一元一次方程解应用题的几种常见题型-教育文档

合集下载

一元一次方程解应用题的几种常见题型

一元一次方程解应用题的几种常见题型

一元一次方程解应用题的几种常见题型列一元一次方程解运用题是七年级数学教学中的一大重点,而列一元一次方程解运用题又是先生从小学升入中学后第一次接触到用代数的方法处置运用题。

因此,仔细学好这一知识,关于今后学习整个中学阶段的列方程(组)解运用题大有协助。

因此将列一元一次方程解运用题的几种罕见题型及其特点归结上去,如下:(1)和、差、倍、分红绩。

此效果中常用〝多、少、大、小、几分之几〞或〝添加、增加、增加〞等等词语表达等量关系。

审题时要抓住,确定规范量与比校量,并留意每个词的纤细差异。

(2)等积变形效果。

此类效果的关键在〝等积〞上,是等量关系的所在,必需掌握罕见几何图形的面积、体积公式。

〝等积变形〞是以外形改动而体积不变为前提。

常用等量关系为:①外形面积变了,周长没变;②原料体积=成品体积。

(3)分配效果。

从分配后的数量关系中找等量关系,罕见是〝和、差、倍、分〞关系,要留意分配对象活动的方向和数量。

这类效果要搞清人数的变化,罕见题型有:①既有调入又有调出;②只要调入没有调出,调入局部变化,其他不变;③只要调出没有调入,调出局部变化,其他不变。

(4)行程效果。

要掌握行程中的基本关系:路程=速度×时间。

相遇效果(相向而行),这类效果的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

甲走的路程+乙走的路程=全路程追及效果(同向而行),这类效果的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程②同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程环形跑道上的相遇和追及效果:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

船(飞机)飞行效果:相对运动的合速度关系是:顺水(风)速度=静水(无风)中速度+水(风)流速度;顺水(风)速度=静水(无风)中速度-水(风)流速度。

一元一次方程考试的13种应用题型

一元一次方程考试的13种应用题型

一元一次方程考试的13种应用题型1、工程问题列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组,从而解决问题。

列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)【典例探究】例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:【方法突破】工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:工作总量=工作效率×工作时间需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。

2、比赛计分问题【典例探究】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了道题。

解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得x=37则45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1·(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。

初一一元一次方程解应用题全部类型

初一一元一次方程解应用题全部类型

1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多少、和、差、不足、剩余……”来体现。

例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?分析:相等关系是:今年捐款=去年捐款×2+1000。

解:设去年为灾区捐款x元,由题意得,2x+1000=250002x=24000∴ x=12000答:去年该单位为灾区捐款12000元。

例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?分析:等量关系为:油箱中剩余汽油+1=用去的汽油。

解:设油箱里原有汽油x公斤,由题意得,x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%去分母整理得,9x+20=5x+6x∴ 2x=20∴ x=10答:油箱里原有汽油10公斤。

2、等积变形问题:“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:原料体积=成品体积。

例3、现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?分析:等量关系为:机轴的体积和=钢坯的体积。

解:设可足够锻造x根机轴,由题意得,π()2×3x=π()2×30解这个方程得x=x=×10×==40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根。

3、劳力调配问题:这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。

(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。

例4、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?分析:此问题中对乙队来说有调出,对甲队来说有调入。

初中数学一元一次方程解应用题的10大题型

初中数学一元一次方程解应用题的10大题型

第2页共8页
解:
由图可看出:
甲、乙两人在 3h 里所走的路程等于 A、B 两地距离的 2 倍,即:
甲的路程 + 乙的路程 = A、B 两地距离×2 (等量关系)
设乙的速度为 x km/h,则甲的速度为(2x+2) km/h 所以 甲走的路程为 3(2x+2)km
乙走的路程为 3x km 根据题意可得:
此类题型的等量关系为:胜得分-负扣分=比赛得分
解:
设胜了 x 场,那么负了(8-x)场,根据题意得
2x+(8-x)=13
解得
x=5
所以 胜了 5 场,负了 8-5=3(场),
答:七年级(1)班胜了 5 场,负了 3 场。
题型 10:配套问题
例.一张方桌由 1 个桌面和 4 条桌腿组成,用 1 m3 木材可制成 50 个方桌桌面或 300 条桌腿, 现有 5 m3 木材,若做成的桌腿和桌面恰好配套,能做成方桌多少张?
3、列方程:用含有未知数的式子表示上边的等量关系,得到相应的方程 4、解方程; 5、检验解;(一般在草稿纸上完成) 6、解答.
一元一次方程解应用题的 10 大题型
题型 1:和、差问题
1、江南生态食品加工厂收购了一批质量为 10000 千克的某种山货,根据市场需求对其进行 粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量 3 倍还多 2000 千克。求
所以个位上的数 11−x = 8,即原两位数是 38
第5页共8页
答:原来的两位数为 38. 题型 8:优化方案问题 8、某国际足球赛组委会公布的门票价格为:一等席 300 美元,二等席 200 美元,三等席 125 美元.某商场在促销活动期间,组织获奖的 36 名顾客到现场观看比赛,计划买两种门票, 用完 5025 美元,请你设计出几种方案供该商场选择,并说明理由.

一元一次方程应用题8种类型怎么解答

一元一次方程应用题8种类型怎么解答
初中阶段数学学习中的基础内容之一,通过解答不同类型的一元一次方程应用题能够帮助学生理解方程的实际意义,提高解决实际问题的能力。下面将介绍8种常见类型的一元一次方程应用题及其解答方法:
1.
简单应用题通常是直接给出方程,要求解出方程的未知数值。解答方法是根据方程式的形式,运用逆运算将未知数解出。
2.
找规律题是给出一组数据,要求根据数据中的规律建立方程,然后解出方程。解答方法是观察数据规律,建立方程,再解出未知数。
3.
比例应用题中通常涉及比例关系,要求解出满足比例条件的未知数。解答方法是建立比例方程,根据比例关系求解未知数。
4.
速度、距离、时间应用题中涉及到物体间的速度、距离和时间的关系,要求解出某个物体的速度、距离或时间。解答方法是根据速度=距离/时间的关系建立方程,解出未知数。
7.
人头问题应用题中涉及到多个人或物体的数量和总数的关系,要求解出每个人或物体的数量。解答方法是根据每个人或物体的数量加起来等于总数的关系建立方程,解出未知数。
8.
每天坚持做题应用题中涉及到每天坚持做某事的天数问题,要求解出天数。解答方法是根据天数乘以每天的坚持量等于总量的关系建立方程,解出未知数。
通过以上8种类型的一元一次方程应用题的解答方法,希望能帮助学生更好地理解方程的实际意义,提高解决实际问题的能力。让数学不再枯燥,而是充满乐趣和实用性。
5.
工作能力题中涉及到多个人或物体一起工作完成某项任务的时间问题,要求解出每个人或物体的工作能力。解答方法是根据工作能力=工作量/时间的关系建立方程,解出未知数。
6.
价格问题应用题中涉及到商品的价格、数量和总价的关系,要求解出商品的价格或数量。解答方法是根据价格*数量=总价的关系建立方程,解出未知数。

解一元一次方程应用题的十六种常见题型

解一元一次方程应用题的十六种常见题型

列一元一次方程解应用题(设未知数,找等量关系列方程)一.利润率问题:利润=进价(成本价)×利润率利润=售价-进价利润率=(利润÷进价)×100%进价(成本价)﹢利润=售价1. 某商品进价为 500 元,按标价的 9 折销售,利润率为 15.2%,求商品的标价为多少元?2. 工艺商场按标价销售某种工艺品时,每件可获利 45 元;按标价的八五折销售该工艺品 8 件与将标价降低 35 元销售该工艺品 12 件所获利润相等.该工艺品每件的进价、标价分别是多少元?3. 一家商店将某种服装按进价提高 40%后标价,又以 8 折优惠卖出,结果每件仍获利 15 元,这种服装每件的进价是多少?4. 某商品的进价是 2000 元,标价为 3000 元,商店要求以利润不低于 5%的售价打折出售,售货员最低可以打几折出售此商品?5、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?6、某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?二. 储蓄问题:利息=本金×利率×期数本息和=本金+利息利息税=利息×税率年利率=月利率×12=日利率×3651. 某同学把 250 元钱存入银行,整存整取,存期为半年。

半年后共得本息和 252.7 元,求银行半年期的年利率是多少?(不计利息税)2.某储蓄所去年储户存款为4600万元,今年与去年相比,定期存款增加20%,而活期存款减少25%,但总存款增加15%,问今年定期,活期存款各是多少?三. 相遇问题(相向而行):这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

对应公式:路程=速度×时间快者路程+慢者路程=总路程(慢者速度+快者速度)×相遇时间=相遇路程1. 甲、乙两车从相距 264 千米的 A、B 两地同时出发相向而行,甲速是乙速的 1.2 倍,4 小时相遇,求乙速?2. 甲、乙两站相距 600 千米,慢车从甲地出发,每小时行 40 千米,快车从乙地出发,每小时行60 千米,若慢车先行 50 分钟,快车再开出,又行一段时间后遇到慢车,求快车开出多少小时两车相遇?3. A、B 两地相距 75 千米,一辆汽车以 50 千米/时的速度从 A 地出发,另一辆汽车以 40 千米/时速度从 B 地出发,两车同时出发,相向而行,经过几小时两车相距 30 千米?四. 追及问题(同向而行):这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

一元一次方程应用题七种类型

一元一次方程应用题七种类型

一元一次方程的典型题型1. 和、差、倍、分问题:( 1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提. 常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:( 1)既有调入又有调出;( 2)只有调入没有调出,调入部分变化,其余不变;( 3)只有调出没有调入,调出部分变化,其余不变4. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且K a< 9,0 < b< 9,0 < c< 9)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.5. 工程问题:工程问题中的三个量及其关系为:工作总量=工作效率X工作时间6. 行程问题:(1)行程问题中的三个基本量及其关系:路程=速度X时间.( 2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题.7. 商品销售问题有关关系式:商品利润=商品售价一商品进价=商品标价X折扣率一商品进价商品利润率=商品利润/ 商品进价商品售价=商品标价X折扣率8. 储蓄问题⑴ 顾客存入银行的钱叫做本金, 银行付给顾客的酬金叫利息, 本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率. 利息的20%付利息税⑵利息=本金X利率X期数本息和=本金+利息利息税=利息X税率(20%【典型例题】【典型例题】一、一元一次方程的有关概念例1. 一个一元一次方程的解为2,请写出这个一元一次方程.1分析与解:这是一道开放性试题,答案不唯一•如2x=1, x-2=0等等.【点拨】解答这类开放性问题时要敢于大胆猜想,然后利用一元一次方程的定义与解来完成•二、一元一次方程的解例2.若关于x的一兀一次方程2x k x33k 1的解是x21,则k的值是( )A. 2 B . 1C 13D.0711分析:根据方程解的定义,一兀「次方程的解能使方程左、右两边的值相等,把x= -1代入原方程得到一个关于k的一兀一次方程,解这个方程即可得到k的值.■2-k ・1-3k解:把x=-1代入2x k X 3k[中得,^^- - =1,解得:k=1.答案为B.3 2 3 2【点拨】根据方程解的概念,直接把方程的解代入即可三、一元一次方程的解法例3.如果2005 200.5 x 20.05,那么x等于( )(A)1814.55 (B)1824.55 (C)1774.45 (D)1784.45分析与解:移项,得2005-200.5+20.05=x,解得:x=1824.55.答案为A.【点拨】由于一元一次方程的形式、结构多种多样,所以在解一元一次方程时除了要灵活运用解一元一次方程的步骤外,还要根据方程的特定结构运用适当的解题技巧,只有这样才能降低解题难度.心 2 3 1例4. 3{?[尹-1)-3卜3}=3分析:观察本题中各个系数的特点,可以选择由外到内去括号的方法,从而可以一次性去掉大括号和中括号,既简化了解题过程,又能避开一些常见解题错误的发生1解:去大括号,得[2(X-1)-3]-2=31去中括号,得2(X-1)-3-2=31 1去小括号,得?x-?-3-2=31 1移项,得歹石+3+2+31 17合并,得歹=亍系数化为1,得:x = 17四、一元一次方程的实际应用例5.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1 )求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.分析:可以先设1个小餐厅可供y名学生就餐,这样的话,2个小餐厅就可供2y个学生就餐,因此大餐厅就可共(1680-2y )名学生就餐.然后在根据开放2个大餐厅、1个小餐厅可以就餐的人数列出方程2 (1680-2y ) +y=2280解:(1 )设1个小餐厅可供y 名学生就餐,则1个大餐厅可供(1680-2y )名学生就餐, 根据题意,得2(1680-2y )+y=2280解得:y=360 (名) 所以 1680-2y=960 (名) 答:(略)•(2)因为 960 5 360 2 5520 5300,所以如果同时开放 7个餐厅,能够供全校的 5300名学生就餐. 【点拨】第⑴问属于直接列方程解应用题,而第⑵问属于说理题,关键是求出这7个餐厅共能容纳多少人就餐,然后比较即可•例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等•该工艺品每件的进价、标 价分别是多少元?分析:根据利润=售价-进价与售价=标价X 折扣率这两个等量关系以及按标价的八五折 销售该工艺品8件与将标价降低 35元销售该工艺品12件所获利润相等,就可以列出一元一 次方程•解:设该工艺品每件的进价是X 元,标价是(45+x )元.依题意,得:8(45+x )X 0.85-8x= (45+X-35 ) X 12-12x解得:x=155 (元) 所以 45+x=200 (元) 答:(略)•【点拨】这是销售问题,在解答销售问题时把握下列关系即可: 商品售价=商品标价X 折扣率商品利润=商品售价一商品进价=商品标价X 折数一商品进价例7. (2006 •益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话: 李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本. 售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见•根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?分析:这是一道情景对话问题,具有一定的新颖性 •解答这类问题的关键是要从对话中捕捉等量关系•从对话中可以知道每支钢笔比每本笔记本贵2元,同时还可以发现买10支钢笔和15本笔记本共消费(100-5 ) =95元•根据上述等量关系可以得到相应的方程•解:设笔记本每本 x 元,则钢笔每支为 (x+2)元,据题意得10 (x+2) +15x=100-5解得,x=3 (元) 所以x+2=5 (元)答:(略)•商品利润率商品利润 商品进价X 100%。

一元一次方程解应用题常见题型

一元一次方程解应用题常见题型
相等关系:各部分工作量之和=1,
常从工作量和工作时间上考虑相等关系
比例问题
甲∶乙∶丙=a∶b∶c
相等关系:各部分量之和=总量。设其中一份为X由已知各部分量在总量中所占的比例,可得各部分量的代数式。
劳动力分配问题
抓住劳力调配后,从甲处人数与乙处人数之间的关系去考虑相等关系




追及
问题
路程、速度、时间的关系
商品利润率问题
商品利润=商品售价-商品进价
商品利润率= ×100%。
先确定售价、进价,再看商品利润率是针对哪一进价而言的,其中打折、降价的词义应清楚。
路程=速度×时间或者它们的变式
相等关系:甲走的路程+乙走和路程=A、B两地间的路程。
相遇
问题
同上
⒈同地不同时出发,前者走的路程=追者走的路程⒉同时不同地出发:前者走的路程+两地间距离=追者走的路程
航行
问题
路程=速度×时间;顺水(风)速度=静水(风)+水流(风)速度;逆水(风)速度=静水(风)-水流(风)速度
a、b、c、d均为大于或等于零而小于10的整数.
⒈抓住数字间或新数原数之间的关系寻找相等
⒉常需设间接未知数.
盈不足
问题
“盈”是分配中的多余情况
“不足”是分配中少缺情况
一般会给出两个条件:什么情况下会“盈”,盈多少?什么情况下会“不足”,不足多少?这两个条件都可以作相等关系,其中一个列方程,另一个来列代数式。
⒈与追及问题、相遇问题的思路方法类似.⒉抓住两地距离不变,水(风)速不变,静水(风)速不变的特点考虑相等关系。
年龄问题
大小两个年龄差不会变
抓住年龄增长,一年一岁,人人平等。

一元一次方程应用题题型与解题方法归类

一元一次方程应用题题型与解题方法归类

一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,增长率问题数字问题,方案设计与成本分析,古典数学,浓度问题等。

(一)行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间S=vt (2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。

并且还常常借助画草图来分析,理解行程问题。

例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

)1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。

(1)若他们同时相向而行,则经几小时他们相遇?(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?(3)若他们同时同向而行,则经几小时乙追上甲?(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?2、A、B两地相距1200千米。

甲从A地、乙从B地同时出发,相向而行。

甲每分钟行50千米,乙每分钟行70千米。

一元一次方程的五种题型,七年级

一元一次方程的五种题型,七年级

一元一次方程的五种题型,七年级全文共四篇示例,供读者参考第一篇示例:一元一次方程是初中数学的基础知识之一,也是数学学习的重要内容。

在七年级,学生开始接触一元一次方程,掌握解答各种类型的一元一次方程是十分重要的。

本文将介绍关于一元一次方程的五种题型,以帮助学生更好地理解和掌握这一知识点。

一元一次方程一般形式为ax+b=c,其中a,b,c为已知实数,x 为未知数。

解一元一次方程的基本原理是通过逆运算将未知数x解出来,使等式两边等值。

第一种题型:简单的一元一次方程2x+3=7,求解x的值。

解题步骤:将等式化为2x=7-3;得到2x=4;最终解得x=2。

第五种题型:实际问题中的一元一次方程小明买了一张CD,花了28元,比买两盘DVD少12元,求CD 和DVD的价格。

设CD的价格为x元,DVD价格为y元,根据题意可得:x=28;y=2x+12;解得CD价格为28元,DVD价格为44元。

通过以上五种题型的例题,希望能帮助同学们更好地掌握一元一次方程的解题方法,提高数学学习的效率和水平。

在解题过程中,同学们要注意细节,仔细分析题目,灵活运用逆运算,以确保正确解题。

继续努力,加油!第二篇示例:一元一次方程是初中阶段学习数学的重要内容之一,一元一次方程的题型多种多样,通过解题可以对学生的逻辑推理能力和数学思维能力进行有效的锻炼。

下面将介绍关于一元一次方程的五种常见题型,供七年级学生参考。

第一种题型是简单的一步方程。

这类题目一般是形如ax+b=c的方程,其中a、b、c均为整数,学生只需一步操作即可得出方程的解。

例如:2x+3=7,学生只需要将b移至等号右边,再将a除以系数即可得出x=2的解。

第二种题型是含有括号的方程。

这类题目一般是形如ax+(b-c)=d 的方程,学生需要先将括号内的式子进行运算,然后再进行解方程。

例如:3(x+2)=14,学生首先要将括号内的式子3(x+2)按照分配律进行展开,得到3x+6=14,然后按照第一种题型的方法解方程即可得到x=2的解。

一元一次方程各种题型

一元一次方程各种题型

一元一次方程各种题型一元一次方程是数学中的基础概念,通常只含有一个未知数,且未知数的指数为1。

这里,我们将解析9种常见的一元一次方程题型,并提供详细的解答。

1、题型一:简单一元一次方程例题:2x + 3 = 9解析:移项得2x = 9 - 3,再除以2得x = 3。

2、题型二:含括号的一元一次方程例题:2(x - 2) - 3 = 5解析:去括号得2x - 4 - 3 = 5,移项合并得2x = 12,最后除以2得x = 6。

3、题型三:含分数的一元一次方程例题:(2x - 1)/3 = (x + 2)/4解析:去分母得4(2x - 1) = 3(x + 2),去括号得8x - 4 = 3x + 6,移项合并得5x = 10,最后除以5得x = 2。

4、题型四:含绝对值的一元一次方程例题:|2x - 3| = 5解析:分两种情况讨论,当2x - 3 ≥0时,2x - 3 = 5;当2x - 3 < 0时,-(2x - 3) = 5。

分别解得x = 4 和x = -1。

5、题型五:含参数的一元一次方程例题:ax + b = 0 (a ≠0)解析:移项得ax = -b,因为a不为0,所以两边同时除以a得x = -b/a。

6、题型六:一元一次不等式与方程结合例题:解不等式组{2x - 1 < 5, x + 3 ≥2(x - 1)} 并求整数解。

解析:分别解两个不等式得x < 3 和x ≤5,取交集得解集为x < 3,整数解为x = 1, 2。

7、题型七:一元一次方程应用题(行程问题)例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?解析:设两人相遇需要t 小时,根据题意列方程(6 + 4)t = 20,解得t = 2。

8、题型八:一元一次方程应用题(工程问题)例题:一项工程甲单独做需要10天完成,乙单独做需要15天完成。

解一元一次方程应用题地十六种常见题型

解一元一次方程应用题地十六种常见题型

列一元一次方程解应用题(设未知数,找等量关系列方程)三 . 相遇问题(相向而行):一.利润率问题:利润 =进价(成本价)×利润率利润=售价-进价这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等利润率 =(利润÷进价)× 100% 进价(成本价)﹢利润 =售价应公式:路程 =速度×时间快者路程 +慢者路程 =总路程(慢者速度 +快×相遇相遇路程1. 某商品进价为500 元,按标价的 9 折销售,利润率为15.2% ,求商品的标价为多少元? 1. 甲、乙两车从相距 264 千米的 A 、B 两地同时出发相向而行,甲速是乙速的倍, 4相遇,求乙速?2.工艺商场按标价销售某种工艺品时,每件可获利 45 元;按标价的八五折销售该工艺品8 件与将标价降低 35 元销售该工艺品 12 件所获利润相等 . 该工艺品每件的进价、标价分别是多少元? 2. 甲、乙两站相距 600 千米,慢车从甲地出发,每小时行40 千米,快车从发,每60 千米,若慢车先行 50 分钟,快车再开出,又行一段时间后遇到慢车,求快车多少小车相遇?3.一家商店将某种服装按进价提高4%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3. A、B 两地相距 75 千米,一辆汽车以 50 千米 / 时的速度从 A 地出发,另一辆4 . 某商品的进价是 2000 元,标价为 3000 元,商店要求以利润不低于5%的售价打折出售,售/ 时速度从 B 地出发,两车同时出发,相向而行,经过几小时两车相距3货员最低可以打几折出售此商品?5、某商品的销售价格每件 900 元,为了参加市场竞争,商店按售价的九折再让利40 元销售,此四 . 追及问题(同向而行):这类问题的等量关系是:两人的路程差等于追及的路程时间时仍可获利 10%,此商品的进价是多少元?为等量关系。

列一元一次方程解应用题的几种常见题型

列一元一次方程解应用题的几种常见题型

第二讲列一元一次方程解应用题的几种常见题型姓名:列一元一次方程解应用题的几种常见题型及其特点:(1)行程问题。

要掌握行程中的基本关系:路程=速度×时间。

相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

航行问题:相对运动的合速度关系是:顺水速度=静水中速度+水流速度;逆水速度=静水中速度-水流速度。

(2)工程问题。

其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。

当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。

(3)溶液配制问题。

其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。

这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。

(4)利润率问题。

其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。

(5)银行储蓄问题。

其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。

注意利率有日利率、月利率和年利率,年利率=月利率×12 练习:1、商品出售茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,该商品制定了两种优惠方法:①买一只茶壶赠一只茶杯;②按总价的90%付款.某顾客购买茶壶5只,茶杯若干只(不少于5只),问顾客买多少只茶杯时,两种方法付款相同.假如该顾客买了茶杯20只,哪种买法实惠2、某人原计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达,但他因事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A,B两地间的距离.3、某工厂完成一批产品,一车间单独完成需30天,二车间单独完成需20天.①如一车间先做若干天,然后由二车间继续做,直至完成,前后共做了25天,问一车间先做了几天?②如一车间先做了3天后,二车间加入一起做,还需多少天才能完成?4、某储户将1200元人民币存入银行一年,取出时共得到人民币1224元,求该储户所存储种的利率?5、一筐梨,分散后小箱装,用去8个箱子,还剩8kg未能装下;用9个箱子,则最后一个箱子还可以装4kg,求这筐梨的质量?6、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数?7、一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数?8、南庄中学初一级数学竞赛,共有20道题,答对一道题得5分,不答或答错一道不仅不给分,而且还要扣3分,小婷得了76分,请问她答对了多少题?9、有若干4%的盐水,蒸发了一些水分后变成了10%的盐水,再加入300克4%的盐水,混合或变成6.4%的盐水,问最初加入的盐水质量?10、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套?(已知一个螺栓配两个螺母)11、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?12、水池中一根进水管、一根出水管同时打开可以将满池的水在60分钟放完,如果单独打开进水管,需要90分钟将水池注满,问单独打开出水管多少时间,可以将满池的水放完?13、张明叔叔与李威在四百米环形跑道上跑步锻炼身体,若两人在同一起跑点向同一个方向出发,已知张明叔叔的速度为195米/分,李威的速度为115米/分,问第几分钟时,张明叔叔第一次追上李威?14、一架飞机加满油可以在空中能飞行4小时,已知飞出的速度为950千米/时,返回时的速度为850千米/时,这架飞机加满油后最远飞多远就必须返回?15、一轮船从甲地顺流而下8小时到达乙地,原路返回要12小时才能到甲地,已知水流的速度为3千米/时,求轮船的顺流速度、逆流速度和甲乙两地的距离?揭示: 顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度.拓展:1、时钟从5:00正走到5:30,分针旋转角度为度;时针旋转角度为度;这时,时针和分针的夹角为度;2、时钟从5:00正走到5:40,分针旋转角度为度;时针旋转角度为度;这时,时针和分针的夹角为度;3、求在1点和2点之间时钟的时针和分针重合的时刻?4、求在1点和2点之间时钟的时针和分针成一条直线的时刻?。

初中数学一元一次方程解应用题的10大题型

初中数学一元一次方程解应用题的10大题型

初中数学一元一次方程解应用题的10大题型增长率问题增长量=原有量×增长率;现在量=原有量+增长量=原有量×(1+增长率)例题1:某学校食堂这个月的大米购进量比上个月减少了5%,由于受疫情影响米价上涨,这个月购进大米的费用反而比上个月增加了14%,求这个月大米价格相对上个月的增长率.数字问题数字问题需要清除数字的表示方法,一个两位数字,个位上是a,十位上是b,那么该数为10b+a;一个三位数,百位上是a,十位上是b,个位上是c,那么该数为100a+10b+c。

偶数常表示为2n,奇数常表示为2n-1或2n+1。

例题2:一个两位数,个位的数字比十位上的数字大1,交换两位数位置得到新的两位数与原两位数之和等于33,求这个两位数.例题3:一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.日历问题在日历中,横向相邻的两个数相差1,相邻的三个数可设为n-1,n,n+1;纵向相邻的两个数相差7,相邻的三个数可设为n-7,n,n+7.例题4:在一张日历表中,用正方形圈出4个数,这4个数的和可以是78吗?请简要计算说明你的理由.例题5:爷爷快八十大寿,小明想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说,“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.求小明爷爷的生日.行程问题行程问题种类较多,常见的有追及问题、相遇问题、环形跑道问题、顺流逆流问题、火车过桥问题等等,行程问题中有三个基本量及其关系:路程=速度×时间,速度=路程÷时间,时间=路程÷速度。

例题6:一艘船从甲码头到乙码头顺流而行,用了2h,又从乙码头返回甲码头逆流而行,用了2.5h,船在静水中的平均速度为27km/h,求水流的速度.例题7:从甲地到乙地,长途汽车原来需要8小时,开通高速公路后,路程缩短了40千米,平均车速增加了30千米/时,需要4.5小时即可达到,求长途汽车原来行驶的速度.工程问题工程问题与行程问题一样,是比较经典的类型之一,工程问题中三个量及其关系:工作总量=工作时间×工作效率,工作时间=工作总量÷工作效率,工作效率=工作总量÷工作时间。

一元一次方程应用题8种类型解法及典型例题

一元一次方程应用题8种类型解法及典型例题

一、概述1. 介绍一元一次方程的定义和基本形式2. 引出本文将要讨论的内容二、一元一次方程的八种类型1. 类型一:简单应用题1)例题:小明买了一些苹果,一共花了20元,每个苹果2元,问他买了多少个苹果?2)解法:设苹果的数量为x,根据题意可列出方程2x=20,解得x=10。

2. 类型二:两个未知数的应用题1)例题:甲乙两地相距180公里,相对而行,甲地的时速是每小时30公里,问几小时能相遇?2)解法:设相遇时间为t小时,甲地行驶的距离为30t,乙地行驶的距离为180-30t,根据题意可列出方程30t+30t=180,解得t=3。

3. 类型三:含有括号的应用题1)例题:一个数比8大,乘以3再减去2的结果是20,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程3(x-8)-2=20,解得x=18。

4. 类型四:含有分数的应用题1)例题:某数的1/3等于它的2/5减去3,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程1/3=2/5-3,解得x=-9。

5. 类型五:含有小数的应用题1)例题:一块钢铁的重量是另一块的3/5,如果重量相差5.2公斤,问两块钢铁的重量各是多少?2)解法:设较重的钢铁重量为x,根据题意可列出方程x-x*3/5=5.2,解得x=13。

6. 类型六:含有分母的应用题1)例题:一个数加上15的4/5等于这个数的3/4,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程x+15=3x/4,解得x=60。

7. 类型七:字母表示未知数的应用题1)例题:甲乙两个数的和是50,甲是乙的2倍,问甲乙两个数各是多少?2)解法:设甲的数为x,乙的数为y,根据题意可列出方程x+y=50和x=2y,解得x=40,y=10。

8. 类型八:几何问题转化为一元一次方程1)例题:一个三角形的底边长度是两腿长度的和的2倍,底边长8米,腿长是多少?2)解法:设腿长为x,根据题意可列出方程2x+x=8,解得x=4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程解应用题的几种常见题型
列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。

因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。

因此将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:
(1)和、差、倍、分问题。

此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。

审题时要抓住,确定标准量与比校量,并注意每个词的细微差别。

(2)等积变形问题。

此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。

“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:
①形状面积变了,周长没变;②原料体积=成品体积。

(3)调配问题。

从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。

这类问题要搞清人数的变化,常见题型有:
①既有调入又有调出;
②只有调入没有调出,调入部分变化,其余不变;③只有调
出没有调入,调出部分变化,其余不变。

(4)行程问题。

要掌握行程中的基本关系:路程=速度×时间。

相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

甲走的路程+乙走的路程=全路程
追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

①同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程
②同地不同时;甲的时间=乙的时间-时间差甲的路程=乙的路程
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

船(飞机)航行问题:相对运动的合速度关系是:
顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。

车上(离)桥问题:
①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。

②车离桥指车头离开桥到车尾离开桥的一段路程。

所走的路
程为一个成长
③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长
④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长
行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。

(5)工程问题。

其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。

当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。

(6)溶液配制问题。

其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。

这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。

(7)利润率问题。

其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。

商品售价=商品标价×折扣率
(8)银行储蓄问题。

其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。

注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。

(9)数字问题。

要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。

列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。

(10)年龄问题其基本数量关系:大小两个年龄差不会变。

这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。

(11)比例分配问题:
这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。

常用等量关系:各部分之和=总量。

一元一次方程应用题步骤解题技巧
列方程(组)解应用题
一概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。

其具体步骤是:
⑴审题。

理解题意。

弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。

①直接未知数②间接未知数(往往二者兼用)。

一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。

一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答题。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。

在这个过程中,列方程起着承前启后的作用。

因此,列方程是解应用题的关键。

1、解应用题的一般思维表述方式
解应用题的关键是:找等量关系,才能设出未知数,列出方程,剩余的解题任务相应的就比较轻松。

2、应用题的类型及思维策略
(1)应用题分类
在小学,学生对应用题学得较久,而且教师或某些资料分得太细,学生要记忆的东西太多,一旦记不住则无法理解。

怎样引导学生由记忆性思维转化为理解性思维,而且不需要记忆太多的东西。

1、行程问题(包括小学的追击问题,相遇问题,顺风逆风问
题等
2、工作问题
3、浓度问题(包括稀释问题,加浓问题,混合问题等)
4、杂题(包括比值问题,利润问题,增长下降问题,数字问题等)
(2)分类原因
因为前面三类都是我们在小学多年的学习中非常熟悉的,而且他们的等量关系是类似的。

如:路程=时间*速度,工作总量=工作时间*工作效率,溶质=浓度*溶液质量。

而杂题在题目中都有明显的表述等量关系的字词或隐藏着公认的规律。

(3)思维品质
一、杂题。

一般来说,都有明显的表述等量关系的字词,对学生而言比较容易。

二、行程问题。

行程问题是学生最熟悉的问题。

但是要找出其中的等量关系,学生感到非常困难,原因是不知道从哪方面入手找等量关系。

我引导学生这样想:a找哪两个事物之间发生关系;b 分别找出这两个事物关于路程、时间、速度的等量关系。

若无则略;c设未知数,列方程。

三、工作问题。

因工作问题涉及的三个量的关系与行程问题类似,因此可以
用相同的思维策略解决工作问题。

四、浓度问题
因浓度问题涉及的三个量:溶质、溶液、浓度的关系与行程问题类似,因此也可以用相同的思维策略来解决。

五、拓展
利用上述策略,还可以解决不等式、不等式组、函数等应用问题。

相关文档
最新文档