浙教版八年级数学上册第1章三角形的初步知识单元检测试卷及答案

合集下载

浙教版数学八年级上册第1章《三角形的初步知识》测试题含答案

浙教版数学八年级上册第1章《三角形的初步知识》测试题含答案

第1 章测试题一、选择题(每小题4 分,共32 分)1.下列图形中,能说明∠1>∠2 的是(D)2.下列各组线段中,能组成三角形的是(C)A. a=6.3,b=6.3,c=12.6B. a=1,b=2,c=3C. a=2.5,b=3,c=5D. a=5,b=7,c=153.如图①,在△ABC 中,D,E 分别是AB,AC 的中点,把△ADE 沿线段DE 向下折叠,使点A 落在BC 上的点A′处,得到图②,则下列四个结论中,不一定成立的是(C)(第3 题)A. DB=DAB. ∠B+∠C+∠1=180°C. BA=CAD. △ADE≌△A′DE(第4 题)4.如图,∠ABC=∠DCB=70°,∠ABD=40°,AB=DC,则∠BAC=(B) A. 70° B.80°C. 100°D. 90°5.下列命题中,属于假命题的是(B) A. 定义都是真命题B. 单项式-247x y的系数是-4C. 若|x-1|+(y-3)2=0,则x=1,y=3D. 线段垂直平分线上的任意一点到线段两端的距离相等6.下列条件中,不能判断△ABC≌△DEF 的是(A) A. ∠A=∠E,BA=EF,AC=FDB. ∠B=∠E,BC=EF,高AH=DGC. ∠C =∠F =90°,∠A =60°,∠E =30°,AC =DFD. ∠A =∠D ,AB =DE ,AC =DF7.如图,△ABC 的三边 AB ,BC ,CA 的长分别是 100,110,120,其三条角平分线将 △ABC 分为三个三角形,则 S △AOB ∶S △BOC ∶S △COA =(C )A. 1∶1∶1B. 9∶10∶11C. 10∶11∶12D. 11∶12∶13(第 7 题)【解】 利用角平分线的性质定理可得△AOB ,△BOC ,△COA 分别以 AB ,BC ,AC为底时,高相等,则它们的面积之比等于底之比.8.定义运算符号“*”的意义为:a *b =a b ab+ (其中 a ,b 均不为 0).下面有两个结论:①运算“*”满足交换律;②运算“*”满足结合律.其中(A ) A. 只有①正确 B. 只有②正确 C. ①和②都正确 D. ①和②都不正确 【解】 ∵a *b =a b ab +,b *a =b aba+∴a *b =b *a ,即①正确.∵(a *b )*c =a bab+*c =a bc ab a b c ab +++⋅=a b abc ac bc +++a *(b *c )=a *b c bc+=b c a bc b c a bc+++⋅=abc b c ab ac +++ a *b )*c ≠a *(b *c ),即②不正确. 二、填空题(每小题 4 分,共 24 分)9.把命题“互为倒数的两数之积为 1”改成“如果……那么……”的形式:如果两个数互为倒数,那么这两个数的积为1.10.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是三角形的稳定性.,(第10 题)),(第11 题))11.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BDC=78°,∠BOC=110°.12.如图,在△ABC 中,AD 为BC 边上的中线,DE⊥AB 于点E,DF⊥AC 于点F,AB=3,AC=4,DF=1.5,则DE= 2 .【解】∵AD 是中线,∴S△ABD=S△ACD,∴AB·DE=ACꞏDF,∴DE=2.,(第12 题)),(第13 题))13.如图,在△ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 交于点D,则∠BCD=10°.【解】∵MN 是AC 的中垂线,∴∠ACD=∠A=40°.又∵∠B=90°,∴∠ACB=50°,∴∠BCD=∠ACB-∠ACD=50°-40°=10°.14.如图,在△ABC 中,AD 是∠A 的外角平分线,P 是AD 上异于点A 的任意一点,设PB=m,PC=n,AB=c,AC=b,则m+n>b+c(填“>”“<”或“=”).,(第14 题)),(第14 题解))【解】如解图,在BA 的延长线上取点E,使AE=AC,连结ED,EP.∵AD 是∠A 的外角平分线,∴∠CAP=∠EAP.⎪⎧AE=AC,在△ACP 和△AEP 中,∵⎨∠CAP=∠EAP,⎩⎪AP=AP,∴△ACP≌△AEP(SAS).∴PC=PE. 在△PBE 中,PB+PE>AB+AE,即PB+PC>AB+AC.∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.三、解答题(共44 分)15.(8 分)如图,已知线段a,b,h(h<b),求作△ABC,使BC=a,AB=b,BC 边上的高线长为h.(第15 题)【解】作法如下:①作直线PQ,在直线PQ 上任意取一点D,作DM⊥PQ.②在DM 上截取线段DA=h.③以点A 为圆心,b 为半径画弧交射线DP 于点B,连结AB.④以点B 为圆心,a 为半径画弧分别交射线BP 和射线BQ 于点C1 和C2,连结AC1,AC2.则△ABC1 和△ABC2即为所求作的三角形(如解图).(第15 题解)16.(10 分)如图,AB=AE,BC=ED,∠B=∠E,F 为CD 的中点.求证:AF⊥CD.(第16 题)【解】连结AC,AD.在△ABC 和△AED 中,⎪⎧AB=AE,∵⎨∠B=∠E,⎩⎪BC=ED,∴△ABC≌△AED(SAS).∴AC=AD.∵F 是CD 的中点,∴CF=DF.⎪⎧AC=AD,在△ACF 和△ADF 中,∵⎨CF=DF,⎩⎪AF=AF,∴△ACF≌△ADF(SSS).∴∠AFC=∠AFD.∵∠AFC+∠AFD=180°,∴∠AFC=90°,∴AF⊥CD.17.(12 分)如图,AD 是一段斜坡,AB 是水平线,现为了测斜坡上一点D 的铅直高度(即垂线段DB 的长度),小亮在点D 处立上一竹竿CD,并保证CD=AB,CD⊥AD,然后在竿顶C 处垂下一根细绳(细绳末端挂一重锤,以使细绳与水平线垂直),细绳与斜坡AD 交于点E,此时他测得CE=8 m,AE=6 m,求BD 的长度.(第17 题)【解】延长CE 交AB 于点F.∵∠A+∠1=90°,∠C+∠2=90°,∠1=∠2,∴∠A=∠C.在△ABD 和△CDE 中,⎪⎧∠A=∠C,∵⎨∠ABD=∠CDE=90°,⎩⎪CE=AD,∴△ABD≌△CDE(AAS).∴AD=CE=8 m.∴BD=DE=AD-AE=2 m.18.(14 分)如图,在△ABC 中,∠ACB=90°,AC=BC,直线MN 经过点C,且AD⊥MN 于点D,BE⊥MN 于点E.(1)当直线MN 绕点C 旋转到图①的位置时,求证:DE=AD+BE. (2)当直线MN绕点C 旋转到图②的位置时,求证:DE=AD-BE.(3)当直线MN 绕点C 旋转到图③的位置时,试问:DE,AD,BE 具有怎样的等量关系?请直接写出这个等量关系.(第18 题)【解】(1)∵∠ACB=90°,∴∠ACD+∠ECB=90°.∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB.⎪⎧∠DAC =∠ECB , 在△ADC 和△CEB 中,∵⎨∠ADC =∠CEB ,⎩⎪AC =CB ,∴△ADC ≌△CEB (AAS ),∴AD =CE ,DC =EB .∵DE =CE +CD ,∴DE =AD +BE . (2)同(1)可证,∠DAC =∠ECB . 又∵∠ADC =∠BEC =90°,AC =CB , ∴△ADC ≌△CEB (AAS ),∴AD =CE ,CD =BE . ∵DE =CE -CD ,∴DE =AD -BE . (3)DE =BE -AD .。

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AC=4cm,△ADC的周长为12cm,则BC的长是()A.7cmB.8cmC.9cmD.10cm2、如图,在△ABC中,∠ABC=50°,AD,CD分别平分∠BAC,∠ACB,则∠ADC等于()A.125°B.105°C.115°D.100°3、如图,△ABC≌△ADE,∠B=70°,∠C=26°,∠DAC=30°,则∠EAC=()A.27°B.30°C.54°D.55°4、如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()。

A.1个B.2个C.3个D.4个5、根据下列条件,能确定三角形形状的是()①最小内角是20°;②最大内角是100°;③最大内角是89°;④三个内角都是60°;⑤有两个内角都是80°.A.①②③④B.①③④⑤C.②③④⑤D.①②④⑤6、已知一个三角形的两边长分别为和,则这个三角形的第三边长可能是()A. B. C. D.7、如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是()A. B. C. D.8、如图,在平行四边形中,平分,交于点,平分,交于点,,,则长为()A.8B.9C.10D.129、如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么点A(﹣1,3)的对应点A′的坐标是()A.(3,1)B.(1,3)C.(﹣3,1)D.(﹣1,﹣3)10、如图,在平行四边形中,,,过点作边的垂线交的延长线于点,点是垂足,连接、,交于点.则下列结论:①四边形是正方形;②;③;④,正确的个数是()A. B. C. D.11、已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-∠A.上述说法正确的个数是()A.0个B.1个C.2个D.3个12、如图:AB∥DE,CD=BF,若△ABC≌△EDF,还需补充的条件可以是A.∠B=∠EB.AC='EF'C.AB=EDD.不用补充条件13、如图所示,△ABC中,AB=AC,BE、CD是△ABC的中线,下列结论不正确的有()A.S△ADC =S△BDCB.S△ABE=S△CBEC.S△BDF=S△CEFD.S△ADE=S△BDC14、如图所示,三角形ABC的底边BC=x,顶点A沿BC边上高AD向D点移动,当移动到E 点,且DE=AD时,三角形ABC的面积将变为原来的()A. B. C. D.15、如图,在△ABC中,AD是∠BAC的平分线,为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A.65°B.70°C.75°D.85°二、填空题(共10题,共计30分)16、如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,且∠A+∠ABC=90°,则∠PEF=________.17、在中,AB=AC,,则 :∠B=________。

浙教版数学八年级上册 第一章 三角形的初步知识单元测试(含答案)

浙教版数学八年级上册  第一章 三角形的初步知识单元测试(含答案)

浙教版数学八上第一章一、单选题1.下列长度的三条线段,能组成三角形的是( )A.5,6,10B.5,6,11C.3,4,8D.6,6,132.在证明命题“若a2>1,则a>1”是假命题时,下列选项中所举反例不正确的是( )A.a=2B.a=―2C.a=―3D.a=―43.如图,在△ABC和△BAD中,AC=BD,BC=AD,在不添加任何辅助线的条件下,可判断△ABC≌△BAD,判断这两个三角形全等的依据是( )A.ASA B.AAS C.SSS D.SAS4.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为( )A.1cm B.2cm C.3cm D.4cm5.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列符合题意的是( )A.B.C.D.6.如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD于E,图中全等三角形有( )A.3对B.5对C.6对D.7对7.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是( )A.5°B.13°C.15°D.20°8.如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+ 1∠C;②当∠C=60°时,AF+BE=AB;2③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是( )A.①②B.②③C.①②③D.①③9.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为( )A.1B.2C.3D.410.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点MMN的长为半径画弧,两弧交于点P,连结AP并延长交BC于和N,再分别以M、N为圆心,大于12点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.4二、填空题11.一个命题由“条件”和“结论”两部分组成,则命题“同角的余角相等”的条件是 .12.如图,∠BAD=∠CAE.BC=DE.若添加一个条件可得ΔABC≌ΔADE,则添加的条件及对应的理由是 .(写出所有满足条件的答案)13.如图,△ABC中,AB=15,BC=9,BD是AC边上的中线.若△ABD的周长为35,则△BCD的周长是 .14.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、AB分别于点D、E,则△AEC的周长等于 。

浙教版八上数学第一章 三角形的初步知识 单元练习卷(含答案)

浙教版八上数学第一章 三角形的初步知识 单元练习卷(含答案)

浙教版八上数学第一章一、单选题1.下列生活实例中,利用了“三角形稳定性”的是( )A.B.C.D.2.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为( )A.1cm B.2cm C.3cm D.4cm3.如图,在△ABC中,∠C=90°,AD是∠A角平分线,DE⊥AB于点E,CD=2,BC=6,则BE=( )A.2B.22C.23D.64.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是( )作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于1DE的长为半径画弧,两弧在∠AOB内交于一点C;2③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS5.如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=45°,∠E=60°,则∠BAC的大小是( )A.60°B.65°C.75°D.95°6.如图,已知锐角∠AOB,根据以下要求作图.(1)在射线OA上取点C和点E,以点O为圆心,OC,OE的长为半径画弧,分别交射线OB于点D,F;(2)连接CF,DE交于点P.则下列结论错误的是( )A.CE=DFB.点P在∠AOB的平分线上C.PE=PFD.若∠AOB=60°,则∠CPD=120°7.三边长度都是整数的三角形称为整数边三角形,若一个三角形的最长边长为8,则满足条件的整数边三角形共有( )A.8个B.10个C.12个D.20个8.如图所示,在△ABC中,点O是∠BCA与∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离OD是( )A.1B.2C.3D.49.如右图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=129°,则∠2的度数为( )A.49°B.50°C.51°D.52°10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90∘;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.③④D.①③二、填空题11.已知三角形的三边长分别是2、7、x,且x为奇数,则x= .12.“两直线平行,同位角相等”是 命题(真、假).13.如图,在△ABC中,∠BDC=125°,如果∠ABC与∠ACB的平分线交于点D,那么∠A= 度.14.在△ABC中,BD平分∠ABC,如果AB=12,BC=8,△ABD的面积为24,则△CBD的面积为 15.如图,在Rt△ABC中,DE是斜边AB的垂直平分线,连接BD,若∠CBD=26°,则∠A= 度.16.如图,已知AD为△ABC的中线,AB=10cm,AC=7cm,△ACD的周长为20cm,则△ABD的周长为 cm.三、解答题17.如图,在△ABC中,∠ADB=∠ABD,∠DAC=∠DCA,∠BAD=32°,求∠BAC的度数.18.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.19.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)∠BAC的度数为______,∠DAF的度数为______;(2)若△DAF的周长为20,求BC的长.20.如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P在线段BC上以3cm/s 的速度由点B出发向终点C运动,同时点Q在线段CA上以acm/s的速度由点C出发向终点A运动,设点P的运动时间为ts.(1)求CP的长;(用含t的式子表示)(2)若以C、P、Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求t,a 的值.21.定义:在一个三角形中,如果有一个角是另一个角的1,我们称这两个角互为“和谐角”,这个2三角形叫做“和谐三角形” .例如:在△ABC中,如果∠A=70°,∠B=35°,那么∠A与∠B互为“和谐角”,△ABC为“和谐三角形”.问题1:如图1,△ABC中,∠ACB=90°,∠A=60°,点D是线段 A BB 上一点(不与A、B 重合),连接CD(1)如图1,△ABC 是“和谐三角形”吗?为什么?(2)如图1,若CD⊥AB,则△ACD、△BCD是“和谐三角形” 吗?为什么?(3)问题2:如图2,△ABC 中,∠ACB=60°,∠A=80°,点 D 是线段AB 上一点(不与A、B 重合),连接CD,若△ACD 是“和谐三角形”,求∠ACD 的度数.22.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)23.(1)阅读理解:问题:如图1,在四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°.求证:DA=DC.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC上截取BM=BA,连接DM,得到全等三角形,进而解决问题;方法2:延长BA到点N,使得BN=BC,连接DN,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接AC,当∠DAC=60°时,探究线段AB,BC,BD之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD中,∠A+∠C=180°,DA=DC,过点D作DE⊥BC,垂足为点E,请直接写出线段AB、CE、BC之间的数量关系.答案解析部分1.【答案】B2.【答案】D3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】A11.【答案】712.【答案】真13.【答案】7014.【答案】1615.【答案】3216.【答案】2317.【答案】解:在三角形ABD中,(180°﹣32°)=74°,∠ADB=∠ABD=12在三角形ADC中,∠ADB=37°,∠DAC=∠DCA=12∴∠BAC=∠DAC+∠BAD=37°+32°=69°.18.【答案】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF在△ABE与△CBF中,{AC=CB∠ABE=∠CBFBE=BF∴△ABE≌△CBF(SAS).19.【答案】(1)100°,20°;(2)20.20.【答案】(1)CP =(8﹣3t )cm(2)t =43,a =154或t =1,a =321.【答案】(1)解:ΔABC 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∴∠B =12∠A ,∴ΔABC 是“和谐三角形”;(2)解:ΔACD 、ΔBCD 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∵CD ⊥AB ,∴∠ADC =∠BDC =90°,∴∠ACD =30°,∠BCD =60°.在ΔACD 中,∵∠A =60°,∠ACD =30°,∴∠ACD =12∠A ,∴ΔACD 为和谐三角形”;在ΔBCD 中,∵∠BCD =60°,∠B =30°,∴∠B =12∠BCD ,∴ΔBCD 为和谐三角形”;(3)解:若ΔACD 是“和谐三角形”,由于点D 是线段AB 上一点(不与A 、B 重合),则∠ACD =12∠A 或∠ACD =12∠ADC .当∠ACD =12∠A 时,∠ACD =12∠A =40°;当∠ACD =12∠ADC 时,∠A +3∠ACD =180°,即3∠ACD =100°,∴∠ACD =100°3.综上,∠ACD 的度数为40°或100°3.22.【答案】(1)解:如图,∵∠1=∠2+∠D=∠B+∠E+∠D ,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°(2)解:∵∠1=∠2+∠F=∠B+∠E+∠F ,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°(3)解:∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.23.【答案】(1)解:方法1:在 BC 上截 BM =BA ,连接 DM ,如图.∵BD 平分 ∠ABC ,∴∠ABD =∠CBD .在 ΔABD 和 ΔMBD 中, {BD =BD∠ABD =∠MBD BA =BM ,∴ΔABD≌ΔMBD ,∴∠A =∠BMD , AD =MD .∵∠BMD +∠CMD =180° , ∠C +∠A =180° .∴∠C =∠CMD .∴DM =DC ,∴DA =DC .方法2:延长 BA 到点N ,使得 BN =BC ,连接 DN ,如图.∵BD 平分 ∠ABC ,∴∠NBD =∠CBD .在 ΔNBD 和 ΔCBD 中, {BD =BD∠NBD =∠CBD BN =BC ,∴ΔNBD≌ΔCBD .∴∠BND =∠C , ND =CD .∵∠NAD +∠BAD =180° ,∠C +∠BAD =180° .∴∠BND =∠NAD ,∴DN =DA ,∴DA =DC .(2)解: AB 、 BC 、 BD 之间的数量关系为: AB +BC =BD . (或者: BD ―CB =AB , BD ―AB =CB ).延长 CB 到点P ,使 BP =BA ,连接 AP ,如图2所示.由(1)可知 AD =CD ,∵∠DAC =60° .∴ΔADC 为等边三角形.∴AC =AD , ∠ADC =60° .∵∠BCD +∠BAD =180° ,∴∠ABC =360°―180°―60°=120° .∴∠PBA =180°―∠ABC =60° .∵BP =BA ,∴ΔABP 为等边三角形.∴∠PAB =60° , AB =AP .∵∠DAC =60° ,∴∠PAB +∠BAC =∠DAC +∠BAC ,即 ∠PAC =∠BAD .在 ΔPAC 和 ΔBAD 中, {PA =BA∠PAC =∠BAD AC =AD ,∴ΔPAC≌ΔBAD .∴PC =BD ,∵PC =BP +BC =AB +BC ,∴AB +BC =BD .(3)BC ―AB =2CE。

2024年浙教版数学八上第一章 三角形的初步认识 单元测试卷(含答案)

2024年浙教版数学八上第一章 三角形的初步认识 单元测试卷(含答案)

第一章三角形的初步认识单元测试卷一、选择题1.以下列数值为长度的各组线段中,能组成三角形的是( )A.2,4,7B.3,3,6C.5,8,2D.4,5,62.下列汽车标志中,不是由多个全等图形组成的是( )A.B.C.D.3.已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|的结果是( )A.2b-2c B.-2b C.2a+2b D.2a4.能说明命题“一个钝角与一个锐角的差一定是锐角”是假命题的反例是( )A.∠1=91°,∠2=50°B.∠1=89°,∠2=1°C.∠1=120°,∠2=40°D.∠1=102°,∠2=2°5.如图,点B、C、D在同一直线上,若△ABC≌△CDE,DE=4,BD=13,则AB等于( )A.7B.8C.9D.106.如图所示,△ABC≌△BAD,点A与点B,点C与点D是对应顶点,如果∠DAB=50°,∠DBA=40°,那么∠DAC的度数为( )A.50°B.40°C.10°D.5°7.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA = 2,则PQ的长不可能是( )A.4B.3.5C.2D.1.58.在下面四个命题是真命题的个数有( )(1)互相垂直的两条线段一定相交;(2)有且只有一条直线垂直于已知直线;(3)两条直线被第三条直线所截,同位角相等;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.A.3个B.2个C.1个D.0个9.如图,已知线段a,h作等腰△ABC,使AB=AC,且BC=a,BC边上的高AD=h.张红的作法如下:(1)作线段BC=a;(2)作线段BC的垂直平分线MN,MN与BC相交于点D;(3)在直线MN上截取线段h;(4)连结AB,AC,则△ABC为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是( )A.(1)B.(2)C.(3)D.(4)10.如图,△ABC为直角三角形,∠ACB=90°,AD为∠CAB的平分线,与∠ABC的平分线BE交于点E,BG是△ABC的外角平分线,AD与BG相交于点G,则∠ADC与∠GBF的和为( )A.120°B.135°C.150°D.160°二、填空题11.将命题“同角的补角相等”改写成“如果……那么……”的形式为 12.如图,在△ABC和△DEF中,A、F、C、D在同一直线上,AF=DC,AB=DE,当添加条件 时,就可得到△ABC≌△DEF(只需填一个你认为正确的条件即可).13.如图,△ABC≌△CDE ,若∠D =35°,∠ACB =45°,则∠DCE 的度数为 .14.已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ;(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点P ;(3)画射线OP ,射线OP 即为所求(如图).从上述作法中可以判断△MOP≌△NOP ,其依据是 (在“SSS ”“SAS ”“AAS ”“ASA ”中选填)15.如图,在△ABC 中,AD 是BC 边上的中线,CE 是AB 边上的高,若AB =3,S △ADC =6,则CE 的长度为 .16.如图,点 C 在线段 BD 上,AB ⊥BD 于 B ,ED ⊥BD 于 D .∠ACE =90°,且 AC =5cm ,CE =6cm ,点 P 以 2cm/s 的速度沿 A→C→E 向终点 E 运动,同时点 Q 以 3cm/s 的速度从 E 开始,在线段 EC 上往返运动(即沿 E→C→E→C→…运动),当点 P 到达终点时,P ,Q 同时停止运动.过 P ,Q 分别作 BD 的垂线,垂足为 M ,N .设运动时间为 ts ,当以 P ,C ,M 为顶点的三角形与△QCN 全等时,t 的值为  .三、作图题17.如图,按下列要求图:(要求有明显的作图痕迹,不写作法)(1)作出△ABC的角平分线CD;(2)作出△ABC的中线BE;(3)作出△ABC的高BG.四、解答题18.某同学用10块高度都是5cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板ABD(∠ABD=90°,BD=BA),点B在CE上,点A和D分别与木墙的顶端重合.(1)求证:△ACB≌△BED;(2)求两堵木墙之间的距离.19.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.20.如图,在△ABC中,E是AB上一点,AC与DE相交于点F,F是AC的中点,AB∥CD.(1)求证:△AEF≌△CDF;(2)若AB=10,CD=7,求BE的长.21.如图,在Rt△ABC中,AC=BC,∠ACB=90°,BF平分∠ABC交AC于点F,AE⊥BF于点E,AE,BC的延长线交于点M.(1)求证:AB=BM;(2)求证:BF=2AE.22.如图,△ABC是等边三角形,点D在AC上,以BD为一边作等边△BDE,连接CE.(1)说明△ABD ≌△CBE的理由;(2)若∠BEC=82°,求∠DBC的度数.23.如图,∠ACB=90°,AC=BC,AD⊥MN,BE⊥MN,垂足分别是D,E.(1)求证:△ADC≌△CEB;(2)猜想线段AD,BE,DE之间具有怎样的数量关系,并说明理由.24.如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(2)若AB=7,AD=4,CD=8,S△ACD=15,求△ABE的面积.答案解析部分1.【答案】D 2.【答案】C 3.【答案】A 4.【答案】D 5.【答案】C 6.【答案】C 7.【答案】D 8.【答案】(1)D 9.【答案】C 10.【答案】B11.【答案】如果两个角是同一个角的补角,那么这两个角相等12.【答案】BC=EF (答案不唯一)13.【答案】100°14.【答案】SSS 15.【答案】816.【答案】1或115或23517.【答案】(1)解:如图:CD 是所求的△ABC 的角平分线;(2)解:如图:BE 是所求的△ABC 的中线;(3)解:如图BG 为所求的△ABC 的高.18.【答案】(1)证明:由题意得:AB =BD ,∠ABD =90°,AC ⊥CE ,DE ⊥CE ,∴∠BED =∠ACB =90°,∴∠BDE+∠DBE =90°,∠DBE+∠ABC =90°,∴∠BDE =∠ABC ,在△ACB 和△BED 中,{∠ABC =∠BDE ∠ACB =∠BED BD =AB,∴△ACB ≌△BED (AAS );(2)解:由题意得:AC =5×3=15(cm ),DE =7×5=35(cm ),∵△ACB ≌△BED ,∴DE =BC =35cm ,BE =AC =15cm ,∴DE =DC+CE =50(cm ),答:两堵木墙之间的距离为50cm .19.【答案】证明:∵在△ABD 和△CBD 中, {AB =CB AD =CD BD =BD ,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.20.【答案】(1)证明:∵AB//CD∴∠A=∠DCF∵∠AFE=∠DFC∵ F是AC的中点,∴AF=CF∴△AEF≌△CDF(2)解:∵△AEF≌△CDF∴AE=CD∵BE=AB-AE=AB-CD=10-7=321.【答案】(1)证明:∵BF平分∠ABC,∴∠ABE=∠MBE,∵AE⊥BF,∴∠AEB=∠MEB=90°,∵BE=BE∴△ABE≌△MBE(ASA)∴AB=BM(2)证明:∵△ABE≌△MBE,∴AE=EM,∴AM=2AE,∵∠ACB=90°,∠MEB=90°,∴∠BCF=∠ACM=90°,∠M+∠CBF=∠M+∠CAM=90°,∴∠CBF=∠CAM,∵BC=AC,∴△BCF≌△ACM(ASA),∴BF=AM,∴BF=2AE.22.【答案】(1)解:△ABD ≌△CBE,理由如下:∵△ABC与△BDE是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∵∠DBC=∠DBC,∴∠ABD=∠CBE∴△ABD≌△CBE(SAS);(2)解:由(1)可得:△ABD ≌△CBE,∵∠BEC=82°,∴∠BEC=∠BDA=82°,∵∠ACB=60°,∠ADB=∠DBC+∠ACB,∴∠DBC=22°.23.【答案】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=∠CBE+∠ECB=90°,∴∠ACD=∠CBE.在△ADC和△CEB中{∠ADC=∠CEB∠ACD=∠CBEAC=BC∴△ADC≌△CEB;(2)解:AD=BE+DE,理由如下:∵△ADC≌△CEB,∴CD=BE,AD=CE.∴CE=CD+DE=BE+DE.∴AD=BE+DE.24.【答案】(1)证明:如图,过点E作EG⊥AD于G,EH⊥BC于H,∵EF⊥AB,∠AEF=50°,∴∠FAE=90°−50°=40°,∵∠BAD=100°,11 / 11∴∠CAD =180°−∠BAD−∠FAE =40°,∴∠FAE =∠CAD =40°,∴CA 为∠DAE 的平分线,又EF ⊥AB ,EG ⊥AD ,∴EF =EG ,∵BE 是∠ABC 的平分线,∴EF =EH ,∴EG =EH ,∴点E 在∠ADC 的平分线上,∴DE 平分∠ADC ;(2)解:设EG =x ,则EF =EH =EG =x ,∴S △ACD =S △ADE +S △CDE =12AD ⋅EG +12CD ⋅EH =15,即:12×4x +12×8x =15,解得,x =52,∴S △ABE =12AB ⋅EF =12×7×52=354,∴△ABE 的面积为354.。

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,Rt△ABC Rt△DEF,则∠E的度数为( )A.30°B.45°C.60°D.90°2、中华人民共和国国旗上的五角星,它的五个锐角的度数和是()A.50°B.100°C.180°D.200°3、下列命题是假命题的是()A.线段垂直平分线上的点到线段两端的距离相等B.三角形的一个外角等于与它不相邻的两个内角的和C.有一个外角是120°的等腰三角形是等边三角形D.有两边和一角对应相等的两个三角形全等4、用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.SAS5、如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是( )A. B. C. D.6、如图,在△ABC中,点D、E分别是边AC,AB的中点,BD,CE相交于点O,连接AO,在AO上取一点F,使得OF= AF若S△ABC =12,则四边形OCDF的面积为()A.2B.C.3D.7、已知等腰三角形的两边长为4cm和8cm,则三角形周长是()A.12 cmB.16cmC.20cmD.16cm或20cm8、如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.AC=BC+CEB.∠A=∠2C.△ABC≌△CEDD.∠A与∠D互余9、如图,在△ABC中,AB=AC,∠BAC=70°,∠BAC的平分线与AB的垂直平分线交于点O,点E、F分别在BC、AC上,点C沿EF折叠后与点O重合,则∠BEO的度数是()A.20°B.35°C.40°D.55°10、下列命题①方程x2=x的解是x=1②4的平方根是2③有两边和一角相等的两个三角形全等④连接任意四边形各边中点的四边形是平行四边形其中真命题有:()A.4个B.3个C.2个D.1个11、将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8 cm,水的最大深度是2 cm,则杯底有水部分的面积是( )A.( )cm 2B.( )cm 2C.( )cm2 D.( )cm 212、已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为( )A.13B.8C.10D.8 或 1313、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.135°B.150°C.270°D.90°14、如图,≌,,则的度数是( )A. B. C. D.15、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度与M、N重合,过角尺顶点C作射线OC.那么判定△MOC≌△NOC的依据是()A.边角边B.边边边C.角边角D.角角边二、填空题(共10题,共计30分)16、如图,△ABC中,D,E分别在边AB,AC上,DE∥BC.若∠A=60°,∠B=70°,则∠AED的度数为________.17、如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③△POF∽△BNF;④当△PMN∽△AMP时,点P是AB的中点,其中一定正确的结论有________.(填上所有正确的序号).18、如图,在△ABC中,AB=AC,点D和E分别是边BC和AC上的点,且满足DB=DA=DE,∠CDE=50°,则∠BAC=________°.19、张丽不慎将_道数学题沾上了污渍,变为“如图,在△ABC中,∠B=60°,AB=6 ,tanC= ,求BC的长度”.张丽翻看答案后,得知BC=6+3 ,则部分为________.20、如图,在△ABC中,D是BC延长线上点,∠B=50°,∠ACD=110°,则∠A=________.21、如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3=________.22、如图,在△ABC中,D为BC边中点,P为AC边中点,E为BC上一点且BE=CE,连接AE,取AE中点Q并连接QD,取QD中点G,延长PG与BC边交于点H.若BC=9,则HE=________.23、如图,BF 平分∠ABD,CE 平分∠ACD,BF 与 CE 交于 G,若∠BDC=m°,∠BGC=n°,则∠A 的度数为 ________.(用 m,n 表示)24、已知锐角如图⑴在射线上取一点,以点为圆心,长为半径作弧,交射线于点,连接;⑵分别以点为圆心,长为半径作弧,两弧交于点连接;⑶作射线交于点.根据以上作图过程及所作图形,下列结论中正确的是________;;;;25、已知△ABC≌△DEF,∠A=60°,∠F=50°,点B的对应顶点是点E,则∠B的度数是________.三、解答题(共5题,共计25分)26、如图,在△ABC中,∠B=24°,∠ACB=104°,AD⊥BC于D,AE平分∠BAC,求∠DAE 的度数.27、如图12.1-4,A.B.C.D在同一直线上,且△ABF≌△DCE,那么AF∥DE、BF∥CE、AC=BD吗?为什么?28、如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.求证:AC=AD.29、如图,点B,E,C,F在一条直线上,AC∥DE,AC=DE,∠A=∠D,试说明:AB=DF30、如图,已知在△ABC中,BD平分∠ABC,CD平分△ABC的外角∠ACE,BD、CD相交于D,试说明∠A=2∠D的理由.参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、A5、C7、C8、A9、10、D11、A12、A13、C14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

浙教版八年级数学上《第1章三角形的初步知识》单元检测题含答案

浙教版八年级数学上《第1章三角形的初步知识》单元检测题含答案

上学期八年级数学(上册)第1章三角形的初步知识检测题(时间:100分钟满分:120分)题号 1 2 3 4 5 6 7 8 9 10答案一、选择题(共10小题每3分共30分)1、以长为5cm和3cm的线段为边,且第三边为偶数的三角形,可以作( )A.1个B.2个C.3个D.4个2、将三角形面积分成相等两部分的线是( )A.三角形的角平分线B. 三角形的三边垂直平分线C. 三角形的高线D. 三角形的中线3、如图,EDCBA∠+∠+∠+∠+∠等于()A.90°B.108°C.180°D.360°4、不是利用三角形稳定性的是()A.自行车的三角形车架B.三角形房架C.照相机的三角架D.矩形门框的斜拉条5、如图,点E,D分别在AB,AC上,若AB=AC,BE=CD,BD=EC,∠B=32°,∠A=41°,则∠BOC度数是()A.135°B.125°C.115°D.105°6、如图,在△ABC中,BD、CE分别是∠ABC和∠ACB的平分线,AM⊥CE于P,交BC于M,AN⊥BD 于Q,交BC于N,∠BAC=110°,AB=6,AC=5,MN=2,结论①AP=MP;②BC=9;③∠MAN=35°;④AM=AN.其中不正确的有()A. 4个B. 3个C. 2个D. 1个第5题图7、如图,所示某人将一块三角形的玻璃打碎成了四块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.A.第①块B.第②块C.第③块D.第④块 8、下列命题是真命题的是( )A.一个三角形中至少有两个锐角B. 若A ∠与B ∠是内错角, 则A B ∠=∠C.如果两个角有公共边,那么这两个角一定是邻补角D.如果3.14a b =π,那么a b = 9、如图,∠1=∠2,补充一个条件后仍不能判定△ABC ≌△ADC 是( ) A. AB =AD B. ∠B =∠D C. BC=DC D. ∠BAC =∠DAC10、如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于( )A.1︰1︰1B. 6︰8︰3C.5︰8︰3D. 4︰5︰3二、填空题(共8小题 每题3分 共24分)11、在△ABC 中,AD 是BC 边上的中线,AB =5cm ,AD =3cm ,则AC 的取值范围是_____________; 12、如图,AB ∥CD ,∠1=42°,∠3=77°,则∠2的度数为( )第9题图第10题图13、如图,在四边形ABCD 中,AD =AD ,BC =DC ,E 是AC 上的点,则图中共有_______对全等三角形. 14、如图,△ABC 中,DH 是AC 的垂直平分线,交BC 于P ,MN 是AB 的垂直平分线,交BC 于点Q , 连接AP 、AQ ,已知∠BAC =72°,则∠PAQ = 度.15、如图,在△ABC 中,∠C =90°,AC=BC ,BD 平分∠CBA 交AC 于点D ,DE ⊥AB 于点E ,且△DEA 的周长为2022cm ,则AB = .16、如图,在△ABC 中,BC =6cm ,AC =2.5cm ,AB =4cm ,∠B =40°,∠C =55°,选择适当数据,画与△ABC 全等的三角形一共有 种选择方法.17、如果一个角的两边与另一个角的两边分别垂直,那么这两个角相等或互补,这个命题的题设 是 ,结论是 .18、如图,在△AB C 中, E 是边A B 上的点,CF ⊥AB 于F ,EG ⊥C B 于G ,若 △CAF ≌△CEF ≌△CEG ≌△BEG ,则∠ACB =______度. 三、解答题(共8题 共66分)19、(满分6分)已知∠α和线段a ,求作△ABC ,使∠A =∠α,∠C =90°,AB =a .第15题图第18题图第16题图第19题图20. (满分8分)将推理过程的理由填入括号内:如图,AB =CD ,AD =CB ,O 为BD 上任意一点,过O 点的直线分别交AD 、BC 的延长线于M 、N 点,试说明∠1=∠2.解:在△ABD 和△CDB 中,∴△ABD ≌△CDB ( ),∴∠ADB =∠CBD ( ), ∴ AD ∥BC ( ), ∴∠1=∠2( ). 21、(满分8分)如图,点A 、B 、E 、D 在同一直线上, 已知AF ∥DC ,AF =DC ,FE ∥CB .求证:AB DE =.22、(满分6分)如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B =72°,∠F AE =18°,则∠C = 度.23、(满分9分)如图,已知在△ABC 中,∠ACB =90°,CF ⊥AB 于F , 点G 为BC 的中点,E 为AB 上的点,GE 的延长线与CF 的延长线( ) ( ) ( )AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩第21题图第22题图第20题图相交于D ,若CE =BE ,BC =2AC ,则AB =CD .请说明理由.24、(满分8分),如图已知AD 、A D ''分别是边BC 、B C ''上的中线,AB A B ''=,BC B C ''=,AD A D ''=,求证:C C '∠=∠.25、(满分8分)阅读以下材料:对于三个数a 、b 、c ,用}{M a b c ,,表示这三个数的平均数,用}{min a b c ,,表示这三个数中最小的数.例如:}{2121M 21233-++-==,,;}{min 2122-=-,,. 解决下列问题:(1)填空:如果}{M 211358312x x x x +---=-,,,则x 的值为 ; (2)如果}{}{M 3213min 3213a a a a +=+,,,,,求a 的值.26、(满分11分)如图,CD 是经过∠BCA 顶点C 的一条直线,且直线CD 经过∠BCA 的内部,点E ,F 在射线CD 上,已知CA =CB 且∠BEC =∠CF A =∠α.(1)如图1,若∠BCA =80°,∠α=100°,问AF BE EF -=,成立吗?说明理由.(2)将(1)中的已知条件改成∠BCA =∠β,∠α+∠β=180°(如图2),问AF BE EF -=仍成立吗?说明理由.第24题图答 案一、选择题(共10小题 每3分 共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDCCDBCAAB11. 1<AC <11 12.∠2=35° 13.3对 14. 36° 15.2022cm 16.4 三、解答题(共8题 共66分)17.条件:一个角的两边与另一个角的两边分别垂直,结论:这两个角相等或互补 18.90° 19题,作法(1)作∠MAN =∠α, (2)在AM 上截取AB =a ,(3)过点B 作AN 的垂线,垂足为C ,△ABC 为所求作. 20.解:在△ABD 和△CDB 中,AB CDAD CBBD DB =⎧⎪=⎨⎪=⎩(已知)(已知)(公共边) 第19题图∴△ABD ≌△CDB (SSS ),∴∠ADB =∠CBD (全等三角形对应角相等), ∴ AD ∥BC (内错角相等两直线平行 ), ∴∠1=∠2( 两直线平行内错角相等). 21.证明:∵AF ∥DC (已知),∴ ∠A =∠D (两直线平行内错角相等).∵FE ∥CB (已知),∴∠1=∠2(两直线平行内错角相等)∵∠F =180-(∠A +∠1),∠C =180-(∠D +∠2)(三角形内角和定理) ∴∠F =∠C (等量代换) 在△AFE 和△DCB 中,A DAF DCF C ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证),(已知),(已证), ∴△AFE ≌△DCB (ASA )∴AE =DB (全等三角形对应边相等). ∴AE -BE =DB -EB (等量减等量差相等). 即AB =DE .22.解:∵DE 是AC 的垂直平分线, ∴EA =EC , ∴∠EAC =∠C , ∴∠F AC =∠EAC +18°, ∵AF 平分∠BAC , ∴∠F AB =∠EAC +18°, ∵∠B +∠BAC +∠C =180°,∴72°+2(∠C +18°)+∠C =180°, 解得,∠C =24°,第21题图第22题图第20题图故答案为:24.23.证明:∵G 为BC 的中点(已知), ∴CG =BG (中点定义), ∵BC =2AC (已知), ∴AC =CG (等量代换) 在△ECG 和△EBG 中,CE BEEG EGCG BG =⎧⎪=⎨⎪=⎩(已知),(公共边),(已证), ∴△ECG ≌△EBG (SSS ).∴∠EGC =∠EGB (全等三角形对应角相等). ∵∠EGC +∠EGB =180°(平角定义)∴∠EGC =∠EGB =90°=∠ACB (等量代换)∵CF ⊥AB (已知),∵∠DFE =∠EGB =90°(垂直定义),∠1=∠2(对顶角相等), ∴∠D =∠B (三角形内角和定理) △ABC 和△CDG 中,B D ACB CGDAC CG ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证),(已证),(已证), ∴△ABC ≌△CDG (AAS )∴AB =CD (全等三角形对应边相等).24.证明:∵AD 、A D ''分别是边BC 、B C ''上的中线(已知), ∴12BD BC =, 12B D BC ''''=(中点定义), ∵BC B C ''=(已知), ∴BD B D ''=(等量代换).ABD ∆和A B D '''∆中,第23题图AB A BBD B DAD A D ''=⎧⎪''=⎨⎪''=⎩(已知),(已证),(已知), ∴ABD ∆≌A B D '''∆(SSS )∴B B '∠=∠(全等三角形对应边相等).ABC ∆和A B C '''∆中, AB A B B BBC B C ''=⎧⎪'∠=∠⎨⎪''=⎩(已知),(已证),(已知), ∴ABC ∆≌A B C '''∆(SAS )∴C C '∠=∠(全等三角形对应边相等).25.(1)由题意,得2113583123x x x x +---=-+解方程,得2x = (2)由题意,得321333a a +++=,3213213a a a +++=+,321333a aa +++=解这三个方程,都得1a =.26.证明:(1)AF BE EF -=成立,理由如下: ∵∠BCA =80°(已知), ∴∠BCE +∠ACE =80°∵∠BEC =∠α=100°(已知), ∴∠BEF =180°-100°=80°(平角定义). ∴∠B +∠BCE =80°(三角形外角和定理) ∴∠B =∠ACE (等量代换). 在△BCE 和△CAF 中,B ACFBEC CFACB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证),(已知),(已知),第24题图∴△BCE ≌△ CAF (AAS )∴BE =CF ,AF =EC (全等三角形对应边相等). ∴EF =CF -CE =BE -AF (等量代换). (2)AF BE EF -=成立,理由如下: ∵∠BCA =∠β, ∴∠BCE+∠ACE=∠β ∵∠BEC =∠α=180°-∠β, ∴∠BEF=180°-∠α=∠β. ∴∠B +∠BCE =∠β. ∴∠B =∠ACE在△BCE 和△CAF 中,B ACF BEC CFACB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证),(已知),(已知),∴△BCE ≌△ CAF (AAS ) ∴BE =CF ,AF =EC ∴EF =CF -CE =BE -AF。

浙教版八年级数学上册第一章三角形的初步认识单元测试(含答案解析)

浙教版八年级数学上册第一章三角形的初步认识单元测试(含答案解析)

第一章三角形的初步认识单元测试一、选择题1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,62.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SASB.SSS C.AAS D.ASA(第3题) (第4题) (第5题)4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()个.A .1 B.2 C.3 D.45.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.2 B.3 C.4 D.56.下列是命题的是()A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等D.若a2=4,求a的值7.下列命题中,真命题是()A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90°B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°(第8题) (第9题) (第10题)9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为()A.60°B.70°C.80°D.90°二、填空题11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是______.(第11题) (第13题) (第14题)12.把命题“对顶角相等”改写成“如果…那么…”的形式:______.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=______°.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是______(添加一个条件即可).15.命题“若x(1﹣x)=0,则x=0”是______命题(填“真”、假),证明时可举出的反例是______.16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=______.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC 的周长为22,那么AB=______.(第17题) (第18题)18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是______.(将你认为正确的结论的序号都填上)19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=______.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有______种.三、解答题21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△AB C.(第21题) (第22题)22.阅读填空:如图,已知∠AO B.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△______,判定依据是______,由此得到∠OED=∠______;再证明△PEC≌△______,判定依据是______,由此又得到PE=______;最后证明△EOP≌△______,判定依据是______,从而便可证明出∠AOP=∠BOP,即OP平分∠AO B.23.证明命题“全等三角形对应边上的高相等”.24.已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.参考答案与试题解析一、选择题1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,6【考点】三角形三边关系.【分析】三角形的任意两边之和都大于第三边,根据以上定理逐个判断即可.【解答】解:A、∵4+6=10,不符合三角形三边关系定理,∴以4、6、10为三角形的三边,不能组成三角形,故本选项错误;B、∵3+6>7,6+7<3,3+7>6,符合三角形三边关系定理,∴以3、6、7为三角形的三边,能组成三角形,故本选项正确;C、∵5+6<12,不符合三角形三边关系定理,∴以5、6、12为三角形的三边,不能组成三角形,故本选项错误;D、∵2+3<6,不符合三角形三边关系定理,∴以2、3、6为三角形的三边,不能组成三角形,故本选项错误;故选B.【点评】本题考查了对三角形三边关系定理的应用,能熟记三角形三边关系定理的内容是解此题的关键.2.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形【考点】三角形内角和定理.【分析】根据三角形内角和定理得到∠A+∠B+∠C=180°,则∠A+∠B=180°﹣∠C,由∠A=∠B﹣∠C 变形得∠A+∠B=∠C,则180°﹣∠C=∠C,解得∠C=90°,即可判断△ABC的形状.【解答】解:∵∠A+∠B+∠C=180°,∴∠C+∠B=180°﹣∠A,而∠A﹣∠C=∠B,∴∠C+∠B=∠A,∴180°﹣∠A=∠A,解得∠A=90°,∴△ABC为直角三角形.故选D.【点评】本题考查了三角形内角和定理:三角形的内角和为180°,直角三角形的判定,熟记掌握三角形的内角和是解题的关键.3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【考点】作图—基本作图;全等三角形的判定.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.【点评】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()个.A.1 B.2 C.3 D.4【考点】三角形的角平分线、中线和高.【分析】由于AB⊥AD,AB⊥BC,根据三角形的高的定义,可确定以AB为一条高线的三角形的个数.【解答】解:∵AB⊥AD,AB⊥BC,∴以AB为一条高线的三角形有△ABD,△ABE,△ABC,△ACE,一共4个.故选D.【点评】此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.5.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.2 B.3 C.4 D.5【考点】全等三角形的判定.【分析】从最简单的开始找,因为图形对折,所以首先△CDB≌△C′DB,由于四边形是长方形所以,△ABD≌△CD B.进而可得另有2对,分别为:△ABE≌△C′DE,△ABD≌△C′DB,如此答案可得.【解答】解:∵△BDC′是将长方形纸片ABCD沿BD折叠得到的,∴C′D=CD,BC′=BC,∵BD=BD,∴△CDB≌△C′DB(SSS),同理可证明:△ABE≌△C′DE,△ABD≌△C′DB,△ABD≌△CDB三对全等.所以,共有4对全等三角形.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.6.下列是命题的是()A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等 D.若a2=4,求a的值【考点】命题与定理.【分析】根据命题的定义对各选项进行判断.【解答】解:A、“作两条相交直线”为描叙性语言,它不是命题,所以A选项错误;B、“∠α和∠β相等吗?”为疑问句,它不是命题,所以A选项错误;C、全等三角形对应边相等,它是命题,所以C选项正确;D、“若a2=4,求a的值”为描叙性语言,它不是命题,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.下列命题中,真命题是()A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等【考点】命题与定理.【分析】利用垂线的性质、全等三角形的判定、锐角的性质分别判断后即可确定正确的选项.【解答】解:A、同一平面内垂直于同一直线的两条直线平行,故错误,为假命题;B、有两边和其中一边上的高对应相等的两个三角形全等,故错误,为假命题;C、三角形的三个角中,至少有两个锐角,故正确,为真命题;D、有两边和其中一个角对应相等的两个三角形全等,错误,为假命题,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解垂线的性质、全等三角形的判定、锐角的性质,难度不大.8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90°B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和得到∠1=∠2+∠D,∠2=∠A+∠C,根据三角形内角和定理得到答案.【解答】解:∵∠1=∠2+∠D,∠2=∠A+∠C,∴∠1=∠A+∠C+∠D,∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故选:B.【点评】本题考查的是三角形内角和定理和三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,然后求出△DEB的周长=AB即可得解.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE,∴△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长=6cm.故选B.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质是解题的关键.10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为()A.60°B.70°C.80°D.90°【考点】三角形内角和定理;三角形的角平分线、中线和高.【专题】探究型.【分析】根据三角形内角和定理可求得∠DBC+∠DCB的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC+∠ACB的度数,从而不难求得∠A的度数.【解答】解:连接B C.∵∠BDC=130°,∴∠DBC+∠DCB=180°﹣130°=50°,∵∠BGC=100°,∴∠GBC+∠GCB=180°﹣100°=80°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠GBD+∠GCD=∠ABD+∠ACD=30°,∴∠ABC+∠ACB=110°,∴∠A=180°﹣110°=70°.故选B.【点评】本题考查的是三角形内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.二、填空题11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是三角形的稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性进行解答即可.【解答】解:这样做的依据是三角形的稳定性,故答案为:三角形的稳定性.【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.12.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C= 65°.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】利用三角形内角和定理求得∠AED=75°;然后根据已知条件和三角形外角定理可以求得∠BAE的度数;最后结合三角形角平分线的定义和三角形内角和定理进行解答.【解答】解:如图,∵AD⊥BC,∴∠ADE=90°.又∵∠DAE=15°,∴∠AED=75°.∵∠B=35°,∴∠BAE=∠AED﹣∠B=40°.又∵AE为∠BAC的平分线,∴∠BAC=2∠BAE=80°,∴∠C=180°﹣∠B﹣∠BAC=65°.故答案是:65.【点评】本题主要考查三角形内角和定理,垂直的性质,角平分线的性质,关键在于熟练运用个性质定理推出相关角之间的关系.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD(添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△AC D.故答案为:∠B=∠C或AE=A D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.15.命题“若x(1﹣x)=0,则x=0”是假命题(填“真”、假),证明时可举出的反例是x=1.【考点】命题与定理.【分析】要证明一个命题是假命题只要举一个反例即可.【解答】解:当x=1时,x(1﹣x)=0也成立,所以证明命题“若x(1﹣x)=0,则x=0”是假命题的反例是:x=1,故答案为:假,x=1.【点评】考查了命题与定理的知识,解题的关键是了解学生对反例证法的掌握情况,属于基础题,比较简单.16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=8.【考点】三角形三边关系.【分析】首先确定第三边的取值范围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x的取值范围,从而确定绝对值内的代数式的符号,难度不大.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC 的周长为22,那么AB=12.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由AB的中垂线DE交AC于点D,交AB于点E,可得AD=BD,又由BC=10,△DBC的周长为22,可求得AC的长,继而求得答案.【解答】解:∵AB的中垂线DE交AC于点D,交AB于点E,∴AD=BD,∵△DBC的周长为22,∴BC+CD+BD=BC+CD+AD=BC+AC=22,∵BC=10,∴AC=12.∵AB=AC,∴AB=12.故答案为:12.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【考点】全等三角形的判定与性质.【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.【点评】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=130°或50°.【考点】垂线.【专题】分类讨论.【分析】根据题意画出图形,然后分情况进行讨论分析即可.【解答】解:①如图1,∵∠a+∠β=180°﹣90°﹣90°=180°,∠α=50°,∴∠β=130°,②如图2,若∠a的两边分别与∠β的两边在同一条直线上,∴∠a=∠β=50°,综上所述,∠β=130°或50°.故答案是:130°或50°.【点评】本题主要考查角的计算,垂线的性质,关键在于根据题意画出图形,分情况进行讨论分析.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有4种.【考点】三角形三边关系.【分析】三角形的三边中,等边三角形三边相等;除此外,必有一边是最长边;然后首先确定第三边的取值范围,从而确定答案.【解答】解:设三边长分别为a≤b≤c,则a+b=13﹣c>c≥,∴≤c<,故c=5,或6;分类讨论如下:①当c=5时,b=4,a=4或b=3,a=5;②当c=6时,b=5,a=2或b=4,a=3;∴满足条件的三角形的个数为4,故答案为:4.【点评】本题考查了三角形的三边关系,属竞赛题型,且涉及分类讨论的思想.解答的关键是找到三边的取值范围及对三角形三边的理解把握.三、解答题21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△AB C.【考点】作图—复杂作图.【专题】作图题.【分析】(1)利用基本作图(作已知角的平分线)画∠ACB的平分线OG;(2)过点A作AH⊥BC于H,则AH为BC边上的高;(3)先作线段EF=BC,然后分别以E、F为圆心,BA和CA为半径画弧,两弧交于点D,则△DEF 与△ABC全等.【解答】解:(1)如图1,CG为所作;(2)如图1,AH为所作;(3)如图2,△DEF为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.阅读填空:如图,已知∠AO B.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△FOC,判定依据是SAS,由此得到∠OED=∠OFC;再证明△PEC≌△PFD,判定依据是AAS,由此又得到PE=PF;最后证明△EOP≌△FOP,判定依据是SSS,从而便可证明出∠AOP=∠BOP,即OP平分∠AO B.【考点】作图—基本作图;全等三角形的判定与性质.【分析】求∠AOB的平分线可利用三角形全等的性质作图.【解答】解:作法:(1)分别在OA,OB上截取OC=OD,OE=OF,连接CF,DE,交于P点,(2)连接OP即可,在△EOD与△FOC中,,∴△EOD≌△FOC(SAS),∴∠OED=∠OFC,在△PEC与△PFD中,,∴△PEC≌△PFD(AAS),∴PE=PF.在△EOP与△FOP中,,∴△EOP≌△FOP(SSS),∴∠AOP=∠BOP,即OP平分∠AO B.故答案为:FOC,SAS,OFC;PFD,AAS,PF;△FOP,SSS,【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法及全等三角形的判定定理是解答此题的关键.23.证明命题“全等三角形对应边上的高相等”.【考点】全等三角形的性质.【专题】证明题.【分析】根据图形写出已知,求证,根据全等三角形的性质求出AB=EF,∠B=∠F,根据全等三角形的判定求出△ABD≌△EFH即可.【解答】解:已知:如图,△ABC≌△EFC,AD、EH分别是△ABC和△EFC的对应边BC、FG上的高.求证:AD=EH.证明:∵△ABC≌△EFC,∴AB=EF,∠B=∠F,∵AD、EH分别是△ABC和△EFC的对应边BC、FG上的高,∴∠ADB=∠EHF=90°,在△ABD和△EFH中,∴△ABD≌△EFH(AAS),∴AD=EH.【点评】此题主要考查学生对全等三角形的性质及判定的理解及运用能力.注意命题的证明的格式、步骤.24.(12分)已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)①根据∠BAD+∠CAE=90°,∠ACE+∠CAE=90°,即可得出∠BAD=∠ACE;②根据全等三角形的判定方法(AAS)得出△ABD≌△CAE,从而得出BD=AE;(2)根据△ABD≌△CAE,得出BD=AE,AD=CE,再根据AE=AD+DE,即可得出BD,DE,CE三者间的数量关系.【解答】解:(1)①∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥MN,∴∠ACE+∠CAE=90°,∴∠BAD=∠ACE;②∵BD⊥MN,∴∠BDA=∠AEC=90°,在△ABD和△CAE中,,∴△ABD≌△CAE,∴BD=AE;(2)∵△ABD≌△CAE,∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=CE+DE.【点评】此题考查了全等三角形的判定与性质,用到的知识点是AAS、直角三角形的性质,关键是通过证明两个三角形全等得出相等的线段.。

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,∠A=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分AB,那么∠C的度数为()A.93°B.87°C.91°D.90°2、如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形3、如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.SSAD.ASA4、如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°5、如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD,若CD=AC,∠A=50°,则∠B=()A.50°B.45°C.30°D.25°6、如图,AD 是△ABC 的中线,已知△ABD 的周长为22 cm,AB 比AC 长3 cm,则△ACD 的周长为()A.19 cmB.22 cmC.25 cmD.31 cm7、下列图形中具有稳定性的是()A.梯形B.长方形C.三角形D.四边形8、如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内的一点,且∠1=∠2,则∠P 的度数为( )A.110°B.120°C.130°D.140°9、如图,△ABC≌△ADE,∠B=20°,∠E=110°,则∠EAD的度数为()A.80°B.70°C.50°D.130°10、如图,若△ABC≌△DEF,BE=22,BF=5,则FC的长度是()A.10B.12C.8D.1611、如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于( )A.3B.4C.7D.812、如图,中,,,,若恰好经过点B,交AB于D,则的度数为()A. B. C. D.13、如图,AB∥CD,那么∠A,∠P,∠C的数量关系是()A.∠A+∠P+∠C=90°B.∠A+∠P+∠C=180°C.∠A+∠P+∠C=360° D.∠P+∠C=∠A14、一个三角形的两边长分别为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11B.11或13C.13D.以上选项都不符合题意15、如图,用4根木条钉成一个四边形木架,要使这个木架不变形,至少要再钉上木条的根数是()A.0B.1C.2D.3二、填空题(共10题,共计30分)16、四条木棒长为1,4,5,8,选其中三条组成三角形的概率是________.17、如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB的周长为________cm.18、如图,在△ABC中,AB=AC=5,BC=4 ,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为________.19、三角形的三条边的长为整数,且两两不等,最长边为8,这样的三角形共有________个.20、如图,已知点A(t,1)在第一象限,将OA绕点O顺时针旋转45°得到OB,若反比例数y=(k>0)的图象经过点A、B,则k=________.21、已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为________.22、如图,三个边长均为1的正方形按如图所示的方式摆放,A1, A2分别是正方形对角线的交点,则重叠部分的面积和为________.23、如图,中,为的中点,以为圆心,长为半径画一弧交于点,若,,,则扇形的面积为________.24、如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是________.25、如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.三、解答题(共5题,共计25分)26、化简÷﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.27、如图,在△ABC中,∠C=90°,AB=2AC,AD平分∠BAC,求证:点D在AB的垂直平分线上.28、如图,已知△ABC中,AB=2,BC=4(1)画出△ABC的高AD和CE;(2)若AD=,求CE的长.29、王强同学用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板,点C在上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.30、如图,射线OA∥射线CB,∠C=∠OAB=100°.点D、E在线段CB上,且∠DOB=∠BOA,OE平分∠DOC.(1)试说明AB∥OC的理由;(2)试求∠BOE的度数;(3)平移线段AB;①试问∠OBC:∠ODC的值是否会发生变化?若不会,请求出这个比值;若会,请找出相应变化规律.②若在平移过程中存在某种情况使得∠OEC=∠OBA,试求此时∠OEC的度数.参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、B5、D6、A7、C8、A9、C10、B11、C12、B13、C14、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。

浙教版八年级上第1章 三角形的初步知识单元测试(含答案)

浙教版八年级上第1章 三角形的初步知识单元测试(含答案)

单元测试(一) 三角形的初步知识一、选择题(每小题3分,共30分) 1.下列命题为假命题的是( D )A .三角形三个内角的和等于180°B .三角形两边之和大于第三边C .三角形的外角大于任何一个和它不相邻的内角D .若a >0,b <0,则a +b >0 2.下列条件:①∠A =∠B =∠C ;②∠A ∶∠B ∶∠C =1∶2∶3;③∠A =90°+∠B ;④∠A =∠B =12∠C ,能确定△ABC 是直角三角形的条件有( B )A .1个B .2个C .3个D .4个3.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B =35°,∠ACE =60°,则∠A =( C )A .35°B .95°C .85°D .75°第3题图 第5题图 第6题图4.(萧山区期中)把三角形的面积分为相等的两部分的是( A )A .三角形的中线B .三角形的角平分线C .三角形的高D .以上都不对5.如图,AC 与BD 相交于点O ,已知AB =CD ,AD =BC ,则图中全等的三角形有( D )A .1对B .2对C .3对D .4对6.如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( B )A .25°B .27°C .30°D .45° 7.如图,点D ,E 分别在AC ,AB 上,已知AB =AC ,添加下列条件,不能说明△ABD ≌△ACE 的是( D )A .∠B =∠C B .AD =AE C .∠BDC =∠CEBD .BD =CE第7题图 第8题图 第9题图8.如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC =2∠B ,∠B =2∠DAE ,那么∠ACB 等于( B )A .80°B .72°C .48°D .36°9.如图,△ABC 的三边AB ,BC ,CA 的长分别是100,110,120,其三条角平分线将△ABC分为三个三角形,则S△ABO∶S△BCO∶S△CAO( C )A.1∶1∶1 B.9∶10∶11C.10∶11∶12 D.11∶12∶1310.如图,在△ABC中,P、Q分别是B C、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有( B )①P A平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二、填空题(每小题4分,共24分)11.工人师傅在做完门框后,为防止变形常常像图中所示的那样订上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是三角形具有稳定性.第11题图第13题图第14题图第15题图第16题图12.命题“任何一个角的补角都不小于这个角”是假命题(填“真”或“假”);若是假命题,举个反例:120°的角大于它的补角.13.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BDC=78°,∠BOC=110°.14.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D,连结CD,若AB=5,AC=4,则△ACD的周长为9.15.(杭州青春中学期末)如图,△ABC三边的中线A D、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是4.16.如图,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连结BF、CE,下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的是①②③④(填序号).三、解答题(共66分)17.(6分)如图,△ABC 中,∠ACB =90°,CD 为AB 边上的高,BE 平分∠ABC ,分别交C D 、AC 于点F 、E ,求证:∠CFE =∠CEF .证明:∵∠ACB =90°, ∴∠CBE +∠CEB =90°. ∵CD ⊥AB ,∴∠ABE +∠BFD =90°. ∵BE 平分∠ABC , ∴∠CBE =∠ABE . ∴∠CEB =∠BFD . ∵∠BFD =∠CFE , ∴∠CEB =∠CFE ,即∠CFE =∠CEF .18.(8分)(杭州六校联考)如图,在△ABC 和△BAD 中,AC 与BD 相交于点E ,已知AD =BC ,另外只能从下面给出的三个条件:①∠DAB =∠CBA ;②∠D =∠C ;③∠DBA =∠CAB 中选择其中的一个用来证明△ABC 和△BAD 全等,这个条件是①(填序号),并证明△ABC ≌△BAD .证明:在△ABC 和△BAD 中, ⎩⎨⎧BC =AD ,∠CBA =∠DAB ,BA =AB ,∴△ABC ≌△BAD (SAS ).19.(8分)证明命题“全等三角形对应边上的高相等”是真命题.解:已知:如图,△ABC ≌△EFG ,A D 、EH 分别是△ABC 和△EFG 的对应边B C 、FG 上的高.求证:AD =EH .证明:∵△ABC ≌△EFG , ∴AB =EF ,∠B =∠F .∵A D 、EH 分别是△ABC 和△EFG 的对应边B C 、FG 上的高, ∴∠ADB =∠EHF =90°. 在△ABD 和△EFH 中,⎩⎨⎧∠ADB =∠EHF ,∠B =∠F ,AB =EF ,∴△ABD ≌△EFH (AAS ). ∴AD =EH .20.(10分)如图,△ABC 的两条高AD ,BE 相交于点H ,且AD =BD ,试说明下列结论成立的理由.(1)∠DBH =∠DAC ;(2)△BDH ≌△ADC . 解:(1)∵AD ⊥BC , ∴∠ADC =∠ADB =90°. ∵BE ⊥AC ,∴∠BEA =∠BEC =90°.∴∠DBH +∠C =90°,∠DAC +∠C =90°.∴∠DBH =∠DAC .(2)∵∠DBH =∠DAC ,BD =AD ,∠BDH =∠ADC =90°,∴△BDH ≌△ADC (ASA ).21.(10分)(杭州中考)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a ,b ,c )(a ≤b ≤c )表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的三角形,请列举出所有满足条件的三角形;(2)用直尺和圆规作出三边满足a <b <c 的三角形(用给定的单位长度,不写作法,保留作图痕迹).解:(1)(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)由(1)可知,只有(2,3,4),即a =2,b =3,c =4时满足a <b <c . 如图所示的△ABC 即为满足条件的三角形.22.(12分)已知:如图,在△AB C、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C、D、E三点在同一直线上,连结BD.(1)求证:△BAD≌△CAE;(2)试猜想B D、CE有何特殊位置关系,并证明.解:(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)B D、CE特殊位置关系为BD⊥CE.证明:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°,即∠BDE=90°.∴BD⊥CE.23.(12分)(绍兴县柯岩中学月考)探究与发现:如图1所示的图形,像我们常见的学习用品——圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=40°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE 的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.解:(1)连结AD 并延长至点F ,由外角定理可得∠BDF =∠BAD +∠B ,∠CDF =∠CAD +∠C , ∴∠BDF +∠CDF =∠BAD +∠CAD +∠B +∠C , 即∠BDC =∠BAC +∠B +∠C .(2)②由(1)的结论得∠DBE =∠A +∠ADB +∠AEB , ∴∠ADB +∠AEB =80°.∴∠DCE =12(∠ADB +∠AEB )+∠A =40°+50°=90°.③∵∠BG 1C =110(∠ABD +∠ACD )+∠A ,∠ABD +∠ACD =∠BDC -∠A , ∴77°=110(140°-∠A )+∠A .∴∠A =70°.。

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、已知a,b,c分别是三角形的三边,则方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法判断2、Rt△ABC中,∠B=90°∠A=30°.以C为圆心,小于BC长为半径画弧与AC、BC边交于点F、E.分别以E、F为圆心,大于EF为半径画弧,两弧交于点N,若BC=,则点M 到AC的距离是()A.1B.C.D.33、下列命题中,逆命题是真命题的是()A.直角三角形的两锐角互余B.对顶角相等C.若两直线垂直,则两直线有交点D.若4、已知等腰三角形的一边等于3,一边等于7,那么它的周长等于()A.13B.13或17C.17D.14或175、如图,已知在正方形中,点分别在上,△是等边三角形,连接交于,给出下列结论:①;②;③垂直平分; ④.其中结论正确的共有( ).A.1个B.2个C.3个D.4个6、需要做一个三角形的木架,在以下四组长度的木棒中,符合条件的是()A.3cm,2cm,1cmB.3cm,4cm,5cmC.5cm,12cm,6cm D.6cm,6cm,12cm7、如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE8、如图,△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2, l3上,且l1, l2之间的距离为2,l2, l3之间的距离为3,则AC的长是()A. B. C. D.9、下列说法正确的个数是()①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合;⑤能够重合的图形是全等图形.A.5B.4C.3D.210、如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正确的有()A.1个B.2个C.3个D.4个11、如图,射线射线CD,与的平分线交于点E,,点P是射线AB上的一动点,连结PE并延长交射线CD于点给出下列结论:是直角三角形;;设,,则y关于x的函数表达式是,其中正确的是()A. B. C. D.12、如图,如果△ABC≌△DEF,∠B=25°,∠F=45°,那么∠A=()A.25°B.45°C.70°D.110°13、如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为()平方米.A.96B.204C.196D.30414、如图,在中,,点是的中点,交于;点在上,,,,则的长为()A.12B.10&nbsp;C.8D.615、如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°二、填空题(共10题,共计30分)16、如图,点D,E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是________(只写一个条件即可).17、如图,△ABC中,BC边所在直线上的高是线段________.18、写出“对顶角相等”的逆命题________19、如图,在△ABC中,∠ABC=60°,AB=AC,AD⊥BC,垂足为D,点E在线段AD 上,∠BEC=90°,则∠ACE等于________.20、人站在晃动的公共汽车上.若你分开两腿站立,则需伸出一只手去抓栏杆才能站稳,这是利用了________.21、如图,已知D为△ABC的边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,则∠ACD的度数为________.22、如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是________.23、如图,AB∥CD, AF=EF,若∠C=62°,则∠A=________度.24、如图,△ABC为等腰直角三角形,∠B=90°,AB=2,把△ABC绕点A逆时针旋转60°得到△AB1C1,连接CB1,则点B1到直线AC的距离为________.25、已知在平面直角坐标系中,点O为坐标原点,点P的坐标为(-2,2),射线PA与x轴正半轴交于点A,射线PB与y轴负半轴交于点B,且线段OA的长度大于线段OB,同时始终满足∠APB=45°,则AOB的面积为________.三、解答题(共5题,共计25分)26、如图,AB⊥BC,DC⊥BC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.27、如图,中,BD平分,于点E,于F,,,,求DE长.28、如图①是大众汽车的图标,图②是该图标抽象的几何图形,且AC∥BD,∠A=∠B,试猜想AE与BF的位置关系,并说明理由.29、如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.30、选做题:你能用SSS来解释三角形的稳定性吗?参考答案一、单选题(共15题,共计45分)1、C2、A3、A4、C5、C6、B7、D8、B9、D10、C11、A13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、下列各组线段,能组成三角形的是()A.2cm 3cm 5cmB.5cm 6cm 10cmC.2cm 2cm 5cmD.3cm 4cm 8cm2、如下图,延长△ABC的边BA到E,D是AC上任意一点,则下列不等关系中一定成立的是( )A.∠ADB>∠BADB.AB+AD>BCC.∠EAD>∠DBCD.∠ABD>∠C3、在△ABC中,D为BC中点,DE⊥AB于E,DF⊥AC于F,已知DE=DF,则下列结论不一定成立的是()A.AD是等腰△ABC底边上的中线B.AB=BC=CAC.AD平分∠BAC D.AD是△ABC底边上的高线4、直线的图象与两坐标轴围成的三角形面积为2,且随的增大而减小,则的值为()A. B. C. D.5、如图,矩形ABCD中,AB=5,AD=6.E是BC边上一动点,F是CD边的中点.将△ABE沿AE折叠到△AB'E,则B'F的最小值为().A.1B.1.5C.2D.2.56、下列各组数据中,能构成三角形的是()A.1cm、2cm、3cmB.2cm、3cm、4cmC.4cm、9cm、4cm D.2cm、1cm、4cm7、下面是小强用三根火柴组成的图形,其中符合三角形概念的是()A. B. C. D.8、下列长度的三根小木棒能构成三角形的是()A.1cm,2 cm,3 cmB.2 cm,4 cm,6 cmC.3 cm,4 cm,8cm D.6 cm,8 cm,10 cm9、在中,,点,分别是边,的中点,点在内,连接,,.以下图形符合上述描述的是()A. B. C.D.10、下列线段,不能做成直角三角形的是()A. cm,cm,cmB.3cm,4cm,5cmC.7cm,24cm,25cm D.10cm,24cm,26cm11、如图,△ABC与△A1B1C1关于点O成中心对称,下列结论:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有( )A.1个B.2个C.3个D.4个12、如图,为了估计一池塘岸边两点之间的距离,小颖同学在池塘一侧选取了一点P,测得,那么点A与点B之间的距离不可能是()A. B. C. D.13、如图,为测量B点到河对面的目标A之间的距离,他们在B点同侧选择了一点C,测得∠ABC=70°,∠ACB=40°,然后在M处立了标杆,使∠CBM=70°,∠BCM=40°,那么需要测量________才能测得A,B之间的距离( )A.ABB.ACC.BMD.CM14、如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AM∥CNC.AC=BDD.AM=CN15、等腰三角形的两边长为3和6,则这个三角形的周长为()A.9B.12C.15D.12或15二、填空题(共10题,共计30分)16、以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数是________.17、的三个内角的度数之比是,如果按角分类,那么是________三角形.18、直线l1∥l2∥l3,正方形ABCD的三个顶点A,B,C分别在l1、l2, l3上,l1、l2之间的距离是4,l2, l3之间的距离是5,则正方形ABCD的面积是________.19、如图,在中,,,的平分线与的垂直平分线交于点,将沿(在上,在上)折叠,点与点恰好重合,则为________20、如图为6个边长相等的正方形的组合图形,则∠1+∠3=________ .21、如图,AB=AC=4cm,DB=DC,若∠ABC为60度,则BE为________.22、如图,在边长为4的正方形ABCD中,点E是边CD的中点,AE的垂直平分线交边BC 于点G,交边AE于点F,连接DF,EG,以下结论:①DF= ,②DF∥EG,③△EFG≌△ECG,④BG= ,正确的有:________(填写序号)23、如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF 成立.你添加的条件是________.(不再添加辅助线和字母)24、如图,的两条中线、相交于点G,如果,那么________.25、如图,在△ABC中,AM是中线,AN是高。

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,在和中,,.若添加条件后使得,则在下列条件中,添加错误的是()A. B. C. D.2、下列各组图形中,属于全等图形的是()A. B. C. D.3、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.4、如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D5、如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.56、一幅三角板,如图所示叠放在一起,则图中∠ 的度数是()A.75°B.60°C.65°D.55°7、如图,为边上一点,,,且,,则等于()A. B. C. D.8、已知三角形的两边长分别为3和4,则第三边长x的范围是()A.3<x<4B.1<x<7C.1<x<5D.无法确定9、一个直角三角形的两条直角边分别为5、12,则斜边上的高为 ( )A. B. C. D.10、如图,将直尺与含30°角的三角尺放在一起,若∠1=25°,则∠2的度数是()A.30°B.45°C.55°D.60°11、如图,∠1、∠2、∠3的大小关系为()A.∠2>∠1>∠3B.∠1>∠3>∠2C.∠3>∠2>∠1D.∠1>∠2>∠312、三角形三边长为a、b、c均为正整数,且a≤b≤c,当b=2时,符合上述条件的三角形有()个.A.1B.2C.3D.413、如图,等腰△ABC中,AB=AC=3,BC=4,P是BC上不与B和C重合的一个动点,过点P 分别作AB和AC的垂线,垂足为E,F. 则PE+PF=( )A. B. C.6 D.14、已知△ABC≌△DEF,∠A=50°,∠B=75°,则∠F的大小为()A.50°B.55°C.65°D.75°15、如图,A,B,C,D是⊙O上的四个点,B是弧AC的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°二、填空题(共10题,共计30分)16、如果一个等腰三角形一条腰上的高等于另一腰的一半,则该等腰三角形的底角的度数________.17、如图,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是两直线y1=2x+6、y2=2x﹣6中某条上的一点,若△APD是等腰Rt△,则点D的坐标为________18、如图,已知△ABC三个内角的平分线交于点O,延长BA到点D,使AD=AO,连接DO,若BD=BC,∠ABC=54°,则△BCA的度数为________.19、如图,已知AD是△ABC的高,E为AC上的一点,BE交AD于点F,且BF=AC,FD=CD,则∠BAD=________.20、如图,在中,,点在的延长线上,,若,则________°.21、如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=________.22、如图,EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB=4,BC=5,OE=1.5,那么四边形EFCD的周长是________.23、如图,已知,要使,需添加的一个条件是________.24、在△ABC中,∠A等于和它相邻的外角的四分之一,这个外角等于∠B的两倍,那么∠A=________度,∠B=________度,∠C=________度.25、如图,∠BAC=90°,AB=AC,CE⊥AD于E,BF⊥AD于F,若AF=8cm,EF=5cm,则BF=________,CE=________.三、解答题(共5题,共计25分)26、如图,D是AB上的一点,E是AC上的一点,BE、CD相交于一点F,∠A=63°,∠ACD=34°,∠ABE=20°,求∠BDC和∠BFC的度数.27、如图所示,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,求∠EDC 的度数.28、如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.求证:四边形ABEF为菱形;29、如图,点D、E在AB上点F在BC上,点G在AC上,∠1=∠B,∠2=∠3,∠4=80°,求∠ADC的度数.30、如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、C5、B6、A7、A8、B9、C10、C11、D12、C13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,直线,,,则的度数是()A. B. C. D.2、在中,,,的对边分别是,,,下列说法错误的是()A.若,则是直角三角形B.若,则△是直角三角形 C.若,则是直角三角形 D.若,则不是直角三角形3、如图,已知BE平分∠ABC,且BE∥DC,若∠ABC=50°,则∠C的度数是( )A.20°B.25°C.30°D.50°4、等腰三角形两边长分别是3和8,则它的周长是()A.14B.19C.11D.14或195、如图,在四边形ABCD中,AB=BC=2,且∠B=∠D=90°,连接AC,那么四边形ABCD的最大面积是()A.2B.4C.4D.86、已知△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定三角形的形状7、如图所示,在△ABC中,∠C=90°,AC=16cm,AB的垂直平分线MN交AC于D,连接BD,若,则BD的长是( ).A.4cmB.6cmC.8cmD.10cm8、如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须()A.大于60°B.小于60°C.大于30°D.小于30°9、如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSSB.SASC.ASAD.AAS10、已知△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.7或1011、现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个12、如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°13、如图,AC平分∠BAD,∠B=∠D,AB=8cm,则AD=()A.6cmB.8cmC.10cmD.4cm14、如图,在△ABC中,AB=AC,AD是边BC上的高,E,F是AD上的两点,且AE=EF=FD. 若△ABC的面积为6 cm2,则图中阴影部分的面积是()cm2.A.2B.3C.4.8D.515、如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC'的面积是()A.3B.4C.5D.6二、填空题(共10题,共计30分)16、小明有5根小棒,长度分别为3cm,4cm,5cm,6cm,7cm,现从中任选3根小棒,怡好能搭成三角形的概率是________17、在中∠BAC和∠ABC的平分线相交于P,若P到AB的距离为10,则它到边AC和BC的距离和为________.18、如图,在△ABC中,AC的垂直平分线交BC于点D,且AB=BD,若∠B=40°,则∠C=________.19、如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是________.20、平面直角坐标系中有、两点,且线段被轴垂直平分,若坐标为,则坐标为________.21、已知等腰三角形的两边长是和,则它的周长是________.22、如图,在中,,,,将绕点顺时针旋转后得到,将线段绕点逆时针旋转后得到线段,分別以、为圆心,、长为半径画弧和弧,连接,则图中阴影部分的面积是________.23、如图示,半圆的直径,C,D是半圆上的三等分点,点E是OA的中点,则阴影部分面积等于________.24、如图,和分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为________.25、如图,在Rt△ABC中,AB=6, ∠BAC=30º, ∠BAC的平分线交BC于点D,E,F分别是线段AD和AB上的动点,则BE+EF的最小值是________三、解答题(共5题,共计25分)26、如图,在△ABC中,D是BC边上一点,且∠1=∠2,∠3=∠4,∠BAC=60°,求∠DAC 的度数.27、如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=70°,求∠BPC的度数;(2)如图②,过P点作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示);①②③④在(2)的条件下,将直线MN绕点P旋转.(ⅰ)当直线MN与AB、AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由;(ⅱ)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(ⅰ)中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.28、如图,在△ABC中,BE是AC边上的高,DE∥BC,∠ADE=48°,∠C=62°,求∠ABE 的度数.29、如图,▱ABCD中,,,垂足分别是E,求证:.30、如图,菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连结BE,CF.求证:BE=CF.参考答案一、单选题(共15题,共计45分)1、C2、D3、B5、B6、A7、D8、D9、A10、C11、C12、D13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、观察下列个命题:其中真命题是().( 1 )直线、、,如果a⊥b 、 b⊥c ,那么 a⊥c .()三角形的三个内角中至少有两个锐角.()平移变换中,各组对应点连成的两线段平行(或共线)且相等.()三角形的外角和是.A.()()B.()()C.()()D.()()2、以下命题中,真命题的是()A.两条线只有一个交点B.同位角相等C.两边和一角对应相等的两个三角形全等D.等腰三角形底边中点到两腰的距离相等3、如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF和DE,若∠A=70°,∠DCF=50°,BC=8.则AB长为( )A.4B.2C.8D.44、由下列条件不能判定为直角三角形的是()A. B. C.D. ,,5、下列结论中正确的有()①若一个三角形中最大的角是80°,则这个三角形是锐角三角形②三角形的角平分线、中线和高都在三角形内部③一个三角形最少有一个角不小于60°④一个等腰三角形一定是钝角三角形A.1个B.2个C.3个D.4个6、如图,已知点A,点C在反比例函数y= 上(k>0,x>0)的图象上,AB⊥x轴于点B,连结OC交AB于点D,若CD=2OD,则△BDC与△ADO的面积比为()A. B. C. D.7、如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A.2cm<OA<5cmB.2cm<OA<8cmC.1cm<OA<4cmD.3cm<OA <8cm8、如图所示,在中,,,于D,是的平分线,且交于P,如果,则AC的长为()A.1B.2C.3D.49、在中,,,的对边分别是a,b,c,下列条件中,不能判定是直角三角形的是()A. B. C. ,,D.10、已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或120°B.120°C.20°或100°D.36°11、如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠2=30°,则∠1是()A.20°B.60°C.30°D.45°12、如图,对正方形纸片ABCD进行如下操作:(I)过点D任作一条直线与BC边相交于点E1(如图①),记∠CDE1=a1;(II)作∠ADE1的平分线交AB边于点E2(如图②),记∠ADE2=a2;(III)作∠CDE2的平分线交BC边于点E3(如图③),记∠CDE3=a3;按此作法从操作(2)起重复以上步骤,得到a1, a2,…,a n,…,现有如下结论:①当a1=10°时,a2=40°;②2a4+a3=90°;③当a5=30°时,△CDE9≌△ADE10;④当a1=45°时,BE2= AE2.其中正确的个数为()A.1B.2C.3D.413、在△ABC中,已知AB=AC,且一内角为100°,则这个等腰三角形底角的度数为A.100°B.50°C.40°D.30°14、如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF 2=EF•CF15、如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,若∠A =60°,∠B=48°,则∠CDE的大小为()A.72°B.36°C.30°D.18二、填空题(共10题,共计30分)16、如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是________ (只需写一个,不添加辅助线)17、在平面直角坐标系中,有A、B的坐标分别为(﹣1,1)、(3,1),AB=AC,且△ABC的面积为6,则顶点C的坐标为________.18、命题“直角三角形两个锐角互余”的条件是________ ,结论是________19、在△和△中,,和分别为边和边上的中线,再从以下三个条件:①;②;③中任取两个为已知条件,另一个为结论,则最多可以构成________个正确的命题.20、如图,在中,,,以为圆心,任意长为半径画弧分别交、于点和,再分别以、为圆心,大于的长为半径画弧,两弧交于点,连结并延长交于点,则下列说法①是的平分线;②;③点在的中垂线上;正确的个数是________个.21、如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△=8cm2,ABC则S阴影等于________cm222、在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为________.23、如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是________(填序号).①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.24、一个等腰三角形的两边长分别是3cm和6cm,则它的周长为________cm.25、已知AD是△ABC的高,∠DAB=45°,∠DAC=34°,则∠BAC=________.三、解答题(共5题,共计25分)26、如图,在△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠DCE=10°,∠B=60°,求∠A的度数.27、如图,在直角中,,的平分线交于点,若垂直平分,求的度数.28、如图,∠AOB=90°,∠AOC是锐角,OD平分∠BOC,OE平分∠AOC.求∠DOE的度数.29、求证:全等三角形对应角的平分线相等.要求:根据图形写出已知、求证和证明过程.30、如图,正方形ABCD中,E,F分别是边CD,DA上的点,且CE=DF,AE与BF交于点M.求证:AE⊥BF.参考答案一、单选题(共15题,共计45分)2、D3、C4、D5、B6、B7、C8、C9、D10、A11、B12、D13、C14、D15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,平行四边形ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若平行四边形ABCD的周长为28,则△ABE的周长为( )A.28B.24C.21D.142、如图,△ACB≌△A'C'B',∠ACB=70°,∠ACB'=100°,则∠BCA'的度数为()A.30°B.35°C.40°D.50°3、在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,74、如图,已知AB∥CD,∠1=125°,∠2=55°,则∠C=()A.45°B.50°C.70°D.65°5、如图,已知AB∥CD,AD∥BC,∠ABE是平角,则下列说法中正确的是()A.∠1+∠2=∠3B.∠1=∠2>∠3C.∠1+∠2<∠3D.∠1+∠2与∠3的大小没有关系6、平行四边形一边长为10 ,则它的两条对角线可以是( )A.6 ,8B.8, 12C.8, 14D.6, 147、下列命题是假命题的是()A.三角形的中线平分三角形的面积B.三角形的角平分线交点到三角形各边距离相等C.三角形的高线至少有两条在三角形内部D.三角形外心是三边垂直平分线的交点8、如图所示.在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6 cm,则△DEB的周长为()A.12 cmB.8 cmC.6 cmD.4 cm9、如图,已知AB//CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=50°,则∠2的度数为( )A.50°B.60°C.65°D.70°10、如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于()A.1cmB.2cmC.3cmD.4cm11、如图,在△ABC中,AB=AC,∠A=36°,BD,CE是角平分线,则图中的等腰三角形共有()A.8个B.7个C.6个D.5个12、如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A.120°B.60°C.140°D.无法确定13、如图,在△ABC中,∠ACB=90°,∠A=26°,BC=BD,则∠ACD的度数是()A.64°B.42°C.32°D.26°14、如图,AB=CD , BC=DA , E、F是AC上的两点,且AE=CF , DE=BF ,那么图中全等三角形共()对A.4对B.3对C.2对D.1对15、如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△CHD;④∠AHB=∠EHD。

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD 长的最大值为 ( )A. B. C. D.42、等腰△ABC的周长为20,其中一边长为9,则这个等腰三角形的腰长为()A.5.5B.9C.11D.5.5或93、如图,P是∠AOB平分线上一点,CD⊥OP于P,并分别交OA、OB于CD,则CD()P点到∠AOB两边距离之和.A.小于B.大于C.等于D.不能确定4、如图所示,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F,则∠DFC的度数为()A. B. C. D.5、下列长度的各组线段能组成一个三角形的是( ).A.4cm,6cm,11cmB.4cm,5cm,1cmC.3cm,4cm,5cm D.2cm,3cm,6cm6、如图,直角梯形 ABCD 中,AD∥BC,AB⊥BC,AD=3,BC=4.将腰 CD 以 D 为旋转中心逆时针旋转 90°至 DE,连结 AE,则△ADE 的面积是()A. B.2 C. D.不能确定7、如图,图中三角形的个数有()A.6个B.8个C.10个D.12个8、如图,在△ABC中,∠ACB=90°,DE垂直平分AC交AB于点E,若BC=6,则DE的长为()A.6B.5C.4D.39、如图,直线a∥b,等边三角形ABC的顶点B在直线b上,若∠1=34°,则∠2等于()A.84°B.86°C.94°D.96°10、给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;③三角形的三边a、b、c满足a2+c2=b2,则△ABC是∠C为直角的直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A.1个B.2个C.3个D.4个11、如图,AB,CD相交于点O,OA=OC,∠A=∠C,下列结论:(1) △AOD ≌△COB;(2) AD=CB;(3)AB=CD.其中正确的个数为( )A.0个B.1个C.2个D.3个12、如图,在ΔABC中,AD是角平分线,DE⊥AB于点E,ΔABC的面积为10,AB=6,DE=2,则AC的长是()A.6B.5C.4D.313、如下图,要用“HL”判断Rt△ABC和Rt△DEF全等的条件是()A.AC=DF,BC=EFB.∠A=∠D,AB=DEC.AC=DF,AB=DED.∠B=∠E,BC=EF14、如图,的三边的长分别为20,30,40,点O是三条角平分线的交点,则等于()A.1∶1∶1B.1∶2∶3C.2∶3∶4D.3∶4∶515、一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为()A.15B.16C.18D.19二、填空题(共10题,共计30分)16、如图,一副三角板的三个内角分别是90,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上).若固定△ABC,将△BDE绕着公共顶点B顺时针旋转a度(0<a<180),当边DE与△ABC的某一边平行时,相应的旋转角a的值为________ 。

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、已知△ABC≌△A'B'C,∠A=40°,∠CBA=60°,A'C交边AB于P(点P不与A、B重合).BO、CO分别平分∠CBA,∠BCP,若m°<∠BOC<n°,则n﹣m的值为()A.20B.40C.60D.1002、用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SSSB.SASC.ASAD.AAS3、如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°4、如图,△ABC中,∠C=80°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.260°C.180°D.140°5、△ABC的一个内角的大小是40°,且∠A=∠B,那么∠C的外角的大小是 ( )A.80°或140°B.80°或100°C.100°或140°D.140°6、如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF。

②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是A.4个B.3个C.2个D.1个7、如图所示,已知AB∥CD,与的平分线交于点,于点,且,则点到,的距离之和是()A. B. C. D.8、已知一个三角形的两边长分别是2和7,第三边为偶数,则此三角形的周长是()A.15B.16C.17D.15或179、如图,△ABC的角平分线BO、CO相交于点O,∠A=120°,则∠BOC=()A.150°B.140°C.130°D.120°10、如图,△ABC中,AB=AC,EB=EC,则由“SSS”可以判定()A. △ABD≌△ACDB. △ABE≌△ACEC. △BDE≌△CDED.以上答案都不对11、如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处12、如图,∠B=∠C,则∠ADC与∠AEB的大小关系是( )A.∠ADC>∠AEBB.∠ADC<∠AEBC.∠ADC=∠AEBD.大小关系不确定13、如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.ASAD.AAS14、如图,平行四边形 ABCD 中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接 BD,将△BCD 绕点 B 旋转,当 BD(即 BD′)与 AD 交于一点 E,BC(即 BC′)同时与 CD 交于一点 F 时,下列结论正确的是()①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF 的周长的最小值是4+2A.①②B.②③C.①②④D.①②③④15、下列语句中是真命题的是()A.同旁内角互补B.三角形三条中线不会交于一点C.到线段两个端点距离相等的点在线段的垂直平分线上D.三角形按边分类可分为不等边三角形和等边三角形二、填空题(共10题,共计30分)16、如图,在中,.点在上,点在的延长线上,连接FD并延长交BC于点E,若∠BED=2∠ADC,AF=2,DF=7,则的面积为________.17、用同样粗细、同种材料的金属线,制作两个全等的△ABC和△DEF.已知∠B=∠E,若AC边的质量为20kg,则DF边的质量为________ kg.18、如图,在中,的平分线和边的垂直平分线相交于点,过点作垂直于交的延长线于点,若,则的长为________.19、在△ABC 中,BD、CD 分别平分∠ABC 和∠ACB ,若∠A = 50°,则∠BDC 的度数是________.20、如图2所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E的度数是________.21、把下面的推理过程补充完整,并在括号内注明理由.如图,点B、D在线段AE上,BC ∥EF,AD=BE,BC=EF,试说明:①∠C=∠F;②AC∥DF.解:∵AD=BE(已知)∴AD+DB=DB+(________)即AB=DE∵BC∥EF(已知)∴∠ABC=∠________(________)又∵BC=EF(已知)∴△ABC≌△DEF(________)∴∠C=∠F,∠A=∠FDE(________)∴AC∥DF(________)22、如图,在△ABC 中,AB=3,AC=5,则 BC 边的中线 AD 的取值范围为________.23、如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.给出下列结论:①△ABM≌△CDN;②AM=AC;③DN=2NF;④S△AMB=S△ABC.其中正确的结论是________ (只填序号)24、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第________块.25、如图,△ABC是等边三角形,D,E分别是AC,BC上的两点,且AD=CE,AE,BD相交于点N,则∠DNE的度数是________.三、解答题(共5题,共计25分)26、如图,∠MON=90°,点A,B分别在射线OM、ON上移动,BE是∠ABN的平分线,BE的反向延长线与∠OAB平分线相交于点C,试问:∠ACB的大小是否发生变化?如果保持不变,请给出证明;如果随点A、B移动发生变化,请求出变化范围.27、如图,▱ABCD中,E,F为对角线AC上的两点,且BE∥DF;求证:AE=CF.28、如图,已知:在△AFD和△CEB中,点A,E,F,C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.29、如图,在△ABC中,点D是BC边的中点,DE⊥BC,∠ABC的角平分线BF交DE于点P,交AC于点M,连接PC.(Ⅰ)若∠A=60°,∠ACP=24°,求∠ABP的度数;(Ⅱ)若AB=BC,BM2+CM2=m2(m>0),△PCM的周长为m+2时,求△BCM的面积(用含m的代数式表示).30、如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=6cm,求AD的长.参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、B5、A6、B7、B8、D9、A11、D12、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章三角形的初步知识检测卷
一、选择题(每题2分,共20分)
第1题图
1.如图,为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )
A.5m B.15m C.20m D.28m
2.一个三角形三个内角的度数之比为2∶3∶5,这个三角形一定是( )
A.锐角三角形B.直角三角形
C.钝角三角形D.等腰三角形
第3题图
3.张师傅不小心将一块三角形玻璃打破成如图中的三块,他准备去店里重新配置一块与原来一模一样的,最省事的做法是( )
A.带1去B.带2去
C.带3去D.三块都带去
4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有( )
A.1个B.2个C.3个D.4个
5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是(A)
第5题图
6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是( )
A.1cm B.2cm C.3cm D.5cm
7.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是( )
A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN
第7题图
第8题图
第9题图
第10题图
8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )
A.3 B.4 C.6 D.5
9.如图,锐角三角形ABC中,直线l为BC的中垂线,直线m为∠ABC的角平分线,l与m相交于P点.若∠BAC=60°,∠ACP=24°,则∠ABP是( ) A.24°B.30°C.32°D.36°
10.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于1
2MN 的长为半径画弧,两弧
交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )
①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④S △DAC ∶S △
ABC =1∶3.
A .1个
B .2个
C .3个
D .4个 二、填空题(每题3分,共30分)
11.木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中AB 、CD 两个木条),这样做根据的数学道理是____.
第11题图
第12题图
第13题图
第15题图
12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是____________________________________________(只要求写一个条件).
13.一副具有30°和45°角的直角三角板,如图叠放在一起,则图中∠α的度数是________________________________________________________________________.14.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是____ .
15.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于D.若DC=3,则点D 到AB的距离是__________.
16.如图,在△ABC中,AB=12,EF为AC的垂直平分线,若EC=8,则BE的长为________________________________________________________________________.
第16题图
第18题图
第19题图
第20题图
17.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________.
18.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于________________________________________________________________________.19.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是___ .
20.如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C 越来越大,若∠A减少α度,∠B增加β度,∠C增加γ度,则α,β,γ三者之间的等量关系是__ _.
三、解答题(共50分)
21.(6分)已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.
第21题图
22.(7分)如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.
第22题图
23.(6分)如图,△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,________,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.
第23题图
24.(7分)(永州中考)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延长AD到E点,使DE=AB.
第24题图
(1)求证:∠ABC=∠EDC;
(2)求证:△ABC≌△EDC.
25.(8分)如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE 与FA交于点E.求∠E的度数.
第25题图
26.(8分)如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:
(1)线段BC的长;
(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.
第26题图
27.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD 的延长线于点E,求证:BD=2CE.
第27题图
参考答案
第1章 三角形的初步知识检测卷
一、选择题
1.D 2.B 3.C 4.D 5.A 6.B 7.C 8.A 9.C 10.D 二、填空题 11.三角形的稳定性
12.AB =AC 或∠B =∠C 或∠ADC =∠AEB 13.75°
14.答案不唯一,如a =-1,b =3等异号两数 15.3 16.4 17.19 18.70°
19.2∠A =∠1+∠2 20.α=β+γ 三、解答题 21.略
22.∠BFD =90°,∠BED =70°
23.答案不唯一,如横线上添加的条件是∠C =∠D.理由如下: 在△ABC 与△BAD 中, ⎩⎪⎨⎪
⎧∠C =∠D (已知),∠2=∠1(已知),AB =BA (公共边), ∴△ABC ≌△BAD(AAS).
第24题图
24.(1)证明:在四边形ABCD 中,∵∠A =∠BCD =90°,∴∠B +∠ADC =180°.又∵∠ADC +∠EDC =180°,∴∠ABC =∠EDC.
(2)证明:连结AC. 在△ABC 和△EDC 中, ∵⎩⎪⎨⎪
⎧BC =DC ,
∠ABC =∠EDC ,AB =ED ,
∴△ABC ≌△EDC. 25.∠E =45°
26.(1)BC =5cm (2)10a cm 2
27.证明:延长CE 与BA 的延长线交于点F , ∵∠BAC =90°,CE ⊥BD , ∴∠BAC =∠DEC , ∵∠ADB =∠CDE , ∴∠ABD =∠DCE , 在△BAD 和△CAF 中, ⎩⎪⎨⎪
⎧∠BAD =∠CAF ,
AB =AC ,∠ABD =∠DCE ,
∴△BAD ≌△CAF(ASA),
∴BD =CF ,
在△BEF 和△BEC 中, ⎩⎪⎨⎪
⎧∠1=∠2,
BE =BE ,∠BEF =∠BEC ,
∴△BEF ≌△BEC(ASA), ∴CE =EF ,∴DB =2CE.
第27题图。

相关文档
最新文档