Application_of_COMSOL_in_Image_ Processing
comsol等离子体放电二维模型
DC Glow DischargeIntroductionDC glow discharges in the low pressure regime have long been used for gas lasers and fluorescent lamps. DC discharges are attractive to study because the solution is time independent. This model shows how to use the DC Discharge interface to set up an analysis of a positive column. The discharge is sustained by emission of secondary electrons at the cathode.Model DefinitionThe DC discharge consists of two electrodes, one powered (the anode) and one grounded (the cathode). The positive column is coupled to an external circuit:Figure 1: Schematic of the DC discharge and external circuit.D O M A I NE Q U A T I O N SThe electron density and mean electron energy are computed by solving a pair of drift-diffusion equations for the electron density and mean electron energy.Convection of electrons due to fluid motion is neglected. For detailed information on electron transport see Theory for the Drift Diffusion Interface in the Plasma Module User’s Guide .where:Cathode AnodePlasma 1000 ΩV1 pF t ∂∂n e()∇n e μe E •()–D e ∇n e •–[]⋅+R e =t ∂∂n ε()∇n εμεE •()–D ε∇n ε•–[]E Γe ⋅+⋅+R ε=The electron source R e and the energy loss due to inelastic collisions R ε are defined later. The electron diffusivity, energy mobility and energy diffusivity are computed from the electron mobility using:The source coefficients in the above equations are determined by the plasma chemistry using rate coefficients. Suppose that there are M reactions which contribute to the growth or decay of electron density and P inelastic electron-neutral collisions. In general P >> M . In the case of rate coefficients, the electron source term is given by:where x j is the mole fraction of the target species for reaction j , k j is the rate coefficient for reaction j (m 3/s), and N n is the total neutral number density (1/m 3). For DC discharges it is better practice to use Townsend coefficients instead of rate coefficients to define reaction rates. Townsend coefficients provide a better description of what happens in the cathode fall region Ref 1. When Townsend coefficients are used, the electron source term is given by:where αj is the Townsend coefficient for reaction j (m 2) and Γe is the electron flux as defined above (1/(m 2·s)). Townsend coefficients can increase the stability of the numerical scheme when the electron flux is field driven as is the case with DCdischarges. The electron energy loss is obtained by summing the collisional energy loss over all reactions:where Δεj is the energy loss from reaction j (V). The rate coefficients may be computed from cross section data by the following integral:Γe μe E •()n e –D e ∇n e•–=D e μe T e =με,53--⎝⎭⎛⎫μe =D ε,μεT e =R e x j k j N n n ej 1=M∑=R e x j αj N n Γej 1=M∑=R εx j k j N n n e Δεjj 1=P∑=where γ = (2q /m e )1/2 (C 1/2/kg 1/2), m e is the electron mass (kg), ε is energy (V), σk is the collision cross section (m 2) and f is the electron energy distribution function. In this case a Maxwellian EEDF is assumed. When Townsend coefficients are used, the electron energy loss is taken as:For non-electron species, the following equation is solved for the mass fraction of each species. For detailed information on the transport of the non-electron species see Theory for the Heavy Species Transport Interface in the Plasma Module User’s Guide .The electrostatic field is computed using the following equation:The space charge density ρ is automatically computed based on the plasma chemistry specified in the model using the formula:For detailed information about electrostatics see Theory for the Electrostatics Interface in the Plasma Module User’s Guide .B O U N D A R YC O ND I T I O N SUnlike RF discharges, the mechanism for sustaining the discharge is emission ofsecondary electrons from the cathode. An electron is emitted from the cathode surface with a specified probability when struck by an ion. These electrons are then accelerated by the strong electric field close to the cathode where they acquire enough energy to initiate ionization. The net result is a rapid increase in the electron density close to the cathode in a region often known as the cathode fall or Crookes dark space .k k γεσk ε()f ε()εd 0∞⎰=R εx j αj N n Γe Δεjj 1=P∑=ρt∂∂w k ()ρu ∇⋅()w k +∇j k ⋅R k +=∇–ε0εr V ∇⋅ρ=ρq Z k n k k 1=N ∑n e –⎝⎭ ⎪ ⎪⎛⎫=Electrons are lost to the wall due to random motion within a few mean free paths of the wall and gained due to secondary emission effects, resulting in the following boundary condition for the electron flux:(1)and the electron energy flux:(2)The second term on the right-hand side of Equation 1 is the gain of electrons due to secondary emission effects, γp being the secondary emission coefficient. The second term in Equation 2 is the secondary emission energy flux, εp being the mean energy of the secondary electrons. For the heavy species, ions are lost to the wall due to surface reactions and the fact that the electric field is directed towards the wall:P L A S M A C H E M I S T R YArgon is one of the simplest mechanisms to implement at low pressures. The electronically excited states can be lumped into a single species which results in a chemical mechanism consisting of only 3 species and 7 reactions:TABLE 1: TABLE OF COLLISIONS AND REACTIONS MODELED REACTION FORMULA TYPE 1e+Ar=>e+Ar Elastic 02e+Ar=>e+Ars Excitation 11.53e+Ars=>e+Ar Superelastic -11.54e+Ar=>2e+Ar+Ionization 15.85e+Ars=>2e+Ar+Ionization 4.246Ars+Ars=>e+Ar+Ar+Penning ionization -7Ars+Ar=>Ar+Ar Metastable quenching-n –Γ⋅e 12--νe th ,n e ⎝⎭⎛⎫γp Γp n ⋅()p ∑–=n –Γ⋅ε56--νe th ,n ε⎝⎭⎛⎫εp γp Γp n ⋅()p ∑–=n –j k ⋅M w R k M w c k Z μk E n ⋅()Z k μk E n ⋅()0>[]+=Δε(eV)In a CCP reactor the electron density and density of excited species is relatively low so stepwise ionization is not as important as in high density discharges. In addition to volumetric reactions, the following surface reactions are implemented:TABLE 2: TABLE OF SURFACE REACTIONSREACTION FORMULA STICKING COEFFICIENT1Ars=>Ar12Ar+=>Ar1When a metastable argon atom makes contact with the wall, it reverts to the ground state argon atom with some probability (the sticking coefficient).Results and DiscussionThe electric potential, electron density and mean electron energy are all quantities of interest. Most of the variation in each of these quantities occurs along the axial length of the column. Figure 2 plots the electron density in the column. The electron density peaks in the region between the cathode fall and positive column. This region is sometimes referred to as Faraday dark space. The electron density also decreases rapidly in the radial direction. The is caused by diffusive loss of electrons to the outerwalls of the column where they accumulate a surface charge. The build up of negative charge leads to a positive potential in the center of the column with respect to the walls.Figure 2: Surface plot of electron density inside the column.In Figure 4 the electric potential is plotted along the axial length of the column. Notice that the potential profile is markedly different from the linear drop in potential which results in the absence of the plasma. The strong electric field in the cathode region can lead to high energy ion bombardment of the cathode. Heating of the cathode surfaceoccurs which may in turn lead to thermal electron emission where additional electrons are emitted from the cathode surface.Figure 3: Plot of electron “temperature” along the axial length of the positive column.Figure 4: Plot of the electric potential along the axial length of the positive column.Figure 6: Plot of the electron temperature along the axial length of the positive column.Figure 8: Plot of the number density of excited argon atoms.Figure 9: Plot of the number density of argon ions.Reference1. M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, 2005.Application Library path: Plasma_Module/Direct_Current_Discharges/ positive_column_2dModeling InstructionsFrom the File menu, choose New.N E W1In the New window, click Model Wizard.M O D E L W I Z A R D1In the Model Wizard window, click 2D Axisymmetric.2In the Select physics tree, select Plasma>DC Discharge (dc).3Click Add.4Click Study.5In the Select study tree, select Preset Studies>Time Dependent.6Click Done.G E O M E T R Y1Rectangle 1 (r1)1On the Geometry toolbar, click Primitives and choose Rectangle.2In the Settings window for Rectangle, locate the Size and Shape section.3In the Width text field, type 0.05.4In the Height text field, type 0.4.Rectangle 2 (r2)1On the Geometry toolbar, click Primitives and choose Rectangle.2In the Settings window for Rectangle, locate the Size and Shape section.3In the Width text field, type 0.0375.4In the Height text field, type 6e-3.5Locate the Position section. In the z text field, type 0.01.Rectangle 3 (r3)1On the Geometry toolbar, click Primitives and choose Rectangle.2In the Settings window for Rectangle, locate the Size and Shape section.3In the Width text field, type 0.0375.4In the Height text field, type 6e-3.5Locate the Position section. In the z text field, type 0.384.Compose 1 (co1)1On the Geometry toolbar, click Booleans and Partitions and choose Compose. 2Select the object r1 only.3In the Settings window for Compose, locate the Compose section.4In the Set formula text field, type r1-r2-r3.Bézier Polygon 1 (b1)1On the Geometry toolbar, click Primitives and choose Bézier Polygon.2In the Settings window for Bézier Polygon, locate the Polygon Segments section. 3Find the Added segments subsection. Click Add Linear.4Find the Control points subsection. In row 1, set z to 0.02.5In row 2, set r to 0.0375.6In row 2, set z to 0.02.7Click the Build All Objects button.Mesh Control Edges 1 (mce1)1On the Geometry toolbar, click Virtual Operations and choose Mesh Control Edges. 2On the object fin, select Boundary 7 only.3On the Geometry toolbar, click Build All.D E F I N I T I O N SVariables 11On the Home toolbar, click Variables and choose Local Variables.2In the Settings window for Variables, locate the Variables section.3In the table, enter the following settings:Name Expression Unit DescriptionmueN1E25[1/(m*V*s)]1/(V·m·s)Reduced electron mobilityV0125[V]V Applied voltageWf5Work functionp00.5[torr]Pa Gas pressureExplicit 11On the Definitions toolbar, click Explicit.2In the Model Builder window, right-click Explicit 1 and choose Rename.3In the Rename Explicit dialog box, type Cathode in the New label text field.4Click OK.5In the Settings window for Explicit, locate the Input Entities section.6From the Geometric entity level list, choose Boundary.7Select Boundaries 3, 5, and 10 only.Explicit 21On the Definitions toolbar, click Explicit.2In the Model Builder window, right-click Explicit 2 and choose Rename.3In the Rename Explicit dialog box, type Anode in the New label text field.4Click OK.5In the Settings window for Explicit, locate the Input Entities section.6From the Geometric entity level list, choose Boundary.7Select Boundaries 6, 8, and 11 only.Explicit 31On the Definitions toolbar, click Explicit.2In the Model Builder window, right-click Explicit 3 and choose Rename.3In the Rename Explicit dialog box, type Walls in the New label text field.4Click OK.5In the Settings window for Explicit, locate the Input Entities section.6From the Geometric entity level list, choose Boundary.7Select Boundaries 2, 9, and 12 only.Explicit 41On the Definitions toolbar, click Explicit.2In the Model Builder window, right-click Explicit 4 and choose Rename.3In the Rename Explicit dialog box, type All Walls in the New label text field.4Click OK.5In the Settings window for Explicit, locate the Input Entities section.6From the Geometric entity level list, choose Boundary.7Select Boundaries 2, 3, 5, 6, and 8–12 only.Explicit 51On the Definitions toolbar, click Explicit.2In the Model Builder window, right-click Explicit 5 and choose Rename.3In the Rename Explicit dialog box, type Non Cathode Walls in the New label text field.4Click OK.5In the Settings window for Explicit, locate the Input Entities section.6From the Geometric entity level list, choose Boundary.7Select Boundaries 2, 6, 8, 9, 11, and 12 only.D C D I S C H A R G E(D C)Cross Section Import 11On the Physics toolbar, click Global and choose Cross Section Import.2In the Settings window for Cross Section Import, locate the Cross Section Import section.3Click Browse.4Browse to the application’s Application Library folder and double-click the file Ar_xsecs.txt.5In the Model Builder window, click DC Discharge (dc).6In the Settings window for DC Discharge, locate the Plasma Properties section.7Select the Use reduced electron transport properties check box.Plasma Model 11In the Model Builder window, under Component 1 (comp1)>DC Discharge (dc) click Plasma Model 1.2In the Settings window for Plasma Model, locate the Model Inputs section.3In the p A text field, type p0.4Locate the Electron Density and Energy section. In the μe N n text field, type mueN. You now change the way the source coefficients for electronic excitation and ionization are specified. By default, COMSOL computes rate coefficients based on the cross section data you supplied. For DC discharges, Townsend coefficients provide a more accurate description of the cathode fall region so they should be used. The Townsend coefficients are typically computed using the Boltzmann Equation, Two-Term Approximation interface.2: e+Ar=>e+Ars1In the Model Builder window, under Component 1 (comp1)>DC Discharge (dc) click 2: e+Ar=>e+Ars.2In the Settings window for Electron Impact Reaction, locate the Collision section.3From the Specify reaction using list, choose Use lookup table.4Locate the Source Coefficient Data section. From the Rate constant form list, choose Townsend coefficient.5Click Load from File.6Browse to the application’s Application Library folder and double-click the file town2.txt.4: e+Ar=>2e+Ar+1In the Model Builder window, under Component 1 (comp1)>DC Discharge (dc) click 4: e+Ar=>2e+Ar+.2In the Settings window for Electron Impact Reaction, locate the Collision section. 3From the Specify reaction using list, choose Use lookup table.4Locate the Source Coefficient Data section. From the Rate constant form list, choose Townsend coefficient.5Click Load from File.6Browse to the application’s Application Library folder and double-click the file town4.txt.Reaction 11On the Physics toolbar, click Domains and choose Reaction.2In the Settings window for Reaction, locate the Reaction Formula section.3In the Formula text field, type Ars+Ars=>e+Ar+Ar+.4Locate the Kinetics Expressions section. In the k f text field, type 3.734E8.Reaction 21On the Physics toolbar, click Domains and choose Reaction.2In the Settings window for Reaction, locate the Reaction Formula section.3In the Formula text field, type Ars+Ar=>Ar+Ar.4Locate the Kinetics Expressions section. In the k f text field, type 1807.When solving a reacting flow problem there always needs to be one species which is selected to fullfill the mass constraint. This should be taken as the species with the largest mass fraction.Species: Ar1In the Model Builder window, under Component 1 (comp1)>DC Discharge (dc) click Species: Ar.2In the Settings window for Species, locate the Species Formula section.3Select the From mass constraint check box.4Locate the General Parameters section. From the Preset species data list, choose Ar.Species: Ars1In the Model Builder window, under Component 1 (comp1)>DC Discharge (dc) click Species: Ars.2In the Settings window for Species, locate the General Parameters section.3From the Preset species data list, choose Ar.When solving a plasma problem the plasma must be initially charge neutral. COMSOL automatically computes the initial concentration of a selected ionic species such that the electroneutrality constraint is satisfied.Species: Ar+1In the Model Builder window, under Component 1 (comp1)>DC Discharge (dc) click Species: Ar+.2In the Settings window for Species, locate the Species Formula section.3Select the Initial value from electroneutrality constraint check box.4Locate the General Parameters section. From the Preset species data list, choose Ar.Wall 11On the Physics toolbar, click Boundaries and choose Wall.2In the Settings window for Wall, locate the Boundary Selection section.3From the Selection list, choose All Walls.Ground 11On the Physics toolbar, click Boundaries and choose Ground.2In the Settings window for Ground, locate the Boundary Selection section.3From the Selection list, choose Cathode.Metal Contact 11On the Physics toolbar, click Boundaries and choose Metal Contact.2In the Settings window for Metal Contact, locate the Boundary Selection section.3From the Selection list, choose Anode.4Locate the Terminal section. In the V0 text field, type V0.5Locate the Quick Circuit Settings section. From the Quick circuit type list, choose Series RC circuit.Dielectric Contact 11On the Physics toolbar, click Boundaries and choose Dielectric Contact.2In the Settings window for Dielectric Contact, locate the Boundary Selection section.3From the Selection list, choose Walls.Now you add a surface reaction which describes the neutralization of Argon ions on the electrode. Secondary emission of electrons is required to sustain the discharge, so you enter the emission coefficient and an estimate of the mean energy of the secondary electrons based on the ionization energy threshold and the work function of the surface.Surface Reaction 11On the Physics toolbar, click Boundaries and choose Surface Reaction.2In the Settings window for Surface Reaction, locate the Reaction Formula section. 3In the Formula text field, type Ar+=>Ar.4Locate the Boundary Selection section. From the Selection list, choose Cathode. Make the secondary emission coefficient 0.25 and set the mean energy of the secondary electrons to be the ionization energy (given by the expression dc.de_4) minus twice the work function of the electrode.5Locate the Secondary Emission Parameters section. In the γi text field, type 0.25.6In the εi text field, type dc.de_4-2*Wf.Surface Reaction 21On the Physics toolbar, click Boundaries and choose Surface Reaction.2In the Settings window for Surface Reaction, locate the Reaction Formula section. 3In the Formula text field, type Ar+=>Ar.4Locate the Boundary Selection section. From the Selection list, choose Non Cathode Walls.Surface Reaction 31On the Physics toolbar, click Boundaries and choose Surface Reaction.2In the Settings window for Surface Reaction, locate the Reaction Formula section. 3In the Formula text field, type Ars=>Ar.4Locate the Boundary Selection section. From the Selection list, choose All Walls.M E S H1Edge 11In the Model Builder window, under Component 1 (comp1) right-click Mesh 1 and choose More Operations>Edge.2Select Boundaries 3, 5, 6, 8, 10, 11, and 14 only.Size 11Right-click Component 1 (comp1)>Mesh 1>Edge 1 and choose Size.2In the Settings window for Size, locate the Element Size section.3From the Predefined list, choose Extremely fine.4Click the Custom button.5Locate the Element Size Parameters section. Select the Maximum element size check box.6In the associated text field, type 0.001.7Click the Zoom Extents button on the Graphics toolbar.Free Triangular 1In the Model Builder window, right-click Mesh 1 and choose Free Triangular.Size 11In the Model Builder window, under Component 1 (comp1)>Mesh 1 right-click Free Triangular 1 and choose Size.2In the Settings window for Size, locate the Element Size section.3From the Predefined list, choose Extra fine.Boundary Layer Properties1In the Model Builder window, right-click Mesh 1 and choose Boundary Layers.2In the Settings window for Boundary Layer Properties, locate the Boundary Selection section.3From the Selection list, choose All Walls.4Locate the Boundary Layer Properties section. In the Number of boundary layers text field, type 4.5Click the Build All button.S T U D Y1Step 1: Time Dependent1In the Model Builder window, expand the Study 1 node, then click Step 1: Time Dependent.2In the Settings window for Time Dependent, locate the Study Settings section.3In the Times text field, type 0.4Click Range.5In the Range dialog box, choose Number of values from the Entry method list.6In the Start text field, type -8.7In the Stop text field, type 0.8In the Number of values text field, type 21.9From the Function to apply to all values list, choose exp10.10Click Add.11On the Home toolbar, click Compute.R E S U L T SSelectionOn the Results toolbar, click Selection.Data Sets1In the Settings window for Selection, locate the Geometric Entity Selection section. 2From the Geometric entity level list, choose Boundary.3From the Selection list, choose All Walls.Cut Line 2D 1On the Results toolbar, click Cut Line 2D.Data Sets1In the Settings window for Cut Line 2D, locate the Line Data section.2In row Point 1, set z to 0.016.3In row Point 2, set r to 0.4In row Point 2, set z to 0.384.Mirror 2D 1On the Results toolbar, click More Data Sets and choose Mirror 2D.Electron Density (dc)1In the Model Builder window, under Results click Electron Density (dc).2In the Settings window for 2D Plot Group, locate the Data section.3From the Data set list, choose Mirror 2D 1.4On the Electron Density (dc) toolbar, click Plot.5Click the Zoom Extents button on the Graphics toolbar.Electron Temperature (dc)1In the Model Builder window, under Results click Electron Temperature (dc).2In the Settings window for 2D Plot Group, locate the Data section.3From the Data set list, choose Mirror 2D 1.4On the Electron Temperature (dc) toolbar, click Plot.5Click the Zoom Extents button on the Graphics toolbar.Electric Potential (dc)1In the Model Builder window, under Results click Electric Potential (dc).2In the Settings window for 2D Plot Group, locate the Data section.3From the Data set list, choose Mirror 2D 1.4On the Electric Potential (dc) toolbar, click Plot.5Click the Zoom Extents button on the Graphics toolbar.1D Plot Group 41On the Home toolbar, click Add Plot Group and choose 1D Plot Group.2In the Settings window for 1D Plot Group, locate the Data section.3From the Time selection list, choose Last.4Locate the Plot Settings section. Select the x-axis label check box.5In the associated text field, type Distance (x).6Select the y-axis label check box.7In the associated text field, type Electric Potential (V).8Locate the Data section. From the Data set list, choose Cut Line 2D 1.Line Graph 1On the 1D Plot Group 4 toolbar, click Line Graph.1D Plot Group 41In the Settings window for Line Graph, click Replace Expression in the upper-right corner of the y-axis data section. From the menu, choose Model>Component 1>DC Discharge (Electrostatics)>Electric>V - Electric potential.2In the Model Builder window, click 1D Plot Group 4.3On the 1D Plot Group 4 toolbar, click Plot.4Click the Zoom Extents button on the Graphics toolbar.1D Plot Group 51On the Home toolbar, click Add Plot Group and choose 1D Plot Group.2In the Settings window for 1D Plot Group, locate the Data section.3From the Time selection list, choose Last.4Locate the Plot Settings section. Select the x-axis label check box.5In the associated text field, type Distance (x).6Select the y-axis label check box.7In the associated text field, type Electron Temperature (V).8Locate the Data section. From the Data set list, choose Cut Line 2D 1.Line Graph 1On the 1D Plot Group 5 toolbar, click Line Graph.1D Plot Group 51In the Settings window for Line Graph, click Replace Expression in the upper-right corner of the y-axis data section. From the menu, choose Model>Component 1>DC Discharge (Drift Diffusion)>Electron energy density>dc.Te - Electron temperature.2On the 1D Plot Group 5 toolbar, click Plot.3Click the Zoom Extents button on the Graphics toolbar.1D Plot Group 61On the Home toolbar, click Add Plot Group and choose 1D Plot Group.2In the Settings window for 1D Plot Group, locate the Data section.3From the Time selection list, choose Last.4Locate the Plot Settings section. Select the x-axis label check box.5In the associated text field, type Distance (x).6Select the y-axis label check box.7In the associated text field, type Electron Density (1/m^3).8Locate the Data section. From the Data set list, choose Cut Line 2D 1.Line Graph 1On the 1D Plot Group 6 toolbar, click Line Graph.1D Plot Group 61In the Settings window for Line Graph, click Replace Expression in the upper-right corner of the y-axis data section. From the menu, choose Model>Component 1>DC Discharge (Drift Diffusion)>Electron density>dc.ne - Electron density.2On the 1D Plot Group 6 toolbar, click Plot.3Click the Zoom Extents button on the Graphics toolbar.1D Plot Group 71On the Home toolbar, click Add Plot Group and choose 1D Plot Group.2In the Settings window for 1D Plot Group, locate the Data section.3From the Time selection list, choose Last.4Locate the Plot Settings section. Select the x-axis label check box.5In the associated text field, type Distance (x).6Select the y-axis label check box.7In the associated text field, type Excited Argon Density (1/m^3).8Locate the Data section. From the Data set list, choose Cut Line 2D 1.Line Graph 1On the 1D Plot Group 7 toolbar, click Line Graph.1D Plot Group 71In the Settings window for Line Graph, click Replace Expression in the upper-right corner of the y-axis data section. From the menu, choose Model>Component 1>DC Discharge (Heavy Species Transport)>Number densities>dc.n_wArs - Number density.2On the 1D Plot Group 7 toolbar, click Plot.3Click the Zoom Extents button on the Graphics toolbar.1D Plot Group 81On the Home toolbar, click Add Plot Group and choose 1D Plot Group.2In the Settings window for 1D Plot Group, locate the Data section.3From the Time selection list, choose Last.4Locate the Plot Settings section. Select the x-axis label check box.5In the associated text field, type Distance (x).6Select the y-axis label check box.7In the associated text field, type Argon +1 Density (1/m^3).8Locate the Data section. From the Data set list, choose Cut Line 2D 1.Line Graph 1On the 1D Plot Group 8 toolbar, click Line Graph.1D Plot Group 81In the Settings window for Line Graph, click Replace Expression in the upper-right corner of the y-axis data section. From the menu, choose Model>Component 1>DC Discharge (Heavy Species Transport)>Number densities>dc.n_wAr_1p - Number density.。
comsol4.3中文使用手册
应用领域 ..................................................................................................................................................................- 9 RF 模块........................................................................................................................................................................- 10 -
全国统一客户服务热线:400 888 5100 网址: 邮箱:info@ -1-
中仿科技公司 CnTech Co.,Ltd
精确描述真实世界
COMSOL 成立之初,一切的源动力就在于强调多物理仿真的重要性。只有从多物理的角度看待问题,仿真技术 才能保证数值结果的准确性,也就是与真实世界的一致性。工程师根据自己的经验,认为一些物理过程或许可以忽 略,或许另外的一些物理过程必须同时考虑,他们可以用多物理仿真的思想验证它,并且获得准确的结果。这就是 对真实世界的精确描述。
力学与传热分析................................................................................................................................................................................ - 16 传热模块.....................................................................................................................................................................- 16 -
Comsol有限元软件在大型水下目标声学仿真上的应用
第37卷第8期 计算机应用与软件Vol 37No.82020年8月 ComputerApplicationsandSoftwareAug.2020Comsol有限元软件在大型水下目标声学仿真上的应用周 烨 温 玮(海军航空大学 山东烟台264000)收稿日期:2019-06-24。
山东省重点研发计划项目(2016CYJS02A01)。
周烨,硕士生,主研领域:水声工程。
温玮,副教授。
摘 要 针对现有有限元分析软件在大型水下目标多物理场耦合问题处理上复杂度高、操作不便等问题,提出基于Comsol有限元仿真软件对于大型三维目标的仿真应用方案。
推导其特有的间断伽辽金算法在Lax Friedrichs通量下针对波动方程的空间离散方程,并结合非定长时间显式4阶龙格 库塔法计算水声目标仿真。
与解析解对比验证了Comsol求解水声目标在处理多物理场耦合问题的有效性。
仿真三维潜艇模型的水下散射声场。
通过和传统有限元方法对比,验证了该方法在计算大型目标声散射时的高效性,为Comsol在水声领域的应用提供了有效借鉴。
关键词 Comsol 间断伽辽金 Lax Friedrichs 声散射中图分类号 TP31 TB56 文献标志码 A DOI:10.3969/j.issn.1000 386x.2020.08.014APPLICATIONOFCOMSOLFINITEELEMENTSOFTWAREINACOUSTICSIMULATIONOFUNDERWATERTARGETZhouYe WenWei(NavalAirUniversity,Yantai264000,Shandong,China)Abstract Aimingatthehighcomplexityandinconvenientoperationoftheexistingfiniteelementanalysissoftwareindealingwiththemulti physicalfieldcouplingoflargeunderwaterobjects,weproposeasimulationapplicationschemeoflarge3DobjectsbasedonComsolfiniteelementsimulationsoftware.ThediscretespatialequationofthewaveequationunderLax Friedrichsfluxwasderived,andthe4 orderrunge kuttamethodwasusedtocalculatetheunderwateracoustictargetsimulation.ThecomparisonwiththeanalyticalsolutionverifiedtheeffectivenessofComsolinsolvingthemultiphysicscouplingproblemwhensolvingtheunderwateracoustictarget.Theunderwaterscatteringacousticfieldof3Dsubmarinemodelwassimulated.Theeffectivenessofthismethodincalculatingacousticscatteringoflargetargetsisverifiedbycomparisonwiththefinite differencemethod.ItprovidesaneffectivereferencefortheapplicationofComsolinthefieldofunderwateracoustic.Keywords Comsol Discontinuousgalerkin Lax Friedrichs Acousticscattering0 引 言在实际应用中,尤其是水下目标识别探测中,越来越多的场合涉及数值计算,目前有很多成熟的有限元计算软件,把复杂的仿真过程以很简洁的过程实现[1]。
COMSOL Multiphysics安装指南说明书
COMSOL Multiphysics安装指南C O M S O L M u l t i p h y s i c s安装指南© 1998–2021 COMSOL 版权所有受列于/patents的专利保护;您也可以参见 COMSOL Desktop“文件”菜单中的“帮助 >关于 COMSOL Multiphysics”,获取可能适用的美国专利的详细列表。
专利申请中。
本文档和本文所述的程序根据《COMSOL 软件许可协议》(/comsol-license-agreement)提供,且仅能按照许可协议的条款进行使用或复制。
COMSOL、COMSOL 徽标、COMSOL Multiphysics、COMSOL Desktop、COMSOL Compiler、COMSOL Server 和LiveLink 为COMSOL AB 的注册商标或商标。
所有其他商标均为其各自所有者的财产,COMSOL AB 及其子公司和产品不与上述商标所有者相关联,亦不由其担保、赞助或支持。
相关商标所有者的列表请参见/trademarks。
版本:COMSOL 6.0联系信息请访问“联系我们”页面/contact,以提交一般查询或搜索我们的联系地址和电话号码。
您也可以访问全球销售办事处页面/contact/offices,获取更多地址和联系信息。
如需联系技术支持,请访问 COMSOL Access 页面/support/case,创建并提交在线请求表单。
其他常用链接包括:•技术支持中心:/support•产品下载:/product-download•产品更新:/support/updates•COMSOL 博客:/blogs•用户论坛:/forum•活动:/events•COMSOL 视频中心:/videos•技术支持知识库:/support/knowledgebase文档编号:CM010002目录前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9安装介质选项 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9系统要求 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10先前安装版本 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11软件许可协议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11许可证类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11许可证管理工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14COMSOL Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15在 Windows 上安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16通过 Internet 安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16下载并安装 COMSOL 软件 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19通过 USB 闪存驱动器安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20运行 COMSOL 安装程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20移除(卸载)COMSOL 安装程序 . . . . . . . . . . . . . . . . . . . . . 43安装软件更新 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44自动安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45产品更新和库更新 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46LiveLink™for Excel®安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47LiveLink™ for AutoCAD®安装. . . . . . . . . . . . . . . . . . . . . . . 47LiveLink™ for Inventor®安装 . . . . . . . . . . . . . . . . . . . . . . . . 48LiveLink™ for PTC® Creo® Parametric™安装 . . . . . . . . . 49LiveLink™for PTC® Pro/ENGINEER®:更改安装路径 . . 50| 3LiveLink™for Revit®安装 . . . . . . . . . . . . . . . . . . . . . . . . . . .51 LiveLink™for Solid Edge®安装 . . . . . . . . . . . . . . . . . . . . . .52 LiveLink™for SOLIDWORKS®安装 . . . . . . . . . . . . . . . . . . .53集群安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54在 Windows 上安装许可证管理器 . . . . . . . . . . . . . . . . . . . .57什么是 FlexNet®许可证管理器? . . . . . . . . . . . . . . . . . . . . . .57 FlexNet®许可证管理器的系统要求 . . . . . . . . . . . . . . . . . . . . .58 FlexNet®许可证管理器软件组件 . . . . . . . . . . . . . . . . . . . . . . .58 FlexNet®许可证管理器文档 . . . . . . . . . . . . . . . . . . . . . . . . . . .59许可证文件和许可证特征 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59安装许可证管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67启动许可证管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69确认许可证管理器正在运行 . . . . . . . . . . . . . . . . . . . . . . . . . . .70启动 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . . . . . . . .71更改许可证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71在 IPV6 网络中使用 COMSOL . . . . . . . . . . . . . . . . . . . . . . . . .72许可证错误故障排除 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72在 Windows 上运行 COMSOL Multiphysics . . . . . . . . . . . .73“开始”菜单中的 COMSOL Multiphysics 文件夹 . . . . . . . .73启动使用课堂许可证套装的 COMSOL Multiphysics . . . . . . .74手动创建桌面快捷方式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75在客户端/服务器模式下运行 COMSOL Multiphysics . . . . . .76在批处理模式下运行 COMSOL Multiphysics . . . . . . . . . . . . .78多核设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .794 |在集群上运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . 80在云上运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . 82运行 COMSOL Multiphysics with MATLAB . . . . . . . . . . . . . 82运行 COMSOL Multiphysics with Simulink . . . . . . . . . . . . . . 83在 macOS 上安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84通过 Internet 安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84下载并安装 COMSOL 软件 . . . . . . . . . . . . . . . . . . . . . . . . . . . 87通过 USB 闪存驱动器安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . 88运行 COMSOL 安装程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89自动安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89移除(卸载)COMSOL 安装程序 . . . . . . . . . . . . . . . . . . . . . 89产品更新和案例库更新 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90更改 MATLAB®安装路径 . . . . . . . . . . . . . . . . . . . . . . . . . . . 90在 macOS 上安装许可证管理器 . . . . . . . . . . . . . . . . . . . . . 91 FlexNet 许可证管理器软件组件 . . . . . . . . . . . . . . . . . . . . . . . 91FlexNet 许可证管理器文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91许可证文件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92安装许可证管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92启动许可证管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94确认许可证管理器正在运行 . . . . . . . . . . . . . . . . . . . . . . . . . . 95启动 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . . . . . . . 95更改许可证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95在 IPV6 网络中使用 COMSOL . . . . . . . . . . . . . . . . . . . . . . . . 96许可证错误故障排除 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96| 5在 macOS 上运行 COMSOL Multiphysics . . . . . . . . . . . . . .97 COMSOL 应用程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97从终端窗口运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . .98运行课堂许可证套装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98在客户端/服务器模式下运行 COMSOL Multiphysics . . . . . .98在批处理模式下运行 COMSOL Multiphysics . . . . . . . . . . . .100多核设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101在集群上运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . . .101在云上运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . .102在 Linux 上安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103通过 Internet 安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103下载并安装 COMSOL 软件 . . . . . . . . . . . . . . . . . . . . . . . . . .105从 DVD 安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106通过 USB 闪存驱动器安装 . . . . . . . . . . . . . . . . . . . . . . . . . . .107运行 COMSOL 安装程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . .107用于查看文档的 Web 浏览器 . . . . . . . . . . . . . . . . . . . . . . . . .108自动安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109移除(卸载)COMSOL 安装程序 . . . . . . . . . . . . . . . . . . . . .109产品更新和案例库更新 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109更改 MATLAB®安装路径 . . . . . . . . . . . . . . . . . . . . . . . . . . .110集群安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110在 Linux 上安装许可证管理器 . . . . . . . . . . . . . . . . . . . . .112 FlexNet 许可证管理器软件组件 . . . . . . . . . . . . . . . . . . . . . . .112 FlexNet 许可证管理器文档 . . . . . . . . . . . . . . . . . . . . . . . . . . .112 6 |许可证文件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113安装许可证管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113启动许可证管理器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115确认许可证管理器正在运行 . . . . . . . . . . . . . . . . . . . . . . . . . 116启动 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . . . . . . 116更改许可证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117在 IPV6 网络中使用 COMSOL . . . . . . . . . . . . . . . . . . . . . . . 117许可证错误故障排除 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118在 Linux 上运行 COMSOL Multiphysics . . . . . . . . . . . . . 119运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . . . . . . 119多核设置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119在批处理模式下运行 COMSOL Multiphysics . . . . . . . . . . . 120在客户端/服务器模式下运行 COMSOL Multiphysics . . . . . 121运行课堂许可证套装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122在集群上运行 COMSOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122在云上运行 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . 124运行 COMSOL Multiphysics with MATLAB . . . . . . . . . . . . 124运行 COMSOL Multiphysics with Simulink . . . . . . . . . . . . . 125 COMSOL 软件安全. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 COMSOL Multiphysics 客户端/服务器安全 . . . . . . . . . . . . . 126App 和物理场开发器安全 . . . . . . . . . . . . . . . . . . . . . . . . . . . 128方法安全性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128COMSOL Server 安全 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129许可证错误故障排除 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130| 78 |前言欢迎您阅读《COMSOL Multiphysics 安装指南》,本书提供有关安装 COMSOL Multiphysics®及其附加产品的操作说明。
声学超结构在车内低频轰鸣声控制中的应用
2021年第4期【摘要】针对某款轿车在30km/h 匀速行驶过程中产生明显的低频轰鸣声问题,通过测试和分析,确定了车内35Hz 噪声峰值过高是引发该问题的直接原因,并判断出该频率峰值与尾门薄壁件振动密切相关。
基于局域共振原理,设计了具有轻量化、小型化特征的声学超结构,并完成了谐振单元构型的选择与带隙设计、整车布置规划及谐振单元排布与基体框架设计。
实车测试结果表明:贴附声学超结构后,前排和后排35Hz 车内噪声声压级分别降低了4.23dB(A)、5.77dB(A)。
主题词:声学超结构结构声控制局域共振车内低频轰鸣中图分类号:U461.1文献标识码:ADOI:10.19620/ki.1000-3703.20200952The Application of Acoustic Superstructure on Control of LowFrequency Roaring in VehicleTang Jiyou 1,Ding Weiping 1,Wu Yudong 1,Huang Haibo 1,Luo Deyang 2(1.Southwest Jiao Tong University,Chengdu 610031;2.SAIC GM Wuling Automobile Co.,Ltd.,Liuzhou 545000)【Abstract 】Obvious low-frequency roaring sound is produced by a car model during the constant speed of 30km/h.By testing and analysis,it is determined that the high peak of 35Hz noise inside the car is the direct cause of this problem,and it is judged that the peak frequency is closely related to the vibration of thin-wall parts of the tail door.Furthermore,based on the principle of local resonance,a lightweight and miniaturized acoustic superstructure is developed,which involves the selection of its resonant unit configuration,band-gap design,vehicle layout planning,resonant unitarrangement,matrix frame size design.The real vehicle test shows that after attaching the acoustic superstructure,the noise of 35Hz in the car is reduced by 4.23dB(A)and 5.77dB(A)respectively in the front and rear rows.Key words:Acoustic superstructure,Structural sound control,Local resonance,Low frequencyRoaring in vehicle唐吉有1丁渭平1吴昱东1黄海波1罗德洋2(1.西南交通大学,成都610031;2.上汽通用五菱汽车股份有限公司,柳州545000)*基金项目:国家自然科学基金项目(51775451)。
comsol错误提示及解决方法(可编辑修改word版)
ERROR MESSAGE
EXPLANATION
6008
Circular variable dependency detected
A variable has been defined in terms of itself, possibly in a circular chain of expression variables. Make sure that variable definitions are sound. Be cautious with equation variables in equations.
Incorrect geometry for mapped mesh.
2190
Invalid radius or distance
Incorrect input parameters to fillet/chamfer.
2197
Operation resulted in empty geometry object
6063
Invalid degree of freedom name
The software does not recognize the name of a degree of freedom. Check the names of dependent variables that you have entered for the model. See also Error 7192.
2140
Singular extrusions not supported
Error in input parameters.
2141
Singular revolutions not supported
comsol多相流仿真流程
comsol多相流仿真流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!COMSOL 多相流仿真流程一、问题定义与模型建立阶段。
comsol application
Optical scattering and electric field enhancement from core–shell plasmonic nanostructuresA. Mejdoubi, M. Malki, M. Essone Mezeme, Z. Sekkat, M. Bousmina et al.Citation: J. Appl. Phys. 110, 103105 (2011); doi: 10.1063/1.3660774View online: /10.1063/1.3660774View Table of Contents: /resource/1/JAPIAU/v110/i10Published by the American Institute of Physics.Related ArticlesSealing SU-8 microfluidic channels using PDMSBiomicrofluidics 5, 046503 (2011)Waveguide superconducting single-photon detectors for integrated quantum photonic circuitsAppl. Phys. Lett. 99, 181110 (2011)GaN directional couplers for integrated quantum photonicsAppl. Phys. Lett. 99, 161119 (2011)Waveguide Fabry-Pérot microcavity arraysAppl. Phys. Lett. 99, 053119 (2011)1×12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane Appl. Phys. Lett. 99, 051104 (2011)Additional information on J. Appl. Phys.Journal Homepage: /Journal Information: /about/about_the_journalTop downloads: /features/most_downloadedInformation for Authors: /authorsDownloaded 29 Dec 2011 to 162.105.41.73. Redistribution subject to AIP license or copyright; see /about/rights_and_permissionsOptical scattering and electric field enhancement from core–shell plasmonic nanostructuresA.Mejdoubi,1,2M.Malki,1,2,3M.Essone Mezeme,4Z.Sekkat,2,5M.Bousmina,6and C.Brosseau4,7,a)1Institute for Nanomaterials and Nanotechnology,Avenue de l’Arme´e Royale,Rabat,Morocco2Moroccan Foundation for Advanced Science and Innovation and Research(MAScIR),Rabat,Morocco3LMPHE,Faculte´des Sciences,Universite´Mohammed V Agdal,Rabat,Morocco4Universite´Europe´enne de Bretagne,Universite´de Brest,Lab-STICC,CS93837,6Avenue Le Gorgeu,Brest29238,France5Optics and Photonics Centre,Avenue de l’Arme´e Royale,Rabat,Morocco6Hassan II Academy of Science and Technology,Km4,Mohamed VI Avenue,Rabat10220,Morocco7De´partement de Physique,Universite´de Bretagne Occidentale,Brest,France(Received10June2011;accepted13October2011;published online23November2011)Three-dimensionalfinite-difference time-domain simulations are used to study the near-and far-field properties of plasmonic core–shell(CS)nanostructures of reduced symmetry.Special attention is given to silica core and gold shell nanoparticles by changing their geometry.For the simulated range of wavelengths(300–2100nm)our calculations of the scattering and absorption efficiencies imply strong polarization sensitivity and are highly dependent on the size and geometry of the CS nanostructures.Strong enhancements of the exciting electricfield associated with the excitations of nanoparticle plasmons are observed.The wavelength dependence of the scattering spectra and concentration of electromagneticfield in subwavelength volumes have a potential for biosensing and bioimaging.V C2011American Institute of Physics.[doi:10.1063/1.3660774]I.INTRODUCTIONPlasmonic excitation and the associated subwavelength light–matter interaction has opened new and fascinating ave-nues for research that originates from the observations and expectations of several unique properties of the interactions between waves and conduction electrons confined near metal/dielectric interfaces,including surface-enhanced Raman scattering,and mode localization(for reviews,see, e.g.,Refs.1–4).Transition to the nanoscale has lead to increased interest in many new problems including the local-ized surface plasmon resonances and increased localfield enhancement.3,4Whereas the properties can be understood partly as the result of the behaviors of the constituent materi-als under the electricfield excitation,in many cases the topo-logical features of the interfaces have been shown to play a critical role.For example,the superlens effect,in a self-similar chain of nanoparticles can be used to prepare a subwavelength scale energy localization in the narrow gap separating two neighboring nanoparticles,has been a subject of recent study,5,6invisibility dips occur in the scattering spectrum of a pair of metallic nanoparticles,which originates from a destructive interference between each surface plas-mon mode,7and metal nanoparticles,when placed on top of a high-index substrate,can efficiently couple light into the substrate.8The impact of localized multipole plasmons on the optical absorption and the energy loss of metallodielec-tric crystals were also addressed in Ref.9.As a result,the design of collective electromagnetic coupling and optimized interface engineering become essential strategies in guiding exploration of plasmonic nanostructures.Much of the recent searching for engineering nanoscale optical antennas for THz,near-field tissue imaging applica-tions has concentrated on plasmonic core–shell(CS)nano-structures.10A quintessential feature of nanoantenna structures is its ability to couple the energy of an electromag-netic excitation to a confined region of subwavelength size.11,12The high sensitivity of these nanostructures to the dielectric environment andfield polarization in the visible range are expected to be useful for biosensing applications.13 More specifically,the Au shell layer provides a relatively chemically inert surface layer that can be functionalized to enhance solubility in various media and promote biocompat-ibility while preserving the properties of the core phase.For tissue imaging applications,nanoantennas positioned in spe-cific locations,e.g.,near a tumor,can be used for directional energy guiding.Despite substantial development to investi-gate the shape anisotropy for topologically nontrivial struc-tures,many important questions are not yet answered. Of particular interest are the numerical simulations studies, e.g.,finite-difference time-domain(FDTD),discrete dipole approximation(DDA),and boundary element method (BEM),which provided important insights into the mecha-nisms that control the transport properties.14The literature on this subject is vast.The reader may wish to consult Ref.3 for a critical comparison of the computational efficiency and accuracy of the FDTD,DDA,and BEM approaches to simu-late absorption and scattering spectra.It is fair to say that the subject is still far from being ex-hausted and new effects continue to be uncovered.The pres-ent study is another contribution to this effort.We focus on aa)Electronic mail:brosseau@univ-brest.fr.0021-8979/2011/110(10)/103105/6/$30.00V C2011American Institute of Physics110,103105-1JOURNAL OF APPLIED PHYSICS110,103105(2011)simulation of the optical response of resonant plasmonic nanostructures.One route to investigating the electromag-netic interaction with nanostructures is through the FDTD method,which is ideally suited for this endeavor.Two recent developments inform the present work.First,in a recent pa-per,15the authors characterized the frequency dependence of the effective magnetic permeability and permittivity of reduced-symmetry CS nanostructures composed of a mag-netic core and a plasmonic shell with well-controlled dimen-sions for different geometries and polarizations.Changing the internal geometry of the nanostructure not only shifts the resonance frequencies,but can also strongly modify the rela-tive magnitudes of the electricfield enhancement,independ-ently of nanoparticle shape.Plasmonic CS nanostructures turn out to be particularly useful for biological applications, e.g.,see Ref.16.Second,advances in computing power and techniques now allow us to make full electromagnetic simu-lations of arbitrarily shaped nanoparticles allowing direct comparison with experiment.17The goal of the calculations was to investigate theeffects of geometric parameters of the CS nanostructures and excitation polarized parallel and perpendicular to the antenna axis on the scattering and absorption efficiencies.First,we demonstrate manipulation of the plasmonic resonance(PLR) as a function of the nanostructure’s size and shape,as well as the polarization of the incident electromagneticfield,which can be designed to lie within the biological window of high transmission in blood and tissue between700and1100nm. Second,the characteristics of the PLR and the polarization influence on the resonance depending of the geometry of the shell provide additional important information about the electricfield enhancement(EFE).Third,we have generated maps of EFE associated with resonances.We found nanolo-calized THzfields corresponding to large EFE up to three orders of magnitude higher in amplitude than the excitation opticalfield.These results address both fundamental and applied issues that can be promising in the perspective of developing optical nanoantennas for biosensing applications. II.METHODOLOGYTo motivate our approach,we begin by discussing the computational method performed in this study.First-principles calculations presented in this work were performed using the FDTD method implemented in the Lumerical FDTD Solutions simulation package.18The essential features of our model can be summarized as follows.We use a cubic cell with1200Â1200Â1200nm3dimensions for these sim-ulations.The system was discretized into uniform cubic Yee cells with a side equal to2nm,and a time step D t¼10À18s, which satisfies the Courant-Friedrich-Lewy stability crite-rion.19To absorb the outgoing radiation,the computational domain was surrounded by a region of many cells of per-fectly matched layers.See,e.g.,Ref.19for details of the cal-culational method,its numerical stability,and its accuracy assessment.The core–shell scatterer is illuminated with an incident plane wave,of amplitude E0,on the XZ plane. We use a Cartesian coordinate system(Fig.1)as a reference system using a total-field–scattered-field source(TFSF)to simulate a broadband(300–2100nm)plane wave pulse, which is launched in theÀY direction.20TFSF sources are used to separate the computation region into two distinct regions,i.e.,one that contains the totalfield(the sum of the incidentfield and the scatteredfield),whereas the second region contains only the scatteredfield.An expÀi x tðÞtime convention is assumed.As input,we used the intrinsic(relative)permittivity of the core(Si),e3,and the shell layer(Au),e2,respectively. We shall assume throughout that the homogeneous embed-ding medium(phase1)has dielectric properties that can be assimilated to water,i.e.,constant refractive index n¼1.33 in the THz range of frequencies.Note that the three-dimensional FDTD calculations are performed with the frequency-dependent empirical permittivity data tabulated in Palik21for Si and we used the values from the Johnson and Christy21tabulated data for the frequency-dependent permit-tivity of Au(see Ref.21for a review).As nanostructures decrease in size,the chargefluctuations are expected to become inherently quantum mechanical.However,because the thickness of the metallic shell is much larger than the Fermi wavelengthðe)k F%0:5nmÞ;quantum mechanical effects can be ignored and the physics described by our approach is entirely classical.It is informative to note that the mean free path of electrons in bulk Au%38nm)e: We have verified thatfinite-size correction has little effect on the analysis,and thus will be inconsequential for this range of frequencies.22,23To benchmark the accuracy of our method,we begin by considering the idealized case of a CS spherical structure with a Au nanoshell(Fig.1(a)).All computations below are done for the physical settings,core radius R and shell thick-ness e,which are achievable in the lab.Observe also that the values of e are smaller than the skin depth,which is%15nm in the range of k considered.An examination of the static (dipolar)polarizability a for a coated sphere,21a¼4p R32e2þe3ðÞe2Àe1ðÞþf e3Àe2ðÞ2e2þe1ðÞ2e1þe2ðÞe3þ2e2ðÞþ2f e2Àe1ðÞe3Àe2ðÞ; FIG.1.(Color online)Cross-sectional3D views of the CS nanostructures considered:(a)isotropic case;(b)and(c)refer to representative axially sym-metric CS nanostructures situations,where the shell of the CS nanostructures involves sharp edges and tips.In all simulations we concentrated on the visi-ble and near-infrared regions and assumed that the core and the shell layer are made of Si and Au,respectively.The nanostructures are supposed to be immersed in an aqueous solution.The origin is taken at the center of the spherical core.with f¼1Àe=RðÞ3being the fraction of the total particle volume occupied by the core phase,is of interest and leads to the corresponding cross sections for scattering,C sca¼8p33ka j j2/R6;and absorption,C abs¼2pffiffiffiffie1pkIm aðÞ/R3;where k denotes the free space light wavelength.The conver-gence of the FDTD code was checked by comparing the cal-culated real and imaginary components of the effective permittivity spectra withfinite-element(FE)calculations using the COMSOL MULTIPHYSICS code package24under the quasistatic approximation(Fig.2).In this long-wavelength limit,i.e.,R(k,the composite material can be replaced by an effective homogeneous medium e,such thatelectromagnetic modes propagate with angular frequency x given as a function of k by x¼2p cffiffie p=k,where c denotes the speed of light.The relative differences(not shown)are only%4%.To put our results in perspective,we have plotted our FDTD values of PLR wavelength over the whole R range with the values of the Fro¨hlich modes which are reached at the points where the denominator of a vanishes.21,25,26We observe,generally,a good agreement.As shown in Fig.3, the R-dependent PLR wavelength is a linear law(Fig.3), reflecting the expected trend previously considered by others.21,27–29The behavior is entirely consistent with the expectations based on FE calculations.These differences are reasonable because we must consider several percent of errors for the FDTD results.19III.RESULTS AND DISCUSSIONThe scattering C sca/G a,absorption C abs/G a,and extinc-tion(C scaþC abs)/G a efficiency spectra are shown in Fig.4 for different sizes of particles and shells,where G a¼p R2 FIG.2.(Color online)Effective dielectric spectra of the CS nanostructureshown in Fig.1(a)with Au shell thickness e¼5nm and Si spheres with radiiranging from15nm to40nm.The numbers in the inset indicate the radii Rof the particles considered.(a)Real part of the permittivity as a function ofwavelength.(b)Same as in(a)for the imaginary part of the permittivity.The Au and Si material dispersion parameters are taken from Ref.21.FIG. 3.(Color online)Comparison of the resonant mode wavelengthbetween the FDTD(squares),FE(circles),and analytic calculations(trian-gles)as extracted from the vanishing of the denominator of a.Here,e¼5nm.In the inset,we have plotted the differences(residuals)between the FDTDand FE simulations(squares)and the differences between the analytic calcula-tions and the FE simulations(triangles)vs R.FIG.4.(Color online)Scattering,absorption,and extinction efficiency forthe CS nanostructure(a)shown in Fig.1,where G a denotes the particlecross-sectional area projected onto a plane perpendicular to the incidentwave.To ease comparison we use the same color code for the spectra.Thegeometric parameters are:(a)R¼43.4nm and e¼13.4nm,(b)R¼45nmand e¼5nm,(c)R¼55nm and e¼10nm,(d)R¼60nm and e¼5nm,(e)R¼75nm and e¼10nm,and(f)R¼100nm and e¼10nm.The CS parti-cle was illuminated with polarization in the XZ plane.The Au and Si mate-rial dispersion parameters are taken from Ref.21.denotes the particle cross-section area projected onto a plane perpendicular to the incident wave.In the simulations shown in Fig.4,the spectra exhibit two pronounced broad resonan-ces(a lower wavelength resonance with highly asymmetric line shape and a more symmetric higher wavelength reso-nance.PLRs are identified by the maxima in the extinction cross section(Fig.4).Such bimodal resonant structure has been predicted to appear in the far-field optical properties of nanoshells.26,30It has also been recently pointed out31that many PLRs occur in CS ellipsoidal nanorods.More specifi-cally,the plasmon hybridization picture was proposed to describe the optical properties of nanoshells.30The basic idea is that the separate solid sphere and spherical cavity PLRs are coupled,or hybridized,producing a lower wave-length antisymmetric resonance and a higher symmetric res-onance.30A comparative analysis indicates that the peak wavelength and spectral bandwidth of the resonances dis-played in Fig.4can be tuned from the visible to the near-infrared regions by varying the CS aspect ratio e=R.14The analysis of the relative change in intensity across the PLR peak manifold cannot be understood as relating simply to the ratio e=R,1,25i.e.,the asymmetry of these modes can be attributed to phase retardation because of thefinite size of the nanostructure.30A detailed observation shows that the scattering efficiency(/kÀ4)is much smaller(larger)in magnitude compared to the absorption efficiency(/kÀ1)for the higher wavelength(lower wavelength)PLR.This is con-sistent with what has been found in previous boundary ele-ment method,FDTD,and discrete-dipole approximationcalculations.3,14As we are interested in the interplay between the effects of shape anisotropy,polarization of the excitation,and scat-tering efficiencies,the next step is to consider the lower sym-metry CS nanoantennnas with protruding tips shown in Figs. 1(b)and1(c).The cross-sectional areas are defined as G b¼ðR2Àr2Þðtan aÀaÞþp R2and G c¼p l2/8þlpÀ[b ÀpÀ0.5Âsin2b]R2,with b¼a sin(l/2R),respectively,for Figs.1(b)and1(c)nanostructures.The results are,respec-tively,shown in Figs.5and6,where the scattering,absorp-tion,and extinction efficiency spectra are plotted against wavelength for different polarization angles with respect to the Z axis.The asymmetry of the scattering and extinction peaks is noticeable.The scattering and extinction efficiencies generally decrease with larger polarization angle,providing a means for producing differently colored labels in,e.g.,an immunocytology assay.Each spectrum is,of course,unique unto itself but there are overall similarities with those dis-played in Fig.4,which one would like to explain.The lower wavelength resonant mode at wavelength%400nm is very comparable to that of the spherical nanoparticle and is insen-sitive to polarization as one might expect.The higher-wavelength resonant mode(hereinafter denoted sPLR)is very similar to the PLR of the isotropic case Fig.4(b)(which considers very similar values of R and e).Interestingly,we find that its characteristics are very sensitive to the rotation of the electricfield in the XZ plane.An additional resonance (denoted aPLR)appears at wavelength%600nm for nano-structure Fig.4(b)and at wavelength%800for nanostructure Fig.4(c).As can be appreciated in Figs.5and6,changes in the magnitude of the aPLR when the electricfield is rotated correlate to changes in the magnitude of the sPLR.Again this suggests that the aPLR is caused by the intra-particle plasmonic coupling of the low-symmetry tip andthe FIG.5.(Color online)(a)Absorption efficiency C abs/G b,where G b denotes the particle cross-sectional area projected onto a plane perpendicular to the incident wave.The nanostructure considered is shown in Fig.1(b)with geo-metrical parameters set to:R¼50nm,e¼5nm,d¼80nm,r0¼10nm,and 2a¼p=3.The numbers in the plots correspond to the polarization angles of the incident electricfield with respect to the Z axis.(b)Same as in(a)for the scattering efficiency C sca/G b spectrum.(c)Same as in(a)for the extinc-tion efficiency C ext/G b spectrum.The Au and Si material dispersion parame-ters are taken from Ref.21.FIG.6.(Color online)Same as in Fig.5for the nanostructure considered shown in Fig.1(c)with geometrical parameters set to:R¼45nm,e¼5nm, p¼54nm,and‘¼26nm.spherical part of the nanoshell resonance modes.32That the differences in the absorption,scattering,and therefore extinction efficiencies between spherical nanoshells (Fig.4)and CS nanostructures of reduced symmetry (Figs.5and 6)may be rationalized,in terms of the plasmon hybridization mechanism,remains a conjecture.On the experimental side,we stress that recent work by Zia et al .33further developed this conjecture to demonstrate that the PLR of Au nanostar-shaped particles results from the hybridization of plasmons associated with the core and the individual tips of the parti-cle.This nontrivial feature of nanostar structure shows itself through specific angular asymmetries in scattering processes.33The disappearance of the scattering and extinction peaks for the polarization perpendicular (h ¼90 )to the symmetry axis of the CS nanostructure is consistent with this interpretation.This comparative analysis indicates that the aPLR is sensitive to the details of the shell tip geometry of the nanoantenna,i.e.,rounded Fig.4(c)versus sharp Fig.4(b)edge.This naturally brings us to determine the magnitude and spatial distribution of electric field at resonance and off-resonance,i.e.,off-resonance wavelengths correspond to the maximum electric field magnitude conditions.We now address the visualization of the near-field distribution inside and outside the particle by two-dimensional diagrams and the role of shape anisotropy on EFE E 2=E 20map for the nano-structures of Fig.1,where E 0denotes the amplitude of the incident field is investigated further with a different type of simulation.The incident electric field is polarized along the long nanoantenna (Z)axis.Two planes are chosen for these plots,the XY plane and the XZ plane that is perpendicular to the polarization vector.Figure 7shows the values of the nanolocalized EFE at the nanostructure Fig.1(a)’s metallic surfaces when the incident electric field is polarized along the Z axis.Different points on the surface of the nanostruc-tures can have their maximum EFEs at different wave-lengths,i.e.,the wavelength is 417.2nm for the left panel corresponding to the maximum of extinction efficiency,whereas the wavelengths are 882.3nm for the top right map and 535nm for the bottom right map corresponding to the maximum of the electric field magnitude.For all tested wavelengths,the observed EFE in the vicinity of the par-ticles remains relatively small.For comparison,Figs.8and 9illustrate (for nanostructures Figs.1(b)and 1(c),respec-tively)the EFE maps that arise at resonance and off-resonance conditions.For resonance,the largest EFE is about 10.However,by changing the wavelength to off-resonance conditions,it is feasible to achieve EFEs larger than 103,suggesting that the EFEs are distributed over a large spectral range.26The typical distributions of the EFE in these cases show that the energy is extremely confined attheFIG.7.(Color online)Resonance (left panel)and off-resonance (right panel)normalized near-field electric field enhancement (EFE)E 2=E 20map for nanostructure (a)of Fig.1,where E 0denotes the amplitude of the inci-dent field,in the XY and XZ planes,R ¼45nm,and e ¼5nm.The incident electric field is oriented along the Z axis.The wavelength is 417.2nm for the left panel corresponding to the maximum of extinction efficiency,whereas the wavelengths are 882.3nm for the top right map and 535nm for the bottom right map corresponding to the maximum of the electric fieldmagnitude.FIG.8.(Color online)Same as in Fig.7for nanostructure (b)of Fig.1.The wavelength is 438.9nm for the left panel corresponding to the maximum of extinction efficiency,whereas the wavelengths are 736.4nm for the top right map and 598nm for the bottom right map corresponding to the maximum of the electric fieldmagnitude.FIG.9.(Color online)Same as in Fig.7for nanostructure (c)of Fig.1.The wavelength is 418.3nm for the left panel corresponding to the maximum of extinction efficiency,whereas the wavelengths are 788.5nm for the top right map and 832.7nm for the bottom right map corresponding to the maximum of the electric field magnitude.vicinity of the metal coating.What we wish to point out now is that the results in Figs.8and9show that,in the XZ plane, the exciting electricfield is enhanced by a factor that is larger than the Q factor of the resonant mode at wavelength %400nm,Q%4.25–34IV.SUMMARYIn summary,the systematic numerical simulation of the scattering and extinction spectra of several low-symmetry CS nanostructures with subwavelength dimensions suggest that the interrelation between nanoparticle size and polariza-tion of the excitation gives rise to complex resonance phe-nomena.In addition to providing a potential means to extract the wavelength dependence of the scattering and absorption behaviors at resonance,our results raise interesting theoreti-cal questions regarding the control of the light emission at the nanoscale,and the impact of geometry on the scattering and extinction of plasmonic CS nanoparticles having sharp corners.We showed that our composite plasmonic nano-structures demonstrate strong enhancements of the exciting electricfielding nonlocalized spots.The broader implication of this work is that advances in modeling the absorption of plasmonic CS nanoantennas pro-vides an effective means in the design of non-invasive high-resolution biosensors for the characterization and diagnostics of living tissue.33–361S.A.Maier,Plasmonics:Fundamentals and Applications(Springer,New York,2007).2G. C.Schatz and R.P.van Duyne,Electromagnetic Mechanism of Surface-Enhanced Spectroscopy,in Handbook of Vibrational Spectroscopy, edited by J.M.Chalmers and P.R.Griffiths(Wiley,Chichester,2002).3V.Myroshnychenko,J.Rodrı´guez-Ferna´ndez,I.Pastoriza-Santos,A.M. Funston,C.Novo,P.Mulvaney,L.M.Liz-Marza´n,and F.Javier Garcia de Abajo,Chem.Soc.Rev.37,1792(2008).4E.Ozbay,Science311,189(2006);P.Mulvaney,Langmuir12,788 (1996);E.Hutter and J.H.Fendler,Adv.Mater.16,1685(2004).5K.Li,M.I.Stockman,and D.J.Bergman,Phys.Rev.Lett.91,227402 (2003);K.Li,M.I.Stockman,and D.J.Bergman,Phys.Rev.Lett.91, 227402(2003).6M.Essone Mezeme,squellec,and C.Brosseau,“Design of magneto-plasmonic resonant nanoantennas for biosensing applications”(unpublished). 7A.Aubry,D.Y.Lei,S.A.Meir,and J.B.Pendry,Phys.Rev.Lett.105, 233901(2010).8P.Spineli,C.van Lare,E.Verhagen,and A.Polman,Opt.Express19, A303(2011).9J.M.Pitarke,F.J.Garcı´a-Vidal,and J.B.Pendry,Phys.Rev.B57,15261 (1998);J.M.Pitarke,F.J.Garcı´a-Vidal,and J.B.Pendry,Surf.Sci.433, 605(1999).10P.Bharadwaj,B.Deutsch,and L.Novotny,Adv.Opt.Photon.1,438 (2009);Y.Saito and P.Verma,Eur.Phys.J.Appl.Phys.46,20101 (2009);A.I.Denisyuk,G.Adamo,K.F.MacDonald,J.Edgar,M.D. Arnold,V.Myroshnychenko,M.J.Ford,F.Javier Garcia de Abajo,and N.I.Zheludev,Nano Lett.10,3250(2010).11P.Mu¨hlschlegel,H.-J.Eisler,O.J.F.Martin,D.W.Pohl,and B.Hecht, Science308,1607(2005).12A.Kinkhabwala,Z.F.Yu,S.H.Fan,Y.Avlasevich,K.Mullen,and W.E. Moerner,Nat.Photonics3,654(2009).13B.Rothenhausler and W.Knoll,Nature(London)332,615(1988);D.P. O’Neal,L.R.Hirsch,N.J.Halas,J.D.Payne,and J.L.West,Cancer Lett. 209,171(2004);B.Radt,T.A.Smith,and F.Caruso,Adv.Mater.16, 2184(2004);I.-H.El-Sayed,X.Huang,and M.A.El-Sayed,Nano Lett.5, 829(2005);Y.Lu,G.L.Liu,J.Kim,Y.X.Mejia,and L.P.Lee,ibid.5, 119(2005).14C.L.Nehl,H.W.Liao,and J.H.Hafner,Nano Lett.6,683(2006);F.Hao,C.L.Nehl,J.H.Hafner,and P.Nordlander,ibid.7,729(2007); W.Challener,I.Sendur,and C.Peng,Opt.Express11,3160(2003);L.M. Liz-Marza´n,Langmuir22,32(2006);F.Hao,C.L.Nehl,J.H.Hafner, and P.Nordlander,Nano Lett.7,729(2007);F.J.Garcia de Abajo and A.Howie,Phys.Rev.Lett.80,5180(1998).15M.Essone Mezeme,squellec,and C.Brosseau,J.Appl.Phys.109, 014302(2011).16J.Kim,S.Park,J.E.Lee,S.M.Jin,J.H.Lee,I.S.Lee,I.Yang,J.S. Kim,S.H.Kim,M.-H.Cho,and T.Hyeon,Angew.Chem.,Int.Ed.45, 7754(2006).17M.Essone Mezeme,squellec,and C.Brosseau,Phys.Rev.E81, 057602(2010);M.Essone Mezeme,squellec,and C.Brosseau, J.Appl.Phys.107,014701(2010);M.Essone Mezeme,squellec,and C.Brosseau,J.Phys.D42,135420(2009);C.Charnay,A.Lee,S.-Q. Man,C.E.Moran,C.Radloff,R.K.Bradley,and N.J.Halas,J.Phys. Chem.B107,7327(2003).18Commercial software package FDTD Solutions-Lumerical Inc.,see http:// .19A.Mejdoubi and C.Brosseau,J.Appl.Phys.99,063502(2006);A.Mej-doubi and C.Brosseau,Phys.Rev.B74,165424(2006);A.Taflove,Com-putational Electrodynamics:The Finite-Difference Time-Domain Method (Artech House,Norwood,1995).20See /fdtd_online_helpprevious_help/user_gui-de_tfsf-source.php for help and user guide.21C.F.Bohren and D.R.Huffman,Absorption and Scattering of Light by Small Particles(Wiley,New York,1983);E.D.Palik,Handbook of Opti-cal Constants of Solids(Academic,San Diego,1998);P.B.Johnson and R.W.Christy,Phys.Rev.B6,4370(1972).22J.Zuloaga,E.Prodan,and P.Nordlander,Nano Lett.9,887(2009);J.M. McMahon,S.K.Gray,and G.C.Schatz,Nano Lett.10,3473(2010).23R.Fuchs and F.Claro,Phys.Rev.B35,3722(1987).24COMSOL MULTIPHYSICS,version3.4,2007,see sol. com.25J.P.Kottman,O.J.F.Martin,D.R.Smith,and S.Schultz,Opt.Express6, 213(2000).26N.K.Grady,N.J.Halas,and P.Nordlander,Chem.Phys.Lett.399,167 (2004);A.Sihvola,Prog.Electromagn.Res.62,317(2006);Z.Jian and Z. Caili,J.Appl.Phys.100,026104(2006).27B.Yan,Y.Yang,and Y.Wang,J.Phys.Chem.B107,9159(2003).28S.Link and M.A.El-Sayed,J.Phys.Chem.B109,10531(2005).29E.S.Kooij and B.Poelsema,Phys.Chem.Chem.Phys.8,3349(2006). 30E.Prodan,C.Radloff,N.J.Halas,and P.Nordlander,Science302,419 (2003);H.Wang,D.W.Brandl,P.Nordlander,and N.J.Halas,Acc. Chem.Res.40,53(2007);F.Hao,C.L.Nehl,J.H.Hafner,and P.Nord-lander,Nano Lett.7,729(2007).31J.Zhu,J.Nanosci.Nanotechnol.7,1059(2007).32J.Kim,G.L.Liu,Y.Lu,and L.P.Lee,Opt.Express13,8332(2005).33R.Zia,J.A.Schuler,A.Chandran,and M.L.Brongersma,Mater.Today 9,20(2006).34T.Werne,M.Testorf,and U.Gibson,J.Opt.Soc.Am.23,2299(2006). 35B.Alberts et al.,Molecular Biology of the Cell(Garland,New York, 2008),4th ed;B.Hille,Ion Channels of Excitable Membranes(Sinauer Associates,Sunderland,MA,2001).36P.J.Hunter,W.W.Li,A.D.McCulloch,and D.Noble,Computer39,48 (2006).。
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
COMSOL 5.2a 安装教程 与 日志错误的修复方法
COMSOL 5.2安装教程:
1、选择语言,支持(简体中文) 点击setup.exe
2、点击“新安装COMSOL 5.2”
3、允许用户协议,将许可证格式修改为“许可证文件”,然后点击浏览载入安装包中“_SolidSQUAD_”目录下的“Comsol52_SSQ.lic”自己选的是,_SolidSQUAD_文件夹里面的LMCOMSOL_Multiphysics_SSQ.lic
4、选择安装模块和安装目录
5、此处可以添加MATLAB、Pro/E等软件的链接。
自己安装时取消勾选了update 下面的两个选项
6、等待安装完成
7、安装中途会弹出DX的安装程序,接受协议后按照提示点击下一步
9、安装完成
10、我们安装的时候载入过证书,所以直接运行桌面COMSOL 5.2的快捷方式就可以进入程序了。
若出现打开mph时出现
1.卸载软件
2.用ccleaner清理注册表,多清理几次
在c盘里搜索comsol,删除除了自己仿真产生的mph文件外的所有文件。
(在C 盘的/用户里,C:\Users\“自己电脑的用户名”下有如下的文件)
删除掉.comsol这个
3.重新安装软件,记得用管理员运行,安装完成后就行了,要是打不开试
试看一下其他两个文件夹也删了。
COMSOL多物理场模拟软件简单入门教程
COMSOL多物理场模拟软件简单入门教程首先,打开COMSOL软件,并选择“新建模型”创建一个新的模型。
接下来,选择所需的物理场模块。
COMSOL提供了各种模块,如“传热模块”、“结构力学模块”、“电磁场模块”等。
根据具体的需求选择相应的模块。
在选择模块后,设置模型的尺寸和几何形状。
COMSOL提供了几何建模工具,可以用来绘制模型的几何形状。
用户可以通过画线、绘制曲面等方式创建模型的几何结构。
完成几何建模后,用户可以定义物理边界条件和物理特性。
例如,可以定义材料的热导率、电导率等。
对于边界条件,可以定义温度、电势等。
设置好边界条件和物理特性后,可以进行网格划分。
COMSOL软件使用有限元方法进行数值计算,需要将模型划分为小的有限元。
用户可以在COMSOL中设置网格划分的参数,如网格密度等。
划分好网格后,可以设置求解器和求解参数。
COMSOL提供了多个求解器,用户可以根据实际需求选择合适的求解器。
在设置求解器参数时,可以设置收敛准则、迭代次数等。
设置好求解器和求解参数后,可以进行模型求解。
COMSOL会根据用户设置的物理特性、边界条件以及网格划分,自动进行模型的求解。
求解过程可能会花费一些时间,取决于模型的复杂程度和计算机性能。
求解完成后,可以对结果进行后处理和分析。
COMSOL提供了丰富的后处理工具,可以对模型的结果进行可视化、统计分析等。
用户可以根据需要选择不同的后处理工具进行分析。
除了上述基本的模拟流程外,COMSOL还提供了许多高级功能和工具,如参数扫描、优化设计等。
用户可以根据具体需求深入学习和应用这些功能和工具。
总结:通过上述简单入门教程,我们可以了解COMSOL多物理场模拟软件的基本流程和功能。
COMSOL的使用需要一定的学习和实践,但一旦熟悉掌握,它将成为解决各种多物理场问题的强大工具。
如何为论文生成COMSOL模型的高清图片
如何为论文生成COMSOL模型的高清图片
如果看过COMSOL广告或杂志印制品,就会发现我们倾向于收录实际的多物理模型。
生成这些高清图片只需要简单的技巧,对那些需要在文章或论文中使用高清图片的读者来说同样受用。
实现方式有两种:
1.最快捷的方式是点击当前图形窗口上的“图像快照(Image Snapshot)”按钮
将会弹出一个对括框,允许定义需要的图片质量和保存目标(复制到粘贴板或保存为文件)。
如果图片用于文章或印制材料,建议选择宽度(width)为4,096px,高度(Height)为4,096px,分辨率(DPI)为300。
这样设置后,生成的高清图尺寸为34.7 x 34.7cm(~13.66 x 13.66in)。
2.需要程序化的导出图片,可以在“结果(Result)”下添加“导出(Export)”节点实现。
添加图片到
导出节点的操作步骤,首先是在结果(Result)中选择需要导出的绘图,在绘图节点上右键选择“添
加图片至导出(Add Image to Export)”,这时会在导出(Export)节点下出现图片(Image)子节点(同样在结果目录下)。
点击图片子节点,就能够如方法1设置图片的分辨率。
在参数扫描(Parametric sweep)后,这样设置可以为每个参数步保存一幅图片,并且能够保证不同的导出图片设定一致。
comsol错误提示及解决方法
Diagnostics : Error MessagesError MessagesThis section summarizes the most common error messages and solver messages generated by COMSOL Multiphysics. All error messages are numbered and sorted in different categories according to the following table.TABLE 2-1: ERROR MESSAGE CATEGORIESNUMBERS CATEGORY1000–1999 Importing Models2000–2999 Geometry Modeling3000–3999 CAD Import4000–4999 Mesh Generation5000–5999 Point, Edge, Boundary, and SubdomainSpecification6000–6999 Assembly and Extended Mesh7000–7999 Solvers8000–8999 Postprocessing9000–9999 GeneralFor error messages that do not appear in the following lists, contact COMSOL’s support team for help.2000–2999 Geometry ModelingTABLE 2-2: GEOMETRY MODELING ERROR MESSAGESERRORNUMBERERROR MESSAGE EXPLANATION2118 Negative output fromempty inputIncorrect Geometry M-file.2119 Non scalar output fromempty inputIncorrect Geometry M-file.2120 Normal directions areinconsistentIncorrect input data from STL/VRML import.2138 Self intersections notsupported Curves resulting in self-intersections are not supported.2140 Singular extrusions notsupportedError in input parameters.2141 Singular revolutions notsupported The revolved mesh has a singularity at the z axis. If possible, create the cylinder using a 3D primitive or by revolving the geometry before meshing.2146 Subdomain mustbounded at least fourboundary segmentsIncorrect geometry for mapped mesh.2147 Subdomain must boundone connected edgecomponent onlyIncorrect geometry for mapped mesh. 2190 Invalid radius or distance Incorrect input parameters to fillet/chamfer.2197 Operation resulted inempty geometry object Geometry operation resulted in an empty geometry object which is not allowed. Make sure an empty geometry object is not created.2209 Geometry to revolve maynot cross axis ofrevolution The axis of revolution and the geometry intersect. Check the dimension of the geometry and the definition of the axis for the revolution.4000–4999 Mesh Generation TABLE 2-3: MESH GENERATION ERROR MESSAGESERRORNUMBERERROR MESSAGE EXPLANATION4002 A degeneratedtetrahedron wascreated The mesh generator ran into numerical difficulties while creating tetrahedrons with a size based on user-controlled parameters. Causes could be too small and narrow subdomains relative to the rest of the geometry or exceedingly short boundary segments. Try to avoid creating small and narrow subdomains and very short boundary segments that are adjacent to longer boundary segments.4003 A degeneratedtriangle wascreated The mesh generator ran into numerical difficulties while creating triangles with a size based on user-controlled parameters. Causes could be too small and narrow subdomains relative to the rest of the geometry or exceedingly short boundary segments. Try to avoid creating small and narrow subdomains and very short boundary segments that are adjacent to longer boundary segments.4012 Cannot createmapped mesh forthis geometry The geometry does not fulfill the topological requirements for a mapped mesh. Changes in input parameters or further subdomain division can possibly help this.4026 Failed creatematching edgediscretizations Cannot make mapped mesh with the given input parameters.4029 Failed to insertpoint Problems inserting point at given coordinate. Manually inserting a point there may help.4031 Failed to respectboundary elementon geometry edge The mesh generator failed in making the elements compatible with the geometry object’s edges. The reason for this could be that the face mesh is too coarse or contains adjacent elements with large differences in scale. Another reason can be that some subdomains in the geometry are too narrow with respect to the rest of the geometry.4032 Failed to respectboundary elementon geometry faceSee Error message 4031.4044 Internal errorboundaryrespectingSee Error message 4031.4054 Invalid topology ofgeometry The geometry object cannot be used for creating a mapped mesh. It must be subdivided.4055 Isolated entitiesfound Entities that are not connected to the boundaries of a geometry objects is found. The mapped mesh generator does not support such isolated entities.4119 Singular edgedetectedThe geometry object contains an edge of zero length. 6000–6999 Assembly and Extended MeshTABLE 2-4: ASSEMBLY AND EXTENDED MESH ERROR MESSAGESERRORNUMBERERROR MESSAGE EXPLANATION6008 Circularvariabledependencydetected A variable has been defined in terms of itself, possibly in a circular chain of expression variables. Make sure that variable definitions are sound. Be cautious with equation variables in equations.6063 Invalid degreeof freedomname The software does not recognize the name of a degree of freedom. Check the names of dependent variables that you have entered for the model. See also Error 7192.6139 Wrong numberof DOFs ininitial value The current solution or the stored solution has for some reason the wrong number of degrees of freedom, sometimes due to a change of the implementation of elements between two versions of the software. To overcome the problem, go to the Initial value area in the Solver Manager, and select Initial value expression. Then the initial value expressions is evaluated without using the current or stored solution.6140 Wrong numberof dofs inlinearizationpoint The current solution or the stored solution has for some reason the wrong number of degrees of freedom, sometimes due to a change of the implementation of elements between two versions of the software. To overcome the problem, go to the Value of variables not solved for and linearization point area in the Solver Manager, and click the Use setting from Initial value frame button or the Zero button.6163 Divide by zero A property in the model contains a divisor that becomes zero.Check to make sure that division by zero does not occur inany expression or coefficient.6164 Duplicatevariable name A variable name has two different definitions. For instance, the same variable name appears two or more times for a dependent variable, a constant, an expression variable, or acoupling variable. Remove or rename one of the variables.6170 Failed toevaluatevariable An error occurred when evaluating the variable. The domains in which COMSOL Multiphysics tried to evaluate the variable are indicated. Also, the error message shows the expression that COMSOL Multiphysics was unable to evaluate. Make sure that you have defined the variables correctly in the indicated domains.6176 Attempt toevaluate reallogarithm ofnegative number An expression contains log(a), where a becomes negative or zero. To make the logarithm well-defined, make sure that a>0. Often, a becomes only slightly negative (due to approximations in the solution process). Then, a possible solution is to use log(a+e), where e is a small constant. Another remedy is to use log(abs(a)). If you do want to have a complex logarithm, go to the Advanced tab of Solver Parameters and select the Use complex functions with real input check box.6177 Matrix has zeroon diagonal When the equations have a structure such that the stiffness matrix (Jacobian matrix) has zeros on the diagonal, it is not possible to use the following linear systemsolvers/preconditioners/smoothers: all versions of SOR and Diagonal scaling (Jacobi). Try the Vanka preconditioner/smoother instead.6188 Out of memoryduring assembly The software ran out of memory during assembly of the finite element model. See error 7144 regarding generalmemory-saving tips.6194 Attempt toevaluatenon-integralpower ofnegative number An expression contains a^b, where a becomes negative and b is not an integer. To make the power well-defined, make sure that a>0. Often, a becomes only slightly negative (due to approximations in the solution process). Then, a possible solution is to use (a+e)^b, where e is a small constant. Another remedy is to use abs(a)^b. If you do want to have a complex number a^b, go to the Advanced tab of Solver Parameters and select Use complex functions with real input.6199 Attempt toevaluate realsquare root ofnegative number The model contains a sqrt (square root) function that takes the square root of a negative number. Either make sure that the square-root argument is nonnegative or select the Use complex functions with real input check box on the Advanced tab in the Solver Parameters dialog box.6204 Undefinedfunction call An expression contains an undefined function name. Check that the function name is correct and that the function is in COMSOL Multiphysics’ or MATLAB’s path.6206 Internalevaluation error:unexpected NaNencountered Not-A-Number (NaN) appears unexpectedly. A possible cause is improperly defined coupling variables. As a first step, check that the definitions of the source and destination domains of any coupling variables or periodic boundary conditions are correct.6245 Unsupportedintegration order Integration order is too high. For triangular elements the order can be up to 10, and for tetrahedral elements the order can be up to 8. Find more information in the section “Numerical Quadrature” on page 505.6259 Failed toevaluatevariableJacobian An error occurred when evaluating the Jacobian of the indicated variable. The domains in which COMSOL Multiphysics tried to evaluate the variable are indicated. Make sure that you have defined the variable correctly in the indicated domains.7000—7999 Solvers and Preconditioners TABLE 2-5: SOLVER ERROR MESSAGESERRORNUMBERERROR MESSAGE EXPLANATION7001 Adaption onlyimplemented for It is only possible to use adaptive mesh refinement in 3D for models using tetrahedral mesh elements.tetrahedral meshes Either turn off adaptive mesh refinement or switchfrom brick or prism elements to tetrahedral elements.7002 Adaption onlyimplemented fortriangular meshes It is only possible to use adaptive mesh refinement in 2D for models using triangular mesh elements. Either turn off adaptive mesh refinement or switch from quadrilateral elements to triangular elements.7022 Segregated solver stepsdo not involve all ofsolcomp The groups for the segregated solver do not include all dependent variables. One reason for this error could be that some boundary conditions (for example, for laminar inflow in fluid-flow models) add dependent variables that are not initially in the model.7043 Initial guess leads toundefined function value This error message usually appears when you have set up an expression that returns “not a value,” that is, it is undefined, for the initial condition you have set. For instance, this happens if an expression contains a divisor that becomes zero or a logarithm of a negative value. To solve the problem, change the expression or the initial value so that the expression is well-defined when substituting the initial value of the variables. Also, watch out for warnings in the Log window.7067 System matrix is zero This error message appears if there are no volumeelements in the mesh. In the case that you have amapped surface mesh, try sweeping or extruding thesurface mesh to get a volume mesh.7069 Maximum number oflinear iterations reached The iterative linear system solver did not converge due to a bad initial guess or a bad preconditioner. Increase the limit on the number of linear iterations or use a better preconditioner. If possible, use a direct linear system solver.7081 No parameter namegiven The parametric solver does not find a name for the parameter. Check the Name of parameter edit field on the General page of the S olver Manager.7092 Out of memory inAlgebraic multigrid The Algebraic multigrid solver/preconditioner ran out of memory. See error 7144 regarding general memory-saving tips.7093 Out of memory duringback substitution The solver ran out of memory during back substitution. See error 7144 regarding general memory-saving tips.7094 Out of memory duringLU factorization The solver ran out of memory during LU factorization. See error 7144 regarding general memory-saving tips.7111 Singular matrix The system matrix (Jacobian matrix or stiffnessmatrix) is singular, so the solver cannot invert it.Usually this means that the system isunderdetermined. Check that all equations are fullyspecified and that the boundary conditions areappropriate. For instance, in a stationary model youusually need to have a Dirichlet condition on someboundary. A singular matrix could also occur if meshelements are of too low quality. If the minimumelement quality is less than 0.005 you might be introuble. Another reason for this error message is thatyou have different element orders for two variablesthat are coupled by, for example, a weak constraint.Use the same element order for all variables that arecoupled.7136 Very ill-conditionedpreconditioner. Therelative residual is morethan 1000 times largerthan the relativetolerance You need to improve the quality of the preconditioner to get an accurate solution. For the Incomplete LU preconditioner, lower the drop tolerance.7144 Out of memory inadaptive solver The adaptive solver ran out of memory. The adaptive mesh refinement has generated a too fine mesh. In general, when you run out of memory, try to use memory-efficient modeling techniques such asutilizing symmetries, solving models sequentially, and selecting memory-efficient solvers. See the chapter “Solving the Model” on page 377 in the COMSOL Multiphysics User’s Guide for more information. See also the COMSOL Installation and Operations Guide for information about system memory management.7145 Out of memory ineigenvalue solver The eigenvalue solver ran out of memory. See error 7144 regarding general memory-saving tips.7146 Out of memory instationary solver The stationary solver ran out of memory. See error 7144 regarding general memory-saving tips.7147 Out of memory intime-dependent solver The time-dependent solver ran out of memory. See error 7144 regarding general memory-saving tips.7192 Invalid degree offreedom name in manualscaling The name of a dependent variable in the Manual scaling edit field on the Advanced page in the Solver Parameters dialog box does not match any of the dependent variables in the model.7199 Reordering failed One of the PARDISO reordering algorithms failed.Try a different reordering algorithm or try turning offrow preordering.7248 Undefined value found See the explanation of error 7043 for some possiblereasons as to why this error number appears. In mostsituations you get a more detailed description of theerror by pressing the Details button.7297 Undefined value found This error number appears if one of the linear systemsolvers encounters an undefined value (such valuesappear, for instance, if a division by zero has beenperformed or if some arithmetic operation results in alarger number than can be represented by thecomputer). For direct solvers this error might appearif the stiffness matrix (Jacobian matrix) is singular oralmost singular. For iterative solvers this error mightappear, for instance, if the iterative process diverges.Press the Details button to see which linear solvercaused the error.9000–9999 General ErrorsTABLE 2-6: GENERAL ERROR MESSAGESERRORNUMBERERROR MESSAGE EXPLANATION9037 Failed to initialize3D graphics.OpenGL not fullysupported OpenGL is not available on the computer. This can happen if your graphics card does not support OpenGL or if you have a Unix/Linux computer where OpenGL has not been configured.9040 Fatal error If you receive this error, click the Detail button. Copy andpaste the entire error message and send it tosupport@ along with your license file anddetails of how to reproduce the error.9052 Invalidaddress/port You did not enter the correct server name or server port when trying to connect a client to a server.9084 Server connectionerror The client somehow lost the connection to the server. For example, the server crashed unexpectedly, or the power saving mechanism on a laptop shut down the TCP/IP connection.9143 License error The most common reasons for this message:The license file license.dat has been removed from the rightdirectory in the COMSOL software installation. Thelicense.dat file must be located in the$COMSOL35a/license directory, where $COMSOL35a isthe COMSOL 3.5a installation directory.The license manager has not started properly. Please findthe FLEXlm log file (named by the person who started thelicense manager). Inspect this file to see the server status.Send it to support@ if you are in doubt abouthow to interpret this file.It is crucial that you use the correct license.dat file on boththe server and the clients9178 Error in callback An error occurred when calling a MATLAB function fromCOMSOL Multiphysics. Make sure that the M-file thatdefines the function is correct and exists in the current path.Check that the function is written so that all inputs arevectors of the same size and the output is a vector of thesame size.Solver Error MessagesThese error messages can appear during solution and appear on the Log tab in the Progress window.TABLE 2-7: SOLVER ERROR MESSAGES IN LOG WINDOWSOLVER ERRORMESSAGEEXPLANATIONCannot meet error tolerances. Increase absolute or relative tolerance. The time-dependent solver cannot solve the model to the specified accuracy.Error in residual computationError in Jacobian computation The evaluation of the residual or the Jacobian generated an error during a time-dependent solution. An additional message states the direct error. Some possible reasons are division by zero, range and overflow errors in mathematical functions, and interpolation failure in coupling variables withtime-dependent mesh transformation.Failed to find a solution The nonlinear solver failed to converge. An additional error message gives some more details. See the description for that message.Failed to find a solution for all parameters, even when using the minimum parameter step During a parametric solution, the nonlinear iteration did not converge despite reducing the parameter step length to the minimum allowed value. The solution may have reached a turning point or bifurcation point.Failed to find a solution for initial parameter The nonlinear solver failed to converge for the initial value of the parameter during a parametric solution. An additional error message gives some more details. See the description for that message.Failed to find consistent initial values The time-dependent solver could not modify the initial conditions given to a DAE system to satisfy the stationary equations at the initial time. Make sure the initial values satisfy the equations and boundary conditions. In many cases, this can be achieved by solving for only the algebraic variables using a stationary solver before starting thetime-dependent solver.Ill-conditioned preconditioner. Increase factor in error estimate to X The preconditioner is ill-conditioned. The error in the solution might not be within tolerances. To be sure to have a correct solution, open the Linear System Solver Settings dialog box from the General tab of Solver Parameters. Select Linear system solver in the tree, and increase Factor in error estimate to the suggested number X. Alternatively, use a better preconditioner or tune the settings for the preconditioner.Inf or NaN found, even when using the minimum damping factor Despite reducing the step size to the minimum value allowed, the solver cannot evaluate the residual or modified Newton direction at the new solution iterate. This essentially means that the currentapproximation to the solution is close to the boundary of the domain where the equations are well-defined. Check the equations for divisions by zero, powers, and other functions that can become undefined for certain inputs.Inverted mesh element near coordinates (x, y, z) In some mesh element near the given coordinates, the (curved) mesh element is (partially) warped inside-out. More precisely, the Jacobian matrix for the mapping from local to global coordinates has a negative determinant at some point. A possible reason is that the linear mesh contains a tetrahedron whose vertices all lie on a boundary. When improving the approximation of the boundary using curved mesh elements, the curved mesh element becomes inverted. To see whether this is the case, you can change Geometry shape order to 1 in the Model Settings dialog box, which means that curved mesh elements will not be used. You can usually avoid such bad tetrahedra by using a finer mesh around the relevant boundary. Another reason for this error message can be that the mesh becomes inverted when using a deformed mesh.Last time step is not converged. The last time step returned from the time-dependent solver is not to be trusted. Earlier time steps are within the specified tolerances.Matrix is singular When encountered during time-dependent solution:the linear system matrix (which is a linearcombination of the mass-, stiffness-, and possibly,damping-matrices) is singular. Usually the problemoriginates from the algebraic part of a DAE. Inparticular, the cause can often be found in weakconstraints or constraint-like equations like thecontinuity equation in incompressible flow.Maximum number of linear iterations reached The iterative linear system solver failed to compute a Newton direction in the specified maximum number of iterations.Maximum number of Newton iterations reached The nonlinear solver could not reduce the error below the desired tolerance in the specified maximum number of iterations. This is sometimes a sign that the Jacobian is not complete or badly scaled. It may even be almost singular, if the system is underdetermined. If the returned solution seems reasonable, it might be enough to restart the solver with this solution as the initial guess.No convergence, even when using the minimum damping factor The nonlinear solver reduced the damping factor below the minimum value allowed. The solver reduces the damping factor each time a computed step did not lead to a decrease in the error estimate. Make sure the model is well-posed, in particular that there are enough equations and boundary conditions to determine all degrees of freedom. If the model is well-posed, it should have one or more isolated solutions. In that case, the error is probably due to the initial guess being too far from any solution.Nonlinear solver did not converge During a time-dependent solution, the nonlinear iteration failed to converge despite reducing the time step to the minimum value allowed. Usually, the error is related to the algebraic part of a DAE. For example, the algebraic equations can have reached a turning point or bifurcation point. The error can also appear when the algebraic equations do not have a unique solution consistent with the given initial conditions. Make sure algebraic equations have consistent initial values and that they have a unique solution for all times and values reached by the other variables.Not all eigenvalues returned When the eigenvalue solver terminated (stopped by the user or due to an error), it had not found the requested number of eigenvalues. The eigenvalues returned can be trusted.Not all parameter After premature termination of the parametricsolver, only some of the requested solutions havesteps returned been computed.Predicted solution guess leads to undefined function value The solver computes the initial guess for the new parameter value based on the solution for the previous parameter value. This initial guess led to an undefined mathematical operation. Try using another Predictor on the Parametric tab of Solver Parameters.Repeated error test failures. May have reached a singularity. During a time-dependent solution, the error tolerances could not be met despite reducing the time step to the minimum value allowed.Returned solution has not converged. The solution returned by the stationary solver is not to be trusted. It might, however, be useful as initial guess after modifying equations or solver settings.The elasto-plastic solver failed to find a solution The Newton iteration loop for the computation of the plastic state at some point in the geometry did not converge.。
comsol5.2a安装教程
comsol5.2a安装教程
安装步骤:
[安装环境]:Win7/Win8/Win10
1.鼠标右击【Comsol5.2a】压缩包选择【解压到Comsol5.2a】。
2.双击打开解压后的【Comsol5.2a】文件夹。
3.鼠标右击【COMSOL_5.2a_DVD.iso】选择【装载】。
4.打开装载之后的文件夹,鼠标右击【setup.exe】选择【以管理员身份运行】。
5.选择【简体中文(Simplified Chinese)】,然后点击【下一步】
6.点击【新安装COMSOL 5.2a】左边的图标。
件】。
8.点击【浏览】。
9.双击打开安装包解压后的【Comsol5.2a】文件夹中的【crack】文件夹
10.选择【LMCOMSOL_SSQ.lic】文件,然后点击【Open】。
11.点击【下一步】。
12.点击【浏览】更改安装路径,建议安装在除C盘之外的其它磁盘内,可选择安装在D盘或其它磁盘内,选择磁盘后程序会自动生成一个路径为【D:\COMSOL52a\Multiphysics】的【Multiphysics】文件夹,然后点击【下
一步】。
13.取消勾选【安装完成后检查更新】,然后点击【下一步】。
14.点击【是】。
15.点击【安装】。
16.正在安装中(大约需要8分钟)。
17.点击【关闭】。
18.点击【确定】。
19.双击【COMSOL Multiphysics 5.2a】软件图标启动软件。
20.安装完成,软件运行界面如下。
COMSOL光学案例
Modeling of Pyramidal Absorbers for an Anechoic ChamberIntroductionIn this example, a microwave absorber is constructed from an infinite 2D array of pyramidal lossy structures. Pyramidal absorbers with radiation-absorbent material (RAM) are commonly used in anechoic chambers for electromagnetic wavemeasurements. Microwave absorption is modeled using a lossy material to imitate the electromagnetic properties of conductive carbon-loaded foam.Perfectly matched layersPortConductive pyramidal formUnit cell surrounded by periodic conditionsConductive coating on the bottomFigure 1: An infinite 2D array of pyramidal absorbers is modeled using periodic boundary conditions on the sides of one unit cell.Model DefinitionThe infinite 2D array of pyramidal structures is modeled using one unit cell with Floquet-periodic boundary conditions on four sides, as shown in Figure 1. Thegeometry of one unit cell consists of one pyramid sitting on a block made of the samematerial. There are perfectly matched layers (PMLs) above the pyramid and the remaining space between the pyramid and the PMLs is filled with air.The pyramidal absorber is made of a conductive material (σ = 0.5 S/m). At the interface of the conductive material and air, the incident field is partially reflected and partially transmitted into the pyramid. The transmitted field is attenuated inside of the lossy material. For angles within a particular range of normal incidence, the propagation direction of the reflected field is not back towards the source, but instead towards another surface of the conductive material. The process of partial reflection and partial transmission with subsequent attenuation is repeated until the field reaches the base of the pyramid. The amplitude of the field at the base of the pyramid is drastically reduced and so the reflection from the absorber at this point is marginal. The process is illustrated in Figure 2.Incident waveConductive foamNoise from outside the chamber isblocked by a highly conductive layerFigure 2: The incident wave is partially transmitted into the conductive foam where it is subsequently attenuated. For angles within a particular range of normal incidence, the reflected component of the field propagates towards another conducting surface where the process is repeated.The bottom of the absorber has a thin highly conductive layer to block any noise from outside the anechoic chamber. Before mounting absorbers on the walls of the anechoicchamber, it is necessary to apply a conductive coating on the walls, which is modeled as a perfect electric conductor (PEC).The model domain immediately outside of the conducting foam is filled with air. Perfectly matched layers (PMLs) above the air at the top of the unit cell absorb higher order modes generated by the periodic structure − if there are any − as well as the upwards traveling excited mode from the source port. The PMLs attenuate the field in the direction perpendicular to the PML boundary. Since the model is solved for a range of incident angles, the wavelength inside the PMLs is set to 2π/|k0cosθ|, which, in some sense, is the wavelength of the normal component of the wave vector.A port boundary condition is placed on the interior boundary of the PMLs, adjacent to the air domain. The interior port boundaries with PML backing require the slit condition. The port orientation is specified to define the inward direction for theS-parameter calculation. Since higher order diffraction modes are not of particular interest in this example, the combination of Domain-backed type slit port and PMLs is used instead of adding a Diffraction order port for each diffraction order and polarization.The periodic boundary condition requires identical surface meshes on paired boundaries. An identical surface mesh can be created by using the Copy Face operation from one boundary to another boundary.Results and DiscussionFigure 3 shows the norm of the electric field and power flow in the case where the elevation angle of incidence is 30 degrees and the azimuth angle is zero. The intensity of the illuminating wave is strong near the tip of the absorber. It decreases towards the base of the pyramid, where it is ultimately very weak.The S-parameter for y-axis polarized incident waves is plotted in Figure 4. The plot shows quantitatively that the absorber performs well for a range of incident elevation angles less than 40 degrees.case where the elevation angle of incidence is 30 degrees and the azimuthal angle is zero.Figure 4: The S-parameter is plotted as a function of incident angle.Application Library path: RF_Module/Passive_Devices/pyramidal_absorberModeling InstructionsFrom the File menu, choose New.N E W1In the New window, click Model Wizard.M O D E L W I Z A R D1In the Model Wizard window, click 3D.2In the Select physics tree, select Radio Frequency>Electromagnetic Waves, Frequency Domain (emw).3Click Add.4Click Study.5In the Select study tree, select Preset Studies>Frequency Domain.6Click Done.G E O M E T R Y11In the Model Builder window, under Component 1 (comp1) click Geometry 1.2In the Settings window for Geometry, locate the Units section.3From the Length unit list, choose mm.G L O B A L D E F I N I T I O N SParameters1On the Home toolbar, click Parameters.2In the Settings window for Parameters, locate the Parameters section.3In the table, enter the following settings:Here, c_const is a predefined COMSOL constant for the speed of light in vacuum.D E F I N I T I O N SVariables 11On the Home toolbar, click Variables and choose Local Variables .2In the Settings window for Variables, locate the Variables section.3In the table, enter the following settings:G E O M E T R Y 1Block 1 (blk1)1On the Geometry toolbar, click Block .2In the Settings window for Block, locate the Size section.3In the Width text field, type 50.4In the Depth text field, type 50.5In the Height text field, type 280.6Locate the Position section. In the x text field, type -25.7In the y text field, type -25.8In the z text field, type -90.9Right-click Component 1 (comp1)>Geometry 1>Block 1 (blk1) and choose Build Selected .Name Expression ValueDescription theta 0[deg]0 rad Elevation angle phi 0[deg]0 rad Azimuth angle f05[GHz]5E9 Hz Frequency lda0c_const/f00.05996 mWavelengthNam e Expression UnitDescriptionk_0emw.k0rad/m Wavenumber, free space k_x k_0*sin(theta)*cos(phi)rad/m Wavenumber, x-component k_y k_0*sin(theta)*sin(phi)rad/m Wavenumber, y-component k_zk_0*cos(theta)rad/mWavenumber, z-component10Click the Wireframe Rendering button on the Graphics toolbar.Block 2 (blk2)1On the Geometry toolbar, click Block.2In the Settings window for Block, locate the Size section.3In the Width text field, type 50.4In the Depth text field, type 50.5In the Height text field, type 180.6Locate the Position section. From the Base list, choose Center.Block 3 (blk3)1On the Geometry toolbar, click Block.2In the Settings window for Block, locate the Size section.3In the Width text field, type 50.4In the Depth text field, type 50.5In the Height text field, type 25.6Locate the Position section. From the Base list, choose Center.7In the z text field, type -77.5.Pyramid 1 (pyr1)1On the Geometry toolbar, click More Primitives and choose Pyramid. 2In the Settings window for Pyramid, locate the Size and Shape section. 3In the Base length 1 text field, type 50.4In the Base length 2 text field, type 50.5In the Height text field, type 120.6In the Ratio text field, type 0.7Locate the Position section. In the z text field, type -65.8Click the Build All Objects button.The finished geometry should look like this.Set up the physics based on the direction of propagation and the E-field polarization. Assume a TE-polarized wave which is equivalent to s-polarization and perpendicular polarization. E x and E z are zero while E y is dominant.E L E C T R O M A G N E T I C W A V E S,F R E Q U E N C Y D O M A I N(E M W)1In the Model Builder window, under Component 1 (comp1) click Electromagnetic Waves, Frequency Domain (emw).2In the Settings window for Electromagnetic Waves, Frequency Domain, locate the Physics-Controlled Mesh section.3Select the Enable check box.Set the maximum mesh size to 0.2 wavelengths or smaller.4In the Maximum element size text field, type lda0/5.5Locate the Analysis Methodology section. From the Methodology options list, choose Fast.Periodic Condition 11On the Physics toolbar, click Boundaries and choose Periodic Condition.2Select Boundaries 1, 4, 9, and 18–20 only.3In the Settings window for Periodic Condition, locate the Periodicity Settingssection.4From the Type of periodicity list, choose Floquet periodicity .5Specify the k F vector asPeriodic Condition 21On the Physics toolbar, click Boundaries and choose Periodic Condition .k_x x k_y y 0z2Select Boundaries 2, 5, 10, 13, 14, and 16 only.3In the Settings window for Periodic Condition, locate the Periodicity Settingssection.4From the Type of periodicity list, choose Floquet periodicity .5Specify the k F vector asPort 11On the Physics toolbar, click Boundaries and choose Port .k_x x k_y y 0z2Select Boundary 11 only.3In the Settings window for Port, locate the Port Properties section.4From the Wave excitation at this port list, choose On .5Select the Activate slit condition on interior port check box.6From the Slit type list, choose Domain-backed .7From the Port orientation list, choose Reverse .8Locate the Port Mode Settings section. Specify the E 0 vector as9In the β text field, type abs(k_z).Scattering Boundary Condition 11On the Physics toolbar, click Boundaries and choose Scattering Boundary Condition .2Select Boundary 12 only.x exp(-i*k_x*x)*exp(-i*k_y*y)[V/m]y 0zM A T E R I A L SMaterial 1 (mat1)1In the Model Builder window, under Component 1 (comp1) right-click Materials andchoose Blank Material .2In the Settings window for Material, locate the Material Contents section.3In the table, enter the following settings:Material 2 (mat2)1In the Model Builder window, right-click Materials and choose Blank Material .2Select Domains 1 and 3 only.3In the Settings window for Material, locate the Material Contents section.4In the table, enter the following settings:PropertyNameValue UnitProperty groupRelative permittivity epsilonr 11Basic Relative permeability mur 11Basic Electrical conductivitysigmaS/mBasicPropertyNameValue UnitProperty groupRelative permittivity epsilonr 11BasicD E F I N I T I O N SPerfectly Matched Layer 1 (pml1)1On the Definitions toolbar, click Perfectly Matched Layer .2Select Domain 4 only.3In the Settings window for Perfectly Matched Layer, locate the Scaling section.4From the Typical wavelength from list, choose User defined .5In the Typical wavelength text field, type 2*pi/abs(k_z).Since the model is solved for a range of incident angles, the wavelength inside the PMLs is set to 2φ/|k 0cos(θ)|, which is the wavelength of the normal component of the wave vector.M E S H 1In the Model Builder window, under Component 1 (comp1) right-click Mesh 1 and choose Build All .Relative permeability mur 11Basic Electrical conductivitysigma0.5S/mBasicProperty Name Value Unit Property groupD E F I N I T I O N SView 11On the View 1 toolbar, click Hide Geometric Entities.2Select Domain 4 only.3In the Settings window for Hide Geometric Entities, locate the Geometric Entity Selection section.4From the Geometric entity level list, choose Boundary.5Select Boundaries 4, 5, 9, and 10 only.M E S H1S T U D Y1Step 1: Frequency Domain1In the Model Builder window, under Study 1 click Step 1: Frequency Domain.2In the Settings window for Frequency Domain, locate the Study Settings section. 3In the Frequencies text field, type f0.Parametric Sweep1On the Study toolbar, click Parametric Sweep.2In the Settings window for Parametric Sweep, locate the Study Settings section.3Click Add.4In the table, enter the following settings:Parameter name Parameter value list Parameter unittheta range(0[deg],5[deg],85[deg])5On the Study toolbar, click Compute.R E S U L T SData Sets1On the Results toolbar, click Selection.2In the Settings window for Selection, locate the Geometric Entity Selection section.3From the Geometric entity level list, choose Domain.4Select Domains 1–3 only.Electric Field (emw)1In the Model Builder window, expand the Results>Electric Field (emw) node, then click Multislice 1.2In the Settings window for Multislice, locate the Multiplane Data section.3Find the z-planes subsection. In the Planes text field, type 0.4In the Model Builder window, right-click Electric Field (emw) and choose Arrow Volume.5In the Settings window for Arrow Volume, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component1>Electromagnetic Waves, Frequency Domain>Energy andpower>emw.Poavx,...,emw.Poavz - Power flow, time average.6Locate the Arrow Positioning section. Find the x grid points subsection. In the Points text field, type 21.7Find the y grid points subsection. In the Points text field, type 1.8Find the z grid points subsection. In the Points text field, type 21.9On the Electric Field (emw) toolbar, click Plot.10In the Model Builder window, click Electric Field (emw).11In the Settings window for 3D Plot Group, locate the Data section.12From the Parameter value (theta (rad)) list, choose 0.5236.13On the Electric Field (emw) toolbar, click Plot.14Click the Zoom Extents button on the Graphics toolbar.See Figure 3 to compare the plotted results.1D Plot Group 21On the Home toolbar, click Add Plot Group and choose 1D Plot Group.2On the 1D Plot Group 2 toolbar, click Global.3In the Settings window for Global, click Replace Expression in the upper-right corner of the y-axis data section. From the menu, choose Component 1>Electromagnetic Waves, Frequency Domain>Ports>emw.S11dB - S-parameter, dB, 11 component.4On the 1D Plot Group 2 toolbar, click Plot.The calculated S-parameters at the input port are shown as a function of the incident angle. Compare with that shown in Figure 4.。
COMSOL_Multiphysics后处理用户指南
1.1 网格...................................................................................................................................................- 1 1.2 解.......................................................................................................................................................- 1 1.3 截平面...............................................................................................................................................- 1 1.4 三维切割线..........................................................................................
COMSOL使用技巧_V1.0_2013-02
COMSOL使用技巧目录一、几何建模 ................................................................................................................................. - 1 -1.1组合体和装配体 ................................................................................................................. - 1 -1.2隐藏部分几何 ..................................................................................................................... - 2 -1.3工作面 ................................................................................................................................. - 3 -1.4修整导入的几何结构 ......................................................................................................... - 4 -1.5端盖面 ............................................................................................................................... - 11 -1.6虚拟几何 ........................................................................................................................... - 12 -二、网格剖分 ............................................................................................................................... - 14 -2.1交互式网格剖分 ............................................................................................................... - 14 -2.2角细化 ............................................................................................................................... - 16 -2.3自适应网格 ....................................................................................................................... - 16 -2.4自动重新剖分网格 ........................................................................................................... - 18 -三、模型设定 ............................................................................................................................... - 19 -3.1循序渐进地建模 ............................................................................................................... - 19 -3.2开启物理符号 ................................................................................................................... - 19 -3.3利用装配体 ....................................................................................................................... - 21 -3.4调整方程形式 ................................................................................................................... - 22 -3.5修改底层方程 ................................................................................................................... - 23 -四、求解器设定 ........................................................................................................................... - 25 -4.1调整非线性求解器 ........................................................................................................... - 25 -4.2确定瞬态求解的步长 ....................................................................................................... - 26 -4.3停止条件 ........................................................................................................................... - 27 -4.4边求解边绘图 ................................................................................................................... - 28 -4.5绘制探针图 ....................................................................................................................... - 29 -五、弱约束的应用技巧 ............................................................................................................... - 31 -5.1一个边界上多个约束 ....................................................................................................... - 31 -5.2约束总量不变 ................................................................................................................... - 32 -5.3自定义本构方程 ............................................................................................................... - 34 -六、后处理技巧 ........................................................................................................................... - 36 -6.1组合图形 ........................................................................................................................... - 36 -6.2显示内部结果 ................................................................................................................... - 37 -6.3绘制变形图 ....................................................................................................................... - 38 -6.4数据集组合 ....................................................................................................................... - 39 -6.5导出数据 ........................................................................................................................... - 39 -七、函数使用技巧 ....................................................................................................................... - 43 -7.1随机函数 ........................................................................................................................... - 43 -7.2周期性函数 ....................................................................................................................... - 44 -7.3高程函数 ........................................................................................................................... - 45 -7.4内插函数 ........................................................................................................................... - 46 -八、耦合变量的使用技巧 ........................................................................................................... - 48 -8.1积分耦合变量 ................................................................................................................... - 48 -8.2拉伸耦合变量 ................................................................................................................... - 49 -九、ODE的使用技巧 ................................................................................................................... - 50 -9.1模拟不可逆形态变化 ....................................................................................................... - 50 -9.2反向工程约束 ................................................................................................................... - 51 -十、MATLAB实时链接 ................................................................................................................ - 52 -10.1同时打开两种程序GUI ................................................................................................. - 52 -10.2在COMSOL中使用MATLAB脚本................................................................................ - 52 -10.3在MATLAB中编写GUI ................................................................................................. - 53 -10.4常用脚本指令................................................................................................................ - 54 -十一、其他 ................................................................................................................................... - 56 -11.1局部坐标系.................................................................................................................... - 56 -11.2应力集中问题................................................................................................................ - 56 -11.3灵活应用案例库............................................................................................................ - 57 -11.4经常看看在线帮助........................................................................................................ - 57 -11.5临时文件........................................................................................................................ - 58 -11.6物理场开发器................................................................................................................ - 59 -一、几何建模COMSOL Multiphysics提供丰富的工具,供用户在图形化界面中构建自己的几何模型,例如1D中通过点、线,2D中可以通过点、线、矩形、圆/椭圆、贝塞尔曲线等,3D中通过球/椭球、立方体、台、点、线等构建几何结构,另外,通过镜像、复制、移动、比例缩放等工具对几何对象进行高级操作,还可以通过布尔运算方式进行几何结构之间的切割、粘合等操作。
GMS_在某典型化工工业园区地下水铊污染物运移研究中的应用
第37卷第4期2023年8月南华大学学报(自然科学版)Journal of University of South China(Science and Technology)Vol.37No.4Aug.2023收稿日期:2023-02-24基金项目:国家自然科学基金资助项目(51174117);南华大学科研启动基金项目(200XQD039);湖南省教育厅科研平台项目(15K106);湖南创新平台开放基金项目(17K078)作者简介:段㊀毅(1987 ),男,工程师,博士,主要从事水质净化与水污染控制等方面的研究㊂E-mail:duanyi1987@㊂∗通信作者:周书葵(1965 ),男,教授,主要从事水处理理论与技术㊁地下水放射性污染防治与评价㊁污染控制与资源化技术等方面的研究㊂E-mail:zhoushukui@DOI :10.19431/ki.1673-0062.2023.04.002GMS 在某典型化工工业园区地下水铊污染物运移研究中的应用段㊀毅,李东春,周书葵∗(南华大学土木工程学院,湖南衡阳421001)摘㊀要:本研究以南方某市北部化工区为研究对象,基于数值模拟软件(groundwater modeling system ,GMS )建立水文地质概念模型和三维溶质运移数值模型,模拟期设定为2020年1月 2029年12月,并对园区污染源污染物持续泄漏1h ㊁12h 和24h后,铊污染物在地下水中的迁移过程进行模拟预测㊂研究结果表明,Tl 污染晕质量浓度为0.004~0.024mg /L ;污染晕核心区由污染源向东平移且呈扩张趋势,等值线质量浓度为0.012~0.016mg /L ,外圈区域整体向核心区收缩,等值线浓度为0.008~0.012mg /L ;污染晕最大迁移距离分别为363㊁1085㊁2753m ㊂超标范围为0.07~1.04km 2,500d 和3500d 后相对于最初50d 污染晕最大迁移距离分别延伸了66.5%和86.8%,污染晕核心区整体呈扩张趋势,外圈区域向核心区收缩㊂污染物持续泄漏1h ㊁12h 后和24h 后随模拟时间延长呈线性上升趋势,最高值分别为0.02㊁0.005㊁0.0035mg /L ㊂关键词:化工园区;地下水污染;溶质运移;数值模拟中图分类号:X523文献标志码:A文章编号:1673-0062(2023)04-0009-09Application of GMS in Study of Thallium Pollutant Transport inGroundwater of a Typical Chemical Industry ParkDUAN Yi ,LI Dongchun ,ZHOU Shukui ∗(School of Civil Engineering,University of South China,Hengyang,Hunan 421001,China)Abstract :In this study,the northern chemical industry zone of a city in the south is taken as the research object.Based on GMS,a hydrogeological conceptual model and a three-di-第37卷第4期南华大学学报(自然科学版)2023年8月mensional solute transport numerical model are established.The simulation prediction ofthe transport process of thallium pollutants in the groundwater is carried out after the pollu-tion source pollutants in the park leak continuously for1hour,12hours and24hours.The results show that the concentration of Tl pollution halo is0.004-0.024mg/L for thesimulation period of50d,500d and3500d;The core area of the pollution halo moveseastward from the pollution source and shows an expanding trend.The isolineconcentration is0.012-0.016mg/L,and the outer circle area shrinks to the core area asa whole.The isoline concentration is0.008-0.012mg/L;The maximum migration dis-tance of pollution halo is363,1085and2753m respectively.The exceeding range is0.07-1.04km2.After500d and3500d,the maximum migration distance of the pollu-tion halo extended by66.5%and86.8%respectively compared with the initial50d.Thecore area of the pollution halo showed an overall expansion trend,and the outer circle areacontracted to the core area.After1hour,12hours and24hours of continuous discharge ofpollutants,there is a linear upward trend with the extension of simulation time,and themaximum is0.02,0.005and0.0035mg/L,respectively.key words:chemical industry park;groundwater pollution;solute transport;numerical sim-ulation0㊀引㊀言铊因其特殊的性质在化工工业上得到了广泛使用㊂由于各化工企业多年来的处置不当,铊经过种种途径进入地下水系统㊂本研究以某市北部城区为研究对象,该地区分布着众多大型化工工业企业,生产过程中铊作为原料和中间体大量使用㊂因湘江干流水量较去年同期大幅减少,同时受流域内特征污染物影响,湘江断面地表水铊出现异常,水环境安全形势严峻㊂因此,针对非正常工况下铊在地下水中迁移过程的预测对化工园区环境管理以及对地下水资源的保护具有重要的现实意义,可为铊污染治理提供基本依据[1]㊂从20世纪80年代中期开始,由于计算机快速发展,地下水数值模拟变得非常流行㊂基于国外学者的广泛研究[2],20世纪90年代,数值模拟在我国迅速发展㊂随着人们对重金属越来越重视,学者们研究了重金属的不同方向[3],重金属迁移模拟的研究和应用也层出不穷,这些实践极大地丰富了地下水数值模拟的探究,推动了地下水环境治理工作的开展㊂陈红丹㊁郝喆等[4]以本钢集团歪头山铁矿尾矿库为工程背景,应用GeoStudio软件,考虑了降雨㊁蒸发等因素对重金属迁移的影响,模拟了尾矿库坝址在降雨和蒸发作用下的渗水特性和重金属污染物的迁移规律考虑㊂A.Ashraf等[5]为预测巴基斯坦旁遮普省南部地区地下水重金属污染的化学变化,使用PHREEQC软件进行一维反应迁移模型模拟该地区地下水重金属污染的迁移㊂李阳坤㊁于福荣等[6]以某灰渣填埋场为例,建立了水文地质概念模型,并基于MODFLOW软件以化学需氧量(chemical oxygen demand,COD)㊁氟化物㊁锌㊁镉㊁铅㊁六价铬㊁砷为预测因子,定量计算和预测了地下水重金属污染物迁移转化过程㊂M.Thangara-jan[7]利用Visual MODFLOW对帕拉尔河流域(1690km2)制革厂群中重金属的迁移进行了模拟㊂通过敏感性分析发现,对流过程是溶质运移的主导因素㊂辛圆心㊁詹美礼等[8]使用COMSOL 软件模拟预测了某尾矿中Cu2+和Pb2+离子的演化规律,并对比了多组分离子在不透水层和非不透水层中的迁移作用,解释了该模型的局限性以及解决该模型局限性的未来研究方向㊂L.Elango 等[9]以安得拉邦的Seripalli尾矿库为例建立了放射性核素溶质迁移模型,模拟了放射性核素238U㊁234U㊁230Th和226Ra的迁移㊂刘吉炀[10]为研究锰金属在地下水中的迁移转化过程,利用Visual MODELFLOW软件建立了研究区的水文地质数学模型,并为后期治理锰污染提供了较好的基础㊂王先稳等[11]对研究区进行了概化,利用可视化MODFLOW建立了地下水中铬迁移转化的三维模型㊂结果表明,污染晕由源头向周边扩散,受地下水流场分布和地质条件等因素影响,浓度第37卷第4期段㊀毅等:GMS在某典型化工工业园区地下水铊污染物运移研究中的应用2023年8月较高的范围呈扩大趋势㊂目前对地下水的相关研究,虽然已建立较为成熟的地下水流量模型和地下水污染风险评估方法,但对于地下水流场变化对铊污染发展趋势的影响,通过建立地下水流量-溶质运移耦合模型进行研究的较少,两者之间的关系尚不清晰㊂本研究利用数值模拟软件(groundwater modelingsystem,GMS)分别建立了地下水流模型和研究区溶质运移模型,基于模型识别与验证,模拟了地下水系统中的铊的迁移和转化过程,并对其污染羽迁移趋势进行了预测㊂研究成果可为我国化工工业园区的地下水污染防控提供科学依据[12]㊂1㊀研究区概况研究区范围如图1所示,该化工工业园区建立于2003年,定位为以盐化工㊁精细化工为主导,占地面积约4.2km2㊂本区域属堆积平原㊁平原微丘地貌类型,地形起伏不大,丘顶平缓,区内西高东低,西面为丘陵地,高程在80~125m之间,东面为平坦地,高程为51~70m之间,该区域最大高差相差70m左右㊂区域地层从上至下为第四纪中更新统亚黏土㊁轻亚黏土㊁粉细砂及砂卵石,基底第三系霞流市组茶山坳段主要为灰绿色泥岩㊁泥质粉砂岩㊁砂岩,含石膏㊁钙芒硝㊁石盐等,本区无不良地质现象㊂该区域属亚热带湿润季风气候,寒暑变化明显,四季分明,春多寒潮阴雨,夏多暴雨㊁高温,秋伏易旱,年平均气压1008600Pa,年平均气温18ħ,年平均降雨量1337.4mm;年平均蒸发量1468.7mm;平均相对湿度78%;年日照时数1663.5h;多年平均风速2.0m/s㊂该区域地下水自上而下划分为3个含水层,即风化裂隙潜水含水层,易于接受降雨的渗漏补给,径流条件好,常在丘陵谷地形成下降泉出露地表,流量随季节变化,枯水季显著减少或干涸;裂隙承压水带,一般在地表以下40~120m之间,含水层延伸不稳定,呈透镜状,地下水具承压性;盐层上部盐水带,厚度5~20m不等,呈透镜状,溶蚀明显㊂地下水流向为由西北流向东南,主要赋存于各类砂层与砂砾石的孔隙中,含水砂层由东向西逐渐增厚㊂研究区内地下水资源受各污染源长期影响㊂根据已有地下水监测井水质资料,铊污染主要集中在东南部,这是由于化工企业大量使用含铊原料,以及一系列不规范操作,铊污染物经过淋滤进入浅层地下水,因此选择铊作为污染物运移和扩散的研究对象㊂图1㊀模拟区域及污染源位置图Fig.1㊀Location of simulation area and pollution source 2㊀模型构建与验证2.1㊀概念模型根据钻孔资料及水文资料,对研究区实际水文地质条件进行概化,建立水文地质概念模型[12]㊂将研究区概化为具有统一水力联系的潜水含水层,该研究区域以地下水埋深较浅㊁孔隙潜水为主㊂根据水文地质图柱状图将含水层土层分为3层,从上至下为第四纪中更新统亚黏土层㊁粉细砂及砂卵石层㊁第三系灰绿色泥岩及砂岩层㊂基底第三系霞流市组茶山坳段灰绿色泥岩㊁泥质粉砂岩㊁砂岩层,地下水含水层厚度和水力坡度大,非饱和带和包气带存在水力交换,符合三维流动特征㊂随时间变化,地下水流动过程中各种运动要素均符合非稳定流特性㊂研究区含水层定义边界,将研究区南北及西边界设为隔水边界,东边为湘江,定义为定水头边界,两端水头为分别为47和50m㊂含水层内部介质分布不均,将其概化为非均质各向异性介质,各项水文地质参数呈各向异性㊂研究区水位观测井分布及边界概化图如图2所示㊂绘制河流并定义为沟渠,河流流量通量设置为555m3/d㊂分区设置补给速率,将模拟区域划分成一般补给区域及化工厂㊁污水处理厂补给区域,分别设置不同补给速率,一般补给区域地下水补给速率为0.0698m/d,化工厂及污水处理厂的补给速率0.0006m/d㊂第37卷第4期南华大学学报(自然科学版)2023年8月图2㊀研究区水位观测井分布及边界概化图Fig.2㊀Distribution and boundary overview of waterquality monitoring wells in study area2.2㊀地下水数学模型的建立与求解以达西定律作为理论基础,建立地下水数值模型㊂根据研究区水文地质概念模型,综合考虑模拟精度和资料精度,对研究区进行离散化处理㊂如图3所示,空间上采用矩形网格对研究区进行剖分,网格间距为100m ˑ100m,共生成17928个网格㊂利用GMS 中的MODFLOW 模块和MT3DMS 模块构建地下水流模型和溶质运移模型,将研究区内水流㊁水质数据进行离散后分别输入MODFLOW模块和MT3DMS 模块,根据水流模型的计算结果,运行溶质运移模型㊂基于研究区水文地质概念模型,用于模拟的MODFLOW 地下水流数学模型为:∂∂x K xx ∂H ∂x ()+∂∂x K yy ∂H ∂y ()+∂∂zK zz∂H∂z ()+ε=㊀μs∂H∂t㊀x ,y ,z ɪΩ;t >0H (x ,y ,z )︱t =0=H 0(x ,y ,z )㊀x ,y ,z ɪΩ;t =0H (x ,y ,z ,t )︱B =H 1(x ,y ,z )㊀x ,y ,z ɪB ;t >0(1)式中:K xx ㊁K yy ㊁K zz 分别为x ㊁y ㊁z 方向渗透系数,m /d;H 为地下水水头,m;H 0为含水层初始水头,m;μs 为含水层给水度;Ω为渗透区域;ε为源汇项强度,m /d;B 为定水头边界㊂考虑溶质运移过程中的对流㊁弥散和吸附等因素,描述地下水中溶质的运移状态㊂建立溶质运移模型基本方程为:Rθ∂C k ∂t =∂∂X i θD ij ∂C k∂X j ()-∂∂X iq i C k ()+q s C k sC (x ,y ,0)=C 0(x ,y )(2)式中:R 为阻滞因子;θ为孔隙度;C k 为溶解于水中k 组分的污染物质量浓度,单位mg /L;X i 为沿直角坐标系轴向距离,单位m;D ij 为水动力弥散系数,单位m 2/d;q i 为渗透速度,单位m /d;q s 为多孔介质的比重;C k s 为源汇水流中k 组分的质量浓度;t 为时间,单位d㊂图3㊀研究区域网格图Fig.3㊀Grid diagram of study area2.3㊀水文地质参数根据钻孔资料将研究区划分三层,其中第一层为五个水文地质参数分区,分区结果如图4所示㊂参考‘水文地质手册“[13],计算水流模型中所第37卷第4期段㊀毅等:GMS在某典型化工工业园区地下水铊污染物运移研究中的应用2023年8月用到的参数渗透系数K和给水度μ,得到初始取值范围㊂选取10个典型钻孔,利用单井等效渗透系数计算公式计算其渗透系数,取参数区内钻孔等效渗透系数计算结果的平均值分别作为各参数区的渗透系数㊂溶质运移过程中由于分子扩散远小于机械弥散,因此忽略分子扩散[14]㊂依据溶质运移模型计算所用到的参数为纵向弥散度αL,在水文地质参数分区的基础上对弥散度进行分区㊂根据研究区含水层岩性㊁储存条件㊁导水性能㊁渗透能力及抽水试验[15],参数初值如表1所示,研究区水文地质参数初始赋值及参数分区如图4㊁表1所示㊂图4㊀渗透系数分区图Fig.4㊀Partition diagram of permeability coefficient 表1㊀研究区的水文地质参数Table1㊀Hydrogeological parameters of study area项目分区水平渗透系数/(m㊃d-1)垂向异性比贮水率给水度孔隙度纵向弥散度/m第一层Ⅰ70~8010.00020.70.530.00Ⅱ50~6510.00020.70.530.00Ⅲ70~8310.00020.70.530.00Ⅳ75~9010.00020.70.530.00Ⅴ50~6510.00020.70.530.00第二层100~11040.00020.70.525.00第三层70~8540.00020.70.320.002.4㊀模型校准和验证2.4.1㊀地下水流场拟合根据收集到的丰水期地下水位动态监测数据,对研究区域的地下水流场进行插值拟合㊂由图5可知,模拟的地下水流场与实际地下水流场拟合程度较好㊂该区域的西部地下水位等值线较密集,说明该区域水力梯度大,径流强烈㊂经过校准后,地下水流模型能够准确反映出地下水流场的特征㊂2.4.2㊀地下水水位与污染物浓度拟合根据2020年1月 2021年12月期间10个水位观测井的数据,对地下水流模型进行识别和验证㊂基于校准后的地下水流场模型,以2021年7月铊污染初始浓度为起始条件,研究区域地下水采样点如图6所示㊂选取J4㊁J5㊁J9号取样点观测铊浓度值,分析污染物模拟与实测值的变化趋势,并对溶质迁移模型进行识别和验证㊂通过改变模型参数,调整边界条件,重复试算,直到大部分观测孔的计算值与观测值误差达到模拟的精度要求[16]㊂在地下水流模型识别过程中主要调整边界条件和模型参数,如给水度㊁渗透系数等㊂而溶质运移模型的识别验证,则主要调整弥散度㊂经过多次运行和反复调参,根据‘地下水流数值模拟技术要求“①将模型误差控制在可接受范围之内,使计算值和观测值达到最佳拟合㊂水位观测井的计算值与模拟值误差如图7㊁表2所示㊂水流模型计算值与观测值绝对误差小于0.5m的占90%,最大绝对误差为0.67754m,最大相对误差为9.45%㊂J4㊁J5和J9监测点铊污染浓度实测值与模拟值的拟合曲线如图8所示㊂结果表明最大相对误差为11.6%~18.5%,实测值和模拟值的动态变化趋势基本一致,部分波动可能与季节性水位变化有关㊂总体来看,模拟效果较好,且最大相对误差均满足精度要求,因此模型是可靠的㊂基于上述水流模型和溶质运移模型的校准最终确定各区参数取值如表3所示㊂①中国地质调查局.地下水流数值模拟技术要求:GW1 D1,2004.第37卷第4期南华大学学报(自然科学版)2023年8月图5㊀地下水流场拟合图Fig.5㊀Fitting diagram of groundwater flowfield图6㊀研究区域地下水采样点Fig.6㊀Groundwater sampling points in studyarea图7㊀地下水位观测值与计算值对比Fig.7㊀Comparison of observed and calculatedvalues groundwater levels表2㊀水位观测井计算值与模拟值误差Table 2㊀Error between calculated value and simulatedvalue of water level observation well观测井编号观测值/m 模拟值/m 绝对误差/m #1048.0683448.360360.29202#948.2956548.750870.45522#850.0080350.434590.42656#750.1201750.07608-0.04409#654.0268353.62916-0.39767#555.2664155.01198-0.25443#458.9578959.224460.266572#360.8551560.54967-0.30548#263.0645762.38703-0.67754#164.1889963.55859-0.63043图8㊀J4㊁J5㊁J9检测点铊浓度拟合图Fig.8㊀Fitting diagram of thallium concentration fittingdiagram at J4,J5,and J9detection points第37卷第4期段㊀毅等:GMS 在某典型化工工业园区地下水铊污染物运移研究中的应用2023年8月表3㊀研究区水文地质参数识别结果Table 3㊀Identification results of hydrogeologicalparameters in study area项目分区水平渗透系数/(m㊃d -1)给水度孔隙度纵向弥散度/m 第一层Ⅰ750.700.535.00Ⅱ530.700.3230.00Ⅲ800.700.4528.00Ⅳ860.700.535.00Ⅴ630.700.535.00第二层1070.700.520.00第三层800.700.315.002.5㊀污染源强的设定长期以来,化工企业不当的废物处理方法导致铊通过多种途径进入地下水系统㊂本研究关注含铊污染物在含水层中的迁移扩散过程,污染物进入地下水后随水流迁移的空间特征㊂在非正常工况下,化工企业的生产废水未经规范处理,排入雨水收集池和生产废水调节池,可能发生泄漏㊂化工企业受到一定程度的降水入渗影响,淋滤作用将生产废水中的铊污染带入地下水中,进而污染地下水体㊂泄漏量的计算基于与本研究类似项目的经验系数,按储存量和流通量的0.01%取值㊂渗入地下水中的污染物占生产材料的10%㊂本研究取化工厂污水处理设施的检漏周期分别为1㊁12㊁24h,即发生非正常工况1㊁12㊁24h 后发现并进行修复切断渗漏源㊂3㊀结果与分析在地下水水流模型基础上,利用GMS 软件预测研究区地下水溶质迁移趋势,选取Tl 作为研究区地下水常规污染物的代表指标,采用模糊综合评价法对地下水进行水质评判,评判依据为‘地下水质量标准“[17]㊂监测方法见‘地表水环境质量标准“[18]㊂溶质运移模型以2020年1月为初始时间,模拟期设定为2020年1月 2029年12月,应力期为50d,共设置76个应力期㊂本研究只考虑Tl 的对流和弥散作用,若考虑地下水中的化学反应,可在污染物控制方程中增加化学反应项[19]㊂研究区含Tl 污染物泄漏1h 对地下水污染迁移预测如图9所示,Tl 污染晕质量浓度为0.004~0.024mg /L;污染晕核心区由污染源向东平移且呈扩张趋势,等值线质量浓度为0.012~0.016mg /L,外圈区域整体向核心区收缩,等值线质量浓度为0.008~0.012mg /L;污染晕最大迁移距离分别为363㊁1085㊁2753m㊂超标范围为0.07~1.04km 2㊂500d㊁3500d 后相对于最初50d 污染晕最大迁移距离分别延伸了66.5%㊁86.8%,污染晕核心区整体呈扩张趋势,外圈区域向核心区收缩㊂在污染物泄漏500d 后研究区域东部污染晕开始污染地表水,在污染物发生泄漏3500d 后,该区域中部污染晕地下水中污染物运移距离有限,这主要与研究区地下水水力梯度较小㊁含水层渗透系数较低相关㊂图9㊀50d ㊁500d 和3500d 后地下水Tl 迁移趋势Fig.9㊀Tl migration trend of groundwater after 50d ,500d and 3500d㊀㊀模拟污染物持续泄漏1㊁12㊁24h 观测井Tl 浓度变化趋势如图10所示㊂可以看出,观测井124#Tl 浓度随模拟时间变化呈线性上升趋势,最高值分别为0.02㊁0.005㊁0.0035mg /L;3#观测孔Tl第37卷第4期南华大学学报(自然科学版)2023年8月浓度随模拟时间延长变化不明显,这主要与研究区地下水水力梯度较小相关㊂结果表明,污染物泄漏时间越长,对周边环境影响越大,因此应建立起污染预警机制,及时发现污染并截断污染源㊂从模拟结果可以看出,污染晕扩散方向与水流场方向基本一致,因此研究区水流场对污染物迁移扩散起决定作用㊂污染晕由西向东扩散,这与该区域内西边地势比东边高的地形特征有关;Tl 污染晕的扩散范围随着迁移时间的推移在东部略有增加,西部末端则逐渐缩小,直至消失㊂因此,为了更精准地防止地下水环境污染,需要根据不同区域的地形特征收集相应的流场数据,从而能更准确地模拟污染物的扩散规律㊂在实施污染物防治工作时,需要着重关注东部地区以及一些涉铊化工企业下游,以有效地控制污染风险㊂建议相关部门做好调查工作,采集有效水文数据并正确模拟实际流场,对区域东部地表污染点源及地下水污染物扩散较严重区域加大防护力度,采取地下帷幕墙㊁井排等技术防治地下水Tl 污染㊂为防控地下水污染,避免对泄漏点周边地下水环境造成影响,结合预测结果,建议在污水处理厂下游20~40m 处布设跟踪监测井,定期开展地下水监测工作㊂图10㊀观测井Tl 质量浓度变化趋势Fig.10㊀Variation trend of Tl mass concentration in observation well4㊀结㊀论基于地下水观测资料及钻孔数据建立地下水水流-溶质运移耦合模型,并模拟了化工企业在非正常工况下污染物持续泄漏1㊁12和24h 后2020年1月 2029年12月该地区地下水铊污染变化的趋势,得出如下结论:1)本地区浅层地下水模拟适用于GMS 中的水流模型,能提供较好的流场分析并对污染物质迁移模拟㊂地下水位在各应力期的观测值与计算值的拟合都比较好,各含水单元在不同的应力期都能较好地达到水均衡要求㊂第37卷第4期段㊀毅等:GMS在某典型化工工业园区地下水铊污染物运移研究中的应用2023年8月2)GMS模拟与分析结果表明,污染物长时间排放,相对于排放时间较短时,Tl污染晕浓度及范围均呈倍数增加,污染源入渗处Tl浓度变化起伏较大,且具有较高的不稳定性㊂3)为避免泄漏点周边影响地下水环境,防控地下水污染,结合预测结果,建议在部分化工厂以及污水处理厂下游20~40m处布设跟踪监测井,定期开展地下水监测工作,以便及时发现污染,截断污染源㊂此次模拟遵从保守性原则,未考虑污染物的吸附和降解等生物地球化学过程,后期可根据管理需要,通过补充相关反应动力学和热力学参数,进一步提高模型模拟预测精度㊂参考文献:[1]JABEEN M,AHMAD Z,ASHRAF A.Monitoring regional groundwater flow and contaminant transport in Southern Punjab,Pakistan,using numerical modeling approach[J]. Arabian journal of geosciences,2019,12(18):123-135.[2]SOHN W,LEE G.Numerical simulation of tritium migra-tion in groundwater at Wolsong Plant site[J].Journal of nuclear science and technology,2013,50(11):1099-1109.[3]BANAEI S M A,JAVID A H,HASSANI A H.Numerical simulation of groundwater contaminant transport in porous media[J].International journal of environmental science and technology,2021,18(1):151-162. [4]陈红丹,郝喆,滕达,等.降雨-蒸发与地下水耦合作用下的大型尾矿库重金属Cu2+迁移数值模拟分析[J].有色金属工程,2021,11(4):133-142.[5]ASHRAF A,CHEN X,RAMAMURTHY R.Modelling heavy metals contamination in groundwater of Southern Punjab, Pakistan[J].International journal of environmental science and technology,2021,18(8):2221-2236.[6]李阳坤,于福荣,孙剑,等.灰渣填埋场地下水中典型污染物迁移数值模拟[J].人民长江,2020,51(11): 46-52.[7]THANGARAJAN M.Modeling pollutant migration in the upper Palar river basin,Tamil Nadu,India[J].Environ-mental geology(Berlin),1999,38(3):209-222.[8]辛圆心,詹美礼.土壤中重金属离子运移规律数值模拟分析[J].西北水电,2019(6):42-46. [9]ELANGO L,BRINDHA K,KALPANA L,et al.Groundwater flow and radionuclide decay-chain transport modelling a-round a proposed uranium tailings pond in India[J]. Hydrogeology journal,2012,20(4):797-812. [10]刘吉炀.尾矿库重金属Mn在地下水中迁移数值模拟研究[D].湘潭:湖南科技大学,2017:10-12.[11]王先稳,马伟芳.地下水数值模拟的研究与实践进展[C]//中国环境科学学会环境工程分会.中国环境科学学会2019年科学技术年会:环境工程技术创新与应用分论坛论文集(三).北京:‘工业建筑“杂志社有限公司,2019:218-222;187.[12]TORRES-BEJARANO F,COUDER-CASTAÑEDA C,RAMÍREZ-LEÓN H,et al.Numerical modelling of heavymetal dynamics in a river-lagoon system[J].Mathematicalproblems in engineering,2019,2019:1-24. [13]中国地质调查局.水文地质手册[M].2版.北京:地质出版社,2012:25-30.[14]HUANG L X,CHANG L R,XING L T,et al.Numericalsimulation for impact of groundwater environment in achemical industry park in the southwest of shandongprovince based on GMS[J].Earth and environmentalscience,2018,113(1):12133.[15]WU J,ZENG X.Review of the uncertainty analysis ofgroundwater numerical simulation[J].Chinese sciencebulletin,2013,58(25):3044-3052.[16]魏忠成,杜新强,侯嘉维,等.大区域地下水流数值模型的多指标校正方法:以那陵格勒河冲洪积扇地下水数值模型为例[J].水利水电技术,2017,48(12): 7-13.[17]中华人民共和国国土资源部㊁水利部.地下水质量标准:GB/T14848 2017[S].北京:中国标准出版社, 2017:9-10.[18]国家环境保护总局科技标准司.地表水环境质量标准:GB3838 2002[S].北京:中国环境科学出版社,2002:5-6.[19]陈言菲,李翠梅,齐国远,等.基于GMS的江南某地区浅层地下水溶质迁移规律分析[J].水电能源科学,2018,36(8):33-38.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1< p < 2
3、Implementation of PDE models in the COMOSL Multiphysics
Add Physics
Import the initial image
Draw the image domain Set the coefficient、 boundary and initial values Mesh
Add noise
Fig 2 original interferogram
Fig 3 noise interferogram
Fig 4 linear diffusion result
Fig 5 PM model result
Fig 6 TV model result
Coupled PDE model in image processing
1、Introduction
• Subject background
Fig 1 Experimental interferogram
• The interferogram from the Interferometric Synthetic Aperture Sonar (InSAS) has much noise because of the sonar shadow、water environment、under Sampling etc. The noise will make the following phase unwrapping become very difficult. So it is important for InSAS to denoise the interferogram effectively.
• 1、Introduction
• 2、PDE models in image processing • 3、Implementation of PDE models in the COMSOL Multiphysics • 4、Experimental results and data analysis • 5、Conclusion and outlook
2、PDE models in image processing
• 2.1 The general form of PDE in image processing
⎧ ∂u 2 t , x + F x , u t , x , ∇ u t , x , ∇ 在 ( 0, T ) × Ω上, ( ) ( ) ( ) ( x x u ( t , x ) ) = 0, ⎪ ∂t ⎪ ⎪ ∂u 在 ( 0, T ) × Ω上, ⎨ ( t , x ) |∂Ω = 0, ⎪ ∂n ⎪u ( 0, x ) = u0 ( x ) , 在Ω内, ⎪ ⎩ • Where Ω ⊂ R2is the image domain, ∂Ω is the boundary Ω of of is the initial F ∂Ω u n , is unit normal vector 0 ( x) ,
2 ⎧ ∂u ⎪ ∂t = ∇ ⋅ c ∇u ∇u , ⎪ ⎪ ∂u ⎨ |∂Ω = 0, ⎪ ∂n ⎪u ( 0, x ) = u0 ( x ) , ⎪ ⎩
(( ) )
在 ( 0,T ) × Ω内, 在 ( 0,T ) × ∂Ω上, 在Ω内,
• It is a an anisotropy diffusion equation. Where c ∇u is a diffusion function depended on the image gradient. P-M model can denoise and preserve edges well by defining the diffusion function suitably.
the edge function defined as gk (s) = 1 1 + s 2 k 2 . • It is a coupled PDE model, which can preserve the image edges well when the image gradient ∇u changes a lot.
5、Conclusion and outlook
• Conclusion
• This paper introduces the basic ideas and theoretical frame of image processing based on PDE, presents the idea of the application of COMSOL Multiphysics in image processing. • The simulated and real lake experimental interferogram was denoised by the PDE models which are implemented in the COMSOL Multiphysics.The experimental results indicate that COMSOL Multiphysics is able to provide a new finite element simulation platform for image processing.
Ideas of this paper
• PDE is an important tool in image processing. COMSOL Multiphysics builds the models based on PDE,it is easy to define and solve the coupled problem of any physical field. • However, it has not the image processing module so far. So the idea is that COMSOL Multiphysics can be a new platform for image processing.
image. It can denoise the interferogram, however, it can not preserve the edges of image.
PDE models in image processing
• 2.3 Perona-Malik model in image processing
(
)
• Where λ is the lagrange multiplier depended on noise level. The model can overcome the staircase effect as long as we choose the proper p .
1 λ p 2 min J p ( u ) = ∫ ∇u dxdy + ∫ u − u0 dxdy, u pΩ 2Ω
• Coupled PDE model in image processing
∇u ⎧ ∂ u = α g ( ∇ v ) ∇ u div ( ) + α∇( g k ( ∇v )) ⋅∇u − β (u − I ) ∇u k ⎪ t ∇u ⎪ ⎪ ∇v ) − b (v − u ) ⎨∂ t v = a (t )div( ∇v ⎪ ⎪u ( x, y, 0) = u ( x, y ), v( x, y, 0) = u ( x, y ) 0 0 ⎪ ⎩ • Where I , u0 ( x, y ) are all the original noise image, g k ( s ) is
2s
5s
Fig 8 experimental interferogram
Fig 9 2s Coupled model filter result
Fig 10 5s Coupled model filter result
Table 1 Data analysis of the denoising results Interferogram data Lake experiment interferogram Solve time 0s 2s 5s Residues 1834 36 12
(
)
Experimental results and analysis
• The interferogram obtained by the InSAS lake experiment is denoised by Coupled PDE model which is built on the COMSOL Multiphysics, the experimental results and data analysis is
2011年中国区用户年会
Application of COMSOL in Image Processing
Speaker:Wang Maolin Supervisor:Yue Jun Qingdao Technological University October 18, 2011,Beijing
The outline of the report
(
2age processing
• 2.4 TV model in image processing p−2 ⎧ ∂u 2 t , x = ∇ ⋅ ∇ u ∇ u + λ u − u , t ≥ 0, x = x , x ∈ R , ( ) ( ) ( ) 0 1 2 ⎪ ∂t ⎪ ⎪ ∂u 在 ( 0,T ) × ∂Ω上, ⎨ ( t , x ) |∂Ω = 0, ⎪ ∂n ⎪u ( 0, x ) = u0 ( x ), 在Ω内, ⎪ ⎩ • It is obtained by minimize the following function