K2FastWave中文操作手册
K2 脚踝保护器说明书
NOTICE: The foot should be inspected by the clinician every 6 months for signs of abnormal wear and to assure that the attachment/alignment screws are secure. NOTICE: The foot stiffness is based on patient weight. Please provide accurate patient information so that the appropriate foot may be selected. NOTICE: Attachment, alignment, and delivery of the foot must be performed by or under the direct supervision of a qualified prosthetist. Any adjustment or modifications should be done by the clinician and not by the user. NOTICE: If any serious incidents occur in relation to the usage of the device, contact your Fillauer Representative and the competent authority in your country.
• Unilateral or bilateral patients • Patients that would benefit from ease of gait initiation • Patients that would benefit from compliance on uneven terrain • Patients weighing up to 365 lbs. (150 kg)
测波雷达操作手册
WaMoS® IIWave Monitoring SystemOperating ManualVersion 3.03Installation GuideOceanWaveS GmbHMunstermannskamp 1D - 21335 LüneburgTable of Contents:1 Preface (8)2 Introduction (9)3 Technical Data (12)4 Hardware Description (14)4.1 WaMoS PCI-card (14)4.1.1 The components are: (14)4.1.3 LEDs on the PCI-card: (15)4.2 NMEA Input / Output (16)4.3 Failure Control (18)4.4 PC Watchdog (18)4.5 Antenna Motor Control (19)4.6 Alarm Interface (19)4.7 Hardware Error Logging (19)5 Control program: WinWaMoS (21)5.1 Installation (21)5.2 Program Modes (21)5.3 User Mode (21)5.3.1 Menu View (22)5.3.2 Menu Control (23)5.3.2.1 Menu Item: Configuration User Display (24)5.3.2.2 Menu Item: Start/Stop Automatic Recording (25)5.3.2.3 Menu Item: Save Screenshot (27)5.4 Install Mode (28)5.4.1 Menu Control - Menu Item: Configuration WaMoS (28)5.4.1.1 Station Setup (30)5.4.1.2 Measurement (31)5.4.1.3 Measurement Event Handling (33)5.4.1.4 Cartesian Transformation (35)5.4.1.5 Radar (37)5.4.1.6 PCI-Card (38)5.4.1.7 Program Mode (40)5.4.1.8 Quality Control (42)5.4.1.9 Calculation parameters (45)5.4.1.10 Sea state alarm (47)5.4.1.11 NMEA (48)5.4.2 Menu Control – Menu Item: Watchdog Buzzer (F4) (53)5.4.3 Menu Analysis (54)5.4.4 Menu Test (54)5.4.4.1 Test WaMoS Device ... .. (54)5.4.4.2 Test NMEA Service (55)5.4.4.3 Test WatchDog (56)5.4.4.4 Test User Display (57)5.4.4.5 Test ADC-Level (58)6 WaMoS II Data Products (59)6.1 File Name Convention (59)6.2 WaMoS II Data Formats (60)6.2.1 Polar Image Files (61)6.2.2 Cartesian Images (61)6.2.3 Two-Dimensional Wave Number Spectrum (62)6.2.4 Frequency Direction Spectrum (Frequency Theta Spectrum) (63)6.2.5 One-dimensional frequency spectrum (63)6.3 Time series of WaMoS II measurement (64)6.4 Log files of WaMoS II measurement (67)7 Configuration file: wamos.cfg (68)8 List of Notations, Symbols and Descriptions (69)9 Preventive mainenance WaMoS Processor Unit (71)Appendix1Appendix Header (74)1.1 Polar Image (74)1.1.1 Header of a Polar Image (74)1.1.2 Keywords of the Polar Header (75)1.2 Cartesian Image (76)1.2.1 Header of a Cartesian Image (76)1.2.2 Keywords of the Cartesian Header (77)1.3 Three-Dimensional Wave Number Frequency Spectrum (77)1.3.1 Header of the FFT (77)1.3.2 Keywords of the FFT Header (78)1.4 Two-Dimensional Wave Number Spectrum (79)1.4.1 Header of the Wave Parameters (79)1.4.2 Keywords of the Wave Analysis Header (80)2 Appendix Configuration File (82)2.1 Example of the configuration file: wamos.cfg (82)2.2 Example of the file: user.bat (88)2.3 Example of the file: backup.bat (88)3 Appendix Software Error Codes (89)4 Appendix Error Handling (91)FigureFigure 1: Components of WaMoS II (8)Figure 2: WaMoS II PCI card (11)Figure 3: WaMoS II wiring diagram (12)Figure 4: Functional block diagram of the WaMoS II sampling unit. (13)Figure 5: WaMoS II LEDs (14)Figure 6: WaMoS II polar image onboard the cruiser ‘Freedom of the seas’.22 Figure 7: Configuration of the display settings (23)Figure 8: WaMoS II while sampling (24)Figure 9: File dialogue to save screen shot (26)Figure 10: Station Setup tab of WaMoS II configuration menu (27)Figure 11: Measurement tab of WaMoS II configuration menu (29)Figure 12: Measurement event handling tab of configuration menu (31)Figure 13: Cartesian transformation tab of WaMoS II configuration menu (32)Figure 14: Hardware tab of WaMoS II configuration menu (33)Figure 15: ADC-Settings tab of WaMoS II configuration menu (35)Figure 16: Program Mode tab of WaMoS II configuration menu (37)Figure 17: Quality control tab of WaMoS II configuration menu (39)Figure 18: Calculation parameters tab of WaMoS II configuration menu (41)Figure 19: Sea state alarm tab of WaMoS II configuration menu (43)Figure 20: Sea state alarm window (44)Figure 21: Configuration of the NMEA of COM-port 1 (45)Figure 22: Selection of NMEA Service properties (45)Figure 23: Select NMEA service ‘Compass’ (46)Figure 24: Selection of NMEA Address (46)Figure 25: Manual selection of NMEA Address (47)Figure 26: Selection of NMEA service position (47)Figure 27: Selection of NMEA service format (48)Figure 28: Selection of NMEA service COM-port connection (48)Figure 29: Configured NMEA service (49)Figure 30: Test basic WaMoS II hardware functions (51)Figure 31: Test NMEA service (52)Figure 32: Test WatchDog Card (53)Figure 33: Activated Test WatchDog Card (53)Figure 34: Test ADC-Level (54)Figure 35: Error pop-up window indicating loss of video signal (82)Figure 36: Error pop-up window indicating loss of heading signal (82)Figure 37: Error pop-up window indicating hardware communication error.83 Figure 38: Error pop-up window indicating image size error (83)TableTable 1: WaMoS II wave and current parameters and accuracies (9)Table 2: NMEA Sentence Data Format Notation (15)Table 3: NMEA Sentence Unit Notation (16)Table 4: NMEA not standardized Sentence Description (16)Table 5: Quality index IQ (40)Table 6: WaMoS II standard products and the extensions and subdirectory.56 Table 7: Wave parameters stored in the PARA- and MPAR data files (60)Table 8: Wave parameters stored in the PEAK- and MPEK data files (61)1 PrefaceCOPYRIGHT© Copyright 2005 OceanWaveS GmbH. All rights reserved.No part of this publication may be reproduced or stored in any form, without the prior consent of OceanWaveS GmbH,Munstermannskamp1,D-21335Lüneburg, Germany.WaMoS® II and WaMoS® II Wave Monitoring System1 are registered trademarks of OceanWaveS GmbH, Lüneburg.CHANGESThis manual has been validated and reviewed for accuracy. The instructions and descriptions are accurate at the time of the production of this manual. The material in this manual is for information only and is subject to change without notice.OceanWaveS GmbH reserves the right to make changes in the product design without reservation and without notification to its users.1 WaMoS® II is a registered trademark. In the following of the manual the notation of WaMoS® II takeplace without trademark label.Changes Control PageThis section is being used as a template to control and track modifications made to this document.Modifications since version 3.02Revision Date: 17.09.2007Author: Dieter GronholzSection: 5.3 Figure 7; 8 and 9 modifiedPage number: 25; 26; 28Wrong link to appendix corrected.Section: 6.2; 6.2.1; 6.2.2; 6.2.4; 7Page number: 62; 63; 64; 65; 70Border between wind see and swell set from 10 s to 9 s.Section: 6.3Page number: 67Summary of changes: Screenshots form the new softwere implemented.2 IntroductionReal-time information about the sea state, such as wave height, wave period, wave direction,and surface currents is crucial for coastal protection and off-shore operations (e.g. oil platforms or ships). Wave Monitoring System – WaMoS II is a state-of-the-art system developed to measure the spectral sea state and surface current parameters remotely. The system is especially designed for the operation from fixed and moving platforms, and on board all types of ocean going vessels as well as coastal sites.The overall advantage of WaMoS II is,the continuous availability of wave data in very rough sea conditions even under harsh weather conditions and during night with limited visibility.The system uses the output from a standard marine X-Band radar which is typically used for traffic control and navigation purposes.WaMoS II permits objective measurements of the sea state.By analysing the spatial and temporal evolution of the radar backscatter from the sea surface the system allows to obtain unambiguous directional wave information.The measurement is based on the backscatter of microwaves from the sea surface, that is known as 'sea clutter' on common nautical radar units. All the important sea state parameters,such as significant wave height,wave periods,wave lengths and directions are derived from the unambiguous directional wave spectrum in near real time.Figure 1: Components of WaMoS II.The system consists of both hardware and software components. The hardware components are comprised of a standard marine X-Band radar,the WaMoS II Connection Box and a standard PC.The specially developed WaMoS II control program (software “WinWaMoS”), which captures and stores the sequences of radar images of the sea surface, includes the radar test routines, the configuration facilities, the wave analysis and the display, storage and data handling routines.The wave and current data are displayed graphically as well as being made available as a text output,in data files and/or remotely via modem or internet, intranet or serial line (NMEA 0183).Table 1 gives the standard wave and current parameters with the corresponding accuracies as delivered by WaMoS II. The resolution depends on the radar which is used and the installation configurations. Typical values are provided:Table 1: WaMoS II wave and current parameters and accuracies.Notes:1) Depending on which one is larger2) The first and second peak refers to the first and second energy maximum in thefrequency-direction spectrumThe system can operate in an automatic mode for unattended stand-alone wave monitoring. Data sampling and wave analysis are carried out in user-defined time intervals.WaMoS II can be operated on board moving vessels,from offshore platforms and from coastal sites.3 Technical DataWaMoS II can be connected to almost any type of marine X-Band radar. The following radars have been used successfully with WaMoS II:•FURUNO FR 2125 B•FURUNO FR 1525 MK III•JRC JMA-5526-6•JRC JMA-9823-7XA•Litton Marine System BridgeMaster E•STN-ATLAS Radarpilot Atlas 1000•RAYTHEON Pathfinder MK I•Kelvin Hughes Nucleus 2-5000/2-6000/3-5000.The list is only a short excerpt.Please contact us if you want to use a radar different from these.WaMoS II is a PCI plug in card for standard PCs. This card is easy to install to any PC providing a free PCI slot.Minimum Hardware requirement:Pentium© III with 800 MHz256 MB RAM80 GB Hard diskFigure 2 shows a picture of the WaMoS II PCI card.Figure 2: WaMoS II PCI card.The WaMoS II radar image sampling unit is connected via an isolated buffer amplifier to the radar. Four signals from the radar are required as input signals to obtain the radar images and synchronization.These signals are:―VIDEO―TRIGGER/SYNC―HEADING―BEARING.Figure 3: WaMoS II wiring diagram.4 Hardware DescriptionThe different hardware components of WaMoS II are described in this chapter.4.1 WaMoS PCI-cardFigure 4: Functional block diagram of the WaMoS II sampling unit.4.1.1 The components are:A/D-Converter High speed flash analog-to-digital converterFiFo Memory Fast FiFo (First-in-First-out) memory for radar range bursts Clock Logic Programmable clock oscillator to provide 10 – 200 MHz Control Logic CPLD (Complex Programmable Logic Device) control logic PCI-Bridge Bridge to connect the PCI bus of the PCReset Relay The integrated Watchdog uses this relay to restart the PC Connector 2 x 40 pins For the connection of additional circuits4.1.2 Principal functions:Commands are sent from the control software via the PCI-Bridge to the Control Logic. The control logic runs the sampling under its own control. The Video signal from the radar will be prepared by the signal preparation. The Control Logic controls the A/D-Converter to sample beams of the radar and stores these with the full sample frequency in the FiFo Memory. The sample frequency is provided by the clock logic and can be chosen by the software between 20 and 50 MHz in 1 MHz steps. The Control Logic also contains a Watchdog. The watchdog must be triggered by the software, otherwise it will restart the PC after a programmable time (30 sec, 20 min, 40 min or 12 h). The required radar signals for the sampling are provided by the WIBA (WaMoS Isolated Buffer Amplifier). These are Video, Trigger, Heading and Bearing. On the PCI card are two connectors for further expansions to prepare the radar signals. The PC software sends different commands to the control unit setting up the hardware and controlling the sampling process.4.1.3 LEDs on the PCI-card:On the PCI card is a section with four LEDs located, as shown in the following picture:Figure 5: WaMoS II LEDsLED Description:4.2 NMEA Input / OutputWaMoS II accepts serial inputs from navigational instruments such as compass and GPS. The inputs must comply to NMEA 0183 standard and can be enabled in the WaMoS II configuration (see chapter 5.4.1). The WaMoS II outputs are wave parameters in not standardized NMEA format.The values in NMEA sentences are separated by comma. The commas are not part of the NMEA data. The NMEA sentence starts with '$' and ends with '∗' followed by the hexadecimal check sum in the form of two ASCII characters. This check sum is calculated by exclusive disjunction the8data bits of each character in the sentence between '$' and '∗'.The NMEA sentence ends with <CR> and <LF>. These are single byte characters with ASCII values 13 (0D hex) and 10 (0A hex). These characters act as the ‘end of sentence’ marker and are not separated by a comma (i.e. they follow direct after the check sum).The values of the NMEA sentence can have three different formats:•numeric data,•alpha numeric data,•time stamps.The data types represented in the NMEA sentence description are given in Table 2.Table 2: NMEA Sentence Data Format Notation.All other characters are literal. They appear in the data as noted in the format (hyphens in date formats, colons etc.). Sentence formats also include a unit column indicating the unit of the value. The abbreviations of used units are described in the following table:Table 3: NMEA Sentence Unit Notation.The WaMoS II NMEA not standardized sentence has the format as described in the following table with a total length of 118 characters including separating commas:Table 4: NMEA not standardized Sentence Description.An example output is:$PWAM,0001.0,0006.2,0236.4,0007.2,0082.1,0237.6,0007.0,0076.9,0192.2,0007.8, 0097.1,0044.1,0007.6,2000-02-17 16:54:00*214.3 Failure ControlWhile booting, the WaMoS II PC executes BIOS, CPU and RAM/ROM tests. When the program starts an additional hardware check is performed.This check is repeated before measurement starts. Any failure (e.g. radar is disconnected) results an error message on the screen and is stored in a Log-File (‘HWERRORMMyyyy.LOG’ MM =>month yyyy => year). This file is stored in the same directory where the WinWaMoS.exe is located. This is usually C:\WinWaMoS\. The program controls the data output for plausibility (see chapter 5.4.1.8). A fail-safe potential-free relay (located in the WIBA see Figure 3) sends an alarm in case of hardware errors or power failure. If WaMoS II sends data to another system a parity check sum test is performed.4.4 PC WatchdogFor an unattended WaMoS II operation, a PC Watchdog is integrated into the PCI-card. This ensures that in case of a PC system error due to an electrical discharge (for instance), the system reboots automatically. The PC Watchdog observes the WaMoS II control program WinWaMoS by an independent logic part inside the control logic (see Figure 4) of the PCI-card. The PC Watchdog relay is connected parallel to the reset push button of the PC.A LED on the PC front panel indicates the PC Watchdog's operation:― A two Hertz flashing light indicates that the PC Watchdog is set to20 minutes.― A 0,5 Hertz flashing light indicates that the PC Watchdog is set to 12 hours.The PC Watchdog is always activated independent of the WinWaMoS program. During start up, the PC Watchdog is set to 12 hours, if WinWaMoS is in sampling mode the PC Watchdog is set to 20 minutes. This means, if WinWaMoS did not trigger the PC Watchdog during this time, the PC Watchdog will reboot the PC.A buzzer will give a warning sound 120 seconds before the PC Watchdog resets the computer to give an operator the chance to save his work or to restart the application.If the sampling mode is stopped or WinWaMoS is terminated,the PC Watchdog is set to 12 hours.a)b)Figure 6: a) Connection between PC Watchdog relay to reset push button andb) excerpt of the board pin out4.5 Antenna Motor ControlIf WaMoS II wave measurement is set to intervals (see chapter 5.4.1.2) the radar antenna can be switched on and off automatically and the radar transmitter can be switched to stand-by mode.This increases the life time of the radar and its magnetron and also saves electrical power. The switch unit is located inside the WIBA.4.6 Alarm InterfaceThe alarm interface is connected to a normal closed relay contact.If a not correctable error occurs, for instance a radar defect, the relay opens the contact. This can be used to activate an alarm circuit or an operator bell.The alarm interface can also be programmed for any kind of output parameter (e.g. critical wave height, wave length, period) to activate an external warning (see chapter 5.4.1.3). The alarm interface is also located inside the WIBA.4.7 Hardware Error LoggingIn case of an error during data sampling,transfer or analysis occurs,the corresponding error codes and error messages are logged to error files (hardware error => HWERRORMMyyyy.LOG (MM =>month yyyy => year); analysis error => ERROR.LOG). A list of error codes and the corresponding error messages can be found in the appendix of section 3 and 4.The error codes and messages are popping up as a window on the screen. This window can be closed by confirming the OK button. Independent what kind of error occurs, the WinWaMoS is always trying to repeat the measurement. The error log files are stored in the same directory where the WinWaMoS.EXE is located. This is usually C:\WinWaMoS.If an error occurs, the alarm relay inside the WIBA signals the error condition to a remote system (if connected) by a potential free contact. The error relay is safe of failure, which means that under normal operating conditions the contact is open. Hardware errors can occur when a signal of the radar is missing or has wrong information, for example due to a bad cable connection or internal failure of the radar or WaMoS II. If WinWaMoS is configured to receive NMEA data, the missing input or format errors are also logged.Format and description of HWERRORMMyyyy.LOG:Sample output:12-13-2005 08:14:48 Error CNMEACom::ConnectToCom: PurgeComm for <COM1>failed. GetLastError()=995 The I/O operation has beenaborted because of either a thread exit or an applicationrequest.@12-13-2005 10:53:17 Error CAutoRecord::ReadNMEAData: NMEA ship speed servicefailed (66) sec12-13-2005 10:54:26 Error CAutoRecord::GetImage: Failed res= -2 bearing= 0NumBytes= 0 ErrorCode= 0 resBearing= 0 resErrorCode= 0 12-13-2005 11:04:44 Error Radar Error: Start of radar failed. @Check communicationand heading signal!12-13-2005 11:06:02 Error ThreadProc_ReadDMA: Error: <ReadDMABlock: Unable toperform DMA transfer. Err=518>.12-13-2005 11:06:34 Error CPCIWamos::WaitForHeading failed.Probably no heading signal.12-13-2005 14:12:27 Error CUserDisp::ShowPTMSpectrum: File<d:\radar\fthspec\200512131410fos.pth> not found or illegalformat.Errors are logged with date and time, error code and error message. The date and time is given in the format: MM-dd-yyyy hh:mm:ss.5 Control program: WinWaMoSWinWaMoS is the software that controls the WaMoS II hardware, carries out the wave analysis and displays the results.5.1 InstallationThe WinWaMoS software will be installed by starting the ‘install.bat’ file on the WaMoS II CD-ROM. The install program creates a directory called WinWaMoS on the hard drive ‘C:\’ (e.g. C:\WinWaMoS) and copies the ‘WinWaMoS.exe’ file and the configuration file ‘wamos.cfg’ (see chapter 7) into the directory.5.2 Program ModesWinWaMoS can operate in two different running modes:•user mode(see chapter 5.3) and•the install mode (see chapter 5.4).The user mode is the basic setting of WinWaMoS.The control program ‘WinWaMoS’starts in the user mode automatically.This mode is for normal sampling activity and displays the results. The install mode allows to configure the basic measurement setup and to test the hardware.5.3 User ModeThe user mode has four menu items:•View: display of existing data sets (see 5.3.1).•Control:―configuration of the display settings (see 5.3.2.1),―start/stop the automatic data recording and wave analysis (see 5.3.2.2)―save screen-shots of the display (see 5.3.2.3).•User Display: If there are different user displays set up (see 5.3.2.1), it is possible to choose the different user settings here.•Night Display: Changes the colours and brightness for a glare-free night time display and the other way round. For a propper and easy to usenight display it is additional necessary that the monitor has a brightnessturning knob at the frontside.5.3.1 Menu ViewThe different WaMoS II wave data products (see chapter 6) can be displayed under the menu item ‘View’.These data products are:•‘Polar file’: ... shows the radar image sequence (see Figure 7). It is also possible to view Polar files wich are compressed to a ZIP-file. In thiscase the drive where the zipped polar files are stored must not be writeprotected. Also on this drive must be enough free disk space to unpackthe files which should be displayed.The files must be zipped withPKZIP25.exe and this file must be present in the WinWaMoS folder (i. e.C:\WinWaMoS\).•‘Cartesian file’: ... shows the subsection of the radar image sequence in the area from which the wave analysis is performed.•‘Wave Number Spectrum’: … shows the wave energy as a function of wave number in x- and y-direction.•‘Frequency Direction Spectrum’: ... shows the wave energy as a function of frequency and direction.•‘1D-Frequency spectrum’: ... shows the wave energy as a function of frequency.•‘Wave Parameter History’: …shows the history of selectable wave parameters (e.g. significant wave height and/or peak wave period). Inaddition the start day of the history and an according number of days canbe chosen.The selection of one of these menu items opens a file-dialogue window, containing the available data files. The selection of one or more of these data files displays sequential the data. To stop displaying or to select another data product use the break button. The display of a sequence of polar or cartesian images can be paused by using the ‘Pause’ button and continued by using the ‘Continue’ button.Figure 7: WaMoS II polar image onboard the container vessel ‘Gray Fox’.5.3.2 Menu ControlThe control menu in the user mode contains 5 menu items:•Goto Install Mode: change the program mode•Configuration User Display (see section 5.3.2.1)•Start/stop automatic recording (see section 5.3.2.2)•Save screen shot (see section 5.3.2.3)•Exit program(will end the program and requires the password 'gohome')To change the program to install mode, or to exit the program it is necessary to stop the automatic recording first.5.3.2.1 Menu Item: Configuration User Display ...The WaMoS II data display can be configured from the main menu ‘Control => Configuration User Display’. Individual settings can be saved for an unlimited amount of users.Figure 8: Configuration of the display settings.The parameters that can be displayed are 'selected' or 'deselected' in the check boxes. The order of the parameters can be changed by 'sort up' and 'sort down' buttons. For the history plots the number of days to be displayed, as well as the minimum and maximum values of the plot can be chosen. Additional the display colours for daylight as well as for night time viewing can be selected individual. Typing in a user name together with the'save changes'button will save the configuration under this name.5.3.2.2 Menu Item: Start/Stop Automatic RecordingWhen WaMoS II is set to operational measurements, it automatically records the radar image sequences and calculates the wave and surface current parameters.The procedure can be separated into the following steps:1.Sampling of the polar radar image sequences: The hardware (see chapter4) samples a sequence of digital radar images of the sea surface and storesthe sequence on the hard drive.2.Cartesian Transformation:For the wave analysis a rectangular sub-area,called the analysis area,is extracted from the full polar radar image (see chapter 6.2.1)and is transformed into cartesian coordinates(see chapter6.2.2). The size of the analysis area, its position and the length of the timeseries is configurable in the install mode under the menu item Control/ Configuration WaMoS.3.Discrete Fourier Transformation:The sequence of cartesian radar imagesis transformed into a3D-wave number frequency spectrum by applying a discrete Fourier Transformation.4.Filtering the 3D-image spectrum and surface current determination: Thedispersion relation is applied as a band-pass filter to separate the energy associated with the ocean waves from the background noise and the surface current is determined.5.Determination of the unambiguous 2D-image spectrum: The unambiguouswave-number spectrum is obtained by integrating over the frequency domain and applying a modulation transfer function (MTF). (See chapter 6.2.3).putation of the directional wave spectrum:The2D-wave numberspectrum from the wave number domain is transformed into the frequency direction domain (see section 6.2.4).7.Determination of the frequency spectrum and all other sea stateparameters(see Table 1):Several statistical wave parameters are derived from the 1D-wave spectrum (see chapter 6.2.5).8.Determination of the mean wave parameter over the chosen timeinterval: The mean 2D-wave spectrum is determined by spectral averaging.The results of the different analysis steps will be stored on the hard drive. The file name convention and the data format are described in chapter 6.1.In case of an analysis failure, the measurement is discarded. The corresponding error code and message is stored in an error log file named ‘CERRxxxx.LOG’ located also in the WaMoS II working directory (e.g.C:\WinWaMoS).Description of the analysis errors are given in appendix 3 and 4.To start the automatic recording, choose ‘Control => Start Automatic Recording’ from the main menu.Figure 9 shows the screen while in automatic recording (this is the standard setting, the appearance depends on the settings in Configuration User Display):Figure 9: WaMoS II while sampling.The example of the user display shows:•Time and status of the measurement (top left: yellow)•Current sea state parameters such as: significant wave height, peak wave period, peak wave length, and peak wave direction(middle left: red)•Radar image (bottom left).。
FAST-M 2kx 红外热像仪 用户手册说明书
FAST-M2kx红外热像仪
共同特点
-实时数据输出:原始数据RAW,非均匀性校正数据NUC,温度数据temperature,辐亮度radiance -相机控制:GigE,Camera Link™,RS232
-数据传输:GigE,Camera Link™,HD-SDI
-场景温度区间(与所配镜头一起定标)
-用户自标定管理工具
-时间标记:IRIG和GPS
-高级触发功能
-机动滤光轮(4位),用户可自行更换,直径25.4-mm滤光
片(可选),厚度可达2-mm
-实时处理(RTP-NUC)
-实时温度标定(RTTC)
-实时辐亮度标定(RTRC)
-Telops特有自动曝光控制功能(AEC)
-Telops特有高动态区间图像增强功能(EHDRI)
环境要求
-IP67外壳-CE认证
-抗冲击性:运输和工作状态-抗震动:运输和工作状态
IEC60068-2-27IEC60068-2-64
相关配套
-HypIR软件包,操作采集及后处理-目标场景温度区间标定曲线
-运输箱
-Matlab工具包-用户手册
-光学头-3米长GigE缆线
-24VDC电源适配器
选项及附件。
K2管理使用手册
目录第一章概述 (160)1.1 术语定义 (160)1.1.1 模块 (160)1.1.2 模块组 (160)1.1.3 应用 (161)1.1.4 子系统 (161)1.1.5 功能频道 (161)第二章操作基本指南 (162)2.1 客户端网络配置 (162)2.2 登录平台 (162)2.3 如何访问应用 (163)2.4 如何访问功能模块 (163)第三章应用框架管理 (164)3.1 应用框架结构树 (164)3.2 单列模块 (165)3.2.1 模块列表 (165)3.2.2 模块增删改 (166)3.3 应用管理 (167)3.3.1 应用列表 (167)3.3.2 应用增删改区域 (169)3.3.3 应用树显示 (170)3.4 应用频道管理 (170)3.4.1 应用频道列表 (171)3.4.2 应用频道增删改区域 (171)3.5 信任域管理 (171)第四章子系统管理 (173)4.1 子系统管理 (173)4.1.1 增加子系统 (173)4.1.2 删除子系统 (174)4.1.3 修改子系统 (174)4.1.4 为子系统分配应用 (174)4.1.5 为子系统分配组织 (175)第五章组织人员管理 (177)5.1 组织管理 (177)5.1.1 增加组织 (177)5.1.2 删除组织 (178)5.1.3 修改组织 (178)5.1.4 生成所有组织树 (178)5.2 人员管理 (178)5.2.1 人员列表 (179)5.2.2 查找人员 (180)5.2.3 添加人员 (180)5.2.4 删除人员 (181)5.2.5 禁止人员 (182)5.2.6 修改人员信息 (182)5.2.7 分配人员到组织 (183)5.2.8 修改人员密码 (184)5.2.9 调整人员是否在编 (184)5.2.10 查询删除人员 (184)5.3 职务(位)管理 (185)5.3.1 添加职务 (185)5.3.2 删除职务 (185)5.3.3 修改职务 (186)5.3.4 人员职务设定 (186)5.4 职级管理 (186)5.4.1 给人员分配职级 (187)第六章权限管理 (189)6.1 角色管理 (189)6.1.1 角色列表 (190)6.1.2 角色管理区域 (191)6.2 用户组管理 (192)6.3 权限分配 (194)6.3.1 指定人员分配角色 (195)6.3.2 指定组织分配角色 (195)6.3.3 指定职级分配角色 (196)6.3.4 指定岗位分配角色 (197)6.3.5 指定用户组分配角色 (198)6.4 权限禁用 (198)第七章系统安全管理 (200)7.1 日志管理 (200)7.1.1 日志查询 (200)7.1.2 日志配置控制台 (201)7.2 行为审核 (202)7.3 应用配置参数 (202)第八章目录服务管理 (205)8.1 平台中的配置 (205)8.1.1 适配器的配置 (205)8.1.2 目录管理 (209)8.1.3 传输通道相关的目录配置文件 (212)第九章系统维护 (214)9.1 系统导航栏配置 (214)9.2 系统代码表维护 (214)9.2.1 政治面貌代码维护 (215)9.2.2 省份代码表 (215)9.2.3 婚姻状况代码表 (216)9.2.4 学历代码表 (216)9.2.5 学位代码表 (216)9.2.6 城市代码表 (217)9.2.7 证件类别代码表 (217)9.3 修改管理员密码 (218)第十章个人设定 (219)10.1 个人信息维护 (219)10.2 个人密码 (219)第十一章 RONE个人文件夹 (221)11.1 文档分类维护 (221)11.2 分类要素维护 (222)11.3 文件夹显示 (223)11.4 文件夹内容 (223)11.4.1 发送 (224)11.4.2 接收 (225)11.4.3 转发 (226)11.4.4 另存 (226)11.4.5 删除 (226)11.5 文档信息赋值规则 (227)11.6 有关嵌入HTML的使用 (229)11.7 附录1 分类编码表 (229)11.8 附录2 在K2平台上的配置 (229)第一章概述1.1术语定义本节对手册中涉及到的本系统的术语进行简单描述,下图是一个普通用户登录平台后的界面,可以参照此图进行理解。
K2 立体声功率放大器 中文说明书
K2 立体声功率放大器中文说明书前面板1.模式显示灯2.电源开关背板1.直通输入端子(当开关5扳到Straight位置时)2.可调增益输入端子(当开关5扳到Trimmed位置时)3.右声道增益调节器4.左声道增益调节器5.“直通/可调增益”输入模式切换开关6.接地端7.右声道扬声器输出端子8.左声道扬声器输出端子9.电源插口10.保险丝盒11.电压及保险丝标签操作电源开关位于前面板左下方。
该开关可以处于开启状态,但如果你长期不使用机器,应关闭电源开关并拔掉插头。
K2立体声功率放大器有“直通输入”和“可调增益”两种类型的输入端子,可根据需要选择其中的一种输入方式。
一般情况下应首选直通输入端子。
在这种状态下,可与K2合并式功放、前置放大器或环绕声处理器连接。
这时K2立体声功率放大器的增益将和K2合并式功放的增益完全一样,可组成理想的双功放系统。
另一种输入方式是“可调增益”,在输入模式切换开关扳到TRIMMED时即进入该模式。
在该模式下,K2立体声功率放大器可与AV多声道处理器、DVD机多声道输出端口、前置放大器连接,这时的增益是可调的,以便获得理想的增益状态,通过调节背板左右声道增益调节器即可达到此目的。
增益大小和旋钮对应的关系见下图,左边图形为最大增益。
除非增益必须调整,一般情况下建议使用“直通”(STRAIGHT)输入方式。
K2立体声功放后面有左、右声道扬声器输出端子,连接时注意分清极性:红(+)、黑(-)。
和K2合并式功放配合作“双功放”工作时,接线如下图,记得要拿走音箱接线柱端子上的短路片。
当你打开电源开关时,K2立体声功率放大器便处于待机状态,这时模式显示灯为绿色。
1.如果没讯号或者讯号电平极低时,模式显示灯仍为绿色。
2.如果有讯号输入的话,机器将立刻被激活,模式显示灯转为红色。
3.扬声器输出端约有1秒的延时,然后接通即可正常工作。
4.如果停止输入讯号或者讯号电平极低时,大约3分钟之后模式显示灯将变成黄色,并有NO SIGNAL(无讯号)的字样显示。
健伍TS-2000中文说明书
JetWave 2212G 无线接入点说明书
JetWave 2212G is a wireless access point. They equips with 2-port Fast Ethernet and IEEE 802.11a/b/g/n/ac 2.4G and 5G wireless radio. With the JetWave 2212G wireless access point, a network designer will easily achieve the integration of wired and wireless networks Safety InstructionWarning!Read the user manual before connecting the system to the power source.Radio Equipment Directive 2014/53/EU DeclarationThe product may be operated in all European Union countries.While you see the CE Marking printed on our product,it indicates the product complies with the requirement of the Radio Equipment Directive 2014/53/EU.We provides formal declaration of RED for wireless product,different product may comfort to different standards of Health &Safety,EMC,Radio and other specific standard.You can download the formal document of the product in our website or apply from our Sales/Technical people.AppearanceOverviewThe Korenix View Utility provides you a convenient way to scan the network and configure the connected Korenix device.Step 1: Open the Korenix View Utility. (V1.7 or later version)Step 2: Select the correct NIC (Network Interface Card) from the NIC listStep 3: Click “Discovery” , and then the Nodes and its IP address can be found and listed in the Node list.Step 4: After you scan the network, select thedevice and click “ Open Web GUI” to access the web management interface.You can modify the IP address/Netmask directly on the selected entry and then click “ Change IP” to change IP settings.JetWave 2212GIndustrial 802.11 a/b/g/n/ac 2.4G/5G 2T2R MIMO Wireless APQuick Installation Guide V1.0InstallationPower InputThe device supports dual DC power input. The typical power input is 12~48VDC.Passive PoE 24/48VDC Power the unit❝Connect the power,the unit will power on .❝When the unit is ready,the PWR LED turns Green.Operating Temperature -40~75℃Korenix View UtilityThe JetWave 2212G provides web management interface for basic andadvanced settings. Before configuration, please make sure your system meets the following requirements:❝A computer coupled with 10/100/1000 Base-T(X) adapter.❝Configure the computer with a static IP address of 192.168.10.X (X cannot be 0, 1, or 255).❝Connect JetWave 2212G to Eth 1/ Eth 2 by standard Ethernet cable. The Eth 1 /Eth 2 LED turns Green means the link is activated. ❝The Ethernet default IP is “192.168.10.1”❝Open web browser (Ex: IE, Chrome, Firefox…) and enter the IP address of the product. You will see the System Login page.❝Check User Manual for advanced settings.❝Please access to the web interface via https://,if the web browser is not access,please check your firewall or contact your support window for further help.❝Note:If you forget the IP Address,you can use Korenix View Utility to search the device’s IP address,the program can be found at Download page of the Korenix website .Web GUI5Years WarrantyEach of Korenix’s product line is designed,produced,and tested with high industrial standard.Korenix warrants that the Product(s)shall be free from defects in materials and workmanship for a period of five (5)years from the date of delivery provided that the Product was properly installed and used.This is warranty is voided if defects,malfunctions or failures of the warranted Product are caused by damage resulting from force measure (such as floods,fire,etc.),other external forces such as power disturbances,over spec power input,or incorrect cabling;or the warranted product is misused,abused,or operated,altered and repaired in an unauthorized or improper way.Attention!To avoid system damage caused by sparks,please DO NOT plug in power connector when power is on.The product is in compliance with Directive 2002/95/EC and 2011/65/EU of the European Parliament and of the Council of 27January 2003on the restriction of the use of certain hazardous substances in electrical and electronics equipment (RoHS Directives &RoHS 2.0)Korenix Customer ServiceKoreCARE is Korenix Technology's global service center,where our professional staff are ready to solve your problems at any time Korenix global service center's e-mail is ********************.For more information and documents download please visit our website:/downloads.htmSupportFront PanelNoticeMounting The Unit/Antenna and well Ground is Must:JetWave 2212G supports Din-Rail mounting,the mounting kit is pre-installed.You can mount the device to the DIN Rail directly.Connect the Ethernet cable,Antenna and Ground before power on system.Ground is important and MUST in field.❝Quick Installation Guide ❝Din-Rail Kit❝Eth1/Eth2:2x 10/100/1000Base-TX❝Antenna Socket:(A)WIFI-Main (B)WIFI-Aux ❝Reset:Press for 7seconds to restore default settingPackage Check List❝JetWave 2212G Product Unit ❝2x WIFI Antenna ❝6-pin terminal blockGroundingWarning•The DC connecting line must conform to the safety regulations ofthe country in which the device is installed.•Properly connect the device to a protective conductor.Bottom PanelTop PanelJetWave 2212G 具备及2个千兆乙太电口,同时也支援IEEE802.11a/b/g/n/ac 2.4G 及5G 无线射频技术。
K2官方教程——中文版
K2官方教程——中文版#00教程相关说明 (2)#01 K2安装及设置快速指南 (2)#02 K2模板覆盖及子模板创建 (3)#03 创建菜单链接 (4)#04 使用K2创建Joomla首页 (5)#05 K2首页面板(dashboard) (7)#06 理解K2工作原理 (8)#07 创建内容分类 (10)#08 创建额外属性域 (11)#09 创建内容条目 (12)#10 分类参数详解 - 内容布局 (13)#11 分类参数详解 - 分类页面设置 (15)#12 K2模板设置 (17)教程来源:本教程源自K2官方,由Viiiix7210()翻译,经JOOMLA粉丝网()站长rain收集整理而成。
版权声明:Joomla粉丝网整理本教程只是为了方便大家学习使用K2,版权归官方和译者所有,特此声明。
K2是一款由JoomlaWorks开发的Joomla内容组件,为Joomla带来了类似CCK(Content Construction Kit)的功能;这里是JED中的K2索引页面,包括详细功能特色及截图演示等。
通过K2,我们可以使用更现代的方式来管理内容,将我们的Joomla站点打造成博客、分类名录或杂志型网站等。
下面是K2在安装及设置方面的快速指南,参考这些步骤,我们可以很容易的上手K2。
1.到getk下载最新版本的K2。
2.通过Joomla的扩展管理安装K2组件。
3.安装成功后,通过Joomla的组件菜单进入K2首页面板。
4.创建Extra Field Groups,根据自己的内容需求进行命名,例如Blog、Catalog(名录)、Directory(目录)等;大致的原则,就是每一个Extra Field Group都针对一种内容类别。
5.根据我们的内容所包含的属性需求,为不同类别的内容创建Extra Fields,并分配到相应的Extra Field Group中。
默认共有6种类别的fields,分别是text field、textarea、下拉菜单、多选菜单、单选按钮及链接,用来创建不同类别的内容额外属性。
柯能k2对讲机使用说明
柯能k2对讲机使用说明摘要:1.柯能K2 对讲机简介2.对讲机使用基本步骤3.使用注意事项4.功能详细介绍5.结论正文:一、柯能K2 对讲机简介柯能K2 对讲机是一款具有高性能、高稳定性的数字对讲机,适用于多种场合,如商业、公安、消防、交通等。
它具有较强的抗干扰能力和出色的通信性能,可以提供高效、安全的通信服务。
二、对讲机使用基本步骤1.组装:首先将电池、天线安装到对讲机上,然后检查各个连接部位是否紧固。
2.开机:按下对讲机上的电源键,开启对讲机。
3.调频:根据需要调整对讲机的频率,与通信对象保持一致。
4.发射:按下对讲机上的PTT(Push-to-Talk)发射键,开始说话。
5.接收:松开PTT 键,接收通信对象的信息。
三、使用注意事项1.使用前请务必阅读说明书,了解对讲机的基本操作和注意事项。
2.在使用过程中,请勿将天线拆下或损坏,以免影响通信效果。
3.保持对讲机清洁,避免进水、浸泡。
4.使用时请遵守相关法规,不要随意更改频率,避免与其他通信设备产生干扰。
5.当信号不清晰时,可以尝试更换通信位置或调整天线方向。
四、功能详细介绍1.频率范围:柯能K2 对讲机支持多种频率范围,满足不同场合的需求。
2.功率:可以根据需要调整对讲机的发射功率,以节省电池寿命或提高通信效果。
3.音量:可以调整对讲机的音量大小,以适应不同环境。
4.信道扫描:支持自动信道扫描功能,便于快速找到空闲信道。
5.电池电量显示:对讲机上设有电池电量显示功能,便于及时了解电池剩余电量。
五、结论柯能K2 对讲机是一款具有较高性能和稳定性的对讲机,适用于多种场合。
fast无线路由器设置教程斐讯k2无线路由器设置
fast无线路由器设置教程|斐讯k2无线路由器设置设备的物理连接:有线连接的电脑连接路由器的LAN口,外网过来的网线连接路由器的WAN口,无线连接的通过路由器设置后通过无线功能连接到路由器。
首先输入 192.168.1.1 回车进入路由器内部页面。
进入路由器页面后,可以看到路由器的左边是路由器的所有功能的分类,分成的饱满的结构。
右边是路由器以及接收路由器的一些基本状态!运行状态是描述路由器的当前数据情况等。
这里有:WAN口状态、当前软件版本、LAN口状态、WAN口流量统计。
设置向导是上网需要用的账户密码设置。
本向导可设置上网所需的基本网络参数,请单击“下一步”继续。
若要详细设置某项功能或参数,请点击左侧相关栏目。
WPS一键安全设定这里有WPS功能、当前PIN码、添加新设备网络设置在这里能够看到本页设置LAN口的基本网络参数。
还有MAC地址克隆其他功能。
无线设置这里是控制无线WIFI的参数,比如密码,名称,开启特殊功能,信道等设置。
还有本页显示连接到本无线网络的所有主机的基本信息。
DHCP服务器这个这里包含有DHCP服务,客户端口列表,静态地址分配。
安全设置如果用到安全,需要用这个按钮了。
对防火墙的各个过滤功能的开启与关闭进行设置。
只有防火墙的总开关是开启的时候,后续的“IP地址过滤”、“域名过滤”、“MAC地址过滤”、“高级安全设置” 才能够生效,反之,则失效。
IP带宽控制如果需要控制IP的带宽,这里必须看下。
IP带宽控制。
本页设置IP带宽控制的参数。
注意:1、带宽的换算关系为:1Mbps = 1000Kbps;2、选择宽带线路类型及填写带宽大小时,请根据实际情况进行选择和填写,如不清楚,请咨询您的带宽提供商(如电信、网通等);3、修改下面的配置项后,请点击“保存”按钮,使配置项生效。
4、如果没有设置任何状态为“启用”的IP带宽控制规则,您填写的带宽大小将不起作用。
最后一个是恢复,重启等日常工具功能。
K2 K2Sprint 振动控制系统使用说明书
目录
第 1 章 系统构成................................................................. 1-1 1.1 硬件构成 ............................................................... 1-1 1.1.1 微机 ............................................................. 1-1 1.1.2 专用硬件 I/O 设备 ................................................ 1-3 1.2 硬件规格 ............................................................... 1-4 1.2.1 规格 ............................................................. 1-4 1.2.2 专用硬件 ......................................................... 1-9 1.3 软件构成 ............................................................... 1-12 1.3.1 OS部分 ......................................................... 1-12 1.3.2 应用软件部分 ..................................................... 1-12
3.3.3 极性............................................................. 3-2 3.3.4 初始输出电压的既定值 ............................................. 3-3 3.3.5 额定信息 ......................................................... 3-3 3.3.6 控制频率范围的限制 ............................................... 3-3 3.3.7 其他的控制量 ..................................................... 3-3 3.3.8 接点输出输入信息 ................................................. 3-3 3.4 输入环境信息 ........................................................... 3-4 3.4.1 输入环境信息名 ................................................... 3-4 3.4.2 通道名 ........................................................... 3-4 3.4.3 模块的 ID 和 Ch ................................................... 3-5 3.4.4 物理量 ........................................................... 3-5 3.4.5 输入类型 ......................................................... 3-5 3.4.6 输入灵敏度 ....................................................... 3-5 3.4.7 极性............................................................. 3-5 3.4.8 连接 TEDS ......................................................... 3-5 第 4 章 基本操作方法 ............................................................ 4-1 4.1 概要 ................................................................... 4-1 4.2 基本操作 ............................................................... 4-2 4.2.1 应用软件的启动 ................................................... 4-2 4.2.2 应用软件的结束 ................................................... 4-3 4.2.3 图标的说明 ....................................................... 4-5 4.2.4 文件操作 ......................................................... 4-8
K2FastWave中文操作手册
INGEGNERIA DEI SISTEMI S.p.A.Rev.3.1Protocol: MN/2008/005RIS K2-FW用户手册2008年09月目录1. 概览 (1)1.1如何使用本手册 (1)2. 系统硬件的配置 (2)2.1DAD控制单元 (2)2.2笔记本电脑 (3)2.3连接DAD控制单元与笔记本电脑 (4)3. 系统的软件设置 (6)3.1软件安装与设置 (6)4. 采集软件的使用 (9)4.1启动采集软件 (9)4.2选择驱动 (10)4.3增益标定 (13)4.3.1 高级设置菜单 (19)4.4选择测区 (21)4.5设置采集参数 (23)4.6数据采集 (27)4.7查看模式操作 (30)5. 错误信息及报警 (34)5.1错误信息 (34)6. 在线帮助 (35)6.1如何安装“S YMANTEC PCA NYWHERE”软件 (35)6.1.1 使用电话连接养护 (36)6.2使用W EBEX S UPPORT C ENTER远程协助 (37)6.2.1 如何使用Webex服务 (37)1.概览1.1如何使用本手册此K2采集软件使用手册被细分为以下几部分: ∙Chap.1:概览∙Chap.2:K2-FW系统的硬件配置∙Chap.3:K2-FW 采集软件操作程序∙Chap.4:K2-FW 采集软件的设置∙Chap.5:错误信息及报警∙Chap.6:在线帮助2.K2-FW系统硬件的配置系统由以下几部分组成:∙DAD控制单元∙笔记本电脑∙网络电缆∙电池电缆∙电池包2.1DAD控制单元DAD控制单元直接与天线相连,把采集的雷达数据数字化的控制单元。
DAD控制单元有以下接口:∙Lan Port 与笔记本电脑连接∙Battery Port 与电池连接∙Wheel port 连接测量轮位置传感器∙Ant.1 - Ant.2 与雷达天线连接Fig.2-1 DAD控制单元,电池接口和网线接口Fig.2-2 DAD FASTWAVE控制单元,测量轮及雷达天线接口注意:双通道主机两个天线接口并非完全相同,ANT1是19针的接口,而ANT2是11针接口;因此当我们使用单个天线是, 一般都是直接用11针电缆连接到ANT2接口上;而当我们需要同时使用两个天线时,需要使用ANT1,这时我们需要一根19-11的转接线(如下图所示):2.2笔记本电脑K2-FW采集软件被安装在一个笔记本电脑中。
Kaspersky Lab 无线设备使用指南说明书
I don’t want to miss a thingWhy we cannot keep our fingers off our smartphonesA psychological study by theUniversities of Würzburg and Nottingham Trent for Kaspersky LabHate when your friends are having fun without you? Don’t worry, it’s just FOMO.If you’re waiting for a friend, a colleague or even a doctor’s appointment, how long do you think it takes before you check your phone – two minutes? Three? An experiment conducted on behalf of Kaspersky Lab by the Universities of Würzburg and Nottingham Trent found that participants left in a waiting room on their own lasted an average of just 44 seconds before touching their smartphones. Men couldn’t even manage half of this time, waiting an average of only 21 seconds compared to women at 57 seconds.To delve deeper into our companionship on digital devices, after ten minutes participants were asked how long they thought it had been before they reached for their phone. Most said between two and three minutes, highlighting a significant disconnect between perception and actual behaviour.Additional research conducted by the universities suggests that this compulsion to check our phones could be as a result of fear of missing out (FOMO) on something when not online. In an accompanying survey, participants that used their phones more intensely admitted to a higher level of FOMO.The study also found that the more we use our phones, the more stressed we become. But surprisingly, when participants were asked about their overall happiness there was no difference between light and heavy users. So the stress caused by smartphone usage does not seem to have a major influence on our well-being in general.During the 10-minute waiting session, participants used their smartphone on average for almost half the time (five minutes). As previous research by Kaspersky Lab demonstrated, we rely heavily on mobile devices these days as an extension of our brains, using them as tools so we don’t have to remember facts anymore. The majority of respondents, for example, could not remember their current partner’s phone number but could still recall their home number from when they were ten.Research MethodologyLaboratory ExperimentSampleThe experiment was conducted in Würzburg (Germany) and in Nottingham (United Kingdom). Therefore, our sample is binational (GER: 59, UK: 36). Overall, 95 participants (56 female and 39 male) took part, varying in age from 19 to 56 years (M = 27.97, SD = 8.01). Care was taken to balance the experimental conditions and gender across laboratory sites.We recruited participants within a data collection period of two weeks from 5 April - 29 April, 2016 via online advertisements (e.g. Ebay classifieds) and social media platforms (e.g. Facebook, Google+). A compensation of at least 15€ (Wuerzburg) or £10 (UK) was advertised for one hour of participation. The participation was voluntary and based on ethical guidelines.ProcedureParticipants were invited to professional laboratory facilities at the Universities of Wuerzburg (Germany) and Nottingham Trent (England). Participants were guided by a researcher who followed an experimental procedure with a detailed script, to ensure that each participant was addressed similarly and encountered identical instructions.Online SurveyOur online study focused on the meaning/importance the smartphone carries as well as the relationship and the emotional connection users feel they have with their smartphones.SampleWe recruited participants over a period of three months (February to April 2016) via online advertisements (e.g. Ebay classifieds), social media platforms (e.g. Facebook) and mailing lists. The resulting overall sample consisted of 1215 participants ranging in age from 15 to 83 years (mean age = 28.6, standard deviation = 9.09)1, from a variety of countries with a distinct focus on Germany and the1In the following, mean values will be denoted by M, standard deviations by SD.United Kingdom. Female respondents were in a two-thirds majority and the overall level of education amongst participants was high. The majority were students and employees with a university degree.Figure 1: Participants by genderThe participants’ age groupsFigure 2: Frequency of participants by age group, asking “How old are you?Figure 3: Number of participants by origin; most participants from Germany (808), UK (148) and USA (33) According to age groups most participants were students, more than 400 were employeesFigure 4: Number of participants by occupation, asking “What is your occupation?”Procedure and instrumentsParticipation in the survey was entirely voluntary. The survey study followed core ethical principles based on the Declaration of Helsinki. Participants were asked to engage in self-reports and responses to set tasks. The central variables are as follows:Oxford Happiness (Hills & Argyle, 2002)Overall happiness in terms of subjective well-being. I am well satisfied with everything in my life.Fear of missing out (Przybylsky, Murayama, DeHaan & Gladwell, 2013)The fear of missing out on positive experiences others presumably have (online) while being offline. As a consequence, the instrument captures the desire to stay continually connected with peers - easily possible via one’s smartphone. I get worried when I find out my friends are having fun without me.Involvement with your mobile phone (Walsh, White, Cox & Young, 2011)An index of the strength of connection with one’s mobile phone in cognitive terms (e.g. thinking about the phone when not using it) and behavioral terms (e.g. constantly checking the phone for messages). I interrupt whatever else I am doing when I am contacted on my mobile (conflict with other activities).Trust in your mobile phone (based on: Rempel, Holmes & Zanna, 1985)An adapted version of the “Trust in Close Relationship Scale” originally designed togauge levels of trust in one’s relationship partner (e.g. the willingness to rely on the partner being confident that they will satisfy the expectations). We focused on one’s mobile phone instead of the partner and accordingly transferred the items asking for participants’ trust in their phone. I trust my mobile.I feel attached to my mobile.Stress caused by your mobile phone (Carolus & Strobl, in prep.)Index of the level of stress caused by your mobile phone, e.g. by lots of unread messages or by read messages when the sender can see that the message is still not answered although read. My mobile stresses me out.Coping - Handling stress with your mobile phone (based on: Satow, 2012)Index of dealing and managing stressful situations (= coping) with your mobilephone. The items ask for using the phone as a tool for coping by either actively managing stress, giving social support or creating a distraction from stressful situations. My mobile helps me to cope with stress.Inclusion of mobile in the self (based on: Aron, Aron & Smollan, 1996) Adaptation of the “Inclusion of Other in Self (IOS) Scale” originally assessing closeness in relationships. Typical for close relationship: the self and other begin to overlap by including aspects of the other in the self. We transferred this idea to the relationship with smartphones and replaced human beings we might feel close to with mobile phones.As a result, participants were asked to select the picture that best describes their relationship with their mobile phone.Smartphone/ Media UsageDuration and experience of participants’ smartphone usage.Waiting SessionParticipants were welcomed and given a short overview of the study (including obtaining informed consent and implementing ethical guidelines) without disclosing all aspects of the procedure or our expectations in any detail. After the welcome, they sat down in a room resembling a comfortable waiting space. Here they were filmed by a hidden camera to objectively capture any smartphone engagement.Figure 5: Waiting SessionParticipants waited for ten minutes. After five minutes the experimenter entered and asked for the participants’ body height (as a distractor) and their smartphone PIN. If they refused or asked for a reason the procedural script specified exactly what to reply: “Studies reveal significant correlations between height and the PIN”, “We cannot continue without the information!”, “You need to give us the PIN”. We documented if, and how easily, the PIN was revealed. After waiting for a total of 10 minutes, the experimenter entered again to guide the participant into the next room claiming that preparation for further tasks had been completed.Results: have we forgotten how to wait? Or is waiting perhaps unbearable?#needtotouch73 % of all participants used their smartphone during the waiting session#waitingunlearnedIt takes only an average of 44 seconds of waiting before participants touch their smartphones for the first time. Men are faster than women, touching their phone after 21 seconds, compared to 57 seconds.Both men and women overestimate the period of time that passed before they touched their phone. Males estimated that they waited almost 3 minutes, females estimated at more than 2 minutes.During the 10 minute waiting session, the smartphone was used for almost 5 minutes (M = 4.63), with no considerable difference between men and women.#falsegenerosity93% of all participants who have a PIN code for their smartphone gave this data away, the majority without questioning why. Only three participants refused to give away their PIN code and only five did not have a code at all.Survey resultsOxford Happiness: “if you’re happy and you know it…”All participants were similarly happy (on average 5 on a 7-point scale): no significant differences were foundFigure 6: Mean values of the Oxford Happiness Scale by different groupsConsidering the Oxford Happiness Scale groups (usage, operating system, and gender) do not differ significantly. This implies that neither the gender of participants, nor their amount of smartphone usage nor the type of operating system on their smartphones, affects the general happiness participants experience.Fear of Missing Out: “are they having fun without me?!”Fear of missing out is positively linked to the amount of time spent with a smartphone: participants using their smartphone more intensely are more afraid of missing something while not using their phone.Figure 7: Mean values of Fear of Missing out (FOMO) by different groupsFrom a scientific point of view: on average participants score 3.43 (SD= 1.09) on a 7-point scale. Regarding their fear of missing something while not at the phone we only find mostly minimal and therefore negligible differences between groups, with one exception. The more participants use their phone the more they are afraid of missing out on things (p < .001, F(2) = 26.67).At least two conclusions seem plausible here: (1) people use their phone more intensively because they are afraid of missing something important or (2) people become afraid as a result of their intense phone usage.Involvement with your mobile phone: “who needs a pet? I’ve got my smartphone!”Heavy usage is associated with a higher smartphone involvement, and iOS users are slightly more involved than Android usersFigure 8: Mean values of Involvement in one’s smartphone by different groupsScientifically speaking, smartphone usage is positively correlated with a perceived involvement in our digital companion. Accordingly, heavy users report the highest involvement with their phone (M = 3.96, SD = 1.18), followed by medium users (M = 3.5, SD = 1.15) and finally light users (M = 2.63, SD = 1.08) resulting in a significant one-way ANOVA (p < .001, F(2) = 101.72). Furthermore, a significant mean comparison (t(1093) = -3.27, p = .001) shows that participants owning an Apple phone (iOS) are more involved with it (M = 3.55, SD = 1.15) than owners of an Android phone (M = 3.39, SD = 1.06).Trust in your mobile phone: “you would never betray me, right?”Men, iOS users and heavy users trust their smartphone the most. However, we have to be careful: Although these effects are statistically relevant they are rather negligible as the differences are quite small.Figure 9: Mean values of Trust in one’s smartphone by different groupsConsidering that participants were asked about trust in their phone, thus applying feelings to an electronic device, it is remarkable that the average score is 4.31 (SD = .86) on the 7-point scale. Although very small, all group differences in figure 9 are significant: (1) men trust their smartphone slightly more than women, (2) Apple users more than Android, (3) heavy users more than medium, and medium more than light users. Although these differences are statistically significant they are too small to be regarded as substantially relevant effects.Stress caused by your mobile phone: “now I really need to focus - Oh look, a message!”The level of stress caused by our smartphone depends on how much we actually use it. The more you use your phone the more stressed you are by it.Figure 10: Mean values of perceived stress by different groupsFrom a scientific point of view: on average people experience a medium amount of stress because of their phone (3.60 on a 7-point scale). In terms of group differences only the amount of time spent with your phone is associated with stress as indicated by a significant one-way anova (F(2) = 19.08, p < .001).Coping - Handling stress with your mobile: “keep calm and play some Candy Crush!”The amount of time spent with our phone is positively correlated with how much we utilise it to release stressFigure 11: Mean values of the Coping scale by different groupsScientifically speaking, on average smartphones are used rather less intensively for coping with stress (2.95 on a 7-point scale). In terms of group differences we find heavy users scoring significantly higher on the coping scale which means that heavy users use their phone more for coping with stress. This is further demonstrated by a significant one-way anova (F(2) = 19.08, p < .001).Inclusion of mobile in the self: “it’s like we are the same person!”People spending more time with their smartphone perceive their phone as a more integral part of themselves,typically indicating more closeness and intensity in human-human relationships.Figure 12: Mean values of inclusion of mobile in the self by different groupsFrom a scientific point of view: To interpret these results we need to take into account the fact that this instrument is typically used to assess our closeness to one’s romantic partner or significant others.Respondents were asked to report on “their current relationship with their smartphone” by choosing differently overlapping circles representing themselves and their phone. The low overall scores on this scale are therefore not surprising (M = 2.39, SD = 1.23). Nevertheless, a significant one-way anova implies that the relevance of the smartphone to its owner’s sense of self rises with increasing usage (F(2) = 50.57, p < .001; light users: M = 1.93, SD = .99; medium users: M = 2.46, SD = 1.14; heavy users: M = 2.86, SD = 1.44).Joining the dots: cross-connections among variablesBeyond the results for particular instruments and concepts presented so far, we must also take a brief look at cross-connections of the constructs. A selection of the most important connections is presented below. The statistical indicator used is the bivariate correlation (r).→ Stress caused by one’s smartphone is posiKvely correlated with coping (r = .51)Our data reveals significant positive correlations between the level of stress caused by one’s smartphone on the one hand, and the level of using the smartphone as a way of coping with stress on the other hand. As a correlation does not imply a particular causal relationship we cannot determine what came first: stress or coping. However, we could cautiously assume that people use their phone to cope with stress, which they would not have without their phone.→ There is a significant correlaKon between stress caused by one’s smartphone and fear of missing out (r = .46)Similarly, we find a significant positive correlation between stress caused by one’s smartphone and fear of missing out: the more stress the higher the fear of missing out.There is a conceivable explanation here: The more afraid you are of missing something important when you are not using your smartphone, the more stressed you will be by your smartphone.→ There is a significant correlaKon between coping with stress through your phone and involvement in one’s mobile phone (r = .50)Here we would assume that using your phone for coping with stress could lead to an increased involvement with your phone. The more your phone helps you to handle life, the more relevant the phone becomes and as a result the more involved you are with the phone.→ Involvement in one’s mobile phone is posiKvely correlated with fear of missing out (r = .52) Again, we can only speculate on the direction of the correlation between the fear of missing events and involvement with your phone. Our speculation here is that: more fear of missing out might lead to an increased involvement with your phone, because your phone is your primary connection to the world. However, as with all correlations, we cannot gain more insight into any underlying causal relationship.。
网络分析仪使用说明书
1 目的本使用说明书为规范矢量网络分析仪的操作,避免操作不当引起的仪器损坏;作为培训文件使公司技术人员了解本仪器的使用。
2 适用范围本使用说明书适用于公司范围内的所有Anglent E50系列矢量网络分析仪的使用(其他型号具有一定的实用价值,但最大区别在于按键位置以及功能方面有细小区别)。
3 主要职责3.1 各部门设备使用者负责实施设备一级保养工作。
3.2 各部门安排专人负责实施设备的定期保养管理,监督日常保养工作之实施。
3.3 对新进员工有必要学习此文件时进行培训学习。
4 仪器操作注意事项4.1 测试产品时,不能直接加电测试。
4.2 测试功放前,必须在频谱仪上检测过没有自激,才能用网络仪测其它指标。
4.3 防止有大的直流电加入,网络仪最大能承受10V 的直流电。
4.4 防止过信号的输入。
4.4.1 网络分析仪的最大允许输入信号为20dBm 。
4.4.2 输入信号大于10dBm 时,应加相应的衰减器。
4.5 仪器使用前确保已接地。
5 仪器面板介绍 5.1 按键区域1·ACTIVE CH/TRACE :活动通道区; 2·软驱; 3·RESPONSE :响应区; 4·NAVIGATION :导航区;5·ENTRY :输入区; 6·STIMULVS :激励区;7·MKR/ANALYIS :标定点/分析;8·INSTRSTATE :设备状态区。
注:见“11 按键翻译”。
1 2 36 4 57 8软菜单USB 接口矢量网络分析仪使用说明书版次V1.0 页次2/165.21 2 3 4 5Tr1 S11 SWR 1.000/Ref 1.0000Tr2 S21 Logmag 10dB/Ref 0.00dBTr3 S22 SWR 1.000/Ref 1.00001.表示通道编号;2.表示通道类型;3.表示通道的格式;4.表示通道在显示屏上每格所表示的数值;5.表示通道在显示屏上参考线所在的格子数值。
FLIR K2 火车队专用热成像摄像头说明书
FLIR K2Extremely affordable thermal imaging camera for firefightersThe FLIR K2 is a rugged, reliable, and extremely economical thermal imaging camera that is specially designed for firefighting applications and severe conditions. Producing thermal images at 160 x 120 pixel resolution displayed on a bright 3” screen, the K2 helps firefighters find their way through thick smoke, assess situations with confidence, and expedite decisions.A new level of affordabilityThe K2’s economical price makes powerful thermal imaging more accessible to more firefighters – a small investment that can help pay big dividends when it comes to safety, saving lives, and protecting property.Compact and easy to useFLIR K2 is a compact, light thermal imaging camera that can be easily attached to SCBA gear. An intuitive user interface lets firefighters focus on the job at hand. And a single large button makes the camera simple to activate even with heavy gloves on. Robust & reliableEngineered to survive tough operating conditions, the K2 withstands a 2-meter drop onto concrete, is water resistant (IP67) and is fully operational up to +260°C / +500°F (for up to 3 minutes).Multiple image modesFLIR K2 can be set to one of five different imaging modes depending on the primary use of the unit. Modes can be changed using the FLIR Tools software program that can be downloaded forfree from FLIR at http://onelink.to/tools.Multi-spectral dynamic imaging (MSX)The K2 uses FLIR’s patented MSX technology that etches key details from the built-in visible light camera onto the thermal image, helping firefighters identify structures and surroundings without compromising temperature data.Multiple firefighting applicationsUse the FLIR K2 for a wide variety of firefighting applications. See through smoke to help guide your team and prioritize their fire attack efforts. Find stranded victims faster under the murkiest conditions.Scan for hotspots during overhaul. And deploy the K2 for SAR missions. NASDAQ: FLIRSpecifications are subject to change without notice ©Copyright 2015, FLIR Systems, Inc. All other brand and product names are trade-marks of their respective owners. The images displayed may not be representa-tive of the actual resolution of the camera shown. Images for illustrative purposes only. (Created 05/15)PORTLAND Corporate Headquarters FLIR Systems, Inc.27700 SW Parkway Ave.Wilsonville, OR 97070USA PH: +1 866.477.3687BELGIUM FLIR Systems Trading Belgium BVBA Luxemburgstraat 22321 Meer Belgium PH: +32 (0) 3665 5100Sweden FLIR Systems AB Antennvägen 6, PO Box 7376SE-187 66 Täby Sweden PH: +46 (0)8 753 25 00NASHUA FLIR Systems, Inc.9 Townsend West Nashua, NH 06063USA PH: +1 603.324.7611UK FLIR Systems UK 2 Kings Hill Avenue Kings Hill West Malling - Kent ME19 4AQ United Kingdom PH: +44 (0)1732 220 011Imaging SpecificationsImaging and optical dataField of view (FOV) / focus47° × 31.5°Image frequency9 Hz IR resolution160 × 120 pixels Focal Plane Array (FPA) / Spectral rangeUncooled microbolometer / 7.5–13 µm Start-up time< 30 sec. (IR-image, no GUI)Start-up time from sleep mode< 10 sec. Thermal sensitivity/NETD< 100 mK @ +30°C (+86°F)F-number 1,1Visual camera Built-in digital camera 640 × 480 pixelsDigital camera, FOV 73° × 61°, adapts to the IR lensSensitivity Minimum 10 luxImage presentation Display 3 in. LCD, 320 × 240 pixels, backlitImage modes – switchable using FLIR Tools software TI Basic fire-fighting mode Black-and-white fire-fighting mode Fire mode Search-and-rescue mode Heat detection mode (default)Auto-range Auto, non-selectableMeasurement Object temperature range –20°C to +150°C (–4°F to +302°F) 0°C to +500°C (+32°F to +932°F)Accuracy ±4°C (±7.2°F) or ±4% of reading, for ambient temperature 10°C to 35°C (+50°F to 95°F)Measurement analysis Spotmeter 1Isotherm YesAutomatic heat detection Heat detection mode (the hottest 20% of the scene is colorized)Data communication interfaces Interfaces Update from PC and Mac devicesUSB USB Micro-BPower system Battery Li Ion, 4 hours operating timeCharging system 2-bay charger, truck charger availableCharging time 2.5 h to 90% capacity, charging status indicated by LEDsCharging temperature 0 °C to +45 °C / 32 °F to 113 °FEnvironmental data Designed to meet NFPA 1801 specification Vibration, impact acceleration resistance, corrosion, viewing surface abrasion, heat resistance, heat and flame, product label durabilityOperating temperature range –20°C to +55°C (–4°F to +131°F) +85°C (+185°F): 15 minutes +150°C (+302°F): 10 minutes +260°C (+500°F): 3 minutesStorage temperature range –40°C to +70°C (–40°F to +158°F)Encapsulation IP 67 (IEC 60529)Drop 2 m (6.6 ft.) on concrete floor (IEC 60068-2-31)Physical data Camera weight, incl. battery 0.7 kg (1.54 lb.)Camera size (L × W × H)250 × 105 × 90 mm (9.8 × 4.1 × 3.5 in.)Tripod mounting UNC ¼”-20Packaging Packaging, contentsInfrared camera, battery (2 ea.), battery charger, lanyard strap, power supply, printed documentation, USB cable, user documentation CD-ROM。
柯能k2对讲机使用说明
柯能k2对讲机使用说明摘要:I.引言- 介绍柯能k2 对讲机的使用说明II.柯能k2 对讲机的外观与功能- 描述柯能k2 对讲机的外观设计- 介绍对讲机的主要功能III.柯能k2 对讲机的使用方法- 讲解对讲机的开关机操作- 说明对讲机的频道调节方法- 介绍对讲机的信号接收与发射功能- 讲解对讲机如何进行充电IV.柯能k2 对讲机的注意事项- 提醒用户不要在信号弱的地方使用对讲机- 强调对讲机的安全使用规则- 提示用户定期维护对讲机V.总结- 回顾柯能k2 对讲机的使用说明- 强调对讲机的优势与特点正文:柯能k2 对讲机是一款优质的对讲设备,它采用现代科技设计,提供了一系列实用功能。
本篇使用说明将详细介绍柯能k2 对讲机的各个方面,帮助用户更好地使用这款产品。
首先,柯能k2 对讲机的外观设计独特,线条流畅。
其外壳采用高强度塑料材料,具有良好的耐磨、抗压性能。
对讲机尺寸适中,便于携带。
此外,对讲机还配备了舒适的手柄,方便用户握持。
柯能k2 对讲机具备多项实用功能。
首先,它支持多种频道调节,用户可以根据需要切换频道,以保证通话质量。
其次,对讲机具有信号接收与发射功能,可以实现远距离通信。
此外,对讲机还配备了充电底座,方便用户进行充电操作。
在使用柯能k2 对讲机时,用户需要注意以下几点。
首先,请确保在信号良好的地方使用对讲机,以免影响通话质量。
其次,遵循安全使用规则,避免在潮湿、高温等环境中使用。
最后,定期维护对讲机,确保设备性能稳定。
总之,柯能k2 对讲机是一款性能卓越、易于操作的对讲设备。
通过本篇使用说明,相信用户已经对其有了更加深入的了解。
FLIR K2 消防用超值热像仪说明书
FLIR K2消防用超值热像仪FLIR K2是专门为消防和其他严酷环境设计的坚固、耐用并超级实惠的红外热像仪。
它的3英寸背光显示屏能显示160 x 120像素分辨率的热图像,帮助消防员穿过浓烟找到路、更自信地分析情况、更快速地进行决策。
超值新定义K2经济的价格让更多的消防员能够拥有强大的热成像技术——一份很小的投资,却能在关乎安全、生命救援和财产保护时发挥巨大的作用。
紧凑小巧、使用简单FLIR K2 是一款紧凑、轻便的热像仪,可以轻松地连接到空气呼吸机上。
直观的用户界面让消防员们可以将注意力集中于手头的工作。
只有一个大按钮,即便戴着厚重的手套,也能轻松地开启热像仪。
坚固、可靠K2设计于适应严酷的运行环境,它能抵抗从 2m 高处到混凝土地面的掉落,防水等级IP67,运行温度+260°C / +500°F(可持续3分钟)。
多种图像模式FLIR K2有5种图像模式可根据用途任选其一。
可使用FLIR Tools软件进行模式间的切换。
FLIR Tools软件可在FLIR网站http://onelink.to/tools上免费下载。
多波段动态成像(MSX)K2使用了FLIR专利的MSX技术,该技术可以将内置可见光相机拍到的重要细节嵌入到热图像上,帮助消防员在不影响温度数据的情况下辨认结构和周围环境。
多种消防用途FLIR K2具有多种消防用途。
它可帮助您的队伍穿过浓烟并确定优先灭火任务、在漆黑的环境中更快速地找到被困的受灾者、扫描大修时的热点,并可用于各种救援任务。
延长保修购买K2热像仪后60天之内登录注册,可享有FLIR独有的2-5-10延长保修服务,包含2年电池保修,5年整机保修,10年探测器保修。
NASDAQ: FLIR技术参数如有变更,恕不另行通知。
© 2015 FLIR Systems Inc. 版权所有。
所有其它品牌和产品名称为各自拥有人的商标。
图片仅作说明之用,显示图像可能不代表该热像仪的实际分辨率。
KMICRO-中文操作手册
目录
简介 ........................................................................................................................ 3 距离模式的快速启动 ............................................................................................... 4 物位模式的快速启动 ............................................................................................... 5 流量模式的快速启动 ............................................................................................... 6 参数修改 ................................................................................................................. 7 安装 ........................................................................................................................ 9 按键说明 ............................................................................................................... 11
WAVE2000场地振动测试仪用户手册,剪切波测试仪,波速仪
武汉建科科技有限公司
B
WAVE2000 场地振动测试仪用户手册
(
2
WAVE2000 场地振动测试仪用户手册
(二)数据采集系统:由孔内三分量检波器与 WAVE 系列场地振动测试仪组
成,WAVE2000 场地振动测试仪有 4 道数据采集通道,其中 CH4 用来拾取外触发信号,CH1~ CH3
1-场地振动测试仪 2-重物 3-木板 4-外触发传感器 5-三分量探头 6-探头信号传输线 7-外触发传感器信号线 8-钢丝绳(或尼龙绳)
按任意键进入下一屏幕。
B、测试功能选择
1 剪切波测试 2 地脉动测试 3 更新测试程序 4 数据输出
侧面板
通讯端口
充电开关
触发 CH4
总线端口
充电接口
4
WAVE2000 场地振动测试仪用户手册
通讯端口:标准 RS232 串行通讯 9 针接口或 USB 接口 触发 CH4:4 针航插 总线端口:10 针航插
二、现场操作指南 A、开机进入测试程序后出现
欢迎使用 WAVE2000
场地振动测试仪
武汉建科科技有限公司
1如果你使用wave2000进行剪切波测试请阅读第一章第二章第三章第四章第七章2如果你使用wave2000进行地脉动测试请阅读第一章第三章第五章第六章第七章3如果你使用wave2000进行其它振动测试请阅读第一章第三章第六章第七章4常见问题请阅读第九章问答集锦wave2000场地振动测试仪用户手册第二章剪切波测试概论第三章wave2000场地振动测试仪指南第四章剪切波测试与数据分析10第五章地脉动测试与数据分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
INGEGNERIA DEI SISTEMI S.p.A.Rev.3.1Protocol: MN/2008/005雷达数据采集软件K2-FW用户手册2008年09月版本升级版本日期修改原因Rev. 2.0 2004年11月第二版(加入附录E,F,G,H)Rev. 2.1 2005年8月升级,加入手动增益和删除扫描Rev. 2.2 2005年12月增加结构物工具类型(和附录J)Rev. 2.3 2006年3月引入Webex支持中心(第6.2节)本手册所涵盖的软件版本01.01.000,01.02.000,01.02.002,01.07.000,02.00.000声明IDS 公司对设备不正常使用所造成的后果不承担相关责任IDS 公司对软件不正常使用所造所的后果不承担相关责任.IDS 作为该专用软件的知识产权拥有者,有权在未提前通知用户的情况下对软件进行更改。
联系方式IDS Ingegneria dei Sistemi S.p.A.Via Sterpulino 2056121 PISA(Loc. Ospedaletto)Tel:+39.050.967.122Fax:+39.050.967.121客户服务中心:customercare.gpr@ids-spa.it目录1. 概览 (1)1.1如何使用本手册 (1)2. 系统硬件的配置 (2)2.1DAD控制单元 (2)2.2笔记本电脑 (3)2.3连接DAD控制单元与笔记本电脑 (4)3. 系统的软件设置 (6)3.1软件安装与设置 (6)4. 采集软件的使用 (9)4.1启动采集软件 (9)4.2选择驱动 (10)4.3增益标定 (13)4.3.1 高级设置菜单 (19)4.4选择测区 (21)4.5设置采集参数 (23)4.6数据采集 (27)4.7查看模式操作 (30)5. 错误信息及报警 (34)5.1错误信息 (34)6. 在线帮助 (35)6.1如何安装“S YMANTEC PCA NYWHERE”软件 (35)6.1.1 使用电话连接养护 (36)6.2使用W EBEX S UPPORT C ENTER远程协助 (37)6.2.1 如何使用Webex服务 (37)1.概览1.1如何使用本手册此K2采集软件使用手册被细分为以下几部分: ∙Chap.1:概览∙Chap.2:K2-FW系统的硬件配置∙Chap.3:K2-FW 采集软件操作程序∙Chap.4:K2-FW 采集软件的设置∙Chap.5:错误信息及报警∙Chap.6:在线帮助2.K2-FW系统硬件的配置系统由以下几部分组成:∙DAD控制单元∙笔记本电脑∙网络电缆∙电池电缆∙电池包2.1DAD控制单元DAD控制单元直接与天线相连,把采集的雷达数据数字化的控制单元。
DAD控制单元有以下接口:∙Lan Port 与笔记本电脑连接∙Battery Port 与电池连接∙Wheel port 连接测量轮位置传感器∙Ant.1 - Ant.2 与雷达天线连接Fig.2-1 DAD控制单元,电池接口和网线接口Fig.2-2 DAD FASTWAVE控制单元,测量轮及雷达天线接口注意:双通道主机两个天线接口并非完全相同,ANT1是19针的接口,而ANT2是11针接口;因此当我们使用单个天线是, 一般都是直接用11针电缆连接到ANT2接口上;而当我们需要同时使用两个天线时,需要使用ANT1,这时我们需要一根19-11的转接线(如下图所示):2.2笔记本电脑K2-FW采集软件被安装在一个笔记本电脑中。
该软件专用于雷达系统的初始化、采集和保存数据等特定阶段。
IDS公司推荐使用松下公司生产的CF-19型笔记本电脑,它具备以下特点:∙奔腾处理器> 2.4GHz 或者迅驰处理器> 1.8 MHz。
∙100 兆网卡。
∙最低256 兆内存。
∙显示器分辨率(真色彩) 1280X1024。
∙ 颜色数: >16000。
∙ 操作系统: Windows 2000 (Service Pack 4)或 XP 专业版。
∙ 硬盘 > 6 GB ,防震设计(安装在凝胶板上或其他同类物质)。
∙ 请不要安装禁止数据在网络上交换的软件 (防火墙等)。
∙ CD 光驱或软驱。
∙ 防水设计 (>= IP54)。
!NOTEIDS 公司对由于软件安装而引起的与用户在笔记本上安装的其它软件的冲突导致的软件无法使用不承担任何相关责任。
IDS 不保证推荐的笔记本会一直保持上述的配置而不发生任何其他变化。
2.3连接DAD 控制单元与笔记本电脑下面描述如何连接控制单元与笔记本电脑。
∙ 使用网络电缆(Fig.2-3)来连接DAD 控制单元与笔记本电脑,如图所示(Fig.2-4)。
Fig.2-3 网络电缆Fig.2-4 DAD 控制单元和笔记本电脑之间网络电缆的连接用电池电缆(Fig.2-5)将DAD控制单元与电池相连,如图所示(Fig.2-6)Fig.2-5 电池电缆Fig.2-6 DAD控制单元与电池包的连接一旦DAD控制单元与笔记本连接完成,就可以通过连接控制单元与雷达天线来完成整个硬件系统的连接,接下来您就可以按照第4.1章中所描述的内容来进行雷达数据的采集。
严禁把电源电缆连接到IDS天线的远程控制端口。
IDS不对任何由于错误连接导致的系统损坏负责。
3.K2-FW系统的软件设置本节叙述了正确采集雷达数据需做的软件步骤。
3.1软件安装与设置将K2FASTWAVE.msi安装至默认目录下即可,安装时,请选择Custom方式即可选择安装相应的驱动程序。
! NOTE K2-FW采集软件只在Windows 2000和Windows XP 专业版的操作系统下可以正常使用。
! NOTE 为了使软件正常运行,需要对地区选项(Regional Options)菜单中的数字栏(Numbers)进行如下设置。
在笔记本电脑上首次安装K2-FW软件时,会出现Fig.3-1所示消息窗。
点击OK按钮并重新启动计算机。
Fig.3-1 新的IP地址信息;在首次安装该软件或每次改变笔记本TCP/IP地址时,此信息都会显示。
通过操作,系统自动设置TCP/IP地址用来使笔记本电脑与DAD控制单元进行数据交换。
手动设置TCP/IP地址,可以按照以下的步骤完成:∙在笔记本电脑的桌面上选择网上邻居,并单击右键。
∙选择属性按钮。
∙选择本地连接(LAN),并单击右键。
∙选择属性命令。
∙从一系列网络组件中(总菜单中)选择网络协议(TCP/IP)单击左键(见Fig.3-2)。
∙选择属性命令Fig.3-2 选择网络协议(TCP/IP)∙在如Fig.3-所显示的窗口中,选择使用下面的IP地址。
∙把如下数字写入IP地址栏:192 168 200 150。
∙把如下数字写入子网掩码Subnet mask栏:255 255 255 0。
∙按OK键确认更改。
∙如果激活修改过的网络协议需要,请重新启动笔记本电脑。
Fig.3-3 修改IP地址4.K2-FW采集软件的使用K2-FW采集软件是在测区现场,直接用于管理雷达数据采集过程和查看已采集的雷达数据。
采集软件的操作有以下顺序:1.启动采集软件2.选择驱动3.增益标定4.选择测量区域5.设定采集参数6.采集雷达数据7.查看雷达数据4.1启动K2-FW采集软件一旦笔记本电脑已经打开,就可以通过双击桌面上的K2-FW图标,如Fig.4-1所示,来启动采集软件。
Fig.4-1 采集软件图标Fig.4-2为采集软件启动窗口。
Fig.4-2 K2-FW采集软件启动窗口4.2选择驱动下面给出了在选择将要使用的雷达驱动时所需遵循的步骤。
1.按按钮来打开雷达选择窗口(Fig.4-3),在这里用户可以选择数据采集所需要的天线种类和驱动程序。
Fig.4-3 雷达天线选择窗口2.在时窗窗口下,可以针对框中已有的数值重新键入一个新的时窗值(Fig.4-4)。
Fig.4-4 时窗设置3.每扫采样点数的数值可以选择由对话框下拉菜单中提供的数值。
如(Fig.4-5)所示。
然而,这个数值不能低于在每扫最低采样点数所提示的最小数值。
Fig. 4-5 每扫采样点数的数值4.电磁波的传播速度可以在如图(Fig. 4-6)的传播速度中设定。
推荐使用默认值,除非用户能确切知道你所要勘查的场地中的图层的特征参数信息。
Fig. 4-6 电磁波的传播速度5.按如图Fig.4-3中所示的按钮,可以打开雷达设置窗口,(见Fig.4-7)。
从这里您可以修改所选择的天线驱动程序的现有参数,然后以另外一个文件名来保存您的设定。
Fig.4-7 雷达设置窗口6.采集过程中的通道数可以在雷达设置窗口的通道数框(Fig.4-8)中进行设定。
该数值可以最小可以从1到最多8个,这些参数代表着可以正常使用的天线个数。
分别在发射天线号和接收天线号框中设定在被使用的天线发射器和接收器的总数。
Fig.4-8 雷达设置的通道数7.如图(Fig.4-9),在发射天线顺序和接收天线顺序框中填写发射和接收模块的排列组合(用户可以在这里自主设计在采集过程中的接收和发射模块的排列组合顺序)。
Fig.4-9 发射和接收模块的排列组合8.采集过程中的时窗可以在如图(Fig.4-10)的扫描时间对话框中被编辑。
Fig.4-10 最大时窗设置9.每扫采样点数的数值可以选择由对话框下拉菜单中提供的数值。
如(Fig.4-11)所示。
然而,这些数值不能低于在每扫采样点数所提示的最小值。
Fig.4-11 每扫采样点数的数值10.用户可以在如图(Fig.4-12)的测量轮分辨率框中编辑定位测量轮的最小分辨率。
Fig.4-12 测量轮分辨率设置11.在如图(Fig.4-13)所示的光栅间隔数框中包含了由定位测量轮出发的脉冲数的综合值。
Fig.4-13 测量轮出发的脉冲数的综合值12.在如图(Fig.4-14)中的发射天线排列和接收天线排列框中,用户可以编辑每个天线发射和接收模块的频率及其位置。
包括X0 和Y0坐标以及在选定中心点时各个发射接收模块的偶极子的方位角(Alpha),他们与某个单天线或者是天线阵有关。
Fig.4-14 天线发射和接收模块的频率及其位置13.按如图(Fig.4-14)中所示按钮,可以在如图Fig.4-15所示的雷达驱动对话框中将设置保存为新的驱动文件。
Fig.4-15 保存天线新的驱动程序窗口14.点击如图Fig.4-3所示窗口中的按钮完成采集软件驱动的修改。
4.3增益标定本节描述了在实时处理雷达数据时,进行参数增益的过程。
1.点击图Fig.4-2中所示按钮,查看如图Fig.4-16窗口。
然后拖动天线在所要扫描的区域内至少前进一米,进行自动增益。
2.通过点击图Fig.4-16中的按钮,停止增益。