《实数》_单元测试题
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)
人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。
16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。
14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。
第六章实数单元测试卷
第六章 实数 单元测试卷一、选择题1. 25 的平方根是 ( )A . 5B . −5C . ±√5D . ±5 2. 下列等式正确的是 ( )A . ±√(−2)2=2B . √(−2)2=−2C . √−83=−2D . √0.013=0.1 3. 下列各数中,无理数的个数是 ( )3.141,−227,√−273,π,0,0.1010010001⋯A . 2B . 3C . 4D . 5 4. 设 7−√10 的整数部分为 a ,小数部分为 b ,则 (a +√10)(b −1) 的值是 ( ) A . 6 B . 2−√10 C . 1 D . −1 5. 若 a ,b 为实数,且满足 ∣a −2∣+√3−b =0,则 b −a 的值为 ( ) A . 1 B . 0 C . −1 D .以上都不对 6. 计算 ∣∣√6−3∣∣+∣∣2−√6∣∣ 的值为 ( )A . 5B . 5−2√6C . 1D . 2√6−1 7. 下列说法不正确的有 ( )①任何数都有算术平方根;②一个数的算术平方根一定是正数;③ a 2 的算术平方根是 a ;④ (π−4)2 的算术平方根是 π−4;⑤算术平方根不可能是负数.A . 5 个B . 4 个C . 3 个D . 2 个 8. 若 √a 2=−a ,则实数 a 在数轴上的对应点一定在 ( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧二、填空题9. 比较大小:√5−3 √5−22(填“>”“<”或“=”).10. 下列关于 √13 的说法中,正确的有 (填序号).① 13 的平方根是 √13;② √13 是 13 的算术平方根;③ √13 是无理数;④ 3<√13<4.11. 若 √2+a 的值为有理数,请你写出一个符合条件的实数 a 的值 . 12. 若 y =√x −12+√12−x −6,则 xy 的值为 . 13. 若 a <√6<b ,且 a ,b 是两个连续的整数,则 a b = .14. 大家知道 √2 是无理数,而无理数是无限不循环小数,因此 √2 的小数部分我们不可能全部写出来,于是小林用 √2−1 来表示 √2 的小数部分.事实上,小林的表示方法是有道理的,因为 1<√2<2,即 √2 的整数部分是 1,所以将这个数减去其整数部分就是小数部分.如果 √5 的小数部分为 a ,√13 的整数部分为 b ,那么 a +b −√5= .15. 规定用符号 [m ] 表示一个实数 m 的整数部分,例如:[23]=0,[3.14]=3.按此规定,[√10+1] 的值为 .三、解答题16. 把下列各数填入相应的大括号内.√3,−2,√93,0,√−83,16113,3.1415,3−π,√144,3−√29,3√2,0.2121121112⋯ 整数集合:{ ⋯};非负数集合:{ ⋯};无理数集合:{ ⋯}.17. 计算:(1) √144−√169+√83;(2) ∣∣√3−2∣∣+√3;(3) √−13−√16−√(−6)2+∣∣√2−1∣∣.18. 求 x 的值:(1) x 2−24=25; (2) 8x 3=125; (3) (x −2)2=25.19. 计算并回答问题:(1) √169= ,√1.69= ,√0.0169= .(2) √21973= ,√2.1973= ,√0.0021973= .(3) 根据上述结果你发现了什么规律?请用语言概括出来;(4) 根据你发现的规律填空:如果 √15≈3.873,√150≈12.25,√613≈3.936,√6103≈8.481,则 √1.5≈ ,√0.0613≈ .20. 已知一个正方体的棱长是 7 cm ,要再做一个正方体,使它的体积是原正方体体积的 8倍,求新做的正方体的棱长.(提示:设未知数列方程)21. 若 √2a +b 与 √c −b 的值互为相反数,√1−3b 3 与 √b +13 互为相反数,求 a ,b ,c 的值.22. 已知 a 是 √10 的整数部分,b 是它的小数部分,求 (−a )3+(b +3)2 的值.23. 王老师给同学们布置了这样一道习题:一个数的算术平方根为 2m −6,它的平方根为±(m −2),求这个数.小张的解法如下:依题意可知,2m −6 是 m −2,−(m −2) 两数中的一个. ⋯⋯(1)当 2m −6=m −2 时,解得 m =4. ⋯⋯(2)所以这个数为 2m −6=2×4−6=2. ⋯⋯(3)当 2m −6=−(m −2) 时,解得 m =83. ⋯⋯(4)所以这个数为 2m −6=2×83−6=−23. ⋯⋯(5)综上可得,这个数为 2 或 −23. ⋯⋯(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请改正.24.先阅读,然后解答提出的问题.设a,b是有理数,且满足a+√2b=3−2√2,求b a的值.解:由题意得(a−3)+(b+2)√2=0,因为a,b都是有理数,所以a−3,b+2也是有理数,又因为√2是无理数,所以a−3=0,b+2=0,所以a=3,b=−2,所以b a=(−2)3=−8.问题:设x,y都是有理数,且满足x2−2y+√5y=10+3√5,求x+y的值.。
人教版七年级数第二学期第6章《实数》单元测试题及答案01
人教版七年级数第二学期第6章《实数》单元测试题及答案一.选择题(共10小题)1.若m,n满足(m﹣1)2+=0,则的平方根是()A.±4B.±2C.4D.22.下列几个数中,属于无理数的数是()A.0.1 B.C.πD.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|4.下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=725.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.b+c>0D.|a|>|b|6.9的平方根是()A.B.81C.±3D.37.的算术平方根是()A.±B.C.±D.58.实数的算术平方根是()A.2B.C.±2D.±9.下列实数中,最大的是()A.﹣0.5B.﹣C.﹣1D.﹣10.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间二.填空题(共8小题)11.实数a、b在数轴上的位置如图所示,则①a+b<0;②a﹣b>0;③|a|<|b|;④a2<b2;⑤ab>b2.以上说法正确的有(在横线上填写相应的序号)12.﹣1的相反数是.13.下列各数:3.146,,0.010010001,3﹣π,.其中,无理数有个.14.与最接近的整数是.15.比较大小:.16.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根.17.有一个数值转换器,原理如图:当输入的x=4时,输出的y等于.18.计算:=.三.解答题(共7小题)19.计算:+×﹣6+.20.求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣6421.若5x﹣19的算术平方根是4,求3x+9的平方根.22.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求3a﹣2b的立方根.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a﹣c|.24.天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h米估计,其中h(单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?25.已知5+和5﹣的小数部分分别为a,b,试求代数式ab﹣a+4b﹣3的值.参考答案与试题解析一.选择题(共10小题)1.若m,n满足(m﹣1)2+=0,则的平方根是()A.±4B.±2C.4D.2【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【解答】解:由题意得,m﹣1=0,n﹣15=0,解得,m=1,n=15,则=4,4的平方根的±2,故选:B.【点评】本题考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.2.下列几个数中,属于无理数的数是()A.0.1 B.C.πD.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解:A.0.1是有限小数,属于有理数,故本选项不合题意;B.,是整数,属于有理数,故本选项不合题意;C.π是无理数,故本选项符合题意;D.是分数,属于有理数,故本选项不合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.4.下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=72【分析】A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据乘方运算法则计算即可判定.【解答】解:A、=3,故选项A错误;B、=﹣2,故选项B正确;C、=,故选项C错误;D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故选项D错误.故选:B.【点评】本题主要考查实数的运算能力,解决此类题目的关键是熟记二次根式、三次根式和立方、平方的运算法则.开平方和开立方分别和平方和立方互为逆运算.立方根的性质:任何数都有立方根,①正数的立方根是正数,②负数的立方根是负数,③0的立方根是0.5.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.b+c>0D.|a|>|b|【分析】观察数轴,找出a、b、c、d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.【解答】解:A、∵a<﹣4,∴结论A错误;B、∵b<﹣1,d=4,∴bd<0,结论B错误;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,结论C错误;D、∵a<﹣4,b>﹣2,∴|a|>|b|,结论D正确.故选:D.【点评】本题考查了实数与数轴以及绝对值,观察数轴,逐一分析四个选项的正误是解题的关键.6.9的平方根是()A.B.81C.±3D.3【分析】根据平方根的定义即可解答.【解答】解:9的平方根是±3,故选:C.【点评】此题主要考查了平方根.解题的关键是掌握平方根的定义,注意一个正数的平方根有两个,且互为相反数.7.的算术平方根是()A.±B.C.±D.5【分析】直接根据算术平方根的定义计算即可.【解答】解:因为=5,所以的算术平方根是,故选:B.【点评】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.8.实数的算术平方根是()A.2B.C.±2D.±【分析】首先得出=4,进而利用算术平方根的定义得出答案.【解答】解:∵=4,∴的算术平方根是:2.故选:A.【点评】此题主要考查了立方根和算术平方根的定义,正确理解算术平方根与立方根的定义是解题关键.9.下列实数中,最大的是()A.﹣0.5B.﹣C.﹣1D.﹣【分析】根据实数的比较大小即可求出答案.【解答】解:由于﹣0.5>﹣1>>﹣,故选:A.【点评】本题考查实数,解题的关键是熟练运用实数比较的方法,本题属于基础题型.10.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先估算出的范围,再估算出7﹣的范围即可.【解答】解:∵4<<5,∴7﹣的值在2和3之间;故选:A.【点评】此题主要考查了估计无理数,得出的取值范围是解题关键.二.填空题(共8小题)11.实数a、b在数轴上的位置如图所示,则①a+b<0;②a﹣b>0;③|a|<|b|;④a2<b2;⑤ab>b2.以上说法正确的有①⑤(在横线上填写相应的序号)【分析】根据图示,可得a<b<0,﹣a<﹣b,据此逐项判断即可.【解答】解:∵a<b<0,∴a+b<0,∴选项①正确;∵a<b<0,∴a﹣b<0,∴选项②错误;∵a<b<0,∴|a|>|b|;∴选项③错误;∵a<b<0,﹣a>﹣b,∴a2>b2,∴选项④错误;∵a<b<0,﹣a>﹣b,∴ab>b2,∴选项⑤正确,∴正确的结论有3个:①、⑤.故答案为:①⑤.【点评】此题主要考查了有理数大小比较的方法,以及数轴的特征和应用,要熟练掌握.12.﹣1的相反数是1﹣.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣1的相反数是1﹣,故答案为:1﹣.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.13.下列各数:3.146,,0.010010001,3﹣π,.其中,无理数有1个.【分析】无理数常见的三种类型(1)开不尽的数;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数.【解答】解:3.146是有限小数,属于有理数;是分数,属于有理数;0.010010001是有限小数,属于有理数;是循环小数,属于有理数.∴无理数有3﹣π共1个.故答案为:1【点评】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.14.与最接近的整数是2.【分析】直接利用的取值范围进而得出答案.【解答】解:∵<<,∴1<<2,∴与最接近的整数是:2.故答案为:2.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.15.比较大小:<.【分析】首先分别求出+、的平方的值各是倒数;然后比较出它们的大小关系,再根据:两个正数,平方大的,原来的数也大,判断出原来的两个数的大小关系即可.【解答】解:=11+2=22∵11+2<11+2×5.5=22,∴<,∴<.故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:两个正数,平方大的,原来的数也大.16.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根±.【分析】先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而得到2﹣b的平方根.【解答】解:由题意,有,解得.则a+b=5+6=11,所以a+b的平方根±.故答案为:±.【点评】本题考查了平方根、立方根的定义.解题的关键是掌握平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.17.有一个数值转换器,原理如图:当输入的x=4时,输出的y等于.【分析】根据转换程序把4代入求值即可.【解答】解:4的算术平方根为:=2,则2的算术平方根为:.故答案为:.【点评】此题主要考查了算术平方根,正确把握运算规律是解题关键.18.计算:=6.【分析】根据算术平方根和立方根的定义计算可得.【解答】解:原式=9﹣3=6,故答案为:6.【点评】本题主要考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义.三.解答题(共7小题)19.计算:+×﹣6+.【分析】直接利用二次根式的性质和立方根的性质分别化简得出答案.【解答】解:原式===.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣64【分析】(1)根据平方根定义开方,再求出方程的解即可;(2)根据立方根定义开方,再求出方程的解即可.【解答】解:(1)3x2﹣12=0,3x2=12,x2=4,x=±2;(2)(x﹣1)3=﹣64,x﹣1=﹣4,x=﹣3.【点评】本题考查了立方根和平方根定义的运用,解此题的关键是能根据平方根和立方根定义得出一元一次方程.21.若5x﹣19的算术平方根是4,求3x+9的平方根.【分析】由题意得4的平方是16,那么5x﹣19=16,即可求得x,进而求得3x+9的平方根.【解答】解:∵5x﹣19的算术平方根是4∴5x﹣19=16∴x=7∴3x+9=30,其平方根为±.【点评】此题主要考查了算术平方根、平方根的定义,注意:被开方数应等于它的算术平方根的平方.一个正数的平方根有2个.22.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求3a﹣2b的立方根.【分析】分别根据2a﹣1的平方根是±3,3a+2b﹣1的算术平方根是4,求出a、b的值,再求出3a﹣2b的值,求出其立方根即可.【解答】解:∵2b﹣1的平方根是±3,∴2b+1=(±3)2,解得b=4;∵3a+2b﹣1的算术平方根是4,∴3a+2b﹣1=16,把b=4代入得,3a+2×4﹣1=16,解得a=3,∴3a﹣2b=3×3﹣2×4=1.∵13=1,∴3a﹣2b的立方根是1.【点评】本题考查的是立方根、平方根及算术平方根的定义,根据题意列出关于a、b的方程,求出a、b的值是解答此题的关键.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a﹣c|.【分析】观察数轴,可得出b<c<0<a<﹣b,进而可得出b+c<0,b+a<0,a﹣c>0,再结合绝对值的定义即可求出结论.【解答】解:观察数轴,可知:b<c<0<a<﹣b,∴b+c<0,b+a<0,a﹣c>0,∴原式=﹣b﹣c+b+a+a﹣c=2a﹣2c.【点评】本题考查了实数与数轴以及绝对值,观察数轴找出b+c,b+a,a﹣c的正负是解题的关键.24.天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h米估计,其中h(单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?【分析】(1)求出h=1.7时S的值即可得;(2)求出S=1.7×3=5.1时h的值,再减去1.7米即可得答案.【解答】解:(1)当h=1.7时,S2=1.7×1.7,∴S=﹣1.7(舍)或S=1.7,答:当眼睛离海平面的高度是1.7m时,能看到1.7m远;(2)当S=1.7×3=5.1时,可得5.12=1.7h,解得h=15.3,15.3﹣1.7=13.6(米),答:观望台离海平面的高度为13.6米.【点评】本题主要考查的是算术平方根.解题的关键是掌握算术平方根的定义.25.已知5+和5﹣的小数部分分别为a,b,试求代数式ab﹣a+4b﹣3的值.【分析】先估算出的大小,然后求得a、b的值,最后利用二次根式的乘法法则进行计算即可.【解答】解:∵1<3<4,∴1<<2,∴,,∴a=5+﹣6=,b==,∴ab﹣a+4b﹣3===1﹣.【点评】本题主要考查的是估算无理数的大小、二次根式的混合运算,求得a、b的值是解题的关键.。
教参书第十三章实数---单元测试题
教参书 第十三章实数---单元测试题八 年 级 数 学 组一、选择题(每小题3分,共21分)1. 有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数都可以用数轴上的点来表示。
(3)无理数包括正无理数、零、负无理数;(4)无理数是无限不循环小数; A .1 B .2 C .3 D .4 2.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.49 3.若=a 的值是( ) A .78 B .78- C .78± D .343512-4.若225a =,3b =,则a b +=( )A .-8B .±8C .±2D .±8或±2 5. 三个实数0.2-,12-,1 )A.10.212-<-<B.10.212->->-C.10.212->>-D.110.22>->- 6.2.078=0.2708,则y =( )A.0.8966 B.0.008966 C.89.66 D.0.00008966 7. 下列说法正确的有( )⑴一个数立方根的相反数等于这个数的相反数的立方根 ⑵64的平方根是8±,立方根是4±aa 的立方根⑷A.⑴⑶ B.⑵⑷ C.⑴⑷ D.⑴⑶⑷学校_____________ 班级________________ 姓名________________ 学号______________………密…………………封…………………装…………………订…………………线…………二、填空题(每小题3分,共18分)1.在-52,3π 3.14,011-中,其中:整数有 ; 无理数有 ; 有理数有 。
22的相反数是 ;绝对值是 。
3.在数轴上表示的点离原点的距离是 。
4x= ;= 。
510.1== 。
6.若一个数的立方根就是它本身,则这个数是 、 、 。
《实数》单元测试题
第六章《实数》测试卷(四)一、选择题(每小题4分,共16分) 1. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( )A .1B .2C .3D .4 2.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.493.若=,则a 的值是( )A .78 B .78- C .78± D .343512- 4.若225a =,3b =,则a b +=( ) A .-8 B .±8 C .±2 D .±8或±2 二、判断题(1分×10=10分)1. 3是9的算术平方根 ( ) 2. 0的平方根是0,0的算术平方根也是0 ( ) 3. (-2)2的平方根是2- ( ) 4. -0.5是0.25的一个平方根 ( ) 5.a 是a 的算术平方根 ( )6. 64的立方根是4± ( )7. -10是1000的一个立方根 ( ) 8. -7是-343的立方根 ( ) 9. 无理数也可以用数轴上的点表示出来 ( ) 10.有理数和无理数统称实数 ( 三、填空题(每小题3分,共18分) 5.在-52,3π3.14,01-,21中,其中: 整数有 ; 无理数有 ; 有理数有 。
6.2-的相反数是 ;绝对值是 。
7.在数轴上表示的点离原点的距离是 。
8= 。
910.1== 。
10.若一个数的立方根就是它本身,则这个数是 。
11.9 的算术平方根是 ;2)3(-的算术平方根 ;3的平方根是12.0的立方根是 ;-8的立方根是 ;4的立方根是13.一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ,一个数的算术平方根等于它本身,这个数是 14.若x x =3,则=x ;若x x =3,则=x 15.比较下列各组数的大小:⑴ 5.1- 5.1 ⑵215- 21⑶ π 14.3四、解答题(本大题共66分) 11.计算(每小题5分,共20分) (1)(2)2+-0. 01);(3(4))11-(保留三位有效数字)。
实数单元测试题(附答案解析)
WORD 格式整理版实数单元测试题一、选择题(每题 3 分,共 24 分) 1.(易错易混点) 4 的算术平方根是() A . 2B .2C .2D .22、下列实数中 ,无理数是 ()A.4B.C. 21 3D. 1 23.(易错易混点) 下列运算正确的是()2A 、9 3B 、3 3C 、9 3D 、3 94、3 27 的绝对值是()A .3B . 3C .13D .1 35、若使式子x 2在实数范围内有意.义..,则 x 的取值范围是 ()A . x 2B . x 2C . x 2D . x 22011x6、若 x ,y 为实数,且 x 2y 2 0,则的值为()yA .1B . 1C .2D . 27、有一个数值转换器,原理如图,当输入的x 为 64 时,输出的 y 是()A 、8B 、 2 2C 、 2 3D 、 3 28.设a2 ,2b(3) ,39c,11d( ) ,则 a ,b ,c ,d 按由小到大的顺序排列 2正确的是( )A . c a d bB . b d a cC . a c dbD . b c a d二、填空题(每题 3 分,共 24 分) 9、9的平方根是.学习好帮手WORD格式整理版10、在3,0, 2 , 2 四个数中,最小的数是11、(易错易混点)若 2(a3) 3 a ,则a与3 的大小关系是12、请写出一个比5小的整数.13、计算:03 ( 2 1)。
14、如图2,数轴上表示数 3 的点是.15、化简:3 8 5 32 的结果为。
16 、对于任意不相等的两个数 a ,b ,定义一种运算※如下:a※b=aabb,如3 23※2= 53 2.那么12※4= .三、计算(17-20题每题4分,21题12分)117(1)计算:3 3 16 .3(2)计算:110 2 | 2|(π2) 9 ( 1) 318、将下列各数填入相应的集合内。
学习好帮手-7,0.32, 13,0,8 ,12,3 125 ,,0.1010010001 ⋯①有理数集合{⋯}②无理数集合{⋯}③负实数集合{⋯}19、求下列各式中的x2 (1)x2 121= 17;(2)x49= 0。
(完整版)《实数》单元测试题及答案
实 数(时间:45分钟 满分:100分) 姓名一、选择题(每小题4分,共16分)1. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( ) A .1 B .2 C .3 D .42.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.493.若=a 的值是( )A .78B .78-C .78±D .343512-4.若225a =,3b =,则a b +=( )A .-8B .±8C .±2D .±8或±2二、填空题(每小题3分,共18分) 5.在-52,3π, 3.14,01,21-中,其中:整数有 ; 无理数有 ; 有理数有 。
62-的相反数是 ;绝对值是 。
7.在数轴上表示的点离原点的距离是 。
8= 。
910.1== 。
10.若一个数的立方根就是它本身,则这个数是 。
三、解答题(本大题共66分) 11.计算(每小题5分,共20分)(1)(2)-0. 01);(3(4))11(保留三位有效数字)。
12.求下列各式中的x (每小题5分,共10分) (1)x 2 = 17;(2)x 2 -12149= 0。
13.比较大小,并说理(每小题5分,共10分) (1与6;(2)1+与2-。
14.写出所有适合下列条件的数(每小题5分,共10分) (1)大于(215.(本题5分)13+---16.(本题5分)一个正数x 的平方根是2a -3与5-a ,则a 是多少? 17.(本题6分)观察========想。
附:命题意图及参考答案(一)命题意图1.本题考查对无理数的概念的理解。
2.本题考查对平方根概念的掌握。
3.本题考查对立方根概念的掌握。
4.本题考查查平方根、实数的综合运用。
5.本题考查实数的分类及运算。
八上实数单元测试题及答案
八上实数单元测试题及答案一、选择题(每题2分,共10分)1. 下列数中,不是实数的是()A. -3B. πC. √2D. i2. 若a > 0,b < 0,且|a| > |b|,则a + b()A. 一定大于0B. 一定小于0C. 一定等于0D. 无法确定3. 以下哪个数是无理数?()A. 0.33333B. √3C. 1/3D. 0.54. 若x² = 4,x的值是()A. 2B. -2C. 2或-2D. 05. 两个负实数的平方和的值是()A. 正数B. 负数C. 零D. 无法确定二、填空题(每题2分,共10分)1. 一个数的相反数是它本身的数是______。
2. 绝对值是它本身的数是______和______。
3. 一个数的立方根是它本身的数是______、______和______。
4. √16的值是______。
5. 一个数的平方根是它本身的数是______。
三、解答题(每题5分,共20分)1. 证明:对于任意实数a,a²≥0。
2. 计算:(-2)³ + √4 - 2π。
3. 解方程:x² - 5x + 6 = 0。
4. 已知a和b是实数,且a² + b² = 1,求证:a + b ≤ √2。
四、应用题(每题5分,共10分)1. 一个正方形的边长为x米,面积为25平方米。
求x的值。
2. 一个无理数的十进制展开是0.1010010001...,这个数的平方是多少?答案一、选择题1. D(i是虚数单位,不是实数)2. A(因为|a| > |b|,所以a + b > 0)3. B(√3是无理数)4. C(x可以是2或-2)5. A(两个负数的平方都是正数,它们的和也是正数)二、填空题1. 02. 正数和03. 1,-1,04. 45. 0三、解答题1. 证明:a²≥0,因为任何实数的平方都是非负的。
实数单元测试题及答案
实数单元测试题及答案一、选择题(每题3分,共30分)1. 实数集R中,最小的正整数是:A. 0B. 1C. -1D. 不存在答案:B2. 下列哪个数是无理数?A. πB. 0.5C. √4D. -3答案:A3. 如果a是一个实数,且a > 0,那么下列哪个表达式是正确的?A. -a < 0B. a + 0 = 0C. a × 0 = aD. a - a = 1答案:A4. 两个负实数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定答案:B5. 以下哪个数是实数?A. iB. √-1C. 2 + 3iD. √4答案:D6. 绝对值的定义是:A. 一个数的相反数B. 一个数的平方C. 一个数距离0的距离D. 一个数的立方答案:C7. 以下哪个不等式是正确的?A. √2 < 1.5B. √2 > 1.5C. √2 = 1.5D. √2 ≠ 1.5答案:B8. 一个实数的平方总是:A. 正数B. 零C. 负数D. 无法确定答案:A9. 如果x是一个实数,那么x² + 2x + 1的最小值是:A. 0B. 1C. 2D. 4答案:B10. 以下哪个数是实数?A. 1/0B. √-9C. 1/√2D. 0.33333...(无限循环)答案:C二、填空题(每题2分,共20分)11. √9 = ______。
答案:312. 如果一个数的绝对值是5,那么这个数可以是______或______。
答案:5 或 -513. π的值大约等于______。
答案:3.1415914. 两个相反数的和是______。
答案:015. 如果a是实数,那么a的相反数是______。
答案:-a16. 一个数的平方根是它自己的数有______和______。
答案:1 和 017. √16的平方根是______。
答案:±218. 一个数的立方等于它自己的数有______,______和______。
《实数》单元测试卷
《实数》单元测试卷一、选择题(每题2分,共20分)1. 实数包括有理数和无理数,以下哪个选项不是实数?A. √2B. -3C. 0.33333...(无限循环)D. π2. 以下哪个数是无理数?A. 1/2B. √3C. 22/7D. -13. 如果a是一个正实数,那么下列哪个表达式的结果不是正实数?A. a + 1B. a - 1C. a × 1D. a / a4. 两个负实数相加的结果是什么?A. 正实数B. 负实数C. 零D. 无理数5. 实数的绝对值总是非负的,以下哪个表达式的结果不是非负数?A. |-5|B. |5|C. |-5 + 5|D. |-5| - 5二、填空题(每题2分,共20分)1. 有理数和无理数的集合统称为_______。
2. 一个数的绝对值是该数与零的距离,例如,|-3| = _______。
3. 无理数是不可以表示为两个整数的比的数,例如_______是一个无理数。
4. 两个实数相除,如果除数为零,则结果为_______。
5. 实数的乘方运算中,任何数的零次方等于_______。
三、计算题(每题5分,共30分)1. 计算下列表达式的值:(3 + √5)²2. 求下列方程的解:2x - 5 = 73. 计算下列表达式的值:(-2)³ + √44. 求下列方程的解:x² - 4x + 4 = 0四、解答题(每题10分,共30分)1. 描述实数的分类,并给出有理数和无理数的例子。
2. 解释绝对值的概念,并给出几个绝对值的例子。
3. 讨论实数的运算规则,特别是乘方和开方。
五、附加题(10分)1. 证明:对于任意实数a和b,如果a > b,则|a| ≥ |b|。
【答案】一、选择题1. D2. B3. D4. B5. D二、填空题1. 实数2. 33. √24. 无定义5. 1三、计算题1. (3 + √5)² = 9 + 6√5 + 5 = 14 + 6√52. 2x - 5 = 7 → 2x = 12 → x = 63. (-2)³ + √4 = -8 + 2 = -64. x² - 4x + 4 = (x - 2)² = 0 → x = 2四、解答题1. 实数可以分为有理数和无理数。
浙教版初中数学七年级上册第三单元《实数》单元测试卷(较易)(含答案解析)
浙教版初中数学七年级上册第三单元《实数》单元测试卷考试范围:第三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列各数中没有平方根的是( )A. 0B. −82C. (−14)2 D. −(−3)2.平方根是±14的数是( )A. 14B. 18C. 116D. ±1163.下列说法中,错误的是( )A. 0.01是0.1的算术平方根B. 4是16的算术平方根C. −3是9的一个平方根D. 25的平方根是±54.下列四个数中,其中最小的数是( )A. 0B. −4C. −πD. √25.如图,数轴上A,B,C,D四点中,与数−√3的对应点最接近的是( )A. 点AB. 点BC. 点CD. 点D6.下列各数中,属于无理数的是( )A. 12B. 1.414C. √2D. √47.√−273的值是( )A. 3B. −3C. 13D. −138.下列说法中,正确的是( )A. 512的立方根是8,记做√5123=8B. 49的平方根是−7C. 8是16的算术平方根D. 如果一个数有立方根,那么这个数一定有平方根9. 有下列说法: ①平方根是它本身的数有1,0; ②算术平方根是它本身的数有1,0; ③立方根是它本身的数有±1,0; ④如果一个数的平方根等于它的立方根, 那么这个数是1或0.其中正确的个数是( )A. 1B. 2C. 3D. 410. 已知√20n 是整数,则满足条件的最小正整数n 为( ) A. 2B. 3C. 4D. 511. √293的小数部分是( ) A. 0.07B. √293−3C. √293−4D. √293−512. 下列各组数中互为相反数的是( ) A. 3和√(−3)2 B. −13和−3 C. −3和√−273D. |−3|和−(−√3)2 第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 平方根等于本身的数是 ,算术平方根等于本身的数是 . 14. 一个数的一个平方根是−9,那么这个数为 . 15. 实数−32,√18,−|−6|,√643中最大的数为______ . 16. 不大于√5的所有正整数的和是________.三、解答题(本大题共9小题,共72.0分。
实数运算单元测试题及答案
实数运算单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是实数?A. πB. iC. -1/3D. √22. 实数a和b满足a < b,那么下列哪个不等式是正确的?A. a + 1 > bB. a + 1 < bC. a + 1 ≥ bD. a + 1 ≤ b3. 如果x^2 = 4,那么x的值是:A. 2B. -2C. 2 或 -2D. 没有实数解4. 计算下列表达式的值:(-3) × (-2) =A. 6B. 9C. -6D. -95. 绝对值|-5|等于:A. 5B. -5C. 0D. 106. 下列哪个数是有理数?A. πB. √3C. 0.33333...D. √2π7. 计算下列表达式的结果:√(9^2) =A. 3B. 9C. 81D. 368. 如果x - 2 = 5,那么x的值是:A. 3B. 7C. -3D. 29. 计算下列表达式的值:(-2)^3 =A. -8B. 8C. -2D. 210. 下列哪个数是无理数?A. 1/3B. 1/7C. √2D. 0.5二、填空题(每题2分,共20分)11. 计算√16 的结果是______。
12. 如果一个数的平方是25,那么这个数是______。
13. 绝对值 |-7| 等于______。
14. 将 -3.5 转换为分数是______。
15. 计算 (-1)^4 的结果是______。
16. 如果x^2 + 6x + 9 = 0,那么x的值是______。
17. 计算√(-1)^2 的结果是______。
18. 一个数的立方是-8,这个数是______。
19. 计算1/√2 的结果是______。
20. 如果一个数的倒数是-2,那么这个数是______。
三、解答题(每题10分,共60分)21. 解方程:2x + 5 = 11。
22. 计算下列表达式的值:(3 + √5) × (3 - √5)。
实数单元测试题及答案
实数单元测试题及答案一、选择题(每题2分,共20分)1. 以下哪个数是实数?A. √2B. -πC. iD. √(-1)2. 实数集R中,以下哪个数是最小的?A. 0B. -1C. -∞D. 13. 若x^2 = 4,x的值是:A. 2B. -2C. 2或-2D. 44. 以下哪个表达式不是实数?A. 1/3B. √3C. 1/0D. √45. 两个负数相除的结果是:A. 正数B. 负数C. 0D. 无法确定6. 以下哪个数是无理数?A. 1B. 1/2C. √2D. 27. 绝对值 |-5| 等于:A. 5B. -5C. 0D. 18. 以下哪个数不是有理数?A. 3.1415926B. -√2C. 1/2D. 09. 两个正数相加的结果:A. 总是正数B. 可能是正数或负数C. 总是负数D. 无法确定10. 以下哪个数是实数的平方根?A. √16B. √(-4)C. -√4D. √(-1)二、填空题(每题2分,共20分)11. √9 = _______。
12. 一个数的立方根是-2,这个数是 _______。
13. 两个相反数的和是 _______。
14. 一个数的绝对值是它本身,这个数是 _______ 或 _______。
15. 两个数相除,如果商是-3,那么这两个数的符号 _______。
16. 一个数的相反数是它自己,这个数是 _______。
17. 一个数的平方是16,这个数可以是 _______ 或 _______。
18. 绝对值不大于3的整数有 _______ 个。
19. 两个数的乘积为正数,说明这两个数 _______ 同号。
20. 一个数的倒数是1/2,这个数是 _______。
三、解答题(共60分)21. 证明:对于任意实数a和b,有|a + b| ≤ |a| + |b|。
(10分)22. 解方程:x^2 - 4x + 4 = 0。
(10分)23. 计算:(-2)^3 + √(81) - 1/3。
《实数》单元测试题及答案
《实数》单元测试题及答案一、选择题(每题3分,共15分)1. 下列数中,不是实数的是()A. πB. -2C. √2D. i2. 若a > 0,b < 0,且|a| > |b|,则a + b()A. 一定大于0B. 一定小于0C. 一定等于0D. 无法确定3. 以下哪个数是无理数?()A. 3.1415B. √3C. 0.33333D. 1/34. 实数x满足|x - 1| < 2,x的取值范围是()A. -1 < x < 3B. -2 < x < 2C. 0 < x < 2D. 1 < x < 35. 若x² = 4,x的值是()A. 2B. -2C. 2或-2D. 无解二、填空题(每题2分,共10分)6. 一个数的相反数是它自己,这个数是________。
7. 绝对值最小的实数是________。
8. 一个数的平方根是2,这个数是________。
9. √16的算术平方根是________。
10. 若a = -3,则|a| = ________。
三、解答题(每题5分,共20分)11. 证明:对于任意实数x,都有|x| ≥ 0。
12. 解不等式:2x + 5 > 3x - 2。
13. 证明:√2是一个无理数。
14. 已知x² - 4x + 4 = 0,求x的值。
四、综合题(每题10分,共20分)15. 某工厂需要生产一批零件,每件零件的成本是c元,销售价格是p 元。
如果工厂希望获得的利润率是20%,求p和c之间的关系。
16. 一个圆的半径是r,求圆的面积和周长。
五、附加题(每题5分,共5分)17. 一个数的立方根是它自己,这个数有几个?分别是多少?答案:一、选择题1. D2. A3. B4. A5. C二、填空题6. 07. 08. 49. 410. 3三、解答题11. 证明:对于任意实数x,|x|定义为x与0之间的距离,因此|x|总是非负的,即|x| ≥ 0。
2024-2025学年北师大版数学八年级上册《第2章 实数》单元测试试卷附答案解析
第1页(共11页)2024-2025学年北师大版数学八年级上册《第2章实数》单元试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在下列实数中:0,2.5,﹣3.1415,4,227,0.343343334…无理数有()A .1个B .2个C .3个D .4个2.(3分)下列x 的值能使−6有意义的是()A .x =1B .x =3C .x =5D .x =73.(3分)将33×2化简,正确的结果是()A .32B .±32C .36D .±364.(3分)下列判断中,你认为正确的是()A .0的倒数是0B .5大于2C .π是有理数D .9的值是±35.(3分)下列计算正确的是()A .310−25=5B11=11C .(75−15)÷3=25D −=26.(3分)若a <5<b ,且a 、b 是两个连续整数,则a +b 的值是()A .2B .3C .4D .57.(3分)点A 在数轴上,点A 所对应的数用2a +1表示,且点A 到原点的距离等于3,则a 的值为()A .﹣2或1B .﹣2或2C .﹣2D .18.(3分)下列说法:①﹣7是49的平方根;②49的平方根是﹣7;③16的算术平方根是4;④(−4)2=(−4)2;⑤(3−8)3=3(−8)3.其中错误的有()A .1个B .2个C .3个D .4个9.(3)A .26B .62C .66D .1210.(3分)实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是()A .|a |<1B .ab >0C .a +b >0D .1﹣a >1二、填空题(本大题7小题,每小题4分,共28分)。
八年级上册《第4章实数》单元测试卷(有答案)
八年级上学期第4章《实数》单元测试卷一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对2.下列说法正确的是()A.近似数3.6与3.60精确度相同B.数2.9954精确到百分位为3.00C.近似数1.3x104精确到十分位D.近似数3.61万精确到百分位3.﹣27的立方根与4的平方根的和是()A.﹣1B.﹣5C.﹣1或﹣5D.±5或±1 4.﹣2的绝对值是()A.2B.C.D.15.在3,0,﹣2,﹣四个数中,最小的数是()A.3B.0C.﹣2D.﹣6.下列各式成立的是()A.=±5B.±=4C.=5D.=±1 7.如图,正方形的周长为8个单位.在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表示﹣3的点重合,再将数轴按顺时方向环绕在该正方形上,则数轴上表示2019的点与正方形上的数字对应的是()A.0B.2C.4D.68.化简(6﹣π)0+()﹣1+|1﹣|+的结果为()A.B.C.D.9.﹣1的相反数是()A.1B.C.D.10.用“&”定义新运算:对于任意实数a,b都有a&b=2a﹣b,如果x&(1&3)=2,那么x等于()A.1B.C.D.2二.填空题(共7小题)11.9的平方根是,9的算术平方根是.12.设a、b、c都是实数,且满足,ax2+bx+c=0;则代数式x2+2x+1的值为.13.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.14.的整数部分是x,小数部分是y,则y(x+)的值为.15.的小数部分我们记作m,则m2+m+=.16.据统计:我国微信用户数量已突破8.87亿人,近似数8.87亿精确到位.17.借助计算器探索:=,=,猜想:=.三.解答题(共6小题)18.计算:(﹣)﹣2﹣23×0.125+20040+|﹣1|19.当+|b+2|+c2=0时,求ax2+bx+c=0的解.20.已知3x+1的算术平方根是4,x+y﹣17的立方根是﹣2,求x+y的平方根.21.实数a,b,c在数轴上的位置如图(1)求++的值(2)化简|b+c|﹣|b+a|+|a+c|22.观察与猜想:===2===3(1)与分别等于什么?并通过计算验证你的猜想(2)计算(n为正整数)等于什么?23.求出下列x的值:(1)4x2﹣81=0;(2)64(x+1)3=27;(3)在实数的原有运算法则中,我们补充定义关于正实数的新运算“⊕”如下:当a≥b>0时,a⊕b=b2;当0<a<b时,.根据这个规则,求方程(3⊕2)x+(4⊕5)=0的解.参考答案一.选择题1.A.2.B.3.C.4.A.5.C.6.C.7.C.8.A.9.A.10.C.二.填空题11.±3;312.5.13.3.14.1.15.2.16.百万.17.555,55555,.三.解答题18.解:原式=4﹣1+1+1=5.19.解;当+|b+2|+c2=0时,则,∴,∴4x2﹣2x=0,2x2﹣x=0,x(2x﹣1)=0,x1=0,x2=20.解:根据题意得:3x+1=16,x+y﹣17=﹣8,解得:x=5,y=4,则x+y=4+5=9,9的平方根为±3.所以x+y的平方根为±3.21.解:(1)由图可知a>0,b<0,c<0,所以ab<0,所以++=++,=1+(﹣1)+(﹣1),=﹣1;(2)由图可知a>0,b<0,c<0且|c|<a<|b|,所以|b+c|﹣|b+a|+|a+c|,=﹣(b+c)﹣(﹣b﹣a)+(a+c),=﹣b﹣c+b+a+a+c,=2a.22.解:(1)=4,验证:===4,=5验证:===5;(2)===n.23.解:(1)4x2﹣81=04x2=81,.(2)64(x+1)3=27,.(3)(3⊕2)x+(4⊕5)=0可化为22x+=0,即4x+2=0,4x=﹣2,∴x=﹣.。
精选人教版初中数学七年级下册第六章《实数》单元测试及答案
精选⼈教版初中数学七年级下册第六章《实数》单元测试及答案⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<> 16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36. 2 ⼈教版初中数学七年级下册第六章《实数》检测卷含答案⼀、选择题(每⼩题3分,共30分) 1. 916的平⽅根是( )A. C. 34 D. ±342. ,227,π-20.121 221 222 1…(相邻两个“1”之间依次多⼀个“2”)中,有理数有( )A. 1个B. 2个C. 3个D. 4个3. 若x 2=16,则5-x 的算术平⽅根是( )A. ± 1B. ±4C. 1或9D. 1或34. 下列说法中,不正确的是( )A. 0.027的⽴⽅根是0.3B. -8的⽴⽅根是-2C. 0的⽴⽅根是0D. 125的⽴⽅根是±55. 的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间6. ⼀个⾃然数的算术平⽅根是a ,则下⼀个⾃然数的算术平⽅根是( )A. B. +1C. a+1D.7. 如图,数轴上A,B和5.1,则A,B两点之间表⽰整数的点共有( )A. 6个B. 5个C. 4个D. 3个8. ≈0.793 7≈1.710 0,那么下列各式正确的是( )A. B. ≈7.937C. D. ≈79.379. 0,则a与b的关系是( )A. a=b=0B. a与b相等C. a与b互为相反数D. a=1 b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10⼆、填空题(每⼩题3分,共24分)11. ⽐较⼤⼩:-5 -26(填“>”“=”或“<”).12. 3-11的相反数是,绝对值是.13. =3,则2x+5的平⽅根是.14. ⼩成编写了⼀个程序:输⼊x→x2→⽴⽅根→倒数→算术平⽅根→12,则x为.15. 若数m,n满⾜(m-1)20,则(m+n)5=.16. 已知36=x3,z是16的算术平⽅根,则2x+y-5z的值为.17. 点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是.18. 对于任意不相等的两个数a,b,定义⼀种运算※如下:a※b,如3※2= 5.那么12※4=.三、解答题(共66分)19. (8分)计算:1-3;(1)3+1+3+||(2)25+144.20. (8分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.21. (9分)已知2a-1的平⽅根是±3,3a+b-1的平⽅根是±4,求a+2b的平⽅根.22. (9分)已知某正数的两个平⽅根分别是a +3和2a -15,b 的⽴⽅根是-2,求3a +b 的算术平⽅根.23.⼈教版七年级数学下册第六章实数单元综合能⼒提升测试卷⼀、选择题(每⼩题3分,共30分)1.下列选项中正确的是()A .27的⽴⽅根是±3B .16 的平⽅根是±4C .9的算术平⽅根是3D .⽴⽅根等于平⽅根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是⽆理数的是() A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平⽅根是() A . B .- C . D .± 4.下列四个数中的负数是()A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为()A.5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.⼀个⾃然数a 的算术平⽅根为x ,则a+1的⽴⽅根是()A B C D8.下列结论中正确的个数为() 72233722331512512515152)1(-662)2(-1622(1)零是绝对值最⼩的实数;(2)数轴上所有的点都表⽰实数;(3)⽆理数就是带根号的数;(4)-的⽴⽅根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是()A.81 B .27C .9 D.310.若有理数a 和b 在数轴上所表⽰的点分别在原点的右边和左边,则-︱a -b ︱等于()A .aB .-aC .2b +aD .2b -a⼆、填空题(每⼩题3分,共30分)11.在下列各数中⽆理数有个。
沪科版七年级下数学第6章《实数》单元测试(含答案)
《实数》单元测试一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=B C.a=﹣B D.以上结论都不对2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个3.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数4.的平方根为()A.±8 B.±4 C.±2 D.45.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数C.3 D.无法确定6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.47.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根8.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a>0 B.a+b>0 C.a﹣b>0 D.ab<09.如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+210.的相反数是()A.2 B.﹣2 C.4 D.﹣二.填空题(共4小题)11.数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为个单位长度.12.已知x=,则x3+12x的算术平方根是.13.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.三.解答题(共8小题)15.已知实数a、b满足(a+2)2+=0,则a+b的值.16.计算题(1)(+3)(﹣3)﹣(2)+(﹣)×17.已知实数x、y满足y=,求的值.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是.19.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得P A+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.20.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.21.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,P A的中点为M,N为PB的三等分点且靠近于P点,求PM﹣BN的值.22.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm 的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t 的变化而变化?请说明理由.参考答案与试题解析一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对【解答】解:∵a是9的平方根,∴a=±3,又B=()2=3,∴a=±b.故选:A.2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:在π、,﹣,,3.1416,0.中,无理数是:π,共2个.故选:B.3.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数【解答】解:∵|b|<3,∴﹣3<b<3,又∵a<b,∴a的取值范围是小于或等于﹣3的实数.故选:C.4.的平方根为()A.±8 B.±4 C.±2 D.4【解答】解:∵=4,又∵(±2)2=4,∴的平方根是±2.故选:C.5.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数 C.3 D.无法确定【解答】解:∵的小数部分为b,∴b=﹣2,把b=﹣2代入式子(4+b)b中,原式=(4+b)b=(4+﹣2)×(﹣2)=3.故选:C.6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.4【解答】解:121[]=11[]=3[]=1,∴对121只需进行3次操作后变为1,故选:C.7.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根【解答】解:A、2是8的立方根是正确的,不符合题意;B、4是64的立方根,原来的说法错误,符合题意;C、﹣是的平方根是正确的,不符合题意;D、4是的算术平方根是正确的,不符合题意.故选:B.8.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a>0 B.a+b>0 C.a﹣b>0 D.ab<0【解答】解:由数轴可知:a<0<b,|a|>|b|,∴a+b<0,a﹣b<0,ab<0,∴选项D正确.故选:D.9.如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+2【解答】解:根据数轴,可知2<a<3,所以a﹣2>0,则|a﹣2|=a﹣2.故选:A.10.的相反数是()A.2 B.﹣2 C.4 D.﹣【解答】解:的相反数是(2,即2.故选:A.二.填空题(共4小题)11.数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为3个单位长度.【解答】解:根据题意:数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,得到点的坐标为﹣1+4﹣6=﹣3,故此时A点距原点的距离为3个单位长度.12.已知x=,则x3+12x的算术平方根是2.【解答】解:设=a,=b.则,.又4==a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12),=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12),=(a2b﹣ab2)(a4b2﹣8+a2b4+12),=(a2b﹣ab2)(a4b2+a2b4+4),=ab(a﹣b)a2b2(a2+b2+ab),=a3b3(a3﹣b3),=,=4×2=8.则其算术平方根是2.故答案为:2.13.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=406.【解答】解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.三.解答题(共8小题)15.已知实数a、b满足(a+2)2+=0,则a+b的值.【解答】解:∵(a+2)2+=0,∴a+2=0,b2﹣2b﹣3=0,解得:a=﹣2,b1=﹣1,b2=3,则a+b的值为:1或﹣3.16.计算题(1)(+3)(﹣3)﹣(2)+(﹣)×【解答】解:(1)原式=()2﹣32﹣(﹣3)=14﹣9+3=8;(2)原式=×+×﹣×,=6+5﹣6,=5.17.已知实数x、y满足y=,求的值.【解答】解:∵4 x﹣1≥0,1﹣4 x≥0∴x≥,x≤,∴x=,∴y=,∴=.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是﹣7.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是0或4.【解答】解:(1)∵(c﹣6)2+|a+2|=0,∴a+2=0,c﹣6=0,解得a=﹣2,c=6,∴a2+c2﹣2ac=4+36+24=64;(2)∵b是最小的正整数,∴b=1,∵(﹣2+1)÷2=﹣0.5,∴6﹣(﹣0.5)=6.5,﹣0.5﹣6.5=﹣7,∴点C与数﹣7表示的点重合;(3)设点D表示的数为x,则若点D在点A的左侧,则﹣2﹣x=2(1﹣x),解得x=4(舍去);若点D在A、B之间,则x﹣(﹣2)=2(1﹣x),解得x=0;若点D在点B在右侧,则x﹣(﹣2)=2(x﹣1),解得x=4.综上所述,点D表示的数是0或4.故答案为:﹣7;0或4.19.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得P A+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【解答】解:(1)∵|a+5|+|b﹣1|+|c﹣2|=0,∴a+5=0,b﹣1=0,c﹣2=0,解得a=﹣5,b=1,c=2,设点P表示的数为x,∵P A+PB=PC,①P在AB之间,[x﹣(﹣5)]+(1﹣x)=2﹣x,x+5+1﹣x=2﹣x,x=2﹣1﹣5,x=﹣4;②P在A的左边,(﹣5﹣x)+(1﹣x)=2﹣x,﹣5﹣x+1﹣x=2﹣x,﹣x=2﹣1+5,x=﹣6;③P在BC的中间,(5+x)+(x﹣1)=2﹣x,2x+4=2﹣x,3x=﹣2,x=﹣(舍去);④P在C的右边,(x+5)+(x﹣1)=x﹣2,2x+4=x﹣2,x=﹣6(舍去).综上所述,x=﹣4或x=﹣6.(2)∵运动时间为t(t≥1),A的速度为每秒1个单位长度,B的速度为每秒3个单位长度,C的速度为每秒5个单位长度,∴点A表示的数为﹣5﹣t,点B表示的数为1﹣3t,点C表示的数为2﹣5t,①当1﹣3t>﹣5﹣t,即t<3时,AB=(1﹣3t)﹣(﹣5﹣t)=﹣2t+6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(﹣2t+6)﹣(2t﹣1)=7﹣4t,∴AB﹣BC的值会随着时间t的变化而变化.②当t≥3时,AB=(﹣5﹣t)﹣(1﹣3t)=2t﹣6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(2t﹣6)﹣(2t﹣1)=﹣5,∴AB﹣BC的值不会随着时间t的变化而变化.综上所述,当1≤t<3时,AB﹣BC的值会随着时间t的变化而变化.当t≥3时,AB﹣BC的值不会随着时间t的变化而变化.20.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为﹣5;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.【解答】解:(1)∵正方形ABCD的面积为16,∴AB=4,∵点A表示的数为﹣1,∴AO=1,∴BO=5,∴数轴上点B表示的数为﹣5,故答案为:﹣5.(2)①∵正方形的面积为16,∴边长为4,当S=4时,分两种情况:若正方形ABCD向左平移,如图1,A'B=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1﹣3=﹣4;若正方形ABCD向右平移,如图2,AB'=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1+3=2;综上所述,点A'表示的数为﹣4或2;②t的值为4.理由如下:当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为负数,不可能互为相反数,不符合题意;当点E,F所表示的数互为相反数时,正方形ABCD沿数轴正方向运动,如图3,∵AE=AA'=×2t=t,点A表示﹣1,∴点E表示的数为﹣1+t,∵BF=BB′=×2t=t,点B表示﹣5,∴点F表示的数为﹣5+t,∵点E,F所表示的数互为相反数,∴﹣1+t+(﹣5+t)=0,解得t=4.21.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,P A的中点为M,N为PB的三等分点且靠近于P点,求PM﹣BN的值.【解答】解:(1)①8﹣(﹣2)=10,﹣2+×10=3,故答案为:10,3;②由题可得,点P表示的数为﹣2+3t,点Q表示的数为8﹣2t;故答案为:﹣2+3t,8﹣2t;(2)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当t=1或3时,PQ=AB;(3)∵P A的中点为M,N为PB的三等分点且靠近于P点,∴MP=AP=×3t=t,BN=BP=(AP﹣AB)=×(3t﹣10)=2t﹣,∴PM﹣BN=t﹣(2t﹣)=5.22.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm 的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t 的变化而变化?请说明理由.【解答】解:(1)如图所示:CA=4﹣(﹣1)=4+1=5(cm);(2)设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;(4)P3P2﹣P1P2的值不会随着t的变化而变化,理由如下:根据题意得:P3P2=(4+4t)﹣(﹣1+t)=5+3t,P1P2=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴P3P2﹣P1P2=(5+3t)﹣(2+3t)=3,∴P3P2﹣P1P2的值不会随着t的变化而变化.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数单元测验(一)
1、25的平方根是( )
A 、5
B 、5-
C 、5±
D 、5± 2、下列说法错误的是 ( )
A 、无理数的相反数还是无理数
B 、无限小数都是无理数
C 、正数、负数统称有理数
D 、实数与数轴上的点一一对应 3、下列各组数中互为相反数的是( )
A 、2)2(2--与
B 、382--与
C 、2
)2(2-与 D 、22与-
4、数 032032032.8是( )
A 、有限小数
B 、有理数
C 、无理数
D 、不能确定 5、在下列各数: 51525354.0、
10049、2
.0 、π1、7、11
131、327、中,无理数的个数是 ( ) A 、2 B 、3 C 、4 D 、5
6、一个长方形的长与宽分别时6cm 、3cm ,它的对角线的长可能是( )
A 、整数
B 、分数
C 、有理数
D 、无理数 7、满足53<<-
x 的整数x 是( )
A 、3,2,1,0,1,2--
B 、3,2,1,0,1-
C 、3,2,1,0,1,2--
D 、2,1,0,1-
8、当
14+a 的值为最小值时,a 的取值为( )
A 、-1
B 、0
C 、4
1
- D 、1
9、如下图,线段2=AB 、5=CD ,那么,线段EF 的长度为( ) A 、7 B 、11 C 、13 D 、15
10、2
)9(-的平方根是x , 64的立方根是y ,则y x +的值为( ) A 、3 B 、7 C 、3或7 D 、1或7
1、实数a 在数轴上的位置如图所示,化简|a +1|的结果是( )
A .1a +
B .1a -+
C .1a -
D .1a -- 2、设a 是实数,则|a|-a 的值( )
A 、可以是负数
B 、不可能是负数
C 、必是正数
D 、可以是正数也可以是负数 3、长城总长约为6700010米,用科学记数法表示是(保留两个有效数字) A 、56.710⨯米 B 、66.710⨯米 C 、76.710⨯米 D 、86.710⨯米 4、下列都是无理数的为( )
(A)0.07,32
,π;(B)0.∙
7,π,2;(C)2,6,π;(D)0.1010101……101,π
,3
5、△ABC 的边长分别是1,k ,3,则化简723k -的结果是6
( ) A 、-5 B 、1 C 、 13 D 、19-4k
6、将
) A
、、7、法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用
手势了。
下面两个图框使用法国“小九九”计算7×8和8×9的两个示例。
若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是
01a
A .2,3
B .3,3
C .2,4
D .3,4
11、平方根等于本身的实数是 。
12、化简:=-2
)3(π 。
13、
9
4
的平方根是 ;125的立方根是 。
14、一个正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍。
15、估计60的大小约等于 或 (误差小于1)。
16、若03)2(12
=-+-+-z y x ,则z y x ++= 。
17、我们知道
53432=+,黄老师又用计算器求得:、
55334432=+、55533344432=+、
55553333444432=+、…, 则计算
2333444)
32008(2
)
42008( 个个+等于 。
18、比较下列实数的大小(在 填上 > 、< 或 =)
①
-
2; ②
215- 2
1
;
③5。
19、如图,在网格图中的小正方形边长为1,则图中的ABC ∆的面积等于 。
20、如图,图中的线段AE 的长度为 。
9、我市今年参加中考的学生数为24397人,把这个数保留两个有效数字可记为 。
10
、x =的取值范围为
11 a ,小数部分是b ,则a= b = ;
12
、计算
÷
的结果是____________
13、如下图是小明用火柴搭的1条、2条、3条“金鱼”……, 则搭n 条“金鱼”需要火柴 根.
14、一跳蚤在一直线上从O 点开始,第1次向右跳1个单位, 紧接着第2次向左跳2个单位,第3次向右跳3个单位,
第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时, 落点处离O 点的距离是 个单位.。
15、有若干个数,依次记为,,,,,321n a a a a 若21
1-=a ,从第2个数起,
每个数都等于1与它前面的那个数的差的倒数,则=2005a 。
21、化简:5312-⨯ 22、2
36⨯ 23、化简:2)75)(75(++-
24、化简:2
2
24145- 25、化简:2)5
25(- 26、化简: 8
14
5032--
18
、
2
+ 19
、
-
20、312÷(3
31
-23) 21、m
m m m
m m 1
5462-+
27、求x 值: 2542=x 28、求x 值:027.0)7.0(3
=-x
23
、22223x y x xy y +=++已知,,求的值
25
、如果
112a b a b -=-=,那么a 、b 两数有什么关系? 1条 2条 3条
29、已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值。
30、已知实数 a 、b
试化简:(a -b)2-|a +b |
31
、已知:字母a 、b 满足
021=-+-b a ,
求 )
2008)(2008(1)2)(2(1)1)(1(11+++++++++b a b a b a ab
的值?
26、如图△ABC 中,∠A=90°,BC 中垂线分别交BC 于D 交AB 于E , 已知AC=6,AE=2求ABC ∆的周长和面积。
(7分)
32、如图,某住宅社区在相邻两楼之间修建一个上方是以AB 为直径的半圆,下方是长方形的仿古通道,已知AD=2.3米,CD=2米;现有一辆卡车装满家具后,高2.5米,宽1.6米,请问这辆送家具的卡车能否通过这个通道?请说出你的理由。