用导数求切线方程的四种类1

合集下载

利用导数求三角函数切线方程的三种问题类型

利用导数求三角函数切线方程的三种问题类型

利用导数求三角函数切线方程的三种问题类型导数是微积分中的重要概念,可以用来求解三角函数的切线方程。

在这份文档中,我们将介绍三种利用导数求三角函数切线方程的问题类型。

问题类型一:给定函数和点,求切线方程在这种类型的问题中,我们已知一个三角函数及其定义域上一点的坐标,需要求解该函数在该点处的切线方程。

解决这类问题的关键是求解该点处的导数。

对于三角函数而言,我们可以利用基本导数公式来求解。

例如,对于sin(x)函数,其导数是cos(x);对于cos(x)函数,其导数是-sin(x)。

一旦我们求得了函数在给定点处的导数,我们可以使用切线方程的一般形式y = f'(x0)(x - x0) + f(x0)来求解。

其中,f'(x0)表示函数在x0处的导数值,f(x0)表示函数在x0处的函数值。

问题类型二:给定函数和切线斜率,求切点坐标在这种类型的问题中,我们已知一个三角函数及其切线的斜率,需要求解切线与该函数的交点坐标。

解决这类问题的关键是找到切点的x坐标。

我们可以使用导数和斜率的关系来求解。

具体而言,由于导数就是切线的斜率,我们可以将斜率与导数相等来列方程。

然后,通过求解方程,我们可以得到切点的x坐标。

一旦我们获得了切点的x坐标,我们可以将该坐标代入三角函数的方程中,得到切点的y坐标。

问题类型三:给定函数和切点,求切线斜率在这种类型的问题中,我们已知一个三角函数及其切线的切点坐标,需要求解切线的斜率。

解决这类问题的关键是求解切点的导数。

我们可以使用导数的定义来求解。

具体而言,我们可以将切点的坐标代入三角函数的导数公式中,然后求导得到切点的导数。

一旦我们求得了切点的导数,即可得到切线的斜率。

通过掌握这三种问题类型的解决方法,我们可以有效地利用导数来求解三角函数的切线方程。

这有助于我们更好地理解三角函数的性质和导数的应用。

用导数求切线方程的四种类型

用导数求切线方程的四种类型

用导数求切线方程的四种类型用导数求切线方程是导数的重要应用之一。

求曲线的切线方程的关键在于求出切点P(x,y)及斜率。

设P(x,y)是曲线y=f(x)上的一点,则以P的切点的切线方程为:y-y=f'(x)(x-x)。

若曲线y=f(x)在点P(x,f(x))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x。

下面例析四种常见的类型及解法。

类型一:已知切点,求曲线的切线方程这类题较为简单,只需求出曲线的导数f'(x),并代入点斜式方程即可。

例如,曲线y=x^3-3x^2+1在点(1,-1)处的切线方程为y-(-1)=-3(x-1),即y=-3x+2.类型二:已知斜率,求曲线的切线方程这类题可利用斜率求出切点,再用点斜式方程加以解决。

例如,与直线2x-y+4=0平行的抛物线y=x^2的切线方程为2x-y-1=0.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法。

例如,求过曲线y=x^3-2x上的点(1,-1)的切线方程。

设想P(x,y)为切点,则切线的斜率为y'|(x=x)=3x^2-2.故所求切线方程为y-(1-2)=(3-2)(x-1),或5x+4y-1=0.类型四:已知两曲线的交点,求切线方程这类题一般需先求出两曲线在交点处的导数,再代入点斜式方程加以解决。

例如,已知曲线y=x^3-x和y=2x-x^2的交点为(1,0),求它们在该点的切线方程。

两曲线在交点处的导数分别为1和-1.故所求切线方程为y-(0)=1(x-1),或y-(0)=-1(x-1),即y=x-1或y=-x+1.类型四:已知过曲线外一点,求切线方程对于这类问题,我们可以先设定切点,再求解切点,使用待定切点法来解决。

例4:求过点(2,0)且与曲线$y=x/(1+x^2)$相切的直线方程。

解:设P(x,y)为切点,则切线的斜率为$y'=\frac{1-x^2}{(1+x^2)^2}$。

导数求切线方程的步骤

导数求切线方程的步骤

导数求切线方程的步骤求切线方程的步骤如下:第一步:求导数首先,我们需要求出给定函数的导数。

导数表示了函数在给定点上的斜率,也就是该点函数曲线的切线斜率。

求导数的过程根据函数的不同而有所差异,下面将以几种不同类型的函数为例进行解释。

1.1.常数函数:常数函数的导数为零,因为它的斜率在任何点都是零。

例如,函数f(x)=3的导数为f'(x)=0。

1.2.幂函数:幂函数的导数可以使用幂函数规则求导得到。

幂函数的一般形式是f(x)=x^n,其中n是一个实数。

根据幂函数的规则,导数f'(x)=n*x^(n-1)。

例如,对于函数f(x)=x^2,它的导数为f'(x)=2*x^(2-1)=2x。

1.3.指数函数:指数函数的导数可以使用指数函数规则求导得到。

指数函数的一般形式是f(x) = a^x,其中a是一个正实数且a≠1、根据指数函数的规则,导数f'(x) = ln(a)*a^x。

例如,对于函数f(x) = e^x,它的导数为f'(x) = ln(e)*e^x = e^x。

1.4.对数函数:对数函数的导数可以使用对数函数规则求导得到。

对数函数的一般形式是f(x) = loga(x),其中a是一个正实数且a≠1、根据对数函数的规则,导数f'(x) = 1/(x*ln(a))。

例如,对于函数f(x) = log3(x),它的导数为f'(x) = 1/(x*ln(3))。

第二步:确定切点切线是曲线上其中一点上的切线,因此我们需要确定曲线上的切点。

根据题目给出的条件,我们可以确定切点的横纵坐标。

第三步:计算斜率在给定点上,切线的斜率等于该点的导数值。

所以我们将给定点的横坐标代入到导数函数中,得到该点的导数值。

第四步:确定切线方程切线方程的一般形式是y = mx + b,其中m为切线的斜率,b为切线在横轴上的截距。

在给定点上,我们已经确定了斜率m,并且通过给定点的坐标,可以将x和y代入切线方程。

用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+=B.230x y --=C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|. ∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

求曲线在某点的切线方程方法

求曲线在某点的切线方程方法

求曲线在某点的切线方程方法引言在数学和物理学中,研究曲线的切线是很常见的问题。

切线可以帮助我们了解曲线的局部特征和性质,它在微积分、力学和工程学等领域中都有广泛的应用。

本文将介绍一些常见的方法来求解曲线在某点的切线方程。

切线的定义在数学中,曲线上某点的切线可以被定义为通过该点并且与曲线在该点附近重合的直线。

切线的斜率即为曲线在该点的导数。

方法一:求导法一种常见的方法是使用导数来求解曲线在某点的切线方程。

设曲线的方程为y=f(x),我们要求解曲线在点(x0,y0)处的切线方程。

1.首先求曲线的导数f'(x)。

2.将点(x0,y0)带入导数函数,求出导数的值f'(x0)。

3.使用切线方程的一般形式y-y0=f'(x0)(x-x0),将(x0,y0)和f'(x0)代入,得到切线方程。

方法二:斜率和点法另一种常用的方法是使用斜率和已知点来求解切线方程。

同样假设曲线的方程为y=f(x),我们要求解曲线在点(x0,y0)处的切线方程。

1.计算曲线在点(x0,y0)处的斜率,即f'(x0)。

2.使用点斜式切线方程y-y0=f'(x0)(x-x0),将(x0,y0)和f'(x0)代入,得到切线方程。

方法三:曲线近似法第三种方法是使用曲线的近似来求解切线方程。

此方法适用于那些难以计算导数的曲线。

1.在点(x0,y0)处取曲线的一个非常小的线段,该线段基本上与切线重合。

2.使用线性函数来拟合这个线段,得到近似切线方程。

方法四:参数法对于参数方程表示的曲线,我们可以使用参数法来求解切线方程。

假设曲线的参数方程为x=f(t),y=g(t),我们要求解曲线在参数值t0处的切线方程。

1.计算参数值t0对应的点的坐标(x0,y0)。

2.求解参数方程的导数dx/d t和dy/dt。

3.使用点斜式切线方程y-y0=(dy/d t)/(dx/d t)(x-x0),将(x0,y0)、dx/d t和d y/dt代入,得到切线方程。

用导数求切线方程的四种类型

用导数求切线方程的四种类型

添加标题
添加标题
添加标题
导数大于0表示函数在对应区间内 单调递增
导数小于0表示函数在对应区间内 单调递减
导数在几何上表导数等于0时,函数可能存在拐点或极值点 导数小于0时,函数在对应区间内单调递减
导数等于切线斜率 导数可以求出切线的斜率
导数在求切线方程中起到关 键作用
添加标题
添加标题
切线与该点处的切线垂直
添加标题
添加标题
切线方程的求解需要用到切点处的 坐标和斜率
确定函数表达式 确定导数表达式 计算导数值 代入切点坐标
代入切点坐标求斜率要细心 切线斜率与函数值大小无关 切线方程的形式要正确 切线方程与函数解析式不同
切线方程的书写格式要正确 切线斜率的计算要准确 切点坐标的选取要合理 切线方程的求解方法要规范
切线斜率:通 过将切点坐标 代入导函数中,
求得斜率为 f'(x0)
切线方程:利 用点斜式方程 y-y0=f'(x0)(xx0),得到切线
方程
确定函数在某点的导数 利用导数求出该点的切线斜率 根据切线斜率和已知点写出切线方程 验证切线方程是否符合题意
切点是曲线上某一点,在该点处函 数的导数存在
切点处函数值必须为零
汇报人:XX
导数与切线斜率的关系是密 切相关的
切点是曲线上某 一点,在该点处 曲线的切线存在
切点处的导数值 即为切线的斜率
切点坐标由曲线 方程和切线斜率 共同确定
切点是唯一确定 的,但切线方程 可能有多种形式
确定函数表达 式
求导函数
代入切点坐标
计算切线斜率
切点坐标:已 知曲线上的一 个点,记为(x0,
y0)
定义:切线方 程是表示切点 与曲线在某一 点的切线关系

用导数求切线方程的四种类型

用导数求切线方程的四种类型

用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-. 故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程. 解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=. 评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

用导数求切线方程的四种类型

用导数求切线方程的四种类型

用导数求切线方程的四种类型在微积分中,切线是曲线上某一点的切线。

通过使用导数,我们可以求解给定曲线上某一点的切线方程。

在本文中,我们将探讨四种使用导数求解切线方程的常见类型。

1. 曲线方程已知的情况首先,我们考虑的是当曲线方程已知时求解切线方程的情况。

假设我们有一个曲线y=f(x),其中f(x)是一个可导函数。

要求解曲线上某一点(x1,y1)处的切线方程,我们可以执行以下步骤:1.计算函数f(x)在点(x1,y1)处的导数f′(x1)。

2.使用点斜式或一般式等方程形式得到切线方程。

点斜式切线方程的一般形式为y−y1=m(x−x1),其中m是斜率。

一般式切线方程的一般形式为ax+by=c,其中a,b,c是常数。

2. 给定两个点的情况其次,我们考虑的是当曲线上两个点已知时求解切线方程的情况。

与上一种情况不同,我们不知道曲线的具体方程,但我们已知曲线上的两个点(x1,y1)和(x2,y2)。

为了求解这种情况下的切线方程,我们可以按照以下步骤进行:1.使用点斜式求解斜率。

2.写出点斜式的一般方程形式y−y1=m(x−x1)。

3.将另一个点(x2,y2)替代初始点(x1,y1)。

4.解方程得出切线方程。

3. 已知切线方程的情况接下来,我们讨论已知切线方程的情况。

假设我们已经知道了曲线上某一点处的切线方程,我们的目标是求解曲线方程。

我们可以按照以下步骤进行操作:1.确定切线方程的斜率m。

2.使用导数的定义f′(x)=m来设置方程。

3.解方程以获得曲线方程。

4. 求解切线与坐标轴的交点最后,我们研究切线与坐标轴相交的情况。

为了求解切线与x轴和y轴的交点,我们可以按照以下步骤进行:1.求解切线与x轴的交点:将y值设为0,然后解方程得到x坐标的值。

2.求解切线与y轴的交点:将x值设为0,然后解方程得到y坐标的值。

通过上述四种类型的方法,我们可以使用导数来求解切线方程。

这些方法在解决微积分问题以及实际问题中的应用非常广泛。

导数求切线方程的四种类型试题资料讲解

导数求切线方程的四种类型试题资料讲解

导数求切线方程的四种类型试题
仅供学习与交流,如有侵权请联系网站删除 谢谢2
用导数求切线方程的四种类型
类型一:已知切点,求曲线的切线方程
此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.
例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+
D.45y x =-
类型二:已知斜率,求曲线的切线方程
此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )
A.230x y -+=
B.230x y --=
C.210x y -+=
D.210x y --=
类型三:已知过曲线上一点,求切线方程
过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.
例3 求过曲线32y x x =-上的点(11)-,的切线方程.
类型四:已知过曲线外一点,求切线方程
此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1
y x
=相切的直线方程.
仅供学习与交流,如有侵权请联系网站删除 谢谢3
例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.。

(完整版)导数求切线方程-(有答案)-12

(完整版)导数求切线方程-(有答案)-12

用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =-B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程. 解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.。

导数求切线方程的练习题及答案

导数求切线方程的练习题及答案

导数求切线方程的练习题及答案精品文档导数求切线方程的练习题及答案类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数f?,并代入点斜式方程即可( 例1 曲线y?x3?3x2?1在点处的切线方程为 ,(y?3x?4,(y??3x?,(y?4x?5类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解( 例求过点且与曲线y?例已知函数y?x3?3x,过点A作曲线y?f的切线,切线方程(1x相切的直线方程(,(y??4x?3类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决(例与直线2x?y?4?0的平行的抛物线y?x的切线方程是2,(2x?y?3?0 ,(2x?y?1?0,(2x?y?3?0 ,(2x?y?1?01 / 6精品文档类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法(例求过曲线y?x3?2x上的点的切线方程(高二数学第1页共2页高二数学第2页共2页学校数学学科导学案编制人: 审核人: 授课日期: 月日姓名: 班级: 编号:第周号运用导数求切线方程的专项训练11.对任意x,有f?=4x3,f=,1,则此函数为A.f=x4,2C.f=x3B.f=x4+D.f=,x42.如果质点A按规律s=2t3运动,则在t=s时的瞬时速度为A. B.1C.5 D.813(曲线y=x3,3x2+1在点处的切线方程为A.y=3x,4B.y=,3x+2C.y=,4x+D.y=4x,54.函数f=的导数是A.x2,x+1B.C.3xD.3x2+15.曲线y=f在点)处的切线方程为3x+y+3=0,则A. f?>0B. f? 6. 曲线y?x在点?1,1?处的切线方程为2x?12 / 6精品文档A. x?y?2?0B. x?y?2?0C.x?4y?5?0D. x?4y?5?07. 在平面直角坐标系xoy中,点P在曲线C:y?x?10x?3上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为.8. 曲线f?lnx?x在点处的切线的倾斜角为_______.9(曲线y?xe?2x?1在点处的切线方程为。

导数求切线方程的四种类型试题.pdf

导数求切线方程的四种类型试题.pdf

1
用导数求切线方程的四种类型
类型一:已知切点,求曲线的切线方程
此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =−+在点(1
1)−,处的切线方程为( ) A.34y x =− B.32y x =−+ C.43y x =−+
D.45y x =−
类型二:已知斜率,求曲线的切线方程
此类题可利用斜率求出切点,再用点斜式方程加以解决.
例2 与直线240x y −+=的平行的抛物线2y x =的切线方程是( ) A.230x y −+= B.230x y −−= C.210x y −+=
D.210x y −−=
类型三:已知过曲线上一点,求切线方程
过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.
例3 求过曲线32y x x =−上的点(1
1)−,的切线方程.
类型四:已知过曲线外一点,求切线方程
此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),
且与曲线1
y x
=相切的直线方程.
例5 已知函数33y x x =−,过点(016)A ,作曲线()y f x =的切线,求此
切线方程.。

导数求切线

导数求切线

利用导数求切线方程问题求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.下面例析几种常见的类型及解法.类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+C.43y x =-+D.45y x =- 解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+=B.230x y --= C.210x y -+= D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例3 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|. ∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--.解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.练习:1.曲线2x y x =+在点(-1,-1)处的切线方程为 (A )y=2x+1 (B)y=2x-1 C y=-2x-3 D.y=-2x-22.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则(A )1,1a b == (B) 1,1a b =-=(C) 1,1a b ==- (D) 1,1a b =-=-3.曲线2y 21x x =-+在点(1,0)处的切线方程为(A )1y x =- (B )1y x =-+(C )22y x =- (D )22y x =-+4.求43x y =在点()8,16P 处的切线方程.5.已知x y =,求与直线42--=x y 垂直的切线方程.6.过原点做曲线x e y =的切线,求切线斜率和切线方程.课时练1.曲线x y e =在点A (0,1)处的切线斜率为( )A.1B.2C.eD.1e2.曲线211y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( )(A)-9 (B)-3 (C)9 (D)153.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A (1,0)B (2,8)C (1,0)和(1,4)--D (2,8)和(1,4)--4.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( ) A .12- B .12 C .22- D .225.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________.6.【2015高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = .7.【2015高考陕西,文15】函数x y xe =在其极值点处的切线方程为____________.8.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程.9.已知函数1()ln 1()a f x x ax a R x -=-+-∈(I )当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;10. 设f (x )=x ln x +1,若f ′(x 0)=2,求f (x )在点(x 0,y 0)处的切线方程为.11.已知函数f (x )=3231()2ax x x R -+∈,其中a>0. (Ⅰ)若a=1,求曲线y=f (x )在点(2,f (2))处的切线方程12.已知函数2()()f x x a =-(a-b )(,,a b R a ∈<b)。

利用导数求抛物线切线方程的三种问题类型

利用导数求抛物线切线方程的三种问题类型

利用导数求抛物线切线方程的三种问题类型问题类型一:已知抛物线上一点求切线方程已知抛物线方程为 $y=ax^2+bx+c$,且已知抛物线上一点为$(x_1, y_1)$,求该点处的切线方程。

解题步骤如下:1. 求出抛物线方程的导数 $\frac{dy}{dx}$。

2. 将已知点 $(x_1, y_1)$ 代入导数 $\frac{dy}{dx}$ 中,求出切线的斜率 $k$。

3. 使用点斜式来表示切线方程,即 $y-y_1=k(x-x_1)$。

问题类型二:已知切线斜率求切线方程已知抛物线方程为$y=ax^2+bx+c$,且已知切线的斜率为$k$,求切线方程。

解题步骤如下:1. 求出抛物线方程的导数 $\frac{dy}{dx}$。

2. 将切线的斜率 $k$ 代入导数 $\frac{dy}{dx}$ 中,得到一个方程。

3. 解方程,求出该方程对应的横坐标 $x$。

4. 将求得的横坐标 $x$ 代入抛物线方程中,求出纵坐标 $y$。

5. 使用点斜式来表示切线方程,即 $y-y=k(x-x_1)$,其中 $(x_1, y_1)$ 为切点坐标。

问题类型三:已知抛物线与切线重合求切点坐标已知抛物线方程为$y=ax^2+bx+c$,且已知抛物线与切线重合,求切点的坐标。

解题步骤如下:1. 求出抛物线方程的导数 $\frac{dy}{dx}$。

2. 将导数$\frac{dy}{dx}$ 与抛物线方程相等,得到一个方程。

3. 解方程,求出该方程对应的横坐标 $x$。

4. 将求得的横坐标 $x$ 代入抛物线方程中,求出纵坐标 $y$。

5. 切点的坐标为 $(x, y)$。

以上是利用导数求抛物线切线方程的三种问题类型及解题步骤。

希望对你有所帮助!。

用导数求切线方程的四种类型[精选.]

用导数求切线方程的四种类型[精选.]

用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( )A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x xy x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x xy x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为0201x xy x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得02011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上.设切点为00()M x y ,, 则点M 的坐标满足30003y x x =-.因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

导数切线问题类型

导数切线问题类型

导数切线问题类型
在求导数问题中,常见的切线问题类型包括以下几类:
1. 求一点处的切线方程:已知函数的导数和一点的坐标,求该点处的切线方程。

这类问题通常需要使用导数的定义和直线斜率的概念进行求解。

2. 求函数图像上的切线方程:已知函数的表达式,求函数图像上某一点处的切线方程。

通常需要先求函数的导数,然后根据给定点的坐标和导数计算切线方程。

3. 求函数的水平切线和垂直切线:已知函数的导数,求函数在某些点处的水平切线方程和垂直切线方程。

水平切线方程的斜率为0,垂直切线方程的斜率为无穷大或无穷小。

这类问题需要根据导数的定义和直线斜率的概念进行求解。

4. 求函数的拐点和弧度切点:已知函数的二阶导数,求函数图像上的拐点和弧度切点。

拐点是函数图像由凹变凸或凸变凹的位置,其对应的二阶导数为零;弧度切点是函数图像由凹变凸或凸变凹的位置,其对应的二阶导数不存在。

这类问题通常需要根据导数和二阶导数的定义进行求解。

5. 求两条曲线的切点:已知两条曲线的函数表达式,求两条曲线的切点。

切点即为两条曲线上相同坐标的点,且两条曲线在该点处的切线重合。

这类问题需要将两条曲线的函数表达式联立求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用导数求切线方程的四种类型
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点
00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线
方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.
下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程
此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =-
B.32y x =-+ C.43y x =-+ D.45y x =-
类型二:已知斜率,求曲线的切线方程
此类题可利用斜率求出切点,再用点斜式方程加以解决.
例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --=
类型三:已知过曲线上一点,求切线方程
过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 类型四:已知过曲线外一点,求切线方程
此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x
=
相切的直线方程.
例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程. 1解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为
(1)3(1)y x --=--,即32y x =-+,因而选B.
2 解:设00()P x y ,为切点,则切点的斜率为0
022x x y x ='==|.01x =∴.
由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.
评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.
3解:设想00()P x y ,为切点,则切线的斜率为0
2032x x y x ='=-|.
∴切线方程为2000(32)()y y x x x -=--.32
0000(2)(32)()y x x x x x --=--.
又知切线过点(11)-,,把它代入上述方程,得32
00001(2)(32)(1)x x x x ---=--.
解得01x =,或012
x =-

故所求切线方程为(12)
(3
2)(y x --=--,或13112842y x ⎛⎫⎛⎫⎛
⎫--+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭,即
20x y --=,或5410x y +-=.
评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以
1728⎛⎫
- ⎪⎝⎭
,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用
待定切点法.
4解:设00()P x y ,为切点,则切线的斜率为0
2
1x x y x ='=-
|.
∴切线方程为002
1()y y x x x -=-
-,即02
011()y x x x x -
=-
-. 又已知切线过点(20),,把它代入上述方程,得02
11(2)
x x x -=-
-.
解得000
111x y x ==
=,,即20
x y +-=.
评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性
5解:曲线方程为33y x x =-,点(016)A ,不在曲线上.
设切点为00()M x y ,,则点M 的坐标满足30003y x x =-.因200()3(1)f x x '=-, 故切线的方程为20003(1)()y y x x x -=--.
点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.
化简得308x =-,解得02x =-.
所以,切点为(22)M --,,切线方程为9160x y -+=.
评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.。

相关文档
最新文档