新人教版数学七年级下《6.1 平方根》课件2

合集下载

人教版七年级下册数学课件 :6.1平方根(共84张PPT)

人教版七年级下册数学课件 :6.1平方根(共84张PPT)

6.1 平方根/
算术平方根估算数值
例1 估算 19 -3的值 ( A )
A.在1和2之间
B.在2和3之间
C.在3和4之间
D.在4和5之间
解析:因为42<19<52,所以4< 19 <5,所以1< 19 -3<2. 故选A.
总结:估计一个有理数的算术平方根的近似值,必须先判断 这个有理数位于哪两个数的平方之间.
总结:几个非负数的和为0,则每个数均为0,初中阶段学过 的非负数有绝对值、偶次幂及一个数的算术平方根.
巩固练习
6.1 平方根/
4.求下列各式中字母的值. (1)若|a+3|=0 ,则a= -3 ;
(2)若 (m-7)2=0 ,则m= 7 ; (3)若 a 5 0,则a= 5 ;
(4)若 a 3 b 4 0 ,则代数式(a b)2019 =_-
x2
1
4
x 1 1 0.5 42
故每块地板砖的边长是0.5 m.
课堂检测
拓广探索题
6.1 平方根/
已知:|x+2y|+ 求x-3y+4z的值. 解:由题意得:
3x - 7 +(5y + z )2 = 0
3x 7 0, x 2 y 0,5y z 0,
解得 x 7 , y 7 , z 35 ,
素养目标
6.1 平方根/
3. 了解开方与乘方互为逆运算,会用平方运算求 某些非负数的算术平方根.
2. 会求一些数的算术平方根,并用算术平方根符 号表示.
1. 了解算术平方根的概念,会表示正数的算术 平方根,并了解算术平方根的非负性.
探究新知 知识点1

人教版七年级数学下册6.1 平方根(2)

人教版七年级数学下册6.1 平方根(2)
9
练习:国际比赛的足球场的长在100m到 110m之间,宽在64m到75m之间,现有 一个长方形的足球场其长是宽的1.5倍, 面积为7560m2,问:这个足球场能用作 国际比赛吗?
10
补充练习;
1. 16的算术平方根是 2 ; 52 122 1 3 。
2.若 2x 5 4,则(2x 5)2 25 6 。
例:已知 x y 4 x 2y 5 0,求x、y的值。

:由题意得xx
y 4 0 2y 5 0
解方
程组
得yx
3 1
我们已学习了3种非负数,即绝对值、 偶数次方、算术平方根。几个非负数 的和为零,它们就同时为零,然后转 化为方程(或方程组)来解。
7
探究: (1) 求 22,( 3)2,52,( 6)2,72,
02的 值 , 对 于 任 意 数a,a2 ?
练习:1. (m 1)2 3,则m 4或 -2 。 2.若 (a 2)2 2 a,则a的取值范围是a ≤ 2 。
(2)求( 4)2,( 9)2,( 25)2,( 49)2, ( 0)2的值,对于任意非负数a,( a)2 ?
8
小丽想用一块面积为 400cm2 正方形纸片,沿着边的方向裁出一块 面积为300cm2的长方形纸片用来绘 画,使它的长宽之比为3:2, 不知能否裁出来,正在发愁。小明见 了说“别发愁,一定能用一块面积大 的纸片裁出一块面积小的纸片”,你 同意小明的说法吗? 小丽能用这块 纸片裁出符合要求的纸片吗?
3.当a ≥0 时 ,9a2的算术平方根为3a。
4. 5 a b的最大值为 - 5 , 此时a与b的关系为 互 为 相 反 数 。
5.已知(x1)2 y 2 z 3 0
求x y z的算术平方根。

人教版七年级数学下册课件:6.1平方根(第2课时)

人教版七年级数学下册课件:6.1平方根(第2课时)

1.若某数的算术平方根不是有理数,不用计算器你能 快速估计出它在哪两个整数之间吗?以 ������������为例进行 说明.
因为 9<15<16,所以 ������< ������������< ������������,即 3< ������������<4.所以 ������������在 3 和 4 之间.
第六章
6.1 平




第 2 课 时
1.会用“夹逼法”求一个正数的算术平方根的近似值. 2.会用计算器求一个正数的算术平方根,能归纳被开方数 扩大(或缩小)与它的算术平方根扩大(或缩小)的规律,并解 决相关的问题.
通过上一课时的学习,小明自己解决了 那个难题.现在,他知道了面积为 40 的正方 形的边长可以表示为 ������������.可是,小明又想 不明白了: ������������到底有多大?小聪认为比 6 大,小明又认为比 7 小.他们是如何知道的? 你能帮他们陈述理由吗?你还能把 ������������的大 小说得比他们更准确吗? 让我们开始今天的挑战之旅吧!
4.已知往一正方体容器内注入6.05升的水,这时水的深度 为8分米,在不考虑容器壁厚度的情况下,求该正方体容器 的棱长(精确到0.01). 解:0.87分米.
5.设 ������的整数部分是 m,小数部分是 n,求 n-2m 的值.
解:由题意得 m=2,n= ������-2,所以 n-2m= ������-6.
1.用“夹逼法”求得- ������������≈ -4.583 __ (精确 到 0.001). 2.用计算器求得 ������������.������������≈ 3.979 __ (精确到 0.001). > 3.比较大小:8 __ ������������(填“<”“=”或 “>”).

6.1平方根(课时2)课件(新人教版七年级数学下)

6.1平方根(课时2)课件(新人教版七年级数学下)

2 7 和27的大小.
【学习体会】
1.本节课你独立思考了那些知识?参与讨论了哪些知识? 还有那些疑惑? 2.本节课你最成功的地方是什么?说给你小组成员听听.
【当堂达标】 1. 比较下列各数的大小: (1)
65与8 ;(2)
5-1 与1 . 2
2.已知
2.3409 =1.53,求 23409 的值
6.2平方根(第二课时)
பைடு நூலகம்
【学习目标】
1.能用“夹值法”求一个数的平方根的近似值. 2.会用计算器求一个数的算术平方根. 3.理解被开方数扩大(缩小)与它的算数平方根扩大(缩小)的规律.
【重点难点】
重点:利用“夹值法”求一个数的算术平方根. 难点:理解被开方数扩大(缩小)与它的算术平方根扩大(缩小)的规律.
创设情景
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形? 大正方形的边长是多少?
2 到底有多大?
【课中探究】
数学活动一:估值 根据自己的经验,你估计一下
2
大约有多大?
数学活动二:探究 ∵1² =1 2² =4 ∴1< 2 <2 ∵1.4² =1.96 1.5² =2.25 ∴1.4< 2 <1.5 ∵1.41² =1.9881 1.42² =2.0164 ∴1.41< 2 <1.42 ∵1.414² =1.999396 1.415² =2.002225 ∴1.414< 2 <1.415…… 事实上,越往下进行,得到的值就越准确。 2 =1.41421356…
3.用计算器计算:(如需取近似值,则精确到0.01) ( 1)
1369
;(2) 101.2036 ;(3) 5
.
它是一个无限不循环小数,像这样的数还有很多,如: 3、 5 …….

人教版数学七年级下册6.1-平方根(2)-课件

人教版数学七年级下册6.1-平方根(2)-课件

(√) (× )
7) (﹣10)2没有平方根
( ×)
8) 如果x2 = a,则 a 一定是正数 ( × )
有一个正数的两个平方根是2m-3和5m,求m的值。
解:由题意得 (2m-3)+(5-m)=0
∴ m=-2
练习:如果 x 2 2 ,求2x+5的算术平方根.
能力提升 (1)3-m有平方根,求m的取值范围 (2)a-4无平方根,求a的取值范围 (3) 3x 5 有意义,求x的取值范围
(2) 0.0036
=-0.06
(4) 25 36
=5+6 =11
判断下面的说法是否正确,如不正确,
说明理由,并加以改正.
1) ﹣3的平方根是 9
( ×)
2) 9的平方根是﹣3
( ×)
3) 3是9的平方根 4) 4的平方根是±2
( √) (√ )
5) ﹣5是25的平方根 6) ﹣1的平方根是±1
如(±5)2=25,则±5是25的平方根,
记作 25= 5
2.认识开平方运算
填空: 求平方
1 1
1
2 2
4
3
9
3
求平方根
1
1 1
4
2 2
9
3
3
两图中的运算有什么关系呢?
求一个数的平方根的运算,叫做开平方。
±3的平方等于9,9的平方根是±3, 所以平方与开平方互为逆运算.
初中所学的六种运算: 加法、减法、乘法、除法、乘方、开方. 对应的运算结果分别为: 和、 差、 积、 商、 幂、 方根.
学习小结:
1、平方根的概念. 2、开平方. 3、平方根的特征. 4、平方根的表示法:
a (a 0)

最新人教版初中七年级下册数学【第六章 6.1平方根(2)】教学课件

最新人教版初中七年级下册数学【第六章 6.1平方根(2)】教学课件

(1) 9;
(2) − 0.49;
(3) ±
64 . 81
解: (1)
9 =3;
(2) −
0.49 =− 0.7; (3) ±
64 =± 8 . 81 9
学以致用
练习3:求下列各式中�的
值 (1) x2 = 36;
(2) 25x2 − 81 = 0
解:x2 = 36, x =± 6,
解:
25x2 = 81, x2 = 8215,
25 _4_
9 1 0 0.0025
25 4
开平方
_+_3 _−_3
_+_1
_−_1 _0_ +_0._05
−_0._05 +5 _2_ −5 _2
开平方定义:求一个数�的平方根运算,叫做开平
方 . 平方运算
互逆
开平方运算
知识归纳
• 平方根的性质: 1. 正数的平方根有两个,它们互为相反数,其中正的
3. 我们已学过的运算有加、减、乘、除、乘方五 种,其中加与减,乘与除是互为逆运算的,那 么乘方有没有逆运算呢?
知识探究
提出问题:一个数的平方等于9,这个数是多少?
∵32=9, ∴这个数可以是3;
∵(− 3)2=9, ∴这个数可以是−3;
综上所述,一个数的平方等于9,这个数可以是3或−3.
x2
1
x ±1
∴x1 = 6,x2 =− 6;
x

9 5

∴x1 =
95,x2
=− 9 5
.
学以致用
练习4:已知3a − 1与13 − 5a是�的两个不同的平方根,求� 的值. 解:∵3a − 1与13 − 5a是�两个平方根,

人教七年级数学下课件(课件)6.1平方根(2)

人教七年级数学下课件(课件)6.1平方根(2)

1.96 2 2.25
因为,1.4,12 1.9881 1.422 2.0614
而,1.9所88以1 .2 2.0164
1.41 2 1.42
因为,1.4,142 1.999396 1.4152 2.002225
而,1.9所99以39.6 2 2.002225
你能将这个问题转化为数学问题吗?
解:设剪出的长方形的两边长分别为3xcm和2xcm,
则有3x∙2x=300,
6x2=300,
x2=50,

x 50
故长方形纸片的长为,3 宽50为cm. 2 50 cm
长方形的长和宽与正方形的边长之间的 大小关系是什么?小丽能用这块纸片裁 出符合要求的纸片吗?
解:设剪出的长方形的两边长分别为3xcm和2xcm,
8. 38介于整数 和6之间,它7 的小数 数部分是。38 6
9. x 7 6的最小值是 __6_____,此时x=__-__7__ .
10.12 m 8有 __最__大_ 值(填最大或最小) 是 ____12__,此时m ___8 .
所以m+n=25
所以m+n的算术平方根是5
1.这节课你有什么收获? 举例说明如何估算算术平方根的大小.
2.你还有什么问题或想法需要和大家交流?
• 1、一个数的算术平方根等于它本身,这个 数是。
• 2、若x²=16,则5-x的算术平方根是。 • 3、若4a+1的算术平方根是5,则a²的算术平
方根是。
探究一、提出问题
能否用两个面积为1的小正方形 拼成一个面积为2的大正方形?
能否用两个面积为1dm2的小正方形 拼成一个面积为2dm2的大正方形?

人教版初1数学7年级下册 第6章(实数)6.1平方根的定义及性质 课件 (共41张PPT)

人教版初1数学7年级下册 第6章(实数)6.1平方根的定义及性质 课件 (共41张PPT)
Fra bibliotek 填表x2
4a 1 9 16 36 25 (a > 0)
x
±1 ±3
±4 ±6
2 5
平方根的定义
一般地,如果一个数的平方等于 a ,那么这 个数叫做 a 的平方根或二次方根.这就是说,如 果 x2 = a,那么 x 叫做 a 的平方根.
求一个数 a 的平方根的运算,叫做开平方.
例如:32 = 9,(-3)2 = 9, 3 和 -3 是 9 的平方根, 简记为 ±3 是 9 的平方根.
数的平方根: (1) 1 24 ;
解: 25
(2) 81 ; (3) 0 ; (4) -16 .
(2)因为(±9)2 = 81,
所以81有平方根,81的平方根是±9;
巩固练习 下列各数是否有平方根,如果有,请你求出这个 数的平方根: (1) 1 24 ; (2) 81 ; (3) 0 ; (4) -16 . 解: 25
巩固练习
下列各数是否有平方根,如果有,请你求出这个
数的平方根:
(1) 1 24 ; (2) 81 ; (3) 0 ; (4) -16 .
解: 25
(1)因为(±
7)2=
49 = 1 24,
5 25 25
所以1 24 有平方根,1 24 的平方根是± 7;
25
25
5
巩固练习
下列各数是否有平方根,如果有,请你求出这个
(3)因为 02 = 0,
所以0有平方根, 0 的平方根是 0 ;
巩固练习 下列各数是否有平方根,如果有,请你求出这个 数的平方根: (1) 1 24 ; (2) 81 ; (3) 0 ; (4) -16 . 解: 25 (4)因为 x2 0 ,

人教版七年级下数学第6章实数6.1平方根算术平方根课件(2)

人教版七年级下数学第6章实数6.1平方根算术平方根课件(2)

计 (-算23: )2=22= ____49____4___;_; 02=(-__2_)_02=_____._4___;(23)2=
4 ___9___

6.1 平方根
活动2 师生互动,学习新知 阅读教材第 40 页填表,然后完成下面的填空. (1)因为 22=4,所以 4 的算术平方根是__2__.
活动1、创设情境 引入新课 知识点 算术平方根的概念
第六章
实数
活动1、创设情境 引入新课
活动1、创设情境 引入新课 知识点 算术平方根的概念
活动1、创设情境 引入新课 这节课你学到了哪些知识?
6.1 平方根
知识点 算术平方根的概念
这节课你学到了哪些知识? 知识点 算术平方根的概念 活动1、创设情境 引入新课
6.1 平方根
[点拨] (1) a也可以写成2 a,读作“二次根号 a”,在这里
“2”叫做根指数,通常省略不写.
(2)由算术平方根的定义知:a≥0, a≥0,即算.术.平.方.根.和.被.
开.方.数.均.为.非.负.数..
6.1 平方根
动手实践 学以致用
例 1 [教材例 1 针对训练]求下列各数的算术平方根: (1)116;(2)214;(3)(-5)2;(4)-(-4). [解析] (1)直接根据算术平方根的定义;(2)先化成假分数; (3)先计算(-5)2,再求结果的算术平方根;(4)进行符号化简, 即-(-4)=4.
6.1 平方根
探究二 运用算术平方根进行计算
例 2 [教材补充例题]计算下列各式的值:
9
9
(1) 4- 49;(2) 116- 144+ 81.
[解析]
(1)94=232;(2)1196=2156=452.

人教版初中数学七年级下册6.1平方根(2)(共20张PPT)

人教版初中数学七年级下册6.1平方根(2)(共20张PPT)

回答问题:
(1)怎样用两个面积为1的小正方形(如下图)拼成一 个面积为2的大正方形?
1 1
1 1
(2)大正方形的面积、对角线长、边长分别为多少?
2
2
∵1<2 <3 ∵ 1<2 <4
活动二 动手操作 合作探究
1.21 1.44 1.69 1.96
2.25 1.96<2<2.25
1.9881 2.0164 1.9881<2<2.0164
人教版初中数学七年级下册
6.1平方根(2)
学习目标:
1.会估算一个数的算术平方根的大致范围,掌 握估算的方法,形成估算的意识;(难点) 2.会用计算器求一个数的算术平方根. 3.会比较两个数的算术平方根的大小;(重点)
活动一 1.什么是算术平方根? 复习回顾 引入新知
-36没有算术平方根. 只有非负数才有算术平方根,算术平方根 是非负的.

…Hale Waihona Puke … 0.25 0.7906 2.5 7.906 25 79.06 250 …
(1)利用计算器计算下表中的算术平方根, 并将计算结果填在表中,你发现了什么规 律?你能说出其中的道理吗?


… 0.25 0.7906 2.5 7.906 25 79.06 250 … 规律:被开方数的小数点向右每移动 2 位,
它的算术平方根的小数点就向右移动 1 位;
被开方数的小数点向左每移动 2 位, 它的算术平方根的小数点就向左移动 1 位.
例3. 小丽想用一块面积为400cm2的正方形纸片,沿着 边的方向裁出一块面积为300cm2的长方形纸片,使它 的长宽之比为3:2.她不知能否裁得出来,正在发愁.小 明见了说:“别发愁,一定能用一块面积大的纸片裁 出一块面积小的纸片.”你同意小明的说法吗?小丽能 用这块纸片裁出符合要求的纸片吗?

七年级数学下册 6.1.2 平方根课件 (新版)新人教版

七年级数学下册 6.1.2 平方根课件 (新版)新人教版

再见
练习:
(1)100的平方根是 10, 1
的平方根是
1 10

(2)16的平方根是4 ,25
100
的平方根是
5 3

(3)0的平方根是
0;
9

9
的平方根是
不存在。
根据以上练习回答下面两个问题: (1)为什么100、16等数有两个平方根?这两个 平方根有什么关系?
(2)为什么负数的平方根是不存在?
开平方与平方的对比填空
运算 适用 运算结 符号 范围 果名称
性质
开 方
正 数 与 零
平 方 根
正数有 2 个平方根,它们是互为相反,数 零的平方根是 0 ,
负数 没有平方根 .
平 方
a 22
任 何


正数的平方是 正 数; 零的平方是 0 ; 负数的平方是正 数.
思考?
• 5.平方根与算术平方根有什么异同?
(3)0的平方根情况又如何叙述?
例1 求下列各数的平方根:
9 (1) 81 (2)10 6 (3)4 (4)0.49 (5)169
分析 问:解题思想方法是? 答:根据平方根的定义,把求平方根转化为求平方。 即求出平方等于81的所有数。
解:
(2)
(1)∵ 92 81
∴81的平方根是 9
即 819
25 5
(3)∵(±0.7)2=0.49,
∴0.49的平方根为±0.7. 即 0.4907
3.例题解析
例2 判断下列说法是否正确,并说明理由. (1)49的平方根是7; (2)2是4的平方根; (3)-5是25的平方根;
(4)64的平方根是 8 ;
(5)-16的平方根是-4.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

你能将这个问题转化为数学问题吗?
7.例题讲解
解:设剪出的长方形的两边长分别为3x cm和2x cm, 则有3x∙2x=300 , 6x2=300 , x2=50, x= 50, 故长方形纸片的长为 3 50 cm ,宽为 2 50 cm . 长方形的长和宽与正方形的边长之间的 大小关系是什么?小丽能用这块纸片裁 出符合要求的纸片吗?
5.探究规律 利用计算器计算,并将计算结果填在表中, 你发现了什么规律? … … 被开方数每扩大100倍, 其算术平方根就扩大10倍
0.0625
0.625
6.25
62.5
625
6250
62500
… …
6.应用规律
你能用计算器计算 3 (精确到0.001)吗? 并利用刚才的得到规律说出 0.03 , 300
2(精确到 0.001 ).

解:(1) 依次按键 3136 显示:56. ∴ 3136 56 .
, (2) 依次按键 2 显示:1.414213562. ∴ 2 1.414 .
3.解决提出的问题 你知道宇宙飞船离开地球进入轨道正常运行的 速度在什么范围吗?这时它的速度要大于第一
v v2 的大小满足 v1 gR , v1 , (单位: m/s ). 2 2 2 v2 2 gR ,其中 g 9.8 m/s ,R是地球半 6 v2 呢? 径,R 6.4 10 m .怎样求 v1 ,
6.1 平方根
1.解决问题
拼成的这个面积为 2 的大正方形的 边长应该是多少呢?
?
边长= 2
2 有多大呢?
1.解决问题
2 有多大呢?
2 大于1而小于2
你是怎样判断出 2 大于1而小于2的?
2 2 1 1 2 因为 , 4 , 而1 < 2 <4 , 所以1 2 2 .
你能不能得到 2 的更精确的范围?
7.例题讲解
因为 50>49,得 50 >7 ,所 以 3 50 >3×7=21,比原正方 形的边长更长,这是不可能 的.所以,小丽不能用这块纸 片裁出符合要求的纸片.
8.归纳小结
举例说明如何估算算术平方根的大小.
10.布置作业
教科书第44页练习 第1,2(1)、(2)、(4)题; 习题6.1第6题
2
宇宙速度v (单位: m/s )而小于第二宇宙速度 1
你会表示
v 1 ,v 2 吗?
3.解决提出的问题
v1 gR , v2 2 gR
你会计算吗?
v1 9.8 6.4 10 7.9 10

3
v2 2 9.8 6.4 10 1.1 10
6
4
6 3 v v1 9.8 6.41 10 7.9 10 m/s , 因此,第一宇宙速度 大约是 6 4 m/s . v2 2 v 9.8 6.4 10 1.1 10 第二宇宙 速度 大约是 2
30000 的近似值.
你能否根据 3 的值说出 30是多少?
7.例题讲解
5 1 与0.5 . 例2 比较大小: 2
解:∵ 5>4, ∴ 5 2, ∴ 5 1 2 1 1,
5 1 ∴ 0.5 . 2
7.例题讲解 小丽想用一块面积为400 cm2为的长方形纸 片,沿着边的方向剪出一块面积为300 cm2的长 方形纸片,使它的长宽之比为3:2.她不知能否 裁得出来,正在发愁.小明见了说:“别发愁, 一定能用一块面积大的纸片裁出一块面积小的纸 片.”你同意小明的说法吗?小丽能用这块纸片 裁出符合要求的纸片吗?
1.解决问题
2 有多大呢?
2 1.5 因为 1.4 1.96 , 2.25 ,而1.96 2 2.25 , 2
所以 1.4 2 1.5 .
1.42 2.0614 , 因为 1.41 1.9881 , 而 1.9881 2 2.0164,所以 1.41 2 1.42 .
2
2
2 2 1.415 2.002225, 1.414 1.999396 因为 , 而 1.999396 2 2.002225 ,所以1.414 2 1.415.
„„
1.解决问题 你以前见过这种数吗?
2有多大呢?
2
2.用计算器求算术平方根 例1 用计算器求下列各式的值: (1) 3136 ; (2)
相关文档
最新文档