有源滤波器设计报告书

合集下载

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告一、实验目的。

本实验旨在通过对有源滤波器的实验研究,掌握有源滤波器的基本原理、特性和设计方法,加深对电子电路理论的理解,提高实验操作能力。

二、实验仪器和设备。

1. 信号发生器。

2. 示波器。

3. 直流稳压电源。

4. 电阻、电容、运算放大器等元器件。

5. 电路实验箱。

三、实验原理。

有源滤波器是利用运算放大器的高输入阻抗和低输出阻抗的特性,结合电容和电阻等元件构成的一种滤波器。

根据不同的电路连接方式和元器件参数,可以实现对不同频率信号的滤波作用。

四、实验内容。

1. 搭建低通有源滤波器电路。

2. 搭建高通有源滤波器电路。

3. 测量并记录滤波器的幅频特性曲线。

4. 测量并记录滤波器的相频特性曲线。

五、实验步骤。

1. 按照电路图搭建低通有源滤波器电路,并接通电源。

2. 调节信号发生器输出正弦波信号,接入滤波器输入端,通过示波器观察输出波形,记录频率和幅值。

3. 依次改变输入信号频率,记录输出波形的变化,绘制幅频特性曲线。

4. 根据测量数据计算并绘制滤波器的相频特性曲线。

5. 重复以上步骤,搭建高通有源滤波器电路,进行相同的测量和记录。

六、实验数据记录与处理。

1. 低通有源滤波器幅频特性曲线数据:频率(Hz)幅值(V)。

100 2.5。

500 2.3。

1000 2.0。

5000 1.5。

10000 1.2。

... ...2. 低通有源滤波器相频特性曲线数据:频率(Hz)相位(°)。

100 0。

500 -45。

1000 -90。

5000 -180。

10000 -270。

... ...3. 高通有源滤波器幅频特性曲线数据:频率(Hz)幅值(V)。

100 0.5。

500 0.8。

1000 1.2。

5000 2.0。

10000 2.5。

... ...4. 高通有源滤波器相频特性曲线数据:频率(Hz)相位(°)。

100 180。

500 135。

1000 90。

5000 0。

10000 -90。

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告1. 引言有源滤波器是一种结合了被动元件和有源放大器的滤波器,能够实现对电路信号进行滤波和放大。

本实验旨在通过实际搭建有源滤波器电路并进行实验测量,以验证其性能和功能。

2. 实验目的本实验的主要目的如下:1.理解有源滤波器的基本原理和工作方式;2.掌握有源滤波器的搭建方法和测量技巧;3.分析和评估实验结果,对有源滤波器性能进行验证;3. 实验原理有源滤波器是一种基于放大器的滤波器,其基本原理是利用放大器对输入信号进行放大,并利用电容、电感等被动元件完成滤波功能。

根据放大器的类型和反馈方式的不同,有源滤波器可以分为多种类型,如比例型、积分型、微分型等。

在本实验中,我们将搭建一个基于运算放大器的积分型有源滤波器。

该滤波器的电路图如下所示:有源滤波器电路图有源滤波器电路图其中,R1、R2、R3、C1和OA分别代表电阻、电容和运算放大器,上标“+”和“-”分别表示正反馈和负反馈连接。

有源滤波器工作的基本原理是:输入信号经过R1和C1形成了积分电路,然后通过运算放大器(OA)的负反馈放大输出,最终得到经过滤波和放大后的输出信号。

4. 实验步骤根据上述电路图,我们可以按照以下步骤进行有源滤波器的实验:1.按照电路图搭建实验电路,并确保连接正确可靠。

2.使用函数发生器产生一个正弦波信号作为输入信号,并连接到电路的输入端。

输入信号频率:10kHz幅度:1Vpp3.使用示波器测量电路的输入输出电压,并记录测量结果。

示波器通道1连接到输入信号的输入端示波器通道2连接到电路的输出端4.分别改变输入信号的频率,并记录相应的输入输出电压值,形成频率响应曲线。

频率范围:100Hz ~ 10kHz步进:100Hz5.根据实验结果,分析并讨论有源滤波器的频率响应特性、增益和相位差等指标。

5. 实验结果与分析根据实验步骤中记录的输入输出电压值,我们可以绘制出有源滤波器的频率响应曲线。

下图展示了在不同频率下的输入输出电压值:![频率响应曲线图](./response_curve.png)根据实验结果可以发现,有源滤波器在低频时,对信号的放大倍数较小,随着频率的增加,放大倍数逐渐增大;在高频时,放大倍数趋于稳定。

有源带通滤波器设计报告

有源带通滤波器设计报告

有源带通滤波器设计报告一、引言在电子电路和信号处理中,滤波器是一种常用的电路组件,用于选择特定频率范围内的信号,并削弱或消除其他频率范围的信号。

本设计报告旨在介绍一个有源带通滤波器的设计过程和结果。

二、设计原理三、设计过程1.确定滤波器的频率范围:根据需要滤波的信号频率范围,选择适当的中心频率和带宽。

2.计算电阻和电容的值:根据所选的中心频率和带宽,使用标准的滤波器公式计算电阻和电容的值。

3.选择放大器:根据滤波器的要求和设计要求,选择适当的放大器。

常用的放大器类型有运算放大器和晶体管放大器。

4.连接电阻和电容网络:根据所计算得到的电阻和电容的值,将它们连接到放大器的适当位置。

5.确定输入和输出电阻:根据设计要求,确定输入和输出电阻的值。

这些电阻可以帮助匹配滤波器和外部电路的阻抗。

四、实验结果使用上述设计过程,我们成功设计并制作了一个有源带通滤波器。

该滤波器的中心频率为f0=1kHz,带宽为B=500Hz。

选用运算放大器作为滤波器的放大器。

实验结果显示,滤波器在中心频率附近的增益为20dB,且在带通范围内的其他频率上有明显衰减。

通过连接输入和输出电阻,滤波器与外部电路的阻抗匹配良好,没有信号反射或损耗。

五、结论本设计报告介绍了一个有源带通滤波器的设计过程和结果。

通过合理选择频率范围、计算电阻和电容值、选择适当的放大器,并匹配输入和输出电阻,我们成功设计了一个满足要求的滤波器。

该滤波器具有良好的增益特性和频率选择性能,能够滤除非感兴趣频率范围的杂散信号。

在实际应用中,这种滤波器可以用于音频处理、通信系统和传感器信号处理等领域。

有源滤波器设计 实验报告

有源滤波器设计 实验报告

有源滤波器设计实验报告有源滤波器设计实验报告引言:滤波器是电子电路中常见的重要组成部分,用于对信号进行滤波和处理。

有源滤波器是一种采用有源元件(如放大器)来增强信号处理能力的滤波器。

本实验旨在设计并实现一个有源滤波器,通过实验验证其滤波性能。

一、实验目的本实验的主要目的是设计和实现一个有源滤波器,通过调整电路参数和元件值,实现对不同频率信号的滤波。

同时,通过实验结果的分析,了解有源滤波器的工作原理和性能。

二、实验原理有源滤波器是一种利用有源元件(如运算放大器)来增强滤波器性能的电路。

常见的有源滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

它们分别通过选择合适的元件和电路拓扑结构来实现对不同频率信号的滤波。

三、实验步骤1. 根据设计要求,选择合适的电路拓扑结构和元件。

2. 按照电路图连接电路,并确保连接正确无误。

3. 根据设计要求,选择合适的元件值,并进行元件的选取和调整。

4. 使用信号发生器产生测试信号,并连接到有源滤波器的输入端。

5. 使用示波器测量有源滤波器的输出信号,并记录实验数据。

6. 根据实验数据,分析有源滤波器的滤波性能。

四、实验结果与分析通过实验,我们设计并实现了一个二阶有源低通滤波器。

在实验中,我们选择了合适的运算放大器和电容、电阻元件,并根据设计要求进行了调整。

实验结果显示,该有源滤波器能够有效滤除高频信号,只保留低频信号。

通过调整电路参数,我们还可以改变滤波器的截止频率,实现对不同频率信号的滤波。

五、实验总结本实验通过设计和实现有源滤波器,验证了其滤波性能。

通过调整电路参数和元件值,我们可以实现对不同频率信号的滤波。

有源滤波器在电子电路中具有重要的应用价值,能够对信号进行精确的滤波和处理。

通过本实验,我们对有源滤波器的工作原理和性能有了更深入的了解。

六、实验感想通过本次实验,我对有源滤波器的设计和实现有了更深入的理解。

在实验过程中,我遇到了一些问题,如电路连接错误和元件值选择不准确等。

有源滤波器实验报告(1)

有源滤波器实验报告(1)

有源滤波器实验报告(1)有源滤波器实验报告一、实验目的1.了解有源滤波器的基本工作原理。

2.掌握有源低通和有源高通滤波器的实现方法及其频率特性。

3.学习使用多用途运放进行有源滤波器的设计。

二、实验原理有源滤波器由运放放大器和RC电路构成。

有源滤波器的基本原理是利用运放的放大作用以及RC电路的滤波作用实现滤波的过程。

有源滤波器分为有源低通滤波器和有源高通滤波器两种类型,分别用于对信号的低频和高频进行滤波。

三、实验仪器1.多用途运放实验板2.数字存储示波器3.脉冲信号发生器4.电源四、实验内容1.设计并搭建有源低通滤波器电路。

2.设计并搭建有源高通滤波器电路。

3.对低频和高频信号分别进行滤波实验。

4.在不同频率下测量有源低通和有源高通滤波器的增益和相位延迟特性。

五、实验步骤和操作1.设计有源低通滤波器电路。

按照RC低通滤波器的原理,选择合适的电阻和电容组合来计算截止频率,然后根据运放的放大倍数设计电压跟随电路来实现放大和增益控制。

将设计好的电路搭建在实验板上,并连接信号输入和输出端口,将脉冲信号发生器输出的信号接入输入端口,使用数字示波器来观察滤波结果。

2.设计有源高通滤波器电路。

按照RC高通滤波器的原理,选择合适的电阻和电容组合来计算截止频率,然后根据运放的放大倍数设计电压跟随电路来实现放大和增益控制。

将设计好的电路搭建在实验板上,并连接信号输入和输出端口,将脉冲信号发生器输出的信号接入输入端口,使用数字示波器来观察滤波结果。

3.测量有源低通和有源高通滤波器的增益和相位延迟特性。

分别在不同频率下进行测量,利用示波器测量输出信号的幅度和相位,计算出滤波器的增益和相位延迟特性。

六、实验结果和分析1.有源低通滤波器实验结果:实验中选择的截止频率为1kHz,测量得到在1kHz处的增益为18dB,相位延迟为-40度。

通过实验观察到,低频信号经过滤波器处理后能够得到较好的效果,高频信号被滤除,滤波器具有很好的低通滤波特性。

有源滤波器的设计实验报告

有源滤波器的设计实验报告

有源滤波器的设计实验报告有源滤波器的设计实验报告引言:滤波器是电子工程中常见的设备,用于去除信号中的噪声或者选择特定频率范围内的信号。

有源滤波器是一种常见的滤波器类型,它利用放大器的特性来增强滤波效果。

本实验旨在设计一个有源滤波器,探索其原理和应用。

一、实验背景滤波器是信号处理中重要的组成部分,广泛应用于通信、音频处理、图像处理等领域。

有源滤波器通过引入放大器来增强滤波效果,使得滤波器具有更好的性能和灵活性。

本实验将设计一个有源滤波器,以探索其在信号处理中的应用。

二、实验目的1. 了解有源滤波器的工作原理和特点;2. 学习有源滤波器的设计方法和步骤;3. 掌握实际搭建有源滤波器的技巧和调试方法;4. 分析有源滤波器的性能指标,如增益、带宽等。

三、实验原理有源滤波器由放大器和被动滤波器组成。

放大器起到放大输入信号的作用,同时也引入了放大器的特性和非线性失真。

被动滤波器则通过电容、电感和电阻等元件来选择特定频率范围内的信号。

有源滤波器的设计需要考虑放大器的增益、带宽和稳定性等因素。

四、实验步骤1. 确定滤波器的类型和频率范围。

根据实际需求选择低通、高通、带通或带阻滤波器,并确定所需的截止频率。

2. 选择适当的放大器。

根据滤波器的要求选择合适的放大器,考虑增益、带宽和稳定性等因素。

3. 计算滤波器的元件数值。

根据滤波器类型和截止频率计算所需的电容、电感和电阻数值。

4. 搭建滤波器电路。

根据计算结果,选择合适的元件进行电路搭建。

5. 进行滤波器的调试和优化。

通过实际测试,调整电路参数,优化滤波器的性能。

6. 测试滤波器的性能指标。

测量滤波器的增益、带宽和相位响应等指标,评估滤波器的性能。

五、实验结果与分析通过实验,我们成功设计并搭建了一个低通滤波器。

经过调试和优化,该滤波器在截止频率为1kHz时,具有20dB的增益,-3dB的带宽为500Hz。

实验结果表明,有源滤波器可以有效地选择特定频率范围内的信号,并增强滤波效果。

RC有源滤波器实验设计报告(二)

RC有源滤波器实验设计报告(二)

RC有源滤波器实验设计报告(二)
1. 实验目的
本次实验的目的是设计并制作一个RC有源滤波器,通过实验验证其滤
波效果,并深入了解有源滤波器的工作原理和设计方法。

2. 实验原理
RC有源滤波器是一种基于RC滤波器的电路,通过加入一个放大器来增加滤波器的增益和频率选择性。

其基本原理是将输入信号经过一个RC
滤波器,然后再通过一个放大器来放大信号,最后输出滤波后的信号。

3. 实验步骤
1)根据设计要求选择合适的电容和电阻,设计RC滤波器的截止频率。

2)根据放大器的放大倍数和输入阻抗,确定放大器的电路结构和参数。

3)将RC滤波器和放大器连接起来,组成RC有源滤波器电路。

4)使用万用表和示波器对电路进行调试和测试,调整电路参数,使得
滤波器输出符合设计要求。

5)记录实验数据,分析滤波器的性能和特点。

4. 实验结果
经过实验测试,我们成功设计并制作了一个RC有源滤波器,其截止频
率为1kHz,放大倍数为10倍。

在输入一个频率为1kHz的正弦波时,经过滤波器后输出的幅值和相位均符合设计要求。

同时,我们还测试了滤波器对不同频率信号的响应,发现滤波器对高频信号有较好的抑制效果,对低频信号的放大倍数较高。

5. 实验结论
本次实验成功设计并制作了一个RC有源滤波器,通过实验验证了其滤波效果和特点。

同时,我们也深入了解了有源滤波器的设计原理和方法,对于以后的电路设计和实验有了更深入的认识和理解。

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告实验目的,通过实验了解有源滤波器的基本原理和性能特点,掌握有源滤波器的设计和调试方法。

一、实验原理。

有源滤波器是利用运算放大器等有源元件构成的滤波器。

有源滤波器有很高的输入阻抗,可以避免负载效应,同时具有较高的增益,能够提供滤波器所需的电压增益。

有源滤波器的频率特性由运算放大器和被动元件的特性共同决定,因此可以通过调整被动元件的数值来改变滤波器的频率特性。

二、实验仪器与设备。

1. 示波器。

2. 函数信号发生器。

3. 直流稳压电源。

4. 电阻、电容、运算放大器等元器件。

5. 面包板、连接线等。

三、实验步骤。

1. 按照设计要求,选择合适的运算放大器和被动元件,并按照电路图连接电阻、电容和运算放大器等元器件。

2. 将函数信号发生器的输出端与有源滤波器的输入端相连,调节函数信号发生器的频率和幅度,观察有源滤波器的输入输出波形。

3. 将示波器的探头分别连接到有源滤波器的输入端和输出端,调节函数信号发生器的频率,观察示波器上的输入输出波形,并记录波形的变化。

4. 分别测量不同频率下有源滤波器的输入输出电压,绘制输入输出电压与频率的关系曲线。

5. 对有源滤波器的电路参数进行调整,观察滤波器的频率特性的变化。

四、实验结果与分析。

通过实验测量得到了有源滤波器的输入输出波形和输入输出电压随频率变化的曲线。

从实验结果可以看出,有源滤波器能够实现对不同频率信号的滤波处理,同时具有较高的增益。

通过调整电路参数,可以改变有源滤波器的频率特性,实现对不同频率信号的滤波效果。

五、实验总结。

本实验通过对有源滤波器的基本原理和性能特点进行了实验验证,掌握了有源滤波器的设计和调试方法。

通过实验,加深了对有源滤波器的工作原理的理解,提高了实验操作能力和实验数据处理能力。

六、实验心得。

通过本次实验,我深刻理解了有源滤波器的原理和性能特点,掌握了有源滤波器的设计和调试方法。

在实验中,我遇到了一些问题,但通过认真思考和实验操作,最终取得了满意的实验结果。

有源滤波器的设计实验报告

有源滤波器的设计实验报告

有源滤波器的设计实验报告引言滤波器是电子工程中常用的电路元件,用于削弱或增强信号中的某些频率成分。

有源滤波器是一种由放大器和无源滤波器组成的电路,具有较好的增益和频率选择性能。

本实验旨在设计一个有源滤波器,以满足特定的频率响应要求。

设计目标本实验的设计目标是实现一个低通滤波器,其截止频率为f0,并具有一定的增益。

为了实现这一目标,需要选择合适的滤波器类型和电路参数。

设计步骤以下是设计有源滤波器的步骤:步骤一:选择滤波器类型根据设计要求,本实验选择了巴特沃斯滤波器作为设计基础。

巴特沃斯滤波器是一种常用的滤波器,具有平坦的通频带和陡峭的衰减特性。

步骤二:确定截止频率根据设计要求,截止频率f0已知。

在巴特沃斯滤波器中,截止频率与极点有关。

通过选择合适的极点位置,可以实现所需的截止频率。

步骤三:选择放大器类型有源滤波器需要一个放大器来提供增益。

常见的放大器类型有运算放大器和差动放大器。

本实验选择了运算放大器作为放大器类型,因为它具有简单的电路结构和较好的性能。

步骤四:计算电路参数根据所选的滤波器类型和放大器类型,可以计算出所需的电路参数。

包括放大器增益、电阻和电容值等。

步骤五:电路实现根据计算结果,可以开始设计电路。

根据电路参数计算电阻和电容值,并连接电路元件。

在连接电路之前,需要对电路进行仿真和检验。

步骤六:测量和调试完成电路连接后,需要进行测量和调试。

使用信号发生器输入测试信号,并使用示波器观察输出信号。

根据观察结果,调整电路参数和放大器增益,直到达到设计要求。

实验结果经过以上步骤的设计和调试,我们成功实现了一个具有截止频率为f0的低通滤波器。

实验结果显示,该滤波器在通频带范围内具有平坦的频率响应,并且在截止频率附近具有陡峭的衰减特性。

结论本实验通过使用巴特沃斯滤波器和运算放大器的组合,成功设计了一个满足特定频率响应要求的有源滤波器。

实验结果证明了设计的可行性和有效性。

有源滤波器在电子工程中具有广泛的应用,可以用于信号处理、音频放大和仪器测量等领域。

有源滤波器 实验报告

有源滤波器 实验报告

有源滤波器实验报告有源滤波器实验报告引言:有源滤波器是一种电子电路,可以通过放大器的反馈作用来实现信号的滤波功能。

在本次实验中,我们将学习和探索有源滤波器的原理和性能,并通过实验验证其滤波效果。

实验目的:1. 了解有源滤波器的基本原理和分类;2. 掌握有源低通滤波器和有源高通滤波器的设计和实现方法;3. 通过实验验证有源滤波器的性能和滤波效果。

实验仪器和材料:1. 函数发生器2. 示波器3. 电阻、电容、放大器等元器件4. 电路连接线实验步骤:1. 准备工作:根据实验要求,选择合适的电阻、电容和放大器等元器件,并连接电路;2. 实验一:有源低通滤波器a. 将函数发生器输出的正弦信号接入有源低通滤波器的输入端;b. 调节函数发生器的频率和幅度,观察滤波器输出端的波形,并记录实验数据;c. 根据实验数据,分析滤波器的截止频率和幅频特性;d. 调节电阻和电容的数值,观察滤波器的变化情况,并记录实验数据。

3. 实验二:有源高通滤波器a. 将函数发生器输出的正弦信号接入有源高通滤波器的输入端;b. 调节函数发生器的频率和幅度,观察滤波器输出端的波形,并记录实验数据;c. 根据实验数据,分析滤波器的截止频率和幅频特性;d. 调节电阻和电容的数值,观察滤波器的变化情况,并记录实验数据。

实验结果与分析:1. 有源低通滤波器实验结果:a. 在不同频率下,滤波器输出端的波形呈现出不同的衰减特性;b. 实验数据显示,滤波器的截止频率与电阻和电容的数值相关,数值越大,截止频率越低;c. 通过调节电阻和电容的数值,可以改变滤波器的截止频率,从而实现对不同频率信号的滤波。

2. 有源高通滤波器实验结果:a. 在不同频率下,滤波器输出端的波形呈现出不同的增益特性;b. 实验数据显示,滤波器的截止频率与电阻和电容的数值相关,数值越大,截止频率越高;c. 通过调节电阻和电容的数值,可以改变滤波器的截止频率,从而实现对不同频率信号的滤波。

有源低通滤波器设计报告

有源低通滤波器设计报告

有源低通滤波器设计报告设计报告:有源低通滤波器引言:设计目标:设计一个有源低通滤波器,使得在20Hz至1kHz范围内的低频信号通过,而高频信号被滤除。

设计的滤波器应具有具有以下特点:输入输出阻抗低、幅频响应平坦、相频响应线性、通频带宽大,并且灵敏度较低。

设计原理:1.确定电路拓扑结构:我们选择二阶有源低通滤波器作为设计基础。

该电路结构可以保证较好的衰减特性和较低的通频带相移。

2.确定滤波器参数:根据设计要求,在20Hz至1kHz范围内,我们选择截止频率为500Hz。

根据Butterworth滤波器的特性,我们选择3dB的通频带宽。

根据传递函数的形式确定电容和电阻的数值。

3.运算放大器选择:为了使得设计达到较低的灵敏度,我们选择了具有高增益、高带宽和低噪声的运算放大器。

实施步骤:1.根据所选择的拓扑结构和滤波器参数,绘制电路设计图。

2.计算电容和电阻的数值,并选择标准值组件,进行原型测量。

3.利用示波器和信号发生器进行测量,得到幅频响应曲线和相频响应曲线。

结果分析:根据实验结果,我们得到了满足设计要求的有源低通滤波器。

1.幅频响应平坦性分析:从测得的幅频响应曲线可以看出,在20Hz至1kHz范围内,滤波器的增益相对稳定,变化幅度不大。

滤波器的通频带宽也接近设计要求的3dB带宽。

2.相频响应线性分析:通过测得的相频响应曲线可以看出,滤波器的相位变化较小,频率响应几乎是线性的。

3.输入输出阻抗分析:通过测量输入输出阻抗,可以看出滤波器的输入输出阻抗都比较低,滤波器能够较好地适应输入信号源和负载电阻。

总结:本设计报告介绍了有源低通滤波器的设计原理、实施步骤和结果分析。

通过设计和实验,我们验证了设计的滤波器达到了要求的性能指标。

有源低通滤波器在许多电子电路中起到了重要作用,例如音频放大器、通信系统等。

通过深入理解和掌握滤波器的设计原理和实施步骤,我们能够更好地应用滤波器于实际应用中,提高电路的性能和可靠性。

有源带通滤波器设计报告

有源带通滤波器设计报告

有源带通滤波器设计报告设计报告:有源带通滤波器1.引言2.设计原理有源带通滤波器的基本结构由一个放大器、一个带通滤波器和一个输出放大器组成。

放大器的作用是增大输入信号的幅度,带通滤波器则实现了对特定频率范围内信号的选择性放大,最后输出放大器将放大后的信号输出到负载中。

在设计有源带通滤波器时,需要确定的参数包括中心频率、带宽、放大倍数等。

3.设计步骤3.1确定滤波器的参数首先需要确定滤波器的中心频率和带宽。

中心频率是所需放大的频率范围的中间值,带宽则是需要放大的频率范围的宽度。

根据应用需求,可以选择不同的中心频率和带宽。

3.2选取放大器根据中心频率和带宽的要求,选择合适的放大器。

常用的放大器类型有共射放大器、共基放大器和共集放大器等。

在选择放大器时,需要考虑其增益、输入/output阻抗等参数。

3.3设计带通滤波器带通滤波器可使用电容器、电感器和电阻器等元件来实现。

在设计带通滤波器时,需根据中心频率和带宽的要求,选择适当的元件值,并计算其对应的频率响应。

3.4设计输出放大器输出放大器的作用是将放大后的信号输出到负载中,同时保持信号的稳定性。

在设计输出放大器时,要考虑负载的级数、输出电压的大小等参数。

4.设计实例以设计一个中心频率为5kHz,带宽为1kHz的有源带通滤波器为例,具体步骤如下:4.1确定滤波器的参数中心频率为5kHz,带宽为1kHz。

4.2选取放大器选择共射放大器作为放大器。

4.3设计带通滤波器根据中心频率和带宽的要求,选取合适的电容和电感值,并根据相关公式计算其频率响应。

4.4设计输出放大器选择合适的输出放大器,考虑负载的级数和输出电压的大小。

5.结果与讨论根据设计参数,计算得到滤波器的元件值,并进行电路实现。

通过测试和验证,评估滤波器的性能和实际效果。

6.结论通过本文对有源带通滤波器的设计方法进行详细介绍,我们可以了解到有源带通滤波器的设计原理和实际应用。

设计者可以根据具体需求,选择合适的参数和元件值,设计出满足要求的有源带通滤波器。

有源滤波器设计报告书

有源滤波器设计报告书

广东工业大学课程设计任务书题目名称有源滤波器设计学院专业班级姓名学号摘要滤波器(filter)是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到的纯净的直流电。

对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。

带通滤波器(band-pass filter)是指能通过某一频率范围内的频率分量,能将其他范围分量衰减的设备。

一个理想滤波器应该有一个完全平坦的通带,例如在通带内没有增益或者衰减,并且在通带之外所有频率都被完全衰减掉。

另外,通带外的转换在技校的频率范围完成。

实际上,并不存在理想的带通滤波器,因为并不能将期望频率范围外的所有频率完全衰减掉,尤其是在索要的通带外还有一个被衰减但是没有被隔离的范围,这通常被称为滤波器的滚降现象,使用每十倍频的衰减幅度dB来表示。

通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。

然而随着滚降范围越来越小,通常就变得不再平坦-开始出现“波纹”。

这种现象在通带的边缘处尤其明显,这种效应被称为吉布斯现象。

带通滤波器能够广泛应用在电子学和信号处理领域,本文重点介绍了带通滤波器的工作原理以及设计方法,介绍了带通滤波器的工作原理并设计了一个带通滤波电路,并给出了系统的电路设计方法和主要模块的原理分析。

由实验结果可知,该滤波器具有良好的滤波效果,并能稳定运行。

关键词:带通滤波器multisim 设计目录前言 (4)第一章二阶带通滤波器设计的内容和要求 (5)第二章电路设计 (6)一、正弦波产生电路设计 (6)二、压控电压源型二阶带通滤波器设计 (8)第三章电路的仿真调试 (10)第四章焊接并调试电路 (13)第五章总结 (14)第六章主要参考文献 (15)前言近几年随着冶金、化工、纺织机构等工业使用的各种非线性用电设备而产生的大量的高次谐波,已导致电网上网正常波形发生严重畸变,影响到供电系统的电能质量和用户用电设备的安全经济运行。

(2023)RC有源滤波器实验设计报告(一)

(2023)RC有源滤波器实验设计报告(一)

(2023)RC有源滤波器实验设计报告(一)(2023)RC有源滤波器实验设计报告实验背景在电子学中,滤波器是指能够通过对信号进行处理,使得希望留下的频率成分通过,而不希望的频率成分则被滤去的电路模块。

而RC有源滤波器是一种基于滤波器理论的电路,其能够对信号进行滤波和放大。

实验目的本实验旨在通过设计和制作RC有源滤波器,进一步深化学生对滤波器理论的理解和应用。

实验材料•电阻•电容•运算放大器•信号源•示波器•电源等实验步骤1.根据所需的滤波器类型,设计电路图和信号频率,选择相应的电阻和电容。

2.搭建电路并连接至信号源和示波器。

3.调节滤波器的增益和截止频率,得到所需的滤波效果。

4.观察滤波器输入和输出信号的波形和频谱,并记录实验数据。

实验结果通过本次实验,我们成功地制作出了RC有源滤波器,并得出了滤波器的截止频率和增益等参数。

实验结果表明,RC有源滤波器能够对信号进行滤波和放大,取得了良好的效果。

实验总结RC有源滤波器是一种基于滤波器理论的电路,其具备了较好的滤波和放大效果。

通过本次实验,我们深化了对滤波器理论的理解和应用,并学会了制作RC有源滤波器的基本方法。

该实验不仅有助于培养学生的实验能力,更有助于提升其电子学理论的学习水平。

实验注意事项1.实验过程中需注意电路的接线和电源的选取,以保证实验的安全。

2.在调节滤波器参数时,需注意示波器的设置和测量方法,以避免误差。

3.实验结束后,应将电路拆除并清理实验现场,以便下次实验。

实验拓展1.本次实验所制作的RC有源滤波器为低通滤波器,可尝试制作高通、带通、带阻等滤波器,探究其不同的滤波特性。

2.可研究其他有源滤波器结构及其特性,如Sallen Key滤波器等。

3.可将滤波器与其他电路组合,如振荡器、放大器等,探究其在电子学中的应用。

参考文献1.王峰, 赵秀平, 崔腾飞. 电子线路基础实验教程[M]. 南京: 东南大学出版社, 2016.2.Horowitz P, Hill W. The Art of Electronics[M]. 二版.Cambridge: Cambridge University Press, 1989.3.Sedra A S, Smith K C. Microelectronic Circuits[M]. 七版.Oxford: Oxford University Press, 2015.结语本次实验是一次基于滤波器理论的实验,其通过设计和制作RC有源滤波器,使学生进一步加强对电子学理论的理解和应用。

有源低通滤波器设计报告

有源低通滤波器设计报告

有源低通滤波器设计报告一、引言低通滤波器是一种常用的信号处理电路,其作用是将输入信号中高频成分滤除,只保留低频成分。

有源低通滤波器是一种使用放大器实现的滤波器,具有较高的增益和更好的性能。

本文将介绍有源低通滤波器的设计步骤,以及设计过程中需要考虑的一些关键因素。

二、设计步骤 1. 确定需求在设计有源低通滤波器之前,需要明确设计的目标和要求。

例如,确定截止频率、增益要求、滤波器类型等。

2.选择合适的放大器根据设计要求选择合适的放大器。

常用的有源低通滤波器电路包括共射放大器、共集放大器和共栅放大器等。

根据不同的应用需求选择最适合的放大器类型。

3.计算滤波器参数根据设计要求计算滤波器的参数。

主要包括截止频率、增益和滤波器阶数等。

可以使用标准公式或者滤波器设计软件进行计算。

4.选择合适的元件根据计算结果选择合适的元件。

放大器的增益、电容和电阻等元件的参数需要根据设计要求进行选择。

注意元件的可用性和成本。

5.绘制电路图根据选择的放大器和元件,绘制出滤波器的电路图。

需要注意电路的布局和连接方式,确保电路的稳定性和可靠性。

6.进行模拟仿真利用电路设计软件进行模拟仿真。

通过输入不同频率的信号,观察输出信号的频率响应和波形。

根据仿真结果进行调整和优化。

7.制作原型电路根据电路图制作原型电路。

选择合适的元件进行焊接和连接。

8.进行实际测试将原型电路连接到信号源和示波器,输入测试信号进行实际测试。

观察测试结果,并与设计要求进行比较。

根据测试结果对电路进行调整和优化。

9.总结和改进根据实际测试结果总结设计过程中的经验和不足之处。

如果实际测试结果与设计要求不符,需要进行改进和优化。

三、设计过程中需要考虑的关键因素 1. 截止频率选择根据具体应用需求选择合适的截止频率。

如果截止频率过高,会滤除过多的信号,导致信息丢失。

如果截止频率过低,可能无法滤除足够多的高频噪声。

2.增益控制确定所需的增益水平。

增益过高可能引起放大器的非线性失真,增益过低可能导致信号无法满足要求。

有源低通滤波器设计报告

有源低通滤波器设计报告

有源低通滤波器设计报告报告:有源低通滤波器设计一、介绍二、设计原理有源低通滤波器常采用放大器作为主要组成部分。

其基本原理是利用放大器的增益特性,可以将低频信号通过放大器放大后输出,而高频信号则被隔离。

具体而言,放大器的增益在低频时较高,而在高频时较低。

因此,通过合理选择放大器增益和截止频率,可以实现滤除高频信号的目的。

三、步骤1.确定设计要求:首先,需要明确所需滤波器的截止频率。

根据实际需求和信号频率分析,选择适当的截止频率,以确定滤波器的性能指标。

2.选择电路组成元件:根据设计要求,选择合适的电路元件。

有源低通滤波器通常由电容、电阻和放大器构成。

3.设计放大器参数:根据所选定的放大器模型,计算出放大器的增益,以及在截止频率处的增益值。

根据设计要求和放大器参数,计算电容值和电阻值。

4.组装电路:按照设计要求,将电容、电阻和放大器等元件连接起来,形成滤波器电路。

5.测试电路性能:使用信号发生器为滤波器输入不同频率的信号,并通过示波器来观察输出波形。

根据输出波形和设计要求,验证滤波器的性能。

四、实验结果在本次实验中,我们选择了一个截止频率为1kHz的有源低通滤波器。

根据所选的放大器模型,计算出其在1kHz处的增益值为10倍。

根据公式,我们得出了所需的电容和电阻数值。

我们按照设计要求,将电阻和电容连接到放大器的相应引脚上,形成滤波器电路。

使用信号发生器产生不同频率的信号输入到滤波器中,并通过示波器观察输出波形。

测试结果显示,滤波器将高频信号有效地滤除,只有低频信号被通过。

在截止频率1kHz附近,滤波器的增益为10倍。

而在高频区域,滤波器的增益明显下降。

五、总结与展望通过本次实验,我们成功设计并实现了一个有源低通滤波器。

滤波器能够有效地滤除高频信号,只有低频信号被通过。

在滤波器的设计过程中,我们按照一定原理和步骤,选择了合适的电路元件,计算出合适的电容和电阻值。

然而,本次实验中的滤波器只能用于滤除高频信号,而无法通过调整参数实现截止频率的变化。

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告实验报告:有源滤波器引言:有源滤波器是一种常用的电子电路,用于对信号进行滤波和增强。

通过引入放大器元件,有源滤波器能够实现更高的增益和更好的频率选择性。

本实验旨在通过搭建有源滤波器电路,研究其滤波特性和频率响应。

实验目的:1. 了解有源滤波器的工作原理和基本结构。

2. 掌握有源滤波器的电路搭建方法和调试技巧。

3. 分析和验证有源滤波器的滤波特性和频率响应。

实验器材:1. 函数发生器2. 电压放大器3. 直流电源4. 频谱仪5. 示波器6. 电阻、电容等元件7. 连接线等实验辅助器材实验步骤:1. 搭建有源低通滤波器电路。

2. 调整电路参数,如电阻和电容值,以实现所需的滤波特性。

3. 连接函数发生器和频谱仪,分别输入信号和输出信号。

4. 使用函数发生器产生不同频率的正弦波信号,记录频谱仪的输出结果。

5. 分析频谱仪输出结果,验证有源滤波器的滤波特性和频率响应。

实验结果:通过实验,我们得到了有源滤波器的频率响应曲线。

该曲线显示了滤波器在不同频率下的增益和幅频特性。

我们可以观察到滤波器对不同频率的信号有不同的响应,从而实现了信号的滤波和增强。

讨论与分析:在实验过程中,我们发现有源滤波器的电路参数对滤波特性有重要影响。

例如,改变电阻和电容的数值可以改变滤波器的截止频率和增益。

通过调整这些参数,我们可以根据实际需求设计不同类型的有源滤波器。

此外,我们还观察到有源滤波器对输入信号的相位有一定的影响。

在某些频率下,滤波器会引入相位延迟或相位差。

这是由于滤波器的频率选择性导致的,需要在实际应用中进行相应的补偿。

结论:有源滤波器是一种常用的电子电路,能够对信号进行滤波和增强。

通过实验,我们了解了有源滤波器的工作原理和基本结构,掌握了电路搭建和调试技巧。

通过分析实验结果,我们验证了有源滤波器的滤波特性和频率响应。

这些知识和技能对于电子工程师和通信工程师具有重要意义,可应用于各种电子设备和通信系统中。

有源低通滤波器设计报告

有源低通滤波器设计报告

有源低通滤波器设计报告一、引言滤波器是在电子电路中常见的一种元件,用来选择特定频率范围的信号,将其他频率范围的信号削弱或者消除。

而低通滤波器是一种常见的滤波器类型,用于削弱高频信号。

二、设计目标本设计的目标是设计一个有源低通滤波器,要求能够削弱频率大于1kHz的信号,达到至少40dB的衰减,并具有较低的失真和稳定的增益。

三、电路设计1.滤波器结构本设计选择了Sallen-Key结构作为有源低通滤波器的基本结构。

该结构由两个双运放组成,一个用于增益放大,另一个用于滤波。

这种结构有较好的性能和稳定性。

2.选择元件参数根据设计目标,我们选择了合适的元件参数。

放大器增益为2倍,电容的选择要满足截止频率为1kHz的要求。

最终选择了R1=10kΩ,R2=20kΩ,C1=1nF。

3.电路实现根据上述元件参数,我们可以按照以下电路图实现有源低通滤波器:```+-R1-++-R2-++------------,--------OU\\R3/\C1//,+------------,--------I+------+,,+------VLF411A,----+------+```四、电路性能测试1.幅频特性测试根据设计的目标,我们首先测试有源低通滤波器的幅频特性。

使用函数发生器产生从100Hz到100kHz的频率范围的信号,并用示波器测量输入和输出的幅度。

频率(kHz),输入幅度,输出幅度,增益(dB)------------,---------,---------,------------0.1,1V,0.97V,-0.150.5,1V,0.95V,-0.261,1V,0.92V,-0.845,1V,0.89V,-1.9410,1V,0.87V,-2.6850,1V,0.79V,-5.01100,1V,0.68V,-8.86500,1V,0.37V,-14.601000,1V,0.16V,-20.635000,1V,0.02V,-48.16根据测试结果,可以看到随着频率的增加,输出信号的幅度逐渐降低,符合低通滤波器的设计要求。

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告实验报告:有源滤波器设计与实验一、实验目的:1.了解有源滤波器的基本原理和结构;2.学习并掌握有源滤波器的设计方法;3.通过实验验证有源滤波器的滤波性能。

二、实验器材与设备:1.信号发生器;2.电压表;3.示波器;4.集成运算放大器;5.电阻、电容等被试器件;6.连接线等。

三、实验原理:四、实验内容:1.选择合适的电阻和电容值;2.根据所需的滤波类型(高通、低通、带通等),设计电路图;3.对电路进行搭建和连接,注意连接线的正确连接;4.使用示波器对输入输出的波形进行观察,并记录数据;5.分别改变输入信号的频率,观察输出波形和幅频特性;6.根据实验数据进行分析和总结。

五、实验结果与分析:根据实际操作和数据记录,可以得到有源滤波器的输入输出波形,并根据示波器上的数据进行幅频特性分析。

六、实验总结:通过本次实验,我们深入了解了有源滤波器的工作原理和滤波效果。

实验中我们根据所需的滤波类型选择合适的电阻和电容值,并设计了电路图。

在实验过程中,我们观察了输入输出波形,并记录了数据。

根据数据分析,我们发现有源滤波器在不同信号频率下的滤波效果明显,并符合理论预期。

在实验中,我们还需要注意电路连接的正确性和实验数据的准确性。

通过本次实验,我们进一步巩固了有源滤波器的原理和设计方法,学会了如何通过实验验证滤波器的性能。

1.《电子技术基础》,第三版,李明,高等教育出版社。

2.《模拟电子技术基础实验指导书》,李华,华南理工大学出版社。

八、附录:实验中使用的电路图、示波器数据和数据分析表格等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东工业大学课程设计任务书题目名称有源滤波器设计学院专业班级姓名学号摘要滤波器(filter)是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到的纯净的直流电。

对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。

带通滤波器(band-pass filter)是指能通过某一频率范围内的频率分量,能将其他范围分量衰减的设备。

一个理想滤波器应该有一个完全平坦的通带,例如在通带内没有增益或者衰减,并且在通带之外所有频率都被完全衰减掉。

另外,通带外的转换在技校的频率范围完成。

实际上,并不存在理想的带通滤波器,因为并不能将期望频率范围外的所有频率完全衰减掉,尤其是在索要的通带外还有一个被衰减但是没有被隔离的范围,这通常被称为滤波器的滚降现象,使用每十倍频的衰减幅度dB来表示。

通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。

然而随着滚降范围越来越小,通常就变得不再平坦-开始出现“波纹”。

这种现象在通带的边缘处尤其明显,这种效应被称为吉布斯现象。

带通滤波器能够广泛应用在电子学和信号处理领域,本文重点介绍了带通滤波器的工作原理以及设计方法,介绍了带通滤波器的工作原理并设计了一个带通滤波电路,并给出了系统的电路设计方法和主要模块的原理分析。

由实验结果可知,该滤波器具有良好的滤波效果,并能稳定运行。

关键词:带通滤波器 multisim 设计目录前言 (4)第一章二阶带通滤波器设计的内容和要求 (5)第二章电路设计 (6)一、正弦波产生电路设计 (6)二、压控电压源型二阶带通滤波器设计 (8)第三章电路的仿真调试 (10)第四章焊接并调试电路 (13)第五章总结 (14)第六章主要参考文献 (15)前言近几年随着冶金、化工、纺织机构等工业使用的各种非线性用电设备而产生的大量的高次谐波,已导致电网上网正常波形发生严重畸变,影响到供电系统的电能质量和用户用电设备的安全经济运行。

随着生产技术方式的变化,生产力确实得到较大提高,可同时也受到方方面面的限制。

如当人们做出了具体的制度设计需要付诸实践进行试验,试验过程中不可避免地会受到一些偶然随即因素的干扰,为评价新方案的效果,需排除这些随即因素的影响,即需要一个滤波器。

经滤波以后对新方案的效果进行检验。

有源滤波器一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。

利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。

此系统以测控电路以及电子电工的基本理论为基础, 并通过查阅手册和参考文献资料,综合运用测控电路课程中所学的理论知识,在一个团队的共同协作下完成设计的。

第一章二阶带通滤波器设计的内容和要求一、课程设计的内容1、设计内容(1)正弦波产生电路中文氏电桥振荡工作原理分析;(2)分析正弦波产生电路中W2的作用;(3)计算二阶带通滤波器电路中各元件的参数;(4)用Matlab画出所设计的二阶带通滤波器的幅频和相频曲线;2、电路仿真根据有源滤波器电路工作原理,选用相应软件实现电路的仿真,并画出电路各点的信号波形,观察有源滤波器随着输入信号频率的变化,有源滤波器输出信号的变化。

3、使用Protel绘制电路原理图,布局PCB板,使用热转印或者曝光方法制作电路板,根据系统原理图及所选择的元件及参数,购买相应元器件,完成电路焊接、调试。

二、课程设计的要求与数据1、完成二阶带通滤波器电路的分析与制作;2、讨论与分析,制作与调试,演示与答辩,提交设计报告。

三、课程设计应完成的工作1、电路原理图设计;2、电路工作原理分析;3、电路参数计算与分析;4、电路原理仿真;5、电路制作、调试;6、撰写设计报告;7、实物演示与答辩。

第二章电路设计一、首先设计一个如下图所示的1000Hz的正弦波产生电路:RC桥式振荡电路如上图所示。

由图示可知,此电路由放大电路和选频网络组成,其中,R1、C1和R2、C2为串、并联选频网络,接于运算放大器的输出与同相输入端之间构成正反馈,以此产生正弦自激振荡。

R3、Rw以及R4组成负反馈网络,调节Rw可改变负反馈的反馈系数,从而调节放大的电压增益,使电压增益满足振荡的幅度条件。

RC串并联网络与负反馈中的R3、Rw刚好组成一个四臂电桥,电桥的对角线定点街道放大器A1的两个输入端,桥式振荡电路的名称便由此得来。

根据电路分析RC串并联网络的选频特性,根据正弦波振荡电路的振幅平衡条件,选择合适的放大指标,构成一个完整的振荡电路。

振荡电路的传递函数计算根据上图计算:,其中,Z1、Z2分别为途中RC串、并联网络的阻值。

可以计算得到输入与输出的传递函数如下:……………………()由()式可得,= 即取==16KΩ,==μf,则有===1000Hz振荡电路分析就实际的频率而言,可用s=jw替换,在w=时,经RC选频网络传输到运放同相端的电压与同相,这样,放大电路和由Z1和Z2组成的反馈网络刚好形成正反馈系统,可以满足满足相位平衡条件。

(jω)=令=,且==C,==R,则式()变为(jω)=由此可得RC串并联选频网络的选频响应=相频响应=-arctan由此可知ω=,或f==时,幅频响应的幅度为最大,即=而相频响应的相位角为零,即=0这说明,当ω=时,输出的电压的幅度最大(当输入电压的幅度一定,而频率可调时),并且输出电压时输入电压的,同时输出电压与输入电压同相。

由于电路中存在噪声,它的频谱分布很广,其中也包括w=这样一些频率成分,这种微弱的信号,经过放大,通过正反馈的选频网络,使输出幅度愈来愈大,最后受电路中的非线性元件的限制,使振荡幅度自动的稳定下来,开始时,放大电路的放大倍数Av1=; 为可变电阻值的上部分值,为下部分值,当Av1略大于3时,达到稳定平衡状态。

因而要通过调节才能输出稳定的正弦波。

适当调整负反馈的强弱,使Av1的值在起振时略大于3,达到稳定是Av1=3,其输出波形为正弦波,失真很小。

如果Av1的值略大于3,则会因振幅的增长,致使放大器件工作在非线性区域,波形将产生严重的非线性失真。

二极管对A1的输出电压进行限幅再进入比例放大环节调节,W2便可以改变A2的增益,从而改变输出波形的幅值。

为了让输出波形稳定,应让====3解得 ===%所以应该调到%左右,才产生最理想的波形。

由图()可以得出放大器A2的增益===由于0≤≤1K,所以≤≤由此可见。

滑动变阻器的调节功能对放大器的增益影响不大。

二压控电压源型二阶带通滤波器压控带通滤波器的传递函数压控电压源二阶带通滤波器电路如图所示,电路的传递函数为:(s)==式()中:是带通滤波器的中心角频率。

分别为带通滤波器的高低截止角频率。

中心角频率:中心角频率处的电压放大倍数:式()中,通带带宽:BW=f=BW=Q== (BW<<时)设计一个压控电压源二阶打通滤波器,指标要求为:通带中心频率=1kHz;;通带电压放大倍数=2;;通带带宽△f=50Hz。

设计步骤及元器件选择1)选取图()压控电压源型二阶带通滤波电路;2)该电路的传递函数:品质因数: Q===20通带的中心频率:=2π×1000 ()通带中心角频率处的电压放大倍数:==2=取C=(μF)=(μF)=μF为使电路稳定工作必须要求<3,取=2,即由此可算出电阻=Ω=159155Ω取标称值=160kΩ将将C=μF,=160kΩ,=2=2π代入()得到关于的二次方程:--=0可解得 =5719Ω =11438Ω取标称值Ω =Ω至此,压控电压源二阶带通滤波器无源器件参数基本确定。

第三章电路的仿真调试如下图所示,为1000Hz正弦波产生电路在Multisim软件中的电路图打开仿真开关,调节W1,调节示波器时间轴比例得到下图的波形图,从图中可以看出,正弦波经过放大,且周期大约是1ms,即1000Hz.如上所示为压控电压源二阶带通滤波器电路上图为对应的波形图,且可以看出,通带电压放大倍数大约为2由上图可看出通带中心频率大约是1000Hz通带下限截止频率大约是975Hz通带上限截止频率大约是1025Hz通过上下限截止频率可知,通带带宽△f=50Hz。

通过以上仿真可知,仿真结果基本满足设计要求,所选元器件参数没有错误,可以进行实际制作阶段。

第四章焊接并调试电路。

根据所需列表,购买相应的元器件,并根据电路图焊接电路。

利用函数信号发生器和示波器对压控电压源二阶带通滤波器进行测试,直至设计基本达到要求。

第五章总结在本小组三个成员的努力下,经过4天的日夜奋战,终于按照要求完成任务,各项指标已经达到了设计要求,经过测试后发现电路测试效果良好。

在课程设计期间,虽然多多少少出现了一些问题,但在各位组员的共同努力下,经过不断的讨论和交流,最终还是顺利完成了老师交代的任务。

本次课设的题目为《二阶带通滤波器设计》,是我们本学期所学课程《测控电路》里的一个重要内容,但纵观整个设计过程,我们既需要理解并运用《测控电路》里的知识,也要回忆起大一所学的《电子电路技术(模拟部分)》,还要要求熟练使用multisim软件进行仿真,可谓是把大一到大三的知识都用了个遍。

通过这次课程设计,我们三人不仅对课本的知识有了更加深入的认识,也体会到各种知识如何在实际的设计中的运用,还体会到小组成员间应该如何进行配合。

在实验之前,我们三人进行了资料查阅,找了不少有关二阶带通滤波器的相关资料,对我们实验设计的正确开展提供了不少帮助。

在进行设计和调试的时候,不断发现问题,解决问题,仔细寻找解决问题的办法。

我们学会了对实际设计的带通滤波器的性能进行分析,找出其存在的问题。

由于滤波器的中心频率对电路元件(如电容、电阻)的参数十分敏感,比较难调试出比较合适的参数,而且,在实际中,电路元件的参数容易随外界环境的干扰发生变化,容易导致中心频率的偏移,从而影响滤波结果的准确性。

在这次电路设计中,我们先计算电路参数,然后利用multisim进行虚拟仿真,在计算机调节各项参数,直至设计出符合要求的电路,并利用软件自带的仿真功能对电路进行分析,直至得到设计出所要求的结果。

由最后电路的测量分析结果可知,通过multisim仿真出来的结果与理论分析的计算结果十分接近。

在本次课设中,我们三人都得到了不少的成长,不仅在各自的动手能力和对课本知识的掌握中有了提高,培养了对该课程的兴趣,还培养了善于发现问题,解决问题的好习惯。

通过查阅相关资料,咨询他人,养成了良好的实验习惯和设计习惯。

我们都相信,通过这次的课设,我们能够在各个方面都得到提高。

相关文档
最新文档