新疆克拉玛依市第十三中学七年级数学下册 第九章《不等式与不等式组》检测试题 (新版)新人教版
七年级(下)第九章 不等式与不等式组单元测试卷及答案
第九章不等式与不等式组检测题(时间:100分钟,满分:150分)姓名班级学号一、选择题(每小题4分,共40分)1.下列列出的不等关系中,正确的是( )A.x与4的差是负数可表示为 x-4<0B.x不大于3可表示为x<3C.x是负数可表示为 -xD.x与2的和是非负数可表示为x+2>02. 满足-1<x≤2的数在数轴上表示为()3.不等式x-3≤3x+1的解集在数轴上表示如下,其中正确的是()4.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )A.1020xx+≥-≥⎧⎨⎩B.1020xx+≤-≥⎧⎨⎩C.1020xx+≤-≥⎧⎨⎩D.1020xx+≥-≥⎧⎨⎩5.(2016•临沂)不等式组的解集,在数轴上表示正确的是()A .B .C .D .6.已知a <b ,则下列不等式中不正确的是( )A .4a <4bB .a +4<b +4C .-4a <-4bD .a -4<b -47.不等式31222-≥+x x的解集为( )A. x ≥8B. x ≤8C. x ≥-4D.78≤x8.从甲地到乙地有16 km ,某人以4 km/h ~8 km/h 的速度由甲地到乙地,则他用的时间大约为()A .1 h ~2 hB .2 h ~3 hC .3 h ~4 hD .2 h ~4 h9.(2016•湖北)不等式组的整数解的个数为( )A .0个B .2个C .3个D .无数个10.若不等式组⎩⎨⎧<-->-+012012a x a x 的解集为0<x <1,则a 的值为( )A .1B .2C .3D .4二、填空题(每小题4分,共32分)11.当x 时,式子3x-4的值大于式子5x+3的值。
12.不等式组⎩⎨⎧>>-63712x x 的解集是.13.从小明家到学校的路程是2 400米,如果小明早上7点离家,要在7点30分到40分之间到达学校,设步行速度为x 米/分,则可列不等式组为__________________,小明步行的速度范围是_________.14.(2015•铜仁市)不等式5x ﹣3<3x +5的最大整数解是15. 用不等式表示,比x 的5倍大1的数不小于x 的一半与4的差:____________________..16.若不等式组⎩⎨⎧>-<+m x x x 148的解集是x >3,则m 的取值范围是 . 17.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于_________米.18.某种商品的进价为800元,出售时标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打 折.三、解答题(共78分)19.(12分)解下列不等式并把它的解集在数轴上表示出来.(1)2(x +1)-1≥3x +2, (2)652123--≤-x x20.(12分)解下列不等式组并把解集表示在数轴上。
【3套打包】乌鲁木齐市七年级数学下册第九章《不等式与不等式组》单元测试(含答案)
人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是()A.B.C.D.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2b C.(1+c2)a>(1+c2)b D.1﹣a>1﹣b 3.如果的解集是,那么的取值范围是()A.B.C.D.4.如图,天平左盘中物体A的质量为,,天平右盘中每个砝码的质量都是1g,则的取值范围在数轴上可表示为()A.B.C.D.5.已知不等式组有解,则的取值范围为()A.a>-2 B.a≥-2 C.a<2 D.a≥26.将不等式组的解集在轴上表示出来,应是( )A. B.C. D.>的整数解的个数为()7.不等式组A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B 13.﹣9<x≤﹣3 14.> 15.3组. 16.3 17.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级下册数学单元练习卷:第九章 不等式与不等式组一、填空题(本大题共10小题,每小题3分,共30分) 1.如果1<x <2,那么(x –1)(x –2)__________0.(填写“>”、“<”或“=”)2.写出一个解集为x <–1,且未知数的系数为2的一元一次不等式:__________. 3.当x __________时,式子–2(x –1)的值小于8.4.不等式组1023x x x -<⎧⎨+>⎩的解集是__________.5.不等式2x +5>4x –1的正整数解是__________.6.一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最少打__________折.7.某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%,设进价为x 元,则x 的取值范围是__________. 8.已知关于x 的不等式组12634x x a -<⎧⎨+≤⎩只有两个整数解,则a 的取值范围__________.9.2x ≥的最小值是a ,6x ≤-的最大值是b ,则a +b =__________. 10.已知不等式组1x a x b ≥--⎧⎨-≥-⎩①②在同一条数轴上表示不等式①②的解集如图,则b –a的值为__________.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)11.不等式x +1>3的解集是 A .x >1B .x >–2C .x >2D .x <212.在数轴上表示不等式x –1≤0的解集,正确的是 A .B .C .D .13.x 与3的和的一半是负数,用不等式表示为A .12x +3>0 B .12x +3<0 C .12(x +3)<0D .12(x +3)>014.下列说法中,错误的是 A .x =1是不等式x <2的解B .–2是不等式2x –1<0的一个解C .不等式–3x >9的解集是x =–3D .不等式x <10的整数解有无数个 15.若–12a ≥b ,则a ≤–2b ,其根据是 A .不等式的两边加(或减)同一个数(或式子),不等号的方向不变 B .不等式的两边乘(或除以)同一个正数,不等号的方向不变 C .不等式的两边乘(或除以)同一个负数,不等号的方向改变 D .以上答案均不对16.下列不等式中,不含有1x =-这个解的是 A .213x +≤- B .213x -≥-C .213x -+≥D .213x --≤17.不等式组()1132230x x x ⎧+≥-⎪⎨⎪-->⎩的最大整数解为A .8B .6C .5D .418.关于x 的不等式组()3141x x x m⎧->-⎨<⎩的解集为x <3,那么m 的取值范围为A .m =3B .m >3C .m <3D .m ≥319.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分?则小明至少答对的题数是 A .11道 B .12道C .13道D .14道20.阅读理解:我们把a b c d 称作二阶行列式,规定它的运算法则为a cad bc b d=-,例如1324=1423=2⨯-⨯-,如果231xx-0>,则x 的取值范围是A .x >1B .x <–1C .x >3D .x <–3三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.解不等式()2263x x -≤-,并写出它的正整数解.22.解不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩,并写出它的整数解.23.已知关于x 的不等式x a <7的解也是不等式2752x a a->–1的解,求a 的取值范围.24.解不等式组:()262311x x x x ⎧-≤⎪>-⎨⎪-<+⎩①②③.请结合题意,完成本题的解答.(1)解不等式①,得__________,依据是:__________. (2)解不等式③,得__________.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.25.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:(1)若a –b >0,则a __________b ; (2)若a –b =0,则a __________b ; (3)若a –b <0,则a __________b .这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题:比较4+3a 2–2b +b 2与3a 2–2b +1的大小.26.分子、分母都是整式,并且分母中含有未知数的不等式叫做分式不等式.小亮在解分式不等式253xx+->0时,是这样思考的:根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①25030xx+>⎧⎨->⎩或②25030xx+<⎧⎨-<⎩,解不等式组①,得x>3,解不等式组②,得x<–5 2 .所以原分式不等式的解集为x>3或x<–5 2 .请你参考小亮思考问题的方法,解分式不等式342xx--<0.27.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x–1=0,②2103x+=,③x–(3x+1)=–5中,不等式组25312x xx x-+>-⎧⎨->-+⎩的关联方程是________;(2)若不等式组112132xx x⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数,则这个关联方程可以是________(写出一个即可);(3)若方程3–x=2x,3+x=122x⎛⎫+⎪⎝⎭都是关于x的不等式组22x x mx m<-⎧⎨-≤⎩的关联方程,直接写出m的取值范围.28.为降低空气污染,启东飞鹤公交公司决定全部更换节能环保的燃气公交车.计划购买A 型和B型两种公交车共10辆,其中每台的价格,年载客量如表:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元.(1)求a,b的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次.请你设计一个方案,使得购车总费用最少.参考答案1.【答案】<2.【答案】2x <–2(答案不唯一) 3.【答案】>–3 4.【答案】31x -<< 5.【答案】1,2 6.【答案】9 7.【答案】440≤x ≤480 8.【答案】4<a ≤7 9.【答案】–4 10.【答案】1311.【答案】C 12.【答案】D 13.【答案】C 14.【答案】C 15.【答案】C 16.【答案】A 17.【答案】C 18.【答案】D 19.【答案】D 20.【答案】A21.【解析】去括号得:2x–4≤6–3x,移项得:2x+3x≤6+4,整理解得:x≤2,正整数解为1,2.22.【解析】由不等式2x–6<6–2x得:x<3.由不等式2x+1>32x+得:13x>.∴不等式组的解集为13 3x<<.又x为整数,∴x=1,2.∴原不等式组的整数解为1,2.23.【解析】解不等式271 52x a a-->人教版七年级数学下册第九章不等式与不等式组实际应用专题研究人教版七年级数学下册第九章不等式与不等式组实际应用专题研究一.规律与方法:1.建立不等式(组)模型解决生产、生活中的实际问题是一种重要的数学思想和数学方法,要构建不等式(组)模型,关键是分析题意,弄清题目中的数量关系,通过题目中的关键词,如:“多”、“少”、“大于”、“小于”、“超过”等,找出各量之间的不等关系,建立不等式(组)模型.2.列不等式(组)解应用题可按以下步骤进行:①审题:弄清题意,找出题目中的各种数量关系;②设未知数:一般问什么设什么,也可间接设;③根据题目中的不等关系,列出不等式(组);④解不等式(组),并验证解的正确性;⑤作答.二.利用一元一次不等式的简单应用1.例题.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设孔明应该买x个球拍,根据题意,得5×20+22x≤200,解得x≤7811. 由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.2.对应训练:(1)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A.103块B.104块C.105块D.106块(2)小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买( )A.3支笔B.4支笔C.5支笔D.6支笔(3)有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排____人种茄子.三.利用一元一次不等式设计方案1.例题:某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:1)120×0.95=114(元).答:实际应支付114元.2)设购买商品的价格为x元,由题意得0.8x+168<0.95x,解得x>1 120.答:当购买商品的价格超过1 120元时,采用方案一更合算2.对应训练:(1)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.1)若购进A、B两种树苗刚好用去1 220元,问购进A、B两种树苗各多少棵?2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.(2).某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.四.利用一元一次不等式(组)解决图表问题1.例题.某体育用品商场采购员要到厂家批发购进篮球和排球共100个,付款总额不得超过11 815元.已知厂家两种球的批发价和商场两种球的零售价如下表,试解答下列问题:(1)该采购员最多可购进篮球多少个?(2)若该商场把这100个球全部以零售价售出,为使商场获得的利润不低于2 580元,则采购员至少要购篮球多少个?该商场最多可盈利多少元?解:(1)设采购员最多可购进篮球x个,则排球是(100-x)个,依题意,得130x+100(100-x)≤11 815.解得x≤60.5.∵x是整数,∴x最大取60.答:该采购员最多可购进篮球60个.(2)设篮球x个,则排球是(100-x)个,则(160-130)x+(120-100)(100-x)≥2 580.解得x≥58.又由第(1)问得x≤60.5,∴正整数x的取值为58,59,60.即采购员至少要购篮球58个.∵篮球的利润大于排球的利润,∴这100个球中,当篮球最多时,商场可盈利最多,故篮球60个,排球40个,此时商场可盈利(160-130)×60+(120-100)×40=1 800+800=2 600(元),即该商场最多可盈利2 600元.2.对应训练:(1).甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物越过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.1)根据题意,填写下表(单位:元)2)当x取何值时,小红在甲、乙两商场的实际花费相同?3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?(2).学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则购买平板电脑最多多少台?2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?(3).2018年5月20日是第24个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图),根据信息,解答下列问题.1)求这份快餐中所含脂肪的质量;2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.五.综合题1.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足( )A.n≤m B.n≤100m100+mC.n≤m100+nD.n≤100m100-m2.“一方有难,八方支援”,雅安芦山4·20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A.60 B.70 C.80 D.903.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm,长与宽的比为3∶2,则该行李箱的长的最大值为____________cm.4.2018年的5月20日是第18个学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图一矩形内).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?信息1).快餐成分:蛋白质、脂肪、碳水化合物和其他.2).快餐总质量为400克.3).碳水化合物质量是蛋白质质量的4倍.5.某商品的进价是500元,标价是750元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打____折出售此商品.6.为增强市民的节能意识,我市试行阶梯电价.从2013年开始,按照每户每年的用电量分三个档次计费,具体规定见右图.小明统计了自家2013年前5个月的实际用电量为1 300度,请帮助小明分析下面问题.(1)若小明家计划2013年全年的用电量不超过2 520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2013年6至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?7.冷饮店每天需配制甲、乙两种饮料共50瓶,已知甲饮料每瓶需糖14克,柠檬酸5克;乙饮料每瓶需糖6克,柠檬酸10克.现有糖500克,柠檬酸400克.请计算有几种配制方案能满足冷饮店的要求?8.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一个就分不到3本,这些书有多少本?共有多少人?9..某地教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?10.小明家准备用15 000元装修房子,新房的使用面积包括居室、客厅、卫生间和厨房共100 m2,卫生间和厨房共10 m2,厨房和卫生间装修工料费为每平方米200元,为卫生间和厨房配套卫生洁具和厨房厨具还要用去400元,则居室和客厅的装修工料费每平方米用多少元才能不超过预算?11.某货运码头,有稻谷和棉花共2680t,其中稻谷比棉花多380t.⑴求稻谷和棉花各是多少?⑵现安排甲、乙两种不同规格的集装箱共50个,将这批稻谷和棉花运往外地,已知稻谷35t 和棉花15t可装满一个甲型集装箱;稻谷25t和棉花35t可装满一个乙型集装箱.按此要求安排甲、乙两种集装箱的个数,有哪几种方案?12.某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?13.海中游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元。
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A.x2≥0B.2x-1C.2y≤8D.1x-3x>02.已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+dB.a+b>c+dC.a+c>b-dD.a+b>c-d3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y≤11的解集C.不等式2y<7的解集是y=3D.y=2是不等式3y≥6的解4.[2023·安徽]在数轴上表示不等式x-12<0的解集,正确的是( )A. B.C. D.5.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围是( )A.-1<m<3B.1<m<3C.-3<m<1D.m>-16.(母题:教材P130习题T3)不等式组{2x>3x,x+4>2的整数解是( )A.0B.-1C.-2D.17.解不等式2x-12-5x+26-x≤-1,去分母,得( )A.3(2x-1)-5x+2-6x≤-6B.3(2x-1)-(5x+2)-6x≥-6C.3(2x-1)-(5x+2)-6x≤-6D.3(2x-1)-(5x+2)-x≤-18.已知关于x的不等式组{x-a≥b,2x-a≤2b+1的解集是3≤x≤5,则ba的值是( )A.-2B.-12C.-4D.29.春到人间,绿化争先.为增强师生的环境保护意识,提升学生的劳动实践能力,某学校开展了以“建绿色校园,树绿色理想”为主题的植树活动,决定用不超过4 200元购买甲、乙1 / 82 / 8两种树苗共100棵,已知甲种树苗每棵45元,乙种树苗每棵38元,则至少可以购买乙种树苗( )A.42棵B.43棵C.57棵D.58棵10.[2023·重庆八中期末](多选题)已知关于x 的不等式组{x -2(x -1)<3,2k +x 7≥x 有且只有两个整数解,则下列四个数中符合条件的整数k 的值有( )A.3B.4C.5D.6二、填空题(每题3分,共24分)11.(母题:教材P115练习T1)x 的12与5的差不小于3,用不等式可表示为 . 12.在2022卡塔尔世界杯期间,以吉祥物拉伊卜为主题元素的纪念品手办、毛绒公仔深得广大球迷喜爱.某官方授权网店销售的手办每个售价200元,毛绒公仔每个售价40元.小熙打算在该网店购买手办和毛绒公仔共10个送同学,总费用不超过1 500元,若设购买手办x 个,则可列不等式为 .13.不等式2x +3<-1的解集为 .14.[2023·清华附中期中]若关于x 的不等式组{2x -5<0,x -a >0有且仅有一个整数解x =2,则实数a 的取值范围是 .15.已知[x ]表示不超过x 的最大整数,例:[4.8]=4,[-0.8]=-1.现定义{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .16.[2023·泸州]关于x ,y 的二元一次方程组{2x +3y =3+a ,x +2y =6的解满足x +y >2√2,写出a 的一个整数值为 .17.[2022·达州]关于x 的不等式组{-x +a <2,3x -12≤x +1恰有3个整数解,则a 的取值范围是 .18.为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量也随之增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1 000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打 折.。
最新人教版七年级数学下册第九章《不等式与不等式组》检测试卷及答案
人教版七年级数学下册第九章《不等式与不等式组》培优试题(一)与简答一.填空题(共8 小题,每题 3 分,共 24 分)1.已知函数y 1 x1,当 y, 1 时,x的取值范围是.22.不等式3x4⋯42( x 2) 的最小整数解是.3.若不等式组2x 3⋯0无解,则 m 的取值范围是.x, m4.若不等式组x 3的解集是 x a ,则a的取值范围是.x a5.若对于x的不等式组x,的整数解共有 4 个,则m的取值范围是.m 07 2 x16.若不等式组1x, 2有解,则 m 的取值范围是.x m7.不等式组x1,1的最大整数解是.22x518.不等式组a1x a 2的解集是 3 x a 2 ,若a是整数,则a等于.3x5二.选择题(共10 小题,每题 3 分,共 30 分)9.若元一次不等式组x ab) 的解集是 x a ,则a, b 的关系是 () x(abA.a b B.a, b C.a b D.a⋯b 10.若a b 建立,则以下不等式建立的是 ()A.a b B.a1b1C.(a1)(b1)D.a 1 b111.不等式组 5 x33x 5的解集为 x 4 ,则a知足的条件是 ()x aA.a 4B.a 4C.a, 4D.a⋯412.不等式x⋯3的解集在数轴上表示正确的选项是()x 2A.B.C.D.13.不等式组3x12的解集在数轴上表示为 () 84x⋯0.A.B.C.D.14.若不等式组x23x 6无解,那么 m 的取值范围是()x mA.m 2B.m 2C.m⋯2D.m, 215.以下不等式中,变形不正确的选项是()A.若a b,则b a B.若a b,则a c b cC.若ac2bc2,则 a b D.若x a ,则 x a16.假如点P(2 x6, x4) 在平面直角坐标系的第二象限内,那么x 的取值范围在数轴上可表示为 ()A.B.C.D.17.不等式组x1,0的解集为 () 3 x60人教版七年级数学下册单元提升训练:第九章不等式与不等式组一、填空。
七年级下《第9章不等式和不等式组》单元测试含答案解析
.....不等式组的解集是( )的与,则不等式组的解集是 ..不等式()﹣>).满足,化简.求不等式组的整数解..已知方程组,当21.某射击运动员在雅典奥运会射击比赛时前6次射击中61.8环(满环为10.9环),如果他要打破104.8环(10次射击)的记录,第7次射击不能少于多少环?22.小明和小刚要进行一次百米赛跑,两人来到百米起点,同时起跑,结果小明以领先3m的优势获胜,也就是说,当小明跑到百米终点时,小刚才跑了97m.小刚说:“这次不算,你本来跑得就快,这次当然你胜,如果你在离起跑线后3m的地方起跑,我仍从起跑线开始,也就是说你比我多跑3m,这样你要赢了我,我就心服口服了.”小明想了想,自信地说:“行!”如果两人的速度都不变,小明的自信有根据吗?他还能取胜吗?23.某次篮球联赛中,大海队与高山队要争夺一个出线权(获胜场数多的队出线;两队获胜场数相等时,根据他们之间的比赛结果确定出线队),大海队目前的战绩是14胜10负(其中有1场以3分之差负于高山队),后面还要比赛6场(其中包括再与高山队比赛1场);高山队目前的战绩是12胜13负,后面还要比赛5场.讨论:(1)为确保出线,大海队在后面的比赛中至少要胜多少场?(2)如果大海队在后面对高山队1场比赛中至少胜高山队4分,那么他在后面的比赛中至少胜几场就一定能出线?(3)如果高山队在后面的比赛中3胜(包括胜大海队1场)2负,那么大海队在后面的比赛中至少要胜几场才能确保出线?(4)如果大海队在后面的比赛中2胜4负,未能出线,那么高山队在后面的比赛中战果如何?24.当关于x、y的二元一次方程组的解x为正数,y为负数,则求此时m 的取值范围?25.一个汽车零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)请写出此车间每天所获利润y(元)与x(名)之间的函数关系式;(2)若要使车间每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?《第9章不等式与不等式组》参考答案与试题解析一、选择题1.已知a<b,则下列不等式中不正确的是( )A.4a<4b B.a+4<b+4 C.﹣4a<﹣4b D.a﹣4<b﹣4【考点】不等式的性质.【分析】根据不等式的性质1,可判断B、D,根据不等式的性质2,可判断A,根据不等式的性质3,可判断C.【解答】解:A、不等式的两边都乘以一个正数,不等号的方向不变,故A正确;B、不等式的两边都加或都减同一个整式,不等号的方向不变,故B正确;C、不等式的两边都乘以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D正确;故选:C.【点评】本题考查了不等式的性质,不等式的两边都乘以同一个负数,不等号的方向改变.2.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为( )A.B.C.D.【考点】一元一次不等式的应用;在数轴上表示不等式的解集.【分析】根据图形就可以得到重物A,与砝码的关系,得到重物A的范围.【解答】解:由图中左边的天平可得m>1,由右边的天平可得m<2,即1<m<2,在数轴上表示为:故选:A.【点评】此题考查了不等式的解集在数轴上的表示方法,在数轴上表示解集时,注意空心圆圈和失信圆点的区别.还要注意确定不等式组解集的规律:大小小大中间跑.3.在平面直角坐标系中,若点P(x﹣2,x)在第二象限,则x的取值范围为( )A.x>0 B.x<2 C.0<x<2 D.x>2【考点】点的坐标;解一元一次不等式组.【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,可得x﹣2<0,x>0,求不等式组的解即可.【解答】解:∵点P(x﹣2,x)在第二象限,∴,解得:0<x<2,故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.不等式组的解集是( )A.x<3 B.x>2 C.2<x<3 D.无解【考点】不等式的解集.【专题】计算题.【分析】求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找可知不等式组的解集的与,用不等式表示为 x【解答】解:根据题意得:故答案为:,则不等式组的解集是 ∴不等式组的解集是.不等式()﹣>).(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)求出两个不等式的解集,找出不等式组的解集,再在数轴上表示出来即可.【解答】解:(1)5(x﹣1)≤3(x+1)5x﹣5≤3x+35x﹣3x≤3+52x≤8x≤4,在数轴上表示不等式的解集是:;(2)2(x﹣1)﹣3(5x+4)>﹣122x﹣2﹣15x﹣12>﹣122x﹣15x>﹣12+12+2﹣13x>2x<﹣,在数轴上表示不等式的解集为:;(3)∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集是﹣1≤x<2,在数轴上表示为:.【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式的解集得应用,主要考查学生的计算能力.14.已知x满足,化简|x﹣2|+|x﹣5|.【考点】解一元一次不等式组;绝对值;整式的加减.【专题】计算题.【分析】求出两个不等式的解集,再找出不等式组的解集,最后根据不等式组的解集去掉绝对值符号求出即可.【解答】解:∵解不等式3+3x>5x﹣1得:x<2,解不等式>﹣1得:x>﹣5,∴不等式组的解集是﹣5<x<2,∴|x﹣2|+|x﹣5|=2﹣x+5﹣x=7﹣2x.【点评】本题考查了一元一次不等式,绝对值,一元一次不等式组的应用,主要考查了学生的计算能力,关键是求出不等式组的解集.15.求不等式组的整数解.【考点】一元一次不等式组的整数解.【专题】计算题.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得不等式组,由(1)得x≤3,由(2)得x≥﹣2,其解集为﹣2≤x≤3,所以不等式组的整数解为﹣2,﹣1,0,1,2,3.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.已知方程组,当m为何值时,x>y?【考点】解一元一次不等式组;解二元一次方程组.【分析】解此题首先要把字母m看做常数,然后解得x、y的值,结合题意,列得一元一次不等式,解不等式即可.【解答】解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,∴得,∵x>y,∴m﹣3>﹣m+5,解得m>4,∴当m>4时,x>y.【点评】此题提高了学生的计算能力,解题的关键是把字母m看做常数,然后解一元一次方程组与一元一次不等式.17.一个工程队原定在10天内至少要挖土600m3,在前两天一共完成了120m3,由于整个工程调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m3?【考点】一元一次不等式的应用.【专题】工程问题.【分析】设以后几天内,平均每天要挖掘xm3土方,根据题意可知原定在10天,已经干了两天,还要求提前2天,即为要6天至少挖掘(600﹣120)m3的土方,根据题意可得不等式,解不等式即可.【解答】解:设平均每天挖土xm3,由题意得:(10﹣2﹣2)x≥600﹣120,根据题意,得【考点】一元一次不等式组的应用.【专题】优选方案问题;分类讨论.【分析】本题中的不等式关系为:生产A产品用的甲原料+生产B产品用的甲原料≤226,生产A产品用的乙原料+生产B产品用的乙原料≤250,由此可得出不等式组,得出自变量的取值范围,然后根据自变量的取值范围得出符合条件的自变量的值.【解答】解:依题意有:,解得:25≤x≤26.5,∵x为整数,∴x取25或26,该工厂的生产方案有:方案一:生产A产品25件,B产品15件;方案二:生产A产品26件,B产品14件;【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,正确列出不等式组是解题关键.20.一次球赛每队均需参赛16场,胜一场得3分,平一场得1分,负一场得0分.已知东方队参加完比赛后负了3场,积分超过了30分,问这支球队至少胜了多少场?【考点】一元一次不等式的应用.【专题】比赛问题.【分析】得分会超过29分,就是已知不等关系:得分>30分.设这个球队胜了x场根据这个不等关系就可以列出不等式,求出胜的场数的范围.【解答】解:设这个球队胜了x场,则平了(16﹣x﹣3)场,依题意可得3x+(16﹣x﹣3)+3×0>30,解得x>8.5,故至少要胜9场.【点评】考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,正确表示出比赛的得分,是解决本题的关键.21.某射击运动员在雅典奥运会射击比赛时前6次射击中61.8环(满环为10.9环),如果他要打破104.8环(10次射击)的记录,第7次射击不能少于多少环?【考点】一元一次不等式的应用.【专题】比赛问题.【分析】当第7次射击的环数最少时,其它三次最多,最多是10.9环,即本题中的不等关系是:61.8+10.9×3+第7次射击的环数>104.8环,根据这个不等关系就可以得到x 的范围.【解答】解:设第7次射击的环数是x.根据题意得到:61.8+10.9×3+x>104.8解得:x>10.3,答:第7次射击的环数不能少于10.4环.【点评】本题考查了一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.22.小明和小刚要进行一次百米赛跑,两人来到百米起点,同时起跑,结果小明以领先3m的优势获胜,也就是说,当小明跑到百米终点时,小刚才跑了97m.小刚说:“这次不算,你本来跑得就快,这次当然你胜,如果你在离起跑线后3m的地方起跑,我仍从起跑线开始,也就是说你比我多跑3m,这样你要赢了我,我就心服口服了.”小明想了想,自信地说:“行!”如果两人的速度都不变,小明的自信有根据吗?他还能取胜吗?【考点】一元一次不等式的应用.【专题】行程问题.【分析】根据小明和小刚俩百米赛跑,小明比小刚快3米,可求出二人的速度,再利用第2次比赛时,速度不变,可分别求出二人所用时间,然后即可得出答案.【解答】解:设小明跑百米用时t秒,则小明速度:v1=,则小刚的速度是:v2=,若小明后退3米时,他到达终点的时间是:=t=(1+)t,小刚到达终点的时间是:=t=(1+)t,∵<,∴小明有自信,能取得胜利.【点评】此题主要考查了一元一次方程的应用,解答此题的关键是学生要明确小明跑100m所用时间和小刚跑97m所用时间相同,然后可求出二人速度,这也是此题的突破点,再比较第2次比赛时二人所用的时间就可以了.23.某次篮球联赛中,大海队与高山队要争夺一个出线权(获胜场数多的队出线;两队获胜场数相等时,根据他们之间的比赛结果确定出线队),大海队目前的战绩是14胜10负(其中有1场以3分之差负于高山队),后面还要比赛6场(其中包括再与高山队比赛1场);高山队目前的战绩是12胜13负,后面还要比赛5场.讨论:(1)为确保出线,大海队在后面的比赛中至少要胜多少场?(2)如果大海队在后面对高山队1场比赛中至少胜高山队4分,那么他在后面的比赛中至少胜几场就一定能出线?(3)如果高山队在后面的比赛中3胜(包括胜大海队1场)2负,那么大海队在后面的比赛中至少要胜几场才能确保出线?(4)如果大海队在后面的比赛中2胜4负,未能出线,那么高山队在后面的比赛中战果如何?【考点】一元一次不等式的应用.【专题】比赛问题;阅读型.【分析】(1)根据题意得出大海队要想获胜的条件,进而得出不等关系求出即可;(2)利用大海队在后面对高山队1场比赛中至少胜高山队4分,则两队比赛场数可以相同,进而得出答案;(3)利用大海队两场都负于高山队,则得出大海队获胜场数必须大于高山队获胜场数,进而得出答案;(4)利用大海队在后面的比赛中2胜4负,未能出线,进而分析得出高山队在后面的比赛中战果.【解答】解:(1)为确保出线,设大海队在后面的比赛中要胜x场,∵高山队目前的战绩是12胜13负,后面还要比赛5场,∴高山队最多能胜17场,∴为确保出线,设大海队在后面的比赛中要获胜:14+x>17,解得;x>3,答:为确保出线,大海队在后面的比赛中至少要胜4场;(2)设他在后面的比赛中胜y场就一定能出线.∵大海队在后面对高山队1场比赛中至少胜高山队4分,即大海队15胜10负,高山队12胜14负.高山队还比赛5﹣1=4(场),最多胜12+4=16(场),∴15+y>16,即y>1.∵y为整数,∴y取2.答:那么他在后面的比赛中至少胜2场就一定能出线.(3)∵高山队在后面的比赛中3胜(包括胜大海队1场)2负,∴高山队一共获胜15场,∴大海队在后面的比赛中至少要胜2场才能确保出线;(4)∵大海队在后面的比赛中2胜4负,未能出线,∴高山队在后面的比赛中战果可能是5胜0负,可能是4胜1负(胜大海队比赛),4胜1负(负大海队少于3分).【点评】本题考查的是一元一次不等式的运用,解此类题目时常常要设出未知数再根据题意列出不等式解题即可.24.当关于x、y的二元一次方程组的解x为正数,y为负数,则求此时m 的取值范围?【考点】解二元一次方程组;解一元一次不等式组.【分析】先解方程组用含m的代数式表示x,y的值,再代入有关x,y的不等关系得到关于m的不等式求解即可.【解答】解:由方程组得:∵x为正数,y为负数∴x=﹣m﹣1>0,y=1.5m﹣2<0,即m<﹣1,m<∴m<﹣1.【点评】主要考查了方程组的解的定义和不等式的解法.理解方程组解的意义用含m的代数式表示出x,y,找到关于x,y的不等式并用m表示出来是解题的关键.25.一个汽车零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(1)请写出此车间每天所获利润y(元)与x(名)之间的函数关系式;(2)若要使车间每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?【考点】一次函数的应用;一元一次不等式的应用.【专题】销售问题;压轴题.【分析】(1)根据每天所获利润=甲种零件所获利润+乙种零件所获利润,可列出函数关系式;(2)根据车间每天所获利润不低于24000元,可列出不等式.【解答】解:(1)根据题意,可得y=150×6x+260×5(20﹣x)=﹣400x+26000(0≤x≤20);(2)由题意,知y≥24000,即﹣400x+26000≥24000,令﹣400x+26000=24000,解得x=5.∵在y=﹣400x+26000中,﹣400<0,∴y的值随x的值的增大而减少,∴要使﹣400x+26000≥24000,需x≤5,即最多可派5名工人制造甲种零件,此时有20﹣x=20﹣5=15(名).答:至少要派15名工人制造乙种零件才合适.【点评】(1)根据所获利润r=甲种零件所获利润+乙种零件所获利润,可直接列出y 与x之间的函数关系式;(2)根据y的取值范围求出x的范围,当x取得最大值时即可求出制造乙种零件的人数.本题主要是读懂题意,找出各个量之间的关系式,列出函数关系式或不等式即可.。
初中七年级数学下册第九章《不等式与不等式组》测试卷3套含答案
A
B
C
D
3.若 a b>0 ,且 b<0 ,则 a , b , a , b 的大小关系为( )
A. a< b<b<a
B. -a<b< b<a
C. -a<b<a<-b
D. b< a< b<a
4.如图,数轴上表示的关于 x 的一元一次不等式的解集为( )
A. x≤1
B. x≥1
C. x<1
D. x>1
(2)设小亮答对了
y
道题,依题意,得
C. 3
7.一元一次不等式组
2x>x 1
1 2
x≤1
的解集是(
)
A. x> 1
B. x≤2
C. 1<x≤2
2x a>3
8.若不等式组
x
2b<1
的解集是
2<x<3
,则
3ab
等于(
)
A. 3
B.3
C. 6
D D.无解 D.4 个 D. 4
D. x> 1 或 x≤2 D.6
9.对于不等式组
1 2
21.【答案】解:
2x
1 2
(
x
3≥ 3 2a) 1
2
① x<0
,解不等式①,得 x≤3 , ②
解不等式②,的 x<a .∵ a 是不等于 3 的常数, ∴当 a>3 时,不等式组的解集为 x≤3 . 当 a<3 时,不等式组的解集为 x<a . 22.【答案】解:(1)设小明答对了 x 道题,依题意,得 5x 3(20 x) 68 ,解得 x 16 . 答:小明答对了 16 道题.
23.郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买 A , B 两种奖品以鼓励抢 答者.如果购买 A 种 20 件, B 种 15 件,共需 380 元;如果购买 A 种 15 件, B 种 10 件,共需 280 元. (1) A , B 两种奖品每件各多少元?
新疆克拉玛依市七年级数学下册第九单元《不等式与不等式组》测试卷(提高培优)
一、选择题1.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( )A .6B .7C .8D .9B 解析:B【分析】利润率不低于5%,即利润要大于或等于800×5%元,设打x 折,则售价是1200x 元.根据利润率不低于5%就可以列出不等式即可.【详解】设至多打x 折 则12008008005%10x ⨯-≥⨯, 解得7x ≥,即最多可打7折.故选:B .【点睛】本题考查了一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.2.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a >D .3a ≥ D 解析:D【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤ D 解析:D【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【详解】由数轴知,此不等式组的解集为-1<x≤3,故选D .【点睛】考查解一元一次不等式组,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.若|65|56x x -=-,则x 的取值范围是( )A .56x >B .56x <C .56x ≥D .56x ≤ D 解析:D【分析】先根据绝对值的性质判断出65x -的符号,再求出x 的取值范围即可.【详解】∵6556x x -=-,∴650x -≤,∴56x ≤. 故选:D .【点睛】 本题考查了绝对值的性质以及解一元一次不等式,解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.5.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( ) A . B .C .D . D解析:D【分析】 根据不等式组的解集在数轴上的表示方法进行分析解答即可.【详解】A 选项中,数轴上表达的解集是:4x >;B 选项中,数轴上表达的解集是:34x -≤<;C 选项中,数轴上表达的解集是:3x ≤;D 选项中,数轴上表达的解集是:34x ≤<;∵不等式组43x x ⎧⎨≥⎩<的解集是34x ≤<, ∴选D.【点睛】本题考查的是在数轴上表示不等式组的解集,熟知:“小于向左,大于向右”是解答此题的关键.6.如果a 、b 表示两个负数,且a b >,则( )A .1a b >B .1b a >C .11a b >D .1ab < B 解析:B【分析】根据不等式的性质,两边都除以b 判断出A 、B ,两边都除以ab ,判断出C 即可得解.【详解】∵a 、b 表示两个负数,∴a b >两边都除以b 得,1a b<,故选项A 错误,不符合题意; a b >两边都除以a 得,1b a >,故选项B 正确,符合题意; ∵a 、b 表示两个负数,∴0ab >,∴a b >都除以ab 得,11b a>,故选项C 错误,不符合题意; 只能判断出0ab >,但无法说明1ab <,故选项D 错误,不符合题意.故选:B .【点睛】本题考查了不等式的基本性质,(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.不等式325132x x ++≤-的解集表示在数轴上是( ) A . B .C .D . B解析:B【分析】 根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.【详解】 解:去分母,得,2(3x +2)≤3(x +5)﹣6,去括号,得6x +4≤3x +15﹣6,移项、合并同类项,得3x ≤5,系数化为1,得,x ≤53, 在数轴上表示为:故选:B .【点睛】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.8.若关于x 的不等式组327x x a-<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ). A .3a B .3a > C .3a D .3a < C 解析:C【分析】分别求出每一个不等式的解集,根据口诀:同小取小并结合不等式组的解集可得a 的范围.【详解】解:327x x a -<⎧⎨<⎩①②,①式化简得:39,3x x << 又∵该不等式的解集为x a <,∴3a .故选C .【点睛】 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤ B 解析:B【分析】根据数轴图像即可求出解集.【详解】根据数轴可知表示的解集为12x -<≤,即数轴上表示的是不等式组12x -<≤的解集故选B .【点睛】本题考查在数轴表示不等式组的解集,解答本题的关键是明确题意,利用数形结合的思想解答.10.如果a >b ,那么下列不等式不成立...的是( ) A .0a b ->B .33a b ->-C .1133a b >D .33a b ->- D解析:D【分析】根据不等式的基本性质逐项判断即可得.【详解】A 、0a b ->,成立;B 、不等式的两边同减去3,不改变不等号的方向,即33a b ->-,成立;C 、不等式的两边同乘以正数13,不改变不等号的方向,即1133a b >,成立; D 、不等式的两边同乘以负数3-,改变不等号的方向,即33a b -<-,不成立; 故选:D .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键. 二、填空题11.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶.30【分析】设额温枪的数量为消毒酒精的数量为剩余100元钞票的数量为a10元为b 根据题意列出方程组然后分别代入可能的a 和b 即可求得【详解】解:∵题中所有的钱数(68201255510010)均是0或解析:30【分析】设额温枪的数量为x ,消毒酒精的数量为y ,剩余100元钞票的数量为a ,10元为b ,根据题意列出方程组,然后分别代入可能的a 和b ,即可求得.【详解】解:∵题中所有的钱数(6820,125,55,100,10)均是0或5结尾,且1元钞票的数量不超过9张∴1元钞票的数量是5设额温枪的数量为x ,消毒酒精的数量为y ,剩余100元钞票的数量为a ,10元为b 根据题意得()()682012555100105682012555100105x y a b y x b a ⎧-+=++⎪⎨-+=++⎪⎩两式子相减可整理得:97x y b a -=- ∵9b ≤∴9x y -=,7b a -=∴b a -有三种情况①b=7,a=0②b=8,a=1③b=9,a=2将三种情况分别代入上述方程组计算得情况①和②算出x 和y 不是整数,不符合题意情况③情况符合题意:=39x 和=30y ,且39>30,符合题意故购买的消毒酒精的数量为30瓶故答案为:30【点睛】本题考查四元一次方程组与不等式的应用,找出题中数量关系,列出方程组,并整体得出两个未知数的方程是解题的关键,要注意钞票张数是整数.12.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.2<a≤3【分析】先求出每个不等式的解集再求出不等式组的解集根据整数解共有3个即可得出关于a 的不等式组求解即可【详解】解:解不等式①得:x-a 解不等式②得:x <1∴不等式组的解集为-a <x <1∵不等 解析:2<a≤3.【分析】先求出每个不等式的解集,再求出不等式组的解集,根据整数解共有3个即可得出关于a 的不等式组,求解即可.【详解】解:0,10x a x +>⎧⎨->⎩①②, 解不等式①得:x >-a ,解不等式②得:x <1,∴不等式组的解集为-a <x <1,∵不等式组的整数解共有3个,即-2,-1,0,∴-3≤-a <-2,∴2<a≤3,故答案是:2<a≤3.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a 的不等式组.13.若||2x =,||3y =,且0x y +<,则x y -值为______.1或5【分析】由已知可以得到x=2或-2y=3或-3然后对xy 的取值进行分类讨论找出使x+y<0的取值组合即可求得x-y 的值【详解】解:∵|x|=2|y|=3∴x=2或-2y=3或-3(1)当x=2 解析:1或5【分析】由已知可以得到x=2或-2,y=3或-3,然后对x 、y 的取值进行分类讨论,找出使x+y<0的取值组合,即可求得x-y 的值.【详解】解:∵|x|=2,|y|=3,∴x=2或-2,y=3或-3,(1)当x=2时,要使x+y<0 ,必须y=-3,此时x-y=2-(-3)=2+3=5;(2)当x=-2时,要使x+y<0 ,必须y=-3,此时x-y=-2-(-3)=-2+3=1;故答案为1或5.【点睛】本题考查绝对值、不等式和有理数加减法的综合应用,熟练掌握绝对值、不等式、有理数加减法及分类讨论的思想是解题关键 .14.点()1,2P x x -+不可能在第__________象限.四【分析】去掉坐标轴上点的情况可分x <﹣2﹣2<x <1与x >1三种情况逐一判断x -1与x+2的正负进而可得答案【详解】解:当x <﹣2时x -1<0x+2<0此时点P 在第三象限;当﹣2<x <1时x -1<解析:四【分析】去掉坐标轴上点的情况,可分x <﹣2、﹣2<x <1与x >1三种情况,逐一判断x -1与x+2的正负,进而可得答案.【详解】解:当x <﹣2时,x -1<0,x+2<0,此时点P 在第三象限;当﹣2<x <1时,x -1<0,x+2>0,此时点P 在第二象限;当x >1时,x -1>0,x+2>0,此时点P 在第一象限;综上,点P 不可能在第四象限.故答案为:四.【点睛】本题考查了平面直角坐标系的基本知识和一元一次不等式的内容,属于基本题型,正确分类、掌握解答的方法是解题关键.15.不等式组210360x x ->⎧⎨-<⎩的解集为_______.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.16.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.17.不等式组20210x x +>⎧⎨-≤⎩的所有整数解的和是_____________-1【分析】先分别解两个不等式求出它们的解集再求两个不等式解集的公共部分然后找出解集中的整数相加即可【详解】解①得x>-2;解②得x≤∴原不等式组的解集是-2<x≤∴其中的整数有:-10∴-1+0=解析:-1【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分,然后找出解集中的整数相加即可.【详解】20210x x +>⎧⎨-≤⎩①②, 解①得,x >-2;解②得,x≤1 2 ,∴原不等式组的解集是-2<x≤12.∴其中的整数有:-1,0,∴-1+0=-1.故答案为-1.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.18.如果不等式组324x ax a+⎧⎨-⎩<<的解集是x<a﹣4,则a的取值范围是_______.a≥﹣3【分析】根据口诀同小取小可知不等式组的解集解这个不等式即可【详解】解这个不等式组为x<a﹣4则3a+2≥a﹣4解这个不等式得a≥﹣3故答案a≥﹣3【点睛】此题考查解一元一次不等式组掌握运算法解析:a≥﹣3.【分析】根据口诀“同小取小”可知不等式组32{4x ax a+-<<的解集,解这个不等式即可.【详解】解这个不等式组为x<a﹣4,则3a+2≥a﹣4,解这个不等式得a≥﹣3故答案a≥﹣3.【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键19.若关于x的不等式2x﹣m≥1的解集如图所示,则m=_____.3【分析】根据不等式的解集可得关于m的方程根据解方程可得答案【详解】解:解不等式得x≥由不等式的解集是x≥2得=2解得m=3故答案为:3【点睛】本题主要考查的是一元一次不等式的解法将数轴和不等式结合解析:3【分析】根据不等式的解集,可得关于m的方程,根据解方程,可得答案.【详解】解:解不等式得x≥12+m , 由不等式的解集是x≥2,得12+m =2, 解得m =3,故答案为:3.【点睛】本题主要考查的是一元一次不等式的解法,将数轴和不等式结合起来观察是解题的关键.20.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.解下列不等式组:(1)3(1)51124x x x x -<+⎧⎨-≥-⎩(2)3(2)421152x x x x --≥⎧⎪-+⎨>⎪⎩ 解析:(1)-2<x≤3;(2)x <-7.【分析】分别求出不等式组中每一个不等式的解集,后根据解集确定口诀确定不等式组的解集即可.(1)由3(1)51124x x x x -<+⎧⎨-≥-⎩①②, 不等式①的解集为x >-2,不等式②的解集为x≤3,∴原不等式组的解集为-2<x≤3;(2)由3(2)421152x x x x --≥⎧⎪⎨-+>⎪⎩①②,不等式①的解集为x≤1,不等式②的解集为x <-7,∴原不等式组的解集为x <-7.【点睛】本题考查了一元一次不等式组的解集,熟练解一元一次不等式是解题的关键.22.解不等式组2536x x +<⎧⎨-<⎩,并把解集在数轴上表示出来.解析:23x -<<,数轴见解析【分析】分别求解不等式,即可得到答案.【详解】解:不等式组得:32x x <⎧⎨>-⎩, ∴不等式组的解集为23x -<<..【点睛】此题考查求不等式组的解集,利用数轴表示不等式组的解集,正确解不等式是解题的关键.23.解不等式或不等式组,并将其解集在数轴上表示出来.(1)解不等式2151132x x -+-≥,并把它的解集在数轴上表示出来.(2)解不等式组233311362x x x x +>⎧⎪+-⎨-≥⎪⎩. 解析:(1)x ≤﹣1,数轴见解析;(2)﹣4≤x <3(1)求出不等式的解集,表示在数轴上即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解,来确定不等式组的解集.【详解】解:(1)去分母得:2(2x﹣1)﹣3(5x +1)≥6,去括号得:4x﹣2﹣15x﹣3≥6,移项合并得:﹣11x≥11,解得:x≤﹣1,(2)233311362x xx x+>⎧⎪⎨+--≥⎪⎩①②,由①得:x<3,由②得:x≥﹣4,∴不等式组的解集为﹣4≤x<3.【点睛】此题考查了解一元一次不等式组,在数轴上表示不等式的解集,正确求出每一个不等式解集是基础,熟练掌握运算法则是解本题的关键.24.解不等式(组):(1)24123x x ---≤;(2)63(4) 23253x xx x-≥-⎧⎪⎨++>⎪⎩①②.解析:(1)x≤4;(2)1<x≤3.【分析】(1)先去分母,再去括号、移项、合并同类项、系数化为1得到解集;(2)分别解不等式即可得到不等式组的解集.【详解】解:(1)去分母,得:3(x﹣2)﹣6≤2(4﹣x),去括号,得:3x﹣6﹣6≤8﹣2x,移项,得:3x+2x≤8+6+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式①,得:x≤3,解不等式②,得:x>1,则不等式组的解集为1<x≤3.此题考查解不等式及不等式组,掌握解不等式的方法是解题的关键.25.不等式组3(2)4,21152x x x x --≥⎧⎪-+⎨<⎪⎩的解集为_______. 解析:71x -<≤【分析】首先分别解出两个不等式的解集,再根据:同大取大;同小取小;大小小大中间找;大大小小找不到,写出不等式组的解集即可.【详解】 解:3(2)4211 52x x x x --≥⎧⎪⎨-+<⎪⎩①② 由①得,x≤1由②得,x >-7∴不等式组的解集为:-7<x≤1.故答案为:-7<x≤1.【点睛】此题主要考查了不等式组的解法,关键是熟练掌握不等式解集的取法.26.若关于x 的方程23244x m m x -=-+的解不小于7183m --,求m 的取值范围. 解析:14m ≥- 【分析】先解方程2x−3m =2m−4x +4求得x ,然后再根据方程的解不小于7183m --列出关于m 的不等式组,最后求解即可.【详解】解:解方程23244x m m x -=-+ 得546m x +=由题意得5471683m m +-≥-,解得14m ≥- 所以m 的取值范围为14m ≥-. 【点睛】 本题主要考查了解一元一次方程和解不等式组,掌握一元一次方程和一元一次不等式组的解法成为解答本题的关键.27.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A ,B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A ,B 两种型号家用净水器各购进多少台;(2)为使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,设每台A 型号家用净水器的售价为x 元,则每台A 型号家用净水器的毛利润是 元.每台B 型号家用净水器的毛利润是 元,并请列式求出每台A 型号家用净水器的售价至少是多少元.(注:毛利率=售价-进价)解析:(1)A 型号家用净水器购进了100台,B 型号家用净水器购进了60台. (2)(x-150);2(x-150);每台A 型号家用净水器的售价至少是200元.【分析】(1)设A 型号家用净水器购进了m 台,则B 型号家用净水器购进了(160-m )台,根据总价=单价×数量结合购进两种型号的家用净水器共用去36000元,即可得出关于m 的一元一次方程,解之即可得出结论;(2)设每台A 型号家用净水器的售价为x 元,则每台A 型号家用净水器的毛利润为(x-150)元,每台B 型号家用净水器的毛利润为2(x-150)元,根据售完这160台家用净水器的毛利润不低于11000元,即可得出关于x 的一元一次不等式,解之取其最小值即可得出结论.【详解】(1)设A 型号家用净水器购进了m 台,则B 型号家用净水器购进了(160-m )台, 根据题意得:150m+350(160-m )=36000,解得:m=100,∴160-m=60.答:A 型号家用净水器购进了100台,B 型号家用净水器购进了60台.(2)设每台A 型号家用净水器的售价为x 元,则每台A 型号家用净水器的毛利润为(x-150)元,每台B 型号家用净水器的毛利润为2(x-150)元,根据题意得:100(x-150)+60×2(x-150)≥11000;解得:x≥200.答:每台A 型号家用净水器的售价至少是200元.【点睛】本题考查了一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)由总的毛利润不低于11000元,列出关于x 的一元一次不等式.28.(1)解不等式()311x x -≥+,并将其解集在数轴上表示出来.(2)若不等式325123x x --<+的最小整数解是关于x 的方程24x ax -=的解,求a 的值.解析:(1)2x ≥,数轴见解析;(2)3【分析】(1)解不等式,然后根据数轴与解集的关系画出数轴即可;(2)首先解出不等式325123x x --<+的解集,从中找到最小整数解,然后代入方程24x ax -=中,得到一个关于a 的方程,解方程即可.【详解】(1)()311x x -≥+ 331x x -≥+313x x -≥+24x ≥2x ≥数轴如下:(2)325123x x --<+ ()()332256x x -<-+394106x x -<-+341069x x -<-++5x -<5x >-∴不等式的最小整数解为-4.∵不等式325123x x --<+的最小整数解是关于x 的方程24x ax -=的解, ∴()2444a ⨯-+=解得3a =.【点睛】本题主要考查不等式与方程的结合,掌握解一元一次不等式的方法是解题的关键.。
乌鲁木齐市七年级数学下册第九章【不等式与不等式组】经典题(答案解析)
一、选择题1.已知实数a 、b ,下列命题结论正确的是( ) A .若a b >,则 22a b > B .若a b >,则22a b > C .若a b >,则22a b >D .若33a b >,则22a b >2.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( ) A .6B .7C .8D .93.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ). A . B . C .D .4.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >05.如果a b >,可知下面哪个不等式一定成立( ) A .a b ->-B .11a b< C .2a b b +> D .2a ab >6.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .267.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤78.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m9.若01x <<,则下列选项正确的是( ) A .21x x x<< B .21x x x<<C .21x x x<<D .21x x x<< 10.在数轴上,点A现将点A 沿数轴做如下移动,第一次点A 向左移动4个单位长度到达点1A ,第二次将点1A 向右移动8个单位到达点2A ,第三次将点2A 向左移动12个单位到达点3A ,第四次将点3A 向右移动16个单位长度到达点4A ,按照这种规律下去,第n 次移动到点n A ,如果点n A 与原点的距离不少于18,那么n 的最小值是( ) A .7B .8C .9D .1011.已知a<b ,则下列四个不等式中,不正确的是( ) A .a+2<b+2B .22ac bc <C .1122a b < D .-2a-1-2b-1>二、填空题12.不等式组3121213x x +>-⎧⎪⎨-≥⎪⎩的最大整数解为______. 13.若不等式(6)6m x m ->-,两边同除以(6)m -,得1x <,则m 的取值范围为__. 14.如果点P (3m +6,1+m )在第四象限,那么m 的取值范围是_____.15.已知不等式组11x x a >⎧⎨<-⎩无解,则a 的取值范围为__.16.“x 的4倍与1的差不大于3”用不等式表示为 ________________ .17.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.18.若不等式组52355x x x a+≤-⎧⎨-+<⎩无解,则a 的取值范围是______.19.若||2x =,||3y =,且0x y +<,则x y -值为______. 20.若a b >0,cb<0,则ac________0.21.不等式组()2x15x742x31x33⎧+>-⎪⎨+>-⎪⎩的解集为______三、解答题22.(1)解方程组:432 20 x yx y+=⎧⎨+=⎩(2)解不等式组:3(2)211124x xx x-<-⎧⎪⎨-≥-⎪⎩23.已知,点O是数轴的原点,点A、点B是数轴上不重合的两个点,且点A在点B的左边,点M是线段AB的中点.在上述条件下,解决问题:(1)如果点A表示的数是4,点B表示的数是6,那么点M表示的数是;(2)如果点A表示的数是-3,点M表示的数是2,那么点B表示的数是;(3)如果点A表示的数是a,点B表示的数是b,那么点M表示的数是;(用含a,b的代数式表示) ,所以AM=BM.因此得到关于x的方程:x-a=b-x.你能解出这个方程吗?(4)如果点A表示的数是-2,点C表示的数是3,点B是线段OC上的一点,点M表示的数为m,则m的取值范围是;(5)如果点E表示的数是1,点F表示的数是x,点A从点E出发,以每分钟1个单位长度的速度向右运动,点B从点F出发,以每分钟3个单位长度的速度向右运动,设运动时间为t (t>0).①当x=5时,如果EM=6,那么t的值是;②当t≤3时,如果EM≤9,求x的取值范围.24.解不等式,并把解集在数轴上表示出来.(1)()4521x x +≤+(2)()1113125y y y +<--25.解不等式(组),并将解集表示在数轴上: (1)6194x x ->-(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩一、选择题1.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b > C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 2.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<-3.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ). A . B . C .D .4.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .5.下列说法中不正确的是( ) A .若a b >,则a 1b 1->- B .若3a 3b >,则a b > C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<-6.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .267.如果点P(m ,1m -)在第四象限,则m 的取值范围是( )A .0m >B .01m <<C .1m <D .1m8.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .68m <<B .67≤<mC .67m ≤≤D .67m <≤9.若m n <,则下列各式中正确的是( ) A .33m n +>+B .33m n ->-C .33m n ->-D .33m n > 10.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( ) A .x >3B .x <3C .x >﹣3D .x <﹣311.已知实数x ,y ,且2<2x y ++,则下列不等式一定成立的是( ) A .x y >B .44x y ->-C .33x y ->-D .22x y > 二、填空题12.关于x 的不等式组x 5x a ≤⎧⎨>⎩无解,则a 的取值范围是________.13.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.14.“x 的4倍与1的差不大于3”用不等式表示为 ________________ . 15.若不等式0x b x a -<⎧⎨+>⎩的解集为23x <<,则a ,b 的值分别为_______________.16.关于x 的不等式组0321x a x -≥⎧⎨->⎩有3个整数解,则a 的取值范围是________.17.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________. 18.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.19.若a b >0,cb<0,则ac________0. 20.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.21.已知a >b ,则15a +c _____15b +c (填“>”“<”或“=”).三、解答题22.解不等式组253(2)13212x xxx+≤+⎧⎪⎨+-≤⎪⎩,并把不等式组的解集在数轴上表示出来,写出不等式组的非负整数解.23.解不等式或不等式组,并将其解集在数轴上表示出来.(1)解不等式2151132x x-+-≥,并把它的解集在数轴上表示出来.(2)解不等式组233311362x xx x+>⎧⎪+-⎨-≥⎪⎩.24.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.25.学校需要购买一些篮球和足球,已知篮球的单价比足球的单价贵30元,买2个篮球和3个足球一共需要510元.(1)求篮球和足球的单价;(2)根据学生体育活动的需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的23,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?一、选择题1.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折D .9折3.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是( ) A .B .C .D .4.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18 2 88 C14 6 64 D15 5 70 E91134下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数5.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( ) A .23a <B .23a >C .a 为任何实数D .a 为大于0的数6.不等式325132x x ++≤-的解集表示在数轴上是( ) A .B .C .D .7.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m8.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,第1天 第2天 第3天 第4天 第5天 第6天 第7天第1组1x 1x1x第2组 2x2x2x第3组 3x3x3x第4组4x4x4x7天后,小圆背诵的诗词最多为( ) A .10首 B .11首C .12首D .13首9.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( )A .B .C .D .10.若关于x 的不等式组327x x a -<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ).A .3aB .3a >C .3aD .3a <11.在数轴上,点A现将点A 沿数轴做如下移动,第一次点A 向左移动4个单位长度到达点1A ,第二次将点1A 向右移动8个单位到达点2A ,第三次将点2A 向左移动12个单位到达点3A ,第四次将点3A 向右移动16个单位长度到达点4A ,按照这种规律下去,第n 次移动到点n A ,如果点n A 与原点的距离不少于18,那么n 的最小值是( ) A .7B .8C .9D .10二、填空题12.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元. 13.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x m y m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______. 14.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________.15.关于x 的不等式组x 5x a≤⎧⎨>⎩无解,则a 的取值范围是________.16.对任意四个整数a 、b 、c 、d 定义新运算:a b c dad bc =-,若1<2 4 1x x -<12,则x 的取值范围是____.17.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________.18.若关于x 、y 的二元一次方程组23242x y a x y a+=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.19.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________. 20.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________. 21.若a b >0,c b<0,则ac________0. 三、解答题 22.解下列不等式(组):(1)2132x x -≤; (2)把它的解集表示在数轴上.3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩ 23.解下列不等式:(1)()()212531x x -+<-+(2)解不等式组 ()32421152x x x x ⎧--≥⎪⎨-+<⎪⎩24.某商场计划经销A 、B 两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:(1)若该商场购进这批台灯共用去2750元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B 种台灯多少盏?25.某企业在疫情复工准备工作中,为了贯彻落实“生命重于泰山,疫情就是命令,防控就是责任”的思想.计划购买300瓶消毒液,已知甲种消毒液每瓶30元,乙种消毒液每瓶18元.(1)若该企业购买两种消毒液共花费7500元,则购买甲、乙两种消毒液各多少瓶?(2)若计划购买两种消毒液的总费用不超过9600元,则最多购买甲种消毒液多少瓶?。
新疆克拉玛依市七年级数学下册第九单元《不等式与不等式组》测试卷(提高培优)
一、选择题1.已知关于x 的不等式组15x ax b -≥⎧⎨+≤⎩的解集是3≤x ≤5,则+a b 的值为( )A .6B .8C .10D .122.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中; 步骤二:将三个相同的玻璃球放入水中,结果水没有满; 步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下 B .20 cm 3以上,30 cm 3以下 C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下3.不等式32x x -≤的解集在数轴上表示正确的是( ) A .B .C .D .4.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .25.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( )A .B .C .D .6.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( )A .B .C .D .7.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-8.不等式()2x 13x -≥的解集是( ) A .x 2≥ B .x 2≤ C .x 2≥- D .x 2≤- 9.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b 10.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是 A .m ≥2B .m >2C .m <2D .m ≤211.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,第1天 第2天 第3天 第4天 第5天 第6天 第7天第1组 1x 1x1x第2组 2x2x2x第3组 3x3x3x第4组4x4x4xA .10首B .11首C .12首D .13首12.若关于x 的不等式组327x x a-<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ).A .3aB .3a >C .3aD .3a <13.若关于x 的不等式组132(2)x a x x ≥-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( )A .12a ≤≤B .12a ≤<C .12a <≤D .12a <<14.若不等式组11x x m->⎧⎨<⎩无解,那么m 的取值范围是( )A .2m >B .2m <C .2m ≥D .2m ≤ 15.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3二、填空题16.随着中秋节的逐渐临近,红梅超市计划购进甜味型、咸味型、麻辣味型三种共50盒月饼,其中咸味型月饼数量不超过甜味型月饼数量,且咸味型月饼数量不少于麻辣味型月饼数量的一半.已知甜味型月饼每盒60元,咸味型月饼每盒80元,麻辣味型月饼每盒100元.在价格不变的条件下,小王实际购进甜味型月饼是计划的56倍,麻辣味型月饼购进了12盒,结果小王实际购进三种月饼共35盒,且比原计划少支付1240元,则小王原计划购进甜味型月饼_____盒.17.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.18.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______. 19.若不等式2(x+3)>1的最小整数解是方程2x-ax=3的解,则a 的值为__________________.20.若关于x 、y 的二元一次方程组23242x y ax y a+=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.21.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________. 22.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.23.若不等式组30x ax >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________.24.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么+a b 的值为 . 25.不等式组12153114xx -⎧≥-⎪⎨⎪-<⎩的所有正整数解为_____.26.关于x 、y 的二元一次方程组3234x y ax y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.三、解答题27.一个进行数值转换的运行程序如图所示,从“输入有理数x ”到“结果是否大于0”称为“一次操作”(1)下面命题是真命题有①当输入x =3后,程序操作仅进行一次就停止. ②当输入x =﹣1后,程序操作仅进行一次就停止.③当输入x 为负数时,无论x 取何负数,输出的结果总比输入数大. ④当输入x <3,程序操作仅进行一次就停止.(2)探究:是否存在正整数x ,使程序只能进行两次操作,并且输出结果小于12?若存在,请求出所有符合条件的x 的值;若不存在,请说明理由. 28.解不等式,并把不等式的解集在数轴上表示出来. (1)6327x x ->-; (2)21123x x -+-≤. 29.解方程组与不等式组. (1)解方程组244523x y x y -=-⎧⎨-=-⎩.(2)解不等式组4(1)710853x x x x +≤+⎧⎪-⎨-<⎪⎩. 30.解不等式组:()324112x x x ⎧+≥+⎪⎨-<⎪⎩.。
七年级数学下册第九章 不等式与不等式组 测试题2(含答案)
七年级第九章不等式与不等式组检测题一.选择题 (每小题3分,共30分) 1. 若x y >,则下列式子错误的是( )A.33x y ->-B.33x y ->-C.32x y +>+D.33x y > 2. 如图表示了某个不等式的解集, 该解集所含的整数解的个数是( )A 4 B. 5 C. 6 D.73. 若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A a >0 B. a =0 C. a >4 D. a =4 4. 不等式组⎩⎨⎧≥->+0302x x 的解集是( )A.32≤≤-xB.32≥-<x x 或C.32<<-xD.32≤<-x5. 不等式组⎩⎨⎧-≥-111x x <的解集在数轴上表示正确的是( )6. 如果不等式组⎩⎨⎧><m x x 3有解,那么m 的取值范围是( )A.m >3 B 3≥m C. m <3 D 3≤m7. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于个正方体的重量( )A.2B.3C.4D.58. 韩日“世界杯”期间,重庆球迷一行56人从旅馆剩出租车道到球场为中国对加油,现有A,B 两个出租车队,A 队比B 队少3辆车,若全部安排剩A 队的车,每辆5人,车不够,每辆坐 6人,有的车未坐满,则A 队有出租车( )A.11辆B.10辆C.9辆D.8辆-10222111000-1-1-1A BCD9. 甲从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊买了两条鱼,平均每条b 元,后来他又以每条2ba +的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )A.b a >B.b a <C.b a =D.b a 和的大小无关10. 某次知识竞赛共有30道选择题,称对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对x 题,可得式子为( )A.103(30)70x x -->B.103(30)70x x --≤C.10370x x -≥D. 103(30)70x x --≥二.填空题 (每小题3分,共30分)11. 不等式(m -2)x >2-m 的解集为x <-1,则m 的取值范围是__________________。
七年级数学(下)第九章《不等式与不等式组》单元测试卷含答案
七年级数学(下)第九章《不等式与不等式组》单元测试卷(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分)1.已知实数a 、b ,若a>b ,则下列结论正确的是( ) A .55a b -<- B .22a b +<+ C .33a b > D .33a b < 2.不等式组的解集是( )A .x >B.﹣1≤x < C .x < D .x ≥﹣1 3.若关于x 的一元一次不等式组有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-4.小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x 千米远,则x 的值应满足( )A .x=3B .x=7C .x=3或x=7D .3≤x ≤7 5.使不等式x ﹣1≥2与3x ﹣7<8同时成立的x 的整数值是( ) A .3,4 B .4,5 C .3,4,5 D .不存在 6.不等式组⎩⎨⎧≥111-,<-x x 的解集在数轴上表示正确的是( )。
7.下列不等式,其中属于一元一次不等式的是( ) A .x ≥5xB .2x>1-x 2C .x+2y<1D .2x+1≤3x 8.不等式3(2)4x x -≤+的非负整数解有( )个 A .4 B .5 C .6 D .无数9.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒,则这个敬老院的老人最少有( )A .29人B .30人C .31人D .32人 10.小亮在解不等式组62053x x -<⎧⎨+>-⎩①②时,解法步骤如下:解不等式①,得x >3,…第一步; 解不等式②,得x >﹣8,…第二步;所有原不等式组组的解集为﹣8<x <3…第三步.对于以上解答,你认为下列判断正确的是( )A .解答有误,错在第一步B .解答有误,错在第二步C .解答有误,错在第三步D .原解答正确无误 二、填空题(共10小题,每题3分,共30分) 11.不等式052>-x 的最小整数解是 .12.某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对 道题,成绩才能在80分以上. 13.不等式2x -1≤3的非负整数解是 .14.七年级(1)班组织听写汉字大赛,班长小明现有100元班费,欲购买笔记本和钢笔这两种奖品共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔 支. 15.若a <0则-3a +2____0.(填“>”“=”“<”) 16.若不等式组841,x x x m+<-⎧⎨>⎩的解集是x >3,则m 的取值范围是 .17.代数式41+2x 的值不大于8-2x的值,那么x 的正整数解是 . 18.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于 米. 19.若不等式组2x a <<的整数解有3个,则a 的取值范围是 .20.在一次社会实践活动中,八年级二班可筹集到的活动经费不超过900元.此次活动租车需300元,每个学生活动期间所需经费为20元,则参加这次活动的学生人数最多为_______人.三、解答题(共60分)21.(6分)解不等式:2x 12x 3-+≤并将它的解集在数轴上表示出来. 22.(6分)解不等式组:()()2x 1x 11x 2>2x 13⎧-≥+⎪⎨--⎪⎩. 23.(7分)小明、小华、小刚三人在一起讨论一个一元一次不等式组. 小明:其中一个不等式的解集为x ≤8;小刚:其中有一个不等式在求解的过程中需要改变不等号方向; 请你写出符合上述条件的不等式组,并解这个不等式组.24.(9分)若方程组2225x y m x y m +=+⎧⎨-=-⎩的解是一对正数,则:(1)求m 的取值范围(2)化简:42m m -++25.(12分)已知关于x 、y 的方程组24221x y mx y m +=⎧⎨+=+⎩(实数m 是常数).(1)若x +y =1,求实数m 的值; (2)若-1≤x -y ≤5,求m 的取值范围; (3)在(2)的条件下,化简:223m m ++-.26.(8分)在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分. (1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?27.(12分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x 辆,还差5人才能坐满; (1)则该校参加此次活动的师生人数为 (用含x 的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人? (3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.参考答案(测试时间:90分钟 满分:120分)一、选择题(共10小题,每题3分,共30分)1.已知实数a 、b ,若a>b ,则下列结论正确的是( ) A .55a b -<- B .22a b +<+ C .33a b > D .33a b < 【答案】C 【解析】考点:不等式的性质 2.不等式组的解集是( )A .x >B.﹣1≤x < C .x < D .x ≥﹣1 【答案】A 【解析】试题分析:解不等式2x-1>0得:x >12,解不等式x+1≥0得:x ≥-1,所以不等式组的解集为x >. 故选A .学@科网 考点:不等式组的解集. 3.若关于x 的一元一次不等式组有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】C 【解析】试题分析:解不等式20x m -<得,x <2m ,解不等式2x m +>得,x >2-m ,因为不等式组有解,所以不等式组的解集是:2m >2-m ,解得:m >23; 故选C .考点:不等式组的解集.4.小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x 千米远,则x 的值应满足( )A .x=3B .x=7C .x=3或x=7D .3≤x ≤7 【答案】D 【解析】试题分析:设小明家距小丽家x 千米远,根据题意得:5-2≤x ≤5+2,解得:3≤x ≤7. 故选D .考点:不等式组的应用.5.使不等式x ﹣1≥2与3x ﹣7<8同时成立的x 的整数值是( ) A .3,4 B .4,5 C .3,4,5 D .不存在 【答案】A 【解析】考点:不等式组的整数解. 6.不等式组⎩⎨⎧≥111-,<-x x 的解集在数轴上表示正确的是( )。
新疆七年级数学下册第九单元《不等式与不等式组》经典测试题(提高培优)
一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤ 3.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a > B .3a ≤ C .3a < D .3a ≥ 4.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( )A .6B .7C .8D .95.若关于x 的不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,则a 的取值范围是( ) A .21a -≤<- B .21a -≤≤- C .21a -<<- D .21a -<≤- 6.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a >D .3a ≥ 7.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤ 8.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( ) x …-2 -1 0 1 2 3 … y… 3 2 1 0 -1 -2 …A .x <1B .x >1C .x <0D .x >0 9.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种 10.若a b >,则下列不等式中,不成立的是( ) A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 11.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <- 12.关于x 的不等式620x x a -≤⎧⎨≤⎩有解,则a 的取值范围是( ) A .a <3 B .a≤3 C .a≥3 D .a >313.若不等式组11x x m->⎧⎨<⎩无解,那么m 的取值范围是( ) A .2m > B .2m < C .2m ≥ D .2m ≤ 14.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0a b > 15.某班共有48人,人人都会下棋,会下象棋的人数是会下围棋人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的有( )A .20人B .19人C .11人或13人D .19人或20人二、填空题16.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x m y m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______. 17.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.18.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______.19.不等式12x -<的正整数解是_______________.20.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.21.若||2x =,||3y =,且0x y +<,则x y -值为______. 22.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 23.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限24.不等式2x+9>3(x+4)的最大整数解是_____.25.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来)26.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .三、解答题27.某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案.(2)如果甲、乙两种汽车每辆车的租车费用分别为2500元和2000元,请你选择最省钱的一种方案.28.解不等式,并把解集在数轴上表示出来.(1)()4521x x +≤+(2)()1113125y y y +<--29.为更好地推进长沙市生活垃圾分类工作,改善城市生态环境,2019年12月17日,长沙市政府召开了长沙市生活垃圾分类推进会,意味着长沙垃圾分类战役的全面打响.某小区准备购买A 、B 两种型号的垃圾箱,通过市场调研得知:购买3个A 型垃圾箱和2个B 型垃圾箱共需540元,购买2个A 型垃圾箱比购买3个B 型垃圾箱少用160元. (1)每个A 型垃圾箱和B 型垃圾箱分别是多少元?(2)若该小区物业计划用低于2150元的资金购买A 、B 两种型号的垃圾箱共20个,且至少购买6个B 型垃圾箱,请问有几种购买方案?30.不等式组3(2)4,21152x xx x--≥⎧⎪-+⎨<⎪⎩的解集为_______.。
新七年级数学下册第九章《不等式与不等式组》单元测试(含答案)
人教版七年级下册数学第九章不等式与不等式组单元试题一、选择题(共10小题,每小题3分,共30分) 1.下列不等式变形正确的是( ) A .由a >b ,得ac >bc B .由a >b ,得a -2<b -2 C .由-12>-1,得-a2>-aD .由a >b ,得c -a <c -b2.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a -2<b -2C .a 2>b2D .-2a >-2b3.不等式组⎩⎨⎧x -2≥-1,3x >9的解集在数轴上可表示为( )4.不等式-12x +1>2的解集是( )A .x >-12B .x >-2C .x <-2D .x <-125.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( )A .82元B .100元C .120元D .160元6.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m (g)的取值范围在数轴上可表示为( )7.甲、乙两人从相距24 km 的A ,B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度是( )A .小于8 km/hB .大于8 km/hC .小于4 km/hD .大于4 km/h8.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买钢笔( )A .10支B .11支C .12支D .13支 9.如果不等式组⎩⎨⎧ x >a ,x <2恰有3个整数解,则a 的取值范围是( )A .a ≤-1B .a <-1C .-2≤a <-1D .-2<a ≤-110.不等式组⎩⎨⎧x +3>0,-x ≥-2的整数解有( )A .0个B .5个C .6个D .无数个 二、填空题(共5小题,每小题4分,共20分) 11.不等式2x +1>0的解集是 . 12.不等式x -5>4x -1的最大整数解是 . 13.若不等式组⎩⎨⎧1+x >a ,2x -4≤0有解,则a 的取值范围是 .14.当x 时,式子3x -5的值大于5x +3的值. 15.“x 的4倍与2的和是负数”用不等式表示为 . 三、解答题(共5小题,每小题10分,共50分) 16.解不等式组:⎩⎨⎧1-3x ≤5-x ,4-5x >-x ,并把解集在数轴上表示出来.17.阅读以下计算程序:(1)当x =1 000时,输出的值是多少?(2)问经过二次输入才能输出y 的值,求x 的取值范围.18.某书店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠,一名同学为班级买奖品,准备买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,问他至少要买多少支钢笔才能享受打折优惠?19.若使二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围是什么?20.某商店欲购进A,B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元.(1)求A,B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A,B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?参考答案一、选择题(共10小题,每小题2分,共20分)1-5 DCDCC 6-10 CBCCB二、填空题(共5人教版七年级下册数学第九章不等式与不等式组单元试题一、选择题(共10小题,每小题3分,共30分) 1.下列不等式变形正确的是( ) A .由a >b ,得ac >bc B .由a >b ,得a -2<b -2 C .由-12>-1,得-a2>-aD .由a >b ,得c -a <c -b2.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a -2<b -2C .a 2>b2D .-2a >-2b3.不等式组⎩⎨⎧x -2≥-1,3x >9的解集在数轴上可表示为( )4.不等式-12x +1>2的解集是( )A .x >-12B .x >-2C .x <-2D .x <-125.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( )A .82元B .100元C .120元D .160元6.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m (g)的取值范围在数轴上可表示为( )7.甲、乙两人从相距24 km 的A ,B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度是( )A .小于8 km/hB .大于8 km/hC .小于4 km/hD .大于4 km/h8.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买钢笔( )A .10支B .11支C .12支D .13支 9.如果不等式组⎩⎨⎧ x >a ,x <2恰有3个整数解,则a 的取值范围是( )A .a ≤-1B .a <-1C .-2≤a <-1D .-2<a ≤-110.不等式组⎩⎨⎧x +3>0,-x ≥-2的整数解有( )A .0个B .5个C .6个D .无数个 二、填空题(共5小题,每小题4分,共20分) 11.不等式2x +1>0的解集是 . 12.不等式x -5>4x -1的最大整数解是 . 13.若不等式组⎩⎨⎧1+x >a ,2x -4≤0有解,则a 的取值范围是 .14.当x 时,式子3x -5的值大于5x +3的值. 15.“x 的4倍与2的和是负数”用不等式表示为 . 三、解答题(共5小题,每小题10分,共50分) 16.解不等式组:⎩⎨⎧1-3x ≤5-x ,4-5x >-x ,并把解集在数轴上表示出来.17.阅读以下计算程序:(1)当x =1 000时,输出的值是多少?(2)问经过二次输入才能输出y 的值,求x 的取值范围.18.某书店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠,一名同学为班级买奖品,准备买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,问他至少要买多少支钢笔才能享受打折优惠?19.若使二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围是什么?20.某商店欲购进A,B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元.(1)求A,B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A,B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?参考答案一、选择题(共10小题,每小题2分,共20分)1-5 DCDCC 6-10 CBCCB二、填空题(共5人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
新疆乌鲁木齐市七年级数学下册第九单元《不等式与不等式组》经典测试(提高培优)
一、选择题1.不等式()2533x x ->-的解集为( ) A .4x <-B .4x >C .4x <D .4x >-2.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .103.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( ) A .6 B .7C .8D .94.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( )A .4个B .5个C .6个D .无数个5.如果a b >,可知下面哪个不等式一定成立( ) A .a b ->-B .11a b< C .2a b b +> D .2a ab >6.对于实数x ,规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x ﹣2]=﹣1,则x 的取值范围为( ) A .0<x ≤1B .0≤x <1C .1<x ≤2D .1≤x <27.若|65|56x x -=-,则x 的取值范围是( ) A .56x >B .56x <C .56x ≥D .56x ≤8.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( ) A .B .C .D .9.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ). A .8-B .8C .10D .2610.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18 2 88 C14 6 64 D15 5 70 E91134下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数11.若0a <,则关于x 的不等式221ax x -<+的解集为( ) A .32x a <- B .32x a >- C .32x a>- D .32x a<- 12.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .13.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-15327-,π-,22中,有3个有理数,2个无理数C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为714.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤15.不等式1322x x -+>的解在数轴上表示正确的是( ) A . B .C .D .二、填空题16.若不等式(6)6m x m ->-,两边同除以(6)m -,得1x <,则m 的取值范围为__.17.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.18.已知关于x 的不等式24132m x mx +-≤的解集是34x ≥,那么m 的值是________. 19.不等式组2x ax >⎧⎨>⎩的解为2x >,则a 的取值范围是______.20.若不等式组52355x x x a+≤-⎧⎨-+<⎩无解,则a 的取值范围是______.21.关于x 的不等式2x -a ≤-3的解集如图所示,则a 的值是______ .22.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.23.不等式组213122x x ->⎧⎪⎨-≤⎪⎩的解集是__________.24.若a b >0,cb<0,则ac________0. 25.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________.26.已知关于x 的不等式组0{321x a x -≥->-的整数解共有5个,则a 的取值范围为_________.三、解答题27.某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号的微波炉每台进价为多少元?(2)该店计划购进甲、乙两种型号的微波炉销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的微波炉共20台,请问有几种进货方案?请写出进货方案; (3)甲型微波炉的售价为1400元,售出一台乙型微波炉的利润率为45%.为了促销,公司决定甲型微波炉九折出售,而每售出一台乙型微波炉,返还顾客现金m 元,要使(2)中所有方案获利相同,则m 的值应为多少?28.近两年,重庆市奉节县紧紧围绕“村有骨干产业、户有致富门路”的发展思路,大力实施农产品产业扶贫项目,实现助农增收其中“乡坛子”什锦套菜礼盒、奉节脐橙10km 装广受好评,单价分别为100元/盒和60元/盒.(1)某公司大力响应扶贫政策,准备用不低于15000元购买什锦套菜礼盒、奉节脐橙共200盒,则至少购入什锦套菜礼盒多少盒?(2)2021年春节将至,该公司准备再次购入以上两种产品作为员工新春福利.恰逢“学习强国”重庆学习平台开展“党员直播带货、‘渝’你抗疫助农”扶贫农产品公益直播活动.直播中,什锦套菜礼盒以原价8折销售,该公司购买数量在(1)问最少数量的基础上增加了5%2m ;奉节脐橙售价比原价降低了815m 元,购买数量在(1)问奉节脐橙最多数量的基础上增加了40%.该公司在直播间下单后实际花费比(1)问中最低花费增加2350元,求m 的值.29.某电器超市销售A 、B 两种型号的电风扇,表中是近两周的销售情况:(2)若A 、B 两种型号的电风扇每台进价分别为200元,170元,该超市准备采购这两种型号的电风扇共30台,且费用不多于5400元. ①最多能采购A 种型号的电风扇多少台?②设超市销售完这30台电风扇所获得的利润为W 元,试问利润能否达到1400元?若能,请给出相应的采购方案;若不能,请说明理由.30.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?。
七年级数学下册第九章不等式与不等式组综合测试题试题(共3页)
不等式与不等式组一选择题1、解不等式中,开场(kāichǎng)出现错误的一步是〔〕A. 6x-3<4x-4B. 6x-4x<-4+3 C .2x<-1 D. x<-2、假设三角形的三边长分别为 3,4x-1,那么x的取值范围是〔〕A. 0<x<8B. 2<x<8C. 0<x<6D. 2<x<63、不等式组的解集为〔〕A. 1x<2B. x 1C. x<2D. 无解4、既满足不等式1-x<0,又满足不等式2x+3<11的x的整数值是〔〕A.1,2,3,4B. 2,3,4C. 1,2,3D. 2,35、某射击运发动在一次比赛中前5次射击一共中46环,假如他要打破92环〔10次射击〕的记录,第6次射击起码要超过〔〕A. 6B. 7C. 8D. 9二、填空题6、假设3x m-12>1是关于x的一元一次不等式,那么m= .7、假设y=2x+1,当〔x满足什么条件时〕,y<x8、有10名菜农,每人可种茄子3亩或者辣椒2亩,茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15、6万元,那么最多只能安排人种茄子9、不等式组的解集是10、点A〔m+4,1-2m〕在第四象限,那么m的取值范围是11、假设不等式组有解,那么a 必须满足12、假设不等式组的解集是-1<x<2,那么a= b=13、假设不等式组的解集为x>3,那么m的取值范围是14、方程组的解为x,y,且x>0, y<0,那么a的取值范围是15、假设三角形三边长分别为3,5,1-a,那么a的取值范围是三、解不等式〔组〕:16、〔1〕;〔 2〕四、解答题17、求不等式的非负整数解纠错栏18、假如(jiǎrú)不等式组的解集为5<x<22,求2a+b的值19 、x取哪些整数值时,代数式与的差大于6且小于8?20、有一个两位数,其中个位数字比十位数字大2,并且这个两位数介于50和60之间,求这个两位数21、解不等式组并写出不等式组的正整数解22、甲、乙两家超以一样的价格出售同样的商品,为了吸引顾客,各自(gèzì)推出不同的优惠方案:在甲超累计购置商品超出300元之后,超出局部按原价8折优惠;在乙超累计购置商品超出200元之后,超出局部按原价8.5折优惠.设顾客预计累计购物x元〔x>300.〕〔1〕请用含x的代数式分别表示顾客在两家超购物所付的费用;〔2〕试比拟顾客到哪家超购物更优惠?试说明你的理由【评价】准确程度评价优良中差书写整洁程度评价优良中差纠错栏【课后反思】内容总结。
人教版七年级数学下册《第9章 不等式与不等式组》测试题(有答案)
人教新版《第9章不等式与不等式组》单元测试题一.选择题1.“x为负数”的表达式是()A.x>0B.x<0C.x≥0D.x≤02.下列不等式组中无解的是()A.B.C.D.3.下列各项表示的是不等式的解集,其中错误的是()A.B.C.D.4.下列式子中,是一元一次不等式是()(1)x2+x<1,(2),(3)x﹣3>y+4,(4)2x+3<8.A.1个B.2个C.3个D.4个5.一次知识竞赛共有30道题,规定答对一道得4分,打错或不答得﹣1分,在这次竞赛中,小明获得优(90分或90分以上),则小明至少答对()道题.A.23B.24C.25D.266.下列说法中错误的是()A.m的2倍不小于n的,可表示为2m>B.x的与y的和是非负数,可表示为x+y≥0C.a是非负数,可表示为a≥0D.x是负数,可表示为x<07.下列不等式组中,是一元一次不等式组的是()A.B.C.D.8.若不等式组的整数解有5个,则a的取值范围()A.a<﹣3B.a>﹣4C.a>﹣3D.﹣4<a≤﹣3 9.下列命题错误的是()A.若a<b<0,则>B.若m﹣3n<0,则m<3nC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b10.已知y满足不等式﹣y>2+,化简|y+1|+|2y﹣1|的结果是()A.﹣3y B.3y C.y D.﹣y+2二.填空题11.同时满足2x﹣1<0和﹣3x<1的整数x为.12.如果代数式2x﹣的值大于x+的值,那么x.13.由2﹣a>0,得a>2;.14.已知线段AB=12cm,点P是线段AB的中点,点C在线段AB上,若AC 的长是xcm,且x满足6cm<x<12cm,则点C在点和之间.15.用不等式表示“x与3的和不小于x的2倍”为.16.已知一个球队共打了14场,恰好赢的场比平的场数和输的场数都要少,那么这个球队最多赢了场.17.写出一个解为x<5的不等式(要求x的系数不为1).18.某品牌袋装奶粉,袋上注有“净含量400g”“每百克中含有蛋白质≥18.9g”,那么这样的一袋奶粉中蛋白质的含量不少于g.19.写出一个不等式组,使它的解集为﹣1<x<2:.20.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m=.三.解答题21.在数轴上表示不等式﹣3≤x<6的解集和x的下列值:﹣4,﹣2,0,,7,并利用数轴说明x的这些数值中,哪些满足不等式﹣3≤x<6,哪些不满足?22.求不等式组的整数解.23.解下列不等式,并将解集在数轴上表示出来.(1)2(x﹣6)+4<3x﹣5;(2)﹣1≤.24.解下列不等式(组).(1)≤2x;(2).25.若不等式组无解,那么不等式组有没有解?若有解,请求出不等式组的解集;若没有请说明理由?26.a克糖水中有b克糖(a>b>0),则糖的质量与糖水的质量比为;若再加c克糖(c>0),则糖的质量与糖水的质量比为.生活常识告诉我们:加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼一个不等式.27.某工厂组织旅游活动.如果租用了54座的客车若干辆,恰好坐满;如果租用72座的客车则可少租2辆,并且有1辆车剩余了一半以下的座位.已知租用54座的客车每辆2000元,租用72座客车每辆3000元,怎样租车合算?参考答案一.选择题1.解:负数即为小于0的数,∴可表达为x<0,故选:B.2.解:A、无解,本选项符合题意;B、解集为﹣5<x<﹣2,本选项不合题意;C、解集为﹣2<x<5,本选项不合题意;D、解集为﹣5<x<2,本选项不合题意.故选:A.3.解:A、数轴表示的不等式的解集为:x≤2,所以正确;B、数轴表示的不等式的解集为:x>1,所以正确;C、数轴表示的不等式的解集为:x≠0,所以正确;D、数轴表示的不等式的解集为:x<1,所以不正确.故选:D.4.解:(1)不等式x2+x<1的未知数的最高次数是2,所以它不是一元一次不等式;(2)是分式不等式,所以它不是一元一次不等式;(3)不等式x﹣3>y+4中含有两个未知数,所以它不是一元一次不等式;(4)不等式2x+3<8中只有一个未知数x,且x的次数是1,所以它是一元一次不等式;综上所述,以上式子中是一元一次不等式的只有(4).故选:A.5.解:设在这次竞赛中小明答对x道题.依题意可得:4x﹣(30﹣x)≥90,解得:x≥24,∴小明至少答对24道题.故选:B.6.解:A、m的2倍不小于n的,可表示为2m≥,故A错.B、x的与y的和是非负数,可表示为x+y≥0,故B正确.C、a是非负数,可表示为a≥0,故C正确.D、x是负数,可表示为x<0,故D正确.故选:A.7.解:A、含有2个未知数,不是一元一次不等式组,故本选项错误;B、含有分式,不是一元一次不等式组,故本选项错误;C、符合一元一次不等式组的定义,故本选项正确;D、最高次数是2,不是一元一次不等式组,故本选项错误.故选:C.8.解:解不等式①得:x≥a,解不等式②得:x<2,∵不等式组的整数解有5个,∴整数解为﹣3,﹣2,﹣1,0,1,∴﹣4<a<﹣3;∵当a=﹣4时,不等式组的解集为﹣4≤x<2,此时不等式组有6个整数解,舍去,当a=﹣3时,不等式组的解集为﹣3≤a<2,此时有5个整数解,符合要求,∴a的取值范围﹣4<a≤﹣3.故选:D.9.解:A、两个同号的分子相等的分数,分母大的反而小,故该选项正确;B、根据不等式的基本性质1,在不等式的两边同加上3n,不等号的方向不变,故该选项正确;C、当c2=0时,则不等式不成立,故该选项错误;D、根据已知的不等式,知c2>0,则根据不等式的基本性质2,不等号的方向不变,故该选项正确.故选:C.10.解:﹣y>2+,去分母得,3+3y﹣6y>12+4+2y,解得,y<﹣.所以y+1<0,2y﹣1<0,|y+1|+|2y﹣1|=﹣y﹣1﹣2y+1=﹣3y.故选:A.二.填空题11.解:由题意可得不等式组,由(1)得<,由(2)得x>﹣,其解集是﹣<x<,∴同时满足2x﹣1<0和﹣3x<1的整数x=0.12.解:∵代数式2x﹣的值大于x+的值,∴2x﹣>x+,解得x>.故答案为:>.13.解:∵2﹣a>0,得a<2,故此解法错误.故答案为:错误.14.解:∵线段AB=12cm,点P是线段AB的中点,∴AP=12÷2=6cm,∵点C在线段AB上,若AC的长是xcm,且x满足6cm<x<12cm,∴点C在点P和B之间.故答案为:P,B.15.解:x与3的和不小于x的2倍,即x+3≥2x.故答案为:x+3≥2x.16.解:设赢了x场,∵这一球队共打了14场,而且恰好赢的场数比平的场数和输的场数都要少,∴有x<,∴可知这个球队最多赢了4场.17.解:由题意可得:2x<10.故填:2x<10.18.解:由题意,得这样的一袋奶粉中蛋白质的含量不少于:18.9×400÷100=75.6(g).故答案为75.6.19.解:.答案不唯一.20.解:根据题意|m|﹣3=1,m+4≠0解得|m|=4,m≠﹣4所以m=4三.解答题21.解:根据上图可知:x的下列值:﹣2,0,满足不等式;x的下列值:﹣4,7不满足不等式.22.解:,解①得:x<3,解②得:x≥,则不等式组的解集是:3.则不等式组的整数解是:2.23.解:(1)2(x﹣6)+4<3x﹣5,去括号得,2x﹣12+4<3x﹣5,移项、合并同类项得,﹣x<3,解得,x>﹣3.将不等式的解集在数轴上表示如下:;(2)﹣1≤,去分母得,3x﹣6≤2(7﹣x),去括号得,3x﹣6≤14﹣2x,移项、合并同类项得,5x≤20,解得,x≤4.将不等式的解集在数轴上表示如下:.24.解:(1)≤2x,5x﹣1≤4x,5x﹣4x≤1,x≤1;(2),解不等式①得:x>﹣1,解不等式②得:x≤2,故不等式组的解集为﹣1<x≤2.25.解:由已知条件知﹣a≥a,得a≤0;所以a+1<1﹣a,故不等式组,有解,解集为a+1<x<1﹣a.当a=0时,无解.26.解:根据题意,得a克糖水中有b克糖,则糖的质量与糖水的质量比为;若再加c克糖,则糖的质量与糖水的质量比为;根据加的糖完全溶解后,糖水会更甜,得.27.解:设单独租用54座客车需x辆.根据题意列一元一次不等式组可得:,解得8<x<10,由于车辆数必须为整数,所以x=9,54×9=486(人),∵≈37(元),≈41,∴租用54座的客车越多越省钱,∴当租用9辆54座的客车时,正好坐满,而且最省钱.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式与不等式组
(时间:45分钟 满分:100分) 姓名
一、选择题(每小题5分,共30分)
1. 若m >n ,则下列不等式中成立的是( )
A .m + a <n + b
B .ma <nb
C .ma 2>na 2
D .a -m <a -n
2.不等式4(x -2)>2(3x + 5)的非负整数解的个数为( )
A .0个
B .1个
C .2个
D .3个
3.若不等式组的解集为-1≤x ≤3,则图中表示正确的是( )
A .
B .
C .
D . 4.若方程()()31135m x m x x ++=--的解是负数,则m 的取值范围是( ) A .54m >-
B .54
m <- C .54m > D .54
m < 5.不等式()123x m m ->-的解集为2x >,则m 的值为( ) A .4 B .2
C .32
D .12
6.不等式组123x x -≤⎧⎨-<⎩
的解集是( ) A .x ≥-1 B .x <5
C .-1≤x <5
D .x ≤-1或x <5
二、填空题(每小题5分,共20分)
7.已知x 的12
与5的差不小于3,用不等式表示这一关系式为 。
8.某饮料瓶上有这样的字样:Eatable Date 18 months. 如果用x (单位:月)表示Eatable Date (保质期),那么该饮料的保质期可以用不等式表示为 。
9.当x 时,式子3x -5的值大于5x + 3的值。
10.阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为 。
三、做一做(每小题6分,共12分)
112x x --
12.解不等式组
513(1) 13
17
22 x x
x x
->+⎧
⎪
⎨
-≤-
⎪⎩
四、想一想(每小题9分,共18分)
13.已知方程组
321
21
x y m
x y m
+=+
⎧
⎨
+=-
⎩
,m为何值时,x>y?
14.有一个两位数,其十位数字比个位数字大2,这个两位数在50和70之间,你能求出这个两位数吗?
五、实际应用(每小题10分,共20分0
15.小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?
16.学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满。
有多少间宿舍,多少名女生?
附:命题意图及参考答案
(一)命题意图
一、选择题
1.此题意在考查学生对不等式性质的掌握情况。
2.此题意在考查学生能否在不等式的解集中选出符合要求的解。
3.此题意在考查学生能否把不等式组的解集正确地表示在数轴上。
4.此题意在考查学生能否结合已知条件列出不等式寻求问题答案。
5.此题意在考查学生对不等式解集的意义的理解:不等式解集的唯一的。
6.此题意在考查学生是否能正确地确定不等式组的解集。
二、填空题
7.此题意在考查学生能否用数学关系式表达不等式。
8.此题意在考查学生能否把不等式关系应用到生活实际中。
9.此题意在考查学生能否正确地解不等式。
10.此题意在考查学生能否运用不等式的知识解决生活中的实际问题。
三、做一做
11.此题意在考查学生是否掌握了不等式的解法及不等式组解集的表示。
12.此题意考查学生能否正确地解不等式组。
13.此题意在考查学生能否将方程组的解之间的关系用不等式表示,从而解不等式寻求答案。
14.此题意在考查学生能否正确列出不等式组,并在不等式组的解集中取出符合要求的解。
五、实际应用
本大题意在考查学生利用不等式及不等组解决实际问题的能力。
(二)参考答案
1.D
2.A
3.D
4.A
5.B
6.C
7.1
5
2
x-≥3.
8.x≤18
9.x<-4
10. 60<x<80
11.x≥4,数轴表示略。
12.2<x≤4
13.m>4
14.53,64
15.8立方米
16.5间房,30名女生。