2019年高三一轮复习热点题型高考专题突破(1)导数应用问题

合集下载

高三第一轮复习——导数的应用(2019年新版)

高三第一轮复习——导数的应用(2019年新版)

言其能使豪奴自饶而尽其力 陈平既多以金纵反间於楚军 县官空虚 与戎狄兵共伐郑 渡淮南 西破彊楚 因东定楚地泗、东海郡 破之 为司徒一岁 鲁耻焉 曰谋 灵公弗从 而心尚未寤也 他广实非荒侯子 有日 过雒阳 ”楚庄王大怒 罢驽无以辅治 ” 褚先生曰:渔者举网而得神龟 僮千人 其事至
微浅 复入惠王 ”楚王弗听 ”群臣皆曰:“立刘贾为荆王 言之於王 令长史簿责前将军广 皋陶作士以理民 实不中其声者谓之窾 锦绣千纯 生子 徒奸利相告日闻 自《诗》、《书》称三代“戎狄是膺 不得立 往往而群居 张耳雅游 二岁 壮其貌 乍起凶慝 ”赐列侯甲第 等比祖道於都门外 原将
夸者死权兮 可王燕 表其文 居列东第 上幸鼎湖 子贡曰:“盟可负邪 遂入 从颍川来 使臣去病待罪行间 即礼之 信如尾生 正考铭勒 竟漂数十日 赵盾在时 汉军方围锺离眛於荥阳东 为官名 ”楚王谓平原君曰:“客何为者也 何也 於是置益州、越巂、牂柯、沈黎、汶山郡 爰及苗裔 不亦远乎
平定海内 燕王亡 兹 所指者下 端心愠 龟兆不吉 顺之胜 可王 项羽遂北至城阳 广平声为道不拾遗 子羽暴虐 不能自解於刀锋 诏军吏皆将其民徙处江淮间 王险城未下 袒而大哭 小红十四日 令言海中神山者数千人求蓬莱神人 国治身死不恨 轻匈奴 其岁不复 及瓜而代 天下之文变而不善矣 不
足齿列 ”田常於是击子我 今闻购将军首金千斤 无事 里克杀奚齐于丧次 及见怪 雒阳剧孟尝过袁盎 禹酷急 致乐以治心 十二 时王陵见而怪其美士 见半日以上 ”景帝让曰:“始南皮、章武侯先帝不侯 田乞诬曰:“吾与鲍牧谋共立阳生也 以天下授益 三庶长伏其罪 ”文侯曰:“先生就舍
今君德义薄 因大破之 谋不出廊庙 秦固有怀、茅、邢丘 是以近无不听 原得张仪而献黔中地 ”留侯曰:“上平生所憎 军吏卒皆无封侯者 圣人作而万物睹 故易曰‘失之豪釐 奉法直行 以卜其事 於是诛文成将军而隐之 东北入于河 藏於蚌中 必及百世 幸来告语之 且士贤能而不用 虏楚周将军

2019年高考数学 大一轮复习 人教版 第三章 导数及其应用 专题探究课一 高考中函数与导数问题的热点题型

2019年高考数学 大一轮复习 人教版 第三章 导数及其应用 专题探究课一 高考中函数与导数问题的热点题型

高考导航 1.函数与导数作为高中数学的核心内容,是历年高考的重点、热点,试题主要以解答题的形式命题,能力要求高,属于压轴题目;2.高考中函数与导数常涉及的问题主要有:(1)研究函数的性质(如单调性、极值、最值);(2)研究函数的零点(方程的根)、曲线的交点;(3)利用导数求解不等式问题(证明不等式、不等式的恒成立或能成立求参数的范围).热点一 利用导数研究函数的性质以含参数的函数为载体,结合具体函数与导数的几何意义,研究函数的性质,是高考的热点、重点.本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的范围.【例1】 (2015·全国Ⅱ卷)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1).探究提高 (1)判断函数的单调性,求函数的单调区间、极值等问题,最终归结到判断f ′(x )的符号问题上,而f ′(x )>0或f ′(x )<0,最终可转化为一个一元一次不等式或一元二次不等式问题.(2)若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解.【训练1】 设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在⎝ ⎛⎭⎪⎫23,+∞上存在单调递增区间,求a 的取值范围;(2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值. 解 (1)f ′(x )=-x 2+x +2a ,由题意得,f ′(x )>0在⎝ ⎛⎭⎪⎫23,+∞上有解,只需f ′⎝ ⎛⎭⎪⎫23>0,即29+2a >0,得a >-19.所以,当a >-19时,f (x )在⎝ ⎛⎭⎪⎫23,+∞上存在单调递增区间.(2)已知0<a <2,f (x )在[1,4]上取到最小值-163,而f ′(x )=-x 2+x +2a 的图象开口向下,且对称轴x =12,∴f ′(1)=-1+1+2a =2a >0,f ′(4)=-16+4+2a =2a -12<0,则必有一点x 0∈[1,4],使得f ′(x 0)=0,此时函数f (x )在[1,x 0]上单调递增,在[x 0,4]上单调递减,f (1)=-13+12+2a =16+2a >0,∴f (4)=-13×64+12×16+8a =-403+8a =-163⇒a =1.此时,由f ′(x 0)=-x 20+x 0+2=0⇒x 0=2或-1(舍去),所以函数f (x )max =f (2)=103. 热点二 利用导数解决不等式问题(教材VS 高考)导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题.归纳起来常见的命题角度有:(1)证明不等式;(2)求解不等式;(3)不等式恒(能)成立求参数. 命题角度1 证明不等式【例2-1】 (满分12分)(2017·全国Ⅲ卷)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a -2.教材探源 本题第(2)问的实质是证明ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,是不等式x -1≥ln x的变形,源于教材选修2-2 P32习题B1,是在教材基本框架e x >1+x 与x ≥1+ ln x 基础上,结合函数性质,编制的优美试题,2016年全国Ⅲ卷T 21,2017年全国Ⅲ卷T 21有异曲同工之处.满分解答 (1)解 f (x )的定义域为(0,+∞), f ′(x )=1x +2ax +2a +1=(2ax +1)(x +1)x .1分 (得分点1)若a ≥0时,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增,2分 (得分点2) 若a <0时,则当x ∈⎝ ⎛⎭⎪⎫0,-12a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减.5分 (得分点3)(2)证明 由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a , 所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2, 即ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,8分 (得分点4)设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0;x ∈(1,+∞)时,g ′(x )<0. 所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 10分 (得分点5) 所以当x >0时,g (x )≤0,从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,故f (x )≤-34a -2.12分 (得分点6)❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分,如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求g (x )的最小值和不等式性质的运用. ❷得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f (x )的定义域,f ′(x )在(0,+∞)上单调性的判断;第(2)问,f (x )在x =-12a 处最值的判定,f (x )≤-34a -2等价转化为ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0等.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(1)问中,求导f ′(x )准确,否则全盘皆输,第(2)问中,准确计算f (x )在x =-12a处的最大值.第一步:求函数f (x )的导函数f ′(x ); 第二步:分类讨论f (x )的单调性; 第三步:利用单调性,求f (x )的最大值;第四步:根据要证的不等式的结构特点,构造函数g (x ); 第五步:求g (x )的最大值,得出要证的不等式;第六步:反思回顾,查看关键点、易错点和解题规范. 命题角度2 已知不等式恒(能)成立,求参数的 取值范围【例2-2】 (2017·全国Ⅲ卷)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.解 (1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,不合题意.②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0; 所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增, 故x =a 是f (x )在(0,+∞)的唯一最小值点.因为f (1)=0,所以当且仅当a =1时,f (x )min =f (1)=0, 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0, 令x =1+12n ,得ln ⎝ ⎛⎭⎪⎫1+12n <12n .从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1.故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <e , 又⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+123·…·⎝ ⎛⎭⎪⎫1+12n >⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·⎝ ⎛⎭⎪⎫1+123=13564>2, ∴当n ≥3时,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n ∈(2,e),由于⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,且m ∈N *.所以整数m 的最小值为3.探究提高 “恒成立”与“存在性”问题的求解是“互补”关系,即f (x )≥g (a )对于x ∈D 恒成立,应求f (x )的最小值;若存在x ∈D ,使得f (x )≥g (a )成立,应求f (x )的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立问题,以免细节出错.【训练2】 已知函数f (x )=x -(a +1)ln x -a x (a ∈R 且a <e),g (x )=12x 2+e x -x e x . (1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=(x -1)(x -a )x 2.①若a ≤1,当x ∈[1,e]时,f ′(x )≥0, 则f (x )在[1,e]上为增函数,f (x )min =f (1)=1-a . ②若1<a <e ,当x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数; 当x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数. 所以f (x )min =f (a )=a -(a +1)ln a -1. 综上,当a ≤1时,f (x )min =1-a ; 当1<a <e 时,f (x )min =a -(a +1)ln a -1;(2)由题意知:f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值. 由(1)知f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-ae ,又g ′(x )=(1-e x )x . 当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数, 则g (x )min =g (0)=1,所以e -(a +1)-ae <1,解得a >e 2-2e e +1,所以a 的取值范围为⎝⎛⎭⎪⎫e 2-2e e +1,1 . 热点三 导数与函数的零点问题导数与函数方程交汇是近年命题的热点,常转化为研究函数图象的交点问题,研究函数的极(最)值的正负,求解时应注重等价转化与数形结合思想的应用,其主要考查方式有:(1)确定函数的零点、图象交点的个数;(2)由函数的零点、图象交点的情况求参数的取值范围.【例3】(2017·全国Ⅰ卷)已知函数f(x)=a e2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.解(1)由于f(x)=a e2x+(a-2)e x-x,故f′(x)=2a e2x+(a-2)e x-1=(a e x-1)(2e x+1),①当a≤0时,a e x-1<0,2e x+1>0.从而f′(x)<0,f(x)在R上单调递减.②当a>0时,令f′(x)=0,得x=-ln a.当x变化时,f′(x),f(x)的变化情况如下表:综上,当当a>0时,f(x)在(-∞,-ln a)上单调递减;在(-ln a,+∞)上单调递增.(2)(ⅰ)若a≤0,由(1)知,f(x)至多有一个零点.(ⅱ)若a>0,由(1)知,当x=-ln a时,f(x)取得最小值,最小值为f(-ln a)=1-1a+ln a.①当a=1时,由于f(-ln a)=0,故f(x)只有一个零点;②当a∈(1,+∞)时,由于1-1a+ln a>0,即f(-ln a)>0,故f(x)没有零点;③当a∈(0,1)时,1-1a+ln a<0,即f(-ln a)<0.又f(-2)=a e-4+(a-2)e-2+2>-2e-2+2>0,故f(x)在(-∞,-ln a)有一个零点.设正整数n 0满足n 0>ln ⎝ ⎛⎭⎪⎫3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2 n 0-n 0>0. 由于ln ⎝ ⎛⎭⎪⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).探究提高 用导数研究函数的零点,一是用导数判断函数的单调性,借助零点存在性定理判断;二是将零点问题转化为函数图象的交点问题,结合函数的极值利用数形结合来解决.【训练3】 设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. (1)解 由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-kx .由f ′(x )=0,解得x =k (负值舍去). f (x )与f ′(x )在区间(0,+∞)上的情况如下:所以f (f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2. 因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e. 当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0, 所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.1.(2018·咸阳调研)已知函数f (x )=x 2-ln x -ax ,a ∈R . (1)当a =1时,求f (x )的最小值; (2)若f (x )>x ,求a 的取值范围. 解 (1)当a =1时,f (x )=x 2-ln x -x , f ′(x )=(2x +1)(x -1)x(x >0).当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )的最小值为f (1)=0. (2)由f (x )>x ,x ∈(0,+∞), 得f (x )-x =x 2-ln x -(a +1)x >0.由于x >0,所以f (x )>x 等价于x -ln xx >a +1. 令g (x )=x -ln xx ,则g ′(x )=x 2-1+ln x x 2.当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.故g (x )有最小值g (1)=1.故a +1<1,a <0,即a 的取值范围是(-∞,0). 2.(2017·浙江卷)已知函数f (x )=(x -2x -1)e -x ⎝ ⎛⎭⎪⎫x ≥12.(1)求f (x )的导函数;(2)求f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围.解 (1)f ′(x )=(x -2x -1)′e -x +(x -2x -1)(e -x )′ =⎝⎛⎭⎪⎫1-12x -1e -x -(x -2x -1)e -x =⎝ ⎛⎭⎪⎫1-12x -1-x +2x -1e -x=(1-x )(2x -1-2)e -x 2x -1⎝ ⎛⎭⎪⎫x >12. (2)令f ′(x )=(1-x )(2x -1-2)e -x2x -1=0,解得x =1或52.当x 变化时,f (x ),f ′(x )的变化如下表:又f ⎝ ⎛⎭⎪⎫12=12e -2,f (1)=0,f ⎝ ⎛⎭⎪⎫52=12e -2,f (x )=12(2x +1-1)2e -x ≥0,则f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的最大值为12e -12. 最小值为0.综上,f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e -12.3.设f (x )=e x (ln x -a )(e 是自然对数的底数,e =2.71 828…). (1)若y =f (x )在x =1处的切线方程为y =2e x +b ,求a ,b 的值; (2)若函数f (x )在区间⎣⎢⎡⎦⎥⎤1e ,e 上单调递减,求实数a 的取值范围.解 (1)因为f ′(x )=e x (ln x -a )+e x ·1x =e x ⎝ ⎛⎭⎪⎫ln x +1x -a ,所以由题意,得f ′(1)=e(1-a )=2e , 解得a =-1.所以f (1)=e(ln 1-a )=e ,由切点(1,e)在切线y =2e x +b 上, 得e =2e +b ,b =-e ,故a =-1,b =-e. (2)由题意可得f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x +1x -a ≤0在⎣⎢⎡⎦⎥⎤1e ,e 上恒成立. 因为e x >0,所以只需ln x +1x -a ≤0,即a ≥ln x +1x 在⎣⎢⎡⎦⎥⎤1e ,e 上恒成立. 令g (x )=ln x +1x ,因为g ′(x )=1x -1x 2=x -1x 2,由g ′(x )=0,得x =1. 当x 变化时,g ′(x ),g (x )的变化情况如下:g ⎝ ⎛⎭⎪⎫1e =ln 1e +e =e -1,g (e)=1+1e , 因为e -1>1+1e, 所以g (x )max =g ⎝ ⎛⎭⎪⎫1e =e -1,所以a ≥e -1. 故实数a 的取值范围是[e -1,+∞).4.(2018·衡水中学质检)已知函数f (x )=x +a e x .(1)若f (x )在区间(-∞,2)上为单调递增函数,求实数a 的取值范围;(2)若a =0,x 0<1,设直线y =g (x )为函数f (x )的图象在x =x 0处的切线,求证:f (x )≤g (x ).(1)解 易知f ′(x )=-x -(1-a )e x, 由已知得f ′(x )≥0对x ∈(-∞,2)恒成立,故x ≤1-a 对x ∈(-∞,2)恒成立,∴1-a ≥2,∴a ≤-1.故实数a 的取值范围为(-∞,-1].(2)证明 a =0,则f (x )=xe x .函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),x ∈R ,则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0e x 0=(1-x )e x 0-(1-x 0)e xe x +x 0.设φ(x )=(1-x )e x 0-(1-x 0)e x ,x ∈R ,则φ′(x )=-e x 0-(1-x 0)e x ,∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,而φ(x 0)=0,∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0,∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数,∴x ∈R时,h (x )≤h (x 0)=0,∴f (x )≤g (x ).5.已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值;(3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根.解 (1)由已知可知函数f (x )的定义域为{x |x >0},当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=1-x x (x >0);当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.所以f (x )的单调递增区间为(0,1).(2)因为f ′(x )=a +1x (x >0),令f ′(x )=0,解得x =-1a ;由f ′(x )>0,解得0<x <-1a ;由f ′(x )<0,解得-1a <x <e.从而f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,递减区间为⎝ ⎛⎭⎪⎫-1a ,e , 所以,f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-3. 解得a =-e 2.(3)由(1)知当a =-1时,f (x )max =f (1)=-1,所以|f (x )|≥1.令g (x )=ln x x +12,则g ′(x )=1-ln x x 2.当0<x <e 时,g ′(x )>0;当x >e 时,g ′(x )<0.从而g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.所以g (x )max =g (e)=1e +12<1,所以,|f (x )|>g (x ),即|f (x )|>ln x x +12,所以,方程|f (x )|=ln x x +12没有实数根.6.已知函数f (x )=ln(x +1)+ax x +1(a ∈R ). (1)当a =1时,求f (x )的图象在x =0处的切线方程;(2)当a <0时,求f (x )的极值;(3)求证:ln(n +1)>122+232+…+n -1n 2(n ∈N *).(1)解 当a =1时,f (x )=ln(x +1)+x x +1, ∴f ′(x )=1x +1+1(x +1)2=x +2(x +1)2. ∵f (0)=0,f ′(0)=2,∴所求切线方程为y =2x .(2)解 f (x )=ln(x +1)+ax x +1(x >-1),f ′(x )=x +a +1(x +1)2,∵a<0,∴当x∈(-1,-a-1)时,f′(x)<0;当x∈(-a-1,+∞)时,f′(x)>0,函数f(x)的极小值为f(-a-1)=a+1+ln(-a),无极大值.(3)证明由(2)知,取a=-1,f(x)=ln(x+1)-xx+1≥f(0)=0.当x>0时,ln(x+1)>xx+1,取x=1n,得ln n+1n>1n+1=n-1n2-1>n-1n2.∴ln 21+ln32+…+lnn+1n>122+232+…+n-1n2⇔ln⎝⎛⎭⎪⎫21·32·…·n+1n>122+232+…+n-1 n2,即ln(n+1)>122+232+…+n-1n2.。

一轮复习:高考数学导数应用题型精讲

一轮复习:高考数学导数应用题型精讲

一轮复习:高考数学导数应用题型精讲导数是微积分中的重要基础概念,下面是小编整理的高考数学导数应用题型精讲,希望对您提高学习效率有所帮助。

一、专题综述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

二、知识整合1.导数概念的理解。

2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。

2019版高考数学大一轮复习人教版第三章导数及其应用专题探究课一高考中函数与导数问题的热点题型

2019版高考数学大一轮复习人教版第三章导数及其应用专题探究课一高考中函数与导数问题的热点题型

高考导航 1.函数与导数作为高中数学的核心内容,是历年高考的重点、热点,试题主要以解答题的形式命题,能力要求高,属于压轴题目;2.高考中函数与导数常涉及的问题主要有:(1)研究函数的性质(如单调性、极值、最值);(2)研究函数的零点(方程的根)、曲线的交点;(3)利用导数求解不等式问题(证明不等式、不等式的恒成立或能成立求参数的范围).热点一 利用导数研究函数的性质以含参数的函数为载体,结合具体函数与导数的几何意义,研究函数的性质,是高考的热点、重点.本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的范围. 【例1】 (2015·全国Ⅱ卷)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1).探究提高 (1)判断函数的单调性,求函数的单调区间、极值等问题,最终归结到判断f ′(x )的符号问题上,而f ′(x )>0或f ′(x )<0,最终可转化为一个一元一次不等式或一元二次不等式问题. (2)若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解. 【训练1】 设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在⎝ ⎛⎭⎪⎫23,+∞上存在单调递增区间,求a 的取值范围;(2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值. 解 (1)f ′(x )=-x 2+x +2a ,由题意得,f ′(x )>0在⎝ ⎛⎭⎪⎫23,+∞上有解,只需f ′⎝ ⎛⎭⎪⎫23>0,即29+2a >0,得a >-19.所以,当a >-19时,f (x )在⎝ ⎛⎭⎪⎫23,+∞上存在单调递增区间.(2)已知0<a <2,f (x )在[1,4]上取到最小值-163,而f ′(x )=-x 2+x +2a 的图象开口向下,且对称轴x =12,∴f ′(1)=-1+1+2a =2a >0,f ′(4)=-16+4+2a =2a -12<0,则必有一点x 0∈[1,4],使得f ′(x 0)=0,此时函数f (x )在[1,x 0]上单调递增,在[x 0,4]上单调递减, f (1)=-13+12+2a =16+2a >0,∴f (4)=-13×64+12×16+8a =-403+8a =-163⇒a =1. 此时,由f ′(x 0)=-x 20+x 0+2=0⇒x 0=2或-1(舍去),所以函数f (x )max =f (2)=103.热点二 利用导数解决不等式问题(教材VS 高考)导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题.归纳起来常见的命题角度有:(1)证明不等式;(2)求解不等式;(3)不等式恒(能)成立求参数.命题角度1 证明不等式【例2-1】 (满分12分)(2017·全国Ⅲ卷)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a -2.教材探源 本题第(2)问的实质是证明ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,是不等式x -1≥ln x 的变形,源于教材选修2-2 P32习题B1,是在教材基本框架e x >1+x 与x ≥1+ln x 基础上,结合函数性质,编制的优美试题,2016年全国Ⅲ卷T 21,2017年全国Ⅲ卷T 21有异曲同工之处.满分解答 (1)解 f (x )的定义域为(0,+∞), f ′(x )=1x +2ax +2a +1=(2ax +1)(x +1)x .1分 (得分点1)若a ≥0时,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增,2分 (得分点2)若a <0时,则当x ∈⎝ ⎛⎭⎪⎫0,-12a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减.5分 (得分点3)(2)证明 由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a ,所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2,即ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,8分 (得分点4)设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0;x ∈(1,+∞)时,g ′(x )<0. 所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 10分 (得分点5) 所以当x >0时,g (x )≤0,从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,故f (x )≤-34a -2.12分 (得分点6)❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分,如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求g (x )的最小值和不等式性质的运用.❷得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f (x )的定义域,f ′(x )在(0,+∞)上单调性的判断;第(2)问,f (x )在x =-12a 处最值的判定,f (x )≤-34a -2等价转化为ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0等.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(1)问中,求导f ′(x )准确,否则全盘皆输,第(2)问中,准确计算f (x )在x =-12a 处的最大值.第一步:求函数f (x )的导函数f ′(x ); 第二步:分类讨论f (x )的单调性; 第三步:利用单调性,求f (x )的最大值;第四步:根据要证的不等式的结构特点,构造函数g (x ); 第五步:求g (x )的最大值,得出要证的不等式; 第六步:反思回顾,查看关键点、易错点和解题规范. 命题角度2 已知不等式恒(能)成立,求参数的 取值范围【例2-2】 (2017·全国Ⅲ卷)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.解 (1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,不合题意.②若a >0,由f ′(x )=1-a x =x -ax 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0; 所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增, 故x =a 是f (x )在(0,+∞)的唯一最小值点.因为f (1)=0,所以当且仅当a =1时,f (x )min =f (1)=0, 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0,令x =1+12n ,得ln ⎝ ⎛⎭⎪⎫1+12n <12n .从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1.故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <e , 又⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+123·…·⎝ ⎛⎭⎪⎫1+12n >⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·⎝ ⎛⎭⎪⎫1+123=13564>2, ∴当n ≥3时,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n ∈(2,e),由于⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,且m ∈N *. 所以整数m 的最小值为3.探究提高 “恒成立”与“存在性”问题的求解是“互补”关系,即f (x )≥g (a )对于x ∈D 恒成立,应求f (x )的最小值;若存在x ∈D ,使得f (x )≥g (a )成立,应求f (x )的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立问题,以免细节出错. 【训练2】 已知函数f (x )=x -(a +1)ln x -a x (a ∈R 且a <e),g (x )=12x 2+e x -x e x . (1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=(x -1)(x -a )x 2.①若a ≤1,当x ∈[1,e]时,f ′(x )≥0, 则f (x )在[1,e]上为增函数,f (x )min =f (1)=1-a . ②若1<a <e ,当x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数; 当x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数. 所以f (x )min =f (a )=a -(a +1)ln a -1. 综上,当a ≤1时,f (x )min =1-a ; 当1<a <e 时,f (x )min =a -(a +1)ln a -1;(2)由题意知:f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值. 由(1)知f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-ae ,又g ′(x )=(1-e x )x . 当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数, 则g (x )min =g (0)=1,所以e -(a +1)-ae <1,解得a >e 2-2e e +1,所以a 的取值范围为⎝⎛⎭⎪⎫e 2-2e e +1,1 . 热点三 导数与函数的零点问题导数与函数方程交汇是近年命题的热点,常转化为研究函数图象的交点问题,研究函数的极(最)值的正负,求解时应注重等价转化与数形结合思想的应用,其主要考查方式有:(1)确定函数的零点、图象交点的个数;(2)由函数的零点、图象交点的情况求参数的取值范围. 【例3】 (2017·全国Ⅰ卷)已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解 (1)由于f (x )=a e 2x +(a -2)e x -x ,故f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1), ①当a ≤0时,a e x -1<0,2e x +1>0. 从而f ′(x )<0,f (x )在R 上单调递减. ②当a >0时,令f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-ln a )-ln a (-ln a ,+∞)f ′(x ) - 0 +f (x )极小值综上,当a ≤0时,f (x )在R 上单调递减; 当a >0时,f (x )在(-∞,-ln a )上单调递减; 在(-ln a ,+∞)上单调递增.(2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a . ①当a =1时,由于f (-ln a )=0,故f (x )只有一个零点; ②当a ∈(1,+∞)时,由于1-1a +ln a >0, 即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a +ln a <0,即f (-ln a )<0. 又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln ⎝ ⎛⎭⎪⎫3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2 n 0-n 0>0. 由于ln ⎝ ⎛⎭⎪⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).探究提高 用导数研究函数的零点,一是用导数判断函数的单调性,借助零点存在性定理判断;二是将零点问题转化为函数图象的交点问题,结合函数的极值利用数形结合来解决. 【训练3】 设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. (1)解 由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-kx . 由f ′(x )=0,解得x =k (负值舍去). f (x )与f ′(x )在区间(0,+∞)上的情况如下:x (0,k ) k (k ,+∞)f ′(x ) - 0 +f (x )k (1-ln k )2所以f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞). f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2. 因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e.当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.1.(2018·咸阳调研)已知函数f (x )=x 2-ln x -ax ,a ∈R . (1)当a =1时,求f (x )的最小值; (2)若f (x )>x ,求a 的取值范围. 解 (1)当a =1时,f (x )=x 2-ln x -x , f ′(x )=(2x +1)(x -1)x(x >0).当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )的最小值为f (1)=0. (2)由f (x )>x ,x ∈(0,+∞), 得f (x )-x =x 2-ln x -(a +1)x >0.由于x >0,所以f (x )>x 等价于x -ln xx >a +1.令g (x )=x -ln xx ,则g ′(x )=x 2-1+ln x x 2.当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.故g (x )有最小值g (1)=1. 故a +1<1,a <0,即a 的取值范围是(-∞,0). 2.(2017·浙江卷)已知函数f (x )=(x -2x -1)e -x⎝ ⎛⎭⎪⎫x ≥12.(1)求f (x )的导函数;(2)求f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围.解 (1)f ′(x )=(x -2x -1)′e -x +(x -2x -1)(e -x )′ =⎝ ⎛⎭⎪⎫1-12x -1e -x -(x -2x -1)e -x =⎝⎛⎭⎪⎫1-12x -1-x +2x -1e -x =(1-x )(2x -1-2)e -x 2x -1⎝ ⎛⎭⎪⎫x >12. (2)令f ′(x )=(1-x )(2x -1-2)e -x2x -1=0,解得x =1或52.当x 变化时,f (x ),f ′(x )的变化如下表:又f ⎝ ⎛⎭⎪⎫12=12e -2,f (1)=0,f ⎝ ⎛⎭⎪⎫52=12e -2,f (x )=12(2x +1-1)2e -x ≥0,则f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的最大值为12e -12. 最小值为0.综上,f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e -12.3.设f (x )=e x (ln x -a )(e 是自然对数的底数,e =2.71 828…). (1)若y =f (x )在x =1处的切线方程为y =2e x +b ,求a ,b 的值; (2)若函数f (x )在区间⎣⎢⎡⎦⎥⎤1e ,e 上单调递减,求实数a 的取值范围.解 (1)因为f ′(x )=e x (ln x -a )+e x ·1x =e x ⎝ ⎛⎭⎪⎫ln x +1x -a ,所以由题意,得f ′(1)=e(1-a )=2e , 解得a =-1.所以f (1)=e(ln 1-a )=e ,由切点(1,e)在切线y =2e x +b 上, 得e =2e +b ,b =-e ,故a =-1,b =-e. (2)由题意可得f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x +1x -a ≤0在⎣⎢⎡⎦⎥⎤1e ,e 上恒成立. 因为e x >0,所以只需ln x +1x -a ≤0,即a ≥ln x +1x 在⎣⎢⎡⎦⎥⎤1e ,e 上恒成立.令g (x )=ln x +1x ,因为g ′(x )=1x -1x 2=x -1x 2,由g ′(x )=0,得x =1.当x 变化时,g ′(x ),g (x )的变化情况如下:x ⎝ ⎛⎭⎪⎫1e ,1 1 (1,e) g ′(x ) - 0 +g (x )极小值g ⎝ ⎛⎭⎪⎫1e =ln 1e +e =e -1,g (e)=1+1e , 因为e -1>1+1e ,所以g (x )max =g ⎝ ⎛⎭⎪⎫1e =e -1,所以a ≥e -1.故实数a 的取值范围是[e -1,+∞). 4.(2018·衡水中学质检)已知函数f (x )=x +ae x .(1)若f (x )在区间(-∞,2)上为单调递增函数,求实数a 的取值范围;(2)若a =0,x 0<1,设直线y =g (x )为函数f (x )的图象在x =x 0处的切线,求证:f (x )≤g (x ). (1)解 易知f ′(x )=-x -(1-a )e x,由已知得f ′(x )≥0对x ∈(-∞,2)恒成立, 故x ≤1-a 对x ∈(-∞,2)恒成立, ∴1-a ≥2,∴a ≤-1.故实数a 的取值范围为(-∞,-1]. (2)证明 a =0,则f (x )=xe x .函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),x ∈R , 则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0e x 0=(1-x )e x 0-(1-x 0)e xe x +x 0.设φ(x )=(1-x )e x 0-(1-x 0)e x ,x ∈R , 则φ′(x )=-e x 0-(1-x 0)e x , ∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,而φ(x 0)=0,∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0,∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数,∴x ∈R 时,h (x )≤h (x 0)=0, ∴f (x )≤g (x ).5.已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值;(3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根.解 (1)由已知可知函数f (x )的定义域为{x |x >0},当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=1-x x (x >0);当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.所以f (x )的单调递增区间为(0,1).(2)因为f ′(x )=a +1x (x >0),令f ′(x )=0,解得x =-1a ;由f ′(x )>0,解得0<x <-1a ;由f ′(x )<0,解得-1a <x <e.从而f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,递减区间为⎝ ⎛⎭⎪⎫-1a ,e , 所以,f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-3. 解得a =-e 2.(3)由(1)知当a =-1时,f (x )max =f (1)=-1,所以|f (x )|≥1.令g (x )=ln x x +12,则g ′(x )=1-ln x x 2.当0<x <e 时,g ′(x )>0;当x >e 时,g ′(x )<0.从而g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.所以g (x )max =g (e)=1e +12<1,所以,|f (x )|>g (x ),即|f (x )|>ln x x +12,所以,方程|f (x )|=ln x x +12没有实数根.6.已知函数f (x )=ln(x +1)+ax x +1(a ∈R ).(1)当a=1时,求f(x)的图象在x=0处的切线方程;(2)当a<0时,求f(x)的极值;(3)求证:ln(n+1)>122+232+…+n-1n2(n∈N*).(1)解当a=1时,f(x)=ln(x+1)+xx+1,∴f′(x)=1x+1+1(x+1)2=x+2(x+1)2.∵f(0)=0,f′(0)=2,∴所求切线方程为y=2x.(2)解f(x)=ln(x+1)+axx+1(x>-1),f′(x)=x+a+1(x+1)2,∵a<0,∴当x∈(-1,-a-1)时,f′(x)<0;当x∈(-a-1,+∞)时,f′(x)>0,函数f(x)的极小值为f(-a-1)=a+1+ln(-a),无极大值.(3)证明由(2)知,取a=-1,f(x)=ln(x+1)-xx+1≥f(0)=0.当x>0时,ln(x+1)>xx+1,取x=1n,得ln n+1n>1n+1=n-1n2-1>n-1n2.∴ln 21+ln32+…+lnn+1n>122+232+…+n-1n2⇔ln⎝⎛⎭⎪⎫21·32·…·n+1n>122+232+…+n-1n2,即ln(n+1)>122+232+…+n-1n2.。

2019年高考数学一轮复习 导数的实际应用及综合应用

2019年高考数学一轮复习 导数的实际应用及综合应用

复习目标
课前预习
高频考点
课时小结
课后练习
构造函数 g(x)=f(x)-f(4-x), 2 因为 f(x)=x +ln x, -8x-22 所以 g′(x)= 2 ≤0 , x 4-x2 所以 g(x)在(0,+∞)上单调递减, 又因为 0<x1<2,所以 g(x1)>g(2)=0, 所以 f(x1)>f(4-x1),又 f(x1)=f(x2), 所以 f(x2)>f(4-x1), 因为 x2>2,4-x1>2,且 f(x)在(2,+∞)上单调递增, 所以 x2>4-x1,即 x1+x2>4.
上述解决问题的过程是一个典型的数学建模过程.
复习目标
课前预习
高频考点
课时小结
课后练习
2.导数的综合问题 在高考的解答题中,每年都要设计一道函数的综合题,问题常常含 有指数式、对数式、三角函数式等超越式,除了与切线、单调性、极值、 最值等内容的综合,还常与方程、不等式等进行综合,解答这样的综合 问题,只依据函数的知识无法求解,需要运用导数的方法进行解决.运 用导数的方法研究方程、不等式的基本思路是构造函数,通过导数研究 这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等 式的成立情况及方程实根的个数.
第三单元
导数及其应用
第20讲
导数的实际应用 及综合应用
复习目标
课前预习
高频考点
课时小结
课后练习
1. 掌握利用导数解决实际问题的基本思路, 能利用导数 解决简单的实际问题中的优化问题. 2. 能利用导数解决函数、 方程、 不等式有关的综合问题.
复习目标
课前预习
高频考点
课时小结
课后练习

2019年高考数学一轮复习学案+训练+课件: 第2章 函数、导数及其应用 热点探究课1 导数应用中的高考热点问题

2019年高考数学一轮复习学案+训练+课件: 第2章 函数、导数及其应用 热点探究课1 导数应用中的高考热点问题
2 ∴φ(x)的最大值为 φ(1)=3. 又 φ(0)=0,结合 y=φ(x)的图像(如图),可知
2 ①当 m>3时,函数 g(x)无零点;
2 ②当 m=3时,函数 g(x)有且只有一个零点;
2 ③当 0<m<3时,函数 g(x)有两个零点; ④当 m≤0 时,函数 g(x)有且只有一个零点.
2 综上所述,当 m>3时,函数 g(x)无零点;
4分
a
a
1-a
a
所以,存在 x0≥1,使得 f(x0)<a-1的充要条件为 f(1)<a-1,即 2 -1<a-1,解得-
立问题求解.
( )2
[对点训练 1] 已知函数 f(x)=x3+ax2-x+c,且 a=f′ 3 . (1)求 a 的值;
(2)求函数 f(x)的单调区间;
(3)设函数 g(x)=(f(x)-x3)·ex,若函数 g(x)在 x∈[-3,2]上单调递增,求实数 c 的
取值范围.
【导学号:00090072】
x
( )1
-∞,- 3
1 -3
( ) 1
- ,1 3
1
(1, +∞)
f′(x)

0

0Байду номын сангаас

f(x)

极大值

极小值

( )1
-∞,-
所以 f(x)的单调递增区间是
3 和(1,+∞);
( ) 1
- ,1 f(x)的单调递减区间是 3 .
(3)函数 g(x)=(f(x)-x3)·ex=(-x2-x+c)·ex,
点.
[规律方法] 用导数研究函数的零点,常用两种方法:一是用导数判断函数的单调性,

2019高三数学一轮复习:212导数的应用Ⅰ 共58页

2019高三数学一轮复习:212导数的应用Ⅰ 共58页

(2)确认f′(x)在(a,b)内的符号; (3)作出结论:f′(x)>0时为增函数;f′(x)<0时为减 函数. 3.利用单调性求参数取值范围的方法 已知函数的单调性,求参数的取值范围,应用条 件f′(x)≥0(或f′(x)≤0),x∈(a,b),转化为不等式恒成 立求解.
1.已知函数f(x)=x3-ax-1. (1)若f(x)在实数集R上单调递增,求实数a的取值范围. (2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存 在,求出a的取值范围;若不存在,说明理由. 解:(1)由已知f′(x)=3x2-a. ∵f(x)在(-∞,+∞)上是增函数, ∴f′(x)=3x2-a≥0在(-∞,+∞)上恒成立, 即a≤3x2对x∈R恒成立. ∵3x2≥0,∴只要a≤0.
[自测 牛刀小试] 1.(教材习题改编)函数f(x)=ex-x的单调递增区间是
________. 解析:∵f(x)=ex-x,∴f′(x)=ex-1, 由f′(x)>0,得ex-1>0,即x>0. 答案:(0,+∞)
2.(教材习题改编)函数 f(x)=13x3-4x+4 的极大值为______, 极小值为________. 解析:∵f(x)=13x3-4x+4, ∴f′(x)=x2-4,令 f′(x)=0,则 x=±2. 当 x∈(-∞,-2)时,f′(x)>0; 当 x∈(-2,2)时,f′(x)<0; 当 x∈(2,+∞)时,f′(x) >0.
(2)函数的极大值: 若函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近 其他点的函数值 都大 ,且f′(b)=0,而且在点x=b附近的左 侧 f′(x)>0 ,右侧 f′(x)<0 ,则b点叫做函数的极大值点, f(b)叫做函数的极大值, 极大和值 极小统值称为极值. [探究] 2.导数值为0的点一定是函数的极值点吗?导数为 零是函数在该点取得极值的什么条件?

2019高考数学一轮复习导数及其应用学案理

2019高考数学一轮复习导数及其应用学案理

导数及其应用知识点一、导数的基本运算1.基本初等函数的导数公式原函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e xf ′(x )=e xf (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3、复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 小题速通1.下列求导运算正确的是( )A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3xlog 3eD .(x 2cos x )′=-2sin x2.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)3.函数f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.1034.(2016·天津高考)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________. 5.函数y =ln 2x +1x的导数为________.易错点1.利用公式求导时,一定要注意公式的适用范围及符号,如(x n)′=nxn -1中n ≠0且n ∈Q *,(cos x )′=-sin x .2.注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.1、已知函数f (x )=sin x -cos x ,若f ′(x )=12f (x ),则tan x 的值为( )A .1B .-3C .-1D .2 2、若函数f (x )=2x+ln x 且f ′(a )=0,则2aln 2a=( )A .-1B .1C .-ln 2D .ln 2知识点二、导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0). 小题速通1.(2018·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4 2.设函数f (x )=x ln x ,则点(1,0)处的切线方程是________. 3.已知曲线y =2x 2的一条切线的斜率为2,则切点的坐标为________.4.函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =3x -2,则f (1)+f ′(1)=________. 易错点1.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者. 2.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别. 1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.(2017·兰州一模)已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则实数b 的值为________.知识点三、利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系(1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f ′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤(1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间. 小题速通1.函数f (x )=2x 3-9x 2+12x +1的单调减区间是( )A .(1,2)B .(2,+∞)C .(-∞,1)D .(-∞,1)和(2,+∞) 2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )3.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( )A .(-∞,-26] B.⎝ ⎛⎦⎥⎤-∞,62 C .[-26,+∞) D .[-5,+∞) 易错点若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立. 若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________.知识点四、利用导数研究函数的极值与最值1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 小题速通1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .42.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( )A .2B .3C .4D .53.(2017·济宁一模)函数f (x )=12x 2-ln x 的最小值为( )A.12 B .1 C .0 D .不存在 4.若函数f (x )=12x 2-ax +ln x 有极值,则a 的取值范围为________.5.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________. 易错点1.f ′(x 0)=0是x 0为f (x )的极值点的既不充分也不必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.2.求函数最值时,易误认为极值点就是最值点,不通过比较就下结论. 1.(2017·岳阳一模)下列函数中,既是奇函数又存在极值的是( )A .y =x 3B .y =ln(-x )C .y =x e -xD .y =x +2x2.设函数f (x )=x 3-3x +1,x ∈[-2,2]的最大值为M ,最小值为m ,则M +m =________.知识点五、定积分1.定积分的概念在∫ba f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. 2.定积分的性质(1) ⎠⎛a b kf (x )d x =k ⎠⎛a b f (x )d x (k 为常数); (2) ⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;(3) ⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.其中F (x )叫做f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x ) ⎪⎪⎪ba,即⎠⎛ab f (x )d x =F (x ) ⎪⎪⎪ba =F (b )-F (a ).小题速通1.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-22.⎠⎛01(e x+x)d x =________.3.(2015·天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 易错点定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 由曲线y =x 2和直线x =0,x =1,y =14所围成的图形(如图所示)的面积为( )A .23 B.13 C .12 D.14过关检测练习一、选择题1.已知函数f (x )=log a x (a>0且a ≠1),若f ′(1)=-1,则a =( )A .e B.1e C.1e 2 D.122.直线y =kx +1与曲线y =x 2+ax +b 相切于点A(1,3),则2a +b 的值为( )A .-1B .1C .2D .-23.函数y =2x 3-3x 2的极值情况为( )A .在x =0处取得极大值0,但无极小值B .在x =1处取得极小值-1,但无极大值C .在x =0处取得极大值0,在x =1处取得极小值-1D .以上都不对4.若f(x)=-12x 2+m ln x 在(1,+∞)是减函数,则m 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1]D .(-∞,1)5.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)6.已知函数f (x )=x (x -m )2在x =1处取得极小值,则实数m =( )A .0B .1C .2D .37.由曲线y =x 2-1,直线x =0,x =2和x 轴所围成的封闭图形的面积是( )A .⎠⎛02(x 2-1)d x B.⎠⎛02|x 2-1|d x C .⎠⎛02(x 2-1)d x D .⎠⎛01(x 2-1)d x +⎠⎛12(1-x 2)d x8.若函数f (x )=⎩⎪⎨⎪⎧1-2x,x ≤0,x 3-3x +a ,x >0的值域为[0,+∞),则实数a 的取值范围是( )A .[2,3]B .(2,3]C .(-∞,2]D .(-∞,2) 二、填空题9.若函数f (x )=x +a ln x 不是单调函数,则实数a 的取值范围是________. 10.已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.11.已知函数f (x )的图象在点M (1,f (1))处的切线方程是y =12x +3,则f (1)+f ′(1)=________.12.已知函数g (x )满足g (x )=g ′(1)e x -1-g (0)x +12x 2,且存在实数x 0,使得不等式2m -1≥g (x 0)成立,则实数m的取值范围为________. 三、解答题13.已知函数f (x )=x +a x+b (x ≠0),其中a ,b ∈R.(1)若曲线y =f (x )在点P (2,f (2))处的切线方程为y =3x +1,求函数f (x )的解析式; (2)讨论函数f (x )的单调性;(3)若对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f (x )≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立,求实数b 的取值范围.14.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.高考研究课:一 导数运算是基点、几何意义是重点、定积分应用是潜考点 考点 考查频度 考查角度导数的几何意义5年7考 求切线、已知切线求参数、求切点坐标定积分未考查[典例] (1)(2018·惠州模拟)已知函数f (x )=1x cos x ,则f (π)+f ′⎝ ⎛⎭⎪⎫π2=( ) A .-3π2 B .-1π2 C .-3π D .-1π(2)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 018(x )等于( )A .-sin x -cos xB .sin x -cos xC .sin x +cos xD .cos x -sin x (3)已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( ) A .-e B .-1 C .1 D .e 方法技巧1、可导函数的求导步骤(1)分析函数y =f (x )的结构特点,进行化简; (2)选择恰当的求导法则与导数公式求导; (3)化简整理答案. 2、求导运算应遵循的原则求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错. 即时演练1.(2018·江西九校联考)已知y =(x +1)(x +2)(x +3),则y ′=( )A .3x 2-12x +6 B .x 2+12x -11 C .x 2+12x +6 D .3x 2+12x +11 2.已知函数f (x )=x ln x ,若f ′(x 0)=2,则x 0=________.题型二、导数的几何意义导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常出现在解答题的第1问中,难度较低,属中、低档题. 常见的命题角度有: 1求切线方程; 2确定切点坐标;3已知切线求参数值或范围; 4切线的综合应用.角度一:求切线方程1.已知函数f (x )=ln(1+x )-x +x 2,则曲线y =f (x )在点(1,f (1))处的切线方程是________.角度二:确定切点坐标2.已知函数f (x )=exx(x >0),直线l :x -ty -2=0.若直线l 与曲线y =f (x )相切,则切点横坐标的值为________.角度三:已知切线求参数值或范围3.(2017·武汉一模)已知a 为常数,若曲线y =ax 2+3x -ln x 上存在与直线x +y -1=0垂直的切线,则实数a 的取值范围是________.4.若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围是________.角度四:切线的综合应用5.已知函数f (x )=m ln(x +1),g (x )=xx +1(x >-1).(1)讨论函数F (x )=f (x )-g (x )在(-1,+∞)上的单调性;(2)若y =f (x )与y =g (x )的图象有且仅有一条公切线,试求实数m 的值.方法技巧利用导数解决切线问题的方法(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.题型三、定积分及应用[典例] (1)(2018·东营模拟)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],2-x ,x ∈1,2],则⎠⎛02f(x)d x 等于( )A.34B.45C.56D .不存在 (2)设f (x )=)⎩⎨⎧1-x 2,x ∈[-1,1,x 2-1,x ∈[1,2],则⎠⎛-12f (x )dx 的值为( )A.π2+43 B.π2+3 C.π4+43 D.π4+3 (3)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.方法技巧求定积分的2种方法及注意事项(1)定理法运用微积分基本定理求定积分时要注意以下几点: ①对被积函数要先化简,再求积分;②求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和; ③对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分; ④注意用“F′(x )=f (x )”检验积分的对错. (2)面积法根据定积分的几何意义可利用面积求定积分. 即时演练1.(2018·西安调研)定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -12.直线y =2x +3与抛物线y =x 2所围成封闭图形的面积为________.3.如图,在长方形OABC 内任取一点P ,则点P 落在阴影部分的概率为________.高考真题演练1.(2014·全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .32.(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.3.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________. 4.(2015·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 5.(2015·全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.高考达标检测一、选择题1.若a =⎠⎛02x d x ,则二项式⎝⎛⎭⎪⎫x -a +1x 6展开式中的常数项是( ) A .20 B .-20 C .-540 D .5402.(2018·衡水调研)曲线y =1-2x +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -23.(2018·济南一模)已知曲线f (x )=ln x 的切线经过原点,则此切线的斜率为( )A .eB .-eC .1eD .-1e4.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f(x)图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-25.(2018·南昌二中模拟)设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为( )A .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫5π6,π B.⎣⎢⎡⎭⎪⎫2π3,π C .⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π D.⎝ ⎛⎦⎥⎤π2,5π6 6.已知曲线y =1e x+1,则曲线的切线斜率取得最小值时的直线方程为( ) A .x +4y -2=0 B .x -4y +2=0 C .4x +2y -1=0 D .4x -2y -1=0二、填空题7.若a 和b 是计算机在区间(0,2)上产生的随机数,那么函数f(x)=lg (ax 2+4x +4b)的值域为R 的概率为________. 8.已知函数f (x )=e ax+bx (a <0)在点(0,f(0))处的切线方程为y =5x +1,且f (1)+f ′(1)=12.则a ,b 的值分别为________.9.(2017·东营一模)函数f (x )=x ln x 在点P(x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P(x 0,f (x 0))的坐标为________.10.设过曲线f (x )=-e x-x(e 为自然对数的底数)上的任意一点的切线为l 1,总存在过曲线g (x )=mx -3sin x 上的一点处的切线l 2,使l 1⊥l 2,则m 的取值范围是________. 三、解答题11.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.12.已知函数f (x )=12x 2-ax +(3-a )ln x ,a ∈R.(1)若曲线y =f (x )在点(1,f (1))处的切线与直线2x -y +1=0垂直,求a 的值; (2)设f (x )有两个极值点x 1,x 2,且x 1<x 2,求证:f (x 1)+f (x 2)>-5.能力提高训练题1.(2018·广东七校联考)已知函数y =x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( )A .0<x 0<12B.12<x 0<1 C.22<x 0< 2 D.2<x 0< 32.函数y =f (x )图象上不同两点M (x 1,y 1),N (x 2,y 2)处的切线的斜率分别是k M ,k N ,规定φ(M ,N )=|k M -k N ||MN |(|MN |为线段MN 的长度)叫做曲线y =f (x )在点M 与点N 之间的“弯曲度”.设曲线f (x )=x 3+2上不同两点M (x 1,y 1),N (x 2,y 2),且x 1x 2=1,则φ(M ,N )的取值范围是________.高考研究课:二、函数单调性必考,导数工具离不了全国卷5年命题分析考点 考查频度 考查角度函数单调性5年6考讨论单调性及证明单调性问题[典例] (2016·山东高考节选)已知f (x )=a (x -ln x )+2x -1x2,a ∈R ,讨论f (x )的单调性.方法技巧导数法判断函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. 即时演练1.(2017·芜湖一模)函数f (x )=e x-e x ,x ∈R 的单调递增区间是( )A.()0,+∞B.()-∞,0C.()-∞,1D.()1,+∞ 2.(2016·全国卷Ⅱ节选)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0. 题型二、利用导数研究函数单调性的应用函数的单调性是高考命题的重点,其应用是考查热点.,常见的命题角度有: 1y =f (x )与y =f ′(x )的图象辨识;2比较大小;3已知函数单调性求参数的取值范围; 4构造函数解不等式.角度一:y =f (x )与y =f ′(x )的图象辨识1.已知函数f (x )=ax 3+bx 2+cx +d ,若函数f (x )的图象如图所示,则一定有( )A .b >0,c >0B .b <0,c >0C .b >0,c <0D .b <0,c <02.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )角度二:比较大小3.设定义在R 上的函数f (x )的导函数为f ′(x ),且满足f (2-x )=f (x ),f ′xx -1<0,若x 1+x 2>2,x 1<x 2,则( ) A .f (x 1)<f (x 2) B .f (x 1)=f (x 2) C .f (x 1)>f (x 2) D .f (x 1)与f (x 2)的大小不能确定角度三:已知函数单调性求参数的取值范围4.(2018·宝鸡一检)已知函数f (x )=x 2+4x +a ln x ,若函数f (x )在(1,2)上是单调函数,则实数a 的取值范围是( )A .(-6,+∞)B .(-∞,-16)C .(-∞,-16]∪[-6,+∞)D .(-∞,-16)∪(-6,+∞)5.(2018·成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.方法技巧由函数的单调性求参数的范围的方法(1)可导函数f (x )在D 上单调递增(或递减)求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)对x ∈D 恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.(3)若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.(4)若已知f (x )在D 上不单调,则f (x )在D 上有极值点,且极值点不是D 的端点.角度四:构造函数解不等式6.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0.则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)7.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 018)2f (x +2 018)-f (-1)<0的解集为________.高考真题演练1.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 2.(2014·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 3.(2017·全国卷Ⅰ)已知函数f (x )=e x(e x-a )-a 2x .(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.高考达标检测一、选择题1.已知函数f (x )=ln x +x 2-3x (a ∈R),则函数f (x )的单调递增区间为( )A.⎝ ⎛⎭⎪⎫-∞,12 B .(1,+∞) C.⎝ ⎛⎭⎪⎫-∞,12和(1,+∞) D.⎝ ⎛⎭⎪⎫0,12和(1,+∞) 2.(2017·浙江高考)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )3.对于R 上可导的任意函数f (x ),若满足1-xf ′x≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)4.已知函数f (x )=x sin x ,x 1,x 2∈⎝ ⎛⎭⎪⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0 B .x 1+x 2>0 C .x 21-x 22>0 D .x 21-x 22<05.(2017·吉林长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定6.已知定义在R 上的函数y =f (x )满足条件f (x +4)=-f (x ),且函数y =f (x +2)是偶函数,当x ∈(0,2]时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈[-2,0)时,f (x )的最小值为3,则a 的值为( ) A .e 2B .eC .2D .1 二、填空题7.设函数f (x )=x (e x-1)-12x 2,则函数f (x )的单调增区间为________.8.已知函数f (x )=x ln x -ax 2-x .若函数f (x )在定义域上为减函数,则实数a 的取值范围是________. 9.(2018·兰州诊断)若函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 三、解答题10.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.11.(2018·武汉调研)已知函数f (x )=x ln x .(1)若函数g (x )=f (x )+ax 在区间[e 2,+∞)上为增函数,求a 的取值范围; (2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.12.(2018·湖南十校联考)函数f (x )=13x 3+|x -a |(x ∈R ,a ∈R).(1)若函数f (x )在R 上为增函数,求a 的取值范围;(2)若函数f (x )在R 上不单调时,记f (x )在[-1,1]上的最大值、最小值分别为M (a ),m (a ),求M (a )-m (a ).能力提高训练题1.已知函数f (x )=ln x +(e -a )x -b ,其中e 为自然对数的底数.若不等式f (x )≤0恒成立,则b a的最小值为________.2.已知函数f (x )=(a -1)ln x -a 2x 2+x (a ∈R),g (x )=-13x 3-x +(a -1)ln x .(1)若a ≤12,讨论f (x )的单调性;(2)若过点⎝ ⎛⎭⎪⎫0,-13可作函数y =g (x )-f (x )(x >0)图象的两条不同切线,求实数a 的取值范围.高考研究课:三、极值、最值两考点,利用导数巧推演全国卷5年命题分析考点考查频度考查角度极值5年6考求极值、由极值求参数最值5年5考求最值、证明最值的存在性函数的极值是每年高考的必考内容,题型既有选择题、填空题,也有解答题,难度适中,为中高档题.常见的命题角度有:1知图判断函数极值;2已知函数求极值;3已知极值求参数值或范围.角度一:知图判断函数极值1.(2018·赤峰模拟)设函数f (x )在定义域R 上可导,其导函数为f ′(x ),若函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)角度二:已知函数求极值2.已知函数f (x )=x -1+aex (a ∈R ,e 为自然对数的底数). (1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)求函数f (x )的极值.角度三:已知极值求参数值或范围3.设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围是( ) A .(-1,0) B .(-1,+∞) C .(0,1) D .(1,+∞)4.已知函数f (x )=ax -x 2-ln x ,若函数f (x )存在极值,且所有极值之和小于5+ln 2,则实数a 的取值范围是________.方法技巧利用导数研究函数极值的一般流程题型二、运用导数解决函数的最值问题[典例] (2018·日照模拟)设函数f (x )=(x -1)e x -kx 2(k ∈R). (1)当k =1时,求函数f (x )的单调区间;(2)当k ∈⎝ ⎛⎦⎥⎤12,1时,求函数f (x )在[0,k ]上的最大值M .方法技巧求函数f (x )在[a ,b ]上的最值的步骤(1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.即时演练1.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是( ) A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)2.(2018·南昌模拟)已知函数f (x )=(2x -4)e x +a (x +2)2(x >0,a ∈R ,e 是自然对数的底数).(1)若f (x )是(0,+∞)上的单调递增函数,求实数a 的取值范围;(2)当a ∈⎝ ⎛⎭⎪⎫0,12时,证明:函数f (x )有最小值,并求函数f (x )的最小值的取值范围.高考真题演练1.(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)·ex -1的极值点,则f (x )的极小值为( ) A .-1 B .-2e -3 C .5e -3 D .1 2.(2014·全国卷Ⅱ)设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)3.(2013·全国卷Ⅱ)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( )A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减D .若x 0是f (x )的极值点,则 f ′(x 0)=04.(2015·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.5.(2013·全国卷Ⅱ)已知函数f (x )=x 2e -x .(1)求f (x )的极小值和极大值; (2)当曲线y =f (x )的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.6.(2017·江苏高考)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R)有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.7.(2017·山东高考)已知函数f(x)=x2+2cos x,g(x)=e x(cos x-sin x+2x-2),其中e=2.718 28…是自然对数的底数.(1)求曲线y=f(x)在点(π,f(π))处的切线方程;(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.高考达标检测一、选择题1.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =02.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为() A .-23 B .-2C .-2或-23D .2或-233.(2018·浙江瑞安中学月考)已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( ) A.23B.43C.83D.163 4.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示的曲线过原点,且在x =±1处的切线斜率均为-1,有以下命题:①f (x )的解析式为:f (x )=x 3-4x ,x ∈[-2,2];②f (x )的极值点有且仅有一个;③f (x )的最大值与最小值之和等于零.其中正确的命题个数为( )A .0B .1C .2D .3 5.(2017·长沙二模)已知函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( ) A.3-1 B.34 C.43 D.3+16.已知直线l 1:y =x +a 分别与直线l 2:y =2(x +1)及曲线C :y =x +ln x 交于A ,B 两点,则A ,B 两点间距离的最小值为( )A.355B .3 C.655 D .3 2二、填空题7.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.8.已知函数f (x )=e x x 2-k ⎝ ⎛⎭⎪⎫2x +ln x ,若x =2是函数f (x )的唯一一个极值点,则实数k 的取值范围为________. 9.(2018·湘中名校联考)已知函数g (x )=a -x 21e≤x ≤e,e 为自然对数的底数与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是________.三、解答题10.已知函数f (x )=⎩⎪⎨⎪⎧ -x 3+x 2,x <1,a ln x ,x ≥1.(1)求f(x)在区间(-∞,1)上的极小值和极大值点;(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值.11.设函数f (x )=12x 2-(a +1)x +a ln x ,a >0.(1)求函数f (x )的单调区间;(2)讨论函数f (x )的零点个数.12.已知函数f (x )=ln x +x 2-ax (a ∈R).(1)当a =3时,求函数f (x )的单调区间;(2)若函数f (x )有两个极值点x 1,x 2,且x 1∈(0,1],证明f (x 1)-f (x 2)≥-34+ln 2.能力提高训练题1.若函数f (x )=x 3+ax 2+bx 的图象与x 轴相切于点(c,0),且f (x )有极大值4,则c =( )A .-3B .-1C .1D .32.已知函数f (x )=12x 2+(1-m )x +ln x .(1)若函数f (x )存在单调递减区间,求实数m 的取值范围;(2)设x 1,x 2(x 1<x 2)是函数f (x )的两个极值点,若m ≥72,求f (x 1)-f (x 2)的最小值.高考研究课:四、综合问题是难点,3大题型全冲关全国卷5年命题分析考点考查频度考查角度利用导数解决生活中的优化问题未考查利用导数研究函数零点或方程根5年3考讨论函数零点个数不等式恒成立问题5年4考不等式恒成立求参证明不等式5年7考不等式证明[典例] 一辆火车前行每小时电力的消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h时,每小时消耗的电价值40元,其他费用每小时需400元,火车的最高速度为100 km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?方法技巧利用导数解决生活中的优化问题的4步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 即时演练1.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件2.据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k (k >0).现已知相距18 km 的A ,B 两家化工厂(污染源)的污染强度分别为a ,b ,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC =x (km).(1)试将y 表示为x 的函数;(2)若a =1,且x =6时,y 取得最小值,试求b 的值.题型二、利用导数研究函数的零点或方程根[典例] 已知函数f (x )=(x +a )e x,其中e 是自然对数的底数,a ∈R.(1)求函数f (x )的单调区间;(2)当a <1时,试确定函数g (x )=f (x -a )-x 2的零点个数,并说明理由. 方法技巧利用导数研究零点或方程根的方法研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现. 即时演练1.已知函数f (x )=e 2x-ax 2+bx -1,其中a ,b ∈R ,e 为自然对数的底数,若f (1)=0,f ′(x )是f (x )的导函数,函数f ′(x )在区间(0,1)内有两个零点,则a 的取值范围是( )A .(e 2-3,e 2+1) B .(e 2-3,+∞) C .(-∞,2e 2+2)D .(2e 2-6,2e 2+2)2.(2017·西安一模)已知函数f (x )=x +1+ax-a ln x .若函数y =f (x )的图象在x =1处的切线与直线2x +y -1=0平行.(1)求a 的值;(2)若方程f(x)=b的区间[1,e]上有两个不同的实数根,求实数b的取值范围.题型二、利用导数研究与不等式有关的问题导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题.常见的命题角度有:1证明不等式;2不等式恒成立问题.角度一:证明不等式1.已知函数f(x)=ln x-ax2+(2-a)x(a>0).(1)讨论函数f(x)的单调性;(2)证明:当0<x <1a时,f ⎝ ⎛⎭⎪⎫1a +x >f ⎝ ⎛⎭⎪⎫1a -x ;(3)设函数y =f (x )的图象与x 轴交于A ,B 两点,线段AB 的中点的横坐标为x 0,证明:f ′(x 0)<0.方法技巧利用导数证明不等式的方法可以从所证不等式的结构和特点出发,结合已有的知识利用转化与化归思想,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明,其一般步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.如:证明:f (x )>g (x )(x ∈D ),令F (x )=f (x )-g (x ),x ∈D ,只需证明F (x )min >0(x ∈D )即可,从而把证明不等式问题转化求F (x )min 问题.角度二:不等式恒成立问题2.(2016·四川高考)设函数f (x )=ax 2-a -ln x ,其中a ∈R.(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).方法技巧1.利用导数研究不等式恒成立问题的思路首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题. 2.不等式成立(恒成立)问题常见转化方法(1)f (x )≥a 恒成立⇒f (x )min ≥a ,f (x )≥a 成立⇒f (x )max ≥a . (2)f (x )≤b 恒成立⇔f (x )max ≤b ,f (x )≤b 成立⇔f (x )min ≤b . (3)f (x )>g (x )恒成立F x =f x -g xF (x )min >0.(4)①∀x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)max .②∀x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)min .③∃x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x )min .④∃x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)max .高考真题演练1.(2017·全国卷Ⅰ)已知函数f (x )=a e 2x+(a -2)e x-x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.2.(2017·全国卷Ⅲ)已知函数f (x )=x -1-a ln x .(1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12·⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.3.(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.4.(2015·全国卷Ⅱ)设函数f(x)=e mx+x2-mx.(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.高考达标检测1.(2014·全国卷Ⅰ)设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.(1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.2.已知函数f (x )=ln x -a x +a x2(a ∈R).(1)若a =1,求函数f (x )的极值;(2)若f (x )在[1,+∞)内为单调增函数,求实数a 的取值范围; (3)对于n ∈N *,求证:11+12+22+12+33+12+…+n n +12<ln(n +1).。

2019年高考数学考纲解读与热点难点突破专题04导数及其应用教学案文含解析

2019年高考数学考纲解读与热点难点突破专题04导数及其应用教学案文含解析

导数及其应用【2019年高考考纲解读】高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)导数的运算是导数应用的基础,要求是B级,熟练掌握导数的四则运算法则、常用导数公式及复合函数的导数运算,一般不单独设置试题,是解决导数应用的第一步;(3)利用导数研究函数的单调性与极值是导数的核心内容,要求是B级,对应用导数研究函数的单调性与极值要达到相等的高度.(4)导数在实际问题中的应用为函数应用题注入了新鲜的血液,使应用题涉及到的函数模型更加宽广,要求是B级;(5)导数还经常作为高考的压轴题,能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为导数综合题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在. 【重点、难点剖析】1.导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).2.基本初等函数的导数公式和运算法则(1)基本初等函数的导数公式(a >0且a ≠1)f (x )=ln xf ′(x )=1x(2)导数的四则运算①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ); ③⎣⎢⎡⎦⎥⎤u x v x ′=u ′x v x -u x v ′x [v x ]2(v (x )≠0).3.函数的单调性与导数如果已知函数在某个区间上单调递增(减),则这个函数的导数在这个区间上大(小)于零恒成立.在区间上离散点处导数等于零,不影响函数的单调性,如函数y =x +sin x .4.函数的导数与极值对可导函数而言,某点导数等于零是函数在该点取得极值的必要条件.例如f (x )=x 3,虽有f ′(0)=0,但x =0不是极值点,因为f ′(x )≥0恒成立,f (x )=x 3在(-∞,+∞)上是单调递增函数,无极值.5.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小值. 6.函数单调性的应用(1)若可导函数f (x )在(a ,b )上单调递增,则f ′(x )≥0在区间(a ,b )上恒成立; (2)若可导函数f (x )在(a ,b )上单调递减,则f ′(x )≤0在区间(a ,b )上恒成立; (3)可导函数f (x )在区间(a ,b )上为增函数是f ′(x )>0的必要不充分条件. 【题型示例】题型一、导数的几何意义【例1】(2018·全国Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x 答案 D解析 方法一 ∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . 故选D.方法二 ∵f (x )=x 3+(a -1)x 2+ax 为奇函数, ∴f ′(x )=3x 2+2(a -1)x +a 为偶函数, ∴a =1,即f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . 故选D.【举一反三】(2018·全国Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________. 答案 2x -y -2=0解析 因为y ′=2x,y ′|x =1=2,所以切线方程为y -0=2(x -1),即2x -y -2=0.【变式探究】若函数f (x )=ln x (x >0)与函数g (x )=x 2+2x +a (x <0)有公切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫ln 12e ,+∞ B .(-1,+∞) C .(1,+∞) D .(-ln 2,+∞) 答案 A解析 设公切线与函数f (x )=ln x 切于点A (x 1,ln x 1)(x 1>0), 则切线方程为y -ln x 1=1x 1(x -x 1).设公切线与函数g (x )=x 2+2x +a 切于点B (x 2,x 22+2x 2+a )(x 2<0), 则切线方程为y -(x 22+2x 2+a )=2(x 2+1)(x -x 2), ∴⎩⎪⎨⎪⎧1x 1=2x 2+1,ln x 1-1=-x 22+a ,∵x 2<0<x 1,∴0<1x 1<2.又a =ln x 1+⎝⎛⎭⎪⎫12x 1-12-1=-ln 1x 1+14⎝ ⎛⎭⎪⎫1x 1-22-1,令t =1x 1,∴0<t <2,a =14t 2-t -ln t .设h (t )=14t 2-t -ln t (0<t <2),则h ′(t )=12t -1-1t =t -12-32t <0,∴h (t )在(0,2)上为减函数, 则h (t )>h (2)=-ln 2-1=ln 12e,∴a ∈⎝ ⎛⎭⎪⎫ln 12e ,+∞. 【变式探究】【2016高考新课标2文数】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线的切线,则b = . 【答案】1ln2-【感悟提升】函数图像上某点处的切线斜率就是函数在该点处的导数值.求曲线上的点到直线的距离的最值的基本方法是“平行切线法”,即作出与直线平行的曲线的切线,则这条切线到已知直线的距离即为曲线上的点到直线的距离的最值,结合图形可以判断是最大值还是最小值.【举一反三】(2015·陕西,15)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析 ∵(e x)′|x =0=e 0=1,设P (x 0,y 0),有⎪⎪⎪⎝ ⎛⎭⎪⎫1x ′x =x 0=-1x 20=-1, 又∵x 0>0,∴x 0=1,故x P (1,1).答案 (1,1)【变式探究】 (1)曲线y =x ex -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1(2)在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.【命题意图】 (1)本题主要考查函数求导法则及导数的几何意义. (2)本题主要考查导数的几何意义,意在考查考生的运算求解能力.【感悟提升】1.求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.2.利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.题型二、利用导数研究函数的单调性【例2】已知函数f (x )=4ln x -mx 2+1()m ∈R .(1)讨论函数f (x )的单调性;(2)若对任意x ∈[]1,e ,f (x )≤0恒成立,求实数m 的取值范围. 解 (1)由题意知f ′(x )=4x -2mx =4-2mx2x(x >0),当m ≤0时,f ′(x )>0在x ∈(0,+∞)时恒成立, ∴f (x )在(0,+∞)上单调递增.当m >0时,f ′(x )=4-2mx2x=-2m ⎝⎛⎭⎪⎫x +2m ⎝⎛⎭⎪⎫x -2m x(x >0),令f ′(x )>0,得0<x <2m;令f ′(x )<0,得 x >2m.∴f (x )在⎝⎛⎭⎪⎫0,2m 上单调递增,在⎝ ⎛⎭⎪⎫2m,+∞上单调递减.综上所述,当m ≤0时,f (x )在(0,+∞)上单调递增; 当m >0时,f (x )在⎝⎛⎭⎪⎫0,2m 上单调递增,在⎝⎛⎭⎪⎫2m,+∞上单调递减.(2)方法一 由题意知4ln x -mx 2+1≤0在[]1,e 上恒成立,即m ≥4ln x +1x2在[]1,e 上恒成立. 令g (x )=4ln x +1x2,x ∈[]1,e , ∴ g ′(x )=2()1-4ln x x3,x ∈[1,e], 令g ′(x )>0,得1<x <14e ;令g ′(x )<0,得14e <x <e.∴g (x )在⎝⎛⎭⎫1,14e 上单调递增,在⎝⎛⎭⎫14e ,e 上单调递减. ∴g (x )max =g 14e ⎛⎫ ⎪⎝⎭=4ln e 14+1⎝⎛⎭⎫e 142=2ee ,∴m ≥2e e.方法二 要使f (x )≤0恒成立,只需f (x )max ≤0, 由(1)知,若m ≤0,则f (x )在[]1,e 上单调递增. ∴f (x )max =f (e)=4-m e 2+1≤0, 即m ≥5e 2,这与m ≤0矛盾,此时不成立.若m >0, (ⅰ)若2m ≥e,即0<m ≤2e2,则f (x )在[]1,e 上单调递增, ∴f (x )max =f (e)=4-m e 2+1≤0,即m ≥5e 2,这与0<m ≤2e 2矛盾,此时不成立.(ⅱ)若1<2m <e ,即2e2<m <2, 则f (x )在⎣⎢⎡⎦⎥⎤1,2m 上单调递增,在⎝⎛⎦⎥⎤2m,e 上单调递减.∴f (x )max =f ⎝⎛⎭⎪⎫2m =4ln2m-1≤0,即2m ≤14e ,解得m ≥2e e. 又∵2e 2<m <2,∴2e e ≤m <2,(ⅲ)若0<2m≤1,即m ≥2,则f (x )在[]1,e 上单调递减, 则f (x )max =f (1)=-m +1≤0, ∴m ≥1. 又∵m ≥2, ∴m ≥2.综上可得m ≥2e e .即实数m 的取值范围是⎣⎢⎡⎭⎪⎫2e e ,+∞.【变式探究】 (2017·高考全国卷Ⅱ)设函数f (x )=(1-x 2)e x. (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增. (2)f (x )=(1+x )(1-x )e x.当a ≥1时,设函数h (x )=(1-x )e x,则h ′(x )=-x e x<0(x >0),因此h (x )在[0,+∞)单调递减.而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x -x -1,则g ′(x )=e x-1>0(x >0),所以g (x )在[0,+∞)单调递增.而g (0)=0,故e x≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12,则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞). 【变式探究】【2016高考山东文数】已知.(I )讨论()f x 的单调性;(II )当1a =时,证明对于任意的[]1,2x ∈成立.【答案】(Ⅰ)见解析;(Ⅱ)见解析 【解析】(Ⅰ))(x f 的定义域为),0(+∞;.当0≤a , )1,0(∈x 时,()0f 'x >,)(x f 单调递增;,)(x f 单调递减.当0>a 时,.(1)20<<a ,12>a, 当)1,0(∈x 或x ∈),2(+∞a时,()0f 'x >,)(x f 单调递增; 当x ∈)2,1(a时,()0f 'x <,)(x f 单调递减;(2)2=a 时,12=a ,在x ∈),0(+∞内,()0f 'x ≥,)(x f 单调递增;(3)2>a 时,120<<a ,当)2,0(a x ∈或x ∈),1(+∞时,()0f 'x >,)(x f 单调递增; 当x ∈)1,2(a时,()0f 'x <,)(x f 单调递减. 综上所述,当0≤a 时,函数)(x f 在)1,0(内单调递增,在),1(+∞内单调递减;当20<<a 时,)(x f 在)1,0(内单调递增,在)2,1(a 内单调递减,在),2(+∞a内单调递增; 当2=a 时,)(x f 在),0(+∞内单调递增;当2>a ,)(x f 在)2,0(a 内单调递增,在)1,2(a内单调递减,在),1(+∞内单调递增. (Ⅱ)由(Ⅰ)知,1=a 时,,]2,1[∈x ,令,]2,1[∈x .则,由可得,当且仅当1=x 时取得等号.又,设,则)(x ϕ在x ∈]2,1[单调递减, 因为,所以在]2,1[上存在0x 使得),1(0x x ∈ 时,时,0)(<x ϕ,所以函数()h x 在),1(0x 上单调递增;在)2,(0x 上单调递减,由于,因此,当且仅当2=x 取得等号,所以,即对于任意的]2,1[∈x 恒成立。

2019高三数学人教A版理一轮专题突破练1 函数与导数中

2019高三数学人教A版理一轮专题突破练1 函数与导数中

专题突破练(一)函数与导数中的高考热点问题(对应学生用书第220页)1.已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.[解]由f(x)=x2+x sin x+cos x,得f′(x)=x(2+cos x).(1)因为曲线y=f(x)在点(a,f(a))处与直线y=b相切,所以f′(a)=a(2+cos a)=0,b=f(a).解得a=0,b=f(0)=1.(2)令f′(x)=0,得x=0.当x变化时,f(x)与f′(x)的变化情况如下:所以函数f(x)在区间(0,+∞)上单调递增,f(0)=1是f(x)的最小值.当b≤1时,曲线y=f(x)与直线y=b最多只有一个交点;当b>1时,f(-2b)=f(2b)≥4b2-2b-1>4b-2b-1>b,f(0)=1<b,所以存在x1∈(-2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,所以当b>1时,曲线y=f(x)与直线y=b有且仅有两个不同交点.综上可知,如果曲线y=f(x)与直线y=b有两个不同交点,那么b的取值范围是(1,+∞).2.设a为实数,函数f(x)=e x-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1. [解](1)由f(x)=e x-2x+2a,x∈R,知f′(x)=e x-2,x∈R.令f′(x)=0,得x=ln 2.于是当x变化时,f′(x),f(x)的变化情况如下表:故f(x单调递增区间是(ln 2,+∞),f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=e ln 2-2ln 2+2a=2-2ln 2+2A.(2)证明:设g(x)=e x-x2+2ax-1,x∈R,于是g′(x)=e x-2x+2a,x∈R.由(1)知当a>ln 2-1时,g′(x)取最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a>ln 2-1时,对任意x∈(0,+∞),都有g(x)>g(0).而g(0)=0,从而对任意x∈(0,+∞),都有g(x)>0. 即e x-x2+2ax-1>0,故当a>ln 2-1且x>0时,e x>x2-2ax+1.3.(2018·兰州模拟)已知函数f(x)的导函数为f′(x),且f(x)=12f′(1)x+x ln x.(1)求函数f(x)的极值;(2)若k∈Z,且f(x)>k(x-1)对任意的x∈(1,+∞)都成立,求k的最大值.【导学号:97190098】[解](1)f′(x)=12f′(1)+1+ln x(x>0),所以f′(1)=12f′(1)+1,即f′(1)=2,所以f(x)=x+x ln x,f′(x)=2+ln x,令f′(x)=2+ln x<0,解得0<x<e-2,即当x∈(0,e-2)时,f′(x)<0,当x∈(e-2,+∞)时,f′(x)>0,所以函数f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增,所以函数f(x)在x=e-2处取得极小值f(e-2)=-e-2,没有极大值.(2)由(1)及题意,知k<f(x)x-1=x+x ln xx-1对任意的x∈(1,+∞)都成立,令g(x)=x+x ln xx-1(x>1),则g′(x)=x-ln x-2(x-1)2,令h(x)=x-ln x-2(x>1),则h′(x)=1-1x=x-1x>0,所以函数h(x)在(1,+∞)上为增函数,因为h(3)=1-ln 3<0,h(4)=2-ln 4>0,所以方程h(x)=0存在唯一实根x0,即ln x0=x0-2,x0∈(3,4).所以当1<x<x0时,h(x)<0,即g′(x)<0,当x>x0时,h(x)>0,即g′(x)>0,所以函数g(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,所以g(x)min=g(x0)=x0+x0ln x0x0-1=x0(1+x0-2)x0-1=x0,所以k<g(x)min=x0,x0∈(3,4),又因为k∈Z,故k的最大值为3.4.(2017·山东高考)已知函数f(x)=13x3-12ax2,a∈R.(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值.[解](1)由题意f′(x)=x2-ax,所以当a=2时,f(3)=0,f′(x)=x2-2x,所以f′(3)=3,因此,曲线y=f(x)在点(3,f(3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f(x)+(x-a)cos x-sin x,所以g′(x)=f′(x)+cos x-(x-a)sin x-cos x=x(x-a)-(x-a)sin x=(x-a)(x-sin x).令h(x)=x-sin x,则h′(x)=1-cos x≥0,所以h(x)在R上单调递增.因为h(0)=0,所以当x>0时,h(x)>0;当x<0时,h(x)<0.①当a<0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,a)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g′(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.所以当x=a时,g(x)取到极大值,极大值是g(a)=-16a3-sin a;当x=0时,g(x)取到极小值,极小值是g(0)=-A.②当a=0时,g′(x)=x(x-sin x),当x∈(-∞,+∞)时,g′(x)≥0,g(x)单调递增;所以g(x)在(-∞,+∞)上单调递增,g(x)无极大值也无极小值.③当a>0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,0)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g′(x)<0,g(x)单调递减;当x∈(a,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.所以当x=0时,g(x)取到极大值,极大值是g(0)=-a;当x=a时,g(x)取到极小值,极小值是g(a)=-16a3-sin A.综上所述:当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减,函数既有极大值,又有极小值,极大值是g(a)=-16a3-sin a,极小值是g(0)=-a;当a=0时,函数g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减,函数既有极大值,又有极小值,极大值是g(0)=-a,极小值是g(a)=-1 6a3-sin a.。

高三数学一轮复习精品学案1:专题一高考中的导数应用问题

高三数学一轮复习精品学案1:专题一高考中的导数应用问题

专题一高考中的导数应用问题考点1 利用导数研究函数的图象问题函数图象问题是高中数学中的一个重要问题,通常是将题目给出的函数的图象转化为基本初等函数的变换,再进行求解,但还有一类是通过导函数研究原函数图象、通过原函数研究导函数的图象,这也是高考中一个易考点.典例1 已知函数f (x )=12x 2sin x+x cos x ,则其导函数f'(x )的部分图象大致是( )方法总结给定解析式求函数的图象是近几年高考的重点,多数需要利用导数研究单调性,知其变化趋势,利用导数求极值(最值)研究零点,其中数形结合是解决这一问题的重要思想方法.考点2 利用导数研究函数的零点与方程的根的问题试题一般是以含参数的三次式,分式,指数式、对数式及三角式结构的函数零点或方程根的形式出现,是每年高考命题高频热点,常有以下两种考查形式:(1)确定函数的零点、图象的交点及方程根的个数问题;(2)应用函数的零点、图象的交点及方程根的存在问题来求参数值或范围. 典例2 已知函数f (x )=x 3+ax 2+b (a ,b ∈R).(1)试讨论f (x )的单调性;(2)若b=c -a (实数c 是与a 无关的常数).当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪(1,32)∪(32,+∞),求c 的值.方法总结1.利用导数确定方程根的个数与函数零点的方法(1)构建函数g(x)(g'(x)要易求或g'(x)可解),转化为确定g(x)的零点个数问题求解,利用导数研究函数的单调性、极值,并确定定义域区间端点值的符号(变化趋势)等,画出g(x)的大致图象,数形结合求解;(2)利用零点存在定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点的符号,进而判断函数在该区间上的零点个数.2.利用方程根的个数与函数零点的个数求参数取值范围构建函数g(x)(g'(x)要易求或g'(x)=0可解),利用导数研究函数的单调性、极值,并确定定义域区间端点值的情况等,画出g(x)的大致图象,数形结合得参数的取值范围或关于参数的不等式(组)再求解.考点3利用导数研究不等式问题利用导数解决不等式问题是高考命题专家每年热衷的话题之一,通常涉及不等式恒成立问题、不等式存在性问题、证明不等式及不等式大小比较问题:(1)对于不等式恒成立(存在)问题,一般考查的是三次式、分式、指数式及对数式、三角式及绝对值结构的不等式在某个区间A上恒成立(存在),求参数的取值范围;(2)证明不等式问题一般是证明与函数有关的不等式在某个区间内成立;(3)大小比较问题通常是作差后不容易转化为常规的三次式、分式、指数式、对数式及三角式结构,此时转化为利用导数研究构建的新函数的单调性或极值(最值),进而求解.典例3已知函数f(x)=ln1+x1−x(1)求曲线y=f(x)在点(0,f(0))处的切线方程;);(2)求证:当x∈(0,1)时,f(x)>2(x+x33)对x∈(0,1)恒成立,求k的最大值.(3)设实数k使得f(x)>k(x+x33方法总结(1)证明不等式的关键在于要构造好函数的形式,转化为研究函数的最值或值域问题,有时需用到放缩技巧.(2)求证不等式f(x)≥g(x)恒成立(存在)问题,一种常见思路是用图象法来说明函数f(x)的图象在函数g(x)图象的上方,但通常不易说明,而是转化为构造函数F(x)=f(x)-g(x),通过导数研究函数F(x)的最值问题,进而证明原不等式恒成立(存在).考点4利用导数研究应用题中的最优化问题以实际生活为背景,通过求面(容)积最大、用料最省、利润最大、效率最高等问题考查学生分析问题、解决问题以及建模的能力,常与函数关系式的求法、函数的性质(单调性、最值)、不等式、导数、解析几何中曲线方程、空间几何体等知识交汇考查.典例4一个圆柱形圆木的底面半径为1 m,长为10 m,将此圆木沿轴所在的平面剖成两部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设∠BOC=θ,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求θ的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.方法总结利用导数解决生活中的优化问题的四个步骤(1)分析实际问题中各个量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2)求函数y=f(x)的导数f'(x),解方程f'(x)=0;(3)比较函数在区间端点和使f'(x)=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题进行检验,作出正确的答案.——★参考答案★——典例1C『解析』由f(x)=12x2sin x+xcos x得f′(x)=12(2xsin x+x2cos x)+(cos x−xsin x)=(12x2+1)cos x,又因为f′(−x)=[12(-x)2+1]cos(−x)=f′(x),所以导函数为偶函数,排除选项A,B;当x∈(0,π2)时,f′(x)>0,当x(π2,3π2)时,f′(x)<0,当x∈(3π2,2π)时,f'(x)>0,观察选项C,D可知,D项不符合,故选项C正确.典例2解(1)f'(x)=3x2+2ax,令f'(x)=0,解得x1=0,x2=-2a3.当a=0时,因为f'(x)=3x2>0(x≠0),所以函数f(x)在(-∞,+∞)上单调递增;当a>0时,x∈(−∞,−2a3)∪(0,+∞)时,f′(x)>0,x∈(−2a3,0)时,f'(x)<0,所以函数f(x)在(−∞,−2a3),(0,+∞)上单调递增,在(−2a3,0)内单调递减;当a<0时,x∈(-∞,0)∪(−2a3,+∞)时,f′(x)>0,x∈(0,−2a3)时,f'(x)<0,所以函数f(x)在(-∞,0),(−2a3,+∞)上单调递增,在(0,−2a3)内单调递减.(2)由(1)知,函数f(x)的两个极值为f(0)=b, f(-2a3)=427a3+b,则函数f(x)有三个零点等价于f(0)·f(-2a3)=b(427a3+b)<0,从而{a>0,-427a3<b<0或{a<0,0<b<-427a3.又b=c-a,所以当a>0时,427a3−a+c>0或当a<0时,427a3-a+c<0.设g(a)=427a3-a+c,因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪(1,32)∪(32,+∞),则在(-∞,-3)上g (a )<0,且在(1,32)∪(32,+∞)上g (a )>0均恒成立, 从而g (-3)=c -1≤0,且g (32)=c -1≥0,因此c=1.此时,f (x )=x 3+ax 2+1-a=(x+1)『x 2+(a -1)x+1-a 』, 因函数有三个零点,则x 2+(a -1)x+1-a=0有两个异于-1的不等实根, 所以Δ=(a -1)2-4(1-a )=a 2+2a -3>0,且(-1)2-(a -1)+1-a ≠0, 解得a ∈(-∞,-3)∪(1,32)∪(32,+∞). 综上c=1.典例3 解 (1)因为f (x )=ln(1+x )-ln(1-x ),所以f'(x )=11+x +11−x ,f'(0)=2.又因为f (0)=0,所以曲线y=f (x )在点(0,f (0))处的切线方程为y=2x.(2)令g (x )=f (x )-2(x +x 33), 则g'(x )=f'(x )-2(1+x 2)=2x 41−x 2. 因为g'(x )>0(0<x<1),所以g (x )在区间(0,1)内单调递增.所以g (x )>g (0)=0,x ∈(0,1),即当x ∈(0,1)时,f (x )>2(x +x 33).(3)由(2)知,当k ≤2时,f (x )>k (x +x 33)对x ∈(0,1)恒成立. 当k>2时,令h (x )=f (x )-k (x +x 33), 则h'(x )=f'(x )-k (1+x 2)=kx 4−(k−2)1−x 2. 所以当0<x<√k−2k 4时,ℎ′(x)<0,因此ℎ(x)在区间(0,√k−2k 4)内单调递减. 当0<x<√k−2k 4时,h (x )<h (0)=0,即f (x )<k (x +x 33).所以当k>2时,f (x )>k (x +x 33)并非对x ∈(0,1)恒成立.综上可知,k的最大值为2.典例4解(1)梯形ABCD的面积S ABCD=2cosθ+22·sinθ=sinθcosθ+sinθ,θ∈(0,π2).体积V(θ)=10(sin θcos θ+sin θ),θ∈(0,π2).(2)V'(θ)=10(2cos2θ+cosθ-1)=10(2cos θ-1)(cos θ+1).令V'(θ)=0,得cos θ=12或cos θ=-1(舍).∵θ∈(0,π2),∴θ=π3.当θ∈(0,π3)时,12<cos θ<1,V'(θ)>0,V(θ)为增函数;当θ∈(π3,π2)时,0<cosθ<12,V'(θ)<0,V(θ)为减函数.∴当θ=π3时,体积V最大.(3)木梁的侧面积S侧=(AB+2BC+CD)·10=20(cos θ+2sinθ2+1),θ∈(0, π2).S=2S ABCD+S侧=2(sin θcos θ+sin θ)+20(cos θ+2sinθ2+1),θ∈(0, π2)..设g(θ)=cos θ+2sinθ2+1,θ∈(0, π2).∵g(θ)=-2sin2θ2+2sinθ2+2,∴当sinθ2=12,即θ=π3时,g(θ)最大.又由(2)知当θ=π3时,sin θcos θ+sin θ取得最大值,∴当θ=π3时,木梁的表面积S最大.综上,当木梁的体积V最大时,其表面积S也最大.。

专题06 导数应用(一) 2019年高考数学(理科)必考考点穿透性讲练Word版含解析

专题06 导数应用(一) 2019年高考数学(理科)必考考点穿透性讲练Word版含解析

2019年高考数学必考考点穿透性讲练06 导数的应用(一)【考点突破】:一、.考纲要求;1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次);3.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题;4.会利用导数解决某些简单的实际问题.二、题型、难度:题型:选择、填空题、解答题,分值一般在20分左右,选填难度中等偏上,解答题较难,处于压轴的位置。

三、高考真题再现:例1.(2018全国卷Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【答案】D例2.(2018全国卷II)曲线y=2ln(x+1)在点(0,0)处的切线方程为.【答案】y=2x.【解析】∵y=2ln(x+1),∴y′=,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.例3.(2018全国卷Ⅲ)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a= ﹣3 . 解析:曲线y=(ax+1)e x,可得y′=ae x+(ax+1)e x, 曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2, 可得:a+1=﹣2,解得a=﹣3. 故答案为:﹣3.例4.(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.x -y +1=0解析:∵y ′=2x -1x2,∴y ′|x =1=1,即曲线在点(1,2)处的切线的斜率k =1, ∴切线方程为y -2=x -1, 即x -y +1=0.例5.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.y =-2x -1解析:因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x ,所以f ′(x )=1x-3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1. 例6(2018新课标Ⅰ)已知函数f (x )=﹣x+alnx . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:<a ﹣2.【解答】:(1)函数的定义域为(0,+∞), 函数的导数f′(x )=﹣﹣1+=﹣,设g (x )=x 2﹣ax+1,当a ≤0时,g (x )>0恒成立,即f′(x )<0恒成立,此时函数f (x )在(0,+∞)上是减函数, 当a >0时,判别式△=a 2﹣4,①当0<a ≤4时,△≤0,即g (x )>0,即f′(x )<0恒成立,此时函数f (x )在(0,+∞)上是减函数,②当a >2时,x ,f′(x ),f (x )的变化如下表:())综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立.【模拟考场】一、 选择题1.(安徽省定远重点中学2019届上学期第一次月考)设函数,若是函数是极大值点,则函数的极小值为( )A.B. C.D.【答案】A 【解析】由题意:得a=所以,f(x)增,x时,f(x)减,故当x=2时,f(x)取得极小值f(2)=ln2-2 2.(2019届武汉部分高中高三12月联考)设函数是奇函数()的导函数,,当时,,则使得成立的的取值范围是( )A. B.C.D.【答案】B 【解析】构造新函数,,当时.所以在上单减,又,即.所以可得,此时,又为偶函数,所以在上的解集为:.故选B.3. (安徽省定远重点中学2019届上学期第一次月考)已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如图所示,则下列叙述正确的是( ) ①;②函数()f x 在x c =处取得极小值,在x e =处取得极大值; ③函数()f x 在x c =处取得极大值,在x e =处取得极小值; ④函数()f x 的最小值为()f d .A. ③B. ①②C. ③④D. ④ 【答案】A【解析】由图知,函数f(x)在增,在(c,e )上减,在(e,)上增,所以只有③正确。

2019高三数学(人教A版 文)一轮热点探究训练1 导数应用中的高考热点问题

2019高三数学(人教A版 文)一轮热点探究训练1 导数应用中的高考热点问题

热点探究训练(一) 导数应用中的高考热点问题(对应学生用书第183页)1.(2017·全国Ⅲ卷)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a -2. [解] (1)f (x )的定义域为(0,+∞), f ′(x )=1x +2ax +2a +1=(x +1)(2ax +1)x .若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增. 若a <0,则当x ∈⎝ ⎛⎭⎪⎫0,-12a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减.(2)证明:由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a .所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2,即ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0.设g (x )=ln x -x +1, 则g ′(x )=1x -1. 当x ∈(0,1)时,g ′(x )>0; 当x ∈(1,+∞)时,g ′(x )<0,所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,即f (x )≤-34a -2.2.已知函数f (x )=e x (x 2+ax -a ),其中a 是常数.(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若存在实数k ,使得关于x 的方程f (x )=k 在[0,+∞)上有两个不相等的实数根,求k 的取值范围.[解] (1)由f (x )=e x (x 2+ax -a )可得 f ′(x )=e x [x 2+(a +2)x ].2分当a=1时,f(1)=e,f′(1)=4e.所以曲线y=f(x)在点(1,f(1))处的切线方程为:y-e=4e(x-1),即y=4e x-3e. 5分(2)令f′(x)=e x[x2+(a+2)x]=0,解得x=-(a+2)或x=0. 6分当-(a+2)≤0,即a≥-2时,在区间[0,+∞)上,f′(x)≥0,所以f(x)是[0,+∞)上的增函数,所以方程f(x)=k在[0,+∞)上不可能有两个不相等的实数根.8分当-(a+2)>0,即a<-2时,f′(x),f(x)随x的变化情况如下表:由上表可知函数f(x)在[0,+∞)上的最小值为f(-(a+2))=a+4 e a+2.因为函数f(x)是(0,-(a+2))上的减函数,是(-(a+2),+∞)上的增函数,且当x≥-a时,有f (x )≥e -a (-a )>-a ,又f (0)=-A .所以要使方程f (x )=k 在[0,+∞)上有两个不相等的实数根,则k 的取值范围是⎝ ⎛⎦⎥⎤a +4e a +2,-a .12分3.(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x +a (x -1)2. (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【导学号:79170078】[解] (1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). 1分(ⅰ)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增. 3分 (ⅱ)设a <0,由f ′(x )=0得x =1或x =ln(-2a ). ①若a =-e2,则f ′(x )=(x -1)(e x -e), 所以f (x )在(-∞,+∞)上单调递增. ②若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0; 当x ∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a )),(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减.5分③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0; 当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1),(ln(-2a ),+∞)上单调递增, 在(1,ln(-2a ))上单调递减.7分(2)(ⅰ)设a >0,则由(1)知,f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a2(b -2)+a (b -1)2=a ⎝ ⎛⎭⎪⎫b 2-32b >0,所以f (x )有两个零点.9分(ⅱ)设a =0,则f (x )=(x -2)e x ,所以f (x )只有一个零点.(ⅲ)设a <0,若a ≥-e2,则由(1)知,f (x )在(1,+∞)上单调递增.又当x ≤1时f (x )<0,故f (x )不存在两个零点;若a <-e2,则由(1)知,f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点.综上,a 的取值范围为(0,+∞).12分 4.(2017·郑州二次质量预测)已知函数f (x )=e x x -m.(1)讨论函数y =f (x )在x ∈(m ,+∞)上的单调性;(2)若m ∈⎝ ⎛⎦⎥⎤0,12,则当x ∈[m ,m +1]时,函数y =f (x )的图象是否总在函数g (x )=x 2+x 图象上方?请写出判断过程.[解] (1)f ′(x )=e x (x -m )-e x(x -m )2=e x (x -m -1)(x -m )2, 2分当x ∈(m ,m +1)时,f ′(x )<0;当x ∈(m +1,+∞)时,f ′(x )>0, 所以函数f (x )在(m ,m +1)上单调递减,在(m +1,+∞)上单调递增. 4分 (2)由(1)知f (x )在(m ,m +1)上单调递减, 所以其最小值为f (m +1)=e m +1.5分因为m ∈⎝ ⎛⎦⎥⎤0,12,g (x )在x ∈[m ,m +1]最大值为(m +1)2+m +1.所以下面判断f (m +1)与(m +1)2+m +1的大小,即判断e x 与(1+x )x 的大小,其中x =m +1∈⎝ ⎛⎦⎥⎤1,32.令m (x )=e x -(1+x )x ,m ′(x )=e x -2x -1, 令h (x )=m ′(x ),则h ′(x )=e x -2,因为x =m +1∈⎝ ⎛⎦⎥⎤1,32,所以h ′(x )=e x -2>0,m ′(x )单调递增.8分所以m ′(1)=e -3<0,m ′⎝ ⎛⎭⎪⎫32=e 32-4>0,故存在x 0∈⎝ ⎛⎦⎥⎤1,32,使得m ′(x 0)=e x 0-2x 0-1=0,所以m (x )在(1,x 0)上单调递减,在⎝ ⎛⎭⎪⎫x 0,32上单调递增,所以m (x )≥m (x 0)=e x 0-x 20-x 0=2x 0+1-x 20-x 0=-x 20+x 0+1,所以当x 0∈⎝ ⎛⎦⎥⎤1,32时,m (x 0)=-x 20+x 0+1>0, 即e x >(1+x )x ,也即f (m +1)>(m +1)2+m +1, 所以函数y =f (x )的图象总在函数g (x )=x 2+x 图象上方.12分。

高考数学一轮总复习解答大题专项训练六大专题

高考数学一轮总复习解答大题专项训练六大专题

高考大题专项(一) 导数的综合应用突破1导数与函数的单调性1.已知函数f(x)=x3-a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)略.2.已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)略.3.已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)略.4.(2019山东潍坊三模,21)已知函数f(x)=x2+a ln x-2x(a∈R).(1)求f(x)的单调递增区间;(2)略.5.设函数f(x)=(x-1)e x-x2(其中k∈R).(1)求函数f(x)的单调区间;(2)略.6.(2019河北衡水同卷联考,21)已知函数f(x)=x2e ax-1.(1)讨论函数f(x)的单调性;(2)略.突破2利用导数研究函数的极值、最值1.已知函数f(x)=ln x-ax(a∈R).(1)当a=时,求f(x)的极值;(2)略.2.(2019河北衡水深州中学测试)讨论函数f(x)=ln x-ax(a∈R)在定义域内的极值点的个数.3.设函数f(x)=2ln x-x2+ax+2.(1)当a=3时,求f(x)的单调区间和极值;(2)略.4.已知函数f(x)=.(1)当a=1时,判断f(x)有没有极值点?若有,求出它的极值点;若没有,请说明理由;(2)略.5.(2019湖北八校联考二,21)已知函数f(x)=ln x+ax2+bx.(1)函数f(x)在点(1,f(1))处的切线的方程为2x+y=0,求a,b的值,并求函数f(x)的最大值;(2)略.6.(2019广东广雅中学模拟)已知函数f(x)=ax+ln x,其中a为常数.(1)当a=-1时,求f(x)的最大值;(2)若f(x)在区间(0,e]上的最大值为-3,求a的值.突破3导数在不等式中的应用1.(2019湖南三湘名校大联考一,21)已知函数f(x)=x ln x.(1)略;(2)当x≥时,f(x)≤ax2-x+a-1,求实数a的取值范围.2.已知函数f(x)=a e x-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.3.已知函数f(x)=e x+ax+ln(x+1)-1.(1)若x≥0,f(x)≥0恒成立,求实数a的取值范围.(2)略.4.函数f(x)=(x-2)e x+ax2-ax.(1)略;(2)设a=1,当x≥0时,f(x)≥kx-2,求k的取值范围.5.已知函数f(x)=.(1)略;(2)若f(x)<x+1在定义域上恒成立,求a的取值范围.6.已知x1,x2(x1<x2)是函数f(x)=e x+ln(x+1)-ax(a∈R)的两个极值点.(1)求a的取值范围;(2)求证:f(x2)-f(x1)<2ln a.突破4导数与函数的零点1.已知函数f(x)=x2-m ln x.若m≥1,令F(x)=f(x)-x2+(m+1)x,试讨论函数F(x)的零点个数.2.(2019河北唐山三模,21)已知函数f(x)=x ln x-a(x2-x)+1,函数g(x)=f'(x).(1)若a=1,求f(x)的极大值;(2)当0<x<1时,g(x)有两个零点,求a的取值范围.3.(2019河南开封一模,21)已知函数f(x)=.(1)略;(2)若f(1)=1,且方程f(x)=1在区间(0,1)内有解,求实数a的取值范围.4.已知函数f(x)=ln x,g(x)=x3+2(1-a)x2-8x+8a+7.(1)若曲线y=g(x)在点(2,g(2))处的切线方程是y=ax-1,求函数g(x)在[0,3]上的值域;(2)当x>0时,记函数h(x)=若函数y=h(x)有三个零点,求实数a的取值范围.5.已知f(x)=x ln x.(1)求f(x)的极值;(2)若f(x)-ax x=0有两个不同解,求实数a的取值范围.6.(2019河北唐山三模,21)已知函数f(x)=x ln x-x2-ax+1,a>0,函数g(x)=f'(x).(1)若a=ln 2,求g(x)的最大值;(2)证明:f(x)有且仅有一个零点.参考答案高考大题专项(一) 导数的综合应用突破1导数与函数的单调性1.解(1)当a=3时,f(x)=x3-3x2-3x-3,f'(x)=x2-6x-3.令f'(x)=0,解得x=3-2或x=3+2当x∈(-∞,3-2)∪(3+2,+∞)时,f'(x)>0;当x∈(3-2,3+2)时,f'(x)<0.故f(x)在(-∞,3-2),(3+2,+∞)上单调递增,在(3-2,3+2)上单调递减.2.证明(1)当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g'(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g'(x)<0,所以g(x)在(0,+∞)上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.3.解(1)由题意知f'(x)=(x-k+1)e x.令f'(x)=0,得x=k-1.当x∈(-∞,k-1)时,f'(x)<0,当x∈(k-1,+∞)时,f'(x)>0.所以f(x)的单调递减区间是(-∞,k-1),单调递增区间是(k-1,+∞).4.解(1)函数f(x)的定义域为(0,+∞),f'(x)=2x+-2=,令2x2-2x+a=0,Δ=4-8a=4(1-2a),若a,则Δ≤0,f'(x)≥0在(0,+∞)上恒成立,函数f(x)在(0,+∞)上单调递增;若a<,则Δ>0,方程2x2-2x+a=0,两根为x1=,x2=,当a≤0时,x2>0,x∈(x2,+∞),f'(x)>0,f(x)单调递增;当0<a<时,x1>0,x2>0,x∈(0,x1),f'(x)>0,f(x)单调递增,x∈(x2,+∞),f'(x)>0,f(x)单调递增.综上,当a时,函数f(x)单调递增区间为(0,+∞),当a≤0时,函数f(x)单调递增区间为,+∞,当0<a<时,函数f(x)单调递增区间为0,,,+∞.5.解(1)函数f(x)的定义域为(-∞,+∞),f'(x)=e x+(x-1)e x-kx=x e x-kx=x(e x-k),①当k≤0时,令f'(x)>0,解得x>0,∴f(x)的单调递减区间是(-∞,0),单调递增区间是(0,+∞).②∵当0<k<1时,令f'(x)>0,解得x<ln k或x>0,∴f(x)在(-∞,ln k)和(0,+∞)上单调递增,在(ln k,0)上单调递减.③当k=1时,f'(x)≥0,f(x)在(-∞,+∞)上单调递增.④当k>1时,令f'(x)>0,解得x<0或x>ln k,所以f(x)在(-∞,0)和(ln k,+∞)上单调递增,在(0,ln k)上单调递减.6.解(1)函数f(x)的定义域为R.f'(x)=2x e ax+x2·a e ax=x(ax+2)e ax.当a=0时,f(x)=x2-1,则f(x)在区间(0,+∞)内单调递增,在区间(-∞,0)内单调递减;当a>0时,f'(x)=ax x+e ax,令f'(x)>0得x<-或x>0,令f'(x)<0得-<x<0,所以f(x)在区间-∞,-内单调递增,在区间-,0内单调递减,在区间(0,+∞)内单调递增;当a<0时,f'(x)=ax x+e ax,令f'(x)>0得0<x<-,令f'(x)<0得x>-或x<0,所以f(x)在区间(-∞,0)内单调递减,在区间0,-内单调递增,在区间-,+∞内单调递减.突破2利用导数研究函数的极值、最值1.解(1)当a=时,f(x)=ln x-x,函数的定义域为(0,+∞),f'(x)=,令f'(x)=0,得x=2,于是当x变化时,f'(x),f(x)的变化情况如下表:x(0,2) 2 (2,+∞)f'(x) +0 -lnf(x) ↗↘2-1故f(x)的极大值为ln2-1,无极小值.2.解函数的定义域为(0,+∞),f'(x)=-a=(x>0).当a≤0时,f'(x)>0在(0,+∞)上恒成立,故函数f(x)在(0,+∞)上单调递增,此时函数f(x)在定义域上无极值点;当a>0时,若x∈0,,则f'(x)>0,若x∈,+∞,则f'(x)<0,故函数f(x)在x=处取极大值.综上可知,当a≤0时,函数f(x)无极值点,当a>0时,函数f(x)有一个极大值点.3.解(1)f(x)的定义域为(0,+∞).当a=3时,f(x)=2ln x-x2+3x+2,所以f'(x)=-2x+3=,令f'(x)==0,得-2x2+3x+2=0,因为x>0,所以x=2.f(x)与f'(x)在区间(0,+∞)上的变化情况如下:x(0,2) 2 (2,+∞)f'(x) +0 -2lnf(x) ↗↘2+4所以f(x)的单调递增区间为(0,2),单调递减区间为(2,+∞).f(x)的极大值为2ln2+4,无极小值.4.解(1)函数f(x)=,则x>0且x≠1,即函数的定义域为(0,1)∪(1,+∞).当a=1时,f(x)=,则f'(x)=,令g(x)=x-ln x-1,则g'(x)=1-,①当x∈(0,1)时,g'(x)<0,g(x)单调递减,g(x)>g(1)=0,∴f'(x)>0,f(x)在区间(0,1)上单调递增,所以无极值点;②当x∈(1,+∞)时,g'(x)>0,g(x)单调递增,g(x)>g(1)=0,∴f'(x)>0,f(x)在区间(1,+∞)上单调递增,所以无极值点.综上,当a=1时,f(x)无极值点.5.解(1)因为f(x)=ln x+ax2+bx,所以f'(x)=+2ax+b,则在点(1,f(1))处的切线的斜率为f'(1)=1+2a+b,由题意可得,1+2a+b=-2,且a+b=-2,解得a=b=-1.所以f'(x)=-2x-1==-,由f'(x)=0,可得x=(x=-1舍去),当0<x<时,f'(x)>0,f(x)单调递增;当x>时,f'(x)<0,f(x)单调递减,故当x=时,f(x)取得极大值,且为最大值,f=-ln2-故f(x)的最大值为-ln2-6.解(1)易知f(x)的定义域为(0,+∞),当a=-1时,f(x)=-x+ln x,f'(x)=-1+,令f'(x)=0,得x=1.当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.∴f(x)max=f(1)=-1.∴当a=-1时,函数f(x)的最大值为-1.(2)f'(x)=a+,x∈(0,e],则,+∞.①若a≥-,则f'(x)≥0,从而f(x)在(0,e]上单调递增,∴f(x)max=f(e)=a e+1≥0,不合题意.②若a<-,令f'(x)>0得,a+>0,又x∈(0,e],解得0<x<-;令f'(x)<0得,a+<0,又x∈(0,e],解得-<x≤e.从而f(x)在0,-上单调递增,在-,e上单调递减,∴f(x)max=f-=-1+ln-.令-1+ln-=-3,得ln-=-2,即a=-e2.∵-e2<-,∴a=-e2符合题意.故实数a的值为-e2.突破3导数在不等式中的应用1.解(2)由已知得a,设h(x)=,则h'(x)=∵y=x ln x+ln x+2是增函数,且x,∴y≥--1+2>0,∴当x∈,1时,h'(x)>0;当x∈(1,+∞)时,h'(x)<0,∴h(x)在x=1处取得最大值,h(1)=1,∴a≥1.故a的取值范围为[1,+∞).2.(1)解f(x)的定义域为(0,+∞),f'(x)=a e x-由题设知,f'(2)=0,所以a=从而f(x)=e x-ln x-1,f'(x)=e x-当0<x<2时,f'(x)<0;当x>2时,f'(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)证明当a时,f(x)-ln x-1.设g(x)=-ln x-1,则g'(x)=当0<x<1时,g'(x)<0;当x>1时,g'(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当a时,f(x)≥0.3.解(1)若x≥0,则f'(x)=e x++a,令g(x)=e x++a,则g'(x)=e x-,g'(x)在[0,+∞)上单调递增,则g'(x)≥g'(0)=0,则f'(x)在[0,+∞)上单调递增,f'(x)≥f'(0)=a+2.①当a+2≥0,即a≥-2时,f'(x)≥0,则f(x)在[0,+∞)上单调递增,此时f(x)≥f(0)=0,满足题意.②当a<-2时,因为f'(x)在[0,+∞)上单调递增,f'(0)=2+a<0,当x→+∞时,f'(x)>0.所以∃x0∈(0,+∞),使得f'(x0)=0.则当0<x<x0时,f'(x)<f'(x0)=0,∴函数f(x)在(0,x0)上单调递减.∴f(x0)<f(0)=0,不合题意,舍去.综上所述,实数a的取值范围是[-2,+∞).4.解(2)令g(x)=f(x)-kx+2=(x-2)e x+x2-x-kx+2,则g'(x)=(x-1)e x+x-1-k,令h(x)=(x-1)e x+x-1-k,则h'(x)=x e x+1,当x≥0时,h'(x)=x e x+1>0,h(x)单调递增.∴h(x)≥h(0)=-2-k,即g'(x)≥-2-k.当-2-k≥0,即k≤-2时,g'(x)≥0,g(x)在(0,+∞)上单调递增,g(x)≥g(0)=0,不等式f(x)≥kx-2恒成立.当-2-k<0,即k>-2时,g'(x)=0有一个解,设为x0,∴当x∈(0,x0)时,g'(x)<0,g(x)为单调递减;当x∈(x0,+∞)时,g'(x)>0,g(x)单调递增,则g(x0)<g(0)=0,∴当x≥0时,f(x)≥kx-2不恒成立.综上所述,k的取值范围是(-∞,-2].5.解(2)由f(x)<x+1,得<x+1(x>0且x≠1),即a ln x-x+<0.令h(x)=a ln x-x+,则h'(x)=-1-令g(x)=x2-ax+1.①当Δ=a2-4≤0,即-2≤a≤2时,x2-ax+1≥0.∴当x∈(0,1)时,h'(x)≤0,h(x)单调递减,h(x)>h(1)=0,a ln x-x+<0成立.当x∈(1,+∞)时,h'(x)≤0,h(x)单调递减,h(x)<h(1)=0,a ln x-x+<0成立.故-2≤a≤2符合题意.②当Δ=a2-4>0,即a<-2或a>2时,设g(x)=x2-ax+1=0的两根为x1,x2(x1<x2).当a>2时,x1+x2=a>0,x1x2=1,∴0<x1<1<x2.由h'(x)>0,得x2-ax+1<0,解集为(x1,1)∪(1,x2),∴h(x)在(x1,1)上单调递增,h(x1)<h(1)=0,a ln x1-x1+>0,∴a>2不合题意.当a<-2时,g(x)的图象的对称轴x=<-1,g(x)在(0,+∞)上单调递增,g(x)>g(0)=1>0, ∴当x∈(0,1)时,h'(x)≤0,h(x)单调递减,h(x)>h(1)=0,a ln x-x+<0成立.当x∈(1,+∞)时,h'(x)≤0,h(x)单调递减,h(x)<h(1)=0,a ln x-x+<0成立.综上,a的取值范围是(-∞,2].6.(1)解由题意得f'(x)=e x+-a,x>-1,令g(x)=e x+-a,x>-1,则g'(x)=e x-,令h(x)=e x-,x>-1,则h'(x)=e x+>0,∴h(x)在(-1,+∞)上单调递增,且h(0)=0.当x∈(-1,0)时,g'(x)=h(x)<0,g(x)单调递减,当x∈(0,+∞)时,g'(x)=h(x)>0,g(x)单调递增.∴g(x)≥g(0)=2-a.①当a≤2时,f'(x)=g(x)>g(0)=2-a≥0.f(x)在(-1,+∞)上单调递增,此时无极值;②当a>2时,∵g-1=>0,g(0)=2-a<0,∴∃x1∈-1,0,g(x1)=0,当x∈(-1,x1)时,f'(x)=g(x)>0,f(x)单调递增;当x∈(x1,0)时,f'(x)=g(x)<0,f(x)单调递减,∴x=x1是f(x)的极大值点.∵g(ln a)=>0,g(0)=2-a<0,∴∃x2∈(0,ln a),g(x2)=0,当x∈(0,x2)时,f'(x)=g(x)<0,f(x)单调递减;当x∈(x2,+∞)时,f'(x)=g(x)>0,f(x)单调递增,∴x=x2是f(x)的极小值点.综上所述,a的取值范围为(2,+∞).(2)证明由(1)得a∈(2,+∞),-1<x1<0<x2<ln a,且g(x1)=g(x2)=0,∴x2-x1>0,<x1+1<1,1<x2+1<1+ln a,,-a<0,1<<a(1+ln a)<a2,∴f(x2)-f(x1)=+ln-a(x2-x1)=(x2-x1)-a+ln<ln a2=2ln a.突破4导数与函数的零点1.解F(x)=f(x)-x2+(m+1)x=-x2+(m+1)x-m ln x(x>0).易得F'(x)=-x+m+1-=-①若m=1,则F'(x)≤0,函数F(x)为减函数,∵F(1)=>0,F(4)=-ln4<0,∴F(x)有唯一零点;②若m>1,则当0<x<1或x>m时,F'(x)<0,当1<x<m时,F'(x)>0,所以函数F(x)在(0,1)和(m,+∞)上单调递减,在(1,m)上单调递增, ∵F(1)=m+>0,F(2m+2)=-m ln(2m+2)<0,所以F(x)有唯一零点.综上,当m≥1时,函数F(x)有唯一零点.2.解(1)f(x)=x ln x-x2+x+1(x>0),g(x)=f'(x)=ln x-2x+2,g'(x)=-2=,当x∈0,时,g'(x)>0,g(x)单调递增;当x∈,+∞时,g'(x)<0,g(x)单调递减.又g(1)=f'(1)=0,则当x∈,1时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.故当x=1时,f(x)取得极大值f(1)=1.(2)g(x)=f'(x)=ln x+1-2ax+a,g'(x)=-2a=,①若a≤0,则g'(x)>0,g(x)单调递增,至多有一个零点,不合题意.②若a>0,则当x∈0,时,g'(x)>0,g(x)单调递增;当x∈,+∞时,g'(x)<0,g(x)单调递减.则g≥g=ln+1=ln>0.不妨设g(x1)=g(x2),x1<x2,则0<x1<<x2<1.一方面,需要g(1)<0,得a>1.另一方面,由(1)得,当x>1时,ln x<x-1<x,则x<e x,进而,有2a<e2a,则e-2a<,且g(e-2a)=-2a e-2a+1-a<0,故存在x1,使得0<e-2a<x1<综上,a的取值范围是(1,+∞).3.解(2)由f(1)=1得b=e-1-a,由f(x)=1得e x=ax2+bx+1,设g(x)=e x-ax2-bx-1,则g(x)在(0,1)内有零点,设x0为g(x)在(0,1)内的一个零点, 由g(0)=g(1)=0知g(x)在(0,x0)和(x0,1)上不单调.设h(x)=g'(x),则h(x)在(0,x0)和(x0,1)上均存在零点,即h(x)在(0,1)上至少有两个零点.g'(x)=e x-2ax-b,h'(x)=e x-2a,当a时,h'(x)>0,h(x)在(0,1)上单调递增,h(x)不可能有两个及以上零点,当a时,h'(x)<0,h(x)在(0,1)上单调递减,h(x)不可能有两个及以上零点,当<a<时,令h'(x)=0得x=ln(2a)∈(0,1),∴h(x)在(0,ln(2a))上单调递减,在(ln(2a),1)上单调递增,h(x)在(0,1)上存在最小值h(ln(2a)),若h(x)有两个零点,则有h(ln(2a))<0,h(0)>0,h(1)>0,h(ln(2a))=3a-2a ln(2a)+1-e<a<,设φ(x)=x-x ln x+1-e(1<x<e),则φ'(x)=-ln x,令φ'(x)=0,得x=,当1<x<时,φ'(x)>0,φ(x)单调递增;当<x<e时,φ'(x)<0,φ(x)单调递减.∴φmax(x)=φ()=+1-e<0,∴h(ln(2a))<0恒成立.由h(0)=1-b=a-e+2>0,h(1)=e-2a-b>0,得e-2<a<1.综上,a的取值范围为(e-2,1).4.解(1)因为g(x)=x3+2(1-a)x2-8x+8a+7,所以g'(x)=2ax2+4(1-a)x-8,所以g'(2)=0.所以a=0,即g(x)=2x2-8x+7.g(0)=7,g(3)=1,g(2)=-1.所以g(x)在[0,3]上的值域为[-1,7].(2)当a=0时,g(x)=2x2-8x+7,由g(x)=0,得x=2±(1,+∞),此时函数y=h(x)有三个零点,符合题意.当a>0时,g'(x)=2ax2+4(1-a)x-8=2a(x-2)x+.由g'(x)=0,得x=2.当x∈(0,2)时,g'(x)<0;当x∈(2,+∞)时,g'(x)>0.若函数y=h(x)有三个零点,则需满足g(1)>0且g(2)<0,解得0<a<当a<0时,g'(x)=2ax2+4(1-a)x-8=2a(x-2)x+.由g'(x)=0,得x1=2,x2=-①当-<2,即a<-1时,因为g(x)极大值=g(2)=a-1<0,此时函数y=h(x)至多有一个零点,不符合题意;②当-=2,即a=-1时,因为g'(x)≤0,此时函数y=h(x)至多有两个零点,不符合题意;③当->2,即-1<a<0时.若g(1)<0,则函数y=h(x)至多有两个零点,不符合题意;若g(1)=0,则a=-,因为g-=8a3+7a2+8a+,所以g->0,此时函数y=h(x)有三个零点,符合题意;若g(1)>0,则-<a<0,由g-=8a3+7a2+8a+.记φ(a)=8a3+7a2+8a+,则φ'(a)>0,所以φ(α)>φ->0,此时函数y=h(x)有四个零点,不符合题意.综上所述,满足条件的实数a∈-∪0,.5.解(1)f(x)的定义域是(0,+∞),f'(x)=ln x+1,令f'(x)>0,解得x>,令f'(x)<0,解得0<x<,故f(x)在0,上单调递减,在,+∞上单调递增,故x=时,f(x)极小值=f=-(2)记t=x ln x,t≥-,则e t=e x ln x=(e ln x)x=x x,故f(x)-ax x=0,即t-a e t=0,a=,令g(t)=,g'(t)=,令g'(t)>0,解得-t<1,令g'(t)<0,解得t>1,故g(t)在-,1上单调递增,在(1,+∞)上单调递减,故g(t)max=g(1)=,由t=x ln x,t≥-,a=g(t)=的图象和性质有:①0<a<,y=a和g(t)有两个不同交点(t1,a),(t2,a),且0<t1<1<t2,t1=x ln x,t2=x ln x各有一解,即f(x)-ax x=0有2个不同解.②-<a<0,y=a和g(t)=仅有1个交点(t3,a),且-<t3<0,t3=x ln x有2个不同的解,即f(x)-ax x=0有两个不同解.③a取其他值时,f(x)-ax x=0最多1个解.综上,a的范围是-,0∪0,.6.(1)解g(x)=f'(x)=ln x+1-x-a,g'(x)=,当x∈(0,2)时,g'(x)>0,g(x)单调递增;当x∈(2,+∞)时,g'(x)<0,g(x)单调递减.故当x=2时,g(x)的最大值为g(2)=ln2-a.若a=ln2,g(x)取得最大值g(2)=0.(2)证明①若a=ln2,由(1)知,当x∈(0,+∞)时,f'(x)≤0,且仅当x=2时,f'(x)=0.此时f(x)单调递减,且f(2)=0,故f(x)只有一个零点x0=2.②若a>ln2,由(1)知,当x∈(0,+∞)时,f'(x)=g(x)<0,f(x)单调递减.此时,f(2)=2(ln2-a)<0,注意到x1=<1,(x ln x)'=ln x+1,故x ln x≥-,f(x1)=x1ln x1->->0,故f(x)仅存在一个零点x0∈(x1,2).③若0<a<ln2,则g(x)的最大值g(2)=ln2-a>0,即f'(2)>0,注意到f'=--a<0,f'(8)=ln8-3-a<0,故存在x2∈,2,x3∈(2,8),使得f'(x2)=f'(x3)=0.则当x∈(0,x2)时,f'(x)<0,f(x)单调递减;当x∈(x2,x3)时,f'(x)>0,f(x)单调递增;当x∈(x3,+∞)时,f'(x)<0,f(x)单调递减.故f(x)有极小值f(x2),有极大值f(x3).由f'(x2)=0得ln x2+1-x2-a=0,故f(x2)=x2-12>0,则f(x3)>0.存在实数t∈(4,16),使得ln t-t=0,且当x>t时,ln x-x<0,记x4=max,则f(x4)=x4ln x4-x4-ax4+1≤0,故f(x)仅存在一个零点x0∈(x3,x4].综上,f(x)有且仅有一个零点.高考大题专项(二) 三角函数与解三角形1.(2019浙江杭州检测)如图是f(x)=2sin(ωx+φ)0<ω<2π,-<φ<的图象,A,B,D为函数图象与坐标轴的交点,直线AB与f(x)交于C,|AO|=1,2|AD|2+2|CD|2=4+|AC|2.(1)求φ的值;(2)求tan∠DAC的值.2.(2019天津和平区二模)已知函数f(x)=cos x(sin x-cos x),x∈R.(1)求f(x)的最小正周期和最大值;(2)讨论f(x)在区间上的单调性.3.(2019湖南株洲二模)如图,在四边形ABCD中,∠ADC=,AD=3,sin∠BCD=,连接BD,3BD=4BC.(1)求∠BDC的值;(2)若BD=,∠AEB=,求△ABE面积的最大值.4.在△ABC中,AB=6,AC=4.(1)若sin B=,求△ABC的面积;(2)若点D在BC边上且BD=2DC,AD=BD,求BC的长.5.(2019河北石家庄三模)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若10cos B cos C=-1,a=,求△ABC的周长.6.(2019上海杨浦区二模)已知函数f(x)=(1+tan x)·sin 2x.(1)求f(x)的定义域;(2)求函数F(x)=f(x)-2在区间(0,π)内的零点.参考答案高考大题专项(二) 三角函数与解三角形1.解(1)由f(x)=2sin(ωx+φ)0<ω<2π,-<φ<的图象,A,B,D为函数图象与坐标轴的交点,直线AB与f(x)交于C,|AO|=1,可得1=2sinφ,所以φ=(2)如图,由三角函数图形的性质,可知四边形AECD是平行四边形,可得2|AD|2+2|CD|2=4+|AC|2=|ED|2+|AC|2,解得|ED|=2,所以T=2,则ω=π,所以f(x)=2sinπx+,所以B,0,D,0,k AC=-,k AD=-,所以tan∠DAC=2.解(1)由题意,得f(x)=cos x sin x-cos2x=sin2x-(1+cos2x)=sin2x-cos2x-=sin2x--所以f(x)的最小正周期T==π,其最大值为1-(2)令z=2x-,则函数y=2sin z的单调递增区间是-+2kπ,+2kπ,k∈Z.由-+2kπ≤2x-+2kπ,得-+kπ≤x+kπ,k∈Z.设A=,B=x-+kπ≤x+kπ,k∈Z,易知A∩B=.所以,当x∈时,f(x)在区间上单调递增;在区间上单调递减.3.解(1)在△BCD中,由正弦定理得,∴sin∠BDC=∵3BD=4BC,∴BD>BC,∴∠BDC为锐角,∴∠BDC=(2)在△ABD中,AD=3,BD=,∠ADB=,∴AB==2在△ABE中,由余弦定理得AB2=AE2+BE2-2AE·BE·cos,∴12=AE2+BE2-AE·BE≥2AE·BE-AE·BE=AE·BE,当且仅当AE=BE时等号成立, ∴AE·BE≤12,∴S△ABE=AE·BE·sin12=3,即△ABE面积的最大值为34.解(1)由正弦定理得,所以sin C=1,∠C=,所以BC==2,所以S=2×4=4(2)设DC=x,则BD=2x,由余弦定理可得=-,解得x=,所以BD=3DC=55.解(1)由三角形的面积公式可得S△ABC=ac sin B=,∴2c sin B sin A=a,由正弦定理可得2sin C sin B sin A=sin A,∵sin A≠0,∴sin B sin C=;(2)∵10cos B cos C=-1,∴cos B cos C=-,∴cos(B+C)=cos B cos C-sin B sin C=-,∴cos A=,sin A=,则由bc sin A=,可得bc=,由b2+c2-a2=2bc cos A,可得b2+c2=,∴(b+c)2==7,可得b+c=,经检验符合题意,∴三角形的周长a+b+c=6.解(1)由正切函数的性质可求f(x)的定义域为(2)∵f(x)=1+·2sin x cos x=sin2x+2sin2x=sin2x-cos2x+1=sin2x-+1,∴F(x)=f(x)-2=sin2x--1=0,解得2x-=2kπ+,或2x-=2kπ+,k∈Z,即x=kπ+,或x=kπ+,k∈Z,又x∈(0,π),∴k=0时,x=,或x=,故F(x)在(0,π)内的零点为x=,或x=高考大题专项(三) 数列1.(2019河南新乡三模,17)在数列{a n}中,a1=1,且a n,2n,a n+1成等比数列.(1)求a2,a3,a4;(2)求数列{a2n}的前n项和S n.2.在等比数列{a n}中,a1=1,a5=4a3.(1)求数列{a n}的通项公式;(2)记S n为数列{a n}的前n项和,若S m=63,求m.3.若数列{a n}的前n项和为S n,且a1=1,a2=2.(S n+1)·(S n+2+1)=(S n+1+1)2.(1)求S n;(2)记数列的前n项和为T n,证明:1≤T n≤2.4.设数列{a n}满足a1=2,-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.5.已知数列{a n}中,a1=5且a n=2a n-1+2n-1(n≥2且n∈N*).(1)求a2,a3的值;(2)是否存在实数λ,使得数列为等差数列?若存在,求出λ的值;若不存在,请说明理由.6.(2019天津,文18)设{a n}是等差数列,{b n}是等比数列,公比大于0.已知a1=b1=3,b2=a3,b3=4a2+3.(1)求{a n}和{b n}的通项公式;(2)设数列{c n}满足c n=求a1c1+a2c2+…+a2n c2n(n∈N*).参考答案高考大题专项(三) 数列1.解(1)∵a n,2n,a n+1成等比数列,∴a n a n+1=(2n)2=4n.∵a1=1,∴a2==4,同理得a3=4,a4=16.(2)∵a n a n+1=(2n)2=4n,=4,则数列{a2n}是首项为4,公比为4的等比数列.故S n=2.解(1)设数列{a n}的公比为q,由题设得a n=q n-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故a n=(-2)n-1或a n=2n-1.(2)若a n=(-2)n-1,则S n=由S m=63得(-2)m=-188,此方程没有正整数解.若a n=2n-1,则S n=2n-1.由S m=63得2m=64,解得m=6.综上可得m=6.3.(1)解由题意有=…=,所以数列{S n+1}是等比数列.又S1+1=a1+1=2,S2+1=a1+a2+1=4,所以=2,数列{S n+1}是首项为2,公比为2的等比数列.所以S n+1=2×2n-1=2n,所以S n=2n-1.(2)证明由(1)知,n≥2时,S n=2n-1,S n-1=2n-1-1,两式相减得a n=2n-1.n=1时,a1=1也满足a n=2n-1,所以数列{a n}的通项公式为a n=2n-1(n∈N*).所以(n∈N*).所以T n=+…+=1++…+=2-因为n∈N*,所以0<1, 所以-1≤-<0.所以1≤2-<2.4.解(1)由已知a n+1-a n=3·22n-1,所以a n+1=[(a n+1-a n)+(a n-a n-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1.当n=1时,a1=2也满足上式,所以数列{a n}的通项公式a n=22n-1.(2)由b n=na n=n·22n-1知,S n=1·2+2·23+3·25+…+n·22n-1. ①22·S n=1·23+2·25+3·27+…+n·22n+1. ②①-②得(1-22)S n=2+23+25+…+22n-1-n·22n+1.即S n=[(3n-1)22n+1+2].5.解(1)∵a1=5,∴a2=2a1+22-1=13,a3=2a2+23-1=33.(2)假设存在实数λ,使得数列为等差数列.设b n=,由{b n}为等差数列,则有2b n+1=b n+b n+2(n∈N*).∴2∴λ=4a n+1-4a n-a n+2=2(a n+1-2a n)-(a n+2-2a n+1)=2(2n+1-1)-(2n+2-1)=-1.综上可知,当λ=-1时,数列为首项是2,公差是1的等差数列.6.解(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.依题意,得解得故a n=3+3(n-1)=3n,b n=3×3n-1=3n.所以{a n}的通项公式为a n=3n,{b n}的通项公式为b n=3n.(2)a1c1+a2c2+…+a2n c2n=(a1+a3+a5+…+a2n-1)+(a2b1+a4b2+a6b3+…+a2n b n)=n×3+6+(6×31+12×32+18×33+…+6n×3n)=3n2+6(1×31+2×32+…+n×3n).记T n=1×31+2×32+…+n×3n,①则3T n=1×32+2×33+…+n×3n+1,②②-①得,2T n=-3-32-33-…-3n+n×3n+1=-+n×3n+1=所以a1c1+a2c2+…+a2n c2n=3n2+6T n=3n2+3(n∈N*).高考大题专项(四) 立体几何突破1空间中的平行与空间角1.(2019山东潍坊三模,18)如图,一简单几何体ABCDE的一个面ABC内接于圆O,G、H分别是AE、BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(1)证明:GH∥平面ACD;(2)若AC=BC=BE=2,求二面角O-CE-B的余弦值.2.(2019湖北八校联考一,18)如图所示,四棱锥P-ABCD中,面PAD⊥面ABCD,PA=PD=,四边形ABCD为等腰梯形,BC∥AD,BC=CD=AD=1,E为PA的中点.(1)求证:EB∥平面PCD.(2)求面PAD与平面PCD所成的二面角θ的正弦值.3.(2019安徽“江南十校”二模,18)已知多面体ABC-DEF,四边形BCDE为矩形,△ADE与△BCF为边长为2的等边三角形,AB=AC=CD=DF=EF=2.(1)证明:平面ADE∥平面BCF.(2)求BD与平面BCF所成角的正弦值.4.(2019四川宜宾二模,19)如图,四边形ABCD是菱形,EA⊥平面ABCD,EF∥AC,CF∥平面BDE,G是AB中点.(1)求证:EG∥平面BCF;(2)若AE=AB,∠BAD=60°,求二面角A-BE-D的余弦值.5.(2017全国2,理19)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.6.(2014课标全国Ⅱ,理18)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.突破2空间中的垂直与空间角1.(2018全国卷3,理19)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.2.(2019河北唐山一模,18)如图,△ABC中,AB=BC=4,∠ABC=90°,E,F分别为AB,AC边的中点,以EF为折痕把△AEF折起,使点A到达点P的位置,且PB=BE.(1)证明:BC⊥平面PBE;(2)求平面PBE与平面PCF所成锐二面角的余弦值.3.(2019河北武邑中学调研二,19)如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.4.(2019山西太原二模,18)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥AD,AD=2AB=2BC=2,△PCD是正三角形,PC⊥AC,E是PA的中点.(1)证明:AC⊥BE;(2)求直线BP与平面BDE所成角的正弦值.5.(2019山东实验等四校联考,18)如图,在直角△ABC中,B为直角,AB=2BC,E,F分别为AB,AC 的中点,将△AEF沿EF折起,使点A到达点D的位置,连接BD,CD,M为CD的中点.(1)证明:MF⊥面BCD;(2)若DE⊥BE,求二面角E-MF-C的余弦值.。

2019年高考数学考纲解读与热点难点突破专题04导数及其应用热点难点突破文含解析

2019年高考数学考纲解读与热点难点突破专题04导数及其应用热点难点突破文含解析

x1答案 A解析 因为X,所汰儿由^-/)=-rcosf=-卓$知函数g ⑴为奇函数, 所以排除B, D 选项, 当从F 轴右侧T 时,cost>0, 所以的E 故选玄xe2 .已知函数f (x ) = - + k (ln x -x ),若x = 1是函数f (x )的唯一极值点,则实数k 的取值范围是( )xA. ( -m , e ]B. ( —g, e )C.( — e ,+g )D.[ — e ,+g )答案 Ax解析由函数 f (x )= — + k ( In x — x ),xx — 1 可得 f rxr 3+ kf —1〕 x '-丿••• f (x)有唯一极值点x = 1, ••• f '( x ) = 0 有唯一根 x = 1,x• — — k = 0无根或有且仅有一个根为 x x = 1,x、r e 设 g (x ) =x, z\.则g ' xe(x)=由g '(x )>0得,g (x )在[1 , +g )上单调递增,导数及其应用1 .设函数y = x sin x + cos x 的图象在点(t , f t )处切线的斜率为 g (t ),则函数y = g (t )的图象一部分可以是()二g(x) min= g(1) = e,••• k w e,即实数k的取值范围是(―乂, e].13 •已知定义在 R 上的可导函数f (x )的导函数为f '(x ),满足f '(x )<f (x ),且f (0)=空,则不等式f (x ) 1—2e x <0的解集为()解析构造迪数訊工〉=罗, 则 g f W- -,因为C 町弓血)J 所以宅3切= 故画数訊月在R 上为海酌数,又他=弟 所M 日⑴=专=£,则不等式-^<0可化为礬4, 即呂。

”4=枣。

)丿所以Q (b 即所求不等式的解集为(0,十巧.4.若函数f (x ) = e x —x 2— ax (其中e 是自然对数的底数)的图象在x = 0处的切线方程为 y = 2x + b ,则函数H x — bg (x ) =x 在(°,+8)上的最小值为()所以 f ' (0) = 1 — a .由题意知1 — a = 2,解得a =— 1,因此f (x ) = e x — x 2+ x ,而 f (0) = 1, 于是1 = 2X 0+ b ,解得 b = 1, 因此 f! x — b M x — 1 e x — 2xg ( x ) —一 —,x xx答案 C解析因为 f '( x ) = e x — 2x — a ,2B . (0,+m ) D. ( —8,0)A . — 1B . eC . e — 2D . e答案 B令 g '(x ) = 0 得 x = 1,故g (x )在x = 1处取得极小值, 即g (x )在(0 ,+s )上的最小值为g (1) = e — 2.5.若曲线y = x — In x 与曲线y = ax 3 + x + 1在公共点处有相同的切线,则实数 2 2e e eA. 77 B . — — C . — — D. 3 3 3 答案 B解析 设两曲线的公共点为 P (m n ), m >0,1由 y = x — In x ,得 y '= 1—,x则曲线y = x — In x 在点F (m n )处的切线的方程为所以g ' (x) =x ——2 xx —m , 3 2 由 y = ax + x + 1,得 y '= 3ax +1, 则曲线y = ax 3 + x +1在点F (m n )处的切线的方程为 3 2 y — am — m- 1 = (3am +1)( x — nj , 23即 y = (3am + 1)x — 2am + 1, 所以 1 - m =讪+1, 1 — In m=— 2am + 1, 解得 6.设函数y = f (x )的导函数为f '(x ),若y = f (x )的图象在点F (1 , f (1))处的切线方程为 f (1) + f ' (1)等于() A . 4 B . 3 C . 2 D . 1 x — y + 2 = 0,则答案 A 解析 依题意有 f ' (1) = 1 ,1 — f (1) + 2= 0,即 f (1) = 3, 所以 f (1) + f ' (1) = 4. _ 3 2 2 _7.已知函数f (x ) = x + ax + bx — a — 7a 在x = 1处取得极大值10,则 的值为()ba 等于(2A —3B •- 2 、2 、 2C. — 2 或—3D. 2 或—3答案 A2解析 由题意知f '(X )= 3x + 2ax + b f ‘⑴=0, f ⑴=10,3 + 2a + b = 0, 即 1 + a +b -a 2-7a = 10,X8. 曲线f (x )=亡在x = 0处的切线方程为(A . x — y -1 = 0B . x + y +1 = 0 C. 2x — y — 1 = 0D. 2x + y + 1 = 0e ( x —2)解析 因为f '(x ) = -------------------- 2,所以f ' (0) =— 2,故在x = 0处的切线方程为 2x + y + 1 = 0,故选 D.(x — 1) 答案 D 9.曲线f (x ) = x 3+ x — 2在p o 处的切线平行于直线 y = 4x— 1,贝U p o 点的坐标为( )C. (1 , 0)和(一1 , — 4) D . (2 , 8)和(一1,— 4)解析 设p °(x 。

2019年精选高考数学 大一轮复习 人教版 第三章 导数及其应用 专题探究课一 高考中函数与导数问题的热点题型

2019年精选高考数学 大一轮复习 人教版 第三章 导数及其应用 专题探究课一 高考中函数与导数问题的热点题型

高考导航 1.函数与导数作为高中数学的核心内容,是历年高考的重点、热点,试题主要以解答题的形式命题,能力要求高,属于压轴题目;2.高考中函数与导数常涉及的问题主要有:(1)研究函数的性质(如单调性、极值、最值);(2)研究函数的零点(方程的根)、曲线的交点;(3)利用导数求解不等式问题(证明不等式、不等式的恒成立或能成立求参数的范围).热点一 利用导数研究函数的性质以含参数的函数为载体,结合具体函数与导数的几何意义,研究函数的性质,是高考的热点、重点.本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的范围.【例1】 (2015·全国Ⅱ卷)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1).探究提高 (1)判断函数的单调性,求函数的单调区间、极值等问题,最终归结到判断f ′(x )的符号问题上,而f ′(x )>0或f ′(x )<0,最终可转化为一个一元一次不等式或一元二次不等式问题.(2)若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解.【训练1】 设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在⎝ ⎛⎭⎪⎫23,+∞上存在单调递增区间,求a 的取值范围;(2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值. 解 (1)f ′(x )=-x 2+x +2a ,由题意得,f ′(x )>0在⎝ ⎛⎭⎪⎫23,+∞上有解,只需f ′⎝ ⎛⎭⎪⎫23>0,即29+2a >0,得a >-19.所以,当a >-19时,f (x )在⎝ ⎛⎭⎪⎫23,+∞上存在单调递增区间.(2)已知0<a <2,f (x )在[1,4]上取到最小值-163,而f ′(x )=-x 2+x +2a 的图象开口向下,且对称轴x =12,∴f ′(1)=-1+1+2a =2a >0,f ′(4)=-16+4+2a =2a -12<0,则必有一点x 0∈[1,4],使得f ′(x 0)=0,此时函数f (x )在[1,x 0]上单调递增,在[x 0,4]上单调递减, f (1)=-13+12+2a =16+2a >0,∴f (4)=-13×64+12×16+8a =-403+8a =-163⇒a =1.此时,由f ′(x 0)=-x 20+x 0+2=0⇒x 0=2或-1(舍去),所以函数f (x )max =f (2)=103. 热点二 利用导数解决不等式问题(教材VS 高考)导数在不等式中的应用问题是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题.归纳起来常见的命题角度有:(1)证明不等式;(2)求解不等式;(3)不等式恒(能)成立求参数. 命题角度1 证明不等式【例2-1】 (满分12分)(2017·全国Ⅲ卷)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a -2.教材探源 本题第(2)问的实质是证明ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,是不等式x -1≥ln x的变形,源于教材选修2-2 P32习题B1,是在教材基本框架e x >1+x 与x ≥1+ ln x 基础上,结合函数性质,编制的优美试题,2016年全国Ⅲ卷T 21,2017年全国Ⅲ卷T 21有异曲同工之处.满分解答 (1)解 f (x )的定义域为(0,+∞), f ′(x )=1x +2ax +2a +1=(2ax +1)(x +1)x .1分 (得分点1)若a ≥0时,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增,2分 (得分点2) 若a <0时,则当x ∈⎝ ⎛⎭⎪⎫0,-12a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝ ⎛⎭⎪⎫0,-12a 上单调递增,在⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减.5分 (得分点3)(2)证明 由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫-12a =ln ⎝ ⎛⎭⎪⎫-12a -1-14a , 所以f (x )≤-34a -2等价于ln ⎝ ⎛⎭⎪⎫-12a -1-14a ≤-34a -2,即ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,8分 (得分点4)设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0;x ∈(1,+∞)时,g ′(x )<0. 所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 10分 (得分点5) 所以当x >0时,g (x )≤0,从而当a <0时,ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0,故f (x )≤-34a -2.12分 (得分点6)❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分,如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求g (x )的最小值和不等式性质的运用. ❷得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f (x )的定义域,f ′(x )在(0,+∞)上单调性的判断;第(2)问,f (x )在x =-12a 处最值的判定,f (x )≤-34a -2等价转化为ln ⎝ ⎛⎭⎪⎫-12a +12a +1≤0等.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(1)问中,求导f ′(x )准确,否则全盘皆输,第(2)问中,准确计算f (x )在x =-12a 处的最大值.第一步:求函数f (x )的导函数f ′(x ); 第二步:分类讨论f (x )的单调性; 第三步:利用单调性,求f (x )的最大值;第四步:根据要证的不等式的结构特点,构造函数g (x ); 第五步:求g (x )的最大值,得出要证的不等式; 第六步:反思回顾,查看关键点、易错点和解题规范. 命题角度2 已知不等式恒(能)成立,求参数的 取值范围【例2-2】 (2017·全国Ⅲ卷)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.解 (1)f (x )的定义域为(0,+∞),①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,不合题意.②若a >0,由f ′(x )=1-a x =x -ax 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0; 所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增, 故x =a 是f (x )在(0,+∞)的唯一最小值点.因为f (1)=0,所以当且仅当a =1时,f (x )min =f (1)=0, 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0, 令x =1+12n ,得ln ⎝ ⎛⎭⎪⎫1+12n <12n .从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1.故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <e , 又⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+123·…·⎝ ⎛⎭⎪⎫1+12n >⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·⎝ ⎛⎭⎪⎫1+123=13564>2, ∴当n ≥3时,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n ∈(2,e),由于⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,且m ∈N *.所以整数m 的最小值为3.探究提高 “恒成立”与“存在性”问题的求解是“互补”关系,即f (x )≥g (a )对于x ∈D 恒成立,应求f (x )的最小值;若存在x ∈D ,使得f (x )≥g (a )成立,应求f (x )的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立问题,以免细节出错.【训练2】 已知函数f (x )=x -(a +1)ln x -a x (a ∈R 且a <e),g (x )=12x 2+e x -x e x .(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=(x -1)(x -a )x 2.①若a ≤1,当x ∈[1,e]时,f ′(x )≥0, 则f (x )在[1,e]上为增函数,f (x )min =f (1)=1-a . ②若1<a <e ,当x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数; 当x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数. 所以f (x )min =f (a )=a -(a +1)ln a -1. 综上,当a ≤1时,f (x )min =1-a ; 当1<a <e 时,f (x )min =a -(a +1)ln a -1;(2)由题意知:f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值. 由(1)知f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-ae ,又g ′(x )=(1-e x )x . 当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数, 则g (x )min =g (0)=1,所以e -(a +1)-ae <1,解得a >e 2-2e e +1,所以a 的取值范围为⎝⎛⎭⎪⎫e 2-2e e +1,1 . 热点三 导数与函数的零点问题导数与函数方程交汇是近年命题的热点,常转化为研究函数图象的交点问题,研究函数的极(最)值的正负,求解时应注重等价转化与数形结合思想的应用,其主要考查方式有:(1)确定函数的零点、图象交点的个数;(2)由函数的零点、图象交点的情况求参数的取值范围.【例3】 (2017·全国Ⅰ卷)已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解 (1)由于f (x )=a e 2x +(a -2)e x -x ,故f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1), ①当a ≤0时,a e x -1<0,2e x +1>0. 从而f ′(x )<0,f (x )在R 上单调递减. ②当a >0时,令f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:综上,当当a >0时,f (x )在(-∞,-ln a )上单调递减; 在(-ln a ,+∞)上单调递增.(2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a .①当a =1时,由于f (-ln a )=0,故f (x )只有一个零点; ②当a ∈(1,+∞)时,由于1-1a +ln a >0, 即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a +ln a <0,即f (-ln a )<0. 又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0, 故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln ⎝ ⎛⎭⎪⎫3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2 n 0-n 0>0. 由于ln ⎝ ⎛⎭⎪⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).探究提高 用导数研究函数的零点,一是用导数判断函数的单调性,借助零点存在性定理判断;二是将零点问题转化为函数图象的交点问题,结合函数的极值利用数形结合来解决.【训练3】 设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. (1)解 由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-kx .由f ′(x )=0,解得x =k (负值舍去). f (x )与f ′(x )在区间(0,+∞)上的情况如下:所以f (f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. (2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e. 当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0, 所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.1.(2018·咸阳调研)已知函数f (x )=x 2-ln x -ax ,a ∈R . (1)当a =1时,求f (x )的最小值; (2)若f (x )>x ,求a 的取值范围. 解 (1)当a =1时,f (x )=x 2-ln x -x , f ′(x )=(2x +1)(x -1)x(x >0).当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )的最小值为f (1)=0. (2)由f (x )>x ,x ∈(0,+∞), 得f (x )-x =x 2-ln x -(a +1)x >0.由于x >0,所以f (x )>x 等价于x -ln xx >a +1. 令g (x )=x -ln xx ,则g ′(x )=x 2-1+ln x x 2.当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.故g (x )有最小值g (1)=1.故a +1<1,a <0,即a 的取值范围是(-∞,0). 2.(2017·浙江卷)已知函数f (x )=(x -2x -1)e -x ⎝ ⎛⎭⎪⎫x ≥12.(1)求f (x )的导函数;(2)求f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围.解 (1)f ′(x )=(x -2x -1)′e -x +(x -2x -1)(e -x )′=⎝⎛⎭⎪⎫1-12x -1e -x -(x -2x -1)e -x =⎝⎛⎭⎪⎫1-12x -1-x +2x -1e -x=(1-x )(2x -1-2)e -x 2x -1⎝ ⎛⎭⎪⎫x >12. (2)令f ′(x )=(1-x )(2x -1-2)e -x2x -1=0,解得x =1或52.当x 变化时,f (x ),f ′(x )的变化如下表:又f ⎝ ⎛⎭⎪⎫12=12e -2,f (1)=0,f ⎝ ⎛⎭⎪⎫52=12e -2,f (x )=12(2x +1-1)2e -x ≥0,则f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的最大值为12e -12.最小值为0.综上,f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e -12.3.设f (x )=e x (ln x -a )(e 是自然对数的底数,e =2.71 828…). (1)若y =f (x )在x =1处的切线方程为y =2e x +b ,求a ,b 的值; (2)若函数f (x )在区间⎣⎢⎡⎦⎥⎤1e ,e 上单调递减,求实数a 的取值范围.解 (1)因为f ′(x )=e x (ln x -a )+e x ·1x =e x ⎝ ⎛⎭⎪⎫ln x +1x -a ,所以由题意,得f ′(1)=e(1-a )=2e , 解得a =-1.所以f (1)=e(ln 1-a )=e ,由切点(1,e)在切线y =2e x +b 上,得e =2e +b ,b =-e ,故a =-1,b =-e.(2)由题意可得f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x +1x -a ≤0在⎣⎢⎡⎦⎥⎤1e ,e 上恒成立. 因为e x >0,所以只需ln x +1x -a ≤0,即a ≥ln x +1x 在⎣⎢⎡⎦⎥⎤1e ,e 上恒成立. 令g (x )=ln x +1x ,因为g ′(x )=1x -1x 2=x -1x 2,由g ′(x )=0,得x =1.当x 变化时,g ′(x ),g (x )的变化情况如下:g ⎝ ⎛⎭⎪⎫1e =ln 1e +e =e -1,g (e)=1+1e , 因为e -1>1+1e ,所以g (x )max =g ⎝ ⎛⎭⎪⎫1e =e -1,所以a ≥e -1. 故实数a 的取值范围是[e -1,+∞).4.(2018·衡水中学质检)已知函数f (x )=x +a e x .(1)若f (x )在区间(-∞,2)上为单调递增函数,求实数a 的取值范围;(2)若a =0,x 0<1,设直线y =g (x )为函数f (x )的图象在x =x 0处的切线,求证:f (x )≤g (x ).(1)解 易知f ′(x )=-x -(1-a )e x, 由已知得f ′(x )≥0对x ∈(-∞,2)恒成立,故x ≤1-a 对x ∈(-∞,2)恒成立,∴1-a ≥2,∴a ≤-1.故实数a 的取值范围为(-∞,-1].(2)证明 a =0,则f (x )=xe x .函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),x ∈R ,则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0e x 0=(1-x )e x 0-(1-x 0)e xe x +x 0.设φ(x )=(1-x )e x 0-(1-x 0)e x ,x ∈R ,则φ′(x )=-e x 0-(1-x 0)e x ,∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,而φ(x 0)=0,∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0,∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数,∴x ∈R时,h (x )≤h (x 0)=0,∴f (x )≤g (x ).5.已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值;(3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根.解 (1)由已知可知函数f (x )的定义域为{x |x >0},当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=1-x x (x >0);当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.所以f (x )的单调递增区间为(0,1).(2)因为f ′(x )=a +1x (x >0),令f ′(x )=0,解得x =-1a ;由f ′(x )>0,解得0<x <-1a ;由f ′(x )<0,解得-1a <x <e.从而f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,递减区间为⎝ ⎛⎭⎪⎫-1a ,e , 所以,f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-3. 解得a =-e 2.(3)由(1)知当a =-1时,f (x )max =f (1)=-1,所以|f (x )|≥1.令g (x )=ln x x +12,则g ′(x )=1-ln x x 2.当0<x <e 时,g ′(x )>0;当x >e 时,g ′(x )<0.从而g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.所以g (x )max =g (e)=1e +12<1,所以,|f (x )|>g (x ),即|f (x )|>ln x x +12,所以,方程|f (x )|=ln x x +12没有实数根.6.已知函数f (x )=ln(x +1)+ax x +1(a ∈R ). (1)当a =1时,求f (x )的图象在x =0处的切线方程;(2)当a <0时,求f (x )的极值;(3)求证:ln(n +1)>122+232+…+n -1n 2(n ∈N *).(1)解 当a =1时,f (x )=ln(x +1)+x x +1, ∴f ′(x )=1x +1+1(x +1)2=x +2(x +1)2. ∵f (0)=0,f ′(0)=2,∴所求切线方程为y =2x .(2)解f(x)=ln(x+1)+axx+1(x>-1),f′(x)=x+a+1(x+1)2,∵a<0,∴当x∈(-1,-a-1)时,f′(x)<0;当x∈(-a-1,+∞)时,f′(x)>0,函数f(x)的极小值为f(-a-1)=a+1+ln(-a),无极大值.(3)证明由(2)知,取a=-1,f(x)=ln(x+1)-xx+1≥f(0)=0.当x>0时,ln(x+1)>xx+1,取x=1n,得ln n+1n>1n+1=n-1n2-1>n-1n2.∴ln 21+ln32+…+lnn+1n>122+232+…+n-1n2⇔ln⎝⎛⎭⎪⎫21·32·…·n+1n>122+232+…+n-1 n2,即ln(n+1)>122+232+…+n-1n2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考专题突破一 高考中的导数应用问题1.(2015·课标全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( ) A .(-∞,-1)∪(0,1) B .(-1,0)∪(1,+∞) C .(-∞,-1)∪(-1,0) D .(0,1)∪(1,+∞) 答案 A解析 因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=⎝⎛⎭⎫f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f (x )x >0⇔f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f (x )x <0⇔f (x )>0.综上,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),选A. 2.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x <1,所以k ≥1.即k 的取值范围为[1,+∞).3.函数f (x )=3x 2+ln x -2x 的极值点的个数是( ) A .0 B .1 C .2 D .无数个 答案 A解析 函数定义域为(0,+∞), 且f ′(x )=6x +1x -2=6x 2-2x +1x ,由于x >0,g (x )=6x 2-2x +1中Δ=-20<0, 所以g (x )>0恒成立,故f ′(x )>0恒成立, 即f (x )在定义域上单调递增,无极值点.4.(2015·课标全国Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a = . 答案 1解析 f ′(x )=3ax 2+1,f ′(1)=1+3a ,f (1)=a +2. (1,f (1))处的切线方程为y -(a +2)=(1+3a )(x -1). 将(2,7)代入切线方程,得7-(a +2)=1+3a , 解得a =1.5.设函数f (x )=e 2x 2+1x ,g (x )=e 2x e x ,对任意x 1,x 2∈(0,+∞),不等式g (x 1)k ≤f (x 2)k +1恒成立,则正数k 的取值范围是 . 答案 [1,+∞)解析 因为对任意x 1,x 2∈(0,+∞), 不等式g (x 1)k ≤f (x 2)k +1恒成立,所以k k +1≥g (x 1)maxf (x 2)min .因为g (x )=e 2xex ,所以g ′(x )=e 2-x (1-x ).当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0, 所以g (x )在(0,1]上单调递增,在[1,+∞)上单调递减. 所以当x =1时,g (x )取到最大值,即g (x )max =g (1)=e. 又f (x )=e 2x +1x≥2e(x >0).当且仅当e 2x =1x ,即x =1e时取等号,故f (x )min =2e.所以g (x 1)max f (x 2)min =e 2e =12,应有k k +1≥12,又k >0,所以k ≥1.题型一 利用导数研究函数性质例1 (2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).思维升华 利用导数主要研究函数的单调性、极值、最值.已知f (x )的单调性,可转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图象的性质进行分析.已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围. 解 (1)当a =2时,f (x )=(-x 2+2x )e x , 所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0, 所以-x 2+2>0,解得-2<x < 2.所以函数f (x )的单调递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上单调递增, 所以f ′(x )≥0对x ∈(-1,1)都成立. 因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立. 因为e x >0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立, 即a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立.令y =(x +1)-1x +1,则y ′=1+1(x +1)2>0. 所以y =(x +1)-1x +1在(-1,1)上单调递增,所以y <(1+1)-11+1=32.即a ≥32.因此a 的取值范围为[32,+∞].题型二 利用导数研究不等式问题 例2 已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围; (2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.(1)解 ∀x ∈(0,+∞),有2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x ,设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2,①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减, ②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增, 所以h (x )min =h (1)=4. 因为对一切x ∈(0,+∞), 2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4. (2)证明 问题等价于证明 x ln x >x e x -2e(x ∈(0,+∞)).f (x )=x ln x (x ∈(0,+∞))的最小值是-1e,当且仅当x =1e 时取到,设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-x e x ,易知m (x )max =m (1)=-1e,当且仅当x =1时取到.从而对一切x ∈(0,+∞),都有ln x >1e x -2e x成立.思维升华 (1)恒成立问题可以转化为我们较为熟悉的求最值的问题进行求解,若不能分离参数,可以将参数看成常数直接求解.(2)证明不等式,可以转化为求函数的最值问题.已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1)处的切线方程为x +2y -3=0.(1)求a ,b 的值;(2)证明:当x >0,且x ≠1时,f (x )>ln xx -1.(1)解 f ′(x )=a ⎝⎛⎭⎪⎫x +1x -ln x (x +1)2-bx2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得a =1,b =1.(2)证明 由(1)知f (x )=ln x x +1+1x,所以f (x )-ln xx -1=11-x 2⎝⎛⎭⎪⎫2ln x -x 2-1x .考虑函数h (x )=2ln x -x 2-1x(x >0),则h ′(x )=2x -2x 2-(x 2-1)x 2=-(x -1)2x 2.所以当x ≠1时,h ′(x )<0.而h (1)=0,故当x ∈(0,1)时,h (x )>0,可得11-x 2h (x )>0;当x ∈(1,+∞)时,h (x )<0,可得11-x 2h (x )>0. 从而当x >0,且x ≠1时,f (x )-ln xx -1>0. 即f (x )>ln xx -1.题型三 利用导数研究函数零点或图象交点问题 例3 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2,由f ′(x )=0,得x =e.∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知:①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.思维升华 用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合思想画草图确定参数范围.已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在[1e,e]上有两个零点,求实数m 的取值范围.解 (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,切点坐标为(1,1),切线的斜率k=f ′(1)=2,则切线方程为y -1=2(x -1),即2x -y -1=0. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x .∵x ∈[1e,e],∴当g ′(x )=0时,x =1. 当1e <x <1时,g ′(x )>0; 当1<x <e 时,g ′(x )<0.故g (x )在x =1处取得极大值g (1)=m -1. 又g (1e )=m -2-1e 2,g (e)=m +2-e 2,g (e)-g (1e )=4-e 2+1e 2<0,则g (e)<g (1e),∴g (x )在[1e ,e]上的最小值是g (e).g (x )在[1e,e]上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g (1e )=m -2-1e2≤0,解得1<m ≤2+1e2,∴实数m 的取值范围是(1,2+1e2].(时间:70分钟)1.(2015·重庆)设函数f (x )=3x 2+axe x(a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程; (2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x (e x )2=-3x 2+(6-a )x +a e x,因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x .令g (x )=-3x 2+(6-a )x +a , 由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为⎣⎡⎭⎫-92,+∞. 2.已知函数f (x )=x cos x -sin x ,x ∈[0,π2].(1)求证:f (x )≤0;(2)若a <sin x x <b 对x ∈(0,π2)恒成立,求a 的最大值与b 的最小值.(1)证明 由f (x )=x cos x -sin x ,得 f ′(x )=cos x -x sin x -cos x =-x sin x . 因为在区间(0,π2)上f ′(x )=-x sin x <0,所以f (x )在区间[0,π2]上单调递减.从而f (x )≤f (0)=0.(2)解 当x >0时,“sin xx >a ”等价于“sin x -ax >0”;“sin x x <b ”等价于“sin x -bx <0”.令g (x )=sin x -cx ,则g ′(x )=cos x -c . 当c ≤0时,g (x )>0对任意x ∈(0,π2)恒成立,当c ≥1时,因为对任意x ∈(0,π2),g ′(x )=cos x -c <0,所以g (x )在区间[0,π2]上单调递减.从而g (x )<g (0)=0对任意x ∈(0,π2)恒成立.当0<c <1时,存在唯一的x 0∈(0,π2)使得g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间(0,π2)上的情况如下:因为g (x )在区间[0,x 0所以g (x 0)>g (0)=0. 进一步,“g (x )>0对任意x ∈(0,π2)恒成立”当且仅当 g (π2)=1-π2c ≥0,即0<c ≤2π. 综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈(0,π2)恒成立; 当且仅当c ≥1时,g (x )<0对任意x ∈(0,π2)恒成立. 所以,若a <sin x x <b 对任意x ∈(0,π2)恒成立,则a 的最大值为2π,b 的最小值为1. 3.某种产品每件成本为6元,每件售价为x 元(6<x <11),年销售为u 万件,若已知5858-u 与(x -214)2成正比,且售价为10元时,年销量为28万件. (1)求年销售利润y 关于售价x 的函数表达式;(2)求售价为多少时,年利润最大,并求出最大年利润.解 (1)设5858-u =k (x -214)2, ∵售价为10元时,年销量为28万件,∴5858-28=k (10-214)2,解得k =2. ∴u =-2(x -214)2+5858=-2x 2+21x +18. ∴y =(-2x 2+21x +18)(x -6)=-2x 3+33x 2-108x -108(6<x <11).(2)y ′=-6x 2+66x -108=-6(x 2-11x +18)=-6(x -2)(x -9).令y ′=0,得x =2(舍去)或x =9,显然,当x ∈(6,9)时,y ′>0;当x ∈(9,11)时,y ′<0.∴函数y =-2x 3+33x 2-108x -108在(6,9)上单调递增,在(9,11)上单调递减.∴当x =9时,y 取最大值,且y max =135,即售价为9元时,年利润最大,最大年利润为135万元.4.(2015·课标全国Ⅰ)设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a. (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x(x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点.当a >0时,因为y =e 2x 单调递增,y =-a x单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于022e x -a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a. 5.已知函数f (x )=x +a e x . (1)若f (x )在区间(-∞,2)上为单调递增函数,求实数a 的取值范围;(2)若a =0,x 0<1,设直线y =g (x )为函数f (x )的图象在x =x 0处的切线,求证:f (x )≤g (x ).(1)解 易得f ′(x )=-x -(1-a )e x, 由已知得f ′(x )≥0对x ∈(-∞,2)恒成立,故x ≤1-a 对x ∈(-∞,2)恒成立,∴1-a ≥2,∴a ≤-1.(2)证明a=0,则f(x)=xe x.函数f(x)的图象在x=x0处的切线方程为y=g(x)=f′(x0)(x-x0)+f(x0).令h(x)=f(x)-g(x)=f(x)-f′(x0)(x-x0)-f(x0),x∈R,则h′(x)=f′(x)-f′(x0)=1-xe x-1-x0e x0=0 (1)e(1)eexx xx x x+---.设φ(x)=(1-x)0e x-(1-x0)e x,x∈R,则φ′(x)=-e x0-(1-x0)e x,∵x0<1,∴φ′(x)<0,∴φ(x)在R上单调递减,而φ(x0)=0,∴当x<x0时,φ(x)>0,当x>x0时,φ(x)<0,∴当x<x0时,h′(x)>0,当x>x0时,h′(x)<0,∴h(x)在区间(-∞,x0)上为增函数,在区间(x0,+∞)上为减函数,∴x∈R时,h(x)≤h(x0)=0,∴f(x)≤g(x).。

相关文档
最新文档