一元一次不等式组的知识点及其经典习题讲解
一元一次不等式组的解法知识点总结
一元一次不等式组的解法知识点总结
一元一次不等式组的解法
研究目标:
熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;
体验数学研究的乐趣,感受一元一次不等式组在解决实际问题中的价值。
重点:
一元一次不等式组的解法,求公共解集的方法。
知识要点梳理
知识点一:一元一次不等式组
由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。
知识点二:一元一次不等式组的解集
组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集。
知识点三:一元一次不等式组的解法
求不等式组的解集的过程,叫做解不等式组。
解一元一次不等式组的一般步骤为:
1)分别解不等式组中的每一个不等式;
2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;
3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解)。
知识点四:利用不等式或不等式组解决实际问题
列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即
1)审:认真审题,分清已知量、未知量;
2)设:设出适当的未知数;
3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;
4)列:根据题中的不等关系,列出不等式或不等式组;
5)解:解出所列的不等式或不等式组的解集。
一元一次不等式组专题知识点与经典习题
一元一次不等式(组)专题知识点与经典习题一元一次不等式(组)复习一.知识梳理1.知识结构图(二).知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc(或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c)说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0ab >,则a 、b 同号;⑥若ab <0或0a b <,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
专题10 一元一次不等式(组)(含解析)
专题10 一元一次不等式(组)一、解读考点二、考点归纳归纳 1:有关概念基础知识归纳:1、不等式:用不等号表示不等关系的式子,叫做不等式.2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.3、用数轴表示不等式的方法4、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.5、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.基本方法归纳:判断不等式(组)时只需看未知数的个数及未知数的次数为1即可;不等式的解只需带入不等式是否成立即可;不等式(组)的解集是所有解得集合.注意问题归纳:不等式组的解集是所有解得公共部分.【例1】如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).【答案】<.考点:不等式的定义.归纳 2:不等式基本性质基础知识归纳:1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变.3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变.基本方法归纳:观察不等式的变化再选择应用那个性质.注意问题归纳:不等式两边都乘以(或除以)同一个负数,不等号的方向改变;乘以(或除以)同一个正数,不等号的方向不变.【例2】若x>y,则下列式子中错误..的是()A、x-3>y-3B、x y>33C、x+3>y+3D、-3x>-3y【答案】D.考点:不等式基本性质。
八年级一元一次不等式(教师讲义带答案).
第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
初中数学《一元一次不等式》微课精讲+知识点+教案课件+习题
初中数学《一元一次不等式》微课精讲+知识点+教案课件+习题知识点:知识点一:不等式的概念1.不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1) 不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3)要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。
3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。
求不等式的解集的过程叫做解不等式。
如:不等式x-4<1的解集是x<5.不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。
视频教学:练习:1.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有-个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A. 8(x-1)<5x+12<8B. 0<5x+12<8xC. 0<5x+12-8(x-1)<8D. 8x<5x+12<82.某种商品的进价为900元,出售时标价为1650元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则最多可打()A. 6折B. 7折C. 8折D. 9折3.在河北某市召开的出租汽车价格听证会上,物价局拟定了两套客运出租汽车运价调整方案.方案一:起步价调至7元/2公里,而后每公里1.6元;方案二:起步价调至8元/3公里,而后每公里1.8元.若某乘客乘坐出租车(路程多于3公里)时用方案一比较合算,则该乘客乘坐出租车的路程可能为()A. 7公里B. 5公里C. 4公里D. 3.5公里4.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量如下表:现配制这种饮料10kg,要求至少含有4100单位的维生素C.若所需甲种原料的质量为xkg,则x应满足的不等式为()A. 500x+200(10-x)≥4100B. 200x+500(100-x)≤4100C. 500x+200(10-x)≤4100D. 200x+500(100-x)≥41005.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.如果[a]=-3,则a的取值范围为()A. -4<a≤-3B. -4≤a<-3C. -3<a≤-2D. -3≤a<-26.设“○”,“□”,“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”,“□”,“△”这样的物体,按质量由小到大的顺序排列为()A. ○□△B. ○△□C. □○△D. △□○7.五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为()A. 11B. 12C. 13D. 14课件:教案:课题4一元一次不等式课时第1课时上课时间教学目标1.体会一元一次不等式的形成过程.2.会解简单的一元一次不等式,并能在数轴上表示出解集.教学重难点重点:一元一次不等式的概念及判断.会解一元一次不等式.难点:当不等式的两边都乘以或除以同一个负数时,不等号的方向要改变.教学活动设计二次设计课堂导入1.什么叫做一元一次方程?.2.解一元一次方程中的移项法则是什么?.3.解一元一次方程的步骤是.探索新知合作探究自学指导观察下列不等式:(1)2x-2.5≥15; (2)x≤8.75; (3)x<4; (4)5+ 3x>240.这些不等式有哪些共同特点?合作探究小组合作讨论各自的观点结论:这些不等式的左右两边都是,只含有一个,并且未知数的次数是1,像这样的不等式,叫做一元一次不等式.小结:一元一次不等式须具备的三个条件:①________________;②______________________;③_____________________.续表探索新知合作探究练习:1.判断下列不等式是否为一元一次不等式,并说明理由.(1)2x-2.5≥15;(2)-1<2; (3) >1;(4)x<-4;(5)3x-2y≥-1;(6)5+3x2>240.2.若-3x m-1≥5是关于x的一元一次不等式,则m的值为.小组合作完成下面的题目,并交流沟通.[例1]解不等式:3-x<2x+6,并把它的解集表示在数轴上.[例2]解不等式≥,并把它的解集表示在数轴上.结论:解一元一次不等式大致要分五个步骤进行:(1);(2);(3);(4);(5).特别注意:在(1)和(5)中,如果乘数或除数是负数,要把不等号的方向.在数轴上表示不等式的解集时,要注意不等号以及端点的情况.教师指导1.解一元一次不等式的步骤与解一元一次方程相同,移项法则在解不等式中仍然适用.但要注意在不等式两边同乘(或同除以)同一个负数时,不等号的方向要改变. 2.解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,不等式两边同除以未知数的系数.当堂训练解不等式,并把它的解集表示在数轴上.(1)5x<200; (2)x-4≥2(x+2); (3)-<3;(4)<.板书设计一元一次不等式及其解法1.一元一次不等式的定义2.解一元一次不等式的步骤教学反思解一元一次不等式需要学生明白以下几点:(1)去分母时,把不等式的两边都乘各分母的最小公倍数,当乘的是负数时,要改变不等号的方向,同时要用括号将分子部分括起来.(2)去括号时,括号前是负号时,括号内各项均要变号.(3)移项时要变号.(4)未知数系数化为1时,不等式的两边同时除以未知数的系数,当这个系数是负数时,不等号的方向要改变.。
一元一次不等式组的解法常考题型讲解
一元一次不等式组的解法一、知识点复习1.一元一次不等式组的概念:几个 一元一次不等式 合在一起就组成一个一元一次不等式组. 2.一元一次不等式组的解集:一般地,几个不等式的解集的 公共部分 ,叫做由它们组成的不等式组的解集. 2.一元一次不等式组解集四种类型如下表:二、经典题型分类讲解题型1:考察一元一次不等式组的概念1. (2017春雁塔区校级月考)下列不等式组:①⎩⎨⎧<->32x x ,②⎩⎨⎧>+>420x x ,③⎩⎨⎧>+<+42122x x x ,④⎩⎨⎧-<>+703x x ,⑤⎩⎨⎧<->+0101y x 。
其中一元一次不等式组的个数是( )A 、2个B 、3个C 、4个D 、5个题型2:考察一元一次不等式组的解法2.(2018春天心区校级期末)不等式组⎪⎩⎪⎨⎧>+≤-61213312x x 的解集在数轴上表示正确的是( )3.解下列不等式组,并在数轴上表示解集:(1)⎪⎩⎪⎨⎧<--+->++-021331215)1(2)5(7x x x x (2)⎪⎩⎪⎨⎧≥-+->-1542453312x x x x(3)⎪⎩⎪⎨⎧≤--+<--+-1213128)3()1(3x x x x (4)⎪⎩⎪⎨⎧<-+≤+321)2(352x x x x(5)⎪⎩⎪⎨⎧-<+-<-2322125.05.7x x x x (6)⎪⎩⎪⎨⎧->≥----624102.05.05.04.073x x x x x4. 解下列不等式21153x --<≤题型3:考察一元一次不等式组的整数解问题5.(2017西安模拟)不等式组⎪⎩⎪⎨⎧≤-+>+32152)2(3x x x x 的最小整数解是 。
6.(2016春马山县期末)若关于x 的一元一次不等式组⎩⎨⎧>->-0123a x x 恰有3个整数解,那么a的取值范围是( )A 、12<<-aB 、23-≤<-aC 、23-<≤-aD 、23-<<-a7.已知关于x 的不等式组⎩⎨⎧≥->+023032x a x a 恰有3个整数解,则a 的取值范围是( )A 、2332≤≤a B 、2334≤≤a C 、2334≤<a D 、2334<≤a题型4:考察一元一次不等式中字母参数问题8. (2016春汉台区校级月考)不等式x x>-12与x ax 56>-的解集相同,则=a 。
10一元一次不等式组(基础) 知识讲解及其练习 含答案
一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2.(•莆田)解不等式组:. 【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】 解:解:.由①得x ≤1;由②得x <4;所以原不等式组的解集为:x ≤1.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.【变式】解不等式组,并把解集在数轴上表示出来. 【答案】 解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20, 所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三: 【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4. “全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元, 可得:, 解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:, 解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x xx +-≥⎧⎨+-≥⎩,解得57x ≤≤,又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.一元一次不等式组(基础)巩固练习【巩固练习】一、选择题1.下列选项中是一元一次不等式组的是( )A .B .C .D .2.不等式组312840x x ->⎧⎨-≤⎩的解集在数轴上表示为 ( ).3.(•来宾)已知不等式组的解集是x≥1,则a 的取值范围是( ) A .a <1 B .a ≤1C .a ≥1D .a >1 4.不等式32015x -<≤的整数解有( ). A .4个 B .3个 C .2个 D .1个5.现用甲、乙两种运输车将46t 抗旱物资运往灾区,甲种运输车载重5t ,乙种运输车载重4t ,安排车辆不超过10辆,则甲种运输车至少应安排( ).A .4辆B .5辆C .6辆D .7辆6.如果|x+1|=1+x ,|3x+2|=-3x-2,那么x 的取值范围是( ).A .213x -≤≤-B .1x ≥-C .23x ≤-D .213x -≤≤- 二、填空题7.如果a <2,那么不等式组2x a x >⎧⎨>⎩的解集为_______,2x a x <⎧⎨>⎩的解集为_______. 8.(•广东)不等式组x x x x --⎧⎪⎨-⎪⎩1222132≤>的解集是 . 9.不等式组34125x +-≤<的所有整数解的和是______. 10. 如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围为 .11.从彬彬家步行到学校的路程是2400米,如果彬彬7时离家,要在7时30分至40分间到达学校,那么步行的速度x (米/分)的范围是________.12. 在△ABC 中,三边为a 、b 、c ,如果a 3x =,b 4x =,c 28=,那么x 的取值范围是 .三、解答题13.解下列不等式组,并将其解集在数轴上表示出来.(1)2(1)31134x x x x +≤-⎧⎪+⎨<⎪⎩;(2)1<3x-2<4;14.若关于x 、y 的二元一次方程组中,x 的值为负数,y 的值为正数,求m 的取值范围.15.郑老师想为希望小学四年级(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?【答案与解析】一、选择题1. 【答案】D ;【解析】解:A 、含有两个未知数,错误;B 、未知数的次数是2,错误;C 、含有两个未知数,错误;D 、符合一元一次不等式组的定义,正确;故选D.2. 【答案】A ;【解析】解不等式组可得:1,2x x >≥且.3. 【答案】A ;4. 【答案】B ;【解析】32053215x x -⎧<⎪⎪⎨-⎪≤⎪⎩,解得:312x -≤<,所以整数解:-1,0,1. 5. 【答案】C ;【解析】设甲种运输车安排x 辆,5x+4(10-x )≥46,x≥6,故至少要甲种运输车6辆.6. 【答案】A ;【解析】由10320x x +≥⎧⎨--≥⎩,解得213x -≤≤-. 二、填空题7. 【答案】x >2,无解;8. 【答案】﹣3<x≤1;【解析】解不等式①得:x≤1,解不等式②得:x >-3,所以不等式组的解集是:﹣3<x≤1.9. 【答案】-5;【解析】所有整数解:-3,-2,-1,0,1,所以和为-5.10.【答案】1<m <2;【解析】由第一幅图得m >1,由第二幅图得m <2,故1<m <211.【答案】60<x <80; 【解析】设步行速度为x 米/分,依题意可得:3240042400x x <⎧⎨>⎩,得60<x <80 12.【答案】4<x <28;【解析】4x-3x <28<4x+3x ,即4<x <28.三、解答题13.【解析】解:(1)由①得解集为x ≥3,由②得解集为x <3,在数轴上表示①、②的解集,如图, 所以不等式组无解.(2)不等式组的解集为1<x <2,表示在数轴上如图:14.【解析】 解:,①+②得2x=4m ﹣2,解得x=2m ﹣1,②﹣①得2y=2m+8,解得y=m+4,∵x 的值为负数,y 的值为正数, ∴,∴﹣4<m <.15.【解析】解:(1)设每个书包的价格为x 元,则每本词典的价格为(x-8)元.根据题意得:3x+2(x-8)=124解得:x =28.∴ x-8=20.答:每个书包的价格为28元,每本词典的价格为20元.(2)解:设购买书包y 个,则购买词典(40-y)本.根据题意得:1000[2820(40)]1001000[2820(40)]120y y y y -+-≥⎧⎨-+-≤⎩, 解得:10≤y ≤12.5.因为y 取整数,所以y 的值为10或11或12.所以有三种购买方案,分别是:①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.。
专题 一元一次不等式组(知识点精讲)(学生版)
专题05一元一次不等式组重难突破知识点一一元一次不等式组的解法1、一元一次不等式组及解集一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组.一元一次不等式组中各个不等式解集的公共部分,叫做这个一元一次不等式组的解集.注意:一元一次不等式组的概念应满足三个条件:①几个不等式必须含有同一个未知数;②必须都是一元一次不等式;③几个不等式用大括号合在一起,表示的含义是这几个不等式同时成立.2、一元一次不等式组的解法第一步:先分别求出不等式组中各个不等式的解集;第二步:利用数轴求出这些解集的公共部分;第三步:写出不等式组的解集的结论.由两个一元一次不等式组成的不等式组,经过整理可以归结为下述四种基本类型:(表中a b >)典例1(2021•南山区校级二模)不等式组13x x --⎧⎨<⎩ 的解集在数轴上可以表示为()A .B .C .D .典例2(2021•福田区二模)不等式组122253(6)x x x x ->+⎧⎨+-⎩的解集为()A .3x <-B .2xC .32x -<D .无解特殊解:求不等式组中字母参数的取值问题,可以先将字母参数当做已知处理,求出解集,与已知不等式组的解或解集的情况进行对比,进而确定字母参数的值或取值范围.解的讨论:已知不等式(组),可以求出这个不等式(组)的解集;反过来,已知不等式(组)的解集,也能确定这个不等式(组)中未知的字母,把后者称为不等式(组)解集确定方法的逆用,处理这类问题时,可先求出原不等式(组)的解集,然后对照已知条件,得到关于未知字母的方程或不等式,解之即可.注意:这类题目的解决方法:数形结合思想.结合数轴分析解集的情况,判断字母参数的取值或取值范围.典例1(2021春•罗湖区期中)不等式组523(1)2143x x x x +>-⎧⎨--⎩ 的非负整数解有()A .4个B .5个C .6个D .7个典例2(2020•深圳模拟)不等式组1235a x a x -<<+⎧⎨<<⎩的解集是32x a <<+,则a 的取值范围是()A .1a >B .3aC .1a <或3a >D .13a < 典例3(2020•南山区三模)关于x 的不等式组21231x x a -⎧<⎪⎨⎪-+>⎩恰好只有4个整数解,则a 的取值范围为()A .21a -<-B .21a -<-C .32a -<-D .32a -<- 典例4(2020•恩施州模拟)关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩有解,那么m 的取值范围为()A .1m -B .1m <-C .1m -D .1m >-一元一次不等式组的应用主要表现在两个方面:(1)通过列不等式组求未知数的取值范围;(2)通过列一元一次不等式组解决实际问题.应用不等式组解决实际问题的一般步骤:①审:分析题目中的已知条件和未知条件,找出题目中的不等关系;②设:设未知数;③列:根据不等关系列出不等式,并组成不等式组;④解:求出不等式组的解集;⑤答:检验解集是否合理,是否符合实际情况,作答.典例1(2021春•福田区校级期中)安排学生住宿,若每间住3人,则还有3人无房可住;若每间住5人,则其它房间全住满还剩一间住的人数不足3人,则宿舍的房间数量是.典例2(2021春•宝安区期中)习近平总书记指出:“扶贫先扶志,扶贫必扶智”.某企业扶贫小组准备在春节前夕慰问贫困户,为贫困户送去温暖.该扶贫小组购买了一批慰问物资并安排两种货车运送.据调查得知,2辆大货车与4辆小货车一次可以满载运输700件;1辆大货车与5辆小货车一次可以满载运输650件.(1)求1辆大货车和1辆小货车一次可以分别满载运输多少件物资?(2)计划租用两种货车共10辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1300件,且总费用不超过46000元.请你计算该扶贫小组共有几种运输方案?巩固训练一、单选题(共6小题)1.(2020春•蓬溪县期末)不等式组24020x x -⎧⎨+>⎩ 的解集在数轴上表示正确的是()A .B.C .D.2.(2020•深圳模拟)关于x 的不等式组233(1)7x x x +<-⎧⎨<⎩的解集为()A .6x <B .6x >C .67x <<D .7x <3.(2021•南通一模)若关于x 的不等式组27412x x x k +>+⎧⎨-<⎩的解集为3x <,则k 的取值范围为()A .1k >B .1k <C .1k D .1k 4.(2019秋•上城区期末)若关于x 的不等式组0721x m x -<⎧⎨-⎩的整数解共有3个,则m 的取值范围是()A .56m <<B .56m < C .56m D .67m < 5.(2020•市中区一模)若不等式组236x x x m -<-⎧⎨<⎩无解,那么m 的取值范围是()A .2m >B .2m <C .2m D .2m 6.(2021•南山区校级一模)如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x 的取值范围是()A .24x <B .24x <C .24x <<D .24x 二、填空题(共5小题)7.(2021•深圳模拟)如果4m 、m 、62m -这三个数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是.8.(2020春•九龙坡区期末)在平面直角坐标系中,点(62,4)P m m --在第三象限,则m 的取值范围是.9.(2020•庆云县模拟)不等式组351342163x x x x -<+⎧⎪--⎨⎪⎩ 的解集是.10.(2019秋•福田区校级期中)若关于x的不等式组123xx a->-⎧⎨-⎩的整数解共有5个,则a的取值范围是.11.(2020春•武城县期末)在“新冠肺炎”这场没有硝烟的战争中,各行各业都涌现出了一批“最美逆行者”,其中抗疫最前沿的就是护士.某医院安排护士若干名负责护理新冠病人,每名护士护理4名新冠病人,有20名新冠病人没人护理,如果每名护士护理8名新冠病人,有一名护士护理的新冠病人多于1人不足8人,这个医院安排了名护士护理新冠病人.三、解答题(共2小题)12.(2021•宝安区模拟)解不等式组241 342163 x xx x-<-⎧⎪--⎨⎪⎩,并利用数轴确定不等式组的解集.13.(2021春•龙岗区期中)某公司在疫情复工准备工作中,为了贯彻落实“生命重于泰山、疫情就是命令、防控就是责任”的思想,计划同时购买一定数量的甲、乙品牌消毒液,若购进甲品牌消毒液20瓶和乙品牌消毒液10瓶,共需资金1300元;若购进甲品牌消毒液10瓶和乙品牌消毒液10瓶,共需资金800元.(1)甲、乙品牌消毒液的单价分别是多少元?(2)该公司计划购进甲、乙品牌消毒液共50瓶,而可用于购买这两种商品的资金不超过1900元,且要求购买甲品牌消毒液的数量不少于乙品牌消毒液数量的一半.试问:该公司有哪几种购买方案?哪种方案花费资金最少?。
一元一次不等式组的知识点及其习题讲解
一元一次不等式组的知识点及其习题讲解Last revision date: 13 December 2020.初中一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。
如:,。
要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。
知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。
(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。
解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。
知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。
初二数学一元一次不等式知识点及经典例题
一元一次不等式重点:不等式的性质和一元一次不等式的解法。
难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。
知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
符号语言表示为:如果,那么。
基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果,并且,那么(或)。
基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
符号语言表示为:如果,并且,那么(或)要点诠释:(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。
一元一次不等式知识要点及典型题目讲解-
一元一次不等式知识要点及典型题目讲解一、全章教学内容及要求1、理解不等式的概念和基本性质2、会解一元一次不等式,并能在数轴上表示不等式的解集3、会解一元一次不等式组,并能在数轴上表示不等式组的解集二、技能要求1、会在数轴上表示不等式的解集。
2、会运用不等式的基本性质(或不等式的同解原理)解一元一次不等式。
3、掌握一元一次不等式组的解法,会运用数轴确定不等式组的解集。
三、重要的数学思想:1、通过一元一次不等式解法的学习,领会转化的数学思想。
2、通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想。
四、主要数学能力1、通过运用不等式基本性质对不等式进行变形训练,培养逻辑思维能力。
2、通过一元一次不等式解法的归纳及一元一次方程解法的类比,培养思维能力。
3、在一元一次不等式,一元一次不等式组解法的技能训练基础上,通过观察、分析、灵活运用不等式的基本性质,寻求合理、简捷的解法,培养运算能力。
五、类比思想:把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
这种数学思想通常称为“类比”,它体现了“不同事物之间存在内部联系”的唯物辩证观点,是发现数学真理和解题方法的重要手段之一,在数学中有着广泛的运用。
在本章中,类比思想的突出运用有:1、不等式与等式的性质类比。
对于等式(例如a=b)的性质,我们比较熟悉。
不等式(例如a>b或a<b)与等式虽然是不同的式子,表达的也是不同的数量关系,但它们在形式上显然有某些相同或类似的地方,于是可推断在性质上两者也可能有某些相同或类似之处。
这就是“类比”思想的运用之一,它也是我们探索不等式性质的基本途径。
等式有两个基本性质:1、等式两边都加上(或减去)同一个数或同一个整式,等号不变。
(即两边仍然相等)。
2、等式两边都乘以(或除以)同一个不等于0的数,符号不变(即两边仍然相等)。
一元一次不等式知识点及典型例题
一元一次不等式知识点及典型例题一元一次不等式的定义一元一次不等式是指只有一个未知数,并且该未知数只有一次的不等式。
一元一次不等式的一般形式为ax + b > c,其中a、b、c是常数,x是未知数。
一元一次不等式的解集一元一次不等式的解集可以是一个区间,也可以是一个点。
解集的表示方法有三种:1.集合表示法:用大括号{}将所有解组成一个集合,例如{x | x > 3}表示所有大于 3 的实数构成的集合。
2.区间表示法:用方括号[]或圆括号()表示解集的开始和结束,方括号表示包含开始或结束的解,圆括号则表示不包含开始或结束的解。
例如(3, +∞)表示大于 3 的实数构成的区间。
3.图示表示法:用数轴上的线段表示解集。
例如,解集{x | x > 3}可以表示为一个起点为 3 且向右延伸的线段。
不等式的性质不等式和等式有许多相似的性质,例如:1.传递性:如果不等式a > b和b > c成立,则不等式a > c也成立。
2.乘法性:如果不等式a > b成立,并且c是正数,则不等式ac > bc也成立。
如果c是负数,则不等式的方向改变,即不等式ac < bc也成立。
3.加法性:如果不等式a > b成立,并且c是任意实数,则不等式a + c > b + c也成立。
解一元一次不等式的方法解一元一次不等式的基本步骤如下:1.将不等式转化为标准形式:将不等式的对立面转化为标准形式,即将不等号方向统一,将常数项移到等号右边。
2.去括号:如果有括号,可以使用分配律或去括号规则去除括号。
3.合并同类项:将同类项合并,化简表达式。
4.移项:将未知数项移到等号右边,常数项移到等号左边,使得方程只有一个未知数项。
5.通过运算求解:通过计算得到未知数的解。
6.确定解集:根据不等式的类型,确定解集的表示方法。
典型例题以下是一些典型的一元一次不等式例题,并给出了详细解题步骤和解集表示:例题1求解不等式3x + 5 < 7的解集。
一元一次不等式知识点及典型例题(精)
一元一次不等式知识点及典型例题(精)一元一次不等式考点一、不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
例判断下列说法是否正确,为什么?X=2是不等式x+3<2的解。
X=2是不等式3x<7的解。
不等式3x<7的解是x<2。
X=3是不等式3x≥9的解3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
一元一次不等式(组)知识总结及经典例题分析
二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或 )x a x a ³£或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以或除以))同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321£---x x 解不等式: 解:去分母,得解:去分母,得 6)13(2)13£---x x ((不要漏乘!每一项都得乘) 去括号,得去括号,得去括号,得 62633£+--x x (注意符号,不要漏乘!)移移 项,得项,得项,得 23663-+£-x x (移项,每一项要变号;但符号不改变) 合并同类项,得合并同类项,得合并同类项,得 73£-x (计算要正确)系数化为系数化为1, 得 37-³x (同除负,不等号方向要改变,分子分母别颠倒了)三、一元一次不等式组含有同一个未知数的含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
一元一次不等式所组成的不等式组,叫做一元一次不等式组。
说明:判断一个不等式组是一元一次不等式组需满足两个条件:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、个、33个、个、44个或更多.个或更多.四、一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.一元一次不等式组的解集通常利用数轴来确定.五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <) a a a a x <ax >a x ≤a x ≥a 一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
初二数学一元一次不等式知识点及经典例题
一元一次不等式重点:不等式的性质和一元一次不等式的解法。
难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。
知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
符号语言表示为:如果,那么。
基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果,并且,那么(或)。
基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
符号语言表示为:如果,并且,那么(或)要点诠释:(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。
(完整版)一元一次不等式单元复习(知识点+例题)
第二章一元一次不等式单元复习姓名:_____________ 学号:__________一、知识点复习回顾:1、不等式:用不等号“<”(“≤”)或“>”(“≥”)连接的式子叫做不等式。
2、常见的不等号及其意义:3、不等式的基本性质:(1)性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
(2)性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、不等式的解集:(1)能使不等式成立的未知数的值,叫做不等式的解。
(2)一个含有未知数的不等式的所有解,组成这个不等式的解集。
(3)求不等式解集的过程,叫做解不等式。
5、一元一次不等式:(1)定义:一般地,不等式的两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式。
(2)一元一次不等式的解法步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向是否发生变化)(3)列一元一次不等式解决实际问题的步骤:①审:认真审题。
②设:设出适当未知数。
③列:根据题意列出不等式。
④解:求出其解集。
⑤验:检验不等式解集是否正确,并且是否符合生活实际。
⑥答:写出答案并作答。
6、一元一次不等式与一次函数:(1)一元一次不等式与一次函数的关系:由于任何一个一元一次不等式都可以转化为00<+>+bkxbkx或(0,≠kbk为常数,且)的形式,所以解一元一次不等式可以看作当一次函数bkxy+=的值大于0(或小于0)时,求相应的自变量的取值范围。
(2)用函数图象解一元一次不等式:①当0>+bkx,表示直线bkxy+=在x轴上方的部分。
②当0<+bkx,表示直线bkxy+=在x轴下方的部分。
③当0=+bkx,表示直线bkxy+=在x轴的交点。
(3)用函数图象解决方案决策型问题:(先得到两个一次函数表达式21yy,)①当1y的图象在2y的图象的上方时,21yy>。
初二数学一元一次不等式知识点及经典例题
一元一次不等式重点:不等式的性质和一元一次不等式的解法。
难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。
知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
符号语言表示为:如果,那么。
基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果,并且,那么(或)。
基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
符号语言表示为:如果,并且,那么(或)要点诠释:(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。
一元一次不等式组知识要点及典型题目讲解-
一元一次不等式组知识要点及典型题目讲解一、重点难点提示重点:理解一元一次不等式组的概念及解集的概念。
难点:一元一次不等式组的解集含义的理解及一元一次不等式组的几个基本类型解集的确定。
二、学习指导:1、几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
但这“几个一元一次不等式”必须含有同一个未知数,否则就不是一元一次不等式组了。
2、前面学习过的二元一次方程组是由二个一次方程联立而成,在解方程组时,两个方程不是独立存在的(代入法和加减法本身就说明了这点);而一元一次不等式组中几个不等式却是独立的,而且组成不等式组的不等式的个数可以是三个或多个。
(我们主要学习由两个一元一次不等式组成的不等式组)。
3、在不等式组中,几个一元一次不等式的解集的公共部分,叫做由它们组成的一元一次不等式组的解集。
(注意借助于数轴找公共解)4、一元一次不等式组的基本类型(以两个不等式组成的不等式组为例)类型(设a>b)不等式组的解集数轴表示1.(同大型,同大取大)x>a2.(同小型,同小取小) x<b3.(一大一小型,小大之间) b<x<a4.(比大的大,比小的小空集)无解三、一元一次不等式组的解法例1.解不等式组,并将解集标在数轴上分析:解不等式组的基本思路是求组成这个不等式组的各个不等式的解集的公共部分,在解的过程中各个不等式彼此之间无关系,是独立的,在每一个不等式的解集都求出之后,才从“组”的角度去求“组”的解集,在此可借助于数轴用数形结合的思想去分析和解决问题。
解:解不等式(1)得x>解不等式(2)得x≤4∴(利用数轴确定不等式组的解集)∴原不等式组的解集为<x≤4∴步骤:(1)分别解不等式组的每一个不等式(2)求组的解集。
(借助数轴找公共部分)(3)写出不等式组解集(4)将解集标在数轴上例2.解不等式组解:解不等式(1)得x>-1,解不等式(2)得x≤1,解不等式(3)得x<2,∴ ∵在数轴上表示出各个解为:∴原不等式组解集为-1<x≤1注意:借助数轴找公共解时,应选图中阴影部分,解集应用小于号连接,由小到大排列,解集不包括-1而包括1在内,找公共解的图为图(1),若标出解集应按图(2)来画。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。
如:,。
要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。
知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。
(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。
解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。
知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。
要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。
注意积累利用一元一次不等式或不等式组解决实际问题的经验。
经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。
思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。
解析:解不等式①,得x≥-;解不等式②,得x<1。
所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。
总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。
有等号画实心圆点,无等号画空心圆圈。
举一反三:【变式1】解不等式组:∴原不等式组的解集为:【变式2】解不等式组:求公共解集得:.【变式3】解不等式组:∴不等式组的解集为无解【变式4】解不等式:-1<≤5解法1:原不等式可化为下面的不等式组即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。
所以原不等式的解集为-1<x≤8【变式5】求不等式组的整数解。
所以不等式组的解集为≤x≤4。
所以它的整数解为3,4。
类型二:含参数的一元一次不等式组2、若不等式组无解,求a的取值范围.解析:思路点拨:由两个不等式组成的不等式组无解只有一种情况,即“大大小小”,也就是说如果x比一个较大的数大,而比一个较小的数小,则这样的数x不存在.依题意: 2a-5 ≥ 3a-2,解得a ≤ -3总结升华:特别地,当2a-5与3a-2相等时,原不等式组也无解,请注意体会,以后做此类型的题目不要忽略对它们相等时的考虑.举一反三:【变式1】若不等式组无解,则的取值范围是什么?解析:要使不等式组无解,故必须,从而得.【变式2】若关于的不等式组的解集为,则的取值范围是什么?解析:由+1可解出,而由可解出,而不等式组的解集为,故,即.总结升华:上面两个例题给出不等式组的解集,反求不等式组中所含字母的取值范围,故要求较高.解这类题目的关键是对四种基本不等式组的解集的意义要深刻理解,如变式2,最后归结为对不等式组解集的确定,这就要求熟悉“同小取小”的解集确定方法,当然也可借助数轴求解。
【变式3】不等式组的解集为x<2,试求k的取值范围.解析:,由①得x<2, 由②得x<k,∵不等式组的解集为x<2,∴ 2≤k.即k≥2.【变式4】已知关于的不等式组的整数解共有5个,求的取值范围。
解析:∵不等式组的解为: 不等式组的解为:由于原不等式组有解,∴解集为在此解集内包含5个整数,则这5个整数依次是∴m必须满足【变式5】若不等式组的解集为-1<x<1,则(a+b)2008=___。
解析:由①知x>a+2,由②知x<,∵a+2=-1,=1,∴a=-3,b=2,∴a+b=-1,∴(a+b) 2008=(-1)2008=1。
类型三:建立不等式或不等式组解决实际问题3、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,求预定每组学生的人数。
思路点拨:运用不等式解应用题的方法,找出题目中的不等关系,列不等式组,本题中的两个不等关系是:①9个小组中每组比预定的人数多1人,学生总数超过200人;②9个小组中每组比预定的人数少1人,学生总数不到190人。
解析:设预定每组学生有x人,根据题意,得解这个不等式组,得,所以不等式组的解集是,其中符合题意的整数解只有一个x=22。
答:预定每组学生的人数为22人。
总结升华:列不等式(组)解应用题,首先将题目中的不等关系用不等式表示出来,当求得未知数的值后,要检验,一是检验所求值是否是原不等式或不等式组的解,二是检验所求得的值是否与实际意义相符。
举一反三:【变式1】某饮料厂为了开发新产品,用A、B两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的相关数据:饮料每千克含量甲乙A(单位:千克)0.5 0.2B(单位:千克)0.3 0.4 (1)假设甲种饮料需配制x千克,请你写出满足题意的不等式组,并求出其解集。
(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,请用含有x的式子来表示y。
并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最小?解析:(1) 0.5x+0.2(50 -x)≤19 ①0.3x+0.4(50-x)≤17.2 ②由①得x≤30,由②得x≥28∴28≤x≤30(2)y=4x+3(50-x),即y=x+150因为x越小,则y越小,所以当x=28时,甲、乙两种饮料的成本总额最少。
【变式2】某园林的门票每张10元,一次使用。
考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票人使用一年)。
年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再购买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需要再购买门票,每次3元。
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少多少次时,购买A类年票才比较合算。
思路点拨:“合算”是指进园次数多而花钱少,或是花相同的钱进园的次数最多,显然是通过计算进行代数式比较和建立不等式(组)关系。
解:(1)不可能选A类年票,若选B类年票,则为10次;若选C类年票,则为13次;若不购买年票,则为8次所以计划用80元花在该园林的门票上时,选择购买C类年票的方法进入园林的次数最多,为13次。
(2)设至少超过x次时,购买A类年票才比较合算,则 60+2x>120 解得 x>3040+3x>120 解得 x>2610x>120 解得 x>12∴x>30所以,一年中进入该园林至少超过30次时,购买A类年票才比较合算。
【变式3】若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满,问学生有多少人?宿舍有几间?解析:设宿舍共有x间。
解得: 5<x<7∵x为整数∴x=6学生人数4×6+20=44(人)答:学生44人,宿舍6间。
【变式4】某学校计划组织385名师生租车旅游,现知道出租车公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元,(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案。
解析:(1)385÷42≈9.2 单独租用42座客车需10辆,租金为320×10=3200(元) 385÷60≈6.4 单独租用60座客车需7辆,租金为460×7=3220(元) (2)设租用42座客车x辆,则60座客车需(8-x)辆解得:因x取整数x=4,5当x=4时,租金为320×4+460×(8-4)=3120(元)当x=5时,租金为320×5+460×(8-5)=2980(元)所以租5辆42座,3辆60座最省钱。
【变式5】(2010台湾)有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、小砝码皆为1克,且图(三)是将糖果与砝码放在等臂天平上的两种情形。
判断下列哪一种情形是正确的?解析:设:一颗糖果的重量为克,则由图(三)可知:,化简即得:分别代入验证得:只有(D)正确答案:(D)。