2018年新课标I-、II、III数学(文)(理)高考真题试卷(Word版含答案)

合集下载

(完整版)2018年浙江省数学高考真题试卷(含答案解析)

(完整版)2018年浙江省数学高考真题试卷(含答案解析)

2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则 ()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn k n n P k p p k n -=-= 台体的体积公式121()3V S S h=++其中分别表示台体的上、下底面积,12,S S 表示台体的高h 柱体的体积公式V Sh=其中表示柱体的底面积,表示柱体的高S h 锥体的体积公式13V Sh=其中表示锥体的底面积,表示锥体的高S h 球的表面积公式24S R =π球的体积公式343V R =π其中表示球的半径R 一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},A ={1,3},则C A=U A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}∅2.双曲线的焦点坐标是221 3=x y -A .,0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是侧侧侧侧侧侧A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是21i-A .1+iB .1−i C .−1+iD .−1−i5.函数y =sin2x 的图象可能是||2xA B C D6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的⊄⊂A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是ξ012P12p -122p 则当p 在(0,1)内增大时,A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·bπ3+3=0,则|a −b |的最小值是( )A B C .2D .10.已知成等比数列,且.若,则( )1234,,,a a a a 1234123ln()a a a a a a a +++=++11a >A .B .C .D .1324,a a a a <<1324,a a a a ><1324,a a a a <>1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版) 题型一:求体积1,2018年全国卷Ⅲ文数高考试题如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)证明见解析 (2)存在,理由见解析 【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明. (2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可. 详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.2,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析. (2)1. 【解析】分析:(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A =,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE = 13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin451332Q ABP ABPV QE S-=⨯⨯=⨯⨯⨯⨯︒=. 点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 3.2019年全国统一高考数学试卷(文科)(新课标Ⅱ)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18 【分析】(1)先由长方体得,11B C ⊥平面11AA B B ,得到11B C BE ⊥,再由1BE EC ⊥,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为2a ,根据题中条件求出3a =;再取1BB 中点F ,连结EF ,证明EF ⊥平面11BB C C ,根据四棱锥的体积公式,即可求出结果. 【详解】(1)因为在长方体1111ABCD A B C D -中,11B C ⊥平面11AA B B ;BE ⊂平面11AA B B ,所以11B C BE ⊥,又1BE EC ⊥,1111B C EC C ⋂=,且1EC ⊂平面11EB C ,11B C ⊂平面11EB C ,所以BE ⊥平面11EB C ;(2)设长方体侧棱长为2a ,则1AE A E a ==,由(1)可得1EB BE ⊥;所以22211EB BE BB +=,即2212BE BB =, 又3AB =,所以222122AE AB BB +=,即222184a a +=,解得3a =;取1BB 中点F ,连结EF ,因为1AE A E =,则EF AB ∥; 所以EF ⊥平面11BB C C , 所以四棱锥11E BB C C -的体积为1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.4.2017年全国普通高等学校招生统一考试文科数学(新课标2卷) 四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PCD 面积为27,求四棱锥P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅱ)43【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取AD 中点M ,由于平面PAD 为等边三角形,则PM AD ⊥,利用面面垂直的性质定理可推出PM ⊥底面ABCD ,设BC x =,表示相关的长度,利用PCD ∆的面积为27.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】题型二:求距离5.2018年全国普通高等学校招生统一考试文数(全国卷II )如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)详见解析(245【解析】分析:(1)连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;(2)过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =3 连结OB .因为AB =BC 2AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°.所以OM=25,CH=sinOC MC ACBOM⋅⋅∠=45.所以点C到平面POM的距离为45.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.【答案】(1)详见解析;(2)三棱柱111ABC A B C -的高为21. 【解析】试题分析:(1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结1BC ,则O 为1B C 与1BC 的交点,又因为侧面11BB C C 为菱形,对角线相互垂直11B C BC ⊥;又AO ⊥平面11BB C C ,所以1B C AO ⊥,根据线面垂直的判定定理可得:1B C ⊥平面ABO ,结合线面垂直的性质:由于AB ⊂平面ABO ,故1B C AB ⊥;(2)要求三菱柱的高,根据题中已知条件可转化为先求点O 到平面ABC 的距离,即:作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H ,则由线面垂直的判定定理可得OH ⊥平面ABC ,再根据三角形面积相等:OH AD OD OA ⋅=⋅,可求出OH 的长度,最后由三棱柱111ABC A B C -的高为此距离的两倍即可确定出高. 试题解析:(1)连结1BC ,则O 为1B C 与1BC 的交点. 因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥, 故1B C ⊥平面ABO.由于AB ⊂平面ABO ,故1B C AB ⊥.(2)作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H. 由于,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥, 又OH AD ⊥,所以OH ⊥平面ABC.因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得3OD. 由于1AC AB ⊥,所以11122OA B C ==,由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH , 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217. 故三棱柱111ABC A B C -的高为217. 考点:1.线线,线面垂直的转化;2.点到面的距离;3.等面积法的应用 7.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积 34V =,求A 到平面PBC 的距离.【答案】(1)证明见解析 (2) A 到平面PBC 的距离为31313【详解】试题分析:(1)连结BD 、AC 相交于O ,连结OE ,则PB ∥OE ,由此能证明PB ∥平面ACE .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出A 到平面PBD 的距离试题解析:(1)设BD 交AC 于点O ,连结EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB 又EO平面AEC ,PB平面AEC所以PB ∥平面AEC . (2)136V PA AB AD AB =⋅⋅=由,可得. 作交于. 由题设易知,所以故, 又31313PA AB AH PB ⋅==所以到平面的距离为法2:等体积法136V PA AB AD AB =⋅⋅= 由,可得.由题设易知,得BC假设到平面的距离为d ,又因为PB=所以又因为(或),,所以考点 :线面平行的判定及点到面的距离8.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =,117C E =,因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=⨯⨯, 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯⨯⨯⨯=⨯⨯⨯⨯, 解得41717d ==, 所以点C 到平面1C DE 的距离为417. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.题型三:求面积9.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【答案】(1)证明见解析;(2)623+.【详解】 试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且22,AD a PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB 平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==.可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅ 21sin606232BC +︒=+10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面积.【答案】(1)见解析(2)5【分析】(1)由四边形ABCD 为菱形知AC ⊥BD ,由BE ⊥平面ABCD 知AC ⊥BE ,由线面垂直判定定理知AC ⊥平面BED ,由面面垂直的判定定理知平面AEC ⊥平面BED ;(2)设AB =x ,通过解直角三角形将AG 、GC 、GB 、GD 用x 表示出来,在Rt ∆AEC 中,用x 表示EG ,在Rt ∆EBG 中,用x 表示EB ,根据条件三棱锥E ACD -6求出x ,即可求出三棱锥E ACD -的侧面积.【详解】(1)因为四边形ABCD 为菱形,所以AC ⊥BD ,因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED(2)设AB =x ,在菱形ABCD 中,由 ∠ABC =120°,可得AG =GC =32x ,GB =GD =2x .因为AE ⊥EC ,所以在 Rt ∆AEC 中,可得EG =3x . 连接EG ,由BE ⊥平面ABCD ,知 ∆EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积3116632243E ACD V AC GD BE x -=⨯⋅⋅==.故 x =2 从而可得AE =EC =ED 6.所以∆EAC 的面积为3, ∆EAD 的面积与∆ECD 的面积均为 5故三棱锥E -ACD 的侧面积为3+25【点睛】本题考查线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力.11.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【答案】(1)见详解;(2)4.【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2) 欲求四边形ACGD 的面积,需求出CG 所对应的高,然后乘以CG 即可.【详解】(1)证://AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥.AB ∴⊥平面BCGE ,AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)取CG 的中点M ,连结,EM DM .因为//AB DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE CG ⊥,由已知,四边形BCGE 是菱形,且60EBC ∠=得EM CG ⊥,故CG ⊥平面DEM . 因此DM CG ⊥.在Rt DEM △中,DE=1,3EM =,故2DM =.所以四边形ACGD 的面积为4.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,最后将求四边形ACGD的面积考查考生的空间想象能力.。

2018年高考天津卷理科数学(含答案)

2018年高考天津卷理科数学(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第I卷(选择题)和第n卷(非选择题)两部分,共150分,考试用时120分钟。

第I卷1至2页,第n卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第I卷注意事项:1 •每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2•本卷共8小题,每小题5分,共40分。

参考公式:如果事件A, B互斥,那么P(AUB)二P(A) P(B).如果事件A, B相互独立,那么P(AB) = P(A)P(B).棱柱的体积公式V =Sh,其中S表示棱柱的底面面积,h表示棱柱的高.1棱锥的体积公式V Sh,其中S表示棱锥的底面面积,h表示棱锥的高.3一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(1)设全集为R,集合A = {x0 vx £2} , B ={xx^1},则AI 6B)=(A) {xOvx 兰1} (B) {xOvx<*(C) { x 1 兰x c 2} (D) { x 0 c x c 2}"x + y 兰5,2x — y 兰4,⑵设变量x, y满足约束条件则目标函数3x 5y的最大值为_x + y 兰1,y -0,(A) 6 (B) 19 (C) 21 (D) 45(3)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为(A) 充分而不必要条件(B) 必要而不充分条件(C) 充要条件(D) 既不充分也不必要条件Jl K(6)将函数y=sin(2x )的图象向右平移个单位长度,所得图象对应的函数5 103兀5兀(A)在区间[一,]上单调递增4 43兀(B)在区间[34川上单调递减(A) 1 (B) 2(4)设x R,则a\x--\.-2 2(5)已知a = log 2 e, b = In 2,c 二log23,则a,b,c的大小关系为(A) a b c (B) b a c (C) c b a (D) c a b(11)已知正方体 ABC^A1B 1C 1D 1的棱长为1,除面ABCD 夕卜,该正方体其余各面的中心分别为点E ,F ,2 2⑺已知双曲线 爲-y 2=1(a 0, b 0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A , Ba b两点•设A , B 到双曲线同一条渐近线的距离分别为d !和d 2,且d !d^6,则双曲线的方程为(8)如图,在平面四边形 ABCD 中,AB _ BC ,AD _ CD ,. BAD =120 ,AB = AD =1.若点E 为边第口卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2018年新课标Ⅲ理数高考试题文档版(含答案)

2018年新课标Ⅲ理数高考试题文档版(含答案)

绝密★启封并使用完毕前试题类型:2018年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量12(,)22BA =uu v,31(,),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是学.科.网(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )31010 (B )1010 (C )1010- (D )31010-(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,学.科.网则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,学科&网A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分 (13)若x ,y 满足约束条件则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。

新课标卷I(数学理)word版-2013年普通高等学校招生全国统一考试

新课标卷I(数学理)word版-2013年普通高等学校招生全国统一考试

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N= ()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1++ +…+(B )1++ +…+ (C )1++ +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c (9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a= (A) (B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形 (C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减x ≥1, x+y ≤3,y ≥a(x-3). {(D)若xn是f(x)的极值点,则f1(xα)=0(11)设抛物线y2=3px(p≥0)的焦点为F,点M在C上,|MF|=5若以MF为直径的园过点(0,3),则C 的方程为(A)y2=4x或y2=8x (B)y2=2x或y2=8x(C)y2=4x或y2=16x (D)y2=2x或y2=16x(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

新课标II数学(理)高考真题命题解析

新课标II数学(理)高考真题命题解析

2019新课标II数学(理)高考真题命题解析具体来说,今年全国理科II卷试题呈现出如下特点:一、坚持稳定中求创新每年高考试题都在追求稳定中求创新,今年全国II卷理科试题也不例外。

试题全面考查基础,突出主干内容,强调通性通法,如集合、复数、函数、向量、算法、概率、三角函数、解三角形、线性规划、双曲线等基础内容在选择填空题中都进行了有效的考查,这部分试题有利于稳定考生情绪;还有解答题对数列、统计、直线与圆锥曲线、立体几何、函数与导数等高中数学主干内容也进行了重点的考查,充分体现了试卷对数学知识考查的基础性、全面性和综合性。

另外试卷也非常注重通性通法的考查,如第20题考查了证明线面垂直和求线面角的一般方法,第21题考查了化归与转化的思想方法,考查学生对合理构造辅助函数证明不等式方法的掌握程度。

同时试题也追求题型设计的创新。

如第8题以哥德巴赫猜想为背景,巧妙地设计了一道古典概率计算问题。

再如解答题中解析几何放在了立体几何前面进行考查,考验学生的随机应变与心理素质,本题源于教材,以抛物线中过焦点的弦为直径的圆和准线相切为背景,设问方式新颖,不落俗套。

二、加强数学核心素养的考查今年全国理科II卷试题对数学核心素养有更深入的考查。

如第3题对于学生的逻辑推理与直观想象提出了较高的要求;第18题充分考查学生的数据分析和数学建模能力;第20题考查考生的空间想象、逻辑推理和数学运算能力;第19题以抛物线过焦点的弦为载体,考查学生的运算求解和逻辑推理能力;第21题的第二问函数零点问题对学生数学抽象与数学思维品质都有很高的要求,充分考查学生分析问题和解决问题的能力。

三、关注数学应用,渗透数学文化课程标准的理念之一是“注重数学与实际生活联系,增强学生的应用意识,发展学生的应用能力”。

第18题以环境基础设施投资额为背景,设计的问题有很强的现实意义,如何合理的建立数学模型以及如何利用选择的数学模型解决实际问题,充分体现数学知识在生活中的应用。

2018年天津高考数学真题(附答案解析)

2018年天津高考数学真题(附答案解析)

2018年天津高考数学真题(附答案解析)1.选择题(每小题5分,满分40分):在每小题给出的四个选项中,只有一项是符合题目要求的.A.B.C.D.2.A. 6B. 19C. 21D. 453.阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为A. 1B. 2C. 3D. 44.A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件5.A.B.C.D.6.7.A. AB. BC. CD. D8.A. AB. BC. CD. D填空题(本大题共6小题,每小题____分,共____分。

)9.. 填空题:本大题共6小题,每小题5分,共30分。

10.11. 已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为____.12.已知圆的圆心为C,直线(为参数)与该圆相交于A,B两点,则的面积为____.13.已知,且,则的最小值为____.14.已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是____.简答题(综合题)(本大题共6小题,每小题____分,共____分。

)15..解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. (本小题满分13分)在中,内角A,B,C所对的边分别为a,b,c.已知. (I)求角B的大小;(II)设a=2,c=3,求b和的值.16. (本小题满分13分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.17.(本小题满分13分)如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.18.(本小题满分13分)设是等比数列,公比大于0,其前n项和为,是等差数列. 已知,,,.(I)求和的通项公式;(II)设数列的前n项和为,(i)求;(ii)证明.19.(本小题满分14分)设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若(O为原点) ,求k的值.20.(本小题满分14分)已知函数,,其中a>1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.答案单选题1. B2. C3. B4. A5. D6. A7. C8. A填空题9.4-i10.11.12.13.14.(4,8)简答题15.(15)本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分.(Ⅰ)解:在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)解:在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,16.(16)本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.(Ⅰ)解:由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)解:随机变量X的所有可能取值为0,1,2,3.P(X=k)=(k=0,1,2,3).所以,随机变量X的分布列为随机变量X的数学期望.(ii)解:设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以,事件A发生的概率为.17.(17)本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分.依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)证明:依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)解:依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)解:设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.18.(18)本小题主要考查等差数列的通项公式,等比数列的通项公式及前n项和公式等基础知识.考查等差数列求和的基本方法和运算求解能力.满分13分.(I)解:设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得从而故所以数列的通项公式为,数列的通项公式为(II)(i)由(I),有,故.(ii)证明:因为,所以,.19.(19)本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.(Ⅰ)解:设椭圆的焦距为2c,由已知知,又由a2=b2+c2,可得2a=3b.由已知可得,,,由,可得ab=6,从而a=3,b=2.所以,椭圆的方程为.(Ⅱ)解:设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故.又因为,而∠OAB=,故.由,可得5y1=9y2.由方程组消去x,可得.易知直线AB的方程为x+y–2=0,由方程组消去x,可得.由5y1=9y2,可得5(k+1)=,两边平方,整理得,解得,或.所以,k的值为20.(20)本小题主要考查导数的运算、导数的几何意义、运用导数研究指数函数与对数函数的性质等基础知识和方法.考查函数与方程思想、化归思想.考查抽象概括能力、综合分析问题和解决问题的能力.满分14分.(I)解:由已知,,有.令,解得x=0.由a>1,可知当x变化时,,的变化情况如下表:所以函数的单调递减区间,单调递增区间为.(II)证明:由,可得曲线在点处的切线斜率为.由,可得曲线在点处的切线斜率为.因为这两条切线平行,故有,即.两边取以a为底的对数,得,所以. (III)证明:曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.即只需证明当时,方程组有解,由①得,代入②,得. ③因此,只需证明当时,关于x1的方程③有实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,,故存在唯一的x0,且x0>0,使得,即.由此可得在上单调递增,在上单调递减. 在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.。

2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。

(完整版)2018年北京高考数学及答案

(完整版)2018年北京高考数学及答案

2018年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.1. 已知集合,,则 ( ){}2|<=x x A {}2,1,0,2-=B =⋂B A .A {}1,0.B {}1,0,1-.C {}2,1,0,2-.D {}2,1,0,1-2. 在复平面内,复数的共轭复数对应的点位于( )i-11第一象限第二象限 第三象限第四象限.A .B .C .D 3. 执行如图所示的程序框图,输出的值为()s.A 21.B 65.C 67.D 127s4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为,则第八个单音的频率122f 为( ).A f 32.B f 322.C f 1252.D f12725. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()12 34.A .B .C .D 6. 设a ,b 均为单位向量,则“”是“a ⊥b ”的()33-=+a b a b充分而不必要条件 必要而不充分条件 充分必要条件既不充分也不必要条件.A .B .C .D 7. 在平面直角坐标系中,记为点到直线的距离,当变化时,的最d ()θθsin ,cos P 02=--my x m ,θd 大值为()1234.A .B .C .D 8. 设集合,则( )(){}2,4,1|,≤->+≥-=ay x y ax y x y x A 对任意实数,对任意实数,.A a ()A∈1,2.B a ()A∉1,2当且仅当时,当且仅当时,.C 0<a ()A∉1,2.D 23≤a ()A ∉1,2第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9. 设是等差数列,且,,则的通项公式为__________.{}n a 31=a 3652=+a a {}n a 10.在极坐标系中,直线与圆相切,则_________.()0sin cos >=+a a θρθρθρcos 2==a 11. 设函数,若对任意的实数都成立,则的最小值为()()06cos >⎪⎭⎫⎝⎛-=ωπωx x f ()⎪⎭⎫⎝⎛≤4πf x f x ω__________.12.若,满足,则的最小值是__________.x y x y x 21≤≤+x y -213.能说明“若对任意的都成立,则在上是增函数”为假命题的一个函数()()0f x f >]2,0(∈x ()x f []2,0是__________.14. 已知椭圆,双曲线,若双曲线的两条渐近线与椭圆()01:2222>>=+b a b y a x M 1:2222=-ny m x N N 的四个交点及椭圆的两个焦点恰为一个正六边形的顶点,则椭圆的离心率为__________;双曲M M M 线的离心率为__________.N 3、解答题共6小题,共80分。

2018年高考文科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

2018年高考文科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

数学试卷 第1页(共46页) 数学试卷 第2页(共46页)绝密★启用前2018年普通高等学校招生全国统一考试全国卷1文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I ( ) A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( ) A .0 B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( ) A .13B .12C .2 D .225.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x = 7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r( )A .3144AB AC -u u u r u u u r B .1344AB AC -u u ur u u u rC .3144AB AC +u u u r u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( )A .15B .5 C .25D .1-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共46页) 数学试卷 第4页(共46页)12.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________. 16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。

2018年高考天津卷理数真题(含答案)

2018年高考天津卷理数真题(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:如果事件A ,B 互斥,那么()()()P AB P A P B =+ .如果事件A ,B 相互独立,那么()()()P AB P A P B = .棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高. 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ð(A) {01}x x <≤(B) {01}x x << (C) {12}x x ≤<(D) {02}x x <<(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为(A) 6 (B) 19 (C) 21 (D) 45(3)阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为 (A) 1(B) 2(C) 3(D) 4(4)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 (A) a b c >> (B) b a c >>(C) c b a >>(D) c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A)在区间35[,]44ππ上单调递增(B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增 (D)在区间3[,2]2ππ上单调递减 (7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A)221412x y -=(B)221124x y -= (C)22139x y -=(D) 22193x y -= (8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则⋅uu u r uurAE BE 的最小值为(A)2116(B)32(C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。

(word完整版)2018年全国(三卷)高考数学(理)试题及答案,推荐文档

(word完整版)2018年全国(三卷)高考数学(理)试题及答案,推荐文档

绝密★启用刖2018年普通高等学校招生全国统一考试理科数学注意事项:1 •答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2•回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3 •考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有项是符合题目要求的。

1.已知集合A x|x 1 > 0 , B0,1 ,2,则AI BA.0B. 1C. 1 , 2D. 0,1,2 2. 1i 2 iA. 3 i B. 3i3 i D. 3 i3•中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头•若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A14.若sin -,则cos2387C.A .- B.-99542DX 2.4, P X 4 P X 6,贝V pA . 0.7B . 0.6C . 0.4D . 0.3 9. △ ABC 的内角A , B , C 的对边分别为 a , b , c ,若△ ABC 的面积为,V C7tC .22 45. x 2 -的展开式中x 4的系数为xA . 10B . 20C . 40D . 802勺6 .直线x y 20分别与x 轴,y 轴交于A , B 两点,点P 在圆x 2 y 2上,则△ ABP 面积的取值范围是A . 2,6B . 4, 8C . . 2,3.2D . 2「2,3.27.函数y x 4 x 22的图像大致为该群体的10位成员中使用移动支付的人数,10•设A, B , C , D是同一个半径为4的球的球面上四点,△ ABC为等边三角形且其面积为9 3,则三棱锥D ABC体积的最大值为A • 12 3 B• 18 3 C. 24 3 D• 54 32 2x y11 .设F i , F2是双曲线C:—2 —1 ( a 0 ,b 0 )的左,右焦点,O是坐标原点.过F2 a b作C的一条渐近线的垂线,垂足为P .若PF J丿6 OP,则C的离心率为A. 5B. 2C. 3D.、212.设a log 0.2 0.3 , b log 2 0.3,贝UA. a b ab 0B. ab a b 0C. a b 0 abD. ab 0 a b二、填空题:本题共4小题,每小题5分,共20分。

(完整word版)2018年普通高等学校招生全国统一考试理科数学(新课标II卷)含答案

(完整word版)2018年普通高等学校招生全国统一考试理科数学(新课标II卷)含答案

2018年普通高等学校招生全国统一考试理科数学(新课标II 卷)一、选择题:本题共12小题,每小题5分,共60分 1.12i12i +=-( ) A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y x y x y =+≤∈∈Z Z,,,,则A 中元素的个数为( )A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为( )4.已知向量a ,b 满足1=a ,1⋅=-a b ,则()2⋅-=a a b ( )A .4B .3C .2D .05.双曲线()222210,0x y a b a b -=>>的离心率为3,则其渐近线方程为( )A .2y x =±B .3y x =±C .2y x =±D .3y x =±6.在ABC △中,5cos 2C=,1BC =,5AC =,则AB =( ) A .42B .30C .29D .257.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入( ) A .i i 1=+B .i i 2=+C .i i 3=+D .i i 4=+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为()A .15BCD10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =, 则()()()()12350f f f f ++++=( )A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()222210x y C a b a b +=>>:的左,右焦点,A 是C的左顶点,点P 在过A 且斜的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

2018年新课标I数学(理)高考真题试卷(Word版)word

2018年新课标I数学(理)高考真题试卷(Word版)word

2018年普通高等学校招生全国统一考试(I卷)理科数学本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、本试卷分为第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至3页,第II 卷3至5页.2、答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置3、全部答案在答题卡上完成,答在本试题上无效4、考试结束后,将本试题和答题卡一并上交。

第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设Z 二F 2i,则z -1 +|A. 0B. 2C. 1D.2. 已知集合A=^xx2-x-2>0^,则C R A=A. <x -1 ex £2〉B.<x -1 兰x W2>C. \ | x ::-仁-* | x 2:D.'x | x - T | x - 2 '3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是 A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4•设S n 为等差数列GJ 的前n 项和,若3S 3 = S 2 S 4,a , =2,则a §二A. -12B. -10C. 10D. 123d25.设函数fx 二x ・a-1x ,ax ,若fx 为奇函数,则曲线 y 二f x 在点0,0处的切线方程为7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点 M 在正视图上的对应点为A ,圆柱表面上的点 N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A. 217B. 2 .5C. 3D. 22 “ 28.设抛物线C : y =4x 的焦点为F ,过点-2,0且斜率为一的直线与C 交于M , N 两点,则3FM FN 二A. 5B.6C. 7D. 89.已知函数e x x 兰 0 fx 二,g x - f x x a .若 g x 存在2个零点,则a 的取值Jn x, x A 0,范围是A. 〔-1,0B.C.D. 1,::A . y = -2xB . y = -xC. y = 2x D . y =x6.在「ABC 中,AD 为BC 边上的中线, 3 — 1 —A. AB AC 4 4E 为AD 的中点,贝U EB = 3 — 1 —1 — 3 —C. — AB ACD.— AB AC 4 44 410 •下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆 的直径分别为直角三角形 ABC 的斜边BC ,直角边AB, AC 「ABC 的 三边所围成的区域记为I,黑色部分记为n,其余部分记为川,在整个 图形中随机取一点,此点取自I, n ,川的概率分别记为 p i , 0, P 3,贝UA.pi= p2B. P i=p3 C.p 2= p3D. P i=p2p32X11.已知双曲线C:- 32y =1 , O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为 M ,N .若人OMN 为直角三角形,则 MN = 3 A.B. 32C. 2 3D. 412.已知正方体的棱长为1,每条棱所在的直线与平面 -■所成的角都相等,则-■截此正方体所得截面面积的最大值为A. 第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答 .二、填空题:本题共 4小题,每小题 5分.X -2y -2 _0 I 『13. 若X , y 满足约束条件<x —y + 130 ,贝U z = 3x+2y 的最大值为 __________________ .[八014. 记S n 为数列的前n 项和,若S n =2a n +1,则S 6= ______________________________ .15. 从2位女生,4位男生中选3人参加科技比赛,且至少有 1位女生入选,则不同的选法共有 也(用数字填写答案)16. _____________________________________________________________________ 已知函数f (x ) = 2sin x+sin2x ,贝U f(x )的最小值是 _______________________________________ .D.三、解答题:解答应写出文字说明、证明过程或演算步骤(17)(本小题满分12分)在平面四边形ABCD 中,ADC =90,A =45 , AB =2,BD=5.(1 )求cos ADB ;(2 )若DC =2.2,求BC .(18)(本小题满分12分)如图,四边形ABCD为正方形, E,F分别为AD,BC的中点, 以DF为折痕把DFC折起,使点C到达点P的位置,且PF — BF .(1 )证明:平面PEF -平面ABFD ;(2 )求DP与平面ABFD所成角的正弦值(19 )(本小题满分12分)2X 2设椭圆C: y2-1的右焦点为F,过F的直线I与C交于A,B两点,点M的坐标为22,0 .(1 )当丨与x轴垂直时,求直线AM的方程;(2 )设O为坐标原点,证明:• OMA = • OMB .(20 )(本小题满分12 分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品。

2018年江苏省高考数学试卷(含详细答案解析)

2018年江苏省高考数学试卷(含详细答案解析)

2018年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B=.2.(5分)若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为.3.(5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.4.(5分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为.5.(5分)函数f(x)=的定义域为.6.(5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.7.(5分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.8.(5分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.9.(5分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.10.(5分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(5分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.12.(5分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为.13.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.14.(5分)已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则成立的n的最小值为.使得S n>12a n+1二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.16.(14分)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.17.(14分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P 为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(16分)如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.19.(16分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.20.(16分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若PC=2,求BC的长.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10分)已知矩阵A=.(1)求A的逆矩阵A﹣1;(2)若点P在矩阵A对应的变换作用下得到点P′(3,1),求点P的坐标.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.D.[选修4-5:不等式选讲](本小题满分0分)24.若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.26.设n∈N*,对1,2,……,n的一个排列i1i2……i n,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2……i n的一个逆序,排列i1i2……i n的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).2018年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B={1,8} .【分析】直接利用交集运算得答案.【解答】解:∵A={0,1,2,8},B={﹣1,1,6,8},∴A∩B={0,1,2,8}∩{﹣1,1,6,8}={1,8},故答案为:{1,8}.【点评】本题考查交集及其运算,是基础的计算题.2.(5分)若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为2.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由i•z=1+2i,得z=,∴z的实部为2.故答案为:2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为90.【分析】根据茎叶图中的数据计算它们的平均数即可.【解答】解:根据茎叶图中的数据知,这5位裁判打出的分数为89、89、90、91、91,它们的平均数为×(89+89+90+91+91)=90.故答案为:90.【点评】本题考查了利用茎叶图计算平均数的问题,是基础题.4.(5分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为8.【分析】模拟程序的运行过程,即可得出程序运行后输出的S值.【解答】解:模拟程序的运行过程如下;I=1,S=1,I=3,S=2,I=5,S=4,I=7,S=8,此时不满足循环条件,则输出S=8.故答案为:8.【点评】本题考查了程序语言的应用问题,模拟程序的运行过程是解题的常用方法.5.(5分)函数f(x)=的定义域为[2,+∞).【分析】解关于对数函数的不等式,求出x的范围即可.【解答】解:由题意得:≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).【点评】本题考查了对数函数的性质,考查求函数的定义域问题,是一道基础题.6.(5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为0.3.【分析】(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,根据概率公式计算即可,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,根据概率公式计算即可【解答】解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P==0.3,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,故选中的2人都是女同学的概率P==0.3,故答案为:0.3【点评】本题考查了古典概率的问题,采用排列组合或一一列举法,属于基础题.7.(5分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.【分析】根据正弦函数的对称性建立方程关系进行求解即可.【解答】解:∵y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,∴2×+φ=kπ+,k∈Z,即φ=kπ﹣,∵﹣φ<,∴当k=0时,φ=﹣,故答案为:﹣.【点评】本题主要考查三角函数的图象和性质,利用正弦函数的对称性建立方程关系是解决本题的关键.8.(5分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为2.【分析】利用双曲线的简单性质,以及点到直线的距离列出方程,转化求解即可.【解答】解:双曲线=1(a>0,b>0)的右焦点F(c,0)到一条渐近线y=x的距离为c,可得:=b=,可得,即c=2a,所以双曲线的离心率为:e=.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.9.(5分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.【分析】根据函数的周期性,进行转化求解即可.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1+|=,f()=cos()=cos=,即f(f(15))=,故答案为:【点评】本题主要考查函数值的计算,根据函数的周期性结合分段函数的表达式利用转化法是解决本题的关键.10.(5分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【分析】求出多面体中的四边形的面积,然后利用体积公式求解即可.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×=.故答案为:.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.11.(5分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为﹣3.【分析】推导出f′(x)=2x(3x﹣a),x∈(0,+∞),当a≤0时,f′(x)=2x(3x ﹣a)>0,f(0)=1,f(x)在(0,+∞)上没有零点;当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,f(x)在(0,)上递减,在(,+∞)递增,由f(x)只有一个零点,解得a=3,从而f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x ∈[﹣1,1],利用导数性质能求出f(x)在[﹣1,1]上的最大值与最小值的和.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.【点评】本题考查函数的单调性、最值,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.12.(5分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为3.【分析】设A(a,2a),a>0,求出C的坐标,得到圆C的方程,联立直线方程与圆的方程,求得D的坐标,结合=0求得a值得答案.【解答】解:设A(a,2a),a>0,∵B(5,0),∴C(,a),则圆C的方程为(x﹣5)(x﹣a)+y(y﹣2a)=0.联立,解得D(1,2).∴=.解得:a=3或a=﹣1.又a>0,∴a=3.即A的横坐标为3.故答案为:3.【点评】本题考查平面向量的数量积运算,考查圆的方程的求法,是中档题.13.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.【点评】本题主要考查基本不等式的应用,利用1的代换结合基本不等式是解决本题的关键.14.(5分)已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则成立的n的最小值为27.使得S n>12a n+1【分析】采用列举法,验证n=26,n=27即可.【解答】解:利用列举法可得:当n=26时,A∪B中的所有元素从小到大依次排列,构成一个数列{a n},所以数列{a n}的前26项分成两组:1,3,5,7,9,11,13,15,17,19,21,23.25,…41;2,4,8,16,32.S26=,a27=43,⇒12a27=516,不符合题意.当n=27时,A∪B中的所有元素从小到大依次排列,构成一个数列{a n},所以数列{a n}的前27项分成两组:1,3,5,7,9,11,13,15,17,19,21,23,25,…41,43;2,4,8,16,32.S27==546,a28=45⇒12a28=540,符合题意,故答案为:27.【点评】本题考查了集合、数列的求和,属于中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【分析】(1)由⇒AB∥平面A1B1C;(2)可得四边形ABB1A1是菱形,AB1⊥A1B,由AB1⊥B1C1⇒AB1⊥BC⇒AB1⊥面A1BC,⇒平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.【点评】本题考查了平行六面体的性质,及空间线面平行、面面垂直的判定,属于中档题.16.(14分)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【分析】(1)由已知结合平方关系求得sinα,cosα的值,再由倍角公式得cos2α的值;(2)由(1)求得t an2α,再由cos(α+β)=﹣求得tan(α+β),利用tan(α﹣β)=tan[2α﹣(α+β)],展开两角差的正切求解.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.【点评】本题考查三角函数的恒等变换及化简求值,考查同角三角函数基本关系式的应用,是中档题.17.(14分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P 为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【分析】(1)根据图形计算矩形ABCD和△CDP的面积,求出sinθ的取值范围;(2)根据题意求出年总产值y的解析式,构造函数f(θ),利用导数求f(θ)的最大值,即可得出θ为何值时年总产值最大.【解答】解:(1)S=(40sinθ+10)•80cosθ矩形ABCD=800(4sinθcosθ+cosθ),S△CDP=•80cosθ(40﹣40sinθ)=1600(cosθ﹣cosθsinθ),当B、N重合时,θ最小,此时sinθ=;当C、P重合时,θ最大,此时s inθ=1,∴sinθ的取值范围是[,1);(2)设年总产值为y,甲种蔬菜单位面积年产值为4t(t>0),乙种蔬菜单位面积年产值为3t,则y=3200t(4sinθcosθ+cosθ)+4800t(cosθ﹣cosθsinθ)=8000t(sinθcosθ+cosθ),其中sinθ∈[,1);设f(θ)=sinθcosθ+cosθ,则f′(θ)=cos2θ﹣sin2θ﹣sinθ=﹣2sin2θ﹣sinθ+1;令f′(θ)=0,解得sinθ=,此时θ=,cosθ=;当sinθ∈[,)时,f′(θ)>0,f(θ)单调递增;当sinθ∈(,1)时,f′(θ)<0,f(θ)单调递减;∴θ=时,f(θ)取得最大值,即总产值y最大.S矩形ABCD=800(4sinθcosθ+cosθ),S△CDP=1600(cosθ﹣cosθsinθ),sinθ∈[,1);答:θ=时总产值y最大.【点评】本题考查了解三角形的应用问题,也考查了构造函数以及利用导数求函数的最值问题,是中档题.18.(16分)如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.【分析】(1)由题意可得.,又a2﹣b2=c2=3,解得a=2,b=1即可.(2)①可设直线l的方程为y=kx+m,(k<0,m>0).可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,解得k=﹣,m=3.即可②设A(x1,y1),B(x2,y2),联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.即可【解答】解:(1)由题意可设椭圆方程为,∵焦点F1(﹣,0),F2(,0),∴.∵∴,又a2﹣b2=c2=3,解得a=2,b=1.∴椭圆C的方程为:,圆O的方程为:x2+y2=3.(2)①可知直线l与圆O相切,也与椭圆C,且切点在第一象限,因此k一定小于0,∴可设直线l的方程为y=kx+m,(k<0,m>0).由圆心(0,0)到直线l的距离等于圆半径,可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,可得m2=4k2+1,∴3k2+3=4k2+1,结合k<0,m>0,解得k=﹣,m=3.将k=﹣,m=3代入可得,解得x=,y=1,故点P的坐标为(.②设A(x1,y1),B(x2,y2),由⇒k<﹣.联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,|x2﹣x1|==,O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.∴y=﹣为所求.【点评】本题考查了椭圆的方程,直线与圆、椭圆的位置关系,属于中档题.19.(16分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【分析】(1)根据“S点”的定义解两个方程,判断方程是否有解即可;(2)根据“S点”的定义解两个方程即可;(3)分别求出两个函数的导数,结合两个方程之间的关系进行求解判断即可.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S 点”;(2)f′(x)=2ax,g′(x)=,x>0,由f′(x)=g′(x)得=2ax,得x=,f()=﹣=g()=﹣lna2,得a=;(3)f′(x)=﹣2x,g′(x)=,(x≠0),由f′(x0)=g′(x0),假设b>0,得b=﹣>0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,令h(x)=x2﹣﹣a=,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上不间断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则存在b>0,使f(x)与g(x)在区间(0,+∞)内存在“S”点.【点评】本题主要考查导数的应用,根据条件建立两个方程组,判断方程组是否有解是解决本题的关键.20.(16分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【分析】(1)根据等比数列和等差数列的通项公式,解不等式组即可;(2)根据数列和不等式的关系,利用不等式的关系构造新数列和函数,判断数列和函数的单调性和性质进行求解即可.【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].【点评】本题主要考查等比数列和等差数列以及不等式的综合应用,考查学生的运算能力,综合性较强,难度较大.数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若PC=2,求BC的长.【分析】连接OC,由题意,CP为圆O的切线,得到垂直关系,由线段长度及勾股定理,可以得到PO的长,即可判断△COB是等边三角形,BC的长.【解答】解:连接OC,因为PC为切线且切点为C,所以OC⊥CP.因为圆O的半径为2,,所以BO=OC=2,,所以,所以∠COP=60°,所以△COB为等边三角形,所以BC=BO=2.【点评】本题主要考查圆与直线的位置关系,切线的应用,考查发现问题解决问题的能力.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10分)已知矩阵A=.(1)求A的逆矩阵A﹣1;(2)若点P在矩阵A对应的变换作用下得到点P′(3,1),求点P的坐标.【分析】(1)矩阵A=,求出det(A)=1≠0,A可逆,然后求解A的逆矩阵A﹣1.(2)设P(x,y),通过•=,求出=,即可得到点P的坐标.【解答】解:(1)矩阵A=,det(A)=2×2﹣1×3=1≠0,所以A可逆,从而:A的逆矩阵A﹣1=.(2)设P(x,y),则•=,所以=A﹣1=,因此点P的坐标为(3,﹣1).【点评】本题矩阵与逆矩阵的关系,逆矩阵的求法,考查转化思想的应用,是基本知识的考查.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.【分析】将直线l、曲线C的极坐标方程利用互化公式可得直角坐标方程,利用直线与圆的相交弦长公式即可求解.【解答】解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(﹣θ)=2,∴﹣=2,∴直线l的普通方程为:x﹣y=4.圆心C到直线l的距离为d=,∴直线l被曲线C截得的弦长为2.【点评】本题考查了极坐标方程化为直角坐标方程、直线与圆的相交弦长关系、点到直线的距离公式,属于中档题.D.[选修4-5:不等式选讲](本小题满分0分)24.若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【分析】根据柯西不等式进行证明即可.【解答】解:由柯西不等式得(x2+y2+z2)(12+22+22)≥(x+2y+2z)2,∵x+2y+2z=6,∴x2+y2+z2≥4是当且仅当时,不等式取等号,此时x=,y=,z=,∴x2+y2+z2的最小值为4【点评】本题主要考查不等式的证明,利用柯西不等式是解决本题的关键.,【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【分析】设AC,A1C1的中点分别为O,O1,以{}为基底,建立空间直角坐标系O﹣xyz,(1)由|cos|=可得异面直线BP与AC1所成角的余弦值;(2)求得平面AQC1的一个法向量为,设直线CC1与平面AQC1所成角的正弦值为θ,可得sinθ=|cos|=,即可得直线CC1与平面AQC1所成角的正弦值.【解答】解:如图,在正三棱柱ABC﹣A1B1C1中,设AC,A1C1的中点分别为O,O1,则,OB⊥OC,OO1⊥OC,OO1⊥OB,故以{}为基底,建立空间直角坐标系O﹣xyz,∵AB=AA1=2,A(0,﹣1,0),B(,0,0),C(0,1,0),A1(0,﹣1,2),B1(,0,2),C1(0,1,2).(1)点P为A1B1的中点.∴,∴,.|cos|===.∴异面直线BP与AC1所成角的余弦值为:;(2)∵Q为BC的中点.∴Q()∴,,设平面AQC1的一个法向量为=(x,y,z),由,可取=(,﹣1,1),设直线CC1与平面AQC1所成角的正弦值为θ,sinθ=|cos|==,∴直线CC1与平面AQC1所成角的正弦值为.【点评】本题考查了向量法求空间角,属于中档题.26.设n ∈N *,对1,2,……,n 的一个排列i 1i 2……i n ,如果当s <t 时,有i s >i t ,则称(i s ,i t )是排列i 1i 2……i n 的一个逆序,排列i 1i 2……i n 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n (k )为1,2,…,n 的所有排列中逆序数为k 的全部排列的个数.(1)求f 3(2),f 4(2)的值;(2)求f n (2)(n ≥5)的表达式(用n 表示).【分析】(1)由题意直接求得f 3(2)的值,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置,由此可得f 4(2)的值;(2)对一般的n (n ≥4)的情形,可知逆序数为0的排列只有一个,逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,f n (1)=n ﹣1.为计算f n +1(2),当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置,可得f n +1(2)=f n (2)+f n (1)+f n (0)=f n (2)+n ,则当n ≥5时,f n (2)=[f n (2)﹣f n ﹣1(2)]+[f n ﹣1(2)﹣f n ﹣2(2)]+…+[f 5(2)﹣f 4(2)]+f 4(2),则f n (2)(n ≥5)的表达式可求.【解答】解:(1)记μ(abc )为排列abc 得逆序数,对1,2,3的所有排列,有μ(123)=0,μ(132)=1,μ(231)=2,μ(321)=3,∴f3(0)=1,f3(1)=f3(2)=2,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f4(2)=f3(2)+f3(1)+f3(0)=5;(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,∴f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,f n(1)=n﹣1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此,f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)﹣f n﹣1(2)]+[f n﹣1(2)﹣f n﹣2(2)]+…+[f5(2)﹣f4(2)]+f4(2)=(n﹣1)+(n﹣2)+…+4+f4(2)=.因此,当n≥5时,f n(2)=.【点评】本题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力,是中档题.。

2018年普通高等学校招生全国统一考试-理科数学-(新课标-III-卷)-Word版含答案

2018年普通高等学校招生全国统一考试-理科数学-(新课标-III-卷)-Word版含答案

2018年普通高等学校招生全国统一考试-理科数学-(新课标-III-卷)-Word版含答案2018年普通高等学校招生全国统一考试理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =,,,则AB =( )A .{}0B .{}1C .{}12,D .{}012,,2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.若1sin 3α=,则cos2α=( ) A .89B .79C .79- D .89- 5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,此卷只装订不密封班级 姓名 准考证号 考场号 座位号7.函数422y xx =-++的图像大致为( )8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2πB .3πC .4πD .6π10.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC∆为等边三角形且其面积为93则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设12F F ,是双曲线22221xy C ab-=:(00a b >>,)的左,右焦点,O是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若16PFOP=,则C 的离心率为( )A 5B .2C 3D 212.设0.2log0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1xy ax e =+在点()01,处的切线的斜率为2-,则a =________.第二种生产方式⑶根据⑵中的列表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc Ka b c d a c b d -=++++,()20.0500.0100.0013.8416.63510.828P K k k ≥.19.(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.⑴证明:平面AMD ⊥平面BMC ;⑵当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.⑴证明:12k <-; ⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA,FP ,FB 成等差数列,并求该数列的公差.21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.⑴若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;⑵若0x =是()f x 的极大值点,求a .(二)选考题:共10分,请考生在第22、23题中任选一题作答。

高考数学真题及解析-2018年江苏省高考数学试卷

高考数学真题及解析-2018年江苏省高考数学试卷

2018年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5.00分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B=.2.(5.00分)若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为.3.(5.00分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.4.(5.00分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为.5.(5.00分)函数f(x)=的定义域为.6.(5.00分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.7.(5.00分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.8.(5.00分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.9.(5.00分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.10.(5.00分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(5.00分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.12.(5.00分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为.13.(5.00分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.14.(5.00分)已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,成立的n的最小值为.则使得S n>12a n+1二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14.00分)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.16.(14.00分)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.17.(14.00分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D 均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(16.00分)如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.19.(16.00分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.20.(16.00分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10.00分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若PC=2,求BC的长.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10.00分)已知矩阵A=.(1)求A的逆矩阵A﹣1;(2)若点P在矩阵A对应的变换作用下得到点P′(3,1),求点P的坐标.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.D.[选修4-5:不等式选讲](本小题满分0分)24.若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.26.设n∈N*,对1,2,……,n的一个排列i1i2……i n,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2……i n的一个逆序,排列i1i2……i n的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).2018年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5.00分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B={1,8} .【分析】直接利用交集运算得答案.【解答】解:∵A={0,1,2,8},B={﹣1,1,6,8},∴A∩B={0,1,2,8}∩{﹣1,1,6,8}={1,8},故答案为:{1,8}.【点评】本题考查交集及其运算,是基础的计算题.2.(5.00分)若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为2.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由i•z=1+2i,得z=,∴z的实部为2.故答案为:2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(5.00分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为90.【分析】根据茎叶图中的数据计算它们的平均数即可.【解答】解:根据茎叶图中的数据知,这5位裁判打出的分数为89、89、90、91、91,它们的平均数为×(89+89+90+91+91)=90.故答案为:90.【点评】本题考查了利用茎叶图计算平均数的问题,是基础题.4.(5.00分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为8.【分析】模拟程序的运行过程,即可得出程序运行后输出的S值.【解答】解:模拟程序的运行过程如下;I=1,S=1,I=3,S=2,I=5,S=4,I=7,S=8,此时不满足循环条件,则输出S=8.故答案为:8.【点评】本题考查了程序语言的应用问题,模拟程序的运行过程是解题的常用方法.5.(5.00分)函数f(x)=的定义域为[2,+∞).【分析】解关于对数函数的不等式,求出x的范围即可.【解答】解:由题意得:≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).【点评】本题考查了对数函数的性质,考查求函数的定义域问题,是一道基础题.6.(5.00分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为0.3.【分析】(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,根据概率公式计算即可,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,根据概率公式计算即可【解答】解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P==0.3,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,故选中的2人都是女同学的概率P==0.3,故答案为:0.3【点评】本题考查了古典概率的问题,采用排列组合或一一列举法,属于基础题.7.(5.00分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.【分析】根据正弦函数的对称性建立方程关系进行求解即可.【解答】解:∵y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,∴2×+φ=kπ+,k∈Z,即φ=kπ﹣,∵﹣φ<,∴当k=0时,φ=﹣,故答案为:﹣.【点评】本题主要考查三角函数的图象和性质,利用正弦函数的对称性建立方程关系是解决本题的关键.8.(5.00分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为2.【分析】利用双曲线的简单性质,以及点到直线的距离列出方程,转化求解即可.【解答】解:双曲线=1(a>0,b>0)的右焦点F(c,0)到一条渐近线y=x的距离为c,可得:=b=,可得,即c=2a,所以双曲线的离心率为:e=.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.9.(5.00分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.【分析】根据函数的周期性,进行转化求解即可.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1+|=,f()=cos()=cos=,即f(f(15))=,故答案为:【点评】本题主要考查函数值的计算,根据函数的周期性结合分段函数的表达式利用转化法是解决本题的关键.10.(5.00分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【分析】求出多面体中的四边形的面积,然后利用体积公式求解即可.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×=.故答案为:.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.11.(5.00分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为﹣3.【分析】推导出f′(x)=2x(3x﹣a),x∈(0,+∞),当a≤0时,f′(x)=2x(3x﹣a)>0,f(0)=1,f(x)在(0,+∞)上没有零点;当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,f(x)在(0,)上递减,在(,+∞)递增,由f(x)只有一个零点,解得a=3,从而f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x ∈[﹣1,1],利用导数性质能求出f(x)在[﹣1,1]上的最大值与最小值的和.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.【点评】本题考查函数的单调性、最值,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.12.(5.00分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为3.【分析】设A(a,2a),a>0,求出C的坐标,得到圆C的方程,联立直线方程与圆的方程,求得D的坐标,结合=0求得a值得答案.【解答】解:设A(a,2a),a>0,∵B(5,0),∴C(,a),则圆C的方程为(x﹣5)(x﹣a)+y(y﹣2a)=0.联立,解得D(1,2).∴=.解得:a=3或a=﹣1.又a>0,∴a=3.即A的横坐标为3.故答案为:3.【点评】本题考查平面向量的数量积运算,考查圆的方程的求法,是中档题.13.(5.00分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.【点评】本题主要考查基本不等式的应用,利用1的代换结合基本不等式是解决本题的关键.14.(5.00分)已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则使得S n>12a n成立的n的最小值为27.+1【分析】采用列举法,验证n=26,n=27即可.【解答】解:利用列举法可得:当n=26时,A∪B中的所有元素从小到大依次排列,构成一个数列{a n},所以数列{a n}的前26项分别1,3,5,7,9,11,13,15,17,19,21,23.25,…41,2,4,8,16,32.S26=,a27=43,⇒12a27=516,不符合题意.当n=27时,A∪B中的所有元素从小到大依次排列,构成一个数列{a n},所以数列{a n}的前26项分别1,3,5,7,9,11,13,15,17,19,21,23.25,…41,43,2,4,8,16,32.S27==546,a28=45⇒12a28=540,符合题意,故答案为:27.【点评】本题考查了集合、数列的求和,属于中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14.00分)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【分析】(1)由⇒AB∥平面A1B1C;(2)可得四边形ABB1A1是菱形,AB1⊥A1B,由AB1⊥B1C1⇒AB1⊥BC⇒AB1⊥面A1BC,⇒平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.【点评】本题考查了平行六面体的性质,及空间线面平行、面面垂直的判定,属于中档题.16.(14.00分)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【分析】(1)由已知结合平方关系求得sinα,cosα的值,再由倍角公式得cos2α的值;(2)由(1)求得tan2α,再由cos(α+β)=﹣求得tan(α+β),利用tan(α﹣β)=tan[2α﹣(α+β)],展开两角差的正切求解.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.【点评】本题考查三角函数的恒等变换及化简求值,考查同角三角函数基本关系式的应用,是中档题.17.(14.00分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D 均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【分析】(1)根据图形计算矩形ABCD和△CDP的面积,求出sinθ的取值范围;(2)根据题意求出年总产值y的解析式,构造函数f(θ),利用导数求f(θ)的最大值,即可得出θ为何值时年总产值最大.=(40sinθ+10)•80cosθ【解答】解:(1)S矩形ABCD=800(4sinθcosθ+cosθ),S△CDP=•80cosθ(40﹣40sinθ)=1600(cosθ﹣cosθsinθ),当B、N重合时,θ最小,此时sinθ=;当C、P重合时,θ最大,此时sinθ=1,∴sinθ的取值范围是[,1);(2)设年总产值为y,甲种蔬菜单位面积年产值为4t,乙种蔬菜单位面积年产值为3t,则y=3200t(4sinθcosθ+cosθ)+4800t(cosθ﹣cosθsinθ)=8000t(sinθcosθ+cosθ),其中sinθ∈[,1);设f(θ)=sinθcosθ+cosθ,则f′(θ)=cos2θ﹣sin2θ﹣sinθ=﹣2sin2θ﹣sinθ+1;令f′(θ)=0,解得sinθ=,此时θ=,cosθ=;当sinθ∈[,)时,f′(θ)>0,f(θ)单调递增;当sinθ∈[,1)时,f′(θ)<0,f(θ)单调递减;∴θ=时,f(θ)取得最大值,即总产值y最大.=800(4sinθcosθ+cosθ),答:(1)S矩形ABCDS△CDP=1600(cosθ﹣cosθsinθ),sinθ∈[,1);θ=时总产值y最大.【点评】本题考查了解三角形的应用问题,也考查了构造函数以及利用导数求函数的最值问题,是中档题.18.(16.00分)如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.【分析】(1)由题意可得.,又a2﹣b2=c2=3,解得a=2,b=1即可.(2)①可设直线l的方程为y=kx+m,(k<0,m>0).可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,解得k=﹣,m=3.即可②设A(x1,y1),B(x2,y2),联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.即可【解答】解:(1)由题意可设椭圆方程为,∵焦点F1(﹣,0),F2(,0),∴.∵∴,又a2﹣b2=c2=3,解得a=2,b=1.∴椭圆C的方程为:,圆O的方程为:x2+y2=3.(2)①可知直线l与圆O相切,也与椭圆C,且切点在第一象限,∴可设直线l的方程为y=kx+m,(k<0,m>0).由圆心(0,0)到直线l的距离等于圆半径,可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,可得m2=4k2+1,∴3k2+3=4k2+1,结合k<0,m>0,解得k=﹣,m=3.将k=﹣,m=3代入可得,解得x=,y=1,故点P的坐标为(.②设A(x1,y1),B(x2,y2),由⇒k<﹣.联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,|x2﹣x1|==,O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.∴y=﹣为所求.【点评】本题考查了椭圆的方程,直线与圆、椭圆的位置关系,属于中档题.19.(16.00分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【分析】(1)根据“S点”的定义解两个方程,判断方程是否有解即可;(2)根据“S点”的定义解两个方程即可;(3)分别求出两个函数的导数,结合两个方程之间的关系进行求解判断即可.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S 点”;(2)f′(x)=2ax,g′(x)=,x>0,由f′(x)=g′(x)得=2ax,得x=,f()=﹣=g()=﹣lna2,得a=;(3)f′(x)=﹣2x,g′(x)=,(x≠0),由f′(x0)=g′(x0),假设b>0,得b=﹣>0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,令h(x)=x2﹣﹣a=,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则存在b>0,使f(x)与g(x)在区间(0,+∞)内存在“S”点.【点评】本题主要考查导数的应用,根据条件建立两个方程组,判断方程组是否有解是解决本题的关键.20.(16.00分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【分析】(1)根据等比数列和等差数列的通项公式,解不等式组即可;(2)根据数列和不等式的关系,利用不等式的关系构造新数列和函数,判断数列和函数的单调性和性质进行求解即可.【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].【点评】本题主要考查等比数列和等差数列以及不等式的综合应用,考查学生的运算能力,综合性较强,难度较大.数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10.00分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若PC=2,求BC的长.【分析】连接OC,由题意,CP为圆O的切线,得到垂直关系,由线段长度及勾股定理,可以得到PO的长,即可判断△COB是等边三角形,BC的长.【解答】解:连接OC,因为PC为切线且切点为C,所以OC⊥CP.因为圆O的半径为2,,所以BO=OC=2,,所以,所以∠COP=60°,所以△COB为等边三角形,所以BC=BO=2.【点评】本题主要考查圆与直线的位置关系,切线的应用,考查发现问题解决问题的能力.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10.00分)已知矩阵A=.(1)求A的逆矩阵A﹣1;(2)若点P在矩阵A对应的变换作用下得到点P′(3,1),求点P的坐标.【分析】(1)矩阵A=,求出det(A)=1≠0,A可逆,然后求解A的逆矩阵A﹣1.(2)设P(x,y),通过•=,求出=,即可得到点P的坐标.【解答】解:(1)矩阵A=,det(A)=2×2﹣1×3=1≠0,所以A可逆,从而:A的逆矩阵A﹣1=.(2)设P(x,y),则•=,所以=A﹣1=,因此点P的坐标为(3,﹣1).【点评】本题矩阵与逆矩阵的关系,逆矩阵的求法,考查转化思想的应用,是基本知识的考查.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.【分析】将直线l、曲线C的极坐标方程利用互化公式可得直角坐标方程,利用直线与圆的相交弦长公式即可求解.【解答】解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(﹣θ)=2,∴﹣=2,∴直线l的普通方程为:x﹣y=4.圆心C到直线l的距离为d=,∴直线l被曲线C截得的弦长为2.【点评】本题考查了极坐标方程化为直角坐标方程、直线与圆的相交弦长关系、点到直线的距离公式,属于中档题.D.[选修4-5:不等式选讲](本小题满分0分)24.若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【分析】根据柯西不等式进行证明即可.【解答】解:由柯西不等式得(x2+y2+z2)(12+22+22)≥(x+2y+2z)2,∵x+2y+2z=6,∴x2+y2+z2≥4是当且仅当时,不等式取等号,此时x=,y=,z=,∴x2+y2+z2的最小值为4【点评】本题主要考查不等式的证明,利用柯西不等式是解决本题的关键.,【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【分析】设AC,A1C1的中点分别为O,O1,以{}为基底,建立空间直角坐标系O﹣xyz,(1)由|cos|=可得异面直线BP与AC1所成角的余弦值;(2)求得平面AQC1的一个法向量为,设直线CC1与平面AQC1所成角的正弦值为θ,可得sinθ=|cos|=,即可得直线CC1与平面AQC1所成角的正弦值.【解答】解:如图,在正三棱柱ABC﹣A1B1C1中,设AC,A1C1的中点分别为O,O1,则,OB⊥OC,OO1⊥OC,OO1⊥OB,故以{}为基底,建立空间直角坐标系O﹣xyz,∵AB=AA1=2,A(0,﹣1,0),B(,0,0),C(0,1,0),A1(0,﹣1,2),B1(,0,2),C1(0,1,2).(1)点P为A1B1的中点.∴,∴,.|cos|===.∴异面直线BP与AC1所成角的余弦值为:;(2)∵Q为BC的中点.∴Q()∴,,设平面AQC1的一个法向量为=(x,y,z),由,可取=(,﹣1,1),设直线CC1与平面AQC1所成角的正弦值为θ,sinθ=|cos|==,∴直线CC1与平面AQC1所成角的正弦值为.【点评】本题考查了向量法求空间角,属于中档题.26.设n ∈N *,对1,2,……,n 的一个排列i 1i 2……i n ,如果当s <t 时,有i s >i t ,则称(i s ,i t )是排列i 1i 2……i n 的一个逆序,排列i 1i 2……i n 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n (k )为1,2,…,n 的所有排列中逆序数为k 的全部排列的个数.(1)求f 3(2),f 4(2)的值;(2)求f n (2)(n ≥5)的表达式(用n 表示).【分析】(1)由题意直接求得f 3(2)的值,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置,由此可得f 4(2)的值;(2)对一般的n (n ≥4)的情形,可知逆序数为0的排列只有一个,逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,f n (1)=n ﹣1.为计算f n +1(2),当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置,可得f n +1(2)=f n (2)+f n (1)+f n (0)=f n (2)+n ,则当n ≥5时,f n (2)=[f n (2)﹣f n ﹣1(2)]+[f n ﹣1(2)﹣f n ﹣2(2)]+…+[f 5(2)﹣f 4(2)]+f 4(2),则f n (2)(n ≥5)的表达式可求.【解答】解:(1)记μ(abc )为排列abc 得逆序数,对1,2,3的所有排列,有μ(123)=0,μ(132)=1,μ(231)=2,μ(321)=3,∴f3(0)=1,f3(1)=f3(2)=2,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f4(2)=f3(2)+f3(1)+f3(0)=5;(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,∴f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,f n(1)=n﹣1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此,f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)﹣f n﹣1(2)]+[f n﹣1(2)﹣f n﹣2(2)]+…+[f5(2)﹣f4(2)]+f4(2)=(n﹣1)+(n﹣2)+…+4+f4(2)=.因此,当n≥5时,f n(2)=.【点评】本题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力,是中档题.。

2018年高考理科数学(全国I卷)试题(含答案)WORD版

2018年高考理科数学(全国I卷)试题(含答案)WORD版

2018年高考理科数学(全国I卷)试题(含答案)WORD版2018年普通高等学校招生全国统一考试理科数学注意事项:1.在答题卡上填写姓名和准考证号。

2.选择题用铅笔在答题卡上涂黑对应的答案标号,非选择题在答题卡上作答。

3.考试结束后将试卷和答题卡一并交回。

一、选择题:共12小题,每小题5分,共60分。

每小题有四个选项,只有一项是正确的。

1.设 $z=\frac{1-i+2i}{1+i}$,则 $|z|$ 等于A。

$\frac{1}{2}$B。

$\sqrt{2}$C。

$1$D。

$2$2.已知集合 $A=\{x|x^2-x-2>0\}$,则 $A$ 等于A。

$\{-1<x<2\}$B。

$\{-1\leq x\leq 2\}$C。

$\{x2\}$D。

$\{x\leq -1\}\cup \{x\geq 2\}$3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为了更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A。

新农村建设后,种植收入减少B。

新农村建设后,其他收入增加了一倍以上C。

新农村建设后,养殖收入增加了一倍D。

新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记 $S_n$ 为等差数列 $\{a_n\}$ 的前 $n$ 项和。

若$3S_3=S_2+S_4$,$a_1=-12$,则切线方程为A。

$y=-2x$B。

$y=-x$XXXD。

$y=x$5.设函数 $f(x)=x^3+(a-1)x^2+ax$。

若 $f(x)$ 是奇函数,则曲线 $y=f(x)$ 在点 $(0,0)$ 处的切线方程为A。

$y=-2x$B。

$y=-x$XXXD。

$y=x$6.在 $\triangle ABC$ 中,$AD$ 是 $BC$ 边上的中线,$E$ 是 $AD$ 的中点,则 $EB$ 等于A。

【数学】2018高考真题——海南卷(文)(解析版)

【数学】2018高考真题——海南卷(文)(解析版)
BC=1,AC=5,则AB= = = =4 .
故选:A.
8.为计算S=1﹣ + ﹣ +…+ ﹣ ,设计了如图的程序框图,则在空白框中应填入( )
A.i=i+1B.i=i+2C.i=i+3D.i=i+4
【答案】B
【解析】模拟程序框图的运行过程知,
该程序运行后输出的是S=N﹣T=(1﹣ )+( ﹣ )+…+( ﹣ );
则A(2,0,0),E(0,2,1),D(0,0,0),C(0,2,0),
=(﹣2,2,1), =(0,﹣2,0),
设异面直线AE与CD所成角为θ,
则cosθ= = = ,sinθ= = ,
∴tanθ= .
∴异面直线AE与CD所成角的正切值为 .故选:C.
10.若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是( )
则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)
=f(1)+f(2)=2+0=2,
故选:C.
二、填空题:本题共4小题,每小题5分,共20分.
13.曲线y=2lnx在点(1,0)处的切线方程为.
【答案】2x﹣2
【解析】∵y=2lnx,
2018年海南省高考数学试卷(文科)(新课标II)
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.i(2+3i)=( )
A.3﹣2iB.3+2iC.﹣3﹣2iD.﹣3+2i
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试(Ⅰ卷) 文科数学注意事项:1.答卷前,考生务必将自己的九名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I ( ) A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( ) A .0B .12C .1D 23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =- B .y x =- C .2y x = D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r( )A .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱 侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=u u u u r u u u r( )A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()f x f x x a =++( ),若()g x 存在2个零点,则a 的取值范围是 A .[)10-,B .[)+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3C .23D .412.设函数()2010x x f x y -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

) (一)必考题:共60分。

17.(12分)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. ⑴求123b b b ,,; ⑵判断数列{}n b 是否为等比数列,并说明理由; ⑶求{}n a 的通项公式.18.(12分)在平面四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将ACM △折起,使点M 到达点D 的位置,且AB DA ⊥. ⑴证明:平面ACD ⊥平面ABC ;⑵Q 为线段AD 上一点,P 为线段BC 上一点,且23BQ DQ DA ==,求三棱锥Q ABP -的体积.19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,[)0.60.7,频数1 32 4 9 26 5日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数 1 3 13 10 16 5 ⑴在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:⑵估计该家庭使用节水龙头后,日用水量小于0.35m 3的概率;⑶估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.) 20.(12分)设摆好物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. ⑴当l 与x 轴垂直时,求直线BM 的方程;⑵证明:ABM ABN =∠∠.21.(12分)已知函数()ln 1x f x ae x =--.⑴油麦菜2x =是()f x 的极值点.求a ,并求()f x 的单调区间;⑵证明:当1a e ≥,()0f x ≥.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4—4:坐标系与参数方程](10)在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. ⑴求2C 的直角坐标方程;⑵若1C 与2C 有且仅有三个公共点,求1C 的方程.23.[选修4—5:不等式选讲](10分)已知()11f x x ax =+--.⑴当1a =时,求不等式()1f x >的解集;⑵若()01x ∈,时不等式()f x x >成立,求a 的取值范围.2018年普通高等学校招生全国统一考试 (Ⅰ卷)文 数 答 案一、选择题 1.答案: A 解答:{0,2}A B ⋂=,故选A.2.答案: C解答:∵121i z i i i -=+=+,∴1z =,∴选C3.答案: A 解答:由图可得,A 选项,设建设前经济收入为x ,种植收入为0.6x .建设后经济收入则为2x ,种植收入则为0.3720.74x x ⨯=,种植收入较之前增加. 4.答案: C 解答:知2c =,∴2228a b c =+=,a =2e =. 5.答案: B 解答:截面面积为8,所以高h =,底面半径r =,所以表面积为22212S πππ=⋅⋅+=.6.答案: D解答:∵()f x 为奇函数,∴()()f x f x -=-,即1a =,∴3()f x x x =+,∴'(0)1f =,∴切线方程为:y x =,∴选D. 7.答案: A 解答:由题可知11131[()]22244EB EA AB AD AB AB AC AB AB AC =+=-+=-++=-u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r u u u r .8.答案: B 解答:222()2cos (1cos )23cos 1f x x x x =--+=+,∴最小正周期为π,最大值为4. 9.答案: B 解答:三视图还原几何体为一圆柱,如图,将侧面展开,最短路径为,M N 连线的距离,所以224225MN =+=,所以选B.C 解答:连接1AC 和1BC ,∵1AC 与平面11BB C C 所成角为30o ,∴130AC B ∠=o,∴11tan 30,23ABBC BC ==o ,∴122CC =222282V =⨯⨯= C. 11.答案: B 解答:由22cos22cos 13αα=-=可得222225cos 1cos 6sin cos tan 1ααααα===++,化简可得5tan α=;当5tan α=时,可得51a =,52b =,即5a =,25b =时55a b -=;当5tan 5α=-时,仍有此结果. 12.答案:D解答:取12x =-,则化为1()(1)2f f <-,满足,排除,A B ; 取1x =-,则化为(0)(2)f f <-,满足,排除C ,故选D . 二、填空题 13.答案:7- 解答:可得2log (9)1a +=,∴92a +=,7a =-.6 解答:画出可行域如图所示,可知目标函数过点(2,0)时取得最大值,max 32206z =⨯+⨯=.15.答案:22解答:由22230x y y ++-=,得圆心为(0,1)-,半径为2,∴圆心到直线距离为22d ==∴2222(2)22AB =-=16.答案:33解答:根据正弦定理有:sin sin sin sin 4sin sin sin B C C B A B C +=,∴2sin sin 4sin sin sin B C A B C =,∴1sin 2A =.∵2228b c a +-=,∴22243cos 22b c a A bc bc +-===,∴833bc =,∴123sin 23S bc A ==.三、解答题 17.答案:(1)1231,2,4b b b === (2)见解答 (3)12n n a n -=⋅ 解答:(1)依题意,21224a a =⨯⨯=,321(23)122a a =⨯⨯=,∴1111a b ==,2222a b ==,3343a b ==. (2)∵12(1)n n na n a +=+,∴121n na a n n+=+,即12n n b b +=,所以{}n b 为等比数列. (3)∵1112n n nn a b b q n--===,∴12n n a n -=⋅. 18.答案: (1)见解析 (2)1 解答:(1)证明:∵ABCM 为平行四边形且90ACM ∠=o ,∴AB AC ⊥,又∵AB DA ⊥,∴AB ⊥平面ACD ,∵AB ⊂平面ABC ,∴平面ABC ⊥平面ACD .(2)过点Q 作QH AC ⊥,交AC 于点H ,∵AB ⊥平面ACD ,∴AB CD ⊥,又∵CD AC ⊥,∴CD ⊥平面ABC ,∴13HQ AQ CD AD ==,∴1HQ =,∵32,32BC BC AM AD ====∴22BP =又∵ABC ∆为等腰直角三角形,∴1232232ABP S ∆=⋅⋅⋅=,∴1131133Q ABD ABD V S HQ -∆=⋅⋅=⨯⨯=. 19.答案: 略 解答: (1)(2)由题可知用水量在[0.3,0.4]的频数为10,所以可估计在[0.3,0.35)的频数为5,故用水量小于30.35m 的频数为1513524+++=,其概率为240.4850P ==. (3)未使用节水龙头时,50天中平均每日用水量为: 31(0.0510.1530.2520.3540.4590.55260.657)0.50650m ⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 一年的平均用水量则为30.506365184.69m ⨯=.使用节水龙头后,50天中平均每日用水量为: 31(0.0510.1550.25130.35100.45160.555)0.3550m ⨯+⨯+⨯+⨯+⨯+⨯=, 一年的平均用水量则为30.35365127.75m ⨯=, ∴一年能节省3184.69127.7556.94m -=.20.答案:(1)220y x ++=或220y x --=;(2)见解析 解答:(1)当l 与x 轴垂直时,l 的方程为2x =,代入22y x =,∴(2,2),(2,2)M N -或(2,2),(2,2)M N -,∴BM 的方程为:220,y x ++=或220y x --=.(2)设MN 的方程为2x my =+,设1122(,),(,)M x y N x y ,联立方程222x my y x =+⎧⎨=⎩,得2240y my --=,∴12122,4y y m y y +==-,11222,2x my x my =+=+,∴121212122244BM BN y y y y k k x x my my +=+=+++++ 12121224()0(4)(4)my y y y my my ++==++,∴BM BN k k =-,∴ABM ABN ∠=∠.21.答案: 见解析 解答:(1)()f x 定义域为(0,)+∞,1()x f x ae x '=-. ∵2x =是()f x 极值点,∴(2)0f '=,∴2211022ae a e-=⇒=.∵x e 在(0,)+∞上增,0a >,∴x ae 在(0,)+∞上增.又1x在(0,)+∞上减,∴()f x '在(0,)+∞上增.又(2)0f '=, ∴当(0,2)x ∈时,()0f x '<,()f x 减;当(2,)x ∈+∞时,()0f x '>,()f x 增. 综上,212a e =,单调增区间为(2,)+∞,单调减区间为(0,2).(2)∵0x e ≥,∴当1a e ≥时有11x x x ae e e e-≥⋅=,∴1()ln 1ln 1x x f x ae x e x -=--≥--. 令1()ln 1x g x e x -=--,(0,)x ∈+∞.11()x g x e x -'=-,同(1)可证()g x '在(0,)+∞上增,又111(1)01g e -'=-=,∴当(0,1)x ∈时,()0g x '<,()g x 减;当(1,)x ∈+∞时,()0g x '>,()g x 增. ∴11min ()(1)ln111010g x g e -==--=--=,∴当1a e≥时,()()0f x g x ≥≥.22.答案:(1)22(1)4x y ++=; (2)423y x =-+ 解答:(1)由22cos 30ρρθ+-=可得:22230x y x ++-=,化为22(1)4x y ++=. (2)1C 与2C 有且仅有三个公共点,说明直线2(0)y kx k =+<与圆2C 相切,圆2C 圆心为(1,0)-,半径为2,2=,解得43k =-,故1C 的方程为423y x =-+.23.答案:(1)1{|}2x x >;(2)(0,2]. 解答:(1)当1a =时,21()|1||1|21121x f x x x xx x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩, ∴()1f x >的解集为1{|}2x x >.(2)当0a =时,()|1|1f x x =+-,当(0,1)x ∈时,()f x x >不成立.当0a <时,(0,1)x ∈,∴()1(1)(1)f x x ax a x x =+--=+<,不符合题意. 当01a <≤时,(0,1)x ∈,()1(1)(1)f x x ax a x x =+--=+>成立.当1a >时,1(1),1()1(1)2,a x x af x a x x a ⎧+-<<⎪⎪=⎨⎪-+≥⎪⎩,∴(1)121a -⋅+≥,即2a ≤.综上所述,a 的取值范围为(0,2].。

相关文档
最新文档