山东省菏泽市东明县2017-2018学年九年级第一学期12月月考数学试卷(含解析)
最新-山东省菏泽市东明县2018届中考数学一模试卷含答案解析 精品
2018年山东省菏泽市东明县中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.把Rt△ABC的各边都扩大3倍得到Rt△A′B′C′,那么锐角A和A′的余弦值的关系是()A.cosA=cosA′B.cosA=3cosA′C.3cosA=cosA′D.不能确定2.生活中我们经常用的梯子,已知长度不变的梯子根地面所成的锐角为α,下面关于α的三角函数与梯子的倾斜程度之间,叙述正确的是()A.sinα的值越大,梯子越陡B.cosα的值越大,梯子越陡C.tanα的值越小,梯子越陡D.陡缓程度与α的函数值无关3.如图,两建筑物的水平距离为a米,从A点测得D点的俯角为α,测得C点的俯角为β,则较低建筑物的高为()A.a米B.acotα米C.acotβ米D.a(tanβ﹣tanα)米4.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2B.y=﹣2(x﹣1)2C.y=﹣2x2+1 D.y=﹣2x2﹣15.对于二次函数y=ax2+bx+c(a≠0),我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数y=x2﹣mx+m﹣2(m为实数)的零点的个数是()A.1 B.2 C.0 D.不能确定6.若二次函数y=ax2+bx+a2﹣2(a,b为常数)的图象如下,则a的值为()A.﹣2 B.﹣C.1 D.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,下列结论中错误的是()A.abc<0 B.2a+b=0 C.b2﹣4ac>0 D.a﹣b+c>08.正六边形的边心距与边长之比为()A.:3 B.:2 C.1:2 D.:29.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°10.如图所示,AB是⊙O的直径,D、E是半圆上任意两点,连接AD、DE,AE与BD相交于点C,要是△ADC与△ABD相似,可以添加一个条件.下列添加的条件中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD•AB=CD•BD D.AD2=BD•CD二、填空题(共8小题,每小题3分,满分27分)11.在锐角△ABC中,若|cos2A﹣|+(tanB﹣)2=0,则∠C的正切值是.12.AE、CF是锐角三角形ABC的两条高,若AE:CF=3:2,则sinA:sinC等于.13.二次函数y=ax2+2x﹣1与x轴有两个交点,则a的取值范围.14.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为cm.15.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).16.挂钟分针的长10cm,经过45分钟,它的针尖转过的弧长是cm.17.当0≤x≤3时,二次函数y=3x2﹣12x+5的最大值是,最小值是.18.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a﹣b+1>0.其中正确的结论是(填写序号)三、解答题(共6小题,满分63分)19.求值:2﹣1﹣3tan30°+(﹣1)0++.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.21.阅读下面的材料,先完成阅读填空,再按要求答题:sin30°=,cos30°=,则sin230°+cos230°=;①sin45°=,cos45°=,则sin245°+cos245°=;②sin60°=,cos60°=,则sin260°+cos260°=.③…观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=.④(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;(2)已知:∠A为锐角(cosA>0)且sinA=,求cosA.22.如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=.(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.23.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D 作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.24.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?2018年山东省菏泽市东明县中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.把Rt△ABC的各边都扩大3倍得到Rt△A′B′C′,那么锐角A和A′的余弦值的关系是()A.cosA=cosA′B.cosA=3cosA′C.3cosA=cosA′D.不能确定【考点】锐角三角函数的定义.【分析】根据题意可得得到的新三角形与原三角形相似,根据相似三角形的性质可得∠A=∠A′,进而得到答案.【解答】解:当Rt△ABC各边都扩大3倍时,得到的新三角形与原三角形相似,所以∠A=∠A′,所以cosA=cosA′.故选:A.【点评】此题主要考查了锐角三角函数,以及相似三角形的性质,关键是掌握相似三角形对应角相等.2.生活中我们经常用的梯子,已知长度不变的梯子根地面所成的锐角为α,下面关于α的三角函数与梯子的倾斜程度之间,叙述正确的是()A.sinα的值越大,梯子越陡B.cosα的值越大,梯子越陡C.tanα的值越小,梯子越陡D.陡缓程度与α的函数值无关【考点】解直角三角形的应用-坡度坡角问题.【分析】锐角三角函数值的变化规律:正弦值和正切值都是随着角的增大而增大,余弦值和余切值都是随着角的增大而减小.【解答】解:根据锐角三角函数的变化规律,知sinA的值越大,∠A越大,梯子越陡.故选:A.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握锐角三角函数值的变化规律是解题的关键.3.如图,两建筑物的水平距离为a米,从A点测得D点的俯角为α,测得C点的俯角为β,则较低建筑物的高为()A.a米B.acotα米C.acotβ米D.a(tanβ﹣tanα)米【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】作DE⊥AB于点E,分别在直角△ADE和直角△ABC中,利用三角函数即可表示出AB于AE的长,根据DC=BE=AB﹣AE即可求解.【解答】解:作DE⊥AB于点E.在直角△AED中,ED=BC=a,∠ADE=α∵tan∠ADE=,∴AE=DE•tan∠ADE=a•tanα.同理AB=a•tanβ.∴DC=BE=AB﹣AE=a•tanβ﹣a•tanα=a(tanβ﹣tanα).故选D.【点评】本题考查了利用三角函数解决有关仰角、俯角的计算问题,关键是作出辅助线,把实际问题转化成解直角三角形问题.4.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2B.y=﹣2(x﹣1)2C.y=﹣2x2+1 D.y=﹣2x2﹣1【考点】二次函数图象与几何变换.【专题】探究型.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.故选C.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.5.对于二次函数y=ax2+bx+c(a≠0),我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数y=x2﹣mx+m﹣2(m为实数)的零点的个数是()A.1 B.2 C.0 D.不能确定【考点】抛物线与x轴的交点.【专题】压轴题;新定义.【分析】由题意可知:函数的零点也就是二次函数y=ax2+bx+c与x轴的交点,判断二次函数y=x2﹣mx+m﹣2的零点的个数,也就是判断二次函数y=x2﹣mx+m﹣2与x轴交点的个数;根据△与0的关系即可作出判断.【解答】解:由题意可知:函数的零点也就是二次函数y=ax2+bx+c与x轴的交点△=(﹣m)2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4∵(m﹣2)2一定为非负数∴(m﹣2)2+4>0,∴该抛物线与x轴有2个不同的交点,∴二次函数y=x2﹣mx+m﹣2(m为实数)的零点的个数是2.故选B.【点评】考查二次函数y=ax2+bx+c的图象与x轴交点的个数.6.若二次函数y=ax2+bx+a2﹣2(a,b为常数)的图象如下,则a的值为()A.﹣2 B.﹣C.1 D.【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线与y轴的交点判断c与0的关系,进而得出a2﹣2的值,然后求出a值,再根据开口方向选择正确答案.【解答】解:由图象可知:抛物线与y轴的交于原点,所以,a2﹣2=0,解得a=±,由抛物线的开口向上所以a>0,∴a=﹣舍去,即a=.故选D.【点评】二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,下列结论中错误的是()A.abc<0 B.2a+b=0 C.b2﹣4ac>0 D.a﹣b+c>0【考点】二次函数图象与系数的关系.【专题】数形结合.【分析】A、由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,由a与0的关系并结合抛物线的对称轴判断b与0的关系,即可得出abc与0的关系;B、由抛物线的对称轴为x=1,可得﹣=1,再整理即可;C、利用抛物线与x轴的交点的个数进行分析即可;D、由二次函数的图象可知当x=﹣1时y<0,据此分析即可.【解答】解:A、由抛物线开口向下,可得a<0,由抛物线与y轴的交点在x轴的上方,可得c>0,由抛物线的对称轴为x=1,可得﹣>0,则b>0,∴abc<0,故A正确,不符合题意;B、由抛物线的对称轴为x=1,可得﹣=1,则2a+b=0,故B正确,不符合题意;C、由抛物线与x轴有两个交点,可得b2﹣4ac>0,故C正确,不符合题意;D、当x=﹣1时,y<0,则a﹣b+c<0,故D错误,符合题意,故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.8.正六边形的边心距与边长之比为()A.:3 B.:2 C.1:2 D.:2【考点】正多边形和圆.【分析】首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.【解答】解:如图:设六边形的边长是a,则半径长也是a;经过正六边形的中心O作边AB的垂线OC,则AC=AB=a,∴OC==a,∴正六边形的边心距与边长之比为:a:a=:2.故选B.【点评】此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.9.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°【考点】圆周角定理.【分析】首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.【解答】解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.10.如图所示,AB是⊙O的直径,D、E是半圆上任意两点,连接AD、DE,AE与BD相交于点C,要是△ADC与△ABD相似,可以添加一个条件.下列添加的条件中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD•AB=CD•BD D.AD2=BD•CD【考点】相似三角形的判定;圆周角定理.【分析】根据有两组角对应相等的两个三角形相似可对A解析判断;根据圆周角定理和有两组角对应相等的两个三角形相似可对B解析判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对C、D解析判断.【解答】解:A、∵∠ACD=∠DAB,而∠ADC=∠BDA,∴△DAC∽△DBA,所以A选项的添加条件正确;B、∵AD=DE,∴∠DAE=∠E,而∠E=∠B,∴∠DAC=∠B,∴△DAC∽△DBA,所以B选项的添加条件正确;C、∵∠ADC=∠BDA,∴当DA:DC=DB:DA,即AD2=DC•BD时,△DAC∽△DBA,所以C选项的添加条件不正确;D、∵∠ADC=∠BDA,∴当DA:DC=DB:DA,即AD2=DC•BD时,△DAC∽△DBA,所以D选项的添加条件正确.故选C.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.也考查了圆周角定理.二、填空题(共8小题,每小题3分,满分27分)11.在锐角△ABC中,若|cos2A﹣|+(tanB﹣)2=0,则∠C的正切值是.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列出算式,求出∠A和∠B,根据三角形内角和定理求出∠C,根据正切的概念解答即可.【解答】解:由题意得,cos2A﹣=0,tanB﹣=0,则cosA=,tanB=,解得,∠A=60°,∠B=60°,则∠C=180°﹣60°﹣60°=60°,tan60°=,则∠C的正切值是,故答案为:.【点评】本题考查的是非负数的性质和特殊角的三角函数值,掌握几个非负数相加和为0时,则其中的每一项都必须等于0、熟记特殊角的三角函数值是解题的关键.12.AE、CF是锐角三角形ABC的两条高,若AE:CF=3:2,则sinA:sinC等于2:3.【考点】锐角三角函数的定义.【分析】运用锐角三角函数的定义解答.【解答】解:如图,由锐角三角函数的定义可知,∵sinA=,sinC=,∴sinA:sinC=:=FC:AE=2:3.故答案为:2:3.【点评】本题考查了锐角三角函数的定义,比较简单.13.二次函数y=ax2+2x﹣1与x轴有两个交点,则a的取值范围a>﹣1且a≠0.【考点】抛物线与x轴的交点.【专题】计算题.【分析】根据二次函数的定义得到a≠0,根据△=b2﹣4ac>0时,抛物线与x轴有2个交点得到△=22﹣4a•(﹣1)>0,然后求出两不等式的公共部分即可.【解答】解:根据题意得a≠0,且△=22﹣4a•(﹣1)>0,所以a>﹣1且a≠0.故答案为a>﹣1且a≠0.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.14.一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm.【考点】切线的性质;垂径定理;圆周角定理;弦切角定理.【专题】几何图形问题.【分析】连接OC,并过点O作OF⊥CE于F,根据等边三角形的性质,等边三角形的高等于底边的倍.已知边长为4cm的等边三角形ABC与⊙O等高,说明⊙O的半径为,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.【解答】解:连接OC,并过点O作OF⊥CE于F,且△ABC为等边三角形,边长为4,故高为2,即OC=,又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得FC=OC•cos30°=,OF过圆心,且OF⊥CE,根据垂径定理易知CE=2FC=3.故答案为:3.【点评】本题主要考查了切线的性质和等边三角形的性质和解直角三角形的有关知识.题目不是太难,属于基础性题目.15.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是3﹣π(结果保留π).【考点】扇形面积的计算;平行四边形的性质.【专题】压轴题.【分析】过D点作DF⊥AB于点F.可求▱ABCD和△BCE的高,观察图形可知阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积,计算即可求解.【解答】解:过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2,∴阴影部分的面积:4×1﹣﹣2×1÷2=4﹣π﹣1=3﹣π.故答案为:3﹣π.【点评】考查了平行四边形的性质,扇形面积的计算,本题的关键是理解阴影部分的面积=▱ABCD 的面积﹣扇形ADE的面积﹣△BCE的面积.16.挂钟分针的长10cm,经过45分钟,它的针尖转过的弧长是15πcm.【考点】弧长的计算.【专题】计算题.【分析】先求出经过45分钟分针的针尖转过的圆心角的度数,再根据弧长公式l=,求得弧长.【解答】解:∵分针经过60分钟,转过360°,∴经过45分钟转过270°,则分针的针尖转过的弧长是l===15π(cm).故答案为:15π.【点评】本题考查弧长的计算,属于基础题,解题关键是要掌握弧长公式l=,难度一般.17.当0≤x≤3时,二次函数y=3x2﹣12x+5的最大值是5,最小值是﹣7.【考点】二次函数的最值.【分析】先求出二次函数的对称轴为直线x=2,然后根据二次函数的增减性解答即可.【解答】解:∵抛物线的对称轴为x=﹣=2,∵a=3>0,∴x<2时,y随x的增大而减小,x>2时,y随x的增大而增大,∴在0≤x≤3内,x=2时,y有最小值,x=0时y有最大值,分别是y=12﹣24+5=﹣7和y=5,故答案为:5,﹣7.【点评】本题考查了二次函数的最值问题,二次函数的增减性,根据函数解析式求出对称轴解析式是解题的关键.18.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a﹣b+1>0.其中正确的结论是①②③④(填写序号)【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】先根据图象与x轴的交点及与y轴的交点情况画出草图,再由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵图象与x轴交于点(﹣2,0),(x1,0),与y轴正半轴的交点在(0,2)的下方∴a<0,c>0,又∵图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,∴对称轴在y轴左侧,对称轴为x=<0,∴b<0,∵图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,∴对称轴<<,∴a<b<0,由图象可知:当x=﹣2时y=0,∴4a﹣2b+c=0,整理得4a+c=2b,又∵b<0,∴4a+c<0.∵当x=﹣2时,y=4a﹣2b+c=0,∴2a﹣b+=0,而与y轴正半轴的交点在(0,2)的下方,∴0<<1,∴2a﹣b+1>0,∵0=4a﹣2b+c,∴2b=4a+c<0而x=1时,a+b+c>0,∴6a+3c>0,即2a+c>0,∴正确的有①②③④.故答案为:①②③④.【点评】此题主要考查了二次函数的图象与性质,尤其是图象的开口方向,对称轴方程,及于y轴的交点坐标与a,b,c的关系.三、解答题(共6小题,满分63分)19.求值:2﹣1﹣3tan30°+(﹣1)0++.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用负整数指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,第四项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣+1+2+=2+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.【考点】等腰三角形的判定;圆周角定理.【分析】(1)连接AD,则AD垂直平分BC,那么AB=AC;(2)应把△ABC的各角进行分类,与直角进比较,进而求得△ABC的形状.【解答】解:(1)连接AD.∵AB是⊙O的直径,∴AD⊥BC,∵BD=CD,∴AB=AC.(2)连接AD.∵AB是⊙O的直径,∴∠ADB=90°,∴∠B<∠ADB=90度.∠C<∠ADB=90度.∴∠B、∠C为锐角.∵AC和⊙O交于点F,连接BF,∴∠A<∠BFC=90度.∴△ABC为锐角三角形.【点评】作直径所对的圆周角是常见的辅助线作法.21.阅读下面的材料,先完成阅读填空,再按要求答题:sin30°=,cos30°=,则sin230°+cos230°=1;①sin45°=,cos45°=,则sin245°+cos245°=1;②sin60°=,cos60°=,则sin260°+cos260°=1.③…观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=1.④(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;(2)已知:∠A为锐角(cosA>0)且sinA=,求cosA.【考点】解直角三角形;勾股定理;同角三角函数的关系.【分析】①②③将特殊角的三角函数值代入计算即可求出其值;④由前面①②③的结论,即可猜想出:对任意锐角A,都有sin2A+cos2A=1;(1)过点B作BD⊥AC于D,则∠ADB=90°.利用锐角三角函数的定义得出sinA=,cosA=,则sin2A+cos2A=,再根据勾股定理得到BD2+AD2=AB2,从而证明sin2A+cos2A=1;(2)利用关系式sin2A+cos2A=1,结合已知条件cosA>0且sinA=,进行求解.【解答】解:∵sin30°=,cos30°=,∴sin230°+cos230°=()2+()2=+=1;①∵sin45°=,cos45°=,∴sin245°+cos245°=()2+()2=+=1;②∵sin60°=,cos60°=,∴sin260°+cos260°=()2+()2=+=1.③观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=1.④(1)如图,过点B作BD⊥AC于D,则∠ADB=90°.∵sinA=,cosA=,∴sin2A+cos2A=()2+()2=,∵∠ADB=90°,∴BD2+AD2=AB2,∴sin2A+cos2A=1.(2)∵sinA=,sin2A+cos2A=1,∠A为锐角,∴cosA==.【点评】本题考查了同角三角函数的关系,勾股定理,锐角三角函数的定义,比较简单.22.如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=.(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)根据抛物线的对称轴得到抛物线的顶点式,然后代入已知的两点理由待定系数法求解即可;(2)首先求得点B的坐标,然后分CM=BM时和BC=BM时两种情况根据等腰三角形的性质求得点M的坐标即可.【解答】解:(1)设抛物线的解析式把A(2,0)、C(0,3)代入得:解得:∴即(2)由y=0得∴x1=2,x2=﹣3∴B(﹣3,0)①CM=BM时∵BO=CO=3 即△BOC是等腰直角三角形∴当M点在原点O时,△MBC是等腰三角形∴M点坐标(0,0)②如图所示:当BC=BM时在Rt△BOC中,BO=CO=3,由勾股定理得BC=∴BC=,∴BM=∴M点坐标(,综上所述:M点坐标为:M1(,M2(0,0).【点评】本题考查了二次函数的综合知识,第一问考查了待定系数法确定二次函数的解析式,较为简单.第二问结合二次函数的图象考查了等腰三角形的性质,综合性较强.23.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D 作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.【考点】切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.【专题】几何综合题;压轴题.【分析】(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【解答】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴.连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.则AC=15(cm).∴⊙O的半径是7.5cm.【点评】本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.24.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;【解答】解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.【点评】本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.。
山东省菏泽市东明县九年级上学期期试数学试题(word版,有)
2017-2018学年度第一学期期中考试九年级数学试题一、选择题(本大题共8个小题,每小题3分,共24分)把符合题意的结论代号写在题后的括号内.1.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形2.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是A.k>-1B.k≥-1C.k≠0D.k<1且k≠03.如图,矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点,若AB=2,AD=4,则图中阴影部分的面积为()A.3B.4C.6D.8(3题图)4.能把一个平行四边形的面积平分的直线共有()A.1条B.2条C.4条D.无数条5.同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,一个背面朝上D.三种情况发生的概率一样大6.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫“中高数”,如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是()A.12B.23C.25D.357.小强身高1.8m,测得他站立在阳光下的影子长为0.9m,紧接着他把手臂竖直举起,测得影子长为1.2m,那么小强举起的手臂超出头顶()8.如图,在Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则ADCD等于()A.32B.23C.√62D.√63(8题图)二、填空题(本大题共6个小题,每小题3分,共18分)请把最后结果填在题后横线上9.若x2=x,则x= .10.如果m,n是两个不相等的实数,且满足m2-m=3,n2-n=3,那么代数式m2+2mn+n2+2017= .11.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D、E、F分别是OA、OB、OC的中点,则△DEF与△ABC的面积比是 .(11题图)(13题图)12.在m2□+6m□9的“□”中任意填上“+”或“-”号,所得的代数式为完全平方式的概率为 .13.如图,在 ABCD,点E在DC上,若DE:EC=1:2,则BF:BE= .14.如图,在△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=2,AD=1,则DB= .(14题图)三、解答题(本大题共7个小题,共78分)请把解答或证明过程写在试卷的相应区域内15.解方程(每小题5分,共15分)(1)x2+7x=0 (2)x2-2x-3=0(3)2x2-3x-1=016.(本题9分)如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2√3,DC=2,求四边形OCED的面积(16题图)17.(本题9分)如图,E是 ABCD的边AD的中点,连接CE并延长交BA的延长线于点F,若CD=6,求BF得长.(17题图)18.(本题10分)如图,在菱形ABCD中,分别延长AB、AD到E、F,使得BE=DF,连结EC、FC.求证:EC=FC.(18题图)19.(本题10分)某地区2015年投入教育经费3600万元,2017年投入教育经费5184万元.(1)求2015年至2017年该地区投入教育经费的年平均增长率.(2)根据(1)所得的年平均增长率,预计2018年该地区将投入教育经费多少万元?20.(本题10分)如图所示,已知△AOB∽△DOC,OA=2,AD=9,OB=5,DC=12,∠A=58°,求AB、OC的长和∠D的度数.(20题图)21.(本题15分)如图,在四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB·AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求AC的值.AF(21题图)2017—2018学年度第一学期期中考试九年级数学试题参考答案一、选择题:1.D 2.D 3.B 4.D 5.C 6.C 7.A 8.C .二、填空题:9.1和0 10.2018 11.6,8,10 ; 12.12 13. 3∶5 ,14.3 三、15.(1)x 1 =0 ,x 2 =-7 (2)x 1 =3 ,x 2 =-1(3)x 1 =3+√174,x 2 =3−√17416.解:先证四边形OCED 是平行四边形(4分),再证是菱形(2分), 最后计算面积=2√3(3分). 17. BF=12(9分)(酌情给分).18.利用菱形证△CB E ≌△CDF,进而证明EC=FC (10分,酌情给分).19.(1)年平均增长率20%(5分)(2)2018年将投入教育经费6220.08万元(5分 ). 20.AB=247,OC=352(8分),∠D=58o(2分) 21.(1)证:利用两角分别相等证△ACD ∽△ABC,∴AD AC=AC AB∴AC 2=AB ·AD (5分)(2)证:∵E 为Rt △ABC 的斜边AB 的中点,∴AE=CE ,∴∠ACE=∠CAE=∠CAD , ∴CE ∥AD (5分)(3)解:∵E 为AB 的中点,∴CE=12AB=3,由(2)知CE ∥AD ,∴CE AD =CF AF ,∴CE+AD AD=CE+AF AF,∴ 74=ACAF (5分).。
山东省菏泽市九年级上学期数学第一次月考试卷
山东省菏泽市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)(2017·长沙) 下列计算正确的是()A .B . a+2a=2a2C . x(1+y)=x+xyD . (mn2)3=mn6【考点】2. (2分) (2018九上·椒江月考) 平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是()A . (2,3)B . (2,-3)C . (-2,3)D . (-2,-3)【考点】3. (2分) (2020七上·高新期中) 关于x的方程x+a=6与方程2x-5=1的解相同,则常数a是()A . -3B . 3C . 2D . -2【考点】4. (2分)下列四个图案中,具有一个共有性质.则下面四个数字中,满足上述性质的一个是()A . 6B . 7C . 8D . 9【考点】5. (2分)用配方法解一元二次方程x2+6x﹣8=0时可配方得()A . (x﹣3)2=17B . (x+3)2=17C . (x﹣3)2=1D . (x﹣3)2=﹣1【考点】6. (2分) (2019九上·番禺期末) 某公司2018年10月份的生产成本是400万元,由于改进技术,生产成本逐月下降,12月份的生产成本是361万元。
若该公司这两月每个月生产成本的下降率都相同,则每个月生产成本的下降率是()A . 12%B . 9%C . 6%D . 5%【考点】7. (2分)已知a-b=3,则a2-b2-6b的值是()A . 4B . 6C . 9D . 12【考点】8. (2分) (2020九上·江城月考) 关于x的一元二次方程(m-5)x2+2x+1=0有实数根,则m的取值范围是()A . m<6B . m≤6C . m<6且m≠5D . m≤6且m≠5【考点】9. (2分) (2019九下·桐梓月考) 如图,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP′,连接DP′,则DP′的最小值是()A . 2 -2B . 4﹣2C . 2﹣D . -1【考点】二、填空题 (共10题;共11分)10. (1分) (2019八上·叙州期中) 已知y ,则4x-y是________。
2017-2018学年山东省菏泽市东明县九年级(上)期末数学试卷(解析版)
2017-2018学年山东省菏泽市东明县九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分,每小题只有一个正确答案,请把正确答案涂在答题卡上)1. cos60°的值等于()A. B. 1 C. D.【答案】D【解析】∵cos60°=,∴选项D是正确的.故选D.2. 如图是一个空心圆柱体,它的左视图是()A. B. C. D.【答案】B【解析】试题解析:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.考点:简单几何体的三视图.3. 如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A. 5cmB. 10cmC. 14cmD. 20cm【答案】D【解析】∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB==5cm,所以,这个菱形的周长=4×5=20cm,故选D.4. 一元二次方程4x2﹣2x+=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断【答案】B【解析】∵在方程中,,∴△=,∴原方程有两个相等的实数根.故选B.5. 若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y2<y1D. y2<y1<y3【答案】B【解析】试题分析:∵k=﹣3<0,∴在第四象限,y随x的增大而增大,∴y2<y3<0,∵y1>0,∴y2<y3<y1,故选B.6. 小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A. B. C. D.【答案】C【解析】试题解析:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是: =.故选C.7. 如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接DE.现测得AC=30m,BC=40m,DE=24m,则AB=()A. 50mB. 48mC. 45mD. 35m【答案】B【解析】∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.8. 如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,若BD=2AD,则()A. B. C. D.【答案】A【解析】∵DE∥BC,∴△ADE∽△ABC,∴,∵BD=2AD,∴,,,故选A.9. 一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A. 16(1+2x)=25B. 25(1﹣2x)=16C. 16(1+x)2=25D. 25(1﹣x)2=16【答案】D则列出的方程是36×(1-x)2=25.故选D.10. 在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A. abc<0,b2﹣4ac>0B. abc>0,b2﹣4ac>0C. abc<0,b2﹣4ac<0D. abc>0,b2﹣4ac<0【答案】B【解析】根据二次函数的图象知:抛物线开口向上,则a>0,抛物线的对称轴在y轴右侧,则x=﹣>0,所以b<0,抛物线交y轴于负半轴,则c<0,∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点睛】本题考查了二次函数的图象与系数的关系,熟知抛物线的开口方向确定a的符号,结合对称轴可确定b的符号,根据与y轴交点确定c的符号,与x轴交点的个数确定b2-4ac的符号是解题的关键.二、填空题(本大题共5小题,每小题4分,共20分,请把答案直接写在答题卡上)11. 方程3x(x﹣1)=2(x﹣1)的根为_____.【答案】x=1或x=【解析】3x(x﹣1)=2(x﹣1),移项得:3x(x﹣1)﹣2(x﹣1)=0,即(x﹣1)(3x﹣2)=0,∴x﹣1=0或3x﹣2=0,解方程得:x1=1,x2=,故答案为:1或.【点睛】本题考查了利用因式分解法解一元二次方程,根据方程的特点选择恰当的解法是解决此类问题的关键.12. 若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.【答案】﹣2【解析】∵反比例函数的图象过点A(m,3),∴,解得.13. 如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为_____米.【答案】5【解析】试题分析:根据相似三角形对应边成比例列式计算即可得解.解:由题意得,=,即=,解得:AM=5.故答案为:5.考点:相似三角形的应用.14. 如图,Rt△ABC中,∠C=90°,BC=15,tan A=,则AB=_____.【答案】17【解析】解:∵Rt△ABC中,∠C=90°,tan A=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为:17.15. 如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点恰好与点O重合,若BE=2,则折痕AE的长为______【答案】4【解析】由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=2,∴OE=2,EC=4,则AE=4,故答案为:4.【点睛】本题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.三、简答题(笨大童共6小题,共60分,把必要的答题过程直接写在答题卡上)16. 由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)(1)尝试:分解因式:x2+6x+8=(x+ )(x+ );(2)应用:请用上述方法解方程:x2﹣3x﹣4=0.【答案】(1)2,4;(2)x=﹣1或x=4【解析】试题分析:(1)根据示例进行分解即可得;(2)根据示例将方程左边因式分解,右边为0,根据几个因数的积为0,那么其中至少有一个因数为0进行求解即可.试题解析:(1)x2+6x+8=x2+(2+4)x+2×4=(x+2)(x+4),故答案为:2,4;(2)∵x2﹣3x﹣4=0,x2+(﹣4+1)x+(﹣4)×1=0,∴(x﹣4)(x+1)=0,则x+1=0或x﹣4=0,解得:x=﹣1或x=4.17. 从﹣1,2,3这三个数中任取两个不同的数,作为点的坐标.(1)写出该点所有可能的坐标;(2)求该点在第一象限的概率.【答案】(1)所有可能的坐标为(﹣1,3)(﹣1,2)(3,﹣1)(3,2)(2,﹣1)(2,3);(2). 【解析】试题分析:(1)画树状图即可得到所有可能的坐标;(2)根据点在第一象限的情况数占总情况数的多少即可.试题解析:(1)画树状图得:.....................(2)∵共有6种等可能的结果,其中(2, 3),(3,2)点落在第一象限,∴点刚好落在第一象限的概率=.18. 东明县是著名的庄子故里,县政府在南华公园修建了庄子塑像,李明同学想测量一下庄子像的高度如图,已知塑像底座AB高度是3m,从D点侧得像顶端C点和底端B点的仰角分别是60°和45°,求塑像的高度B C.【答案】3﹣3【解析】试题分析:在Rt△ABD中,知道了已知角的对边,可用正切函数求出邻边AD的长;同理在Rt△ADC 中,知道了已知角的邻边,用正切值即可求出对边AC的长;进而由BC=AC-AB得解.试题分析:由题知,∠ADC=60°,ADB=45°,∴△ABD为等腰直角三角形,∴AD=AB=3,在Rt△ACD中,∠ADC=60°,tan∠ADC==,∴ AC=AD=3,∴BC=AC﹣AB=3﹣3,答:塑像高为(3﹣3)m.19. 如图,直线y1=ax+b与双曲线y2=交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2),求直线和双曲线的解析式.【答案】y1=2x+4;y2=【解析】试题分析:先将点B代入反比例函数解析式,求得k,从而得反比例函数解析式,再把y=6代入反比例解析式,从而得到A点坐标,把A、B两点坐标代入直线解析式,利用待定系数法即可得.试题解析:∵点B(﹣3,﹣2)在双曲线y2=上,∴=﹣2,∴k=6,∴双曲线的解析式为y2=,把y=6代入y2=得:x=1,∴A的坐标为(1,6),∵直线y1=ax+b经过A、B两点,∴,解得:,∴直线的解析式为直线y1=2x+4.20. 如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠F AD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【答案】(1)证明见解析;(2)150°【解析】试题分析:(1)连结DB、DF.根据菱形四边相等得出AB=AD=F A,再利用SAS证明△BAD≌△F AD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=F A.在△BAD与△F AD中,∵AB=AF,∠BAD=∠F AD,AD=AD,∴△BAD≌△F AD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.点睛:本题考查了菱形的性质,全等三角形的判定与性质等知识,证明出AD是线段BF的垂直平分线是解题的关键.21. 如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC 交抛物线的对称轴于点E、D是抛物线的顶点.(1)求此抛物线的解析式;(2)求点C和点D的坐标.【答案】(1)y=﹣x2+2x+3;(2)C(0,3),D(1,4)【解析】试题分析:(1)利用待定系数法进行求二次函数解析式即可;(2)二次函数解析式中令x=0,即可得到点C的坐标,将二次函数解析式配方成顶点式,即可得到点D的坐标.试题解析:(1)由点A(﹣1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)对于抛物线y=﹣x2+2x+3,令x=0,得到y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4).【点睛】本题考查了用待定系数法求二次函数的解析式,用配方法求抛物线的顶点坐标,解题的关键是数形结合思想的运用.。
九年级数学上学期12月月考试卷(含解析)(2021年整理)
山东省菏泽市东明县2017-2018学年九年级数学上学期12月月考试卷(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省菏泽市东明县2017-2018学年九年级数学上学期12月月考试卷(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省菏泽市东明县2017-2018学年九年级数学上学期12月月考试卷(含解析)的全部内容。
2017-2018学年山东省菏泽市东明县九年级(上)月考数学试卷(12月份)一、选择题(共10小题,每小题3分,满分30分)1.(3分)学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是( )A.B.C.D.2.(3分)如图,几何体的左视图是()A.B.C.D.3.(3分)已知方程12x2﹣6x﹣8=0,则此方程( )A.无实数根B.两根之和为C.两根之积为 D.有一根为4.(3分)如图,要设计一副宽20cm,长30cm的图案,其中有两横两竖的彩条,其中有两横两竖的彩条,横竖彩条的宽度比为2:1.如果要使彩条所占面积是图案面积的,设竖彩条宽度为xcm,则可列方程为( )A.2×2x×30+2x(20﹣4x)=B.2×2x×30+2x(20﹣4x)=×20×30C.2x×20+2×2x(30﹣2x)=D.2x×20+2×2x(30﹣2x)=20×305.(3分)函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A. B. C. D.6.(3分)已知:如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD 的面积是()A.B.C. D.7.(3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( )A.选①② B.选②③ C.选①③ D.选②④8.(3分)以矩形ABCD两条对角线的交点O为坐标原点,建立如图的平面直角坐标系,且AB⊥x 轴,双曲线y=经过点D,则矩形的面积为( )A.10 B.11 C.12 D.139.(3分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)10.(3分)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)11.(3分)方程kx2﹣3x+2=0有两个不相等的实数根,则k的取值范围是.12.(3分)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有个.13.(3分)已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x12+x22=4,则m的值为.14.(3分)已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=的图象上的三个点,且x1<x2<0,x3>0,则y1,y2,y3的大小关系是.15.(3分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是.16.(3分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1。
山东省菏泽市九年级上学期数学12月月考试卷
山东省菏泽市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019九上·博白期中) 抛物线的顶点坐标是()A . (-2.-3)B . (2,3)C . (-2,3)D . (-3,2)2. (2分) (2018九上·丰润期中) 下列方程中,无实数根的是()A . 3x2﹣2x+1=0B . x2﹣x﹣2=0C . (x﹣2)2=0D . (x﹣2)2=103. (2分) (2019九上·浦东期中) 在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()A . =B . =C . =D . =4. (2分) (2019九上·大丰月考) 下列说法正确的是()A . 等弧所对的圆周角相等B . 平分弦的直径垂直于弦C . 相等的圆心角所对的弧相等D . 圆是轴对称图形,任何一条直径都是它的对称轴5. (2分)(2017·无棣模拟) 若将30°、45°、60°的三角函数值填入表中,则从表中任意取一个值,是的概率为()α30°45°60°sinαcosαtanαA .B .C .D .6. (2分)下列条件不能判定△ADB∽△ABC的是()A . ∠ABD=∠ACBB . ∠ADB=∠ABCC . AB2=AD•ACD . =7. (2分) (2016九上·西青期中) 如图,CE是圆O的直径,⊙O的直径,AB为⊙O的弦,EC⊥AB,垂足为D,下面结论正确的有()①AD=BD;② = ;③ = ;④OD=CD.A . 1个B . 2个C . 3个D . 4个8. (2分)函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1 ,y2的值都大于零的x的取值范围是()A . x>-1B . x>2C . x<2D . -1<x<2二、填空题 (共8题;共9分)9. (1分)(2018·长宁模拟) 若线段a、b满足,则的值为________.10. (1分)(2018·武进模拟) 一根长为2米的笔直的木棍直立在地面上,某一时刻,它在太阳光下的投影长为2.4米.在同一时刻,站立在地面上的小强的影子长为2.1米,则小强的身高为________米11. (1分) (2019七上·慈溪期中) 下列各数:,,,中,是无理数的是________.12. (1分)(2017·佳木斯) 圆锥的底面半径为2cm,圆锥高为3cm,则此圆锥侧面展开图的周长为________cm.13. (2分) (2016九上·朝阳期末) 如图,矩形ABCD中,点E是边AD的中点,BE交对角线AC于点F ,则△AFE与△BCF面积比等于________.14. (1分)抛物线y=2x2-bx+3的对称轴是直线x=l,则b的值为________15. (1分) (2018八上·长春期末) 已知:等腰梯形的两底分别为和,一腰长为,则它的对角线的长为________ .16. (1分)如图,AB是⊙O的直径,弦CD⊥A B,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为________ cm.三、解答题 (共11题;共129分)17. (10分) (2017九上·宜春期末) 解方程:4(x﹣1)=x(x﹣1)18. (11分) (2020九上·秦淮期末) 某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:跳绳成绩(个)132133134135136137一班人数(人)101521二班人数(人)014122(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:众数中位数平均数方差一班a135135c二班134b135 1.8表中数据a=________,b=________,c=________;(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.19. (10分) (2014九上·临沂竞赛) 甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、-1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用表示取出的卡片上标的数值,把、分别作为点的横坐标、纵坐标.(1)用适当的方法写出点的所有情况;(2)求点落在第三象限的概率.20. (15分)如图,在方格纸上画出了一棵树的一半,请你以树干l为对称轴画出树的另一半.21. (10分) (2019七下·武汉月考) 如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.22. (10分) (2019九上·西城期中) 已知抛物线C:y=x2+2x﹣3.抛物线顶点坐标与x轴交点坐标与y轴交点坐标抛物线C:y=x2+2x﹣3A()B()(1,0)(0,﹣3)变换后的抛物线C1(1)补全表中A,B两点的坐标,并在所给的平面直角坐标系中画出抛物线C.(2)将抛物线C上每一点的横坐标变为原来的2倍,纵坐标变为原来的,可证明得到的曲线仍是抛物线,(记为C1),求抛物线C1对应的函数表达式.23. (10分)如图:在△ABC中,AD⊥BC于D,AD=BD,CD=DE,E是AD上一点,连结BE并延长交AC于点F.求证:(1) BE=AC;(2)BF⊥AC.24. (11分)(2016·武汉) 某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.25. (10分) (2017七下·高台期末) 如图,已知,BD与CE相交于点O,AD=AE,∠B=∠C,请解答下列问题:(1)△ABD与△ACE全等吗?为什么?(2)BO与CO相等吗?为什么?26. (12分) (2016七上·龙口期末) 如图,已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,以OA、OC 为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式;(3)在(2)的条件下,坐标平面内是否存在点P(除点B外),使得△APC与△ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.27. (20分)(2017·鄂州) 已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE= .(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△ACP= S△ACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B,C,M为顶点的三角形与△ACD相似,直接写出点M的坐标.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共9分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共129分)17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、27-3、27-4、。
山东省菏泽市东明县九年级数学上学期期中试题(扫描版) 新人教版
山东省菏泽市东明县2018届九年级数学上学期期中试题
2017—2018学年度第一学期期中考试
九年级数学试题参考答案
一、选择题:1.D 2.D 3.B 4.D 5.C 6.C 7.A 8.C . 二、填空题:9.1和0 10.2018 11.6,8,10 ; 12.2
1
13. 3∶5 ,14. 3 三、15.(1)x 1 =0 ,x 2 =-7 (2)x 1 =3 ,x 2 =-1(3)x 1 =
4173+ ,x 2 =4
17
3- 16.解:先证四边形OCED 是平行四边形(4分),再证是菱形(2分), 最后计算面积=32(3分). 17. BF=12(9分)(酌情给分).
18.利用菱形证△CB E ≌△CDF,进而证明EC=FC (10分,酌情给分).
19.(1)年平均增长率20%(5分)(2)2018年将投入教育经费6220.08万元(5分 ). 20.AB=
724,OC=2
35(8分),∠D=58o
(2分)
21.(1)证:利用两角分别相等证△ACD ∽△ABC,∴AB
AC AC AD =∴AC 2=AB ·AD (5分) (2)证:∵E 为Rt △ABC 的斜边AB 的中点,∴AE=CE ,∴∠ACE=∠CAE=∠CAD , ∴CE ∥AD (5分)
(3)解:∵E 为AB 的中点,∴CE =
2
1AB=3, 由(2)知CE ∥AD ,∴AF CF AD CE =,∴AF AF CF AD AD CE +=+,∴AF AC =47(5分).。
初中数学山东省菏泽市东明县九年级上期末数学考试卷含答案解析.docx
xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________一、xx 题(每空xx 分,共xx 分)试题1:据调查,2013年5月济南市的房价均价为7600元/m 2,2015年同期达到8200元/m 2,假设这两年济南市房价的平均增长率为x ,根据题意,所列方程为( )A .7600(1+x%)2=8200 B .7600(1﹣x%)2=8200 C .7600(1+x )2=8200 D .7600(1﹣x )2=8200 试题2:爱美之心人皆有之,特别是很多女士,穿上高跟鞋后往往会有很好的效果,事实上,当人体的下半身长度与身高的比值接近0.618时,会给人以美感,某女士身高165cm ,下半身长与身高的比值是0.60,为了尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )A .4cmB .6cmC .8cmD .10cm 试题3:下列几何体中,主视图是矩形,俯视图是圆的几何体是( )A. B. C. D.试题4:如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=(x>0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大 B.逐渐减小 C.不变 D.先增大后减小试题5:如图,△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是()A. B.12 C.14 D.21试题6:二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C.D.试题7:已知方程3x2﹣9x+m=0的一个根是1,则m的值是.试题8:东明县地处黄河半包围之中,有着丰富的水利资源,也带动了养鱼业的发展,养鱼能手老于为了估计自己鱼塘中鱼的条数,他首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞2000条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.试题9:如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿使竹竿,旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为m.试题10:如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=,则矩形ABCD的面积为.试题11:已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.试题12:如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.试题13:甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.(1)用画树状图或列表的方法,求甲获胜的概率;(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.试题14:如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.试题15:如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D 作DC⊥x轴,垂足为C,连接OD.已知△AOB≌△ACD.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式.试题16:在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.试题1答案:C【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】2014年的房价8200=2012年的房价7600×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2013年同期的房价为7600×(1+x),2014年的房价为7600(1+x)(1+x)=7600(1+x)2,即所列的方程为7600(1+x)2=8200,故选C.【点评】考查列一元二次方程;得到2013年房价的等量关系是解决本题的关键.试题2答案:C【考点】黄金分割.【分析】先求出下半身的长度,然后再根据黄金分割的定义求解.【解答】解:根据已知条件得下半身长是160×0.6=96cm,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:=0.618,解得:y≈8cm.故选C.【点评】本题主要考查了黄金分割的应用.关键是明确黄金分割所涉及的线段的比,难度适中.试题3答案:A【考点】简单几何体的三视图.【分析】主视图、俯视图是分别从物体正面和上面看,所得到的图形.【解答】解:A、主视图为矩形,俯视图为圆,故选项正确;B、主视图为矩形,俯视图为矩形,故选项错误;C、主视图为等腰三角形,俯视图为带有圆心的圆,故选项错误;D、主视图为矩形,俯视图为三角形,故选项错误.故选:A.【点评】本题考查了三视图的定义考查学生的空间想象能力.试题4答案:B【考点】反比例函数系数k的几何意义.【分析】因为△OAB的OA长度已经确定,所以只要知道点B到OA边的距离d就可知道△OAB 的面积变化情况【△OAB 的面积=0A•d】,而点B到OA边的距离d即为点B的纵坐标,由点B是双曲线y=(x>0)上的一个动点,在(x>0)第一象限y随x的增大y值越来越小,即d值越来越小,故△OAB 的面积减小.【解答】解:设B(x,y).∴S△OAB=0A•y;∵OA是定值,点B是双曲线y=(x>0)上的一个动点,双曲线y=(x>0)在第一象限内是减函数,∴当点B的横坐标x逐渐增大时,点B的纵坐标y逐渐减小,∴S△OAB=0A•y会随着x的增大而逐渐减小.故选:B.【点评】本题考查了反比例函数的性质:对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.试题5答案:A【考点】解直角三角形.【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【解答】解:过点A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,则△ABC的面积是:×AD×BC=×3×(3+4)=.故选A.【点评】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.试题6答案:D【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【专题】压轴题.【分析】本题需要根据抛物线的位置,反馈数据的信息,即a+b+c,b,b2﹣4ac的符号,从而确定反比例函数、一次函数的图象位置.【解答】解:由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选:D.【点评】本题考查了一次函数、反比例函数、二次函数的图象与各系数的关系,同学们要细心解答.试题7答案:6 .【考点】根与系数的关系.【分析】欲求m,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m值.【解答】解:设方程的另一根为x1,又∵x=1,∴,解得m=6.【点评】此题也可将x=1直接代入方程3x2﹣9x+m=0中求出m的值.1200 条鱼.【考点】用样本估计总体.【分析】先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案.【解答】解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占×100%=2.5%,∵共有30条鱼做上标记,∴鱼塘中估计有30÷2.5%=1200(条).故答案为:1200.【点评】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.试题9答案:12 m.【考点】相似三角形的应用.【分析】易证△AEB∽△ADC,利用相似三角形的对应边成比例,列出方程求解即可.【解答】解:因为BE∥CD,所以△AEB∽△ADC,于是=,即=,解得:CD=12m.旗杆的高为12m.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出旗杆的高度.5 .【考点】矩形的性质;勾股定理.【专题】计算题.【分析】连接BE,设AB=3x,BC=5x,根据勾股定理求出AE=4x,DE=x,求出x的值,求出AB、BC,即可求出答案.【解答】解:如图,连接BE,则BE=BC.设AB=3x,BC=5x,∵四边形ABCD是矩形,∴AB=CD=3x,AD=BC=5x,∠A=90°,由勾股定理得:AE=4x,则DE=5x﹣4x=x,∵AE•ED=,∴4x•x=,解得:x=(负数舍去),则AB=3x=,BC=5x=,∴矩形ABCD的面积是AB×BC=×=5,故答案为:5.【点评】本题考查了矩形的性质,勾股定理的应用,解此题的关键是求出x的值,题目比较好,难度适中.【考点】一元二次方程的应用.【专题】代数几何综合题.【分析】(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.【解答】解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.【点评】此题主要考查了一元二次方程的应用以及根的判别式和勾股定理逆定理等知识,正确由已知获取等量关系是解题关键.【考点】菱形的判定与性质;三角形中位线定理.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE 是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.试题13答案:【考点】游戏公平性;列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字之和为偶数情况,再利用概率公式即可求得答案;(2)分别求得甲、乙两人获胜的概率,比较大小,即可得这个游戏规则对甲、乙双方是否公平.【解答】解:(1)画树状图得:∵共有6种等可能的结果,两数之和为偶数的有2种情况;∴甲获胜的概率为:=;(2)不公平.理由:∵数字之和为奇数的有4种情况,∴P(乙获胜)==,∴P(甲)≠P(乙),∴这个游戏规则对甲、乙双方不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.试题14答案:【考点】待定系数法求二次函数解析式;一次函数的图象;抛物线与x轴的交点;二次函数与不等式(组).【专题】代数综合题.【分析】(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;(3)画出图象,再根据图象直接得出答案.【解答】解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,∴,∴a=,b=﹣,c=﹣1,∴二次函数的解析式为y=x2﹣x﹣1;(2)当y=0时,得x2﹣x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.【点评】本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x轴的交点问题,是中档题,要熟练掌握.试题15答案:【考点】反比例函数综合题.【分析】(1)首先求出直线y=2x﹣2与坐标轴交点的坐标,然后由△AOB≌△ACD得到CD=OB,AO=AC,即可求出D坐标,由点D在双曲线y=( x>0)的图象上求出k的值;(2)首先直线y=2x+b与坐标轴交点的坐标为A(﹣,0),B(0,b),再根据△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,把D点坐标代入反比例函数解析式求出k和b之间的关系,进而也可以求出直线OD的解析式.【解答】解:(1)当b=﹣2时,直线y=2x﹣2与坐标轴交点的坐标为A(1,0),B(0,﹣2).∵△AOB≌△ACD,∴CD=OB,AO=AC,∴点D的坐标为(2,2).∵点D在双曲线y=( x>0)的图象上,∴k=2×2=4.(2)直线y=2x+b与坐标轴交点的坐标为A(﹣,0),B(0,b).∵△AOB≌△ACD,∴CD=OB,AO=AC,∴点D的坐标为(﹣b,﹣b).∵点D在双曲线y=( x>0)的图象上,∴k=(﹣b)•(﹣b)=b2.即k与b的数量关系为:k=b2.直线OD的解析式为:y=x.【点评】本题主要考查反比例函数的综合题的知识点,解答本题的关键是熟练掌握反比例函数的性质以及反比例函数图象的特征,此题难度不大,是一道不错的2016届中考试题.试题16答案:【考点】相似三角形的判定与性质;矩形的性质;解直角三角形.【专题】压轴题.【分析】(1)根据题意可得∠DEC=∠FDC,利用两角法即可进行相似的判定;(2)根据F为AD的中点,可得FB=FC,根据AD∥BC,可得FE:EC=FD:BC=1:2,再由sin∠FBD=EF:BF=EF:FC,即可得出答案,设EF=x,则EC=2x,利用(1)的结论求出x,在Rt△CFD中求出FD,继而得出BC.【解答】解:(1)∵∠DEC=∠FDC=90°,∠DCE=∠FCD,∴△DEC∽△FDC.(2)∵F为AD的中点,AD∥BC,∴FE:EC=FD:BC=1:2,FB=FC,∴FE:FC=1:3,∴sin∠FBD=EF:BF=EF:FC=;设EF=x,则FC=3x,∵△DEC∽△FDC,∴=,即可得:6x2=12,解得:x=,则CF=3,在Rt△CFD中,DF==,∴BC=2DF=2.【点评】本题考查了相似三角形的判定与性质,解答本题的关键是掌握相似三角形的判定定理及相似三角形的性质:对应边成比例.。
菏泽市九年级上学期数学12月月考试卷
菏泽市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共21分)1. (2分)如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A .B .C .D .2. (2分) (2016·枣庄) 已知点P(a+1,﹣ +1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A .B .C .D .3. (2分)(2020·龙华模拟) 下列命题中,是真命题的是()A . 三角形的外心到三角形三边的距离相等B . 顺次连接对角线相等的四边形各边中点所得的四边形是菱形C . 方程x²+2x+3=0有两个不相等的实数根D . 将抛物线y=2x²-2向右平移1个单位后得到的抛物线是y=2x²-34. (2分) (2019九上·宝安期末) 下列说法正确的是A . 两条对角线互相垂直且相等的四边形是正方形B . 任意两个等腰三角形相似C . 一元二次方程,无论a取何值,一定有两个不相等的实数根D . 关于反比例函数,y的值随x值的增大而减小5. (2分)下列说法正确的是()A . 圆内接正六边形的边长与该圆的半径相等B . 在平面直角坐标系中,不同的坐标可以表示同一点C . 一元二次方程ax2+bx+c=0(a≠0)一定有实数根D . 将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等6. (2分)(2017·日照) 下列说法正确的是()A . 圆内接正六边形的边长与该圆的半径相等B . 在平面直角坐标系中,不同的坐标可以表示同一点C . 一元二次方程ax2+bx+c=0(a≠0)一定有实数根D . 将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等7. (2分)如图,将△ABC绕点C顺时针旋转90°得到△EDC .若点A , D , E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A . 55°B . 60°C . 65°D . 70°8. (2分) (2018九上·蔡甸月考) 已知x1、x2是关于x的方程x2-ax-1=0的两个实数根,下列结论一定正确的是()A . x1≠x2B . x1+x2>0C . x1×x2>0D . +>09. (2分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A . 100°B . 110°C . 115°D . 120°10. (2分) (2018九上·蔡甸月考) 如图,二次函数y=ax2+bx+c的图像经过点A(-1,0),点B(3,0),交y轴正半轴于点C,给出下列结论:①a=-1,b=2,c=3;②若0<x<4,则5a<y<-3a;③对任意实数m,一定有am2+bm+a≤0;④一元二次方程cx2+bx+a=0的两个根为-1和 .其中正确的结论是()A . ①③B . ②③C . ②④D . ③④11. (1分)(2019·武昌模拟) 在平面直角坐标系中,点A(-3,2)关于原点对称的点的坐标为________.二、填空题 (共5题;共5分)12. (1分) (2020八下·锡山期中) 关于的方程有增根,则m=________.13. (1分)(2020·南充) 笔记本5元/本,钢笔7元/支,某同学购买笔记本和钢笔恰好用去100元,那么最多可以购买钢笔________支.14. (1分)(2017·沭阳模拟) 在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0的两根,Rt△ABC的面积为________平方厘米.15. (1分) (2018九下·嘉兴竞赛) 如图,直线y=- x+4 分别与x轴,y轴相交于点A,B,点C在直线AB上,D是坐标平面内一点.若以点0,A,C,D为顶点的四边形是菱形,则点D的坐标是________.16. (1分) (2016九上·市中区期末) 已知抛物线y=x2+(m+1)x+m﹣1与x轴交于A,B两点,顶点为C,则△ABC面积的最小值为________.三、解答题 (共8题;共68分)17. (5分)如图,直线y=k1x+b(k1≠0)与双曲线y=(k2≠0)相交于A(1,m)、B(-2,-1)两点.求直线和双曲线的解析式.18. (5分)已知点A(﹣5,0),B(3,0),在坐标平面内找一点C,能满足S△ABC=16,求点C的坐标,这个点的坐标有何规律?19. (7分) (2018九上·蔡甸月考) 如图,△ABC三个顶点为A(3,4)、B(5,4)、C(1,2).请解答下列问题:(1)①画出△ABC关于y轴对称的△A1B1C1 ,使点A1与A对应,点B1与B对应;②画出△ABC绕点O顺时针旋转90°后得到的△A2B2C2 ,使点A2与A对应,点B2与B对应;(2)若△A1B1C1和△A2B2C2关于某直线对称,请直接写出该直线的解析式________;(3)直接写出△ABC的外心坐标________.20. (10分) (2018九上·蔡甸月考) 如图,半圆O的直径为AB,D是半圆上的一个动点(不与点A,B重合),连接BD并延长至点C,使CD=BD,连接AC,过点D作DE⊥AC于点E.(1)请猜想DE与⊙O的位置关系,并说明理由;(2)当AB=4,∠BAC=45°时,求DE的长.21. (10分) (2018九上·蔡甸月考) 如图,已知抛物线L1:y= x2-x-,L1交x轴于A,B(点A 在点B左边),交y轴于C,其顶点为D,P是L1上一个动点,过P沿y轴正方向作线段PQ∥y轴,使PQ=t,当P 点在L1上运动时,Q随之运动形成的图形记为L2.(1)若t=3,求图形L2的函数解析式;(2)过B作直线l∥y轴,若直线l和y轴及L1 , L2所围成的图形面积为12,求t的值.22. (5分) (2018九上·蔡甸月考) 如图,某工程队在工地互相垂直的两面墙AE、AF处,用180米长的铁栅栏围成一个长方形场地ABCD,中间用同样材料分割成两个长方形.已知墙AE长120米,墙AF长40米,要使长方形ABCD的面积为4000平方米,问BC和CD各取多少米?23. (11分) (2018九上·蔡甸月考) 已知△ABC为等边三角形,P是直线AC上一点,AD⊥BP于D,以AD为边作等边△ADE(D,E在直线AC异侧).(1)如图1,若点P在边AC上,连CD,且∠BDC=150°,则 =________;(直接写结果)(2)如图2,若点P在AC延长线上,DE交BC于F求证:BF=CF;(3)在图2中,若∠PBC=15°,AB= ,请直接写出CP的长.24. (15分) (2018九上·蔡甸月考) 已知二次函数y=ax2+bx+c的图象对称轴为x= ,图象交x轴于A,B,交y轴于C(0,-3),且AB=5,直线y=kx+b(k>0)与二次函数图象交于M,N(M在N的右边),交y轴于P.(1)求二次函数图象的解析式;(2)若b=-5,且△CMN的面积为3,求k的值;(3)若b=-3k,直线AN交y轴于Q,求的值或取值范围.参考答案一、单选题 (共11题;共21分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、填空题 (共5题;共5分)12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共68分)17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、24-3、。
山东省菏泽市九年级上学期数学12月月考试卷
山东省菏泽市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题。
(共10题;共20分)1. (2分) (2020八上·包河期末) 下列卡通动物简笔画图案中,属于轴对称图形的是()A .B .C .D .【考点】2. (2分) (2020九上·武汉月考) 方程的根的情况是()A . 有两个不等实根B . 有两个相等实根C . 无实根D . 以上三种情况都有可能【考点】3. (2分) (2020九上·南宁期末) 下列各点在抛物线上的是()A .B .C .D .【考点】4. (2分)学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是()A . 9%B . 5%C . 9.5%D . 10%【考点】5. (2分)下列抛物线通过先向上平移2个单位,再向右平移3个单位,可得到抛物线y=3x2的是()A . y=3(x+3)2-2B . y=3(x+3)2+2C . y=3(x+2)2-3D . y=3(x-2)2+3【考点】6. (2分)如图,四边形ABCD是平行四边形,∠BAD的平分线交BD于点E ,交CD于点F ,交BC的延长线于点G ,则下列结论中正确的是()A . AE2=EF•FGB . AE2=EF•EGC . AE2=EG•FGD . AE2=EF•AG【考点】7. (2分)如图,在⊙O中,∠ABC=60°,则∠AOC等于()A . 30°B . 60°C . 100°D . 120°【考点】8. (2分)已知二次函数y=2x2+9x+34,当自变量x取两个不同的值x1 , x2时函数值相等,则当自变量x 取x1+x2时函数值与()A . x=1时的函数值相等B . x=0时的函数值相等C . x=时的函数值相等D . x=时的函数值相等【考点】9. (2分) (2019九上·弥勒期末) 在同一平面直角坐标系中,一次函数y=ax+c和二次函数y=a +c的大致图像是所示中的()A .B .C .D .【考点】二、填空题。
山东省东明县2018届九年级数学上学期第一次月考试题(无答案) 新人教版
山东省东明县2018届九年级数学上学期第一次月考试题一、选择题1.方程x2=3x的解是()A.x=3 B.x1=0,x2=3 C.x1=1,x2=3 D.x=02.已知直角三角形的两条直角边分别是3和4,则它斜边上的中线长为()A.2.4 B.2.5 C.3 D.53.下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=04.如图,在△ABC中,点D、E分别在AB、AC边上,且DE∥BC,若AD:DB=3:1,AE=6,则AC等于()A.3 B.4 C.6 D.85.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A.6 B.8 C.10 D.126.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D. =7.下列命题中,假命题的是()A.四边形的外角和等于内角和B.所有的矩形都相似C.对角线相等的菱形是正方形D.对角线互相垂直的平行四边形是菱形8.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤﹣1 D.k≤1且k≠09.顺次连结对角线相等的四边形的四边中点所得图形是()A.正方形B.矩形 C.菱形 D.以上都不对10.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x 米,则可以列出关于x的方程是()A.x2+9x﹣8=0 B.x2﹣9x﹣8=0 C.x2﹣9x+8=0 D.2x2﹣9x+8=011.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A. B. C. D.12.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=S△AEF,其中正确的结论有()个.A.①② B.①②③C.①②④D.①②③④二、填空题:13.若===3(b+d+f≠0),则= .14.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为.15.已知三角形两边的长是6和8,第三边的长是方程x2﹣16x+60=0的一个根,则该三角形的面积是.16.如图,已知正方形ABCD的边长为4,点E、F分别在边AB,BC上,且AE=BF=1,则OC= .三、解答题(本大题有7题,共52分)17.用适当的方法解下列方程(1)x2+6x﹣7=0(2)2x2+4x﹣3=0.18.如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE 与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.19.已知:如图,在△ABC中,AB=AC=5,BC=8,D,E分别为BC,AB边上一点,∠ADE=∠C.(1)求证:△BDE∽△CAD;(2)若CD=2,求BE的长.20.某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg.经市场调查,销售单价每涨1元,月销售量就减少10kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?21.如图,有长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料造了宽为1米的两个小门.(1)设花圃的宽AB为x米,请你用含x的代数式表示BC的长米;(2)若此时花圃的面积刚好为45m2,求此时花圃的宽.22.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点c移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t.(1)根据题意知:CQ= ,CP= ;(用含t的代数式表示)(2)t为何值时,△CPQ的面积等于△ABC面积的?(3)运动几秒时,△CPQ与△CBA相似?23.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求A、B的坐标.(2)求证:射线AO是∠BAC的平分线.(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.。
山东省菏泽市东明县2025届九年级数学第一学期期末学业质量监测试题含解析
山东省菏泽市东明县2025届九年级数学第一学期期末学业质量监测试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)1.圆的面积公式S =πR 2中,S 与R 之间的关系是( ) A .S 是R 的正比例函数 B .S 是R 的一次函数 C .S 是R 的二次函数D .以上答案都不对2.抛物线2y ax bx c =++(0)a ≠上部分点的横坐标x 、纵坐标y 的对应值如下表:x… -3 -2 -1 0 1 … y…-6466…容易看出,()2,0-是它与x 轴的一个交点,那么它与x 轴的另一个交点的坐标为( ) A .(6,0)-B .(4,0)-C .(3,0)D .(0,6)3.如图,在Rt △ABC 中,∠C =90°,sin A =45,AC =6cm ,则BC 的长度为( )A .6cmB .7cmC .8cmD .9cm4.函数y =3(x ﹣2)2+4的图像的顶点坐标是( ) A .(3,4)B .(﹣2,4)C .(2,4)D .(2,﹣4)5.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =6.二次函数y=(x ﹣1)2+2,它的图象顶点坐标是( )A .(﹣2,1)B .(2,1)C .(2,﹣1)D .(1,2)7.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3B .2:3C .4:9D .16:818.下列所给的事件中,是必然事件的是( ) A .一个标准大气压下,水加热到100C ︒时会沸腾 B .买一注福利彩票会中奖C .连续4次投掷质地均匀的硬币,4次均硬币正面朝上D .2020年的春节小长假辛集将下雪9.如图,在ABC 中,AB BC =,90ABC ∠=︒,点D 、E 、F 分别在边AC 、BC 、AB 上,且CDE △与FDE 关于直线DE 对称.若2AF BF =,72AD =,则CD =( ).A .3B .5C .32D .5210.如图,AB 是O 的直径,点D ,C 在O 上,连接AD ,DC ,AC ,如果65C =︒∠,那么BAD ∠的度数是( )A .15︒B .20︒C .25︒D .3011.12-的绝对值为( ) A .2 B .12-C .12 D .112.从1、2、3、4四个数中随机选取两个不同的数,分别记为a ,c ,则满足4ac ≤的概率为( ) A .14B .13C .12D .23二、填空题(每题4分,共24分)13.如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为______.14.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__.15.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 .16.如图,AD 是⊙O 的直径,12AD =,点B 、C 在⊙O 上,AB 、DC 的延长线交于点E ,且CB CE =,70BCE ∠=,有以下结论:①ADE E ∠=∠;②劣弧AB 的长为43π;③点C 为BD 的中点;④BD 平分ADE ∠,以上结论一定正确的是______.17.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =,3AD =,则CF 的长为________.18.足球从地面踢出后,在空中飞行时离地面的高度()h m 与运动时间()t s 的关系可近似地表示为29.8h t t =-+,则该足球在空中飞行的时间为__________s . 三、解答题(共78分) 19.(8分)已知反比例函数6y x=-和一次函数()0y kx b k =+≠. (1)当两个函数图象的交点的横坐标是-2和3时,求一次函数的表达式; (2)当23k =时,两个函数的图象只有一个交点,求b 的值.20.(8分)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.21.(8分)如图,已知直线y =﹣2x +4分别交x 轴、y 轴于点A 、B ,抛物线y =﹣2x 2+bx +c 过A ,B 两点,点P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D ,抛物线的顶点为M ,其对称轴交AB 于点N . (1)求抛物线的表达式及点M 、N 的坐标;(2)是否存在点P ,使四边形MNPD 为平行四边形?若存在求出点P 的坐标,若不存在,请说明理由.22.(10分)二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了两幅统计图,请结合两幅统计图,回答下列问题: (1)在这次问卷调查中一共抽取了 名学生,a = %; (2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.23.(10分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是;(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.24.(10分)1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转x>的反比例函数,圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径/y米是其两腿迈出的步长之差/x厘米()0其图象如图所示.请根据图象中的信息解决下列问题:(1)求y与x之间的函数表达式;(2)当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为______米;(3)若某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是多少厘米? 25.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且利润率不得高于.经市场调查,每天的销售量(千克)与每千克售价(元)满足一次函数关系,部分数据如下表: 售价(元/千克) 45 50 55 销售量(千克)11010090(1)求与之间的函数表达式,并写出自变量的范围;(2)设每天销售该商品的总利润为(元),求与之间的函数表达式(利润=收入-成本),并求出售价为多少元时每天销售该商品所获得最大利润,最大利润是多少?26.如图,在小山的东侧A 处有一一热气球,以每分钟28米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达C 处,这时气球上的人发现,在A 处的正西方向有一处着火点B ,5分钟后,在D 处测得着火点B 的俯角是15°,求热气球升空点A 与着火点B 的距离.(结果保留根号,参考数据:626215,15,1523,cot152344sin cos tan -+︒=︒=︒=-︒=+)参考答案一、选择题(每题4分,共48分) 1、C【解析】根据二次函数的定义,易得S 是R 的二次函数,故选C. 2、C【分析】根据(0,6)、(1,6)两点求得对称轴,再利用对称性解答即可. 【详解】∵抛物线2y ax bx c =++经过(0,6)、(1,6)两点,∴对称轴x =012+=12; 点(−2,0)关于对称轴对称点为(3,0), 因此它与x 轴的另一个交点的坐标为(3,0). 故选C. 【点睛】本题考查了二次函数的对称性,解题的关键是求出其对称轴. 3、C【详解】已知sinA=45BC AB =,设BC=4x ,AB=5x , 又因AC 2+BC 2=AB 2, 即62+(4x )2=(5x )2, 解得:x=2或x=﹣2(舍), 所以BC=4x=8cm , 故答案选C . 4、C【详解】函数y =3(x ﹣2)2+4的图像的顶点坐标是(2,4) 故选C. 5、D【分析】根据二次函数的图像与性质即可求解.【详解】由图象可知图象与y 轴交点位于y 轴正半轴,故c>0. A 选项错误; 函数图象与x 轴有两个交点,所以24b ac ->0,B 选项错误;观察图象可知x =-1时y=a -b +c >0,所以a -b +c >0,C 选项错误; 根据图象与x 轴交点可知,对称轴是(1,0).(5,0)两点的中垂线,152x +=, x =3即为函数对称轴,D 选项正确; 故选D 【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像. 6、D【解析】二次函数的顶点式是()?y a x h k =-+,,其中 (),h k 是这个二次函数的顶点坐标,根据顶点式可直接写出顶点坐标.【详解】解:212y x =-+抛物线解析式为(),()12.∴二次函数图象的顶点坐标是,故选:D. 【点睛】根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等. 7、B【分析】根据面积比为相似比的平方即可求得结果. 【详解】解:∵两个相似多边形的面积比为4:9,23. 故选B. 【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方. 8、A【分析】直接利用时间发生的可能性判定即可.【详解】解:A 、一个标准大气压下,水加热到100℃时会沸腾,是必然事件; B 买一注福利彩票会中奖,是随机事件;C 、连续4次投掷质地均匀的硬币,4次均硬币正面朝上,是随机事件;D ,2020年的春节小长假辛集将下雪,是随机事件. 故答案为A . 【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,掌握三类事件的定义以及区别与联系是解答本题的关键. 9、D【分析】过点F 作FH ⊥AD ,垂足为点H ,设BF a =,根据勾股定理求出AC ,FH ,AH ,设EC x =,根据轴对称的性质知3BE a x =-,在Rt △BFE 中运用勾股定理求出x ,通过证明FHDEBF ∆∆,求出DH 的长,根据AD AH HD =+求出a 的值,进而求解.【详解】过点F 作FH ⊥AD ,垂足为点H , 设BF a =,由题意知,2AF a =,3BC AB a ==,由勾股定理知,AC =,FH AH ==,∵CDE ∆与FDE ∆关于直线DE 对称, ∴EC FE =,45DFE DCE ︒∠=∠=, 设EC x =,则3BE a x =-, 在Rt △BFE 中,222(3)a a x x +-=, 解得,53x a =,即53EC a =,43BE a =, ∵45DFE DCE A AFH ︒∠=∠=∠=∠=, ∴90DFH BFE ︒∠+∠=,90BEF BFE ︒∠+∠=, ∴DFH BEF ∠=∠, ∵90DHF FBE ︒∠+∠=, ∴FHD EBF ∆∆,∴DH FH BF BE=, ∴324DH a =, ∵322724AD AH HD a a =+=+=, ∴解得,4a =,∴1227252CD AC AD =-=-=, 故选D .【点睛】本题考查了轴对称图形的性质,相似三角形的判定与性质,勾股定理,等腰直角三角形的性质等,巧作辅助线证明FHD EBF ∆∆是解题的关键.10、C【分析】因为AB 是⊙O 的直径,所以求得∠ADB=90°,进而求得∠B 的度数,再求BAD ∠的度数.【详解】∵AB 是⊙0的直径, ∴∠ADB=90°. ∵65C =︒∠,∴∠B=65°,(同弧所对的圆周角相等). ∴∠BAD=90°-65°=25° 故选:C 【点睛】本题考查圆周角定理中的两个推论:①直径所对的圆周角是直角②同弧所对的圆周角相等. 11、C【分析】根据绝对值的定义即可求解. 【详解】12-的绝对值为12故选C . 【点睛】此题主要考查绝对值,解题的关键是熟知其定义. 12、C【分析】根据题意列出树状图,得到所有a 、c 的组合再找到满足4ac ≤的数对即可. 【详解】如图:符合4ac ≤的共有6种情况, 而a 、c 的组合共有12种, 故这两人有“心灵感应”的概率为61122=. 故选:C .【点睛】此题考查了利用树状图法求概率,要做到勿漏、勿多,同时要适时利用概率公式解答.二、填空题(每题4分,共24分)13、 (6,0)【详解】解:过点P 作PM ⊥AB 于M ,则M 的坐标是(4,0)∴MB=MA=4-2=2,∴点B 的坐标为(6,0)14、1【分析】本题是典型的一线三角模型,根据正方形的性质、直角三角形两个锐角互余以及等量代换可以证得△AFB ≌△AED ;然后由全等三角形的对应边相等推知AF =DE 、BF =AE ,所以EF =AF +AE =1.【详解】解:∵ABCD 是正方形(已知),∴AB =AD ,∠ABC =∠BAD =90°;又∵∠FAB+∠FBA =∠FAB+∠EAD =90°,∴∠FBA =∠EAD (等量代换);∵BF ⊥a 于点F ,DE ⊥a 于点E ,∴在Rt △AFB 和Rt △AED 中,∵90AFB DEA FBA EAD AB DA ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△AFB ≌△DEA (AAS ),∴AF =DE =8,BF =AE =5(全等三角形的对应边相等),∴EF =AF+AE =DE+BF =8+5=1.故答案为:1.【点睛】本题考查了正方形的性质、直角三角形的性质、全等三角形的判定和性质及熟悉一线三角模型是解本题的关键.15、m≤54且m≠1. 【详解】本题考查的是一元二次方程根与系数的关系.有实数根则△=240b ac -≥即1-4(-1)(m-1)≥0解得m≥34,又一元二次方程所以m-1≠0综上m≥34且m≠1.16、①②③【分析】①根据圆内接四边形的外角等于其内对角可得∠CBE=∠ADE,根据等边对等角得出∠CBE=∠E,等量代换即可得到∠ADE=∠E;②根据圆内接四边形的外角等于其内对角可得∠A=∠BCE=70︒,根据等边对等角以及三角形内角和定理求出∠AOB=40︒,再根据弧长公式计算得出劣弧AB的长;③根据圆周角定理得出∠ACD=90︒,即AC⊥DE,根据等角对等边得出AD=AE,根据等腰三角形三线合一的性质得出∠DAC=∠EAC,再根据圆周角定理得到点C为BD的中点;④由DB⊥AE,而∠A≠∠E,得出BD不平分∠ADE.【详解】①∵ABCD是⊙O的内接四边形,∴∠CBE=∠ADE,∵CB=CE,∴∠CBE=∠E,∴∠ADE=∠E,故①正确;②∵∠A=∠BCE=70︒,∴∠AOB=40︒,∴劣弧AB的长=406180π⨯=43π,故②正确;③∵AD是⊙O的直径,∴∠ACD=90︒,即AC⊥DE,∵∠ADE=∠E,∴AD=AE,∴∠DAC=∠EAC,∴点C为BD的中点,故③正确;④∵DB⊥AE,而∠A≠∠E,∴BD不平分∠ADE,故④错误.所以正确结论是①②③.故答案为①②③.【点睛】本题考查了圆内接四边形的性质,圆周角定理,弧长的计算,等腰三角形的判定与性质,三角形内角和定理,掌握相关性质及公式是解题的关键.17、103【解析】分析:根据勾股定理求出5AC ==,根据AB ∥CD ,得到12AF AE CF CD ==,即可求出CF 的长. 详解:∵四边形ABCD 是矩形,∴4AB CD ==,AB ∥CD ,90ADC ∠=︒,在Rt ADC △中,90ADC ∠=︒,∴5AC ==, ∵E 是AB 中点,∴1122AE AB CD ==, ∵AB ∥CD ,∴12AF AE CF CD ==,∴21033CF AC ==. 故答案为103. 点睛:考查矩形的性质,勾股定理,相似三角形的性质及判定,熟练掌握相似三角形的判定方法和性质是解题的关键. 18、9.8【分析】求当t=0时函数值,即与x 轴的两个交点,两个交点之间的距离即足球在空中飞行的时间.【详解】解:当t=0时,29.80t t -+=(9.8)0t t --=解得:120;9.8t t ==∴足球在空中的飞行时间为9.8s故答案为:9.8【点睛】本题考查二次函数的实际应用,利用数形结合思想球解题,求抛物线与x 轴的交点是本题的解题关键三、解答题(共78分)19、(1)1y x =-+;(2)4b =±【分析】(1)根据两个函数图象的交点的横坐标是-2和3先求出两个交点坐标,然后把两点代入一次函数解析式求出k ,b 值,即可得到一次函数解析式;(2)两个函数解析式联立组成方程组消去y 得到关于x 的一元二次方程,根据判别式=0求出b 的值.【详解】解:(1)把-2和3分别代入6y x=-中,得:()2,3-和()3,2-. 把()2,3-,()3,2-代入y kx b =+中,231,321k b k k b b -+==-⎧⎧∴⎨⎨+=-=⎩⎩. ∴一次函数表达式为:1y x =-+;(2)当23k =,则23y x b =+,联立得:236y x b y x ⎧=+⎪⎪⎨⎪=-⎪⎩, 整理得:223180++=x bx ,只有一个交点,即0∆=,则291440∆=-=b ,得4b =±.故b 的值为4或-4.【点睛】本题主要考查待定系数法求函数解析式和函数交点坐标的求法,先利用反比例函数解析式求出两交点坐标是解本题的关键.20、(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,-,(1,2--±.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+;(2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+= 当PA =PE 29n +212n ++()n =1,此时P (﹣1,1); 当PA =AE 29n +16425+=,解得:n =11P 坐标为(﹣1,11);当PE =AE 212n ++()16425+=n =﹣219P 坐标为:(﹣1,﹣219 综上所述:P 点的坐标为:(﹣1,1),(﹣1,111,﹣219点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.21、(1)y =﹣2x 2+2x +4, M 1922,⎛⎫ ⎪⎝⎭,N 132,⎛⎫ ⎪⎝⎭,(2)存在,P 32,1⎛⎫ ⎪⎝⎭.【分析】(1)先由直线解析式求出A ,B 的坐标,再利用待定系数法可求出抛物线解析式,可进一步化为顶点式即可写出顶点M 的坐标并求出点N 坐标;(2)先求出MN 的长度,设点P 的坐标为(m ,﹣2m +4),用含m 的代数式表示点D 坐标,并表示出PD 的长度,当PD =MN 时,列出关于m 的方程,即可求出点P 的坐标.【详解】(1)∵直线y =﹣2x +4分别交x 轴,y 轴于点A ,B ,∴A (2,0),B (0,4),把点A (2,0),B (0,4)代入y =﹣2x 2+bx +c ,得 24204b c c -⨯++=⎧⎨=⎩, 解得,24b c =⎧⎨=⎩, ∴抛物线的解析式为:y =﹣2x 2+2x +4=﹣2(x ﹣12)2+92, ∴顶点M 的坐标为(12,92), 当x =12时,y =﹣2×12+4=3, 则点N 坐标为(12,3); (2)存在点P ,理由如下:MN =92﹣3=32, 设点P 的坐标为(m ,﹣2m +4),则D (m ,﹣2m 2+2m +4),∴PD =﹣2m 2+2m +4﹣(﹣2m +4)=﹣2m 2+4m ,∵PD ∥MN ,∴当PD =MN 时,四边形MNPD 为平行四边形,即﹣2m 2+4m =32, 解得,m 1=32,m 2=12(舍去),∴此时P点坐标为(32,1).【点睛】本题考查了待定系数法求二次函数解析式,平行四边形的存在性等,解题关键是要熟练掌握平行四边形的性质并能够灵活运用.22、(1)50,30;(2)答案见解析;(3)36;(4)1800人.【分析】(1)由赞同的人数除以赞同的人数所占的百分比,即可求出样本容量,再求出无所谓态度的人数,进而求出a的值;(2)由(1)可知无所谓态度的人数,将条形统计图补充完整即可;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分比,用样本估计总体的思想计算即可.【详解】(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=15100%30% 50⨯=;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为550×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为102050+×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800人.考点:条形统计图;扇形统计图;用样本估计总体.23、(1)34;(2)12. 【分析】(1)根据概率公式计算即可. (2)画树状图展示所有12种等可能的结果数,找出小红获胜的结果数,然后根据概率公式求解【详解】解:(1)4张牌中有3张是偶数这张牌的数字为偶数的概率是34. 故答案为34. (2)解:画树状图为:共有12种等可能的结果数,其中小红获胜的结果数为6,所以小红获胜的概率=612=12. 【点睛】本题考查的知识点是利用树状图求事件的概率问题,根据题意画出树状图是解题的关键.24、(1)()140y x x=>;(2)28;(3)步数之差最多是0.4厘米, 【分析】(1)用待定系数法即可求得反比例函数的解析式;(2)即求当0.5x =时的函数值;(3)先求得当35y =时的函数值,再判断当35y ≥时的函数值的范围.【详解】(1)设反比例函数解析式为()0k y k x =≠, 将2x =,7y =代入解析式得:72k =, 解得:14k =, ∴反比例函数解析式为()140y x x=>; (2)将0.5x =代入得28y =;(3)反比例函数140k =>,在每一象限y 随x 增大而减小,当35y =时,1435x=, 解得:0.4x =, ∴当35y ≥时,0.4x ≤,∴步数之差最多是0.4厘米.【点睛】本题考查了用待定系数法求反比例函数的解析式,掌握反比例函数图象上点的坐标特征是正确解答本题的关键.25、(1);(2)售价为60元时每天销售该商品所获得最大利润,最大利润是1600.【解析】(1)利用待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况;【详解】(1)设y=kx+b ,将(50,100)、(55,90)代入,得:解得:,∴y=-2x+200 (40≤x≤60);(2)==∵开口向下 ∴当时,随的增大而增大, 当时,最大, 答:售价为60元时每天销售该商品所获得最大利润,最大利润是1600.【点睛】考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.26、9803980.【分析】过D 作DH ⊥BA 于H ,在Rt △DAH 中根据三角函数即可求得AH 的长,然后在Rt △DBH 中,求得BH 的长,进而求得BA 的长.【详解】解:由题意可知AD=(30+5)×28=980,过D 作DH ⊥BA 于H .在Rt △DAH 中,DH=AD•sin60°=98033, AH=AD ×cos60°=980×12=490, 在Rt △DBH 中,BH=tan15DH ︒33)3, ∴BA=BH-AH=(3-490=980(3(米).答:热气球升空点A 与着火点B 的距离为980(3(米).【点睛】本题主要考查了仰角和俯角的定义,一般三角形的计算可以通过作高线转化为直角三角形的计算.。
2018年山东省菏泽市九年级(上)第一次月考数学试卷
2018年山东省菏泽市九年级(上)第一次月考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.下列方程是一元二次方程的是()A.x2+2x﹣3 B.x2+3=0 C.(x2+3)2=9 D.2.如果x2+bx+16=(x﹣4)2,则b的值为()A.﹣4 B.4 C.﹣8 D.83.如右图所示,折叠矩形ABCD,使点A落在BC边的点E处,DF为折痕,已知AB=8cm,BC=10cm,则BE的长等于()A.4cm B.5cm C.6cm D.7cm4.一元二次方程x2﹣4=0的解是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x1=,x2=﹣5.若代数式2x2﹣5x与代数式x2﹣6的值相等,则x的值是()A.﹣2或﹣3 B.2或3 C.﹣1或6 D.1或﹣66.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14C.(x+6)2=D.以上答案都不对7.关于x的一元二次方程(m﹣1)x2+3x+m2﹣1=0的一根为0,则m的值是()A.﹣1 B.﹣2 C.±1 D.±28.三角形两边的长分别是4和6,第3边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的周长是()A.20 B.20或16 C.16 D.18或219.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=1510.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196二.填空题(本大题共6小题,每小题3分,共18分)11.把一元二次方程(x+1)(1﹣x)=2x化成二次项系数大于零的一般式是,其中二次项系数是,一次项的系数是,常数项是;12.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为,另一个解是.13.已知一元二次方程的一个根是﹣3,则这个方程可以是(填上你认为正确的一个方程即可)14.已知一元二次方程2x2﹣3x﹣1=0的两根为x1,x2,则= .15.若矩形的长是6cm,宽为3cm,一个正方形的面积等于该矩形的面积,则正方形的边长是cm.16.已知a,b,c是△ABC的三边长,若方程(a﹣c)x2+2bx+a+c=0有两个相等的实数根,则△ABC是三角形.三、解答题(本大题共4小题,共52分)17.用适当的方法解下列方程:(1)9(x﹣2)2﹣25=0(2)3x2﹣7x+2=0(3)(x+1)(x﹣2)=x+1(4)(3x﹣2)2=(2x﹣3)2.18.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2005年至2007年盈利的年增长率?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?19.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?20.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?2018年山东省菏泽市九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.下列方程是一元二次方程的是()A.x2+2x﹣3 B.x2+3=0 C.(x2+3)2=9 D.【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:(1)是整式方程;(2)含有一个未知数,且未知数的最高次数是2;(3)二次项系数不为0.以上三个条件必须同时成立,据此即可作出判断.【解答】解:A、不是方程,错误;B、符合一元二次方程的定义,正确;C、原式可化为x4+6x2=0,是一元四次方程,错误;D、是分式方程,错误.故选B.2.如果x2+bx+16=(x﹣4)2,则b的值为()A.﹣4 B.4 C.﹣8 D.8【考点】完全平方式.【分析】先把原式的右边利用完全平方公式展开,再利用等式的对应项的系数相等可求b.【解答】解:∵x2+bx+16=(x﹣4)2,∴x2+bx+16=x2﹣8x+16,∴b=﹣8.故选C.3.如右图所示,折叠矩形ABCD,使点A落在BC边的点E处,DF为折痕,已知AB=8cm,BC=10cm,则BE的长等于()A.4cm B.5cm C.6cm D.7cm【考点】翻折变换(折叠问题).【分析】由DF为折痕,可得AD=DE,由矩形ABCD,可得CD=AB=8cm,∠DCE=90°,设出BE的长,在直角三角形中利用勾股定理列出方程,通过解方程可得答案.【解答】解:设BE=x,则EC=BC﹣BE=10﹣x,∵矩形ABCD,∴CD=AB=8,∠DCE=90°,∵DF为折痕,∴DE=AD=BC=10,Rt△DCE中,DE2=EC2+CD2,∴102=(10﹣x)2+82,解得x=4.故选A.4.一元二次方程x2﹣4=0的解是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x1=,x2=﹣【考点】解一元二次方程-直接开平方法.【分析】观察发现方程的两边同时加4后,左边是一个完全平方式,即x2=4,即原题转化为求4的平方根.【解答】解:移项得:x2=4,∴x=±2,即x1=2,x2=﹣2.故选:C.5.若代数式2x2﹣5x与代数式x2﹣6的值相等,则x的值是()A.﹣2或﹣3 B.2或3 C.﹣1或6 D.1或﹣6【考点】解一元二次方程-因式分解法;因式分解-分组分解法.【分析】由两个代数式的值相等,可以列出一个一元二次方程,分析方程的特点,用分组分解法进行因式分解,求出方程的两个根.【解答】解:因为这两个代数式的值相等,所以有:2x2﹣5x=x2﹣6,x2﹣5x+6=0,(x﹣2)(x﹣3)=0,x﹣2=0或x﹣3=0,∴x=2或3.故选B.6.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14C.(x+6)2=D.以上答案都不对【考点】解一元二次方程-配方法.【分析】把方程变形得到x2+6x=5,方程两边同时加上一次项的系数一半的平方,两边同时加上9即可.【解答】解:∵x2+6x﹣5=0∴x2+6x=5∴x2+6x+9=5+9∴(x+3)2=14.故选A.7.关于x的一元二次方程(m﹣1)x2+3x+m2﹣1=0的一根为0,则m的值是()A.﹣1 B.﹣2 C.±1 D.±2【考点】一元二次方程的解.【分析】根据一元二次方程解的定义把x=0代入方程求m,然后根据一元二次方程的定义确定满足条件的m的值.【解答】解:把x=0代入方程得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故选A.8.三角形两边的长分别是4和6,第3边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的周长是()A.20 B.20或16 C.16 D.18或21【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】由于第3边的长是一元二次方程x2﹣16x+60=0的一个实数根,那么求出方程的根就可以求出三角形的周长.【解答】解:∵x2﹣16x+60=0,∴(x﹣6)(x﹣10)=0,∴x=6或x=10,当x=6时,三角形的三边分别为6、4和6,∴该三角形的周长是16;当x=10时,三角形的三边分别为10、4和6,而4+6=10,∴三角形不成立.故三角形的周长为16.故选C.9.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15【考点】由实际问题抽象出一元二次方程.【专题】销售问题.【分析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=15即可.【解答】解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选:A.【点评】此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.10.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.【点评】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.二.填空题(本大题共6小题,每小题3分,共18分)11.把一元二次方程(x+1)(1﹣x)=2x化成二次项系数大于零的一般式是x2+2x﹣1=0 ,其中二次项系数是 1 ,一次项的系数是 2 ,常数项是﹣1 ;【考点】一元二次方程的一般形式;一元二次方程的定义.【专题】计算题.【分析】通过去括号,移项,可以得到一元二次方程的一般形式,然后写出二次项系数,一次项系数和常数项.【解答】解:去括号:1﹣x2=2x移项:x2+2x﹣1=0二次项系数是:1,一次项系数是:2,常数项是:﹣1.故答案分别是:x2+2x﹣1=0,1,2,﹣1.【点评】本题考查的是一元二次方程的一般形式,通过去括号,移项,可以得到一元二次方程的一般形式,然后写出二次项系数,一次项系数和常数项.12.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为 1 ,另一个解是﹣2 .【考点】根与系数的关系.【分析】直接把x=﹣1代入一元二次方程即可得出m的值;设另一个根为α,根据根与系数的关系即可得出结论.【解答】解:∵x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,∴(﹣1)2﹣3+m+1=0,解得m=1.设另一个根为α,则﹣1+α=﹣3,解得α=﹣2.故答案为:1,﹣2.【点评】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.13.已知一元二次方程的一个根是﹣3,则这个方程可以是x2+3x=0 (填上你认为正确的一个方程即可)【考点】一元二次方程的解.【分析】假定方程一个解为﹣3,另一个解为0,则方程可为x(x+3)=0,然后把方程化为一般式即可.【解答】解:一元二次方程的一个根是﹣3,则这个方程可以是x(x+3)=0,即x2+3x=0.故答案为x2+3x=0.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.已知一元二次方程2x2﹣3x﹣1=0的两根为x1,x2,则= ﹣3 .【考点】根与系数的关系.【分析】因为x1,x2是一元二次方程2x2﹣3x﹣1=0的两根,有根与系数的关系可得x1+x2和x1•x2的值,把通分,再把得x1+x2和x1•x2的值代入即可得到问题的答案.【解答】解:∵一元二次方程2x2﹣3x﹣1=0中,a=2,b=﹣3,c=﹣1,x 1,x2为方程的两根,∴x1+x2=﹣=,x1•x2==﹣,∵=,∴==﹣3,故答案为:﹣3.【点评】本题考查了根与系数的关系:若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.15.若矩形的长是6cm,宽为3cm,一个正方形的面积等于该矩形的面积,则正方形的边长是3cm.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】根据“正方形的面积等于该矩形的面积”列方程解答.【解答】解:设正方形的边长为xcm,那么根据题意得:x2=6×3,解得:x=3cm.所以正方形的边长是3cm.【点评】本题要注意正方形和矩形的面积公式.16.已知a,b,c是△ABC的三边长,若方程(a﹣c)x2+2bx+a+c=0有两个相等的实数根,则△ABC是直角三角形.【考点】根的判别式.【分析】由△=4b2﹣4(c+a)(c﹣a)=4(b2﹣c2+a2)=0,得出三边关系b2+a2=c2,进一步利用勾股定理逆定理判定三角形的形状即可.【解答】解:∵方程(a﹣c)x2+2bx+a+c=0有两个相等的实数根,∴△=4b2﹣4(c+a)(c﹣a)=4(b2﹣c2+a2)=0,∴b2+a2=c2,∴△ABC是直角三角形.故答案为:直角.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了勾股定理逆定理.三、解答题(本大题共4小题,共52分)17.用适当的方法解下列方程:(1)9(x﹣2)2﹣25=0(2)3x2﹣7x+2=0(3)(x+1)(x﹣2)=x+1(4)(3x﹣2)2=(2x﹣3)2.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)将原方程化简为(x﹣2)2=,然后再利用直接开平方法解得方程;(2)利用因式分解求得方程的解;(3)移项将原方程右边等于0,然后合并同类项即可求得方程的解;(4)将原方程移项使得右边为0,然后利用平方差公式即可解得方程.【解答】解:(1)∵9(x﹣2)2﹣25=0,∴(x﹣2)2=,∴x﹣2=±,∴x1=,x2=;(2)∵3x2﹣7x+2=0,∴(3x﹣1)(x﹣2)=0,∴3x﹣1=0或x﹣2=0,x 1=2,x2=;(3)∵(x+1)(x﹣2)=x+1,∴(x+1)(x﹣2﹣1)=0,x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(4)∵(3x﹣2)2=(2x﹣3)2,∴(3x﹣2﹣2x+3)(3x﹣2+2x﹣3)=0,∴x+1=0或5x﹣5=0,∴x1=﹣1,x2=1.【点评】本题主要考查了解一元二次方程的知识,根据方程的特点选择合适的方法解一元二次方程是解决此类问题的关键.一般解一元二次方程的方法有直接开平方法、因式分解法、公式法、配方法.18.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2005年至2007年盈利的年增长率?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设该公司2005年至2007年盈利的年增长率为x,由增长率问题的数量关系建立方程即可;(2)由(1)的结论根据增长率问题的数量关系p(1+x)就可以求出结论.【解答】解:(1)设该公司2005年至2007年盈利的年增长率为x,由题意,得1500(1+x)2=2160,解得:x1=﹣2.2(舍去),x2=0.2.答:该公司2005年至2007年盈利的年增长率为20%;(2)由题意,得2160×(1+20%)=2592(元).答:预计2008年盈利2592万元.【点评】本题考查了增长率问题的数量关系式的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时由增长率问题的数量关系建立方程是关键.19.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【考点】一元二次方程的应用.【专题】应用题.【分析】设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.【解答】解:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得 x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.【点评】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.20.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是100+200x 斤(用含x 的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【解答】解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(斤);(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:张阿姨需将每斤的售价降低1元.【点评】本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量,从而利润.第二问,根据售价和销售量的关系,以利润做为等量关系列方程求解.。
山东省东明县2018-2019年九年级(上)期末数学模拟试卷(含答案)
九年级上学期期末数学模拟测试一、选择题:1、以下事件中不可能事件是()A.一个角和它的余角的和是B.连接掷次骰子都是点朝上C.一个有理数与它的倒数之和等于D.一个有理数小于它的倒数2、(2018•广西)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80C.80(1+2x)=100 D.80(1+x2)=1003、对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限4、如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是()A.70°B.35°C.45°D.60°5、一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于36、若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个 ;B.有且只有2个; C.有且只有3个D.有无穷多个7、对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y28、(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%9、如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<710、如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.411、如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()A.2πB.C.D.12、(2018•荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:13、已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为.14、小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是.15、如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是.16、两个装有乒乓球的盒子,其中一个装有个白球个黄球,另一个装有个白球个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为________;至少有一个是白球的概率为________.17、将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.18、已知点P(-2,3),则点关于原点对称的点的坐标是________.19、已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.20、某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为.21、在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为.22、若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为.三、解答题:23、如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取 2 个涂黑,得到新图案,请用列表或画树状图的方法,求新图案是轴对称图形的概率.24、如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE 至点F,使EF=AE,连接FB,F C.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.25、(2018•沈阳)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.26、反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.27、传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)参考答案一、选择题:1、C2、A3、C4、B5、D6、B7、D8、C9、A10、D11、D12、B二、填空题:13、214、115、80°16、5/9 7/917、y=x2+218、(2,-3)19、k<120、80(1+x)2=10021、1/m22、65π三、解答题:23、解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是3/9=1/3(2)列表如下:由表可知,共有30 种等可能结果,其中是轴对称图形的有10 种,故新图案是轴对称图形的概率为10/30=1/324、(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接B D.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.25、解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.26、解:(1)把A(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=;把B(3,m)代入y=得3m=3,解得m=1,∴B点坐标为(3,1);(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),∵PA+PB=PA′+PB=BA′,∴此时此时PA+PB的值最小,设直线BA′的解析式为y=mx+n,把A′(1,﹣3),B(3,1)代入得,解得,∴直线BA′的解析式为y=2x﹣5,当y=0时,2x﹣5=0,解得x=,∴P点坐标为(,0).27、解:(1)设李明第x天生产的粽子数量为280只,由题意可知:20x+80=280,解得x=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,,解得,∴p=0.1x+1,①0≤x≤6时,w=(4﹣2)×34x=68x,当x=6时,w最大=408(元);②6<x≤10时,w=(4﹣2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);③10<x≤20时,w=(4﹣0.1x﹣1)×(20x+80)=﹣2x2+52x+240,∵a=﹣3<0,∴当x=﹣=13时,w最大=578(元);综上,当x=13时,w有最大值,最大值为578.。
山东省菏泽市东明县九年级数学上学期12月月考试卷(含解析)
2017-2018学年山东省菏泽市东明县九年级(上)月考数学试卷(12月份)一、选择题(共10小题,每小题3分,满分30分)1.(3分)学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是()A.B.C.D.2.(3分)如图,几何体的左视图是()A.B.C.D.3.(3分)已知方程12x2﹣6x﹣8=0,则此方程()A.无实数根 B.两根之和为C.两根之积为D.有一根为4.(3分)如图,要设计一副宽20cm,长30cm的图案,其中有两横两竖的彩条,其中有两横两竖的彩条,横竖彩条的宽度比为2:1.如果要使彩条所占面积是图案面积的,设竖彩条宽度为xcm,则可列方程为()A.2×2x×30+2x(20﹣4x)=B.2×2x×30+2x(20﹣4x)=×20×30C.2x×20+2×2x(30﹣2x)=D.2x×20+2×2x(30﹣2x)=20×305.(3分)函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C.D.6.(3分)已知:如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD 的面积是()A.B.C.D.7.(3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④8.(3分)以矩形ABCD两条对角线的交点O为坐标原点,建立如图的平面直角坐标系,且AB⊥x轴,双曲线y=经过点D,则矩形的面积为()A.10 B.11 C.12 D.139.(3分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)10.(3分)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)11.(3分)方程kx2﹣3x+2=0有两个不相等的实数根,则k的取值范围是.12.(3分)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有个.13.(3分)已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x12+x22=4,则m的值为.14.(3分)已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=的图象上的三个点,且x1<x2<0,x3>0,则y1,y2,y3的大小关系是.15.(3分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是.16.(3分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= m.17.(3分)若菱形的一条对角线长是另一条对角线长的2倍,且菱形的面积为16cm2,则菱形的周长为cm.18.(3分)如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是.三、解答题(共7小题,满分66分)19.(8分)解下列方程:(1)2x2﹣3x﹣5=0(2)x2﹣4x﹣32=0.20.(8分)一只不透明的袋子,装有分别标有数字1、2、3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表或画树状图的方法,求出两次摸出的球上的数字之和为偶数的概率.21.(10分)如图,小军、小华、小丽同时站在路灯下,其中小军和小丽的影子分别是AB、CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示);(3)若小军的身高为1.8m,她的影长AB为2m,他距路灯底部3m,求路灯的高度.22.(10分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).23.(10分)如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.24.(10分)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,设BM=x.(1)证明:Rt△ABM∽Rt△MCN;(2)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求x的值.25.(10分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.2017-2018学年山东省菏泽市东明县九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是()A.B.C.D.【解答】解:画树状图得:∵共有12种等可能的结果,甲乙两人恰有一人参加此活动的有8种情况,∴甲乙两人恰有一人参加此活动的概率是: =.故选:A.2.(3分)如图,几何体的左视图是()A.B.C.D.【解答】解:如图,几何体的左视图是.故选:C.3.(3分)已知方程12x2﹣6x﹣8=0,则此方程()A.无实数根 B.两根之和为C.两根之积为D.有一根为【解答】解:对于方程12x2﹣6x﹣8=0,∵△>0,∴方程有实数根,故A错误,两根之和为,故B错误,两根之积为﹣,故C正确,方程的两根为,故D错误,故选C.4.(3分)如图,要设计一副宽20cm,长30cm的图案,其中有两横两竖的彩条,其中有两横两竖的彩条,横竖彩条的宽度比为2:1.如果要使彩条所占面积是图案面积的,设竖彩条宽度为xcm,则可列方程为()A.2×2x×30+2x(20﹣4x)=B.2×2x×30+2x(20﹣4x)=×20×30C.2x×20+2×2x(30﹣2x)=D.2x×20+2×2x(30﹣2x)=20×30【解答】解:设竖彩条的宽为xcm,则横彩条的宽为2xcm,则2×2x×30+2x(20﹣4x)=×20×30,故选B5.(3分)函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C.D.【解答】解:y=a(x﹣1)=ax﹣a,当a>0时,反比例函数在第一、三象限,一次函数在第一、三、四象限,当a<0时,反比例函数在第二、四象限,一次函数在第一、二、四象限,故选:A.6.(3分)已知:如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD 的面积是()A.B.C.D.【解答】解:如图:过点C作CF⊥BD于F.∵矩形ABCD中,BC=2,AE⊥BD,∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°.∴△ABE≌△CDF.∴AE=CF.∴S△AED=ED•AE,S△ECD=ED•CF∴S△AED=S△CDE∵AE=1,DE=,∴△ECD的面积是.故选C.7.(3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.8.(3分)以矩形ABCD两条对角线的交点O为坐标原点,建立如图的平面直角坐标系,且AB⊥x轴,双曲线y=经过点D,则矩形的面积为()A.10 B.11 C.12 D.13【解答】解:∵双曲线y=经过点D,∴第一象限的小长方形的面积是3,∴矩形ABCD的面积是3×4=12.故选:C.9.(3分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.10.(3分)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A.B.C.D.【解答】解:∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=, =,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.二、填空题(共8小题,每小题3分,满分24分)11.(3分)方程kx2﹣3x+2=0有两个不相等的实数根,则k的取值范围是k<且k≠0 .【解答】解:根据题意得k≠0且△=(﹣3)2﹣8k>0,解得k<且k≠0.故答案为:k<且k≠0.12.(3分)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有 6 个.【解答】解:由主视图与左视图可以在俯视图上标注数字为:主视图有三列,每列的方块数分别是:2,1,1,左视图有两列,每列的方块数分别是:1,2,俯视图有三列,每列的方块数分别是:2,1,2,∴总个数为1+2+1+1+1=6个.故答案为6.13.(3分)已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x12+x22=4,则m的值为﹣1或﹣3 .【解答】解:∵这个方程的两个实数根为x1、x2,∴x1+x2=﹣(m+3),x1•x2=m+1,而x12+x22=4,∴(x1+x2)2﹣2x1•x2=4,∴(m+3)2﹣2m﹣2=4,∴m2+6m+9﹣2m﹣6=0,m2+4m+3=0,∴m=﹣1或﹣3,故答案为:﹣1或﹣314.(3分)已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=的图象上的三个点,且x1<x2<0,x3>0,则y1,y2,y3的大小关系是y2>y1>y3.【解答】解:∵反比例函数y=﹣中,k=﹣4<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1<x2<0,x3>0,∴y1<y2>0、y3<0,∴y2>y1>y3,故答案为y2>y1>y3.15.(3分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是≤a.【解答】解:∵A点的坐标为(a,a).根据题意C(a﹣1,a﹣1),当C在曲线时,则a﹣1=,解得a=+1,当A在曲线时,则a=,解得a=,∴a的取值范围是≤a.故答案为≤a.16.(3分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= 5.5 m.【解答】解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴=∵DE=40cm=0.4m,EF=20cm=0.2m,AC=1.5m,CD=8m,∴=∴BC=4米,∴AB=AC+BC=1.5+4=5.5米,故答案为:5.5.17.(3分)若菱形的一条对角线长是另一条对角线长的2倍,且菱形的面积为16cm2,则菱形的周长为8cm.【解答】解:设较短对角线长xcm,则较长的为2xcm,依题意得,x2=16,可得x=4,2x=8,则菱形的边长为==2cm,∴菱形的周长为4×2=8cm,故答案为:818.(3分)如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,以此类推,则第六个正方形A6B6C6D6周长是.【解答】解:顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,则周长是原来的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即,则周长是原来的;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,则正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即,则周长是原来的;顺次连接正方形A3B3C3D3中点得正方形A4B4C4D4,则正方形A4B4C4D4的面积为正方形A3B3C3D3面积的一半,则周长是原来的;…故第n个正方形周长是原来的,以此类推:第六个正方形A6B6C6D6周长是原来的,∵正方形ABCD的边长为1,∴周长为4,∴第六个正方形A6B6C6D6周长是.故答案为:.三、解答题(共7小题,满分66分)19.(8分)解下列方程:(1)2x2﹣3x﹣5=0(2)x2﹣4x﹣32=0.【解答】解:(1)原方程可化为:(2x﹣5)(x+1)=0,解得:x1=,x2=﹣1;(2)原方程可化为:(x﹣8)(x+4)=0,解得:x1=8,x2=﹣4.20.(8分)一只不透明的袋子,装有分别标有数字1、2、3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表或画树状图的方法,求出两次摸出的球上的数字之和为偶数的概率.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球上的数字之和为偶数的有5种情况,∴两次摸出的球上的数字之和为偶数的概率为:.21.(10分)如图,小军、小华、小丽同时站在路灯下,其中小军和小丽的影子分别是AB、CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示);(3)若小军的身高为1.8m,她的影长AB为2m,他距路灯底部3m,求路灯的高度.【解答】解:(1)如图,点P为路灯灯泡位置;(2)如图,小华在路灯下的影子为EF;(3)过P作PM⊥地面,∴,∴PM=4.5m,即:路灯高为4.5m.22.(10分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).【解答】解:(1)设甲服装的进价为x元,则乙服装的进价为(500﹣x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500﹣x)﹣500=67,解得:x=300,500﹣x=200.答:甲服装的进价为300元、乙服装的进价为200元.(2)∵乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y,则200(1+y) 2=242,解得:y1=0.1=10%,y2=﹣2.1(不合题意舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调,∴再次上调价格为:242×(1+10%)=266.2(元),∵商场仍按9折出售,设定价为a元时,0.9a﹣266.2>0,解得:a>.故定价至少为296元时,乙服装才可获得利润.23.(10分)如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.【解答】(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),∴∠AOC=2∠COD,∠COB=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC(已知),∴OD⊥AC,AD=DC(等腰三角形的“三合一”的性质),∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形;(2)当∠AOC=90°时,四边形CDOF是正方形;理由如下:∵∠AOC=90°,AD=DC,∴OD=DC;又由(1)知四边形CDOF是矩形,则四边形CDOF是正方形;因此,当∠AOC=90°时,四边形CDOF是正方形.24.(10分)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,设BM=x.(1)证明:Rt△ABM∽Rt△MCN;(2)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求x的值.【解答】(1)证明:在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°.∴∠CMN+角AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠MAB.∴Rt△ABM∽Rt△MCN.(2)解:∵∠B=∠AMN=90°,∴要使Rt△ABM∽△Rt△AMN,必须有:,由(1)知:,∴BM=MC,∴当点M运动到BC的中点时,Rt△ABM∽Rt△AMN,此时x=2.25.(10分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.【解答】解:(1)把点A(1,a)代入一次函数y=﹣x+4,得:a=﹣1+4,解得:a=3,∴点A的坐标为(1,3).把点A(1,3)代入反比例函数y=,得:3=k ,∴反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.∵点B、D关于x轴对称,点B的坐标为(3,1),∴点D的坐标为(3,﹣1).设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,∴直线AD的解析式为y=﹣2x+5.令y=﹣2x+5中y=0,则﹣2x+5=0,解得:x=,∴点P的坐标为(,0).S△PAB=S△ABD﹣S △PBD=BD•(x B﹣x A)﹣BD•(x B﹣x P)=×[1﹣(﹣1)]×(3﹣1)﹣×[1﹣(﹣1)]×(3﹣)=.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年山东省菏泽市东明县九年级(上)月考数学试卷(12
月份)
一、选择题(共10小题,每小题3分,满分30分)
1.(3分)学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是()
A.B.C.D.
2.(3分)如图,几何体的左视图是()
A.B.C.D.
3.(3分)已知方程12x2﹣6x﹣8=0,则此方程()
A.无实数根 B.两根之和为
C.两根之积为D.有一根为
4.(3分)如图,要设计一副宽20cm,长30cm的图案,其中有两横两竖的彩条,其中有两
横两竖的彩条,横竖彩条的宽度比为2:1.如果要使彩条所占面积是图案面积的,设竖彩条宽度为xcm,则可列方程为()
A.2×2x×30+2x(20﹣4x)=
B.2×2x×30+2x(20﹣4x)=×20×30
C.2x×20+2×2x(30﹣2x)=
D.2x×20+2×2x(30﹣2x)=20×30
5.(3分)函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()
A.B.C.
D.
6.(3分)已知:如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,那么△ECD
的面积是()
A.B.C.D.
7.(3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()
A.选①②B.选②③C.选①③D.选②④
8.(3分)以矩形ABCD两条对角线的交点O为坐标原点,建立如图的平面直角坐标系,且
AB⊥x轴,双曲线y=经过点D,则矩形的面积为()。