【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A 、∵a =b ,∴a+1=b+1,故本选项正确;B 、∵a =b ,∴﹣a =﹣b ,∴1﹣a =1﹣b ,故本选项正确;C 、∵a =b ,∴3a =3b ,故本选项正确;D 、∵a =b ,∴﹣a =﹣b ,∴﹣3a =﹣3b ,∴2﹣3a =2﹣3b ,故本选项错误.故选:D .【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.10.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.11.A解析:A∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.12.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.13.B解析:B【解析】【分析】利用直角和角的组成即角的和差关系计算.【详解】解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD等于25°.故选B.【点睛】本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.14.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.15.B解析:B【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可.【详解】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B.二、填空题16.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.17.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,n解析:83【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.18.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解. 【详解】根据题意可得:∠AOB=(90解析:141【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.19.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.20.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 21.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大22.x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x 3﹣xy 2=x (x 2﹣y 2)=x (x ﹣y )(x+y ),故答案为x (x ﹣y )(x+y ).23.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.25.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.26.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】解:∵OD 平分∠AOC ,∴∠AOC =2∠AOD =40°,∴∠COB =180°﹣∠COA =140°故答案为:14027.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 28.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.29.-2【解析】【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a +9+3a +5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键. 30.6【解析】如图,∵AB=2cm,BC=2AB ,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.三、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD ,∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.33.(1)﹣14,8﹣5t ;(2)2.5或3秒时P 、Q 之间的距离恰好等于2;(3)点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B 点表示的数为8﹣22;点P 表示的数为8﹣5t ;(2)设t 秒时P 、Q 之间的距离恰好等于2.分①点P 、Q 相遇之前和②点P 、Q 相遇之后两种情况求t 值即可;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,根据AC ﹣BC =AB ,列出方程求解即可;(3)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB =22,∴点B 表示的数是8﹣22=﹣14,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8﹣5t .故答案为:﹣14,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2.分两种情况: ①点P 、Q 相遇之前,由题意得3t +2+5t =22,解得t =2.5;②点P 、Q 相遇之后, 由题意得3t ﹣2+5t =22,解得t =3.答:若点P 、Q 同时出发,2.5或3秒时P 、Q 之间的距离恰好等于2;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,∵AC ﹣BC =AB ,∴5x ﹣3x =22,解得:x =11,∴点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,都等于11;理由如下:①当点P 在点A 、B 两点之间运动时:MN =MP +NP =12AP +12BP =12(AP +BP )=12AB =12×22=11; ②当点P 运动到点B 的左侧时:MN =MP ﹣NP =12AP ﹣12BP =12(AP ﹣BP )=12AB =11, ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.34.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.35.(1)(4,8)(2)S △OAE =8﹣t (3)2秒或6秒【解析】【分析】(1)根据M 和N 的坐标和平移的性质可知:MN ∥y 轴∥PQ ,根据K 是PM 的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE 的面积S ;(3)存在两种情况:①如图2,当点B 在OD 上方时②如图3,当点B 在OD 上方时,过点B 作BG ⊥x 轴于G ,过D 作DH ⊥x 轴于H ,分别根据三角形OBD 的面积等于三角形OAE 的面积列方程可得结论.【详解】。
七年级上册北京市昌平区第三中学数学期末试卷练习(Word版 含答案)
七年级上册北京市昌平区第三中学数学期末试卷练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.把一副三角板放成如图所示.(1)当OD平分∠AOB时,求∠COB;(2)若摆成如图2,OB、OD重合,OM平分∠AOD,ON平分∠AOC,求∠MON;(3)将三角板OCD绕O点旋转,把OD旋转到∠AOB的内部或外部,(2)中的条件不变,试问∠MON的角度是否变化?若不变,求出它的值,并说理由.【答案】(1)解:∵OD平分∠AOB,∠AOB=90°∴∠DOB=∠AOB=45°∵∠DOC=30°∴∠COB=∠DOB-∠DOC=45°-30°=15°(2)解:如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=45°∠AON=∠AOC=(90°+30°)=60°∴∠MON=∠AON-∠AOM=60°-45°=15°(3)解:把OD旋转到∠AOB的内部时,如图,∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(90°-∠BOD)=45°-∠BOD∠AON=∠AOC=(∠AOB+∠COD-∠BOD)=60°-∠BOD∴∠MON=∠AON-∠MOA=15°把OD旋转到∠AOB的外部时,如图,设∠AOC=α,则∠AOD=360°-30°-α=330°-α∵OM平分∠AOD,ON平分∠AOC∴∠MOA=∠AOD=(330°-α)=165°-α∠AON=∠AOC=α∠MON=∠MOA+∠AON=165°-α+α=165°∴∠MON=15°或∠MON=165°【解析】【分析】(1)利用角平分线的定义求出∠DOB的度数,再根据∠COB=∠DOB-∠DOC,就可求出结果。
北京市昌平区第三中学人教版七年级上册数学期末综合测试题
北京市昌平区第三中学人教版七年级上册数学期末综合测试题 一、选择题 1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-2 3.下列分式中,与2x y x y---的值相等的是() A .2x y y x +- B .2x y x y +- C .2x y x y -- D .2x y y x-+ 4.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 5.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°6.下列方程变形正确的是( )A .方程110.20.5x x --=化成1010101025x x --= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 7.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( )A .a >ab >ab 2B .ab >ab 2>aC .ab >a >ab 2D .ab <a <ab 28.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1) 9.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( )A .∠A OC =∠BOCB .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB 10.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯ 11.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( )A .①②④B .①②③C .②③④D .①③④ 12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD ∠的度数为( )A .100B .120C .135D .150二、填空题13.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.14.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.15.﹣213的倒数为_____,﹣213的相反数是_____. 16.单项式﹣22πa b的系数是_____,次数是_____.17.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.18.化简:2x+1﹣(x+1)=_____.19.A 学校有m 个学生,其中女生占45%,则男生人数为________.20.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.21.当12点20分时,钟表上时针和分针所成的角度是___________.22.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.23.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、压轴题25.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________.(2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.26.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.27.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.28.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒.①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数29.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数;(3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)30.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.31.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
北京市昌平区第三中学人教版七年级上册数学期末综合测试题
北京市昌平区第三中学人教版七年级上册数学期末综合测试题一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-= D .32(72)30x x +-=3.计算32a a ⋅的结果是( ) A .5a ; B .4a ; C .6a ; D .8a . 4.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯ B .31.0410-⨯ C .41.0410-⨯ D .51.0410-⨯ 5.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+66.下列分式中,与2x yx y---的值相等的是() A .2x yy x +-B .2x yx y+-C .2x yx y--D .2x yy x-+ 7.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=68.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查 D .对广州市中学生每周课外阅读时间情况的调查 9.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180°10.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==11.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题139________14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________. 16.﹣213的倒数为_____,﹣213的相反数是_____. 17.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).18.如果向东走60m 记为60m +,那么向西走80m 应记为______m.19.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.20.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 21.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 22.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 23.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________. 24.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题25.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.26.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和. 27.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.28.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b表示在范围a b~中,可以取到a,不能取到b.根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠.例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.29.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
北京市昌平区2021-2022学年七年级(上)期末数学试卷及答案解析
2021-2022学年北京市昌平区七年级(上)期末数学试卷一、选择题(共16分,每题2分)下列各题均有4个选项,其中只有一个是符合题意的.1.(2分)﹣5的相反数是()A.B.C.5D.﹣52.(2分)下列几何体中,是圆锥的为()A.B.C.D.3.(2分)国家速滑馆是2022年北京冬奥会北京主赛区标志性场馆,是唯一新建的冰上竞赛场馆.国家速滑馆拥有亚洲最大的全冰面设计,冰面面积达12000平方米.将12000用科学记数法表示应为()A.12×103B.1.2×104C.1.2×105D.0.12×105 4.(2分)下表是某地区11月份连续四天最高气温与最低气温情况,这四天温差最大的是()某地区星期一星期二星期三星期四最高气温(℃)812109最低气温(℃)11﹣1﹣3A.星期一B.星期二C.星期三D.星期四5.(2分)下列计算正确的是()A.m2n﹣2m2n=﹣m2n B.3x2y﹣x2y=2C.2m3+3m2=5m5D.2m3﹣3m2=﹣m6.(2分)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a<﹣4B.bd>0C.|b+c|=b+c D.|a|>|b|7.(2分)已知关于x的方程mx+2=x的解是x=4,则m的值为()A.B.2C.D.8.(2分)用“※”定义一种新运算:对于任何有理数a和b,规定a※b=ab+b2.如1※2=1×2+22=6,则﹣4※2的值为()A.﹣4B.8C.4D.﹣8二、填空题(共16分,每题2分)9.(2分)比较大小:﹣5﹣2(填“<”、“=”或“>”).10.(2分)用代数式表示“x的2倍与y的差”为.11.(2分)一个单项式满足下列条件:①系数是﹣;②次数是2.请写出一个同时满足上述两个条件的单项式:.12.(2分)如图,点P是直线l外一点,从点P向直线l引PA,PB,PC,PD几条线段,其中只有线段PC与直线l垂直.这几条线段中,的长度最短.13.(2分)如图,OC为∠AOB内部的一条射线,若∠AOB=100°,∠BOC=25°36′,则∠AOC的度数为.14.(2分)我国元朝朱世杰所著的《算学启蒙》中有一个问题:“良马日行240里,驽马日行150里,驽马先行12日,问良马几何追及之”.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先行十二天,快马几天可以追上慢马?如果快马和慢马从同一地点出发,沿同一路径行走.我们设快马x天可以追上慢马,根据题意可列方程为.15.(2分)观察下列方程:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;根据观察得到的规律,写出解是x=5的方程是;写出解是x=2022的方程是.16.(2分)如图所示的是一个正方体的平面展开图.若将平面展开图折叠成正方体后,相对面上的两个数字之和均为﹣5,则x+y+z的值为.三、解答题(本题共68分,17-22题每小题5分,23-26题每小题5分,27、28题每小题5分)17.(5分)计算:7﹣(﹣3)+(﹣5).18.(5分)计算:3÷(﹣)×(﹣4).19.(5分)计算:(﹣﹣)×(﹣12).20.(5分)计算:﹣12+2×(﹣3)2+(﹣6)÷(﹣).21.(5分)解方程:4x﹣7=5﹣2x.22.(5分)解方程:﹣1=.23.(6分)先化简,再求值:3(x2﹣2x)﹣2(1﹣3x)﹣2x2,其中x=﹣3.24.(6分)为了响应国家“节能减排,绿色出行”号召,昌平区多个地点安放了共享单车,供行人使用.已知甲站点安放共享单车79辆,乙站点安放共享单车50辆.通过调查发现,甲站点人流量较大,共享单车的需求量较高,因此要对两个站点的共享单车数量进行调整.为了使甲站点的共享单车数量是乙站点的2倍,需要从乙站点调配多少辆共享单车到甲站点?25.(6分)补全解题过程.如图,已知∠AOC=50°,∠BOC=70°,OD平分∠AOB,求∠COD的度数.解:∵∠AOC=50°,∠BOC=70°(已知).∴∠AOB=∠AOC+∠BOC=°.∵OD平分∠AOB(已知),∴∠AOD=∠AOB=°.∴∠COD=∠AOD﹣∠AOC=°.26.(6分)已知点C为线段AB上一动点,点D,E分别是线段AC和BC的中点.(1)若线段AB=10cm,点C恰好是AB的中点,则线段DE=cm;(2)如图,若线段AB=10cm,AC=4cm,求线段DE的长;(3)若线段AB的长为a,则线段DE的长为(用含a的代数式表示).27.(7分)在数学活动课上,王老师介绍说有人建议向火星发射如图1的图案.它叫幻方,幻方最早源于我国,古人称之为纵横图.其中9个格中的点数分别是1,2,3,4,5,6,7,8,9.每一横行、每一竖列以及两条对角线上的点数的和都相等.如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).(1)将﹣10,﹣8,﹣6,﹣4,﹣2,0,2,4,6这9个数分别填入图2的幻方的空格中,使得每一横行、每一竖列以及两条对角线上的数的和都相等.则这个和是,并请同学们补全其余的空格.(2)在图3的幻方中,每一横行、每一竖列以及两条对角线上的数的和都相等.根据所给信息求出x的值,并根据x的值补全图4的幻方的空格.28.(7分)已知在纸面上有一个数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与表示的点重合;(2)若8表示的点与﹣2表示的点重合,回答下列问题:①12表示的点与表示的点重合;②数轴上A,B两点间的距离为2022(A在B的左侧),且A,B两点经折叠后重合,则A,B两点表示数分别为,.③在②的条件下,点C为数轴上的一个动点,从点O出发,以2个单位每秒的速度向右运动,求当时间t为多少秒时,AC之间的距离恰好是BC之间距离的2倍.2021-2022学年北京市昌平区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共16分,每题2分)下列各题均有4个选项,其中只有一个是符合题意的.1.【分析】根据相反数的定义,只有符号不同的两个数是互为相反数作答.【解答】解:根据相反数的定义得:﹣5的相反数为5.故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.【分析】根据每一个几何体的特征即可判断.【解答】解:A是圆锥;B是四棱柱;C是圆柱;D是三棱柱;故选:A.【点评】本题考查了认识立体图形,熟练掌握每一个几何体的特征是解题的关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将12000用科学记数法表示应为1.2×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据温差=最高气温﹣最低气温,根据有理数的减法法则计算即可得出答案.【解答】解:8﹣1=7(℃),12﹣1=11(℃),10﹣(﹣1)=10+1=11(℃),9﹣(﹣3)=9+3=12(℃),温差最大的是星期四,【点评】本题考查了有理数的减法,掌握减去一个数等于加上这个数的相反数是解题的关键.5.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此解答即可.【解答】解:A.m2n﹣2m2n=﹣m2n,故本选项符合题意;B.3x2y﹣x2y=2x2y,故本选项不符合题意;C.2m3与3m2不是同类项,所以不能合并,故本选项不符合题意;D.2m3与﹣3m2不是同类项,所以不能合并,故本选项不符合题意;故选:A.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.6.【分析】根据数轴上点的位置作出判断即可.【解答】解:由数轴上点的位置得:|a|>|b|,bd<0,a>﹣4,b+c<0,故选:D.【点评】此题考查了数轴,以及绝对值,熟练掌握各自的性质是解本题的关键.7.【分析】把把x=4代入原方程中进行计算即可.【解答】把x=4代入方程mx+2=x中得:4m+2=4,∴4m=4﹣2,∴m=,故选:A.【点评】本题考查了一元一次方程的解,把x=4代入原方程准确地进行计算是解题的关键.8.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:﹣4※2=﹣4×2+22=﹣8+4=﹣4.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.二、填空题(共16分,每题2分)9.【分析】根据两负数比较大小的法则进行比较即可.【解答】解:∵|﹣5|=5>|﹣2|=2,∴﹣5<﹣2.故答案为:<.【点评】本题考查的是有理数的大小比较,熟知两个负数,绝对值大的其值反而小是解答此题的关键.10.【分析】根据题意可以用代数式表示出x的2倍与y的差.【解答】解:用代数式表示“x的2倍与y的差”为:2x﹣y,故答案为:2x﹣y.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.11.【分析】根据单项式的系数,次数的定义即可解答.【解答】解:一个单项式满足下列条件:①系数是﹣,②次数是2,一个同时满足上述两个条件的单项式可以为:ab,故答案为:ab.【点评】本题考查了单项式,熟练掌握单项式的系数,次数的定义是解题的关键.12.【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【解答】解:直线外一点P与直线l上各点连接的所有线段中,最短的是PC,依据是垂线段最短,故答案为:PC.【点评】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.13.【分析】由图形可知,用∠AOB的度数直接减去∠BOC的度数即可.【解答】解:∵∠AOB=100°,∠BOC=25°36′,∴∠AOC=∠AOB﹣∠BOC=100°﹣25°36′=74°24′.故答案为:74°24′.【点评】本题主要考查角度的和差计算及度分秒的换算,注意度分秒是60进制.14.【分析】由慢马先行12天可得出快马追上慢马时慢马行走了(x+12)天,利用路程=速度×时间,结合快马追上慢马时两马行走的路程相等,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意得:240x=150(x+12).故答案为:240x=150(x+12).【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.【分析】根据前3个方程的解直接写出第4个即可;根据前3个方程得出规律,写出方程即可.【解答】解:(1)根据前3个方程的规律得:x=5的方程是:;根据规律,x=2022是第2021个方程的解,∴第2021个:,即.故答案为:;.【点评】本题考查一元一次方程的解和数字变化,理解方程中每部分的数字与方程的解的关系是关键.16.【分析】根据正方体表面展开图的特征,可得出相对的面,求出x、y、z,代入计算即可.【解答】解:根据正方体展开图的“相间、Z端是对面”的特征可知,“﹣2”与“y”相对,“﹣10”与“z”相对,“x”与“﹣3”相对,又∵相对面上的两个数字之和均为﹣5,∴x=﹣2,y=﹣3,z=5,∴x+y+z=﹣2﹣3+5=0,故答案为:0.【点评】本题考查正方体表面展开图,掌握正方体表面展开图的特征是正确判断的前提.三、解答题(本题共68分,17-22题每小题5分,23-26题每小题5分,27、28题每小题5分)17.【分析】根据有理数的加减法可以解答本题.【解答】解:7﹣(﹣3)+(﹣5)=7+3+(﹣5)=5.【点评】本题考查有理数的加减混合运算,解答本题的关键是明确有理数加减混合运算的计算方法.18.【分析】原式先取符号,再从左到右依次计算即可得到结果.【解答】解:原式=3÷×4=3×2×4=6×4=24.【点评】此题考查了有理数的乘除法,熟练掌握乘除法则是解本题的关键.19.【分析】根据乘法分配律简便计算.【解答】解:(﹣﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣×(﹣12)=﹣6+4+2=0.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.【分析】先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算.【解答】解:﹣12+2×(﹣3)2+(﹣6)÷(﹣)=﹣1+2×9+(﹣6)×(﹣)=﹣1+18+9=26.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.21.【分析】方程移项,合并同类项,把x系数化为1,即可求出解.【解答】解:移项得:4x+2x=5+7,合并得:6x=12,解得:x=2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.22.【分析】方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:去分母得:2(2x﹣5)﹣4=3x+1,去括号得:4x﹣10﹣4=3x+1,移项得:4x﹣3x=1+10+4,合并得:x=15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.23.【分析】根据整式的加减运算法则进行化简,然后将x的值代入原式即可求出答案.【解答】解:原式=3x2﹣6x﹣2+6x﹣2x2=x2﹣2,当x=﹣3时,原式=9﹣2=7.【点评】本题考查整式的加减,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.24.【分析】设需要从乙站点调配多少辆共享单车到甲站点.根据关键描述语“使甲站点的车辆数是乙站点的2倍”列出方程并解答.【解答】解:设需要从乙站点调配x辆共享单车到甲站点,依题意得:79+x=2(50﹣x),解得x=7.答:需要从乙站点调配7辆共享单车到甲站点.【点评】本题考查了一元一次方程的应用,解题的关键是找准等量关系,列出方程并解答.25.【分析】由角的和差可求得∠AOB=120°,结合角平分线的定义可求得∠AOD=60°,再利用∠COD=∠AOD﹣∠AOC可求解.【解答】解:∵∠AOC=50°,∠BOC=70°(已知).∴∠AOB=∠AOC+∠BOC=120°.∵OD平分∠AOB(已知),∴∠AOD=∠AOB=60°.∴∠COD=∠AOD﹣∠AOC=10°.故答案为:120;60;10.【点评】本题主要考查角平分线的定义,角的计算,求解∠AOD的度数是解题的关键.26.【分析】(1)由中点定义可得DE=CD+CE=AC+BC=AB;(2)由(1)可得DE=AB,将已知代入即可;(3)由(1)知DE=AB.【解答】解:(1)∵点D是线段AC的中点,∴CD=AC,∵点E是线段BC的中点,∴CE=BC,∴DE=CD+CE=AC+BC=AB,∵AB=10cm,∴DE=5cm,故答案为:5;(2)由(1)知DE=CD+CE=AC+BC=AB,∵AB=10cm,∴DE=5cm;(3)由(1)知DE=AB,∵AB=a,∴DE=a,故答案为:a.【点评】本题考查两点间距离,熟练掌握线段的中点定义,灵活计算线段的和差是解题的关键.27.【分析】(1)求出所给数的和为﹣18,即可求每行、每列、两条对角线上的数的和为﹣6;(2)由题意可知3x+2+=x﹣1﹣4,求出x的值,填表即可.【解答】解:(1)∵﹣10+(﹣8)+(﹣6)+(﹣4)+(﹣2)+0+2+4+6=﹣18,∴﹣18÷3=﹣6,∴每行、每列、两条对角线上的数的和为﹣6,如图,故答案为:﹣6;(2)∵每一横行、每一竖列以及两条对角线上的数的和都相等,∴3x+2+=x﹣1﹣4,∴x=﹣5,所填表如图.【点评】本题考查有理数的加法,理解题意,能够根据所给的数,列出代数式并求解是解题的关键.28.【分析】(1)由表示1与﹣1的两点重合,利用对称性即可得到结果;(2)由﹣2表示的点与8表示的点重合,确定出3为对称点.①②根据3为对称点得出两项的结果即可;③根据题意可分两种情况讨论,由移动后AC之间的距离恰好是BC之间距离的2倍列出一元一次方程,解方程即可求解.【解答】解:(1)若1表示的点与﹣1表示的点重合,则原点为对称点,则﹣4表示的点与4表示的点重合.故答案为:4;(2)由题意得:(﹣2+8)÷2=3,即3为对称点,①根据题意得:2×3﹣12=﹣6.故答案为:﹣6;②∵3为对称点,A、B两点之间的距离为2022(A在B的左侧),且A、B两点经折叠后重合,∴A表示的数=﹣2022÷2+3=﹣1008,B点表示的数=2022÷2+3=1014.故答案为:﹣1008,1004;③当点C在B的左边时,由题意得:2t=2022×﹣1008,解得t=170;当点C在B的右边时,由题意得:2t=2022×2﹣1008,解得t=1518.综上所述,当时间t为170或1518秒时,AC之间的距离恰好是BC之间距离的2倍.【点评】此题主要考查了数轴和折叠以及一元一次方程的应用,掌握数形结合思想是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021北京市昌平区第三中学初一数学上期末模拟试题(含答案)一、选择题1.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×1052.下面的说法正确的是()A.有理数的绝对值一定比0大B.有理数的相反数一定比0小C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等3.如图,∠AOC和∠BOD都是直角,如果∠DOC=28°,那么∠AOB的度数是()A.118°B.152°C.28°D.62°4.下列计算正确的是()A.2a+3b=5ab B.2a2+3a2=5a4C.2a2b+3a2b=5a2b D.2a2﹣3a2=﹣a5.点C是线段AB上的三等分点,D是线段AC的中点,E是线段BC的中点,若6CE ,则AB的长为()A.18B.36C.16或24D.18或366.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A.甲B.乙C.丙D.丁8.用四舍五入按要求对0.06019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.06(精确到千分位)C.0.06(精确到百分位)D.0.0602(精确到0.0001)9.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个 B.1个 C.2个 D.3个10.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此类推,则a2018的值为()A.﹣1007B.﹣1008C.﹣1009D.﹣201811.两根同样长的蜡烛,粗烛可燃4小时,细烛可燃3小时,一次停电,同时点燃两根蜡烛,来电后同时熄灭,发现粗烛的长是细烛的2倍,则停电的时间为()A.2小时B.2小时20分C.2小时24分D.2小时40分12.4h=2小时24分.答:停电的时间为2小时24分.故选:C.【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.二、填空题13.如果方程2x+a=x﹣1的解是﹣4,那么a的值为_____.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.15.6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,甲现在_________岁,乙现在________岁.16.如图,数轴上A、B两点之间的距离AB=24,有一根木棒MN,MN在数轴上移动,当N移动到与A、B其中一个端点重合时,点M所对应的数为9,当N移动到线段AB的中点时,点M所对应的数为_____.17.某同学做了一道数学题:“已知两个多项式为 A、B,B=3x﹣2y,求 A﹣B 的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是 x ﹣y,那么原来的 A﹣B的值应该是.18.若当x=1时,多项式12ax3﹣3bx+4的值是7,则当x=﹣1时,这个多项式的值为_____.19.元旦期间,某超市某商品按标价打八折销售.小田购了一件该商品,付款64元.则该项商品的标价为_____20.用一个平面去截正方体(如图),下列关于截面(截出的面)形状的结论:①可能是锐角三角形;②可能是钝角三角形;③可能是长方形;④可能是梯形.其中正确结论的是______(填序号).三、解答题21.小明乘坐家门口的公共汽车前往西安北站去乘高铁,在行驶了三分之一路程时,小明估计继续乘公共汽车到北站时高铁将正好开出,于是小明下车改乘出租车,车速提高了一倍,结果赶在高铁开车前半小时到达西安北站.已知公共汽车的平均速度是20千米/小时(假设公共汽车及出租车保持匀速行使,途中换乘、红绿灯等待等情况忽略不计),请回答以下两个问题:(1)出租车的速度为_____千米/小时;(2)小明家到西安北站有多少千米?22.计算题(1)(3)(5)-+-(2)111 12+436⎛⎫⨯-⎪⎝⎭23.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用;(2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?24.一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元.计算每天最高价与最低价的差,以及这些差的平均值.25.如图,直线SN为南北方向,OB的方向是南偏东60°,∠SOB与∠NOC互余,OA 平分∠BON.(1)射线OC的方向是.(2)求∠AOC的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D解析:D【解析】【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案.【详解】A.有理数的绝对值一定大于等于0,故此选项错误;B.正有理数的相反数一定比0小,故原说法错误;C.如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D.互为相反数的两个数的绝对值相等,正确.故选:D.【点睛】此题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.3.B解析:B【解析】【分析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.【详解】∵∠AOC=∠DOB=90°,∠DOC=28°,∴∠AOB=∠AOC+∠DOB﹣∠DOC=90°+90°﹣28°=152°.故选:B.【点睛】此题主要考查学生对角的计算的理解和掌握,此题的解法不唯一,只要合理即可.4.C解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.5.D解析:D【解析】【分析】分两种情况分析:点C在AB的13处和点C在AB的23处,再根据中点和三等分点的定义得到线段之间的关系求解即可.【详解】①当点C在AB的13处时,如图所示:因为6CE ,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=18;②当点C在AB的23处时,如图所示:CE ,E是线段BC的中点,因为6所以BC=12,又因为点C是线段AB上的三等分点,所以AB=36.综合上述可得AB=18或AB=36.故选:D.【点睛】考查了线段有关计算,解题关键根据题意分两种情况分析,并画出图形,从而得到线段之间的关系.6.D解析:D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.7.D解析:D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.8.B解析:B【解析】A.0.06019≈0.1(精确到0.1),所以A选项的说法正确;B.0.06019≈0.060(精确到千分位),所以B选项的说法错误;C.0.06019≈0.06(精确到百分),所以C选项的说法正确;D.0.06019≈0.0602(精确到0.0001),所以D选项的说法正确。
故选:B.9.C解析:C【解析】试题解析:∵①3+(-1)=2,和2不大于加数3,∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0,∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加,可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误.⑥-1+2=1,故正数加负数,其和一定等于0错误.正确的有2个,故选C.10.C解析:C【解析】【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,从而得到答案.【详解】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,故选:C.【点睛】本题考查规律型:数字的变化类,根据前几个数字找出最后数值与顺序数之间的规律是解决本题的关键.11.C解析:C【解析】【分析】设停电x小时.等量关系为:1-粗蜡烛x小时的工作量=2×(1-细蜡烛x小时的工作量),把相关数值代入即可求解.【详解】解:设停电x小时.由题意得:1﹣14x=2×(1﹣13x),解得:x=2.4.12.无二、填空题13.【解析】【分析】把x=﹣4代入方程得到一个关于a的一次方程即可求解【详解】把x=﹣4代入方程得:﹣8+a=﹣4﹣1解得:a=3故答案是:3【点睛】本题考查了一元一次方程方程的求解掌握一元一次方程的解解析:【解析】【分析】把x=﹣4,代入方程得到一个关于a的一次方程,即可求解.【详解】把x=﹣4代入方程得:﹣8+a=﹣4﹣1,解得:a=3.故答案是:3.【点睛】本题考查了一元一次方程方程的求解,掌握一元一次方程的解法是解题的关键.14.158【解析】试题分析:分析前三个正方形可知规律为右上和左下两个数的积减左上的数等于右下的数且左上左下右上三个数是相邻的偶数因此图中阴影部分的两个数分别是左下是12右上是14解:分析可得图中阴影部分解析:158【解析】试题分析:分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为158.考点:规律型:数字的变化类.15.12【解析】【分析】设乙现在的年龄是x岁则甲的现在的年龄是:2x岁根据6年前甲的年龄是乙的3倍可列方程求解【详解】解:设乙现在的年龄是x 岁则甲的现在的年龄是:2x岁依题意得:2x-6=3(x-6)解解析:12【解析】【分析】设乙现在的年龄是x岁,则甲的现在的年龄是:2x岁,根据6年前,甲的年龄是乙的3倍,可列方程求解.【详解】解:设乙现在的年龄是x岁,则甲的现在的年龄是:2x岁,依题意得:2x-6=3(x-6)解得:x=12∴2x=24故:甲现在24岁,乙现在12岁.故答案为:24,12【点睛】本题考查了一元一次方程的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.16.21或﹣3【解析】【分析】设MN的长度为m当点N与点A重合时此时点M 对应的数为9则点N对应的数为m+9即可求解;当点N与点M重合时同理可得点M对应的数为﹣3即可求解【详解】设MN的长度为m当点N与点解析:21或﹣3.【解析】【分析】设MN的长度为m,当点N与点A重合时,此时点M对应的数为9,则点N对应的数为m+9,即可求解;当点N与点M重合时,同理可得,点M对应的数为﹣3,即可求解.【详解】设MN的长度为m,当点N与点A重合时,此时点M对应的数为9,则点N对应的数为m+9,当点N到AB中点时,点N此时对应的数为:m+9+12=m+21,则点M对应的数为:m+21﹣m=21;当点N与点M重合时,同理可得,点M对应的数为﹣3,故答案为:21或﹣3.【点睛】此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.17.﹣5x+3y【解析】【分析】先根据题意求出多项式A然后再求A-B【详解】解:由题意可知:A+B=x-y∴A=(x-y)-(3x-2y)=-2x+y∴A-B=(-2x+y)-(3x-2y)=-5x+3解析:﹣5x+3y.【解析】【分析】先根据题意求出多项式A,然后再求A-B.【详解】解:由题意可知:A+B=x-y,∴A=(x-y)-(3x-2y)=-2x+y,∴A-B=(-2x+y)-(3x-2y)=-5x+3y.故答案为:-5x+3y .【点睛】本题考查多项式的加减运算,注意加减法是互为逆运算.18.1【解析】【分析】把x =1代入代数式求出ab 的关系式再把x =﹣1代入进行计算即可得解【详解】x =1时ax3﹣3bx+4=a ﹣3b+4=7解得a ﹣3b =3当x =﹣1时ax3﹣3bx+4=﹣a+3b+4解析:1【解析】【分析】把x =1代入代数式求出a 、b 的关系式,再把x =﹣1代入进行计算即可得解.【详解】x =1时,12ax 3﹣3bx +4=12a ﹣3b +4=7, 解得12a ﹣3b =3, 当x =﹣1时,12ax 3﹣3bx +4=﹣12a +3b +4=﹣3+4=1. 故答案为:1.【点睛】 本题考查了代数式的求值,整体思想的运用是解题的关键.19.80【解析】【分析】根据标价×=售价求解即可【详解】解:设该商品的标价为x 元由题意08x =64解得x =80(元)故答案为:80元【点睛】考查了销售问题解题关键是掌握折扣售价标价之间的关系解析:80【解析】【分析】根据标价×10折扣=售价,求解即可. 【详解】解:设该商品的标价为x 元由题意0.8x =64解得x =80(元)故答案为:80元.【点睛】考查了销售问题,解题关键是掌握折扣、售价、标价之间的关系. 20.①③④【解析】【分析】正方体的6个面都是正方形用平面去截正方体最多与6个面相交得六边形最少与3个面相交得三角形因此截面的形状可能是三角形四边形五边形六边形再根据用一个平面截正方体从不同角度截取所得形解析:①③④【解析】【分析】正方体的6个面都是正方形,用平面去截正方体最多与6个面相交得六边形,最少与3个面相交得三角形,因此,截面的形状可能是三角形、四边形、五边形、六边形,再根据用一个平面截正方体,从不同角度截取所得形状会不同,进而得出答案.【详解】解:用平面去截正方体,得到的截面形状可能是三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不可能是直角三角形和钝角三角形.所以正确的结论是可能是锐角三角形、可能是长方形和梯形.故答案为:①③④.【点睛】本题考查了正方体的截面,注意:截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形.三、解答题21.(1)40;(2)小明家到西安北站的距离为30千米.【解析】【分析】(1)根据公共汽车的平均速度是20千米/小时,改乘出租车,车速提高了一倍可得答案;(2)根据行驶三分之二的路程,乘出租车比乘公共汽车少用半小时列方程求解即可.【详解】解:(1)由题意可得,出租车的速度为40千米/小时,故答案为:40;(2)小明家到西安北站的距离为x千米,由题意得:2213320402x x-=,即11130602x x-=,解得:30x ,答:小明家到西安北站的距离为30千米.【点睛】本题主要考查了一元一次方程在实际生活中的应用,解题的关键在于把握题意,根据时间差来列一元一次方程,22.(1)-8;(2)5【解析】【分析】(1)根据有理数的加法法则进行计算即可;(2)去括号,再计算加减即可.【详解】(1)(3)(5)8-+-=-;(2)11112+3425436⎛⎫⨯-=+-= ⎪⎝⎭. 【点睛】本题考查有理数的运算,解题时需注意,若先去括号比较简单,则应先去括号,再计算加减.23.(1)第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)当购买文具盒50个时,两种方案所付的费用相同;(3)当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【解析】【分析】(1)根据商场实行两种优惠方案分别计算即可;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解方程即可得出结果;(3)由(1)、(2)可得当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【详解】解:(1)第①种方案应付的费用为:1040(4010)8640⨯+-⨯=(元),第②种方案应付的费用为:(1040408)90%648⨯+⨯⨯=(元);答:第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得:1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解得:50x =;答:当购买文具盒50个时,两种方案所付的费用相同;(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算; 当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择; 当购买文具盒个数大于50个时,选择方案②比较合算.【点睛】本题考查了列一元一次方程解应用题,设出未知数,列出一元一次方程是解题的关键.24.第一天到第三天的差价分别为0.5元,0.3元,0.13元,差的平均值为0.31元.【解析】【分析】设开盘价为x 元,分别表示出每天最高价与最低价,并求出差价,再求差的平均值即可.【详解】解:设开盘价为x 元,第一天:最高价为(0.3)x +元,最低价(0.2)x -元,差价为:(0.3)(0.2)0.30.20.5x x x x +--=+-+=(元);第二天:最高价(0.2)x +元,最低价(0.1)x -元,差价为:(0.2)(0.1)0.20.10.3x x x x +--=+-+=(元);第三天:最高价x 元,最低价(0.13)x -元,差价为:(0.13)0.130.13x x x x --=-+=(元), 差的平均值为:0.50.30.130.313++=(元), 则第一天到第三天的差价分别为0.5元,0.3元,0.13元,差的平均值为0.31元.【点睛】此题考查了整式的加减,以及列代数式,弄清题意,求出差价是解本题的关键.25.(1)北偏东30°;(2)∠AOC =30°.【解析】【分析】(1)先根据余角的定义计算出∠NOC ,然后得到OC 的方向;(2)由OB 的方向是南偏东60°得到∠BOE=30°,则∠NOB=120°,根据OA 平分∠NOB 得到∠NOA=60°,再根据角的和差计算即可.【详解】解:(1)由OB 的方向是南偏东60°,可得∠SOB =60°,∵∠SOB 与∠NOC 互余,∴∠NOC =90°﹣∠SOB =30°,∴OC 的方向是北偏东30°;故答案为:北偏东30°;(2)∵OB 的方向是南偏东60°,∴∠BOE =30°,∴∠NOB =30°+90°=120°,∵OA 平分∠BON ,∴∠NOA =12∠NOB =60°, ∵∠NOC =30°,∴∠AOC =∠NOA ﹣∠NOC =60°﹣30°=30°.【点睛】本题考查了方向角:方向角是从正北或正南方向到目标方向所形成的小于九十度的角.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度,若正好为45度,则表示为正西(东)南(北).。