2012-2013学年第一学期八年级学科竞赛数学试题(含答案)
2013年全国初中数学竞赛试题含答案
2013年全国初中数学竞赛试题参考答案一、选择题1.设非零实数a ,b ,c 满意2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b acx x x x c +--+==,22221211a x x c⋅=, 于是依据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=.3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,(第3题)垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不肯定...是有理数的为( ). (A )OD (B )OE (C )DE (D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数. 由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC =·AD AB 不肯定是有理数.4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影局部的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影局部的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF . 因为4BC CF =,所以S △ABC = 4S △ACF .故阴影局部的面积为6. 5.对于随意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ).(A )607967(B )1821967 (C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则(第3题答题)(第4题答题)(第4题)()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.设33a =,b 是2a 的小数局部,则3(2)b +的值为 .【答案】9【解答】由于2123a a <<<<,故32292b a =-=-,因此333(2)(9)9b +==.7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满意2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解;(第7题答题)(第7题)若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满意:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则全部满意条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为随意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为随意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为随意实数)满意条件.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开场时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于全部的△ABC ,求BAC ∠全部可能的度数.【解答】分三种状况探讨. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
2012年全国初中数学竞赛试题及答案(正题、副题)2012年全国初中数学竞赛试题及答案(正题、副题)
2012年全国初中数学竞赛试题(正题)题号一二三总分1~56~101112 1314得分评卷人复查人答题时注意:1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线;3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式可以化简为().(第1(甲)题)(A)2c-a(B)2a-2b(C)-a(D)a1(乙).如果,那么的值为().(A)(B)(C)2 (D)2(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)53(甲).如果为给定的实数,且,那么这四个数据的平均数与中位数之差的绝对值是().(A)1 (B)(C)(D)3(乙).如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.,AD = 3,BD = 5,则CD的长为().(第3(乙)题)(A)(B)4 (C)(D)4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的可能值的个数是().(A)1 (B)2 (C)3 (D)44(乙).如果关于x的方程是正整数)的正根小于3,那么这样的方程的个数是().(A)5 (B)6 (C)7 (D)85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为,则中最大的是().(A)(B)(C)(D)5(乙).黑板上写有共100个数字.每次操作先从黑板上的数中选取2个数,然后删去,并在黑板上写上数,则经过99次操作后,黑板上剩下的数是().(A)2012 (B)101 (C)100 (D)99二、填空题(共5小题,每小题7分,共35分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x的取值范围是.(第6(甲)题)6(乙). 如果a,b,c是正数,且满足,,那么的值为.7(甲).如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积是 .(第7(甲)题)(第7(乙)题)7(乙).如图,的半径为20,是上一点.以为对角线作矩形,且.延长,与分别交于两点,则的值等于.8(甲).如果关于x的方程x2+kx+k2-3k+= 0的两个实数根分别为,,那么的值为.8(乙).设为整数,且1≤n≤2012. 若能被5整除,则所有的个数为 .9(甲).2位八年级同学和m位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为.风味试卷试题根据语境9(乙).如果正数x,y,z可以是一个三角形的三边长,那么称是三角形数.若和均为三角形数,且a≤b≤c,则的取值范围是.D10(甲).如图,四边形ABCD内接于⊙O,AB是直径,AD = DC. 分别延长BA,CD,交点为E. 作BF⊥EC,并与EC的延长线交于点F. 若AE = AO,BC = 6,则CF的长为.的小伙子化学教案他离开公司后化学教案会去哪(第10(甲)题)10(乙.已知是偶数,且1≤≤100.若有唯一的正整数对使得成立,则这样的的个数为.三、解答题(共4题,每题20分,共80分)11(甲).已知二次函数,当时,恒有;关于x的方程的两个实数根的倒数和小于.求的取值范围.11(乙).如图,在平面直角坐标系xOy中,AO = 8,AB = AC,sin∠ABC=.CD与y轴交于点E,且S△COE = S△ADE. 已知经过B,C,E三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.(第11(乙)题)12(甲).如图,的直径为,过点,且与内切于点.为上的点,与交于点,且.点在上,且,BE的延长线与交于点,求证:△BOC∽△.(第12(甲)题)12(乙).如图,⊙O的内接四边形ABCD中,AC,BD是它的对角线,AC的中点I是△ABD的内心. 求证:(1)OI是△IBD的外接圆的切线;(2)AB+AD = 2BD.(第12(乙)题)13(甲).已知整数a,b满足:a-b是素数,且ab是完全平方数. 当a≥2012时,求a的最小值.13(乙).凸边形中最多有多少个内角等于?并说明理由14(甲).求所有正整数n,使得存在正整数,满足,且.14(乙).将(n≥2)任意分成两组,如果总可以在其中一组中找到数(可以相同)使得,求的最小值2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19.6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O 的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4).…………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为.…………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线.…………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD.故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2.…………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m.…………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025.…………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于,.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.…………(20分)2012年全国初中数学竞赛试题(副题)题号一二三总分1~56~101112 1314得分评卷人复查人答题时注意:1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线;3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1. 小王在做数学题时,发现下面有趣的结果:由上,我们可知第100行的最后一个数是().(A)10000 (B)10020 (C)10120 (D)102002. 如图,在3×4表格中,左上角的1×1小方格被染成黑色,则在这个表格中包含黑色小方格的矩形个数是().(A)11 (B)12 (C)13 (D)14(第2题)3.如果关于的方程有两个有理根,那么所有满足条件的正整数的个数是().(A)1 (B)2 (C)3 (D)44. 若函数y=(k2-1)x2-(k+1)x+1(k为参数)的图象与x轴没有公共点,则k的取值范围是().(A)k>,或k<-1 (B)-1<k<,且k≠1(C)k>,或k≤-1 (D)k≥,或k≤-15. △ABC中,,分别为上的点,平分,BM=CM,为上一点,且,则与的大小关系为().(A)(B)(C)(D)无法确定二、填空题(共5小题,每小题7分,共35分)6. 如图,正方形ABCD的面积为90.点P在AB上,;X,Y,Z三点在BD上,且,则△PZX的面积为.(第6题)7.甲、乙、丙三辆车都匀速从A地驶往B地.乙车比丙车晚5分钟出发,出发后40分钟追上丙车;甲车比乙车晚20分钟出发,出发后100分钟追上丙车,则甲车出发后分钟追上乙车.8. 设a n=(n为正整数),则a1+a2+…+a2012的值 1.(填“>”,“=”或“<”)9.红、黑、白三种颜色的球各10个.把它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色的球都有,且甲、乙两个袋子中三种颜色的球数之积相等,那么共有种放法.10. △ABC中,已知,且b=4,则a+c= .②将醚层依次用饱和亚硫酸三、解答题(共4题,每题20分,共80分)11. 已知c≤b≤a,且,求的最小值.12. 求关于a,b,c,d的方程组的所有正整数解.13. 如图,梯形ABCD中,AB∥CD,AC,BD相交于点O.P,Q分别是AD,BC上的点,且,.求证:OP=OQ.(第13题)14.(1)已知三个数中必有两个数的积等于第三个数的平方,求的值.(2)设为非零实数,为正整数,是否存在一列数满足首尾两项的积等于中间项的平方?(3)设为非零实数,若将一列数中的某一项删去后得到又一列数(按原来的顺序),满足首尾两项的积等于中间项的平方. 试求的所有可能的值.2012年全国初中数学竞赛试题(副题)参考答案一、选择题1.D解:第k行的最后一个数是,故第100行的最后一个数是.2. B解:这个表格中的矩形可由对角线的两个端点确定,由于包含黑色小方格,于是,对角线的一个端点确定,另一个端点有3×4=12种选择.3.B解:由于方程的两根均为有理数,所以根的判别式≥0,且为完全平方数.≥0,又2≥,所以,当时,解得;当时,解得.4. C解:当函数为二次函数时,有k2-1≠0,=(k+1)2-4(k2-1)<0.解得k>,或k<-1.当函数为一次函数时,k=1,此时y=-2x+1与x轴有公共点,不符合题意.当函数为常数函数时,k=-1,此时y=1与x轴没有公共点.所以,k的取值范围是k>,或k≤-1.5. B(第5题)解:如图,设,作BKCE,则,于是A,B,E,C四点共圆. 因为是的中点,所以,从而有,即平分.二、填空题6. 30(第6题)解:如图,连接PD,则.7.180解:设甲、乙、丙三车的速度分别为每分钟x,y,z米,由题意知,.消去z,得.设甲车出发后t分钟追上乙车,则,即,解得.8.<解:由a n==,得a1+a2+…+a2012==<1.9.25解:设甲袋中红、黑、白三种颜色的球数分别为,则有1≤≤9,且,(1)即,(2)于是.因此中必有一个取5.不妨设,代入(1)式,得到.此时,y可取1,2,…,8,9(相应地z取9,8,…,2,1),共9种放法.同理可得y=5,或者z=5时,也各有9种放法.但时,两种放法重复.因此共有9×3-2 = 25种放法.10. 6(第10题)解:如图,设△ABC内切圆为⊙I,半径为r,⊙I与BC,CA,AB分别相切于点D,E,F,连接IA,IB,IC,ID,IE,IF.由切线长定理得AF=p-a,BD=p-b,CE=p-c,其中p=(a+b+c).在Rt△AIF中,tan∠IAF=,即tan.同理,tan,tan.代入已知等式,得.因此a+c=.三、解答题11. 解:已知,又,且,所以b,c是关于x的一元二次方程的两个根.故≥0,≥0,即≥0,所以≥20.于是≤-10,≥10,从而≥≥10,故≥30,当时,等号成立.12. 解:将abc=d代入10ab+10bc+10ca=9d得10ab+10bc+10ca=9abc.因为abc≠0,所以,.不妨设a≤b≤c,则≥≥>0.于是,<≤,即<≤,<a≤.从而,a=2,或3.若a=2,则.因为<≤,所以,<≤,<b≤5.从而,b=3,4,5. 相应地,可得c=15,(舍去),5.当a=2,b=3,c=15时,d=90;当a=2,b=5,c=5时,d=50.若a=3,则.因为<≤,所以,<≤,<b≤.从而,b=2(舍去),3.当b=3时,c=(舍去).因此,所有正整数解为(a,b,c,d)=(2,3,15,90),(2,15,3,90),(3,2,15,90),(3,15,2,90),(15,2,3,90),(15,3,2,90),(2,5,5,50),(5,2,5,50),(5,5,2,50).13. 证明:延长DA至,使得,则,于是△DPC∽△,故,所以PO∥.(第13题)又因为△DPO ∽△,所以.同理可得,而AB∥CD,所以,故OP=OQ.14.解:(1)由题设可得,或,或.由,解得;由,解得;由,解得.所以满足题设要求的实数.(2)不存在.由题设(整数≥1)满足首项与末项的积是中间项的平方,则有,解得,这与矛盾.故不存在这样的数列.(3)如果删去的是1,或者是,则由(2)知,或数列均为1,1,1,即,这与题设矛盾.如果删去的是,得到的一列数为,那么,可得.如果删去的是,得到的一列数为,那么,开得.所以符合题设要求的的值为1,或.41。
实验学校2012学年八年级上学期数学竞赛试题(含答案)
ABC第5题实验学校2012学年八年级上期数学竞赛题(时间90分钟 满分100分)一、填空(30分) 1、函数y =12-+x x 中自变量x 的取值范围是 。
2、已知等腰三角形三边的长分别是4x -2,x +1,15-6x ,则它的周长是 。
3、若实数x 、y满足6y =,则2x y +的立方根是_____________。
4、如图,数轴上A B ,两点表示的数分别是1A 关于点B 的对称点是点C ,则点C 所表示的数是 。
EDCABHFG第8题5、如图,△ABC 是不等边三角形,现以B 、C 为两个顶点作位置不同的三角形,与△ABC 全等,这样的三角形最多可以作_________个。
6、直线y =45x -495与x 轴、y 轴的交点分别为A 、B ,则线段AB 上(包括端点A 、B )横坐标和纵坐标都是整数的点有 个。
二、选择(20分)7、下列说法中正确的有 ( )(1)三边对应相等的两个三角形全等;(2)两个等边三角形全等;(3)两个等腰三角形全等;(4)两个直角三角形全等;(5)全等三角形对应边相等。
A.1个 B.2个 C.3个 D.4个8、如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB = BC = CD = DE = EF ,若∠A =18°,则∠GEF 的度数是 ( ) A .108° B .100° C .90° D .80°9、如果一条直线l 经过不同的三点(,),(,),(,)A a b B b a C a b b a --,那么直线l 经过 ( )A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限12第4题10、某公司的员工分别住在A 、B 、C 三个小区,A 区住员工30人,B 区住员工15人,C 区住员工10人,三个小区在一条直线上,位置如图所示。
若公司的班车只设一个停靠点,为使所有员工步行到停靠点的路程总和最短,那么停靠点的位置应在 ( ) A. A 区 B. B 区 C. C 区 D. A 、B 、C 区以外的一个位置 三、解答题11、(10分)I 是ABC 三条角平分线的交点,且CA+AI=BC 。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
八年数学竞赛科卷及答案
八年级数学竞赛(第1八年级数学科竞赛试卷注:填空题、选择题答案填入下表:一、选择题:(每小题3分,共24分)1. 比较2,5,37的大小,正确的是( )A .2<5<37B .2<372. 如图,等腰三角形ABC 中,AB =垂直平分线交AB 于D ,交AC 于E A .50° B .60° C .70°D .80°3. 如图,数轴上A 、B C 所对应的实数为( ) A .32+B .132- 4. 如图⑴,把一长为m 宽为n 的长方形(m>n)沿虚线剪开,拼接成图⑵,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2nm - B .n m - C .2mD .2n5. 如图,在Rt △ABC 中,∠ACB=90°,BC =3,AC 的垂直平分线DE 交BC 的延长线于点E ,则CE )A .53B .2C .67 D .625八年级数学竞赛(第2页,共4页)6. 已知a 、b 为实数,则解集可以为22<<-x 的不等式组是 ( )A .⎩⎨⎧>>11bx axB .⎩⎨⎧<>11bx axC .⎩⎨⎧><11bx axD .⎩⎨⎧<<11bx ax7.若把函数x y =的图象用),(x x E 记,函数12+=x y 的图象用)12,(+x x E 记,……则2(,21)E x x x -+可以由),(2x x E 怎样平移得到?( )A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移18.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A55的坐标是( ) A .(14,14) B .(-14,-14) C .(13,13) D .(-13,-13)二、填空题: (每小题4分,共24分)9.若分式12222++--x x x x 的值为0,则=x .10.若:29,63==n m ,则n m 423-的值为: . 11.如图,将宽为2cm 的长方形纸条叠成图形的形状,那么折痕PQ 的长是 .12.已知a 、b 为常数,若0>+b ax 的解集是31<x ,则0<-a bx 的解集是 . 13.如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1,则四边形A 1ABB 1的面积为43,再分别取A 1C 、B 1C 的中点B 2,A 2C 、B 2C 的中点A 3、B 3,依次取下去,……利用这一图形,能直观地计算出n 4343434332⋅⋅⋅+++= . 14.如图,3个正方形连成图中所示图形,则x = .P Q八年级数学竞赛(第3页,共4页)三、解答题:(共52分)15.(8分)在对Rt △OAB 依次进行位似、轴对称和平移变换后得到Rt △O ′A ′B ′,在坐标 纸上画出这几次变换相应的图形。
人教版2012-2013八年级上竞赛题(含答案)
丽江市涛源中学 2012-2013学年度上学期初二数学竞赛试卷(满分:120分,时间:120分钟)一、细心择一择,你一定很准!(本大题共8小题,每小题3分,共24分.每小题给出四个答案,其中只有一个是正确的). 1.38-等于 ( )A 、2B 、-2C 、 ±2D 、 B 不存在 、 2.下列各数中,有理数是 ( )A 、2B 、8C 、2πD 、0、212212221… 3.已知点P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b )2012的值为( ) A 、0 B 、-1 C 、1 D 、 32012 4.观察下面的汽车标志图,不是轴对称图形的是( )A B C D5.如图,在△ABC 中,边AB 的垂直平分线分别交于AB 、BC 于点E 、D ,AE=3cm , △ADC 的周长为9cm ,则△ABC 的周长是( )A 、15 cmB 、12 cmC 、17 cmD 、10 cm 6.已知等腰三角形的两条边长分别为4和8,则它的周长为( )A . 16B . 20C . 16或20D .147. 如图3,△ABC 是等边三角形,BC ⊥CD ,且AC =CD ,则∠BAD 的度数为( )A 、50°B 、45°C 、40°D 、35°8. 已知一次函数y =kx +b ,y 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是 ( )A B C D二、仔细审题,认真填写哟!(本大题共9小题,每小题3分,共27分.请你把答案填在横线的上方). 9.命题“全等三角形的对应角相等”的逆命题是_____________________________, 这个逆命题是______(填“真”或“假”)。
10.据宁波市假日办统计数据显示,今年五一黄金周期间,全市旅游总收入达10.9亿元人民币,创历年新高,用科学计数法可记作 元.11.(2011•铜仁)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km ?设他家到学校的路程是xkm ,则据题意列出的方程是1281的平方根是 ,比较大小: 8____60。
初二数学联赛决赛试卷带答案
2013年初二数学联赛决赛试卷(带答案)2013年四川初中数学联赛(初二组)决赛试卷及其解析(考试时间:2013年3月24日上午8:45—11:15)题号一二三四五合计一、选择题(本大题满分42分,每小题7分)1、设,则的最大值与最小值的和()(A)0(B)1(C)2(D)3解析:由条件,可得,当,得最小值-2,当,得最大值2,故选A2、设,是不超过的最大整数,求=()(A)(B)(C)(D)解析:易得,代入代数式经分母有理化得,故选B.3、如图,已知在四边形ABCD中,∠ACB=∠BAD=105°,∠ABC=∠ADC=45°,则∠CAD=()(A)65°(B)70°(C)75°(D)80°解析:此题由三角形内角和及角的构成容易得,答案为C.4、由1、2、4分别各用一次,组成一个三位数,这样的三位数中是4的倍数的三位数共有()(A)1个(B)2个(C)3个(D)4个解析:是4的倍数必然个位数不能是1,再将124、142、214、412试除以4,便可得答案为B.5、已知:为三个非负实数,且满足,设,则的最大值是()(A)(B)(C)(D)解析:由方程组解出,由非负实数,可解得,∵,取代入即可求得,答案为A6、如图,∠DAP=∠PBC=∠CDP=90°,AP=PB=4,AD=3,则BC的长是()(A)(B)16(C)(D)解析:延长DP交CB延长线于点E,如图,由三角形全等可证PE=DP,AD=BE,由勾股定理可求DP=5,故DE=10,再由△EBP∽△EDC,可得,求得EC=,BC=EC-EB=-3=,答案C二、填空题(本大题满分28分,每小题7分)1、关于的不等式组的解是,则的值是解析:解不等式组得,故2、如果都是质数,则解析:考虑到是初二竞赛,试值可求得P=33、设为两个不同的非负整数,且,则的最小值是解析:∵为两个不同的非负整数,∴,故取0~6的整数,代入再求符合条件的,符合条件的整数解只有三组,故的最小值为5.4、如图,已知ABCD为正方形,△AEP为等腰直角三角形,∠EAP=90°,且D、P、E三点共线,若EA=AP=1,PB=,则DP=解析:连结BE,易证△AEB≌△APD,故PD=EB,∠APD=∠AEB。
2012~2013学年度第一学期八年级数学试卷
2012~2013学年度第一学期八年级数学试卷姓名--------------分数-------------一.选择题(每小题3分,共30分)1. 化简22x yx y--的结果…………………………………………………………… ……【 】 A.x +y B.x -y C.y - x D.-x -y2.从∠A 、∠B 、∠C 、∠D 的度数之比中,能判定四边形ABCD 是平行四边形的是…………【 】A.1∶2∶3∶4B.2∶2∶3∶3C.2∶3∶2∶3D.1∶2∶2∶33.下面的性质中,平行四边形不一定具有的是……………………………………… 【 】A.对角互补 B.邻角互补 C.对角相等 D.对边相等4. 平行四边形一边长12cm ,那么它的两条对角线的长度可能是……………………【 】A.8cm 和16cmB.10cm 和16cmC.8cm 和14cmD.8cm 和12cm5.下列命题中正确的是……………………………………………………………………【 】 A.对角线互相平分的四边形是菱形 B.对角线互相平分且相等的四边形是菱形 C.对角线互相垂直的四边形是菱形 D.对角线互相垂直平分的四边形是菱形 6. 如图,D 是△ABC 内一点,BD ⊥CD ,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,且四边形EFGH 的周长是14,则AD 的长是……………………【 】 A.5 B.7 C.8 D.9 7. 给出四个特征:(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补; (4)是轴对称图形但不是中心对称图形.其中属于矩形和等腰梯形共同具有的特征的共有…………………………………………【 】 A.1个 B.2个 C.3个 D.4个8.下列说法中错误的是……………………………………………………………… ……【 】A .两条对角线互相平分的四边形是平行四边形;B .两条对角线互相垂直的矩形是正方形;C .两条对角线相等的四边形是矩形;D .两条对角线相等的菱形是正方形.9.如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE =5,折痕为PQ ,则PQ 的长为……………………………………………………………【 】A.12B.13C.14D.1510. 在□ABCD 中,点A 1、A 2、A 3、A 4和C 1、C 2、C 3、C 4分别是AB 和CD 的五等分点,点B 1、B 2、和D 1、D 2分别是BC 和DA 的三等分点,已知四边形A 4B 2C 4D 2的面积为1,则□ABCD 的面积为……………【 】 A.2 B.53 C.35D.15二、填空题(每小题4分,共16分)11. 在□ABCD 中,若∠A -∠B =40°,则∠A =______,∠B =______. 12. 菱形两对角线长分别为24cm 和10cm,则菱形的高为__________13. 如图,梯形ABCD 中,AD ∥BC ,AB =CD =AD =1,∠B =60°,直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PC +PD 的最小值为______.14.已知:四边形ABCD 中,AD ∥BC.分别添加下列条件∶①AB ∥CD ;②AB=DC ;③AD=BC ;④∠A=∠C ⑤∠B=∠C.能使四边形成为平行四边形的条件的序号有____________.(把你认为正确的序号都填在横线上)三. 解答题(共54分)15. (本小题满分6分) 在等腰梯形ABCD 中,AD ∥BC ,E 是AD 的中点,求证:BE=CE.第6题图第9题图第13题图第15题图第10题图16.(本小题满分8分) 如图,平行四边形ABCD 中,AE ⊥BD,CF ⊥BD,垂足分别为E 、F,求证:四边形AECF 是平行四边形. 【证明】17. (本小题满分8分) 如图所示,折叠矩形的一边AD ,使点D 落在BC 边上的点F 处,已知AB=8cm ,BC=10cm ,求EC 的长. 【解】18. (本小题满分10分) 已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB交CB 的延长线于G. (1)求证∶△ADE ≌△CBF ;(2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 【证明】19. (本小题满分10分) 如图,四边形ABCD 、AEFG 均为正方形连接DE 、BG ,试判断DE 与BG 的关系,并加以证明. 【证明】20. (本小题满分12分) 如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标; (2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上; (3)若反比例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围____________; (4)试写出:过MB 中点且把矩形OABC 的面积平均分成两部分的直线的解析式是________________.【解】参考答案一、1A 2C 3A 4B 5D 6D 7B 8C 9B 10C 二、11.110° 70° 12.12013①③④ 三、15.∵ABCD 是等腰梯形,AD ∥BC ,∴AB=DC ,∠A=∠D …………2分 又∵E 是AD 中点,∴AE=DE ,∴△ABE ≌△DCE(SAS)…………4分 ∴BE=CE …………6分16.∵AE ⊥BD,CF ⊥BD ,∴∠AEB=∠CFD=90°,AE ∥CF ,………3分 又∵ABCD 是平行四边形,∴ AB=CD ,AB ∥CD ,∠ABE=∠CDF , ∴△ABE ≌△DCF(AAS)…………6分 ∴AE=CF …………7分,∴AECF 是平行四边形.…………………8分17.由题意:AF=AD=10,AB=8,由勾股定理得:BF=6, ∴FC=4,……4分设CE=x ,则EF=DE=8-x ,……6分第19题图 第18题图第16题图第17题图 第20题图第16题图再由勾股定理得:()22284x x -=+,解得x=3,∴EC=3cm.……8分18. (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD .………2分 ∵点E 、F 分别是AB 、CD 的中点,∴AE =21AB ,CF =21CD.∴AE =CF .…………4分∴△ADE ≌△CBF .………………………5分(2)当四边形BEDF 是菱形时,四边形 AGBD 是矩形. ∵四边形ABCD 是平行四边形,∴AD ∥BC .∵AG ∥BD ,∴四边形 AGBD 是平行四边形.……7分 ∵四边形 BEDF 是菱形,∴DE =BE . ∵AE =BE , ∴AE =BE =DE .∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°, ∴2∠2+2∠3=180°.∴∠2+∠3=90°.即∠ADB =90°.……9分 ∴四边形AGBD 是矩形.…………………10分19.DE=BG 且DE ⊥BG.………………2分 理由是:ABCD 、AEFG 是正方形 ∴AD=AB ,AE=AG ,∠DAB=∠GAE=90°,……4分 ∴∠DAB +∠BAE=∠GAE +∠BAE , 即∠DAE=∠BAG∴△DAE ≌△BAG(SAS)∴DE=BG ……………………………6分 延长DH 交BG 于H , ∵△DAE ≌△BAG ,∴∠ABH=∠EDA ,∠AED=∠BEH∴∠BEH +∠ABH=∠AED +∠EDA=90°……8分 ∴∠BHE=90°即DP ⊥EF ……………………10分20.解:(1)设直线DE 的解析式为y=kx +b∵点D (0,3)和E (6,0)在图象上∴360b k b =⎧⎨+=⎩→⎪⎩⎪⎨⎧=-=321b k ∴直线DE 的关系式为:y=12x -+3 ………………………2分 当y=2时,12-x+3=2得x=2 ∴点M 的坐标为(2,2)……………………………………4分 (2)由(1)知:m=2×2=4∴反比例函数的解析式为y= x4 …………………………6分将x=4代入y=12x -+3得y=1 即点N 坐标为(4,1),而4×1=4∴点N 在其图象上 ……………………………………………8分 (3)4≤m ≤8………………………………………………………10分 (4)y=x -1…………………………………………………………12分。
八年级(上)竞赛数学试题(含答案)
八年级竞赛数学试题及答案一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个....是符合题意的,把正确答案前字母序号填在下面表格相应的题号下。
题号 1 2 3 4 5 6 7 8 9 10 11 12答案1.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数2.下列运算正确的是()A.3a+2a=5a2B.x2﹣4=(x+2)(x﹣2)C.(x+1)2=x2+1 D.(2a)3=6a33.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)2 4.如图,将等腰直角三角形沿虚线裁去顶角后,∠ 1+∠ 2=()A.225°B.235°C.270°D.300°5.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F 6.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°7.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=D C.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠P AE.则说明这两个三角形全等的依据是( ) A.SAS B.ASA C.AAS D.SSS8.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个10.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A.4 B.3 C.6 D.511.如图,平面直角坐标系中,已知定点A(1,0)和B(0,1),若动点C在x轴上运动,则使△ABC为等腰三角形的点C有( )个A. 5B. 4C. 3D. 212、.当x=1时,ax+b+1的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8D.16二、填空(每题4分,共32分)13. 如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A =60°)按如图所示放置.若∠1=55°,则∠2的度数为 .14.如图,△ABC 中,∠C =90°,∠BAC =60°,AD 是角平分线,若BD =8,则CD 等于 .15.分解因式:﹣x 2+4xy ﹣4y 2= .16.若9x 2﹣kxy +4y 2是一个完全平方式,则k 的值是 . 17.一个多边形的内角和是它的外角和的4倍,这个多边形是 边形. 18.已知x 为正整数,当时x = 时,分式的值为负整数.19. 已知1024x y xy +==,,则()2x y -的值是 .20.比较255,344,433,522的大小,用“<”号连接为: 三、解答下列各题(满分52分)21.(每小题4分,本题满分8分)分解因式: (1)3x 2﹣12x +12 (2)ax 2﹣4a .22. (每小题5分,本题满分15分)计算与化简 (1)(3-x )(3+x )+(1+x )2,(2)(﹣)÷.(3)÷23. (本题满分8分)如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:△ACD≌△BCE;(2)若CE=16,BE=21,求AE的长.24.(本题满分10分)如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD 于点G.(1)求证:AD垂直平分EF;(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.25. (本题满分5分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:已知x2﹣2xy+2y2+6y+9=0,求xy的值;26. (本题满分6分).我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?八年级数学试题参考答案及评分标准(这里只提供了一种解法或证法,其他证法,只要合理,照常得分)一、1-12,BBDCC A DACB BA二、13.115°14.4 15. ﹣(x﹣2y)2.16、±12.17、十.18、3,4,5,8;19、4;20、522<255<433<344三、解答题.21、(1)解:原式=3(x2﹣4x+4)--------------------2分=3(x﹣2)2,-------------4分(2)解:ax2﹣4a=a(x2﹣4)--------------------------2分=a(x﹣2)(x+2).-----------------------4分22、(1)解:原式=9-x2+1+2x+x2 -------------------3分=2x+10 ---------------------------5分(2)解:原式=•--------------------3分=•---------------------------4分=,------------------------------5分(3)解:÷=--------------------3分=----------------------------5分23、(1)证明:∵△ACB和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,----------------1分∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,--------------------2分在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);----------------------5分(2)∵△ACD≌△BCE,∴AD=BE=21,----------------6分∵△ECD是等边三角形,∴DE=CE=16,----------------------------7分∴AE=AD+DE=21+16=37.--------------------------8分24、(1)证明:∵ A D为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,---------1分∴∠DEF=∠DFE,∴∠AEF=∠AFE,∴AE=AF------------------------------------3分∴点A、D都在EF的垂直平分线上,∴AD垂直平分EF.--------------------------------5分(2)答:AG=3DG.-----------------------6分理由:∵∠BAC=60°,AD平分∠BAC,∴∠EAD=30°,∴AD=2DE,∠EDA=60°,-------------7分∵AD⊥EF,∴∠EGD=90°,∴∠DEG=30°--------------8分∴DE=2DG,∴AD=4DG,∴AG=3DG.---------------------------------10分25解:∵x2﹣2xy+2y2+6y+9=0,∴(x2﹣2xy+y2)+(y2+6y+9)=0,---------------------2分∴(x﹣y)2+(y+3)2=0,∴x﹣y=0,y+3=0,∴x=﹣3,y=﹣3,---------------------------------4分∴xy=(﹣3)×(﹣3)=9,即xy的值是9.--------------------------------5分26.解:(a+b+c)2的几何背景如图,-----------------------3分整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.-----------------------6分。
八年级(上)竞赛数学试卷(含答案)
八年级(上)竞赛数学试卷(含答案)一、选择题(每小题5分,共40分)1.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,62.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32015的末位数字是()A.1 B.3 C.7 D.94.若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是()A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=05.已知△ABC中,AB=AC,高BD、CE交于点O,连接AO,则图中全等三角形的对数为()A.3 B.4 C.5 D.66.如图,在△ABC中,∠C=90°,∠BAC=30°,AB=8,AD平分∠BAC,点PQ分别是AB、AD边上的动点,则PQ+BQ的最小值是()A.4 B.5 C.6 D.77.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)8.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个 B.2个 C.3个 D.4个二、填空题(每小题5分,共40分)9.若2a3x b y+5与5a2﹣4y b2x是同类项,则xy=.10.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为.11.如果(a2+b2+2)(a2+b2﹣2)=45,则a2+b2的值为.12.已知(a+25)2=1000,则(a+15)(a+35)的值为.13.计算(1﹣)()﹣(1﹣﹣)()的结果是.14.如图,在△ABC中,I是三内角平分线的交点,∠BIC=130°,则∠A=.15.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.16.如图,AB=AC,则数轴上点C所表示的数为.三、解答题(每小题10分,共40分)17.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.18.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2﹣ab﹣bc﹣ca的值.19.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q 是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.20.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.参考答案与试题解析一、选择题(每小题5分,共40分)1.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,6【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、72+242=252,符合勾股定理的逆定理,故能作为直角三角形的三边长;B、62+82=102,符合勾股定理的逆定理,故能作为直角三角形的三边长;C、92+122=152,符合勾股定理的逆定理,故能作为直角三角形的三边长;D、32+42≠62,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选D.2.设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为()A.M<N B.M>N C.M=N D.不能确定【考点】多项式乘多项式.【分析】根据多项式乘多项式的运算法则进行计算,比较即可得到答案.【解答】解:M=(x﹣3)(x﹣7)=x2﹣10x+21,N=(x﹣2)(x﹣8)=x2﹣10x+16,M﹣N=(x2﹣10x+21)﹣(x2﹣10x+16)=5,则M>N.故选:B.3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32015的末位数字是()A.1 B.3 C.7 D.9【考点】尾数特征.【分析】根据31=3,32=9,33=27,34=81,35=243,36=729,37=2187…得出3+32+33+34…+32015的末位数字相当于:3+7+9+1+…+3+7+9,进而得出末尾数字.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2015÷4=503…3,∴3+32+33+34…+32015的末位数字相当于:3+7+9+1+…+3+7+9=(3+9+7+1)×503+19=10079的末尾数为9.故选:D.4.若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是()A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=0【考点】完全平方公式.【分析】首先将原式变形,可得x2+z2+2xz﹣4xy+4xz+4y2﹣4yz=0,则可得(x+z﹣2y)2=0,则问题得解.【解答】解:∵(x﹣z)2﹣4(x﹣y)(y﹣z)=0,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=0,∴x2+z2+2xz﹣4xy+4y2﹣4yz=0,∴(x+z)2﹣4y(x+z)+4y2=0,∴(x+z﹣2y)2=0,∴z+x﹣2y=0.故选:D.5.已知△ABC中,AB=AC,高BD、CE交于点O,连接AO,则图中全等三角形的对数为()A.3 B.4 C.5 D.6【考点】等腰三角形的性质;全等三角形的判定.【分析】根据等腰三角形的性质以及全等三角形的判定和性质定理解答.【解答】解:∵高BD、CE交于点O,∴∠AEO=∠ADO=90°,图中的全等三角形有:①在△AEC与Rt△ADB中,,∴△AEC≌△ADB(AAS),∴∠ABO=∠ACO,∵AB=AC,∴∠ABC=∠ACB,∴∠CBO=∠BCO,∴OB=OC;②在△ABO与Rt△ACO中,,∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO,③在△AEO与Rt△ADO中,,∴△AEO≌△ADO(AAS),④在△BOE与△COD中,,∴△BOE≌△COD(AAS);⑤在△BCE与△CBD中,∴△BCE≌△CBD(AAS).共有5对.故选C.6.如图,在△ABC中,∠C=90°,∠BAC=30°,AB=8,AD平分∠BAC,点PQ分别是AB、AD边上的动点,则PQ+BQ的最小值是()A.4 B.5 C.6 D.7【考点】轴对称﹣最短路线问题;含30度角的直角三角形.【分析】如图,作点P关于直线AD的对称点P′,连接QP′,由△AQP≌△AQP′,得PQ=QP′,欲求PQ+BQ 的最小值,只要求出BQ+QP′的最小值,即当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C 重合,最小值为BC的长.【解答】解:如图,作点P关于直线AD的对称点P′,连接QP′,在△AQP和△AQP′中,,∴△AQP≌△AQP′,∴PQ=QP′∴欲求PQ+BQ的最小值,只要求出BQ+QP′的最小值,∴当BP′⊥AC时,BQ+QP′的值最小,此时Q与D重合,P′与C重合,最小值为BC的长.在Rt△ABC中,∵∠C=90°,AB=8,∠BAC=30°,∴BC=AB=4,∴PQ+BQ的最小值是4,故选A.7.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5)D.(3,5)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:点P(3,﹣5)关于y轴对称的点的坐标为(﹣3,﹣5),故选:A.8.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个 B.2个 C.3个 D.4个【考点】命题与定理.【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据三角形外角性质对③进行判断;根据非负数的性质对④进行判断.【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选A.二、填空题(每小题5分,共40分)9.若2a3x b y+5与5a2﹣4y b2x是同类项,则xy=﹣2.【考点】同类项.【分析】根据同类项的定义,含有相同的字母,相同字母的指数相同,即可列出关于x和y的方程组,求得x和y的值,进而求得代数式的值.【解答】解:根据题意得:,解得:,则xy=2×(﹣1)=﹣2.故答案为﹣2.10.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,则∠1+∠2的度数为45°.【考点】平行线的性质.【分析】首先过点B作BD∥l,由直线l∥m,可得BD∥l∥m,由两直线平行,内错角相等,可得出∠2=∠3,∠1=∠4,故∠1+∠2=∠3+∠4,由此即可得出结论.【解答】解:过点B作BD∥l,∵直线l∥m,∴BD∥l∥m,∴∠4=∠1,∠2=∠3,∴∠1+∠2=∠3+∠4=∠ABC,∵∠ABC=45°,∴∠1+∠2=45°.故答案为:45°.11.如果(a2+b2+2)(a2+b2﹣2)=45,则a2+b2的值为7.【考点】换元法解一元二次方程.【分析】根据题意,可以设a2+b2=m,从而可以求得m的值,进而求得a2+b2的值,注意a2+b2的值不小于0.【解答】解:设a2+b2=m,则(m+2)(m﹣2)=45,∴m2﹣4=45,解得,m=7或m=﹣7,∴a2+b2=7或a2+b2=﹣7(舍去),故答案为:712.已知(a+25)2=1000,则(a+15)(a+35)的值为900.【考点】平方差公式.【分析】将(a+15)(a+35)变形为(a+25﹣10)(a+25+10),根据平方差公式得到原式=(a+25)2﹣100,再将(a+25)2=1000整体代入即可求解.【解答】解:(a+15)(a+35)=(a+25﹣10)(a+25+10)=(a+25)2﹣100,∵(a+25)2=1000,∴原式=1000﹣100=900.故答案为:900.13.计算(1﹣)()﹣(1﹣﹣)()的结果是.【考点】整式的混合运算.【分析】设a=1﹣﹣﹣﹣,b=+++,然后根据整式的乘法与加减混合运算进行计算即可得解.【解答】解:设a=1﹣﹣﹣﹣,b=+++,则原式=a(b+)﹣(a﹣)•b=ab+a﹣ab+ b=(a+b),∵a+b=1﹣﹣﹣﹣++++=1,∴原式=.故答案为:.14.如图,在△ABC中,I是三内角平分线的交点,∠BIC=130°,则∠A=80°.【考点】三角形内角和定理.【分析】先根据角平分线的定义得到∠IBC=∠ABC,∠ICB=∠ACB,再根据三角形内角和定理得∠BIC+∠IBC+∠ICB=180°,则∠BIC=180°﹣(∠ABC+∠ACB),由于∠ABC+∠ACB=180°﹣∠A,所以∠BIC=90°+∠A,然后把∠BIC=130°代入计算可得到∠A的度数.【解答】解:∵BI、CI分别平分∠ABC、∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∵∠BIC+∠IBC+∠ICB=180°,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(∠ABC+∠ACB),∵∠A+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=180°﹣∠A,∴∠BIC=180°﹣=90°+∠A,∵∠BIC=130°,∴90°+∠A=130°∴∠A=80°.故答案为:80°.15.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.【考点】等腰三角形的性质.【分析】设∠A=x,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出∠AP7P8,∠AP8P7,再根据三角形的内角和定理列式进行计算即可得解.【解答】解:设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x,∴∠P2P1P3=∠P13P14P12=2x,∴∠P3P2P4=∠P12P13P11=3x,…,∠P7P6P8=∠P8P9P7=7x,∴∠AP7P8=7x,∠AP8P7=7x,在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°,解得x=12°,即∠A=12°.故答案为:12°.16.如图,AB=AC,则数轴上点C所表示的数为﹣1.【考点】勾股定理;实数与数轴.【分析】根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【解答】解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故答案为:﹣1.三、解答题(每小题10分,共40分)17.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.【考点】幂的乘方与积的乘方.【分析】根据同底数幂的乘法以及幂的乘方即可列出等式求出a、b、c之间的数量关系.【解答】解:∵2×18=62,∴3a×3c=(3b)2,∴3a+c=32b,∴a+c=2b18.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2﹣ab﹣bc﹣ca的值.【考点】因式分解的应用.【分析】原式变形后,利用完全平方公式配方后,将已知等式代入计算即可求出值.【解答】解:∵a=2015x+2014,b=2015x+2015,c=2015x+2016,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,则原式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)= [(a﹣b)2+(b﹣c)2+(a﹣c)2]=×(1+1+4)=3.19.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q 是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.【分析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.20.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.【考点】全等三角形的判定与性质.【分析】延长AB到F,使BF=BD,连DF,首先证明△ADF≌△ADC,推出AF=AC,由BE是角平分线,推出∠CBE=∠ABC=40°推出∠EBD=∠C,推出BE=EC,推出BE+AE=EC+AE=AC=AF=AB+BF=AB+BD.【解答】证明:延长AB到F,使BF=BD,连DF,∴∠F=∠BDF,∵∠A:∠B:∠C=3:4:2,∴∠F=40°,∠F=∠ACB,∵AD是平分线,∴∠BAD=∠CAD,在△ADF和△ADC中,,∴△ADF≌△ADC,∴AF=AC,∵BE是角平分线,∴∠CBE=∠ABC=40°∴∠EBD=∠C,∴BE=EC,∴BE+AE=EC+AE=AC=AF=AB+BF=AB+BD.∴AB+BD=AE+BE.。
2012_2013学年度上学期八年级数学试题
2012——2013学年度上期期末考试八年级数学试题一、精心选一选(本题共10小题;每小题3分,共30分)1、下列四个图案中,是轴对称图形的是()2、等腰三角形的一个内角是50°,则另外两个角的度数分别是()A、65°,65°B、50°,80°C、65,65°或50°,80°D、50°,50°3、下列命题:(1)绝对值最小的的实数不存在;(2)无理数在数轴上对应点不存在;(3)与本身的平方根相等的实数存在;(4)带根号的数都是无理数;(5)在数轴上与原点距离等于2的点之间有无数多个点表示无理数,其中错误的命题的个数是( )A、2B、3C、4D、54.对于任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )A.4B.3C.5D.25.已知点(-4,y1),(2,y2)都在直线y=-12x+2上,则y1、y2大小关系是()A.y1 > y2B.y1 = y2C.y1 < y2D.不能比较6.下列运算正确的是( )A.x2+x2=2x4B.a2·a3= a5C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y2 7.如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形8.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm9. .两个一次函数y=ax+b和y=bx+a,它们在同一坐标系中的图象大致是()10.一名学生骑自行车出行的图象如图,其中正确的信息是()A.整个过程的平均速度是760千米/时B.前20分钟的速度比后半小时慢C.该同学途中休息了10分钟D.从起点到终点共用了50分钟二,细心填一填(本题共10小题;每小题3分,共30分.)1.若x2+kx+9是一个完全平方式,则k= .2.点M(-2,k)在直线y=2x+1上,则点M到x轴的距离是.3.已知一次函数的图象经过(-1,2),且函数y的值随自变量x的增大而减小,请写出一个符合上述条件的函数解析式.4.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=7cm,则点D到AB的距离是.5.在△ABC中,∠B=70°,DE是AC的垂直平分线,且∠BAD:∠BAC=1:3,则∠C=.EABCDxyo xyo xyo xyoA B C Dx/分y/千米O12345672010 30 40 50 604题5题图AB D CAEB D C6.一等腰三角形的周长为20,一腰的中线分周长为两部分,其中一部分比另一部分长2,则这个三角形的腰长为 .7.某市为鼓励居民节约用水,对自来水用户收费办法调整为:若每户/月不超过12吨则每吨收取a 元;若每户/月超过12吨,超出部分按每吨2a 元收取.若小亮家5月份缴纳水费20a 元,则小亮家这个月实际用水8. 如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°. 一定成立的结论有____________(把你认为正确的序号都填上).9.对于数a ,b ,c ,d ,规定一种运算a b c d=ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x=10、已知,3,5==+xy y x 则22y x += 三.用心做一做21.计算(8分,每小题4分) (1)分解因式6xy 2-9x 2y -y 3 (2)223(2)()()a b ab b b a b a b --÷-+-22. (6分)先化简,再求值:2[()(2)8]2x y y x y x x +-+-÷,其中x =-2 .23. (6分) 如图,(1)画出△ABC 关于Y 轴的对称图形△A 1B 1C 1 (2)请计算△ABC 的面积(3)直接写出△ABC 关于X 轴对称的三角形△A 2B 2C 2的各点坐标。
(竞赛)人教版八年级数学上册期末试卷及答案
WORD完整版----可编辑----教育资料分享校名:班级:姓名:座号:2012-2013学年度第一学期八年级数学竞赛试卷一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。
1.在实数-3,0.21,π2,18,0.001,0.20202中,无理数的个数为()A、1B、2C、3D、42.Rt90ABC C BAC∠∠在△中,=,的角平分线AD交BC于点D,2CD=,则点D到AB的距离是()A.1 B.2 C.3 D.43.下列函数中,自变量x的取值范围是x≥2的是()4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点5.一次函数21y x=-的图象大致是()6.如图,已知ABC△中,45ABC∠=,4AC=,H是高AD和BE的交点,则线段BH的长度为()A B.4 C.D.5二、填空题(每小题3分,共27分)7.一次函数y=3x+b的图象过坐标原点,则b的值为___________.8.如图,数轴上A B,两点表示的数分别是1A关于点B的对称点是点C,则点C所表示的数是.9.随着海拔高度的升高,空气中的含氧量3(g/m)y与大气压强成正比例函数关系.当1 2DCBAEH36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式.10.从汽车的后视镜中看见某车车牌的后五位号码是,则该车的后五位号码是.11.如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是.第11题图 第12题图12. 如图,把一个含30°角的直角三角形纸板ABC 沿着较短边的垂直平分线翻折,B 与C 重合,则∠BOC 的度数13.等腰三角形的周长是25cm ,一腰上的中线将周长分为3:2两部分,则此三角形的底边长为___________________。
2012-2013学年上学期八年级数学竞赛试卷
2012-2013学年三科竞赛辅导模拟考试(三)八年级数学试卷一、精心填一填(每小题3分,共30分)1、现有四个无理数5,6,7,8,其中在2+1与3+1之间的有 个。
2、函数y=2+x +21-x 的自变量x 的取值范围是 。
3、直线y 1 =kx+b 过第一、二、四象限,则直线y 2 =bx-k 不经过第 象限。
4、已知一次函数y=2x+a 与y=-x+b 的图像都经过A(-2,0),且与y 轴分别交于B 、C 两点,则三角形ABC 的面积为 。
5、.如图2-4 ∠AOP=∠BOP=15 ,PC//OA ,PD ⊥OA ,如果PC=4,则PD= 。
6、若22n+1+4n=48,则n 的值为 。
7、若x m=3,x n=6,则x3m-2n= 。
7、若 2008)(,2012)(22=-=+b a b a ,则ab b a ++22的值等于 。
9、若x 3+ax 2+ax+1被x-2除的余数为3,则a 的值等于 。
10、 在△ABC 中,AB=6,AC=8,D 为BC 的中点,则 AD 的取值范围。
二、细心选一选(每小题3分,共24分)11、下面四个命题,其中真命题的是( )A.两个三角形有两边及一角对应相等,这两个三角形全等B.两边和第三边上的高对应相等的两个三角形全等C.有一角和一边对应相等的两个直角三角形全等D.两边和第三边上的中线对应相等的两个三角形全等12、如图,在数轴上表示1、2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则C 点所表示的数是( )A.2-1B.1-2C.2-2D.2-213、 已知x 是实数,则πππ1-+-+-x x x 的值是( )A.1-π1B.1+π1C.π1-1 D.π114、已知三点A(2,3),B(5,4),C(-4,1),依次连接这三点,则( )A.构成等边三角形B.构成直角三角形C.构成锐角三角形D.三点在同一直线上15、直线y=kx+b 与坐标轴的两个交点分别为A(2,0)和B(0,-3), 则不等式kx+b+3≥0的解集为( )A.x ≥0B.x ≤0C.x ≥2D.x ≤2 16、若a=350,b=440,c=530,则a 、b 、c 的大小关系为( )A.a<b<cB.c<a<bC.c<b<aD.b<c<a17、如果x 2+x-1=0,那么代数式x 3+2x 2-7的值为( )A.6B.8C.-6D.-818、计算机将信息转换成二进制数来处理。
八年级(上)竞赛数学试卷(含答案)
八年级(上)竞赛数学试卷(含答案)一、填空题(共12小题,每小题5分,满分60分)1.等腰三角形的底角是15°,腰长为10,则其腰上的高为.2.已知点A(a,2)、B(﹣3,b)关于x轴对称,求a+b=.3.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=度.4.等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为.5.已知一次函数y=kx+2过点(﹣2,﹣1),则k为6.合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,则这批产品的合格率是%.7.新运算规定:a◇b=,且1◇2=1,则2◇3=.8.在列频率分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有个数据.9.若(x+2)2=64,则x=.10.若△ABC≌△A′B′C′且∠A=35°25′,∠B′=49°45′,则∠C=.11.已知|x﹣13|+|y﹣12|+(z﹣5)2=0,则由此为三边的三角形是三角形.12.观察下列规律:3=3,32=9,33=27,34=81,35=243,36=729…用你发现的规律写出32010个位数字为二、选择题(共8小题,每小题5分,满分40分)13.的算术平方根是()A.﹣3 B.3 C.±3 D.8114.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处15.如果点A(﹣3,a)是点B(3,﹣4)关于y轴的对称点,那么点A关于x轴的对称点的坐标是()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,4)16.一次考试后对60名学生的成绩进行频率分布统计,以10分为一分数段,共分10组,若学生得分均为整数,且在69.5~79.5之间这组的频率是0.3,那么得分在这个分数段的学生有()A.30人B.18人C.20人D.15人17.已知一组数据含有三个不同的数12,17,25,它们的频率分别是,则这组数据的平均数是()A.19 B.16.5 C.18.4 D.2218.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.119.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°20.若x2+2(m﹣3)x+16是完全平方式,则m的值是()A.﹣1 B.7 C.7或﹣1 D.5或1三、解答题(共5小题,满分50分)21.如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.22.如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.23.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.24.如表石山中学八年级某班25名男生100m跑成绩(精确到0.1秒)的频数分布表:组别(秒)频数频数12.55~13.55 313.55~14.55 614.55~15.55 815.55~16.55 516.55~17.55 3(1)求各组频率,并填入上表;(2)求其中100m跑的成绩不低于15.55秒的人数和所占的比例.25.三江职业中学要印刷招生宣传材料,现有两家印刷厂可供选择:甲印刷厂提出:每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂提出:每份材料收0.4元的印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印刷数量x(份)之间的函数关系式;(2)若三江职业中学拿出2000元材料印刷费,你会选择哪家印刷厂,试说明理由?参考答案与试题解析一、填空题(共12小题,每小题5分,满分60分)1.等腰三角形的底角是15°,腰长为10,则其腰上的高为5.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据题意作出图形,利用等腰三角形的两底角相等求出三角形的顶角等于150°,所以顶角的邻补角等于30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半即可求出.【解答】解:如图,△ABC中,∠B=∠ACB=15°,∴∠BAC=180°﹣15°×2=150°,∴∠CAD=180°﹣150°=30°,∵CD是腰AB边上的高,∴CD=AC=×10=5cm.故答案为:5.2.已知点A(a,2)、B(﹣3,b)关于x轴对称,求a+b=﹣5.【考点】关于x轴、y轴对称的点的坐标.【分析】先根据“于x轴对称的点,横坐标相同,纵坐标互为相反数”求得a,b的值再求代数式的值.【解答】解:∵点A(a,2)、B(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣2,∴a+b=﹣5.3.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=30度.【考点】等边三角形的性质.【分析】作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可.【解答】解:作AB的垂直平分线,∵△ABC为等边三角形,△ABD为等腰三角形;∴AB的垂直平分线必过C、D两点,∠BCE=30°;∵AB=BP=BC,∠DBP=∠DBC,BD=BD;∴△BDC≌△BDP,所以∠BPD=30°.故应填30°.4.等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为30°或150°.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】本题要分两种情况解答:当BD在三角形内部以及当BD在三角形外部.再根据等腰三角形的性质进行解答.【解答】解:本题分两种情况讨论:(1)如图1,当BD在三角形内部时,∵BD=AB,∠ADB=90°,∴∠A=30°;(2)当如图2,BD在三角形外部时,∵BD=AB,∠ADB=90°,∴∠DAB=30°,∠ABC=180°﹣∠DAB=30°=150°.故答案是:30°或150°.5.已知一次函数y=kx+2过点(﹣2,﹣1),则k为【考点】待定系数法求一次函数解析式.【分析】将点(﹣2,﹣1)代入函数解析式即可求出k的值.【解答】解:将点(﹣2,﹣1)代入得:﹣1=﹣2k+2,解得:k=.故填.6.合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,则这批产品的合格率是98%.【考点】有理数的除法.【分析】合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,即有294件合格,根据合格率=合格产品÷总产品,得出结果.【解答】解:这批产品的合格率=÷300=294÷300=0.98.答:这批产品的合格率是98%.7.新运算规定:a◇b=,且1◇2=1,则2◇3=.【考点】代数式求值.【分析】令a=1,b=2,代入a◇b=,可求得k的值,进而根据运算法则可得出2◇3的值.【解答】解:令a=1,b=2,∴=1,k=7,∴2◇3==.故填:.8.在列频率分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有60个数据.【考点】频数(率)分布表.【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【解答】解:∵一组数据中某一个数据的频数是12,频率是0.2,∴这个数据组中共有数据的个数=12÷0.2=60.9.若(x+2)2=64,则x=6或﹣10.【考点】平方根.【分析】依据平方根的定义可求得x+2的值,然后解关于x的一元一次方程即可.【解答】解:∵(x+2)2=64,∴x+2=±8.解得:x=6或x=﹣10.故答案为:6或﹣10.10.若△ABC≌△A′B′C′且∠A=35°25′,∠B′=49°45′,则∠C=94°10′.【考点】全等三角形的性质.【分析】全等三角形的对应角相等,三角形内角和等于180°.所以∠C=180°﹣∠A﹣∠B,且∠C1=∠C,∠B=∠B′.【解答】解:∵△ABC≌△A1B1C1,∴∠C1=∠C,∠B=∠B′,又∵∠C=180°﹣∠A﹣∠B=180°﹣∠A﹣∠B′=180°﹣35°25′﹣49°45′=94°50′.11.已知|x﹣13|+|y﹣12|+(z﹣5)2=0,则由此为三边的三角形是直角三角形.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“几个非负数相加,和为0,这几个非负数的值都为0”解出x、y、z的值,再根据勾股定理的逆定理判断三角形的类型.【解答】解:依题意得:x﹣13=0,y﹣12=0,z﹣5=0,∴x=13,y=12,z=5,∵x2=y2+z2,∴此三角形为直角三角形,故填直角.12.观察下列规律:3=3,32=9,33=27,34=81,35=243,36=729…用你发现的规律写出32010个位数字为9【考点】规律型:数字的变化类.【分析】根据3的指数从1到4,末位数字从3,9,7,1进行循环,再用2010除以4得出余数,再写出32010个位数字.【解答】解:2010÷4=502…2,则32010个位数字为9,故答案为9.二、选择题(共8小题,每小题5分,满分40分)13.的算术平方根是()A.﹣3 B.3 C.±3 D.81【考点】算术平方根.【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出=9的算术平方根.【解答】解:∵=32=9,∴的算术平方根是3.故选:B.14.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【考点】角平分线的性质.【分析】根据到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角平分线两两相交的交点,共三处.故选:D.15.如果点A(﹣3,a)是点B(3,﹣4)关于y轴的对称点,那么点A关于x轴的对称点的坐标是()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,4)【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),分别关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y).【解答】解:根据对称的性质,得已知点A(﹣3,a)是点B(3,﹣4)关于y轴对称的点的坐标,那么a=﹣4;则点A的坐标是(﹣3,﹣4),所以点A关于x轴对称的点的坐标是(﹣3,4).故选B.16.一次考试后对60名学生的成绩进行频率分布统计,以10分为一分数段,共分10组,若学生得分均为整数,且在69.5~79.5之间这组的频率是0.3,那么得分在这个分数段的学生有()A.30人B.18人C.20人D.15人【考点】频数与频率.【分析】根据频率、频数的关系:频率=,可得频数=频率×数据总和.【解答】解:根据题意,得0.3×60=18(人).故选B.17.已知一组数据含有三个不同的数12,17,25,它们的频率分别是,则这组数据的平均数是()A.19 B.16.5 C.18.4 D.22【考点】加权平均数.【分析】本题是加权平均数,根据加权平均数的公式即可求解.【解答】解:平均数=12×+17×+25×=16.5.故选B.18.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.1【考点】菱形的判定与性质;含30度角的直角三角形.【分析】过点P做PM∥CO交AO于M,可得∠CPO=∠POD,再结合题目推出四边形COMP为菱形,即可得PM=4,又由CO∥PM可得∠PMD=30°,由直角三角形性质即可得PD.【解答】解:如图:过点P做PM∥CO交AO于M,PM∥CO∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA∴四边形COMP为菱形,PM=4PM∥CO⇒∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OA∴PD=PC=2.令解:作CN⊥OA.∴CN=OC=2,又∵∠CNO=∠PDO,∴CN∥PD,∵PC∥OD,∴四边形CNDP是长方形,∴PD=CN=2故选:C.19.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°【考点】等腰三角形的性质.【分析】由题意知,△ABD和△ABC是等腰三角形,可求得顶角∠DAE的度数,及∠BAD=∠EAC,进而求得∠CAE的度数.【解答】解:∵AD=AE,BE=CD,∴△ABE和△ABC是等腰三角形.∴∠B=∠C,∠ADE=∠AED.∵∠1=∠2=110°,∴∠ADE=∠AED=70°.∴∠DAE=180°﹣2×70°=40°.∵∠1=∠2=110°,∠B=∠C,∴∠BAD=∠EAC.∵∠BAC=80°.∴∠BAD=∠EAC=(∠BAC﹣∠DAE)÷2=20°.故选A.20.若x2+2(m﹣3)x+16是完全平方式,则m的值是()A.﹣1 B.7 C.7或﹣1 D.5或1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故2(m﹣3)=±8,∴m=7或﹣1.【解答】解:∵(x±4)2=x2±8x+16,∴在x2+2(m﹣3)x+16中,2(m﹣3)=±8,解得:m=7或﹣1.故选:C.三、解答题(共5小题,满分50分)21.如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)联立两直线解析式,解方程即可得到点A的坐标,两直线的解析式令y=0,求出x的值,即可得到点A、B的坐标;(2)根据三点的坐标求出BC的长度以及点A到BC的距离,然后根据三角形的面积公式计算即可求解.【解答】解:(1)直线l1:y=2x+1、直线l2:y=﹣x+7联立得,,解得,∴交点为A(2,5),令y=0,则2x+1=0,﹣x+7=0,解得x=﹣0.5,x=7,∴点B、C的坐标分别是:B(﹣0.5,0),C(7,0);(2)BC=7﹣(﹣0.5)=7.5,=×7.5×5=.∴S△ABC22.如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.【考点】全等三角形的判定与性质.【分析】根据AB=DC,AC=BD可以联想到证明△ABC≌△DCB,可得∠DBC=∠ACB,从而根据平行线的性质证得∠1=∠2.【解答】证明:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB.∴∠DBC=∠ACB.∵EF∥BC,∴∠1=∠DBC,∠2=∠ACB.∴∠1=∠2.23.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【考点】等腰三角形的判定与性质.【分析】(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE≌△CEF,然后即可求证△DEF是等腰三角形.(2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B==70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°24.如表石山中学八年级某班25名男生100m跑成绩(精确到0.1秒)的频数分布表: 组别(秒)频数频数12.55~13.55 313.55~14.55 614.55~15.55 815.55~16.55 516.55~17.55 3(1)求各组频率,并填入上表;(2)求其中100m跑的成绩不低于15.55秒的人数和所占的比例.【考点】频数(率)分布表.【分析】(1)根据频率、频数的关系,频率=,可依次计算出各组的频率;(2)观察图表,可得其中100m跑的成绩不低于15.55秒的有8人,进而求得其所占的比例.【解答】解:(1)样本容量为25,且已知各组的频数,则各组的频率分别为0.12,0.24,0.32,0.2,0.12.(2)观察图表可得:有8人100m跑的成绩不低于15.55秒,所占的比例为=0.32.25.三江职业中学要印刷招生宣传材料,现有两家印刷厂可供选择:甲印刷厂提出:每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂提出:每份材料收0.4元的印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印刷数量x(份)之间的函数关系式;(2)若三江职业中学拿出2000元材料印刷费,你会选择哪家印刷厂,试说明理由?【考点】一次函数的应用.【分析】(1)根据“甲厂费用=单价×数量+制版费;乙厂费用=单价×数量”,即可得出y甲、y乙关于x之间的函数关系式;(2)分别令y甲、y乙=2000,求出与之对应的x的值,比较后即可得出结论.【解答】解:(1)根据题意可知:y甲=0.2x+500;y乙=0.4x.(2)选甲印刷厂,理由如下:当y甲=2000时,有0.2x+500=2000,解得:x=7500;当y乙=2000时,有0.4x=2000,解得:x=5000.∵7500>5000,∴若三江职业中学拿出2000元材料印刷费,应该选取甲印刷厂.。
2012~2013学年八年级数学竞赛试题
2012~2013学年度八年级数学竞赛试题一、选择题(本大题共8个小题;每小题3分,共24分) 1、下列计算错误的是( )A 、253--=⋅a a aB 、326a a a =÷C 、33323a a a -=-D 、()1210=+-2、若把分式yx xy+2的x 、y 同时扩大3倍,则分式值( ) A 、扩大3倍 B 、缩小3倍 C 、不变 D 、扩大9倍3、有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0。
其中错误的是( )A 、 ①②③B 、 ①②④C 、 ②③④D 、 ①③④ 4、在同一直角坐标系中,函数y=kx-k 与(0)ky k x=≠的图像大致是( )5、同一坐标系中直线1y k x =与双曲线2k y x=无公共点,则12k k 与的关系是( ) A 、一定同号 B 、一定异号 C 、一定互为相反数 D 、一定互为倒数 6、直线与1y x =-两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有( )。
A 、4个 B 、5个 C 、7个 D 、8个7、已知25x =2000, 80y =2000,则y1x 1+等于( ) A 、2 B 、1 C 、21D 、238、如图14—15所示,有一矩形纸片ABCD ,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC交于点F ,则△CEF 的面积为( )A.4B.6C.8D.10二、填空题(本大题共8个小题;每小题3分,共24分)9、若分式2)2)(4(--+x x x 的值为零,则x = 。
10、已知并联电路中的电阻关系为1R =11R +21R ,那么R 2=________(用R 、R 1表示)。
【精品】2012-2013年广西梧州市岑溪市八年级(上)数学竞赛试卷带答案
2012-2013学年广西梧州市岑溪市八年级(上)数学竞赛试卷一、填空题(每小题3分,共30分)1.(3分)是的算术平方根.2.(3分)若多项式能因式分解,则a=.3.(3分)如果Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=4,EF=3,则Rt△ABC的面积为.4.(3分)如果a m=6,a m﹣n=2,则a n=.5.(3分)一次函数y=(m﹣2)x+1,y随x的增大而减小,则m的取值范围是.6.(3分)当x=时,函数y=2x+1与y=x﹣5有相同的函数值.7.(3分)直线y=kx+b,其中k>0,b<0,那么直线不经过第象限.8.(3分)如图,Rt△ABC中,∠C=90°,∠A=20°,BD平分∠ABC,则∠CDB=.9.(3分)如图,D在△ABC的边BC上,且BC=BD+AD,则点D在的垂直平分线上.10.(3分)如图,直线y=﹣2x+6经过点B(,a),则△ABC的面积为.二、选择题(每小题3分,共24分)11.(3分)下列运算正确的是()A.x5+x5=x10B.x5•x5=x10C.(x5)5=x10D.x20÷x2=x1012.(3分)下列图形中,不是轴对称图形的是()A.角B.矩形C.梯形D.菱形13.(3分)已知点A(2,﹣3)关于y轴对称的是A′(a,b),则a+b的值是()A.﹣5 B.﹣1 C.1 D.514.(3分)下列因式分解正确的是()A.a2+b2=(a+b)(a﹣b)B.a4﹣1=(a2+1)(a2﹣1)C.x2+2x+4=(x+2)2D.x2﹣3x+2=(x﹣1)(x﹣2)15.(3分)如图,在△ABC和△DEF中,已知AB=DE,∠B=∠DEF,添加下列条件,不能判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.BE=CF D.AC∥DF16.(3分)如图所示,数轴上点P所表示的可能是()A.B. C. D.17.(3分)将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)18.(3分)已知一次函数y=(a﹣1)x+b的图象如图所示,那么a的取值范围是()A.a>1 B.a<1 C.a>0 D.a<0三、解答题(共46分)19.(10分)计算:(1)a(a﹣3)﹣(2﹣a)(a+2);(2)+﹣﹣•.20.(10分)因式分解(1)﹣25+a4;(2)a3b﹣10a2b+25ab.21.(6分)化简求值(x+2)(y﹣2)﹣2(xy﹣2),其中x=1,y=2.22.(8分)王老师从学校乘汽车去城里开会,4小时后,汽车出现故障,修理一段时间后继续走,又过了3个小时到达开会地点,而此时接到紧急通知,立马乘快客赶回学校.根据图中信息填空:(1)王老师修车用了小时;(2)学校到开会地点的距离是千米;(3)快客的平均速度是千米/时;(4)图象BC的函数解析式为(10≤x≤13).23.(5分)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于E.AD与BE交于F,若BF=AC,求证:△ADC≌△BDF.24.(7分)网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:A:计时制:0.05元/分;B:全月制:54元/月(限一部个人住宅电话入网).此外B种上网方式要加收通信费0.02元/分.(1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x之间的函数关系式.(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱.2012-2013学年广西梧州市岑溪市八年级(上)数学竞赛试卷参考答案与试题解析一、填空题(每小题3分,共30分)1.(3分)是的算术平方根.【解答】解:是的算术平方根,故答案为:.2.(3分)若多项式能因式分解,则a=±1.【解答】解:∵多项式x2+ax+能分解,∴a=±1.故答案为:±13.(3分)如果Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=4,EF=3,则Rt△ABC的面积为6.【解答】解:∵Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=4,EF=3,∴BC=EF=3,∴×AC×BC=×4×3=6,故答案为:6.4.(3分)如果a m=6,a m﹣n=2,则a n=3.【解答】解;a m﹣n=a m÷a n=2,a n=6÷2=3,故答案为:3.5.(3分)一次函数y=(m﹣2)x+1,y随x的增大而减小,则m的取值范围是m<2.【解答】解:∵一次函数y=(m﹣2)x+1中,y随x的增大而减小,∴m﹣2<0,解得,m<2;故答案是:m<2.6.(3分)当x=﹣6时,函数y=2x+1与y=x﹣5有相同的函数值.【解答】解:根据题意得2x+1=x﹣5,解得x=﹣6,即x=﹣6时,函数y=2x+1与y=x﹣5有相同的函数值.故答案为﹣6.7.(3分)直线y=kx+b,其中k>0,b<0,那么直线不经过第二象限.【解答】解:一次函数y=kx﹣b过一、三、四象限,则函数值y随x的增大而增大,因而k>0;图象与y轴的负半轴相交则b<0,因而一次函数y=kx+b的一次项系数k>0,y随x的增大而增大,经过一、三象限,常数项b<0,则函数与y轴负半轴相交,因而一定经过三、四象限,因而函数不经过第二象限.8.(3分)如图,Rt△ABC中,∠C=90°,∠A=20°,BD平分∠ABC,则∠CDB=55°.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=20°,∴∠ABC=180°﹣90°﹣20°=70°,∵BD平分∠ABC,∴∠ABD=∠ABC=35°,∴∠CDB=∠A+∠ABD=20°+35°=55°,故答案为:55°.9.(3分)如图,D在△ABC的边BC上,且BC=BD+AD,则点D在AC的垂直平分线上.【解答】解:∵BC=BD+AD,BC=BD+CD,∴AD=DC,∴D在AC的垂直平分线上,故答案为:AC.10.(3分)如图,直线y=﹣2x+6经过点B(,a),则△ABC的面积为.【解答】解:∵直线y=﹣2x+6经过点B(,a),∴a=﹣2×+6=5,当y=0时,﹣2x+6=0,解得:x=3,则△ABC的面积为:×3×5=,故答案为:.二、选择题(每小题3分,共24分)11.(3分)下列运算正确的是()A.x5+x5=x10B.x5•x5=x10C.(x5)5=x10D.x20÷x2=x10【解答】解:A、x5+x5=2x5,故A错误;B、x5•x5=x10,故B正确;C、(x5)5=x5×5=x25,故C错误;D、x20÷x2=x20﹣2=x18,故D错误.故选:B.12.(3分)下列图形中,不是轴对称图形的是()A.角B.矩形C.梯形D.菱形【解答】解:A、角是轴对称图形,故本选项错误;B、矩形是轴对称图形,故本选项错误;C、梯形不一定是轴对称图形,故本选项正确.D、菱形是轴对称图形,故本选项错误;故选C.13.(3分)已知点A(2,﹣3)关于y轴对称的是A′(a,b),则a+b的值是()A.﹣5 B.﹣1 C.1 D.5【解答】解:∵点A(2,﹣3)关于y轴对称的是A′(a,b),∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5.故选A.14.(3分)下列因式分解正确的是()A.a2+b2=(a+b)(a﹣b)B.a4﹣1=(a2+1)(a2﹣1)C.x2+2x+4=(x+2)2D.x2﹣3x+2=(x﹣1)(x﹣2)【解答】解:A、原式不能分解,故选项错误;B、原式=(a2+1)(a2﹣1)=(a2+1)(a﹣1)(a+1),故选项错误;B、原式不能分解,故选项错误;D、x2﹣3x+2=(x﹣1)(x﹣2),故选项正确.故选D.15.(3分)如图,在△ABC和△DEF中,已知AB=DE,∠B=∠DEF,添加下列条件,不能判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.BE=CF D.AC∥DF【解答】解:A、添加C选项中条件可用ASA判定两个三角形全等;B、已知两边和一边的对角对应相等,不能判定两个三角形全等;C、BE=CF则BC=FE,根据SAS即可判定两个三角形全等;D、选项以后是两边及一边的对角即AAS,可以证明三角形全等.故选B.16.(3分)如图所示,数轴上点P所表示的可能是()A.B. C. D.【解答】解:设点P表示的实数为x,由数轴可知,3<x<3.5,2<<3,3<<4,符合题意的数为B.故选B.17.(3分)将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)【解答】解:左边图形的面积可以表示为:(a+b)(a﹣b),右边图形的面积可以表示为:(a﹣b)b+a(a﹣b),∵左边图形的面积=右边图形的面积,∴(a+b)(a﹣b)=(a﹣b)b+a(a﹣b),即:(a+b)(a﹣b)=a2﹣b2.故答案为:A.18.(3分)已知一次函数y=(a﹣1)x+b的图象如图所示,那么a的取值范围是()A.a>1 B.a<1 C.a>0 D.a<0【解答】解:由图象可以看出:y随x的增大而增大,∴a﹣1>0,∴a>1.故选A.三、解答题(共46分)19.(10分)计算:(1)a(a﹣3)﹣(2﹣a)(a+2);(2)+﹣﹣•.【解答】解:(1)原式=a2﹣3a﹣(4﹣a2)=a2﹣3a﹣4+a2=2a2﹣3a﹣4;(2)原式=9+0﹣+×4=9﹣+2=10.5.20.(10分)因式分解(1)﹣25+a4;(2)a3b﹣10a2b+25ab.【解答】解:(1)﹣25+a4=(a2+5)(a2﹣5)=(a2+5)(a+)(a﹣);(2)a3b﹣10a2b+25ab=ab(a2﹣10a+25)=ab(a﹣5)2.21.(6分)化简求值(x+2)(y﹣2)﹣2(xy﹣2),其中x=1,y=2.【解答】解:(x+2)(y﹣2)﹣2(xy﹣2)=xy﹣2x+2y﹣4﹣2xy+4,=﹣xy﹣2x+2y,把x=1,y=2代入原式得:原式=﹣xy﹣2x+2y=﹣1×2﹣2×1+2×2=0.22.(8分)王老师从学校乘汽车去城里开会,4小时后,汽车出现故障,修理一段时间后继续走,又过了3个小时到达开会地点,而此时接到紧急通知,立马乘快客赶回学校.根据图中信息填空:(1)王老师修车用了6小时;(2)学校到开会地点的距离是500千米;(3)快客的平均速度是100千米/时;(4)图象BC的函数解析式为y=x﹣(10≤x≤13).【解答】解:(1)如图,王老师修车时间是从4时到10时,共用了:10﹣4=6(小时);(2)根据图示知,学校到开会地点的距离是500千米;(3)快客的平均速度是:500÷5=100(千米/时);(4)设直线BC的解析式为y=kx+b(k≠0).由图示知,B(10,300),(13,500),则,解之得,所以直线BC的解析式为:y=x﹣(10≤x≤13).故答案是:(1)6;(2)500;(3)100;(4)y=x﹣.23.(5分)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于E.AD与BE交于F,若BF=AC,求证:△ADC≌△BDF.【解答】证明:∵AD⊥BC,BE⊥AC,∴∠ADC=∠BDF=∠BEA=90°,∵∠AFE=∠BFD,∠DAC+∠AEF+∠AFE=180°,∠BDF+∠BFD+∠DBF=180°,∴∠DAC=∠DBF,在△ADC和△BDF中,,∴△ADC≌△BDF(AAS).24.(7分)网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:A:计时制:0.05元/分;B:全月制:54元/月(限一部个人住宅电话入网).此外B种上网方式要加收通信费0.02元/分.(1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x之间的函数关系式.(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱.【解答】解:(1)y1=3x(x>0),y2=1.2x+54(x>0);(2)由y1<y2得,3x<1.2x+54,解得x<30;由y1=y2得,3x=1.2x+54,解得x=30;由y1>y2得,3x>1.2x+54,解得x>30;综上所述:当该用户上网时间少于30小时时,选择计时制上网省钱;当上网时间等于30小时时选择计时制、全月制费用一样;当上网时间超过30小时时选择全月制上网省钱.。
杭一中2012-2013学年八年级(上)数学竞赛试题(含答案)
MN ABCD E F1 2 杭一中2012-2013学年八年级上期数学竞赛试题班级_______ 姓名_______ 成绩_______一、填空题 (1-8每小题5分,共40分)1、如图,ABC ∆中,∠C =90°,∠ABC =60°,BD 平分∠ABC ,若AD =6,则CD = 。
2、(2011浙江台州)已知等边△ABC 中,点D ,E 分别在边AB ,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF =80º ,则∠EGC 的度数为3、(2011广东茂名)如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 度.(第1题) (第2题) (第3题) 4、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 。
5、如图EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,∠E =∠F =90°, ∠B =∠C ,AE =AF 。
给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ;④CD =DN 。
其中正确的结论有 (填序号)二、选择题6、已知m6x =,3nx =,则2m n x +的值为( )。
(第5题)A 、18B 、108C 、9D 、157、直线1y x =-两坐标轴分别交于A 、B 两点,点C 在X 轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有( )。
A 、4个B 、5个C 、7个D 、8个8、小明从家中出发,到离家1.2千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是( )A.B.C.D.三、简答题:(共6题,共60分)9.计算:23011(2)(1)(8-+-⨯+-, 01(0)a a=≠公式:10、(2011江苏连云港)两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点.不重叠的两部分△AOF与△DOC是否全等?为什么?11、(2011重庆江津)在△ABC 中,AB =CB ,∠ABC =90º,F 为AB 延长线上一点,点E 在BC 上,且AE =CF .(1)求证:Rt △ABE ≌Rt △CBF ; (2)若∠CAE =30º,求∠ACF 度数.12. (2011江苏宿迁)某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x (分钟)与收费y (元)之间的函数关系如图所示.(1)有月租费的收费方式是 (填①或②),月租费是 元; (2)分别求出①、②两种收费方式中y 与自变量x 之间的函数关系式; (3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.B CEF第11题图分钟)13、(2010湖北孝感)健身运动已成为时尚,某公司计划组装A、B两种型号的健身器材共40套,捐赠给社区健身中心.组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A、B两种型号的健身器材时,共有多少种组装方案;(2)组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元.求总组装费用最少的组装方案,最少组装费用是多少?14、(2011山东济宁,21,8分)“五一”期间,为了满足广大人民的消费需求,某商店计划用160000元购进一批家电,这批家电的进价和售价如下表:类别彩电冰箱洗衣机进价2000 1600 1000售价2200 1800 1100 (1)若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货方案?(2)设购买彩电X台,商店销售完毕后获得利润为w元,求W与X的函数关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012学年第一学期八年级数学竞赛试卷一、选择题(每小题3分,共36分)1. 如图,AB ∥CD ,直线l 分别与AB 、CD 相交, 若∠1=130°,则∠2=( )A.40°B.50°C.130°D.140° 2. 下列调查中,适合用普查方式的是( )A .了解一批灯泡的使用寿命B .了解一批炮弹的杀伤半径C .了解一批袋装食品是否含有防腐剂D .了解某班学生“50米跑”的成绩 3. 等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( ) A .16 B .20 C .18 D .16或204.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为0.56s =2甲,0.60s =2乙,20.50s =丙,20.45s =丁,则成绩最稳定的是( )A.甲B.乙C.丙D.丁5、下列各图中,不可能...折成无盖的长方体的是( )6.在平面直角坐标系中,已知点A (-1,0)和B (1,2),连接AB ,平移线段AB 得到线段A 1B 1.若点A 的对应点A 1的坐标为(3,-1),则点B 的对应点B 1的坐标为 ( ) A .(5,3) B .(5,1) C .(-1,3) D .(-1,1) 7. 如图,在△ABC 中,AB =AC =5,BC =6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 的长为( )A .65 B .95 C .125 D .1658.如图,点A 的坐标为(-2,0),点B 在直线y =x 上运动, 当线段AB 最短时点B 的坐为yxO BAAMNCBAB DC兰 中学 子加 油(A )(-22,-22) (B )(-21,-21)(C )(22,22-) (D )(0,0) 9.关于x 的一次函数12++=k kx y 的图像可能是 ()10、一个正三角形的面积为27,若剪去它的三个角,使之成为正六边形, 则此正六边形的面积等于( )A . 33B .24C .21D .18 11、 若关于x 的不等式组⎩⎨⎧≤-<-1270x m x 的整数解共有3个,则m 的取值范围是( )A. 5<m ≤6B . 5≤m <6C .5≤m ≤6D. 5<m <612、直线1y x =-与x 轴交于点A ,与y 轴交于点B ,点C 在坐标轴上,ABC ∆是等腰三角形,则满足条件的C 点最多有( )A 、4个B 、5个C 、7个D 、8个 二、填空题(每小题3分,共18分)13. 点(32)A -,关于y 轴对称的点的坐标是 . 14.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35o ,则∠2= .15. 如图是每个面上都标有一个汉字的立方体的表面展开图,在此立方体上与“子”字相对的面上的汉字是 .16. 如图,△ABC 中,AB =AC =10,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为__________.17. 等腰三角形一腰长为5,一边上的高为3,则底边长为.18、设一次函数32-+=k kx y (0≠k ),对于任意两个k 的值1k 、2k ,分别对应两个函数21,y y ,若021<k k ,当x =m 时,取相应21,y y 中的较小值p ,则p 的最大值是__________. 三、解答题19. 解不等式组.并把解集在数轴上表示出来.()x 3+3x+1213x 18x <-⎧≥⎪⎨⎪---⎩①②.20. 如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (-3,5),B (-4,3),(-1,1).(1)作出△ABC 向右平移5个单位的△A 1B 1C 1;(2)作出△ABC 关于x 轴对称的△A 2B 2C 2,并写出点C 2的坐标.21. 如图,生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离(BC )约为梯子长度(AB )的13,则梯子比较稳定.现有一长度为12米的梯子,当梯子稳定摆放时,它的顶端能达到11米高的墙头吗?22. 在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23.如图,△ABC 中,AD 是高,CE 是中线,DC =BE ,DG ⊥CE ,G 为垂足.求证:(1)G 是CE 的中点;(2)∠B =2∠BCE .24. 为了响应节能减排的号召,某品牌汽车4S 店准备购进A 型(电动汽车)和B 型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求。
市场营销人员经过市场调查得到如下信息:成本价(万元/辆) 售价(万元/辆)A 型 30 32B 型4245 (1)若经营者的购买资金不少于576万元且不多于600万元,则有哪几种进车方案? (2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?ABCDEG25.把一副三角板按如图甲放置,其中90ACB DEC == ∠∠,45A = ∠,30D = ∠,斜边6cm AB =,7cm DC =.把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙).这时AB 与CD 1相交于点O 、与D 1E 1相交于点F . (1)求1OFE ∠的度数; (2)求线段AD 1的长;(甲)ACE DBB(乙)AE 1CD 1OF26.已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到长方形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示)②若长方形CDEF的面积为60,请求出此时点C的坐标.参考答案一、选择题(本题共12小题,每小题3分,共36分) 题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案cDBDABCACDAC二、细心填一填(每小题3分,共18分) 13、 (3, 2 ) , 14、 55 ˚ , 15、 兰 16、 14 , 17、 8,103,10,18、 - 3 三、解答题(共66分)19.(6分) 解: 12≤-x 图略 20. (6分) 解: 图略点C 2坐标 (4,-1)21.(8分) 解: 可以达到22.(8分).解:(1)解:(Ⅰ)可知这组样本数据的平均数是:3.3这组数据的众数是4。
这组数据的中位数是3。
(Ⅱ)估计该校学生共参加活动约为3960次。
23.(8分) 解: 连结ABCDEG24.(8分)解:(1)设A 型汽车购进x 辆,则B 型汽车购进(16-x )辆。
根据题意得,()()304216600304216576x x x x ⎧+-≤⎪⎨+-≥⎪⎩,解得,68x ≤≤。
∵x 为整数,∴x 取6、7、8。
∴有三种购进方案:(2)设总利润为w 万元,根据题意得,w =(32-30) x +(45-42)(16-x ) =-x +48 ∵-1<0,∴w 随x 的增大而减小。
∴当x =6时,w 有最大值,w 最大=-6+48=42(万元)。
∴当购进A 型车6辆,B 型车10辆时,可获得最大利润,最大利润是42万元。
25. (10分)解:(1)如图所示,315∠=,190E ∠= ,∴1275∠=∠=. 又45B ∠=,∴114575120OFE B ∠=∠+∠=+= . (2)1120OFE ∠= ,∴∠D 1FO =60°.1130CD E ∠= ,∴490∠= .又AC BC = ,6AB =,∴3OA OB ==.90ACB ∠= ,∴116322CO AB ==⨯=. 又17CD = ,∴11734OD CD OC =-=-=. 在1Rt AD O △中,222211345AD OA OD =+=+=.A 型 6辆 7辆 8辆B 型10辆 9辆8辆(甲)ACE DBB(乙)AE 1CD 1OF26.(1)设直线l 1的表达式为y =k 1x ,它过B (18, 6) 得18k 1=6 k 1=31 ∴y =31x设直线l 2的表达式为y =k 2x +b ,它过A (0, 24), B (18, 6)得⎩⎨⎧=+=618242b k b 解得⎩⎨⎧=-=212b ky =-x +24 (2) ①∵点C 在直线l 1上, 且点C 的纵坐标为a ,∴a =31x x =3a ∴点C 的坐标为 (3a , a ) ∵CD ∥y 轴∴点D 的横坐标为3a ∵点D 在直线l 2上 ∴y =-3a +24 ∴D (3a , -3a +24) ②C (3, 1) 或C (15, 5)。