江苏省苏州市2012届高三数学二轮复习专题训练 1 函数(1) 2
江苏省2012届高三数学二轮专题训练:解答题(40)
江苏省2012届高三数学二轮专题训练:解答题(40)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤. 1.(本题满分14分)已知二次函数f (x )=x 2+mx+n 对任意x ∈R,都有f (-x ) = f (2+x )成立,设向量错误!= ( sinx , 2 ) ,错误!= (2sinx , 错误!),错误!= ( cos 2x , 1 ),错误!=(1,2),(Ⅰ)求函数f (x )的单调区间;(Ⅱ)当x ∈[0,π]时,求不等式f (错误!·错误!)>f (错误!·错误!)的解集。
2.(本题满分14分)在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD EF ,//EF BC ,24BC AD ==,3EF =,2AE BE ==,G 是BC 的中点.(Ⅰ) 求证://AB 平面DEG ; (Ⅱ) 求证:BD EG ⊥;(Ⅲ)求多面体ADBEG 的体积。
ADFE B G CA 123.(本题满分14分)已知双曲线2212x y -=的两焦点为12,F F ,P 为动点,若124PF PF +=.(Ⅰ)求动点P 的轨迹E 方程;(Ⅱ)若12(2,0),(2,0),(1,0)A A M -,设直线l 过点M ,且与轨迹E 交于R 、Q 两点,直线1A R 与2A Q 交于点S .试问:当直线l 在变化时,点S 是否恒在一条定直线上?若是,请写出这条定直线方程,并证明你的结论;若不是,请说明理由.4.(本题满分16分)如图所示:一吊灯的下圆环直径为4m ,圆心为O ,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离)(OB 即为2m ,在圆环上设置三个等分点A 1,A 2,A 3.点C 为OB 上一点(不包含端点O 、B ),同时点C 与点A 1,A 2,A 3,B 均用细绳相连接,且细绳CA 1,CA 2,CA 3的长度相等。
设细绳的总长为y(1)设∠CA 1O = θ (rad ),将y 表示成θ的函数关系式;(2)请你设计θ,当角θ正弦值的大小是多少时,细绳总长y 最小,并指明此时 BC 应为多长。
2012届高三数学第二轮复习《函数方程思想》专题一
2012届高三数学第二轮复习【函数、方程思想】专题一1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或运用方程的性质去分析、转化问题,使问题获得解决。
题型一 函数与方程思想在求最值或参数范围中的应用【例题1】若关于x 的方程22x kx x =+有四个不同的实数解,则实数k 的取值范围为 ; A .(0,1) B .(12,1) C .(12,+∞) D .(1,+∞)题型二 函数与方程思想在方程问题中的应用【例题2】若cos 2sin αα+=tan α= .题型三 函数与方程思想在不等式问题中的应用【例题3】已知[1,1]a ∈-,则2(4)420x a x a +-+->的解为 ;A .3x >或2x <B .2x >或1x <C .3x >或1x <D .13x <<题型四 函数与方程思想在数列问题中的应用【例题4】已知{n a }为等差数列,{n b }各项为正数的等比数列(q ≠1),11a b =且1111a b =,则6a 与6b 的关系是 .1.已知1230x x x >>>,则211log (22),x a x +=222log (22),x b x +=233log (22)x c x +=的 大小关系是 ( )A. b a c <<B. a b c >>C. a b c <<D. c a b <<2.若0x 是方程式 lg 2x x +=的解,则0x 属于区间 ( )(A )(0,1). (B )(1,1.25). (C )(1.25,1.75) (D )(1.75,2)3.32()f x ax bx cx d =+++的图象如图,则 ( )A .(),0b ∈-∞B .()0,1b ∈C .(1,2)b ∈D .(2,)b ∈+∞4.方程m +1-x =x 有解,则m 的最大值为 ( )A .1B .0C .-1D .-2 5.已知函数(),(0,)m f x x x x=+∈+∞,若不等式()4f x <的解集是空集,则( ) A .4m ≥ B .2m ≥ C .4m ≤ D .2m ≤6.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1)]([+=x f f y 的零点个数是 ( )(A )4 (B )3 (C )2 (D )17.若12sin a x x a x ≤≤对任意的π02x ⎡⎤∈⎢⎥⎣⎦,都成立,则21a a -的最小值为 . 8.ABC ∆的三边,,a b c 满足8b c +=,a bc a 212520--+=,试确定ABC ∆的形状.9.已知函数f (x )=xa 11- (a >0,x >0),若f (x )在[m ,n ]上的值域是[m ,n ](m ≠n ), 求a 的取值范围.2011届高三数学第二轮复习【函数方程】解答【例题1】构造函数 令1,0()1,0x xf x x x >⎧==⎨-<⎩,()(2)g x kx x =+ 【例题2】2.【例题3】解答:不等式的左端看成a 的一次函数,2()(2)(44)f a x a x x =-+-+由22(1)560,(1)3201f x x f x x x -=-+>=-+>⇒<或3x >,正确答案为C.【例题4】66a b >1. 2.D 3. A. 5.A 6.A 7.答案:21- 4.由原式得m =x -1-x ,设1-x =t (t ≥0),则m =1-t 2-t =54-(t +12)2,∴m =54-(t +12)2在[0,+∞)上是减函数,∴t =0时,m 的最大值为1. 8.解析:因为b +c =8,bc a a =-+21252,所以b ,c 是方程t t a a 22812520-+-+=的两实根,故∆=---+=--+≥()()()841252412360222a a a a 即--≥4602()a ,所以a =6。
江苏省2012届高三数学二轮专题训练 解答题(2)
江苏省2012届高三数学二轮专题训练:解答题(2)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1. 已知命题p :指数函数f (x )=(2a -6)x在R 上单调递减,命题q :关于x 的方程x 2-3ax +2a 2+1=0的两个相异实根均大于3.若p 、q 中有且仅有一个为真命题,求实数a 的取值范围.解:若p 真,则y=(2a-6)x在R 上单调递减,∴0<2a-6<1, ∴3<a<27…………2分若q 真,令f(x)=x 2-3ax+2a 2+1,则应满足222Δ(3a)4(2a 1)>03a 32f(3)99a 2a 10⎧=--+⎪-⎪->⎨⎪⎪=-++>⎩,…5分 ∴a>2a<2a 25a 2a 2⎧⎪-⎪>⎨⎪⎪<>⎩或或,故a>25,…………………………………………7分又由题意应有p 真q 假或p 假q 真.(i )若p 真q 假,则⎪⎪⎩⎪⎪⎨⎧≤<<25a 27a 3,a 无解.……………………………10分(ii )若p 假q 真,则⎪⎪⎩⎪⎪⎨⎧>≥≤25a 27a 3a 或,∴25<a ≤3或a ≥27.……………13分故a 的取值范围是{a|25<a ≤3或a ≥27}.………………………………14分2.在ABC ∆中,角A B C ,,的对边分别为,,a b c ,已知,,a b c 成等比数列,且3cos 4B =. (1)若32BA BC ⋅=,求a c +的值; (2)求cos cos sin sin A C A C +的值. 解:(1)由32BA BC ⋅=,得3cos 2ac B =.…………2分因为3cos 4B =,所以22b ac ==.…………4分由余弦定理2222cos b a c ac B =+-,得2222cos 5a c b ac B +=+=,则222()29a c a c ac +=++=,故3a c +=.…………7分(2)由3cos 4B =,得7sin 4B =.…………9分由2b ac =及正弦定理得2sin sin sin B A C =,…………11分于是22cos cos sin cos cos sin sin()sin 147sin sin sin sin sin sin sin 7A C C A C A A CB AC A C B B B +++=====…………14分 3.如图,在正三棱柱ABC -A 1B 1C 1中,点D 在边BC 上,AD ⊥C 1D . (1)求证:AD ⊥平面BC C 1 B 1;(2)设E 是B 1C 1上的一点,当11B EEC 的值为多少时,A 1E ∥平面ADC 1?请给出证明.解: (1)在正三棱柱中,C C 1⊥平面ABC ,AD ⊂平面ABC ,∴ AD ⊥C C 1.………………………………………2分又AD ⊥C 1D ,C C 1交C 1D 于C 1,且C C 1和C 1D 都在面BC C 1 B 1内, ∴ AD ⊥面BC C 1 B 1. ……………………………………………………5分(2)由(1),得AD ⊥BC .在正三角形ABC 中,D 是BC 的中点.…………………7分当111B EEC =,即E 为B 1C 1的中点时,A 1E ∥平面ADC 1.………………………8分 事实上,正三棱柱ABC -A 1B 1C 1中,四边形BC C 1 B 1是矩形,且D 、E 分别是BC 、B 1C 1的中点,所以B 1B ∥DE ,B 1B= DE . ………………………………………10分 又B 1B ∥AA 1,且B 1B =AA 1,∴DE ∥AA 1,且DE =AA 1. ………………………………………………13分 所以四边形ADE A 1为平行四边形,所以E A 1∥AD .而E A 1⊄面AD C 1内,故A 1E ∥平面AD C 1. ……………………………15分4. 如图所示,在矩形ABCD 中,已知AB =a ,BC =b (b <a ),AB ,AD ,CD ,CB 上分别截取AE ,AH ,CG ,CF 都等于x ,记四边形EFGH 的面积为f (x ).(1)求f (x )的解析式和定义域 ;(2)当x 为何值时,四边形EFGH 的面积最大? 并求出最大面积.解:(1) 设四边形EFGH 的面积为S ,则S △AEH =S △CFG =21x 2, ……………2分 S △BEF =S △DGH =21(a -x )(b -x ),……………4分∴S=ab -2[x 212+21(a -x )(b -x )]= -2x 2+(a +b )x = -2(x -)4b a +2+,8)(2b a +……6分由图形知函数的定义域为{x|0<x ≤b }.……………8分B 1A 1A BC C 1D(2) 因为0<b <a,所以0<b <2ba +, 若4b a +≤b,即a≤3b 时,则当x=4b a +时,S 有最大值8)(2b a +;………11分若4ba +>b,即a >3b 时,S(x)在(0,b ]上是增函数,此时当x=b 时,S 有最大值为-2(b-4b a +)2+8)(2b a +=ab-b 2,………14分综上可知,当a≤3b 时,x=4ba +时,四边形面积S max =8)(2b a +,当a >3b 时,x=b 时,四边形面积S max =ab-b 2. ………15分5.已知函数f (x )=lg kx -1x -1(k ∈R 且k >0).(1)求函数f (x )的定义域;(2)若函数f (x )在[10,+∞)上是单调增函数,求k 的取值范围.解:(1)由kx -1x -1>0及k >0得x -1k x -1>0,即(x -1k)(x -1)>0.①当0<k <1时,x <1或x >1k;……………2分②当k =1时,x ∈R 且x ≠1;……………4分③当k >1时,x <1k或x >1. ……………6分综上可得当0<k <1时,函数的定义域为(-∞,1)∪(1k,+∞);当k ≥1时,函数的定义域为(-∞,1k)∪(1,+∞).……………8分(2)∵f (x )在[10,+∞)上是增函数,∴10k -110-1>0,∴k >110.……………10分又f (x )=lg kx -1x -1=lg(k +k -1x -1),故对任意的x 1,x 2,当10≤x 1<x 2时,恒有f (x 1)<f (x 2),即lg(k +k -1x 1-1)<lg(k +k -1x 2-1),∴k -1x 1-1<k -1x 2-1,∴(k -1)·(1x 1-1-1x 2-1)<0, ……………14分 又∵1x 1-1>1x 2-1,∴k -1<0,∴k <1.综上可知k ∈(110,1).…………………………………16分6.已知二次函数c bx ax x f ++=2)(. (1)若,0)1(,=>>f c b a 且是否存在)3(,)(,+-=∈m f a m f R m 成立时使得为正数 ,若存在,证明你的结论,若不存在,说明理由;(2)若对)]()([21)(),()(,,,21212121x f x f x f x f x f x x R x x +=≠<∈方程且有2个不等实根,证明必有一个根属于12(,);x x (3)若0)0(=f ,是否存在b 的值使})(|{x x f x ==})]([|{x x f f x =成立,若存在,求出b 的取值范围,若不存在,说明理由. 解:(1)因为,00,,0)1(<>>>=++=C a c b a c b a f 且所以且…………2分 ∵,,0)(1,0)1(ac x f f 由韦达定理知另一根为的一个根是=∴= ,,,10,00c a b c b a a c c a --=>><<∴<>∴又且∴可得212-<<-a c ,……… 4分假设存在,由题意,则.1323310)1)((=+->+>+∴<<∴<-=--acm m a c a m a c m a因为,0)1()3(,),1()(=>+∴+∞f m f x f 单调递增在 即 存在这样的.0)3(>+m f m 使……… 6分(2)令.)()],()([21)()(21是二次函数则x g x f x f x f x g +-=)]()([41]2)()()(][2)()()([)()(22121221121≤--=+-+-=⋅x f x f x f x f x f x f x f x f x g x g又0)(,0)(,0)()(),()(2121==∴<⋅≠x g x g x g x g x f x f 且方程有两个不等实根 的根必有一个属于).,(21x x …… 10分(3)由0)0(=f 得c =0,∴bx ax x f +=2)(由x x f =)(,得方程0)1(2=-+x b ax ,解得1x =0,2x =ab-1, 又由})]([x x f f =得x x bf x f a =+)()]([2∴x x x x f b x x x f a =+-++-])([])([2∴0])([])([2])([22=-+-++-+-x bx x x f b ax x x f ax x x f a ∴0]12)(][)([=+++--b ax ax x af x x f 即0]1)1(][)([22=++++-b x b a x a x x f∴0)(=-x x f 或 01)1(22=++++b x b a x a (*)……12分由题意(*)式的解为0或ab-1或无解, 当(*)式的解为0时,可解得1-=b ,经检验符合题意;当(*)式的解为ab-1时,可解得3=b ,经检验符合题意;当(*)式无解时,0)1(4)1(222<+-+=∆b a b a ,即0)3)(1(2<-+b b a∴31<<-b综上可知,当31≤≤-b 时满足题意.…… 16分。
江苏省2012届高三数学二轮专题训练:解答题(30)
江苏省2012届高三数学二轮专题训练:解答题(30)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1.(本小题满分14分)设函数f(x)=a b ,其中向量a=(2cos x,1),b=(cos x,3sin2x),x∈R.(1)若f(x)=0且x∈(-错误!,0), 求tan2x;(2)设△ABC的三边a,b,c依次成等比数列,试求f(B)的取值范围.2.(本小题满分14分)如图,四棱锥P-ABCD的底面为矩形,且AB=错误!,BC=1,E,F分别为AB,PC中点.(1)求证:EF∥平面PAD;(2)若平面PAC⊥平面ABCDPDE.3.(本小题满分14分)某商店经销一种青奥会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a元(a为常数,2≤a≤5)的税收。
设每件产品的日售价为x元(35≤x≤41),根据市场调查,日销售量与e x(e为自然对数的底数)成反比例。
已知每件产品的日售价为40(第16题)(1)求该商店的日利润L(x)元与每件产品的日售价x的函数关系式;(2)当每件产品的日售价为多少元时,该商店的日利润L(x)最大,并求出L(x)的最大值。
4.(本小题满分16分)已知函数c+=4f-xxbxax4ln-3,其中a,b,c ((x>0)在x = 1处取得极值c-)为常数。
(1)试确定a,b的值;(2)求函数f(x)的单调增区间;(3)若对任意x>0,不等式f(x)≥-(c-1)4+(c-1)2-c+9恒成立,求c的取值范围。
5.(本小题满分16分)在平面直角坐标系xOy中,A(2a,0),B(a,0),a为非零常数,动点P满足PA=2PB,记点P的轨迹曲线为C.(1)求曲线C的方程;(2)曲线C上不同两点Q(x1,y1),R (x2,y2)满足错误!=λ错误!,点S为R关于x轴的对称点.①试用λ表示x1,x2,并求λ的取值范围;②当λ变化时,x轴上是否存在定点T,使S,T,Q三点共线,证明你的结论.6.(本小题满分16分)已知数列{a n}的前n项和为S n,且满足a1=1,S n= ta n+1(n∈N+,t∈R).(1)求数列{S n}的通项公式;2)求数列{na n}的前n项和为T n.1。
江苏省苏州市2012届高三数学二轮复习专题训练 1 函数(1)
专题1 函数(1)张家港市塘桥高级中学 罗小兵一、填空题:1.已知,则从大到小为 .【答案】2.设的奇函数,则使的X的取值范围是 .【答案】(一1,0)3.若x≥0,y≥0,且,则的最小值是 .【答案】4.已知函数(其中,为常数),若的图象如右图所示,则函数在区间[-1,1]上的最大值是 .【答案】5.设函数是定义在上的奇函数,且对任意都有,当时,,则的值为 .【答案】6.对于给定的函数,有下列四个结论:①的图象关于原点对称; ②; ③在R上是增函数; ④有最小值0.其中正确结论的序号是 .(写出所有正确结论的序号)【答案】①③④7. 定义在上的函数满足,则的值为 .【答案】8.函数的定义域为,值域为[0,2],则区间的长的最大值是 .【答案】9.对于任意实数x,符号[x]表示不超过x的最大整数,例如[-1.5]=-2, [2.5]=2,定义函数,则给出下列四个命题:①函数的定义域是R,值域为[0,1] ;②方程有无数个解;③函数是周期函数;④函数是增函数.其中正确命题的序号是 .【答案】②③10.已知函数,,,成立,则实数的取值范围是 .【答案】11.已知函数若存在,当时,,则的取值范围是 .【答案】12.已知定义域为D的函数,对任意,存在正数K,都有成立,则称函数是D上的“有界函数”.已知下列函数:①;②;③;④,其中是“有界函数”的是 .(写出所有满足要求的函数的序号)【答案】①②④13.设是定义在R上的偶函数,对任意,都有,且当时,,若在区间内关于的方程恰有三个不同的实数根,则的取值范围为 .【答案】【解析】令,由题意若在区间内关于的方程恰有三个不同的实数根,所以,解得14.定义在上的函数;当若;则的大小关系为 .【答案】【解析】令,则可得,令,则,即为奇函数,令,则,所以,即递减,又,因,所以,即.二、解答题:15. 设函数是定义域为的奇函数.(1)求值;(2)若,试判断函数单调性并求使不等式恒成立的的取值范围;(3)若,且,在上的最小值为,求的值.解:(1)∵f(x)是定义域为R的奇函数,∴f(0)=0, ∴1-(k-1)=0,∴k=2,(2)单调递减,单调递增,故f(x)在R上单调递减。
江苏省2012届高三数学二轮专题训练:解答题(88)
江苏省2012届高三数学二轮专题训练:解答题(88)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1。
(本题满分14分)已知集合}0)52)(2({<---=a x x x A ,函数xa a x y -+-=2)2(lg2的定义域为集合.B(1) 若,4=a 求集合B A ;(2) 已知,23->a 且""A x ∈是""B x ∈的必要条件,求实数a 的取值范围。
2。
已知向量).0,1(),cos sin ,sin 2(),sin ,(cos -=-==c x x x b x x a(1) 若,6π=x 求向量a 与c 的夹角;(2)当]89,2[ππ∈x 时,函数)0()(>+⋅=p q b a p x f 的最大值为1,最小值为2-,求p 、q 的值.3.已知数列}{na 是公差为2的等差数列,其前n 项和为nS ,且1641,,a aa 成等比数列.(1)求数列}{na 的通项公式;(2)求}1{nS 的前n 项和.nT4.如图为河岸一段的示意图。
一游泳者站在河岸的A 点处,欲前往对岸的C 点处,若河宽BC 为100m ,A 、B 相距100m ,他希望尽快到达C ,准备从A 步行到E (E 为河岸AB 上的点),再从E 游到C.已知此人步行速度为,v 游泳速度为v5.0.(1)设,θ=∠BEC 试将此人按上述路线从A 到C 所需时间T 表示为θ的函数,并求自变量θ的取值范围;(2)当θ为何值时,此人从A 经E 游到C 所需时间T 最小,其最小值是多少?5。
已知)0()(>+=a x a x x f ,当]3,1[∈x 时,)(x f 的值域为,A 且)](,[m n m n A <⊆。
(1)若,1=a 求n m -的最小值; (2)若,8,16==n m 求a 的值;(3)若,1≤-n m 且],[m n A =,求a 的取值范围。
江苏省2012届高三数学二轮专题训练:解答题(32)
江苏省2012届高三数学二轮专题训练:解答题(32)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1.(本小题满分14分)已知函数21()cos cos()2f x x x x x R =-+∈。
(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间[0,]4π上的函数值的取值范围.2.(本小题满分14分)如图,在四棱锥P ABCD -中,四边形ABCD 是菱形,PA PC =,E 为PB 的中点.(1)求证:∥PD 面AEC ;(2)求证:平面AEC ⊥平面PDB 。
3.(本小题满分14分)在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对称图形),其中矩形ABCD 的三边AB 、BC 、CD 由长6分米的材料弯折而成,BC 边的长为2t 分米(312t ≤≤);C ABDPE第16题曲线AOD 拟从以下两种曲线中选择一种:曲线1C 是一段余弦曲线(在如图所示的平面直角坐标系中,其解析式为cos 1y x =-),此时记门的最高点O 到BC 边的距离为1()h t ;曲线2C 是一段抛物线,其焦点到准线的距离为98,此时记门的最高点O 到BC 边的距离为2()h t 。
(1)试分别求出函数1()h t 、2()h t 的表达式;(2)要使得点O 到BC 边的距离最大,应选用哪一种曲线?此时,最大值是多少?4.(本小题满分16分)如图,在平面直角坐标系xoy 中,已知点A 为椭圆222199x y +=的右顶点,点(1,0)D ,点,P B 在椭圆上, BP DA =。
(1)求直线BD 的方程;(2)求直线BD 被过,,P A B 三点的圆C 截得的弦长; (3)是否存在分别以,PB PA 为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.第17题第18题5.(本小题满分16分) 对于函数()f x ,若存在实数对(b a ,),使得等式b x a f x a f =-⋅+)()(对定义域中的每一个x 都成立,则称函数()f x 是“(b a ,)型函数”。
2012届江苏高考数学二轮复习:教案+学案+课后训练(含完整答案)整套word稿-课时答案
专题一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语1. x<0,有x2≤02. (2,3)解析:M=(-∞,3),N=(2,+∞),∴ M∩N=(2,3).3. (-∞,-1)∪(3,+∞)解析:不等式对应的二次函数开口向上,则Δ=(a-1)2-4>0.4. [-1,1]解析:集合A=[-1,1],B=(-∞,1],∴ A∩B=A.5.215解析:⎩⎪⎨⎪⎧0≤a,a+45≤10≤a≤15,⎩⎪⎨⎪⎧b-13≥0,b≤113≤b≤1,利用数轴,分类讨论可得集合A∩B的“长度”的最小值为13-15=215.6. ⎣⎡⎦⎤-12,13解析:p:x2+x-6<0为真,则不等式的解集为A=(-3,2),由q:mx +1>0得m=0时,解集为B=R,m>0时,解集为B=⎝⎛⎭⎫-1m,+∞,m<0时,解集为B=⎝⎛⎭⎫-∞,-1m,m=0时,A B成立;m>0时,-1m≤-3,0<m≤13;m<0时,-1m≥2,-12≤m<0,综上m∈⎣⎡⎦⎤-12,13.7. 12解析:这是一个典型的用韦恩图来求解的问题,如图.设两者都喜欢的人数为x,则只喜爱篮球的有15-x,只喜爱乒乓球的有10-x,由此可得(15-x)+(10-x)+x+8=30,解得x=3,所以15-x=12,即所求人数为12.8. (-∞,-4)∪(42,+∞)解析:两集合分别表示半圆和直线,画图利用几何性质可得答案.9. 解:(1) 2-x+3x+1≥02x+2-(x+3)x+1≥0x-1x+1≥0(x-1)(x+1)≥0且x≠-1x≥1或x<-1.∴集合A={x|x≥1或x<-1}.(2) (x-a-1)(2a-x)>0(a<1)(x-a-1)(x-2a)<0.∵a<1,∴2a<a+1.∴2a<x<a +1.∴不等式的解为2a<x<a+1.∴集合B={x|2a<x<a+1}.∵B A,∴2a≥1或a +1≤-1,∴ a≥12或a≤-2.又a<1,则实数a的取值范围是(-∞,-2]∪⎣⎡⎭⎫12,1.10. 解:若命题p为真,则⎩⎪⎨⎪⎧m2-4>0,-m<0m>2.若命题q为真,Δ=16(m-2)2-16<0,1<m<3.p或q为真,p且q为假,所以若命题p为真,命题q为假,则m≥3;若命题p 为假,命题q为真,则1<m≤2,综上,则实数m的取值范围是{m|1<m≤2或m≥3}.第2讲函数、图象及性质1. f(x)=(x-2)2解析:函数满足f(x)=f(x+2),函数周期为2.则x∈[2,3],x-2∈[0,1],f(x)=f(x -2)=(x -2)2.2. (0,1] 解析:y =x x -m =1+m x -m,由反比例函数性质可得到0<m ≤1;也可以用导数求得.3. 12 解析:f(-x)=12-x -1+a =2x 1-2x+a ,f(-x)=-f(x) 2x 1-2x +a =-⎝⎛⎭⎫12x -1+a 2a =11-2x -2x 1-2x=1,故a =12;也可用特殊值代入,但要检验.4. 1<a <2 解析:函数为奇函数,在(-1,1)上单调递减,f(1-a)+f(1-a 2)>0,得f(1-a)>f(a 2-1).∴ ⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<11-a <a 2-1,1<a < 2.5. [3,+∞) 解析:⎩⎪⎨⎪⎧|x -2|-1≥0,x -1>0,x -1≠1⎩⎪⎨⎪⎧x -2≥1或x -2≤-1,x >1,x ≠2x ≥3.6. 2 解析:函数满足f(x +2)=1f (x ),故f(x +4)=1f (x +2)=f(x),函数周期为4,f(2 012)=f(0),又f(2)=1f (0),∴ f(0)=2.7. 3 解析:画图可知a +(-1)2=1,a =3,也可利用f(0)=f(2)求得,但要检验.8. 1 解析:由y =|x 2-2x -t|得y =|(x -1)2-1-t|,函数最大值只能在y(0),y(1),y(3)中取得,讨论可得只有t =1时成立.9. 解:(1) ∵ f(a +2)=18,f(x)=3x ,∴ 3a +2=183a =2, ∴ g(x)=(3a )x -4x =2x -4x ,x ∈[-1,1].(2) g(x)=-(2x )2+2x =-⎝⎛⎭⎫2x -122+14,当x ∈[-1,1]时,2x ∈⎣⎡⎦⎤12,2,令t =2x ,∴ y =-t 2+t =-⎝⎛⎭⎫t -122+14,由二次函数单调性知当t ∈⎣⎡⎦⎤12,2时y 是减函数,又t =2x 在[-1,1]上是增函数,∴ 函数g(x)在[-1,1]上是减函数.(也可用导数的方法证明)(3) 由(2)知t =2x,2x ∈⎣⎡⎦⎤12,2,则方程g(x)=m 有解m =2x -4x在[-1,1]内有解m =t -t 2=-⎝⎛⎭⎫t -122+14,t ∈⎣⎡⎦⎤12,2, ∴ m 的取值范围是⎣⎡⎦⎤-2,14. 10. (1) 证明:取x =y =0,f(0)=f(0)+f(0),∴ f(0)=0,取y =-x ,则f(0)=f(x)+f(-x),∴ f(-x)=-f(x),故f(x)是奇函数.(2)解: 任取x 2>x 1,则x 2-x 1>0,∴ f(x 2-x 1)<0,又f(x 2-x 1)=f(x 2)+f(-x 1)=f(x 2)-f(x 1)<0,∴ f(x 2)<f(x 1),f(x)在[-3,3]上单调递减,f(-3)=-f(3)=-3f(1)=6,∴ f(x)在[-3,3]上的最大值f(-3)=6,最小值f(3)=-6.第3讲 基本初等函数1. 2 解析:lg 22+lg2lg5+lg50=lg2(lg2+lg5)+lg5+lg10=lg2lg(2·5)+lg5+1=2.2. a ∈(1,2) 解析:y =log a (2-ax)是[0,1]上关于x 的减函数,∴ ⎩⎪⎨⎪⎧a >1,2-a >01<a <2.3. [-3,1] 解析:2x 2+2x -4≤122x 2+2x -4≤2-1x 2+2x -4≤-1x 2+2x -3≤0-3≤x ≤-1.4. (2,2)5. a ≥2 解析: 二次函数f(x)=-x 2+2ax -1+a 2开口向下,对称轴x =-2a-2=a ,则a ≥2.6. ⎣⎡⎦⎤1,3127 解析:f(x)为偶函数,则b =0,又a -1+2a =0,∴ a =13,f(x)=13x 2+1在⎣⎡⎦⎤-23,23上的值域为⎣⎡⎦⎤1,3127.7. f(-25)<f(80)<f(11) 解析:∵ f(x -4)=-f(x),∴ f(x -4)=f(x +4),∴ 函数周期T =8.∵ f(x)为奇函数,在区间[0,2]上是增函数,∴ f(x)在[-2,2]上是增函数.则f(-25)=f(-1),f(11)=f(3)=-f(-1)=f(1),f(80)=f(0).∵ f(-1)<f(0)<f(1),∴ f(-25)<f(80)<f(11).8. 4 解析:函数图象恒过定点(1,1),从而m +n =1,又mn >0,∴ 1m +1n =m +n m +m +nn=2+n m +m n ≥4,当且仅当m =n 时取等号,1m +1n的最小值为4.9. 解:f(x)=12p x 2-x +3=12p (x -p)2+3-p 2.① p ≤-1时,f(x)在[-1,2]上递减,M =f(-1)=12p +4,m =f(2)=2p +1,由2M +m =3,得p =-12(舍).② -1<p <0,M =f(p)=3-p 2,m =f(2)=2p +1,由2M +m =3,得p =2-6,p =2+6(舍).③ 0<p <12,M =f(2),m =f(p),由2M +m =3,得p =2±23(舍).④ 12≤p ≤2,M =f(-1),m =f(p)由2M +m =3,得p =8±66(舍). ⑤ p >2,M =f(-1),m =f(2)由2M +m =3,得p =-12(舍).综上,当p =2-6时,2M +m =3成立.10. 解:(1) 设P(x 0,y 0)是y =f(x)图象上的点,Q(x ,y)是y =g(x)图象上的点,则⎩⎪⎨⎪⎧ x =x 0-2a ,y =-y 0.∴ ⎩⎪⎨⎪⎧x 0=x +2a ,y 0=-y.又y 0=log a (x 0-3a),∴ -y =log a (x +2a -3a ),∴ y =log a1x -a (x >a),即y =g(x)=log a 1x -a(x >a). (2) ∵ ⎩⎪⎨⎪⎧x -3a >0,x -a >0,∴ x >3a ,∵ f(x)与g(x)在x ∈[a +2,a +3]上有意义,∴ 3a <a +2,0<a <1,∵ |f(x)-g(x)|≤1恒成立,∴ |log a (x -3a)(x -a)|≤1恒成立.∴⎩⎪⎨⎪⎧-1≤log a [(x -2a )2-a 2]≤1,0<a <1a ≤(x -2a)2-a 2≤1a.对x ∈[a +2,a +3]时恒成立,令h(x)=(x -2a)2-a 2,其对称轴x =2a,2a <2,而2<a +2,∴ 当x ∈[a +2,a +3]时,h(x)min =h(a +2),h(x)max =h(a +3).∴ ⎩⎪⎨⎪⎧a ≤h (x )min ,1a ≥h (x )max⎩⎪⎨⎪⎧a ≤4-4a ,1a ≥9-6a0<a ≤9-5712.第4讲 函数的实际应用1. log 32 解析:本题主要考查分段函数和简单的已知函数值求x 的值.由⎩⎪⎨⎪⎧x ≤1,3x=2x =log 32或⎩⎪⎨⎪⎧x >1,-x =2无解,故应填log 32.2. 20% 解析:设该产品初始成本为a ,每年平均降低百分比为p ,则a(1-p)2=0.64a ,∴ p =0.2.3. m ∈(1,2) 解析:令f(x)=x 2-2mx +m 2-1,则⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)<0,f (3)>0.解得1<m <2.4. a >1 解析:设函数y =a x (a >0,且a ≠1)和函数y =x +a ,则函数f(x)=a x -x -a(a>0且a ≠1)有两个零点, 就是函数y =a x (a >0且a ≠1)与函数y =x +a 有两个交点,由图象可知当0<a <1时两函数只有一个交点,不符合要求,当a >1时,因为函数y =a x (a >1)的图象过点(0,1),而直线y =x +a 所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.5. 14 解析:设每个销售定价为x 元,此时销售量为100-10(x -10),则利润y =(x -8)[100-10(x -10)]=10(x -8)(20-x)≤10⎝⎛⎭⎫x -8+20-x 22=360,当且仅当x =14时取等号.6. ⎝⎛⎭⎫-1,-13 解析:由题意得f(1)·f(-1)<0,即(3a +1)(a +1)<0,-1<a <-13. 7. 6 解析:⎩⎨⎧-a +22=1,a +b2=1b =6.8. ①③④ 解析:函数f(x)=-|x|x 2+bx 2+c 为偶函数,当x ≥0时,f(x)=-x 3+bx 2+c ,b <0,∴ f ′(x)=-3x ⎝⎛⎭⎫x -2b3≤0对x ∈[0,+∞)恒成立,∴ x =0时,f(x)在R 上有最大值,f(0)=c ;由于f(x)为偶函数,②不正确;取b =3,c =-2③正确;若b <0,取a =0,若b ≥0,取a =2b3,故一定存在实数a ,使f(x)在[a ,+∞)上单调减.9. (1)证明:由条件知f(2)=4a +2b +c ≥2恒成立.又∵ x =2时,f(2)=4a +2b +c ≤18(2+2)2=2恒成立,∴ f(2)=2.(2)解: ∵ ⎩⎪⎨⎪⎧4a +2b +c =2,4a -2b +c =0,∴ 4a +c =2b =1,∴ b =12,c =1-4a.又f(x)≥x 恒成立,即ax 2+(b -1)x +c ≥0恒成立. ∴ a >0,Δ=⎝⎛⎭⎫12-12-4a(1-4a)≤0,∴(8a -1)2≤0. 解得:a =18,b =12,c =12,∴ f(x)=18x 2+12x +12.(3)解:(解法1) 由分析条件知道,只要f(x)图象(在y 轴右侧部分,包含与y 轴交点)总在直线y =m 2x +14上方即可,也就是直线的斜率m2小于直线与抛物线相切时的斜率,∴⎩⎨⎧y =18x 2+12x +12,y =m 2x +14,解得 m ∈⎝⎛⎭⎫-∞,1+22. (解法2)g(x)=18x 2+⎝⎛⎭⎫12-m 2x +12>14在x ∈[0,+∞)必须恒成立, 即x 2+4(1-m)x +2>0在x ∈[0,+∞)恒成立. ① Δ<0,即[4(1-m)]2-8<0,解得:1-22<m <1+22; ② ⎩⎪⎨⎪⎧Δ≥0,-2(1-m )≤0,f (0)=2>0,解得:m ≤1-22. 综上,m ∈⎝⎛⎭⎫-∞,1+22. 10. (1)证明: 当x ≥7时,f(x +1)-f(x)=0.4(x -3)(x -4),而当x ≥7时,函数y =(x -3)(x -4)单调递增,且(x -3)(x -4)>0, 故f(x +1)-f(x)单调递减,∴ 当x ≥7时,掌握程度的增长量f(x +1)-f(x)总是下降.(2)解: 由题意可知0.1+15ln a a -6=0.85,整理得aa -6=e 0.05,解得a =e 0.05e 0.05-1·6=20.50×6=123.0,123.0∈(121,127],由此可知,该学科是乙学科.第5讲 不等式及其应用1. (-∞,-2)∪(3,+∞)2. (-1,2) 解析:由已知得a <0,b =-a ,ax -b x -2>0即为ax +a x -2>0,得x +1x -2<0,得-1<x <2.3. -6 解析:作出可行域,求出凸点坐标分别为(3,-3),(4,-5),(5,-1),(6,-3),则最优解为(4,-5);或让直线t =x +2y 平行移动,当直线过点(4,-5)时,目标函数取最小值.4.116 解析:∵ x ,y ∈R +,∴ 1=x +4y ≥2x·4y ,∴ xy ≤116,当且仅当x =4y ,即x =12,y =18时取等号. 5. 9 解析:∵ x >0,y >0,1x +4y =1,∴ x +y =(x +y)⎝⎛⎭⎫1x +4y =5+y x +4xy ≥5+2y x ·4x y=9,当且仅当y x =4xy,即x =3,y =6时取等号.6. m ≤-5 解析:x 2+mx +4<0,x ∈(1,2)可得m <-⎝⎛⎭⎫x +4x ,而函数y =-⎝⎛⎭⎫x +4x 在(1,2)上单调增,∴ m ≤-5.7. ⎣⎡⎦⎤95,6 解析:变量x ,y 满足约束条件构成的区域是以(1,3),(1,6),⎝⎛⎭⎫52,92三点为顶点的三角形区域(含边界),y x 表示区域内的点与原点连线的斜率,∴ y x ∈⎣⎡⎦⎤95,6 8. x ≥1 解析:n n +1=1-1n +1<1,当n 无限变大时,nn +1的值趋近于1,不等式要恒成立,显然x >12,2x -1|x|>n n +1等价于2x -1x ≥1且x >12,故x ≥1.9. 解:(1) y =2 150+10×55+⎝⎛⎭⎫a 6x 2+13x (55-1)x =2 700x +9ax +18.(0<x ≤20,12≤a ≤1).(2) 当34≤a ≤1时,y ≥22 700x·9ax +18=1803a +18. 当且仅当2 700x =9ax ,即x =300a时取等号. 即当x =300a时,y min =1803a +18; 当12≤a <34时,y ′=-2 700x 2+9a <0,故y =f(x)在(0,20]上是减函数, 故当x =20时,y min =2 70020+180a +18=153+180a. 答:若12≤a <34,则当车队速度为20 m/s 时,通过隧道所用时间最少;若34≤a ≤1时,则当车队速度为300am/s 时,通过隧道所用时间最少.10. 解:(1) ⎩⎪⎨⎪⎧f (0)=0,f (-2)=0⎩⎪⎨⎪⎧b =6,c =0,∴ f(x)=3x 2+6x ; (2) g(x)=3⎣⎡⎦⎤x +⎝⎛⎭⎫1+m 62-2-3×⎝⎛⎭⎫1+m 62,-⎝⎛⎭⎫1+m 6≤2,m ≥-18; (3) f(x)+n ≤3即n ≤-3x 2-6x +3,而x ∈[-2,2]时,函数y =-3x 2-6x +3的最小值为-21,∴ n ≤-21,实数n 的最大值为-21.第6讲 导数及其应用1. f(x)=x 2+2x +12. 98 解析:f ′(2)=4.5-4=-98,切线方程为y =-98x +92,∴ f(2)=94. 3. y =x -1 解析:y ′=3x 2-2,k =y ′x =1=1,则切线方程y -0=1·(x -1), ∴ x -y -1=0.4. ⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π 解析:y ′=3x 2-3≥-3,∴ tanα≥-3,0≤α<π且α≠π2,结合正切函数图象可得答案.5. a ≥-4 解析:x ∈(0,+∞),f ′(x)=1x +4x +a ≥0恒成立,由基本不等式1x +4x+a ≥4+a ,当且仅当x =12时取等号,∴ a +4≥0,∴ a ≥-4.6. 32 解析:f(x)=x 3-12x +8,f ′(x)=3(x -2)(x +2),则f(x)的单调增区间是[-3,-2]∪[2,3],减区间是[-2,2],f(-3)=17,f(2)=-8,f(3)=-1,f(-2)=24,∴ M =24,m =-8.7. (-2,2) 解析:设f(x)=x 3-3x +a ,f ′(x)=3(x +1)(x -1),f(x)在x =-1取极大值,在x =1时取极小值,⎩⎪⎨⎪⎧f (-1)>0,f (1)<0⎩⎪⎨⎪⎧a +2>0,a -2<0-2<a <2.8. 4 解析:若x =0,则不论a 取何值,f(x)≥0显然成立;当x >0即x ∈(0,1]时,f(x)=ax 3-3x +1≥0可化为,a ≥3x 2-1x3,设g(x)=3x 2-1x 3,则g ′(x)=3(1-2x )x 4,所以g(x)在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎭⎫12,1上单调递减,因此g(x)max =g ⎝⎛⎭⎫12=4,从而a ≥4;当x <0即x ∈[-1,0)时,f(x)=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,设g(x)=3x 2-1x 3,则g ′(x)=3(1-2x )x 4>0,显然g(x)在区间[-1,0)上单调递增,因此g(x)min =g(-1)=4,从而a ≤4,综上,a =4.9. 解:(1) 因为函数f(x),g(x)的图象都过点(t,0),所以f(t)=0,即t 3+at =0.因为t ≠0,所以a =-t 2.g(t)=0,即bt 2+c =0,所以c =ab.又因为f(x),g(x)在点(t,0)处有相同的切线,所以f ′(t)=g ′(t)而f ′(x)=3x 2+a ,g ′(x)=2bx ,所以3t 2+a =2bt.将a =-t 2代入上式得b =t.因此c =ab =-t 3.故a =-t 2,b =t ,c =-t 3.(2) y =f(x)-g(x)=x 3-t 2x -tx 2+t 3,y ′=3x 2-2tx -t 2=(3x +t)(x -t),因为函数y =f(x)-g(x)在(-1,3)上单调递减,所以⎩⎪⎨⎪⎧ y ′x =-1≤0,y ′x =3≤0.即⎩⎪⎨⎪⎧(-3+t )(-1-t )≤0,(9+t )(3-t )≤0,解得t ≤-9或t ≥3.所以t 的取值范围为(-∞,-9]∪[3,+∞).10. 解:(1) ∵ f(x)=x 3+ax ,g(x)=x 2+bx ,∴ f ′(x)=3x 2+a ,g ′(x)=2x +b.x ∈[-1,+∞),f ′(x)g ′(x)≥0,即x ∈[-1,+∞),(3x 2+a)(2x +b)≥0,∵ a >0,∴3x 2+a >0,∴ x ∈[-1,+∞),2x +b ≥0,即∴ x ∈[-1,+∞),b ≥-2x ,∴ b ≥2,则所求实数b 的取值范围是[2,+∞).(2) b 的最小值为2,h(x)=x 3-x 2+ax -2x ,h ′(x)=3x 2-2x +a -2=3⎝⎛⎭⎫x -132+a -73.当a ≥73时,h ′(x)=3x 2-2x +a -2≥0对x ∈[-1,+∞)恒成立,h(x)在[-1,+∞)上单调增,当0<a <73时,由h ′(x)=3x 2-2x +a -2=0得,x =1±7-3a 3>-1,∴h(x)在⎣⎢⎡⎦⎥⎤-1,1-7-3a 3上单调增,在⎣⎢⎡⎦⎥⎤1-7-3a 3,1+7-3a 3上单调减,在⎣⎢⎡⎭⎪⎫1+7-3a 3,+∞上单调增.滚动练习(一)1.24 解析:f(x)=x α,f(4)=12,α=-12,f(x)=x -12,f(8)=24. 2. x ∈R ,都有x 2+2x +5≠03. (-∞,0] 解析:x <-1时,不等式可化为x +(x +1)(-x -1+1)≤1,-x 2≤1,∴ x <-1;x ≥-1时,不等式可化为x +x +1≤1,x ≤0,∴ -1≤x ≤0,综上x ≤0.4. 12 解析:考虑x >0时,f(x)=x x +1=1x +1x ≤12,当且仅当x =1时取等号. 5. [-4,0)∪(0,1) 解析:⎩⎪⎨⎪⎧x 2-3x +2≥0,-x 2-3x +4≥0,x ≠0.上面式中等号不能同时成立.6. 2 解析:在同一个直角坐标系中作出函数y =⎝⎛⎭⎫12x,y =3-x 2的图象,两个函数图象有两个交点.7. (-∞,-1)∪(3,+∞) 解析:x 2+ax >4x +a -3可化为(x -1)a +x 2-4x +3>0对a ∈[0,4]恒成立,设f(a)=(x -1)a +x 2-4x +3,∴ ⎩⎪⎨⎪⎧f (0)>0,f (4)>0.解得x <-1或x >3.8. -1或-2564 解析: 设过(1,0)的直线与y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由直线y =0与抛物线y =ax 2+154x -9相切可得a =-2564,当x 0=32时,由直线y =274x -274与曲线y =ax 2+154x -9相切可得a =-1.9. 2 008 解析:令3x =t ,则x =log 3t ,则f(2)+f(4)+f(8)+…+f(28)=4log 23(log 321+2+…+8)+233×8=2 008.10. a ≥2 解析:由log a x +log a y =3,得y =a 3x ,函数y =a 3x 在x ∈[a,2a]上单调递减,得其值域为⎣⎡⎦⎤a 32a ,a 3a ,由题知⎣⎡⎦⎤a 32a ,a3a [a ,a 2],∴ a ≥2. 11. 解:p 为真,则|x -4|≤6的解集为A =[-2,10],q 为真,x 2-2x +1-m 2≤0(m >0)的解集为B =[1-m,1+m],∵ p 是q 的必要而不充分条件,∴ p 是q 的充分而不必要条件,∴ A =[-2,10]B =[1-m,1+m],∴⎩⎪⎨⎪⎧1+m ≥10,1-m ≤-2.两式中等号不能同时成立,又m >0,∴ m ≥9. 12. 解:(1) 令g(x)=f(x)-x =x 2+(a -1)x +a ,则由题意可得⎩⎪⎨⎪⎧Δ>0,<1-a 2<1,g (1)>0,g (0)>0⎩⎪⎨⎪⎧a >0,-1<a <1,a <3-22或a >3+220<a <3-2 2.故所求实数a 的取值范围是(0,3-22).(2) f(0)·f(1)-f(0)=2a 2,令h(a)=2a 2.∵ 当a >0时h(a)单调递增,∴ 当0<a <3-22时,0<h(a)<h(3-22)=2(3-22)2=2(17-122)=217+122<116,即f(0)·f(1)-f(0)<116.13. 解:(1) ① 当0<t ≤10时,V(t)=(-t 2+14t -40)e 14t +50<50,化简得t 2-14t +40>0,解得t <4或t >10,又0<t ≤10,故0<t <4.② 当10<t ≤12时,V(t)=4(t -10)(3t -41)+50<50,化简得(t -10)(3t -41)<0,解得10<t <413,又10<t ≤12,故10<t ≤12.综合得0<t <4或10<t ≤12;故知枯水期为1月,2月,3月,11月,12月共5个月.(2)由(1)知:V(t)的最大值只能在(4,10)内达到.由V ′(t)=e 14t ⎝⎛⎭⎫-14t 2+32t +4=-14e 14t(t +2)(t -8),令V ′(t)=0,解得t =8(t =-2舍去). 当t 变化时,V ′(t) 与V (t)的变化情况如下表:t (4,8) 8 (8,10) V ′(t) + 0 - V(t)极大值由上表,V(t)在t =8时取得最大值V(8)=8e +50=108.32(亿立方米).故知一年内该水库的最大蓄水量是108.32亿立方米.14. 解:(1) 当x ∈[-2,-1)时,f(x)=x +1x 在[-2,-1)上是增函数(用导数判断),此时f(x)∈⎣⎡⎭⎫-52,-2,当x ∈⎣⎡⎭⎫-1,12时,f(x)=-2,当x ∈⎣⎡⎦⎤12,2时,f(x)=x -1x 在⎣⎡⎦⎤12,2上是增函数,此时f(x)∈⎣⎡⎦⎤-32,32,∴ f(x)的值域为⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32. (2) ① 若a =0,g(x)=-2,对于任意x 1∈[-2,2],f(x 1)∈⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32,不存在x 0∈[-2,2]使得g(x 0)=f(x 1)都成立.② 若当a >0时,g(x)=ax -2在[-2,2]是增函数,g(x)∈[-2a -2,2a -2],任给x 1∈[-2,2],f(x 1)∈⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32,若存在x 0∈[-2,2],使得g(x 0)=f(x 1)成立,则⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32[-2a -2,2a -2],∴有⎩⎨⎧-2a -2≤-52,2a -2≥32,解得 a ≥74.③ 若a <0,g(x)=ax -2在[-2,2]上是减函数,g(x)∈[2a -2, -2a -2],任给x 1∈[-2,2],f(x 1)∈⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32, 若存在x 0∈[-2,2]使得g(x 0)=f(x 1)成立, 则⎣⎡⎦⎤-52,-2∪⎣⎡⎦⎤-32,32[2a -2,-2a -2]⎩⎨⎧2a -2≤-52,-2a -2≥32,解得 a ≤-74.综上,实数a 的取值范围是⎝⎛⎦⎤-∞,-74∪⎣⎡⎭⎫74,+∞.专题二 三角函数与平面向量 第7讲 三角函数的图象与性质1. y =sin ⎝⎛⎭⎫2x +π3,x ∈R 2. 103. 1 解析:f(x)=f ⎝⎛⎭⎫π4cosx +sinx ,f ′(x)=-f ′⎝⎛⎭⎫π4sinx +cosx ,f ′⎝⎛⎭⎫π4=-22f ′⎝⎛⎭⎫π4+22,f ′⎝⎛⎭⎫π4=2-1,f(x)=(2-1)cosx +sinx ,f ⎝⎛⎭⎫π4=(2-1)×22+22=1. 4. 6 解析:平移后f(x)=cos ⎝⎛⎭⎫ωx -ωπ3,与原来函数图象重合,则ωπ3=2kπ,k ∈Z ,∵ ω>0,∴ ωmin =6.5. ⎣⎡⎦⎤-54,1 解析:a =cos 2x -cosx -1=⎝⎛⎭⎫cosx -122-54,转化为函数的值域问题. 6. 2+22 解析:f(x)=2sin πx4,周期为8,f(1)+f(2)+f(3)+…+f(2 012)=f(1)+f(2)+f(3)+f(4)=2+2 2.7. 2 解析:T =2ππ2=4,对任意x ∈R ,都有f(x 1)≤f(x)≤f(x 2)成立,f(x)min =f(x 1),f(x)max=f(x 2),于是|x 1-x 2|min =T2=2.8. 23 解析:考查三角函数的图象、数形结合思想.线段P 1P 2的长即为sinx 的值,且其中的x 满足6cosx =5tanx ,解得sinx =23.线段P 1P 2的长为23.9. 解:f(x)=-2asin ⎝⎛⎭⎫2x +π6+2a +b ,sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, 当a >0时,-2a +2a +b =-5,-2a ×⎝⎛⎭⎫-12+2a +b =1,∴ a =2,b =-5; 当a <0时,-2a +2a +b =1,-2a ×⎝⎛⎭⎫-12+2a +b =-5,∴ a =-2,b =1; a =0,不存在.综上,a =2,b =-5或a =-2,b =1.10. 解:(1) 由最低点为M ⎝⎛⎭⎫2π3,-2得A =2,由T =π得ω=2πT =2ππ=2, 由点M ⎝⎛⎭⎫2π3,-2在图象上得2sin ⎝⎛⎭⎫4π3+φ=-2,即sin ⎝⎛⎭⎫4π3+φ=-1, 所以4π3+φ=2kπ-π2,故φ=2kπ-11π6(k ∈Z ).又φ∈⎝⎛⎭⎫0,π2,所以φ=π6,所以f(x)=2sin ⎝⎛⎭⎫2x +π6. (2) 因为x ∈⎣⎡⎦⎤0,π12,2x +π6∈⎣⎡⎦⎤π6,π3,所以当2x +π6=π6时,即x =0时,f(x)取得最小值1;当2x +π6=π3,即x =π12时,f(x)取得最大值 3.第8讲 三角变换与解三角形1. 3 解析:∵ sin 2α+cos2α=14,∴ sin 2α+1-2sin 2α=14,∴ sin 2α=34,∵ α∈⎝⎛⎭⎫0,π2,∴ s inα=32,∴ α=π3,tanα= 3. 2. 523 解析:由正弦定理a sinA =b sinB ,得 a =bsinAsinB =5·1322=523.3. 5 解析:12arcsinB =2,c =42,由余弦定理可求得b.4. 1 解析:由sin 2α+sinαcosα-2cos 2α=0,得tan 2α+tanα-2=0,tanα=1或tanα=-2(舍),sin2α=2sinαcosα=2tanα1+tan 2α=21+1=1. 5. 4 解析:由余弦定理得b a +ab =6cosC ,a 2+b 2ab =6×a 2+b 2-c 22ab ,a 2+b 2=32c 2,tanC tanA +tanC tanB =sinC cosC ⎝⎛⎭⎫cosA sinA +cosB sinB =1cosC ⎝⎛⎭⎫sin 2C sinAsinB =2ab a 2+b 2-c 2⎝⎛⎭⎫c 2ab =2c 2a 2+b 2-c 2,将a2+b 2=32c 2代入上式即可.注:(1) 在用正、余弦定理处理三角形中的问题时,要么把所有关系转化为边的关系,要么把所有的关系都转化为角的关系;(2) 本题也可以转化为角的关系来处理.6.724 解析:tanα=-34,tanβ=-12,tan2β=-43. 7. -17 解析:由余弦定理得c =a 2+b 2-2abcosC =3,故最大角为角B.8.817 解析:12bcsinA =-(b 2+c 2-a 2)+2bc ,12bcsinA =-2bccosA +2bc , 2-12sinA =2cosA ,⎝⎛⎭⎫2-12sinA 2=(2cosA)2=4(1-sin 2A),sinA =817. 9. 解:(1) ∵ c 2=a 2+b 2-2abcosC =1+4-4×14=4,∴ c =2,∴ △ABC 的周长为a +b +c =1+2+2=5. (2) ∵ cosC =14,∴ sinC =1-cos 2C =1-⎝⎛⎭⎫142=154, ∴ sinA =asinC c =1542=158.∵ a <c ,∴ A <C ,故A 为锐角,∴ cosA =1-sin 2A =1-⎝⎛⎭⎫1582=78,∴ cos(A -C)=cosAcosC +sinAsinC =78×14+158×154=1116.10. 解:(1) sin 2B +C 2+cos2A =1-cos (B +C )2+cos2A =1+cosA 2+2cos 2A -1=5950.(2) ∵ cosA =45,∴ sinA =35,∴ S △ABC =12bcsinA =310bc ,∵ a =2,由余弦定理得:a 2=b 2+c 2-2bccosA =4,∴ 85bc +4=b 2+c 2≥2bc ,bc ≤10,∴ S △ABC =12×bcsinA =310bc ≤3,当且仅当b =c 时,取得最大值,所以当b =c 时,△ABC 的面积S 的最大值为3.第9讲 平面向量及其应用1. ⎝⎛⎭⎫45,-35或⎝⎛⎭⎫-45,352.10 解析:|α|=1,|β|=2,α⊥(α-2β),得α·(α-2β)=0,α·β=12,|2α+β|=4α2+4α·β+β2=10.3. π3 解析:∵ (a +2b )·(a -b )=-6,∴ |a|2-2|b|2+a·b =-6,∴ a·b =1,cos 〈a ,b 〉=a·b |a|·|b|=12. 4. 4 解析:设BC 边中点为D ,则AO →=23AD →,AD →=12(AB →+AC →),∴ AO →·AC →=13(AB →+AC →)·AC →=13(3×2×cos60°+32)=4.5. (-3,1)或(-1,1) 解析:设a =(x ,y),∴ a +b =(x +2,y -1),∴ ⎩⎪⎨⎪⎧ y -1=0,(x +2)2+(y -1)2=1,∴ ⎩⎪⎨⎪⎧ x =-1,y =1或⎩⎪⎨⎪⎧x =-3,y =1. 6. -14 解析:AD →·BE →=12(AB →+AC →)·⎝⎛⎭⎫23AC →-AB → =12⎝⎛⎭⎫-1+23-13×12=-14. 7. 1-2 解析:设a +b =2d ,则d 为单位向量. (a -c )·(b -c )=1-(a +b )·c =1-2d·c =1-2cos 〈d ,c 〉.8. 2 解析:取O 为坐标原点,OA 所在直线为x 轴,建立直角坐标系,则A(1,0),B ⎝⎛⎭⎫-12,32,设∠COA =θ,则θ∈⎣⎡⎦⎤0,2π3,C(cosθ,sinθ),∴ (cosθ,sinθ)=x(1,0)+y ⎝⎛⎭⎫-12,32,x +y =3sinθ+cosθ=2sin ⎝⎛⎭⎫θ+π6,θ=π3时取最大值2. 9. 解:(1) 由m·n =0得-cosA +3sinA =0,tanA =33,A ∈(0,π), ∴ A =π6.(2)1+sin2B cos 2B -sin 2B =-3,∴ sinB +cosBcosB -sinB=-3,∴ tanB =2,∴ tanC =tan ⎝⎛⎭⎫π-π6-B =-tan π6+tanB 1-tan π6tanB=8+5 3. 10. 解:(1) 在Rt △ADC 中,AD =8,CD =6, 则AC =10,cos ∠CAD =45,sin ∠CAD =35.又∵ AB →·AC →=50,AB =13,∴ cos ∠BAC =AB →·AC →|AB →||AC →|=513.∵ 0<∠BAC <π,∴ sin ∠BAC =1213.∴ sin ∠BAD =sin(∠BAC +∠CAD)=6365.(2) S △BAD =12AB·AD·sin ∠BAD =2525,S △BAC =12AB·AC·sin ∠BAC =60,S △ACD =24,则S △BCD =S △ABC +S △ACD -S △BAD =1685,∴ S △ABD S △BCD =32.滚动练习(二)1. {-1,0,1} 解析:M ={-2,-1,0,1},N ={-1,0,1,2,3},则M ∩N ={-1,0,1}.2. 0 解析:f(1)=-f(-1)=-(-3+2+1)=0.3. 2 解析:cos10°+3sin10°1-cos80°=2sin40°2sin 240°= 2.4. (-3,2) 解析:6-x -x 2>0,∴ x 2+x -6<0,∴ -3<x <2.5. 2 解析:f ′(x)=3x 2-6x =3x(x -2),则函数的增区间是(-∞,0)∪(2,+∞),减区间是(0,2),所以函数在x =2处取极小值.6. 1 解析:a -2b =(3,3)与c 共线,则3·3=3k ,∴ k =1.7. 6 解析:A*B ={0,2,4}.8. 充要 解析:f(x)=x 2+mx +1的图象关于直线x =1对称-m2=1m =-2.9. (-∞,2ln2-2] 解析:f ′(x)=e x -2,x ∈(-∞,ln2),f ′(x)<0,x ∈(ln2,+∞),f ′(x)>0,x =ln2时,f(x)取极小值即为最小值2-2ln2+a ≤0,a ≤2ln2-2;本题也可转化为a =-e x +2x ,求函数g(x)=-e x +2x 值域即可.10. ②④ 解析:函数为偶函数,在⎣⎡⎦⎤0,π2上单调增,画图即可. 11. 点拨:本题考查函数的概念和性质,对分段函数在讨论其性质时要整体考虑.对二次函数要能用数形结合的思想来研究它的单调性与最值等问题.解:(1) 函数f(x)为奇函数,f(-x)+f(x)=0对x ∈R 恒成立,m =2;(2) 由f(x)=⎩⎪⎨⎪⎧-x 2+2x ,x >00,x =0,x 2+2x ,x <0,知f(x)在[-1,1]上单调递增,∴ ⎩⎪⎨⎪⎧a -2>-1,a -2≤1,得1<a ≤3,即实数a 的取值范围是(1,3]. 12. 点拨:本小题主要考察综合运用三角函数公式、三角函数的性质进行运算、变形、转换和求解的能力.解:(1)∵ f(x)=sin(π-ωx)cosωx +cos 2ωx ,∴ f(x)=sinωxcosωx +1+cos2ωx 2=12sin2ωx +12cos2ωx +12=22sin ⎝⎛⎭⎫2ωx +π4+12,由ω>0得2π2ω=π,∴ ω=1. (2) 由(1)知f(x)=22sin ⎝⎛⎭⎫2x +π4+12, ∴ g(x)=f(2x)=22sin ⎝⎛⎭⎫4x +π4+12,当0≤x ≤π16时,π4≤4x +π4≤π2,∴ 22≤sin ⎝⎛⎭⎫4x +π4≤1. 因此1≤g(x)≤1+22,故x =0时,g(x)在此区间内取最小值为1.13. 点拨:本题考查同角三角函数的基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.解:由cosA =1213,得sinA =1-⎝⎛⎭⎫12132=513.又12bcsinA =30,∴ bc =156. (1) AB →·AC →=bccosA =156×1213=144.(2) a 2=b 2+c 2-2bccosA =(c -b)2+2bc(1-cosA)=1+2×156×⎝⎛⎭⎫1-1213=25,∴ a =5. 14. 点拨:应用题是高考必考题型,解决应用题的关键要学会审题,根据条件,选择合适的变量,建立数学模型,选择适当的方法解题,结论要符合题意.解:∵ △ABC 是直角三角形,AB =2,BC =1,∴ ∠A =30°.设∠FEC =α,则α∈⎝⎛⎭⎫0,π2,∠EFC =90°-α,∠AFD =180°-60°-(90°-α)=30°+α,∴ ∠ADF =180°-30°-(30°+α)=120°-α,再设CF =x ,则AF =3-x ,在△ADF 中有DFsin30°=3-x sin (120°-α),由于x =EF·sinα=DF·sinα, ∴DF sin30°=3-DF·sinαsin (120°-α),化简得DF =32sinα+3cosα≥37=217, ∴ △DEF 边长的最小值为217.专题三 数 列第10讲 等差数列与等比数列1. 13 解析:a 3=7,a 5=a 2+6,∴ 3d =6,∴ a 6=a 3+3d =13.2. 13 解析:6S 5-5S 3=5,∴ 6(5a 1+10d)-5(3a 1+3d)=5,得a 1+3d =13. 3. 20 解析:a n =41-2n ,a 20>0,a 21<0.4.152 解析:a 2=1,a n +2+a n +1=6a n ,∴ q 2+q =6(q >0),∴ q =2,则S 4=152. 5. 15 解析:S 4a 4=a 1(1-q 4)1-q a 1q 3=1-q 4(1-q )q 3=15.6. 4 解析:设公差为d ,则⎩⎨⎧4a 1+4×32d ≥10,5a 1+5×42d ≤15.即⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3.又a 4=a 1+3d ,由线性规划可知a 1=1,d =1时,a 4取最大值4.7.212解析:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=33+2(1+2+…+(n -1))=n 2-n +33,a n n =n +33n -1,数列⎩⎨⎧⎭⎬⎫a n n 在1≤n ≤6,n ∈N *时单调减,在n ≥7,n ∈N *时单调增,∴ n =6时,a nn取最小值.8. 4 解析:⎩⎨⎧k (k +4)⎝⎛⎭⎫23k≥(k -1)(k +3)⎝⎛⎭⎫23k -1,k (k +4)⎝⎛⎭⎫23k≥(k +1)(k +5)⎝⎛⎭⎫23k +1,10≤k ≤1+10,k ∈N *,∴ k =4.9. 解:(1) 设公差为d ,则⎩⎪⎨⎪⎧(a 1+2d )(a 1+5d )=55,2a 1+7d =16,解得⎩⎪⎨⎪⎧ a 1=1,d =2.或⎩⎪⎨⎪⎧a 1=15,d =-2.(舍去) ∴ a n =2n -1(n ∈N *).(2) n =1时,a 1=b 12,a 1=1,∴ b 1=2,n ≥2时,a n -1=b 12+b 222+…+b n -12n -1,2=a n -a n -1=b n 2n (n ≥2),b n =2n +1(n ≥2),∴ b n =⎩⎪⎨⎪⎧2(n =1),2n +1(n ≥2,n ∈N *),S n =2n +2-6(n ∈N *). 10. (解法1)(1)证明:由b n +1b n =q ,有a n +1a n +2a n a n +1=a n +2a n=q ,∴ a n +2=a n q 2(n ∈N *). (2)证明:∵ a n =a n -2q 2(n ≥3,n ∈N *),∴ a 2n -1=a 2n -3q 2=…=a 1q 2n -2,a 2n =a 2n -2q 2=…=a 2q 2n -2,∴ c n =a 2n -1+2a 2n =a 1q 2n -2+2a 2q 2n -2=(a 1+2a 2)q 2n -2=5q 2n -2. ∴ {c n }是首项为5,以q 2为公比的等比数列.(3) 解:由(2)得1a 2n -1=1a 1q 2-2n ,1a 2n =1a 2q 2-2n ,于是1a 1+1a 2+…+1a 2n =⎝⎛⎭⎫1a 1+1a 3+…+1a 2n -1+⎝⎛⎭⎫1a 2+1a 4+…+1a 2n =1a 1⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2+1a 2⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2=32⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2. 当q =1时,1a 1+1a 2+…+1a 2n =32⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2=32n.当q ≠1时,1a 1+1a 2+…+1a 2n =32⎝⎛⎭⎫1+1q 2+1q 4+…+1q 2n -2=32⎝ ⎛⎭⎪⎫1-q -2n 1-q -2=32⎣⎢⎡⎦⎥⎤q 2n -1q 2n -2(q 2-1). 故1a 1+1a 2+…+1a 2n=⎩⎨⎧32n ,q =1,32⎣⎢⎡⎦⎥⎤q 2n -1q 2n -2(q 2-1),q ≠1.(解法2)(1) 证明:同解法1(1).(2) 证明:c n +1c n =a 2n +1+2a 2n +2a 2n -1+2a 2n =q 2a 2n -1+2q 2a 2na 2n -1+2a 2n=q 2(n ∈N *),又c 1=a 1+2a 2=5,∴ {c n }是首项为5,以q 2为公比的等比数列.(3) 解:由(2)的类似方法得a 2n -1+a 2n =(a 1+a 2)q 2n -2=3q 2n -2,1a 1+1a 2+…+1a 2n =a 1+a 2a 1a 2+a 3+a 4a 3a 4+…+a 2n -1+a 2n a 2n -1a 2n ,∵ a 2k -1+a 2k a 2k -1a 2k =3q 2k -22q 4k -4=32q -2k +2,k =1,2,…,n.∴1a 1+1a 2+…+1a 2k =32(1+q 2+…+q -2n +2).下同解法1.第11讲 数列求和及其综合应用1. 2n +1-n -2 解析:a n =2n -1,1+(1+2)+(1+2+4)+…+(1+2+…+2n -1)=(2+22+23+…+2n )-n =2(2n -1)-n =2n +1-n -22. 2+lnn 解析:累加可得.3. T 8T 4 T 12T 84. -p -q 解析:由求和公式知q =pa 1+p (p -1)2d ,p =qa 1+q (q -1)2d ,因为p ≠q ,两式相减得到-1=a 1+p +q -12d ,两边同时乘以p +q ,则-(p +q)=(p +q)a 1+(p +q )(p +q -1)2d ,即S p +q =-(p +q).5. 2n +1 解析:由条件得b n +1=a n +1+2a n +1-1=2a n +1+22a n +1-1=2a n +2a n -1=2b n 且b 1=4,所以数列{b n }是首项为4,公比为2的等比数列,则b n =4·2n -1=2n +1.6. 11 解析:(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则(a 21+a 22+…+a 250)+2(a 1+a 2+…+a 50)+50=107,∴ a 21+a 22+…+a 250=39,故a 1,a 2,…,a 50中数字0的个数为50-39=11.7. [24,36] 解析:a n =6n -(9+a),由题知5.5≤9+a6≤7.5,∴ 24≤a ≤36.8. 470 解析:由于⎩⎨⎧⎭⎬⎫cos 2nπ3-sin 2nπ3以3 为周期,故S 30=⎝⎛⎭⎫-12+222+32+⎝⎛⎭⎫-42+522+62+…+⎝⎛⎭⎫-282+2922+302 =∑k =110⎣⎡⎦⎤-(3k -2)2+(3k -1)22+(3k )2=∑k =110 ⎣⎡⎦⎤9k -52=9×10×112-25=470,分组求和是解决本题的关键.9. 解:(1) 由S n =(1+λ)-λa n S n -1=(1+λ)-λa n -1(n ≥2).相减得:a n =-λa n +λa n -1,∴ a n a n -1=λ1+λ(n ≥2),∴ 数列{a n }是等比数列.(2) f(λ)=λ1+λ,∴ b n =b n -11+b n -11b n =1b n -1+1,∴ ⎩⎨⎧⎭⎬⎫1b n 是首项为1b 1=2,公差为1的等差数列,∴ 1b n =2+(n -1)=n +1.∴ b n =1n +1.(n ∈N *) (3) λ=1时,a n =⎝⎛⎭⎫12n -1,∴ c n =a n⎝⎛⎭⎫1b n-1=⎝⎛⎭⎫12n -1n , ∴ T n =1+2⎝⎛⎭⎫12+3⎝⎛⎭⎫122+…+n ⎝⎛⎭⎫12n -1, ①12T n =⎝⎛⎭⎫12+2⎝⎛⎭⎫122+3⎝⎛⎭⎫123+…+n ⎝⎛⎭⎫12n , ② ①-②得:12T n =1+⎝⎛⎭⎫12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -1-n ⎝⎛⎭⎫12n ∴ 12T n =1+⎝⎛⎭⎫12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -1-n ⎝⎛⎭⎫12n = 2⎣⎡⎦⎤1-⎝⎛⎭⎫12n -n ⎝⎛⎭⎫12n , 所以:T n =4-⎝⎛⎭⎫12n -2-2n ⎝⎛⎭⎫12n =4-n +22n -1. 10. 解:(1) n =1时,由S 2=tS 1+a ,解得a 2=at ,当n ≥2时,S n =tS n -1+a ,所以S n +1-S n =t(S n -S n -1),即a n +1=a n t , 当n =1时,由S 2=tS 1+a 得a 2=ta 1,又因为a 1=a ≠0,综上,有a n +1a n=t(n ∈N *),所以{a n }是首项为a ,公比为t 的等比数列,所以a n =at n -1.(2) 当t =1时,S n =na ,b n =na +1,b n +1-b n =[(n +1)a +1]-[na +1]=a , 此时{b n }为等差数列;当a >0时,{b n }为单调递增数列,且对任意n ∈N *,a n >0恒成立,不合题意;当a <0时,{b n }为单调递减数列,由题意知b 4>0,b 6<0,且有⎩⎪⎨⎪⎧b 4≥|b 5|,-b 6≥|b 5|,即⎩⎪⎨⎪⎧|5a +1|≤4a +1,|5a +1|≤-6a -1,解得-29≤a ≤-211.综上,a 的取值范围是⎣⎡⎦⎤-29,-211. (3) 因为t ≠1,b n =1+a 1-t -at n 1-t ,所以c n =2+⎝⎛⎭⎫1+a 1-t n -a 1-t (t +t 2+…+t n)=2+⎝⎛⎭⎫1+a 1-t n -a (t -t n +1)(1-t )2=2-at (1-t )2+1-t +a 1-t ·n +at n +1(1-t )2,由题设知{c n }是等比数列,所以有⎩⎪⎨⎪⎧2-at (1-t )2=0,1-t +a 1-t =0,解得⎩⎪⎨⎪⎧a =1,t =2,即满足条件的数对是(1,2).(或通过{c n }的前3项成等比数列先求出数对(a ,t),再进行证明)滚动练习(三)1. {4,5} 解析:A ∪B ={1,2,3}.2. π4 解析:由正弦定理a sinA =c sinC ,∴ sinA =cosA ,∴ tanA =1,∵ 0<A <π, ∴ A =π4.3. 12 解析:由a 1+3a 8+a 15=60得5a 1+35d =60,a 8=12,2a 9-a 10=a 8=12.4. 12 解析:周期是4π,∴ ω=2π4π=12. 5. [0,4) 解析:mx 2+mx +1≠0对x ∈R 恒成立.当m =0时,成立;当m ≠0时,Δ=m 2-4m <0,∴ 0<m <4.综上,0≤m <4.6. 6 解析:本题考查线性规划内容.7. ⎝⎛⎭⎫7π6,11π6 解析:y ′=1+2sinx <0,∴ sinx <-12,∴ 7π6<x <11π6. 8. π3 解析:∵ m ⊥n ,∴ (a +c)(a -c)+b(b -a)=0,∴ a 2+b 2-c 22ab =12, ∴ cosC =12,∴ C =π3.9. (-∞,-1)∪(2,+∞) 解析:画出符合题意的草图,则x -2<-3或x -2>0.10. 4 解析:本题其实是关于最小正周期问题.a 2=a 1-t ,a 3=t +2-a 1+t =2t +2-a 1,a 4=a 3-t =t +2-a 1,a 5=t +2-a 4=a 1,故实数k 的最小值是4.11. 解:(1) f(x)=12sin2x +3cos 2x =12sin2x +32(1+cos2x)=sin ⎝⎛⎭⎫2x +π3+32,∴ f(x)的最小正周期为T =2π2=π. (2) 依题意得g(x)=f ⎝⎛⎭⎫x -π4+32=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π3+32+32=sin ⎝⎛⎭⎫2x -π6+3,当x ∈⎣⎡⎦⎤0,π4时,2x -π6∈⎣⎡⎦⎤-π6,π3,∴ -12≤sin ⎝⎛⎭⎫2x -π6≤32,∴ 23-12≤g(x)≤332,∴ g(x)在⎣⎡⎦⎤0,π4的最大值为332. 12. 解:(1) 当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列.a n =120-10(n -1)=130-10n ;当n ≥7时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×⎝⎛⎭⎫34n-6,因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,n ∈N *,70×⎝⎛⎭⎫34n -6,n ≥7,n ∈N *. (2) 设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得当1≤n ≤6时,S n =120n -5n(n -1),A n =120-5(n -1)=125-5n >80;当n ≥7时,S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6=780-210×⎝⎛⎭⎫34n-6,A n =780-210×⎝⎛⎭⎫34n -6n.因为{a n }是递减数列,所以{A n }是递减数列,又A 8=780-210×⎝⎛⎭⎫348-68=824764>80,A 9=780-210×⎝⎛⎭⎫349-69=767996<80,所以须在第9年初对M进行更新.13. 解:(1) f ′(x)=3x 2+2ax +b.由题意得⎩⎪⎨⎪⎧f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×23+b =0,f ′(1)=3×12+2a ×1+b =3.解得⎩⎪⎨⎪⎧a =2,b =-4.设切线l 的方程为y =3x +m(m>0),由原点到切线l 的距离为1010, 有|m|32+1=1010,解得m =1.∵ 切线l 不过第四象限,∴ m =1,m =-1(舍),∴ 切线l 的方程为y =3x +1,由于切点的横坐标为x =1,∴ 切点坐标为(1,4),∵ f(1)=1+a +b +c =4,∴ c =5.(2) 由(1)知f(x)=x 3+2x 2-4x +5,所以f ′(x)=3x 2+4x -4=(x +2)(3x -2),令f ′(x)=0,得x 1=-2,x 2=23.x -4 (-4,-2)-2 ⎝⎛⎭⎫-2,2323 ⎝⎛⎭⎫23,1 1 f ′(x) +0 -0 +f(x)极大值 极小值函数值-11139527414. 解:(1) ∵ -1,S n ,a n +1成等差数列,∴ 2S n =a n +1-1, ① 当n ≥2时,2S n -1=a n -1, ②①-②得:2(S n -S n -1)=a n +1-a n ,∴ 3a n =a n +1,∵ a 1=1≠0,∴ a n ≠0, ∴ a n +1a n=3.当n =1时,由①得∴ 2S 1=2a 1=a 2-1,又a 1=1,∴ a 2=3, ∴a 2a 1=3,∴ {a n }是以3为公比的等比数列,∴ a n =3n -1. (2) ∵ f(x)=log 3x ,∴ f(a n )=log 33n -1=n -1,b n =1(n +3)[f (a n )+2]=1(n +1)(n +3)=12⎝⎛⎭⎫1n +1-1n +3,∴ T n =1212-14+13-15+14-16+15-17+…+1n -1n +2+1n +1-1n +3=1212+13-1n +2-1n +3=512-2n +52(n +2)(n +3),比较T n 与512-2n +5312的大小,只需比较2(n +2)(n +3)与312的大小即可.又2(n +2)(n +3)-312=2(n 2+5n +6-156)=2(n 2+5n -150)=2(n +15)(n -10),∵ n ∈N *,∴ 当1≤n ≤9时n ∈N *,2(n +2)(n +3)<312,即T n <512-2n +5312;∴ 当n=10时,2(n +2)(n +3)=312,即T n =512-2n +5312;当n >10且n ∈N *时,2(n +2)(n +3)>312,即T n >512-2n +5312;当n =10时,2(n +2)(n +3)=312,即T n =512-2n +5312;当n>10且n ∈N *时,2(n +2)(n +3)>312,即T n >512-2n +5312.。
江苏省2012届高三数学二轮专题训练 解答题(60)
江苏省2012届高三数学二轮专题训练:解答题(60)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1、已知向量()sin ,cos 2sin αθθθ=-,()1,2b =. (1)若α与b 是共线向量,求tan θ的值; (2)若αb =,0θπ<<,求θ的值. 2、(本小题满分14分)已知函数421,0()3,1c ccx x c f x x x c x +<<⎧=⎨+≤<⎩ 满足29()8f c =; (1)求常数c 的值; (2)解不等式()2f x <.3.(本小题满分15分)如图,B A ,是海面上位于东西方向相距(533+海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距3C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间? 4.已知函数()sin cos ,f x x x x =-∈R .(1)求函数()f x 在[0,2]π内的单调递增区间;(2)若函数()f x 在0x x =处取到最大值,求000()(2)(3)f x f x f x ++的值; (3)若()()x g x e x =∈R ,求证:方程()()f x g x =在[)0,+∞内没有实数解. (参考数据:ln 20.69, 3.14π=≈)5、等差数列{}n a 中12,73213=++=a a a a ,记n S 为{}n a 的前n 项和,令1+=n n n a a b ,数列}1{nb 的前n 项和为n T . (1)求n a 和n S ;(2)求证:n T 31<;(3)是否存在正整数n m ,,且n m <<1,使得n m T T T ,,1成等比数列?若存在,求出n m ,的值,若不存在,说明理由. 6.已知函数1()ln 1af x x ax x-=-+-()a R ∈. (1)1=a 时,求函数)(x f 的极大值。
江苏省2012届高三数学二轮专题训练 解答题(52)'
江苏省2012届高三数学二轮专题训练:解答题(52)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1.(本小题14分)已知函数f(x)=2log (x +3x-a)的定义域为A ,值域为B .(1)当a =4时,求集合A ;(2)当B =R 时,求实数a 的取值范围. 2.(本小题14分)某企业生产A 、B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如左图, B 产品的利润与投资的算术平方根成正比,其关系如右图 (注:利润与投资单位:万元).(1)分别将A 、B 两种产品的利润表示 为投资x (万元)的函数关系式;(2)该企业已筹集到10万元资金,并全部投 入A 、B 两种产品的生产,问:怎样分配这10万元投资,才能使企业 获得最大利润,其最大利润为多少万元?3.(本小题14分)已知函数f (x )=xax x ++22,x ∈[1,+∞)(1)当a =21时,求函数f (x )的最小值(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围(3)求f (x )的最小值4.(本小题16分)如图所示,数列{}n a 的前n 项的和1n n S a b +=+,n T 为数列{}n b 的前n项的和,且22,11062,2n n T n n n =⎧=⎨--+≥⎩. (1)求数列{}n a 、{}n b 的通项公式;(2)找出所有满足:80n n a b ++=的自然数n 的值(不必证明);(3)若不等式0n n S b k ++≥对于任意的*n N ∈,2n ≥恒成立,求实数k 的最小值,并求出此时相应的n 的值.5. (本小题16分)函数2*()(2,)x a f x b n n N bx c +==∈-且1(2)2f -<-.(1)试求函数()f x 的单调减区间;(2)已知各项均为负数的数列{}n a 前n 项和为n S ,满足14()1nnS f a =,求证:1111ln n nn a na ++-<<-;6.(本题满分16分)已知k R ∈,函数()(01,01)x x f x m k n m n =+⋅<≠<≠.(1) 如果实数,m n 满足1,1m mn >=,函数()f x 是否具有奇偶性?如果有,求出相应的k 值,如果没有,说明为什么?(2) 如果10,m n >>>判断函数()f x 的单调性; (3) 如果2m =,12n =,且0k ≠,求函数()y f x =的对称轴或对称中心.1. 解:(1)当a =4时,由x +3x -4=x 2-4x +3x =(x -1)(x -3)x >0, 解得0<x <1或x >3, 故A ={x|0<x <1或x >3} 。
江苏省2012届高三数学二轮专题训练:解答题(33)
江苏省2012届高三数学二轮专题训练:解答题(33)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤. 1.(本题满分12分) 已知A 、B 、C 三点的坐标分别为)0,3(A 、)3,0(B 、)sin ,(cos ααC 且12AC BC ⋅=-.求: (Ⅰ)sin cos αα+的值;(Ⅱ)()()sin 4cos 21sin 42παπαπα-⋅-⎛⎫++ ⎪⎝⎭的值。
2.(本题满分14分)已知圆O :522=+y x和点A (1,2),求过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积。
3.(本题满分14分)如图,矩形2==BC EB ,AC 与BD 交于G ,F 为CE (Ⅰ)求证:BCE AE 平面⊥; (Ⅱ)求证:BFD AE 平面//; (Ⅲ)求三棱锥BCF G -的体积.4.(本题满分16分)已知函数2()1f x ax bx =-+,(Ⅰ)是否存在实数,a b 使()0f x >的解集是(3,4),若存在,求实数,a b 的值,若不存在请说明理由.(Ⅱ)若2a =,且对任意()1,x ∈-+∞,()1f x b >+恒成立,求b 的取值范围. (Ⅲ)若a 为整数,2b a =+,且函数()f x 在(2,1)--上恰有一个零点,求a 的值.5.(本题满分16分)。
已知数列{}n a 满足:11,a =11,22,n n n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数,(Ⅰ)求23,;a a(Ⅱ)设*22,nn ba n N =-∈,求证:数列{}nb 是等比数列,并求其通项公式;(Ⅲ)求数列{}na 前100项中所有奇数项的和.6.=32sin cos 4αα⋅=-………………12分16.(本题满分14分)解:由题意可直接求出切线方程为y -2=21-(x -1),即x +2y -5=0,从而求出在两坐标轴上的截距分别是5和25,所以所求面积为42552521=⨯⨯。
江苏省2012届高三数学二轮专题训练:解答题(6)
江苏省2012届高三数学二轮专题训练:解答题(6)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1.(本小题满分14分)已知函数235cos 35cos sin 5)(.2+-=x x x x f 。
(1)确定函数f(x)的单调增区间;(2)将函数y=f(x )的图象向左平移)20(πϕφ<<个单位长度,所得图象关于y 轴对称,求φ的值。
2。
(本题满分14分)如图:四棱锥P-ABCD 的底面为矩形,且AB=2BC ,E 、F 分别为棱AB 、PC 的中点。
(1)求证:EF//平面PAD ;(2)若点P 在平面ABCD 内的正投影O 在直线AC 上,求证:平面PAC ⊥平面PDE 。
3. (本题满分14分) 已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩, ,, ≤满足29()8f c =. (1)求常数c 的值; (2)解不等式()1f x >.4.(本题满分16分)已知△ABC的面积为()18AC AB CB ⋅-=,向量(1cos cos )A B =,n 和(tan tan sin 2)A B C =+,m 是共线向量。
(1)求角C 的大小; (2)求△ABC 的三边长.5.(本题满分16分)已知二次函数()y f x =的图象经过点(0,1),其导函数()62f x x '=-,数列{a n }的前n 项和为S n ,点(n ,S n )*()n ∈N 均在函数()y f x =的图象上.(1)求数列{a n }的通项公式a n 和nS ;(2)设13n n n b a a +=,T n 是数列{b n }的前n 项和,求使得21nm T <对所有都成立的最小正整数m 。
6.(本小题满分16分)已知函数()sin f x a x x b =-+(a ,b 均为正常数).(1)求证:函数f(x )在(0,a+b]内至少有一个零点; (2)设函数在3x π=处有极值。
江苏省2012届高三数学二轮专题训练:填空题(68)
江苏省2012届高三数学二轮专题训练:填空题(68)本大题共14小题,请把答案直接填写在答题位置上。
1.函数)1lg(11)(x x x f -+-=的定义域是_____________。
2。
设函数2312211)(,)(,)(x x f x x f x x f ===-,则=)))2012(((21f f f _____________. 3。
函数x x x y +-=)1(的定义域是________________。
4。
已知实数0≠a ,函数⎩⎨⎧≥--<+=1212)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为___________.5.设集合}|,sin cos ||{22R x x x y y M ∈-==,},21|{R x i i x x N ∈<-=,(i 为虚数 单位),则=N M ____________。
6。
已知M 、N 为集合I 的非空真子集,且M 、N 不相等,若=⎰IM N ____________. 7.设函数)(13)(3R x x ax x f ∈+-=,若对于任意]1,1[-∈x ,都有0)(≥x f 恒成立, 则实数a 的值为_________. 8。
已知⎩⎨⎧≥<+-=1,log 1,4)13()(x x x a x a x f a 是定义在实数集R 上的减函数,那么a 的取值范围是__________。
9。
对于使M x x≤+-22成立的所有常数M 中,我们把M 的最小值1-叫做x x 22+-的“上确界”,若),0(,+∞∈b a ,且1=+b a ,则b a 221--的“上确界"为__________。
10。
若1x 满足522=+x x ,2x 满足5)1(log 22=-+x x ,则______21=+x x 。
11.设][x 表示不超过x 的最大整数(如:2]2[,2]5.1[,2]1.2[=-=-=),对于给定的*N n ∈,定义)1][()2)(1()1][()2)(1(+-⋯⋯--+-⋯⋯--=x x x x x x n n n n C x n ,),1[+∞∈x ,则当)3,23[∈x 时, 函数xC 8的值域是_____________.12.正整数集合kA 中的最小元素为1,最大元素为2010,并且各元素可以从小到大排成一个公差为k 的等差数列,则并集417A A 中的元素个数为__________。
江苏省2012届高三数学二轮专题训练 解答题(20)
江苏省2012届高三数学二轮专题训练:解答题(20)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。
1. (本题满分14分)在平面直角坐标系xOy 中,已知点,sin ,cos ),0,56()(ααP A 其中20πα<<.(1)若,65cos =α求证:;PQ PA ⊥ (2=求)42sin(πα+的值.2. (本题满分14分)设集合{}32|≤≤-=x x A ,函数)34(log )(26+++=k x kx x f(1)当1-=k 时, 求函数)(x f 的值域.(2)若 B 为函数)(x f 的定义域,当A B ⊆时,求实数k 的取值范围.3. (本题满分14分)已知函数2()2cos cos f x x x x =+.(1)求函数()f x 在区间[,]63ππ-上的值域; (2)在△ABC 中,若()2f C =,2sin cos()cos()B A C A C =--+,求tan A 的值.BP4. (本题满分14分)已知函数()23xxf x a b =⋅+⋅,其中常数,a b 满足0a b ⋅≠ (1)若0a b ⋅>,判断函数()f x 的单调性;(2)若b a 3-=,求(1)()f x f x +>时的x 的取值范围.5. (本题满分16分)如图△ABC 为正三角形,边长为2,以点A 为圆心,1为半径作圆,PQ 为圆A 的任意一条直径.⑴若12CD DB =,求||AD ; ⑵求⋅的最小值.⑶判断⋅+⋅的值是否会随点P 的变化而变化,请说明理由.6. (本题满分18分)已知函数||()2x m f x -=和函数()||28g x x x m m =-+-.(1)若2m =,写出函数)(x f 的对称轴方程、并求函数()g x 的单调区间;(2)若对任意1(,4]x ∈-∞,均存在2[4,)x ∈+∞,使得12()()f x g x =成立,求实数m 的取值范围.1. 解:(1)(方法一)由题设知).sin ,cos (),sin ,cos 56(a a PO a a PA --=--= 所以2sin ()cos )(cos 56()a a a PO PA -+--=⋅.1cos 56sin cos cos 5622+-=++-=a a a a ……………………6分因为,65cos =a 所以.0=⋅PO PA 故.PO PA ⊥……………………7分(方法二)因为,65cos =a ,20π<<a 所以611sin =a ,故.611,65()P因此).611,65(),611,3011(--=-=PO PA 因为.0)611()65(30112=-+-⨯=⋅PO PA所以.PO PA ⊥(2)因为,PO PA ⊥所以,22PO PA = 即.sin cos sin )56cos 2222a a a a +=+-(解得.53cos =a ……………………9分 因为,20π<<a 所以.54sin =a 因此.2571cos 22cos ,2524cos sin 22sin 2-=-===a a a a a ……………………12分从而.50217)257(222524222cos 222sin 2242sin(=-⨯+⨯=+=+a a a )π ……………14分2. 解:(1) 当1-=k 时, 66)2(3422≤+--=+++x k x kx ……………2分 ∴26log)(6=≤x f ……………4分∴函数)(x f 的值域为]2,(-∞……………5分(2)设g(x)=kx 2+4x+k+3,则B={x|g(x)>0}.①当k=0时,B=(-,+∞)⊈A,不合题意,故舍去. ……………7分②当k>0时,注意到g(x)的图象开口向上,显然B ⊈A,故舍去. ……………9分③当k<0时,由A B ⊆知解得-4<k ≤-.综上知k ∈(-4,-]. ……………14分3. 解:(1)f (x )=1+cos2x +3sin2x =2sin(2x +π6)+1. (3)分因为-π6≤x ≤π3,所以-π6≤2x +π6≤5π6.……………………………………………5分所以-12≤sin(2x +π6)≤1.所以-1≤2sin(2x +π6)≤2所以f (x )∈[0,3].即函数f (x )在[-π6,π3]上的值域为[0,3].………………………7分(2)由f (C )=3得,2sin(2C +π6)+1=2,所以sin(2C +π6)=12.在△ABC 中,因为0<C <π,所以π6<2C +π6<13π6.所以2C +π6=5π6.所以C =π3,所以A +B =2π3. ………………………………………9分因为2sin B =cos(A -C )-cos(A +C ).所以2sin B =2sin A sin C . …………………11分因为B =2π3-A ,C =π3.所以2sin(2π3-A )=3sin A .即3cos A +sin A =3sin A .即(3-1)sin A =3cos A . 所以tan A =sin A cos A =33-1=3+32.………………14分4. 解:⑴ 当0,0a b >>时,任意1212,,x x R x x ∈<, 则121212()()(22)(33)xxxxf x f x a b -=-+-∵ 121222,0(22)0xxxxa a <>⇒-<,121233,0(33)0xxxxb b <>⇒-<, ∴ 12()()0f x f x -<,函数()f x 在R 上是增函数……………6分 当0,0a b <<时,同理函数()f x 在R 上是减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题1 函数(1)一、填空题: 1.已知0.20.20.62,0.4,0.4a b c ===,则,,a b c 从大到小为 .【答案】a b c >> 2.设2()lg()1f x a x=+-的奇函数,则使()0f x <的X 的取值范围是 . 【答案】(一1,0)3.若x≥0,y≥0,且12=+y x ,则232y x +的最小值是 . 【答案】434.已知函数()()()f x x a x b =--(其中a b >,,a b 为常数),若()f x 的图象如右图所示,则函数()xg x a b =+在区间[-1,1]上的最大值是 . 【答案】1b a+ 5.设函数)(x f 是定义在R 上的奇函数,且对任意R ∈x 都有)4()(+=x f x f ,当)02(,-∈x 时,x x f 2)(=,则)2011()2012(f f -的值为 .【答案】21-6.对于给定的函数xxx f --=22)(,有下列四个结论:①)(x f 的图象关于原点对称; ②2)3(log 2=f ; ③)(x f 在R 上是增函数; ④|)(|x f 有最小值0.其中正确结论的序号是 .(写出所有正确结论的序号)【答案】①③④7. 定义在R 上的函数()x f 满足()()()()⎩⎨⎧>---≤-=0,210,8l o g 2x x f x f x x x f ,则()3f 的值为 .【答案】3-8.函数|log |21x y =的定义域为],[b a ,值域为[0,2],则区间],[b a 的长a b -的最大值是 . 【答案】1549.对于任意实数x ,符号[x ]表示不超过x 的最大整数,例如[-1.5]=-2,[2.5]=2,定义函数{}[]x x x =-,则给出下列四个命题:①函数{}x 的定义域是R ,值域为[0,1] ;②方程{}12x =有无数个解;③函数{}x 是周期函数;④函数{}x 是增函数.其中正确命题的序号是 . 【答案】②③10.已知函数2(),([2,2])f x x x ∈-=,2()sin(2)3,[0,]62g x a x a x ππ=++∈,1[2,2]x ∀∈-,001[0,],()()2x g x f x π∃∈=总使得成立,则实数a 的取值范围是 .【答案】(,4][6,)-∞-+∞11.已知函数111,[0,)22()12,[,2)2x x x f x x -⎧+∈⎪⎪=⎨⎪∈⎪⎩若存在12,x x ,当1202x x ≤<<时,12()()f x f x =,则12()x f x 的取值范围是 .【答案】221,42⎡⎫-⎪⎢⎪⎣⎭12.已知定义域为D 的函数)(x f ,对任意D x ∈,存在正数K ,都有K x f ≤|)(|成立,则称函数)(x f 是D 上的“有界函数”.已知下列函数:①1sin 2)(2-=x x f ;②21)(x x f -=;③x x f 2lo g 1)(-=;④1)(2+=x xx f ,其中是“有界函数”的是 .(写出所有满足要求的函数的序号) 【答案】①②④13.设()f x 是定义在R 上的偶函数,对任意x R ∈,都有()(4)f x f x =+,且当[2,0]x ∈-时,1()12xf x ⎛⎫=- ⎪⎝⎭,若在区间(2,6]-内关于x 的方程()log (2)0(1)a f x x a -+=>恰有三个不同的实数根,则a 的取值范围为 . 【答案】3(4,2)【解析】令)2(log )(+=x ax g ,由题意若在区间(2,6]-内关于x 的方程()log (2)0(1)a f x x a -+=>恰有三个不同的实数根,所以{3)2(3)6(<>g g ,解得243<<a14.定义在()1,1- 上的函数 ()()⎪⎪⎭⎫⎝⎛--=-xy y x f y f x f 1;当()()1,00.x f x ∈->时若()111,,05112P f f Q f R f ⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;则,,P Q R 的大小关系为 .【答案】R P Q >>【解析】令0x y ==,则可得(0)0f =,令0x =,则()()f y f y -=-,即()f x 为奇函数,令10x y >>>,则01x yxy ->-,所以()()01x y f x f y f xy ⎛⎫--=< ⎪-⎝⎭,即()()0,1x f x∈时递减,又1111112511()1151151171511P f f f f f f ⎛⎫+ ⎪⎛⎫⎛⎫⎛⎫⎛⎫=+=--== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪+⨯⎝⎭, 因2172<,所以21()()72f f >,即0P Q >>.二、解答题:15. 设函数()()()101x xf x a k a a a -=-->≠且是定义域为R 的奇函数.(1)求k 值;(2)若()10f <,试判断函数单调性并求使不等式()()240f x tx f x ++-<恒成立的T的取值范围; (3)若()312f =,且()()222x xg x a a mf x -=+-,在[)1,+∞上的最小值为2-,求m 的值.解:(1)∵f(x)是定义域为R 的奇函数,∴f(0)=0, ∴1-(k -1)=0,∴k =2, (2)),10()(≠>-=-a a aa x f xx且10,1,0,01,0)1(<<∴≠><-∴<a a a aa f 且又 x a 单调递减,x a -单调递增,故f(x)在R 上单调递减。
不等式化为)4()(2-<+x f tx x f04)1(,422>+-+->+∴x t x x tx x 即恒成立,016)1(2<--=∆∴t ,解得53<<-t(3)∵f(1)=32,231=-∴a a ,即,02322=--a a(舍去)。
或212-==∴a a∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x )2-2m(2x-2-x)+2.令t =f(x)=2x -2-x,由(1)可知f(x)=2x -2-x为增函数,∵x ≥1,∴t ≥f(1)=32,令h(t)=t 2-2mt +2=(t -m)2+2-m 2(t ≥32)若m ≥32,当t =m 时,h(t)min =2-m 2=-2,∴m =2若m<32,当t =32时,h(t)min =174-3m =-2,解得m =2512>32,舍去综上可知m =2.16. 已知函数4()()f x x a a x=-+∈R . (1)若0a =,求不等式()0f x ≥的解集; (2)当方程()2f x =恰有两个实数根时,求a 的值;(3)若对于一切(0,)x ∈+∞,不等式()1f x ≥恒成立,求a 的取值范围. 解:(1)由0a =得4()f x x x=+ 当0x >时,4()0f x x x=+≥恒成立 ∴0x >当0x <时,4()0f x x x=-+≥得2x ≥或2x ≤-又0x < ∴2x ≤-所以不等式()0f x ≥的解集为(,2](0,)-∞-⋃+∞ (2)由()2f x =得42x a x-=- 令124,2y x a y x=-=-由函数图象知两函数图象在y 轴右边只有一个交点时满足题意,42x a x-=-即2(2)40x a x -++=由0∆=得2,6a =-由图知2a =时方程()2f x =恰有两个实数根(3)41(0)x a x x-+≥> 当0a ≤时,41(0)x a x x -+≥>,41(0)x a x x+-≥>,3a ≤, 所以0a ≤当0a >时4 ()4 0x a x a xf x x a x a x ⎧+-≥⎪⎪=⎨⎪-++<<⎪⎩①当x a ≥时,4 1x a x +-≥,即41(0)a x x x ≤+-≥>,令4()1g x x x=+- 02a <≤时,(2)3a g ≤=,所以02a <≤2a >时,4()1a g a a a≤=+-,所以4a ≤,24a <≤所以04a <≤②当0x a <<时,4 1x a x -++≥,即41(0)a x x x≥-+>所以41a a a≥-+,4a ≤综上,a 的取值范围是(,4]-∞17. 已知集合{}121212(,)0,0,D x x x x x x k =>>+=.其中k 为正常数.(1)设12u x x =,求u 的取值范围. (2)求证:当1k ≥时不等式21212112()()()2k x x x x k--≤-对任意12(,)x x D ∈恒成立; (3)求使不等式21212112()()()2k x x x x k--≥-对任意12(,)x x D ∈恒成立的k 的范围.解:(1)221212()24x x k x x +≤=,当且仅当122kx x ==时等号成立, 故u 的取值范围为2(0,]4k .(2) 变形,得121212121221111()()x x x x x x x x x x x x --=+-- 222212121212121211122x x k k x x x x u x x x x x x u+--=+-=-+=-+.由204k u <≤,又1k ≥,210k -≥,∴21()2k f u u u -=-+在2(0,]4k 上是增函数,所以121211()()x x x x --=212k u u --+22222214222()4424k k k kk k k -≤-+=-+=-. 即当1k ≥时不等式21212112()()()2k x x x x k--≤-成立.(3)令121211()()x x x x --=212()k u f u u -++=,则)4()22(22k f k k =-,即求使2()()4k f u f ≥对2(0,]4k u ∈恒成立的k 的范围.由(2)知,要使21212112()()()2k x x x x k--≥-对任意12(,)x x D ∈恒成立,必有01k <<, 因此210k ->,∴函数21()2k f u u u-=++在2(0,1]k -上递减,在2[1,)k -+∞上递增,要使函数()f u 在2(0,]4k 上恒有2()()4k f u f ≥,必有2214k k ≤-, 即4216160k k +-≤,解得0252k <≤-.18.对于函数()f x ,若存在实数对(b a ,),使得等式b x a f x a f =-⋅+)()(对定义域中的每一个x 都成立,则称函数()f x 是“(b a ,)型函数”.(1)判断函数()4xf x =是否为“(b a ,)型函数”,并说明理由;(2)已知函数()g x 是“(1,4)型函数”, 当[0,2]x ∈时,都有1()3g x ≤≤成立,且当[0,1]x ∈时,2()g x x =(1)1m x --+(0)m >,若,试求m 的取值范围. 解: (1)函数()4xf x =是“(b a ,)型函数”因为由b x a f x a f =-⋅+)()(,得16ab =,所以存在这样的实数对,如1,16a b == (2) 由题意得,(1)(1)4g x g x +-=,所以当[1,2]x ∈时, 4()(2)g x g x =-,其中2[0,1]x -∈, 而[0,1]x ∈时,22()(1)110g x x m x x mx m =+-+=-++>,且其对称轴方程为2mx =, ①当12m>,即2m >时,()g x 在[0,1]上的值域为[(1),(0)]g g ,即[2,1]m +,则()g x 在[0,2]上的值域为44[2,1][,2][,1]11m m m m +=+++ ,由题意得13411m m +≤⎧⎪⎨≥⎪+⎩,此时无解②当1122m ≤≤,即12m ≤≤时,()g x 的值域为[(),(0)]2mg g ,即2[1,1]4m m m +-+,所以则()g x 在[0,2] 上的值域为2244[1,1][,]4114m m m mm m +-+++-,则由题意得2431413m m m ⎧≤⎪⎪+-⎨⎪+≤⎪⎩且2114411m m m ⎧+-≥⎪⎪⎨⎪≥⎪+⎩,解得12m ≤≤③当1022m <≤,即01m <≤时,()g x 的值域为[(),(1)]2mg g ,即2[1,2]4m m +-,则()g x 在[0,2]上的值域为224[1,2][2,]414m m m m +-+- =224[1,]414m m m m +-+-, 则221144314m m m m ⎧+-≥⎪⎪⎨≤⎪⎪+-⎩,解得26213m -≤≤. 综上所述,所求m 的取值范围是26223m -≤≤19.已知函数b ax ax x g ++-=12)(2(0>a )在区间]3,2[上有最大值4和最小值1.设xx g x f )()(=. (1)求a 、b 的值; (2)若不等式02)2(≥⋅-xxk f 在]1,1[-∈x 上有解,求实数k 的取值范围; (3)若()03|12|2|12|=--⋅+-k k f x x有三个不同的实数解,求实数k 的取值范围.解:(1)a b x a x g -++-=1)1()(2,因为0>a ,所以)(x g 在区间]3,2[上是增函数,故⎩⎨⎧==4)3(1)2(g g ,解得⎩⎨⎧==01b a .(2)由已知可得21)(-+=xx x f , 所以02)2(≥⋅-x x k f 可化为xx x k 22212⋅≥-+,化为k x x ≥⋅-⎪⎭⎫ ⎝⎛+2122112,令x t 21=,则122+-≤t t k ,因]1,1[-∈x ,故⎥⎦⎤⎢⎣⎡∈2,21t ,记=)(t h 122+-t t ,因为⎥⎦⎤⎢⎣⎡∈1,21t ,故1)(max =t h , 所以k 的取值范围是]1,(-∞.(3)原方程可化为0)12(|12|)23(|12|2=++-⋅+--k k xx,令t x=-|12|,则),0(∞+∈t ,0)12()23(2=+++-k t k t 有两个不同的实数解1t ,2t ,其中101<<t ,12>t ,或101<<t ,12=t .记)12()23()(2+++-=k t k t t h ,则⎩⎨⎧<-=>+0)1(012k h k ①或⎪⎪⎩⎪⎪⎨⎧<+<=-=>+122300)1(012k k h k ② 解不等组①,得0>k ,而不等式组②无实数解.所以实数k 的取值范围是),0(∞+.。