高中数学-反证法练习
2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45
![2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45](https://img.taocdn.com/s3/m/fcc6a5bdb84ae45c3a358ca6.png)
三 反证法与放缩法1.不等式的证明方法——反证法(1)反证法证明的定义:先假设要证明的命题不成立,然后由此假设出发,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.不等式的证明方法——放缩法 (1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据主要有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.利用反证法证明不等式已知f (x )求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.“不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”. (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”“至少”“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:选D “不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列,∴a =b -d ,c =b +d (其中d 为公差). ∴ac =b 2=(b -d )(b +d ). ∴b 2=b 2-d 2. ∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a ),与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ),于是有f (a )+f (-b )>f (b )+f (-a ),与已知矛盾.故假设不成立.∴a <b .利用放缩法证明不等式已知实数x x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).解答本题可对根号内的式子进行配方后再用放缩法证明.x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2. 同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当的放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ,当k =2时,12n ≤1n +2<1n ,…当k =n 时,12n ≤1n +n <1n.∴将以上n 个不等式相加,得12=n 2n ≤1n +1+1n +2+…+12n <nn =1.5.设f (x )=x 2-x +13,a ,b ∈,求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b |=|(a -b )(a +b -1)|=|a -b ||a +b -1|. ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2,-1≤a +b -1≤1,|a +b -1|≤1.∴|f (a )-f (b )|≤|a -b |.课时跟踪检测(八)1.设a ,b ,c ∈R +,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于零”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C 必要性是显然成立的;当PQR >0时,若P ,Q ,R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.2.若|a -c |<h ,|b -c |<h ,则下列不等式一定成立的是( ) A .|a -b |<2h B .|a -b |>2h C .|a -b |<hD .|a -b |>h解析:选A |a -b |=|(a -c )-(b -c )|≤|a -c |+|b -c |<2h . 3.设x ,y 都是正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥2(2+1)解析:选A 由已知(x +y )+1=xy ≤⎝ ⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0. ∵x ,y 都是正实数,∴x >0,y >0,∴x +y ≥22+2=2(2+1).4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0 B .1 C .2D .3解析:选C 若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾,故①对;当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;③显然不正确.5.若要证明“a ,b 至少有一个为正数”,用反证法证明时作的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________.解析:∵lg 9>0,lg 11>0,∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1,∴lg 9·lg 11<1. 答案:lg 9·lg 11<17.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A ,B 的大小关系是________.解析:A =x 1+x +y +y 1+x +y <x 1+x +y1+y =B .答案:A <B8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1.求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知a ,b ,c ,d ∈. 从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2,∴ac +bd ≤a +c +b +d2=1,即ac +bd ≤1,与已知ac +bd >1矛盾, ∴a ,b ,c ,d 中至少有一个是负数. 9.已知a n =1×2+2×3+3×4+…+n n +1(n ∈N *).求证:n n +12<a n <n n +22.证明:∵n n +1=n 2+n ,∴nn +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵nn +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=n 2+(1+2+3+…+n )=n n +22.综上得n n +12<a n <n n +22.10.已知f (x )=ax 2+bx +c ,若a +c =0,f (x )在上的最大值为2,最小值为-52.求证:a ≠0且⎪⎪⎪⎪⎪⎪b a <2. 证明:假设a =0或⎪⎪⎪⎪⎪⎪b a ≥2.①当a =0时,由a +c =0,得f (x )=bx ,显然b ≠0. 由题意得f (x )=bx 在上是单调函数, 所以f (x )的最大值为|b |,最小值为-|b |. 由已知条件得|b |+(-|b |)=2-52=-12,这与|b |+(-|b |)=0相矛盾,所以a ≠0. ②当⎪⎪⎪⎪⎪⎪b a ≥2时,由二次函数的对称轴为x =-b2a ,知f (x )在上是单调函数,故其最值在区间的端点处取得 .所以⎩⎪⎨⎪⎧f 1=a +b +c =2,f -1=a -b +c =-52或⎩⎪⎨⎪⎧f 1=a +b +c =-52,f -1=a -b +c =2.又a +c =0,则此时b 无解,所以⎪⎪⎪⎪⎪⎪b a <2. 由①②,得a ≠0且⎪⎪⎪⎪⎪⎪b a<2.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解:f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)·(1-b 2)<0.因此|a +b |<|1+ab |.2.(全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.比较法证明不等式比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.已知b ,m 1,m 2都是正数,a <b ,m 1<m 2,求证:a +m 1b +m 1<a +m 2b +m 2. a +m 1b +m 1-a +m 2b +m 2=a +m 1b +m 2-a +m 2b +m 1b +m 1b +m 2=am 2+bm 1-am 1-bm 2b +m 1b +m 2=a -b m 2-m 1b +m 1b +m 2.因为b >0,m 1,m 2>0,所以(b +m 1)(b +m 2)>0. 又a <b ,所以a -b <0. 因为m 1<m 2,所以m 2-m 1>0. 从而(a -b )(m 2-m 1)<0. 于是a -b m 2-m 1b +m 1b +m 2<0.所以a +m 1b +m 1<a +m 2b +m 2. 综合法证明不等式逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设a >0,b >0,a +b =1. 求证:1a +1b +1ab≥8.∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab≥4.∴1a +1b +1ab=(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab≥2ab ·21ab+4=8.∴1a +1b +1ab≥8.分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a >b >0.求证:a -b <a -b . 要证a -b <a -b , 只需证a <a -b +b , 只需证(a )2<(a -b +b )2, 只需证a <a -b +b +2b a -b ,只需证0<2ba -b .∵a >b >0,上式显然成立,∴原不等式成立,即a -b <a -b .反证法证明不等式用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.已知:在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC (如右图所示).假设AD ≥12BC .①若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .②若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD ,从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD .即∠B +∠C >∠A . 因为∠B +∠C =180°-∠A , 所以180°-∠A >∠A , 即∠A <90°,与已知矛盾. 故AD >12BC 不成立.由①②知AD <12BC 成立.放缩法证明不等式作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当..放缩,否则达文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。
高中反证法练习题及讲解
![高中反证法练习题及讲解](https://img.taocdn.com/s3/m/1ef8d39f59f5f61fb7360b4c2e3f5727a5e9243b.png)
高中反证法练习题及讲解### 高中数学反证法练习题及讲解#### 练习题一:不等式的证明题目:证明对于任意正整数 \( n \),有 \( 1^2 + 2^2 + 3^2 + \ldots + n^2 \geq n^2 \)。
解答:假设存在某个正整数 \( n \),使得 \( 1^2 + 2^2 + 3^2 + \ldots + n^2 < n^2 \)。
考虑 \( n \) 的最小值,即 \( n = 1 \),显然 \( 1^2 = 1 \),不等式成立。
现在考虑 \( n > 1 \) 的情况,我们有:\[ 1^2 + 2^2 + \ldots + (n-1)^2 + n^2 < n^2 \]将 \( n^2 \) 移项,得到:\[ 1^2 + 2^2 + \ldots + (n-1)^2 < 0 \]但是,由于每一项都是非负的,它们的和不可能小于零。
这与我们的假设矛盾,因此原命题成立。
#### 练习题二:几何命题的证明题目:证明在直角三角形中,斜边的中点到三个顶点的距离相等。
解答:假设在直角三角形 \( ABC \) 中,斜边 \( AC \) 的中点为 \( M \),且 \( M \) 到顶点 \( A \)、\( B \) 和 \( C \) 的距离不相等。
不失一般性,设 \( MA < MB \)。
由于 \( M \) 是斜边的中点,我们有 \( MC = MA \)。
考虑直角三角形 \( ABM \),由于 \( MA < MB \),根据勾股定理,我们有 \( AM^2 + BM^2 = AB^2 \),这与 \( MA < MB \) 矛盾。
因此,我们的假设不成立,原命题成立。
#### 练习题三:数列的性质题目:证明对于任意实数 \( a \) 和 \( b \),如果 \( a < b \),则 \( a^2 < b^2 \)。
2019-2020学年高中数学人教A版选修2-2学业测评:2.2.2 反证法 Word版含解析
![2019-2020学年高中数学人教A版选修2-2学业测评:2.2.2 反证法 Word版含解析](https://img.taocdn.com/s3/m/b8208f63b52acfc788ebc94f.png)
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.实数a,b,c不全为0等价于( )A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0【解析】“不全为0”的对立面为“全为0”,故“不全为0”的含义为“至少有一个不为0”.【答案】 D2.(2014·山东高考)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【解析】依据反证法的要求,即至少有一个的反面是一个也没有,直接写出命题的否定.方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根,故应选A.【答案】 A3.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线【解析】假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故应选C.【答案】 C4.设a,b,c大于0,则3个数:a+1b,b+1c,c+1a的值( ) 【导学号:60030059】A.都大于2 B.至少有一个不大于2 C.都小于2 D.至少有一个不小于2【解析】 假设a +1b ,b +1c ,c +1a 三个数都小于2,则必有a +1b +b +1c +c +1a <6,而⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭⎪⎫c +1c ≥2a·1a +2b·1b +2c·1c =6,故二者相矛盾.所以假设不成立.【答案】 D5.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是( )A .有两个内角是钝角B .有三个内角是钝角C .至少有两个内角是钝角D .没有一个内角是钝角【解析】 “最多只有一个”的否定是“至少有两个”,故选C.【答案】 C二、填空题6.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是___________________________________________________________.【解析】 “至少有一个”的否定是“一个也没有”,故结论的否定是:没有一个面是三角形或四边形或五边形.【答案】 没有一个面是三角形或四边形或五边形7.设a ,b 是两个实数,给出下列条件:①a +b =1;②a +b =2;③a +b >2;④a 2+b 2>2. 其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).【解析】 假设a ,b 均不大于1,即a ≤1,b ≤1.则①②④均有可能成立,故①②④不能推出“a ,b 中至少有一个大于1”,故选③.【答案】 ③8.(2016·开原模拟)如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则△A 1B 1C 1和△A 2B 2C 2分别是________.(填三角形的种类)【解析】 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧ sin A2=cos A1=sin ⎝ ⎛⎭⎪⎫π2-A1,sin B2=cos B1=sin ⎝ ⎛⎭⎪⎫π2-B1,sin C2=cos C1=sin ⎝ ⎛⎭⎪⎫π2-C1, 得⎩⎪⎨⎪⎧ A2=π2-A1,B2=π2-B1,C2=π2-C1.那么,A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形,所以△A 2B 2C 2是钝角三角形.【答案】 锐角三角形,纯角三角形三、解答题9.已知f (x )=a x +x -2x +1(a >1),证明:方程f (x )=0没有负数根.【证明】 假设x 0是f (x )=0的负数根,则x 0<0且x 0≠-1且ax 0=-x0-2x0+1, 由0<ax 0<1⇒0<-x0-2x0+1<1, 解得12<x 0<2,这与x 0<0矛盾,所以假设不成立,故方程f (x )=0没有负数根.10.已知a ,b ,c ∈R ,a +b +c =0,abc =1,求证:a ,b ,c 中至少有一个大于32.【证明】 假设a ,b ,c 都小于等于32,即a ≤32,b ≤32,c ≤32.∵abc =1,∴a ,b ,c 三数同为正或一正两负.又a +b +c =0,∴a ,b ,c 只能是一正两负,不妨设a >0,b <0,c <0.则b +c =-a ,bc =1a ,∴b ,c 为方程x 2+ax +1a =0的两根,∴Δ=a 2-4a ≥0,即a 3≥4.∴a ≥ 34>3278=32,这与a ≤32矛盾,∴a ,b ,c 中至少有一个大于32.[能力提升]1.下列命题运用“反证法”证明正确的是( )A .命题:若a >b >0,则a >b .用反证法证明:假设a >b 不成立,则a <b .若a <b ,则a <b ,与已知a >b 矛盾.故假设不成立,结论a>b 成立B .命题:已知二次方程ax 2+bx +c =0(a ,b ,c∈R ,且a ≠0)有实根,求证:Δ=b 2-4ac ≥0.用反证法证明:假设Δ=b 2-4ac <0,则ax 2+bx +c =0无实根,与已知方程有实根矛盾,∴Δ≥0C .命题:已知实数p 满足不等式(2p +1)(p +2)<0,证明:关于x 的方程x 2-2x +5-p 2=0无实数根.用反证法证明:假设方程x 2-2x +5-p 2=0有实数根,由已知实数p 满足不等式(2p +1)(p +2)<0,解得-2<p <-12,而关于x 的方程x 2-2x +5-p 2=0的根的判别式Δ=4(p 2-4),∵-2<p <-12,∴14<p 2<4,∴Δ<0,即关于x 的方程x 2-2x +5-p 2=0无实数根D .命题:已知函数f (x )是(-∞,+∞)上的增函数,a ,b∈R .“若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0”.用反证法证明:假设a +b <0,则a <-b ,b <-a .∵f (x )是(-∞,+∞)上的增函数,则f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ).这与已知相矛盾.∴原命题成立【解析】 A .反证法中的反证不全面,“a>b ”的否定应为“a ≤b ”.B .本题犯了“循环论证”的错误,实质上没有求出该题.C.在解题的过程中并没有用到假设的结论,故不是反证法.【答案】 D2.设a,b,c均为正实数,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R同时大于0”的( ) 【导学号:60030060】A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】首先,若P,Q,R同时大于0,则必有PQR>0成立.其次,若PQR>0,且P,Q,R不都大于0,则必有两个为负,不妨设P<0,Q<0,即a+b-c<0,b+c-a<0,所以b<0,与b>0矛盾.故P,Q,R都大于0.【答案】 C3.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误;②所以一个三角形不能有两个直角;③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为__________.【解析】由反证法证明数学命题的步骤可知,上述步骤的顺序应为③①②.【答案】③①②4.已知函数f(x)=x22x-2,如果数列{a n}满足a1=4,a n+1=f(a n),求证:当n≥2时,恒有a n<3成立.【证明】假设a n≥3(n≥2),则由已知得a n+1=f(a n)=a2n2an-2,所以当n≥2时,an+1an=an2an-2=12·⎝⎛⎭⎪⎫1+1an-1≤12⎝⎛⎭⎪⎫1+12=34<1(因为a n-1≥3-1),又易证a n>0,所以当n≥2时,a n+1<a n,所以当n>2时,a n<a n-1<…<a2;而当n=2时,a2=a212a1-2=168-2=83<3,所以当n≥2时,a n<3;这与假设矛盾,故假设不成立,所以当n≥2时,恒有a n<3成立.。
高中数学反证法综合测试题(含答案)
![高中数学反证法综合测试题(含答案)](https://img.taocdn.com/s3/m/3dcf6e97482fb4daa48d4b4f.png)
高中数学反证法综合测试题(含答案) 选修2-2 2.2.2 反证法一、选择题1.否定结论“至多有两个解”的说法中,正确的是() A.有一个解B.有两个解C.至少有三个解D.至少有两个解[答案] C[解析] 在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C.2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为()A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数[答案] B[解析] a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数页 1 第或至少有两个偶数”.故应选B.3.用反证法证明命题“三角形的内角中至少有一个不大于60”时,反设正确的是()A.假设三内角都不大于60B.假设三内角都大于60C.假设三内角至多有一个大于60D.假设三内角至多有两个大于60[答案] B[解析] “至少有一个不大于”的否定是“都大于60”.故应选B.4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c =0(a0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是()A.假设a,b,c都是偶数B.假设a、b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数[答案] B[解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.5.命题“△ABC中,若B,则ab”的结论的否定应该是() A.a页 2 第B.abC.a=bD.ab[答案] B[解析] “ab”的否定应为“a=b或ab”,即ab.故应选B. 6.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线[答案] C[解析] 假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.7.设a,b,c(-,0),则三数a+1b,c+1a,b+1c中() A.都不大于-2B.都不小于-2C.至少有一个不大于-2D.至少有一个不小于-2[答案] C[解析] a+1b+c+1a+b+1c页 3 第=a+1a+b+1b+c+1c∵a,b,c(-,0),a+1a=--a+-1a-2b+1b=--b+-1b-2c+1c=--c+-1c-2a+1b+c+1a+b+1c-6三数a+1b、c+1a、b+1c中至少有一个不大于-2,故应选C.8.若P是两条异面直线l、m外的任意一点,则()A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面[答案] B[解析] 对于A,若存在直线n,使n∥l且n∥m则有l∥m,与l、m异面矛盾;对于C,过点P与l、m都相交的直线不一定存在,反例如图(l∥);对于D,过点P与l、m都异面的直线不唯一.9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是页 4 第()A.甲B.乙C.丙D.丁[答案] C[解析] 因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C. 10.已知x10,x11且xn+1=xn(x2n+3)3x2n+1(n=1,2…),试证“数列{xn}或者对任意正整数n都满足xnxn+1,或者对任意正整数n都满足xnxn+1”,当此题用反证法否定结论时,应为()A.对任意的正整数n,都有xn=xn+1B.存在正整数n,使xn=xn+1C.存在正整数n,使xnxn+1且xnxn-1D.存在正整数n,使(xn-xn-1)(xn-xn+1)0[答案] D[解析] 命题的结论是“对任意正整数n,数列{xn}是递增数列或是递减数列”,其反设是“存在正整数n,使数列既不是递增数列,也不是递减数列”.故应选D.页 5 第二、填空题11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.[答案] 没有一个是三角形或四边形或五边形[解析] “至少有一个”的否定是“没有一个”.12.用反证法证明命题“a,bN,ab可被5整除,那么a,b 中至少有一个能被5整除”,那么反设的内容是________________.[答案] a,b都不能被5整除[解析] “至少有一个”的否定是“都不能”.13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90+90+180,这与三角形内角和为180相矛盾,则A=B=90不成立;②所以一个三角形中不能有两个直角;③假设A,B,C中有两个角是直角,不妨设A=B=90.正确顺序的序号排列为____________.[答案] ③①②[解析] 由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②. 14.用反证法证明质数有无限多个的过程如下:假设______________.设全体质数为p1、p2、…、pn,令p 页 6 第=p1p2…pn+1.显然,p不含因数p1、p2、…、pn.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、pn之外,还有质数,因此原假设不成立.于是,质数有无限多个.[答案] 质数只有有限多个除p1、p2、…、pn之外[解析] 由反证法的步骤可得.三、解答题15.已知:a+b+c0,ab+bc+ca0,abc0.求证:a0,b0,c0.[证明] 用反证法:假设a,b,c不都是正数,由abc0可知,这三个数中必有两个为负数,一个为正数,不妨设a0,b0,c0,则由a+b+c0,可得c-(a+b),又a+b0,c(a+b)-(a+b)(a+b)ab+c(a+b)-(a+b)(a+b)+ab即ab+bc+ca-a2-ab-b2∵a20,ab0,b20,-a2-ab-b2=-(a2+ab+b2)0,即ab +bc+ca0,这与已知ab+bc+ca0矛盾,所以假设不成立.因此a0,b0,c0成立.页 7 第16.已知a,b,c(0,1).求证:(1-a)b,(1-b)c,(1-c)a 不能同时大于14.[证明] 证法1:假设(1-a)b、(1-b)c、(1-c)a都大于14.∵a、b、c都是小于1的正数,1-a、1-b、1-c都是正数.(1-a)+b2(1-a)b>14=12,同理(1-b)+c2>12,(1-c)+a2>12.三式相加,得(1-a)+b2+(1-b)+c2+(1-c)+a2>32,即32>32,矛盾.所以(1-a)b、(1-b)c、(1-c)a不能都大于14.证法2:假设三个式子同时大于14,即(1-a)b14,(1-b)c14,(1-c)a14,三式相乘得(1-a)b(1-b)c(1-c)a143①因为01,所以0a(1-a)1-a+a22=14.同理,0b(1-b)14,0c(1-c)14.所以(1-a)a(1-b)b(1-c)c143.②因为①与②矛盾,所以假设不成立,故原命题成立.17.已知函数f(x)是(-,+)上的增函数,a,bR.(1)若a+b0,求证:f(a)+f(b)f(-a)+f(-b);(2)判断(1)中命题的逆命题是否成立,并证明你的结论.[解析] (1)证明:∵a+b0,a-b.由已知f(x)的单调性得f(a)f(-b).页 8 第又a+bb-af(b)f(-a).两式相加即得:f(a)+f(b)f(-a)+f(-b).(2)逆命题:f(a)+f(b)f(-a)+f(-b)a+b0.下面用反证法证之.假设a+b0,那么:a+ba-bf(a)f(-b)a+bb-af(b)f(-a)f(a)+f(b)f(-a)+f(-b).这与已知矛盾,故只有a+b0.逆命题得证.18.(2019湖北理,20改编)已知数列{bn}的通项公式为bn =1423n-1.求证:数列{bn}中的任意三项不可能成等差数列.[解析] 假设数列{bn}存在三项br、bs、bt(rt)按某种顺序成等差数列,由于数列{bn}是首项为14,公比为23的等比数列,于是有btbr,则只可能有2bs=br+bt成立.21423s-1=1423r-1+1423t-1.两边同乘3t-121-r,化简得3t-r+2t-r=22s-r3t-s,由于rt,所以上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{bn}中任意三项不可能成等差数列.页 9 第。
2014-2015学年高中数学(人教版选修1-2)课时训练第二章 2.2.2反 证 法
![2014-2015学年高中数学(人教版选修1-2)课时训练第二章 2.2.2反 证 法](https://img.taocdn.com/s3/m/0ea056a0dd3383c4bb4cd2d4.png)
栏 目 链 接
栏 目 链 接
题型一
用反证法证明否定性命题
例1 设{an},{bn}分别是公比为 p,q(p,q∈R,且 p≠q)的两个等比
数列,如果 cn=an+bn,证明数列{cn}不可能是等比数列.
栏 分析:因为结论是否定的,所以用反证法证明. 目 2 证明:假设{cn}是等比数列,则 c2=c1c3, 链 2 2 2 接 即(a1p+b1q) =(a1+b1)(a1p +b1q ), 展开并整理得 a1b1(p-q)2=0. 由于 a1,b1 是等比数列中的项, 所以 a1≠0,b1≠0,那么 p=q,这与已知条件矛盾,所以,数 列{cn}不可能是等比数列.
分析:由于不知道到底是哪条抛物线一定与 x 轴有交点, 因而直接证明很难入手,可采取间接证明的方法来完成. 证明:假设三条抛物线都与 x 轴无交点,则方程 ax2+2bx +c=0 的判别式 Δ1=4b2-4ac<0. 同理,Δ2=4c2-4ab<0,Δ3=4a2-4bc<0, 栏 则 Δ1+Δ2+Δ3<0,即 目 链 Δ1+Δ2+Δ3=4a2+4b2+4c2-4ab-4bc-4ac 接 2 2 2 =2(a-b) +2(b-c) +2(c-a) <0, 这与 2(a-b)2+2(b-c)2+2(c-a)2≥0 相矛盾, 故假设错误. 所以,三条抛物线 y = ax2 + 2bx + c , y = bx2 + 2cx + a , +b(a,b,c 为非零实数)中至少有一条与 x 轴有交 点.
证明:假设 1, 3,2 是公差为 d 的等差数列 的三项,则 1= 3-md,2= 3+nd,其中 m,n 为 正整数. 由上面两式消去 d, 得 n+2m= 3(n+m).栏 目 因为 n+2m 为有理数, 而 3(n+m)为无理数,链 所以 3(n+m),因此假设不成立,即 1, 3,2 不能是同一等差数列中的三项.
人教A版高中数学选修2(十六) 反证法
![人教A版高中数学选修2(十六) 反证法](https://img.taocdn.com/s3/m/b58ce90a76a20029bd642de3.png)
课时跟踪检测(十六)反证法层级一学业水平达标1.用反证法证明命题:“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的序号顺序为( )A.①②③B.③①②C.①③②D.②③①解析:选B根据反证法的三个基本步骤“反设—归谬—结论”可知顺序应为③①②.2.用反证法证明命题“如果a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为( )A.a,b都能被5整除B.a,b都不能被5整除C.a,b不都能被5整除D.a不能被5整除解析:选B“至少有一个”的否定是“一个也没有”,即“a,b都不能被5整除”,故选B.3.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是( ) A.三个内角中至少有一个钝角B.三个内角中至少有两个钝角C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角解析:选B“至多有一个”即要么一个都没有,要么有一个,故反设为“至少有两个”.4.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:选C假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故应选C.5.已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B∵c>d,∴-c<-d,a>b,∴a-c与b-d的大小无法比较.可采用反证法,当a-c>b-d成立时,假设a≤b,∵-c<-d,∴a-c<b-d,与题设矛盾,∴a >b.综上可知,“a>b”是“a-c>b-d”的必要不充分条件.6.否定“自然数a,b,c中恰有一个偶数”时,正确的反设是________.答案:自然数a,b,c中至少有两个偶数或都是奇数7.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为____ ____.解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.答案:a≠1或b≠18.和两条异面直线AB,CD都相交的两条直线AC,BD的位置关系是____________.解析:假设AC与BD共面于平面α,则A,C,B,D都在平面α内,∴AB⊂α,CD ⊂α,这与AB,CD异面相矛盾,故AC与BD异面.答案:异面9.求证:1,3,2不能为同一等差数列的三项.证明:假设1,3,2是某一等差数列的三项,设这一等差数列的公差为d,则1=3-md,2=3+nd,其中m,n为两个正整数,由上面两式消去d,得n+2m=3(n+m).因为n+2m为有理数,而3(n+m)为无理数,所以n+2m≠3(n+m),矛盾,因此假设不成立,即1,3,2不能为同一等差数列的三项.10.已知函数f(x)在R上是增函数,a,b∈R.(1)求证:如果a+b≥0,那么f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中的命题的逆命题是否成立?并证明你的结论.解:(1)证明:当a+b≥0时,a≥-b且b≥-a.∵f(x)在R上是增函数,∴f(a)≥f(-b),f(b)≥f(-a),∴f(a)+f(b)≥f(-a)+f(-b).(2)(1)中命题的逆命题为“如果f(a)+f(b)≥f(-a)+f(-b),那么a+b≥0”,此命题成立.用反证法证明如下:假设a +b <0,则a <-b ,∴f (a )<f (-b ).同理可得f (b )<f (-a ).∴f (a )+f (b )<f (-a )+f (-b ),这与f (a )+f (b )≥f (-a )+f (-b )矛盾,故假设不成立, ∴a +b ≥0成立,即(1)中命题的逆命题成立.层级二 应试能力达标1.用反证法证明命题“关于x 的方程ax =b (a ≠0)有且只有一个解”时,反设是关于x 的方程ax =b (a ≠0)( )A .无解B .有两解C .至少有两解D .无解或至少有两解解析:选D “唯一”的否定是“至少两解或无解”.2.下列四个命题中错误的是( )A .在△ABC 中,若∠A =90°,则∠B 一定是锐角 B.17,13,11不可能成等差数列C .在△ABC 中,若a >b >c ,则∠C >60°D .若n 为整数且n 2为偶数,则n 是偶数解析:选C 显然A 、B 、D 命题均真,C 项中若a >b >c ,则∠A >∠B >∠C ,若∠C >60°,则∠A >60°,∠B >60°,∴∠A +∠B +∠C >180°与∠A +∠B +∠C =180°矛盾,故选C.3.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a( ) A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2解析:选C 假设都大于-2,则a +1b +b +1c +c +1a >-6,但⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭⎪⎫c +1c ≤-2+(-2)+(-2)=-6,矛盾. 4.若△ABC 能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定解析:选B 分△ABC 的直线只能过一个顶点且与对边相交,如直线AD (点D 在BC 上),则∠ADB +∠ADC =π,若∠ADB 为钝角,则∠ADC 为锐角.而∠ADC >∠BAD ,∠ADC >∠ABD ,△ABD 与△ACD 不可能相似,与已知不符,只有当∠ADB =∠ADC =∠BAC =π2时,才符合题意. 5.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:06.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:据题目要求及解题步骤,∵a 1-1,a 2-2,…,a 7-7均为奇数,∴(a 1-1)+(a 2-2)+…+(a 7-7)也为奇数.即(a 1+a 2+…+a 7)-(1+2+…+7)为奇数.又∵a 1,a 2,…,a 7是1,2,…,7的一个排列,∴a 1+a 2+…+a 7=1+2+…+7,故上式为0,所以奇数=(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=0.答案:(a 1-1)+(a 2-2)+…+(a 7-7)(a 1+a 2+...+a 7)-(1+2+ (7)7.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14. 证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14. 因为0<a <1,0<b <1,0<c <1,所以1-a >0.由基本不等式, 得(1-a)+b 2≥(1-a)b >14=12. 同理,(1-b)+c 2>12,(1-c)+a 2>12. 将这三个不等式两边分别相加,得(1-a)+b 2+(1-b)+c 2+(1-c)+a 2>12+12+12, 即32>32,这是不成立的, 故(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.8.已知数列{a n }满足:a 1=12,3(1+an +1)1-an =2(1+an)1-an +1,a n a n +1<0(n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1). (1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.解:(1)由题意可知,1-a 2n +1=23(1-a 2n ). 令c n =1-a 2n ,则c n +1=23c n . 又c 1=1-a 21=34,则数列{c n }是首项为c 1=34,公比为23的等比数列,即c n =34·⎝ ⎛⎭⎪⎫23n -1, 故1-a 2n =34·⎝ ⎛⎭⎪⎫23n -1⇒a 2n =1-34·⎝ ⎛⎭⎪⎫23n -1. 又a 1=12>0,a n a n +1<0, 故a n =(-1)n -1 1-34·⎝ ⎛⎭⎪⎫23n -1. b n =a 2n +1-a 2n =⎣⎢⎡⎦⎥⎤1-34·⎝ ⎛⎭⎪⎫23n -1-34·⎝ ⎛⎭⎪⎫23n -1=14·⎝ ⎛⎭⎪⎫23n -1. (2)用反证法证明.假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为1 4,公比为23的等比数列,于是有b r>b s>b t,则只可能有2b s=b r+b t成立.∴2·14·⎝⎛⎭⎪⎫23s-1=14·⎝⎛⎭⎪⎫23r-1+14·⎝⎛⎭⎪⎫23t-1,两边同乘以3t-121-r,化简得3t-r+2t-r=2·2s-r3t-s.由于r<s<t,∴上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.故数列{b n}中任意三项不可能成等差数列.。
【创新设计-课堂讲义】2022-2021学年高中数学北师大版选修1-2练习:第三章 推理与证明 4
![【创新设计-课堂讲义】2022-2021学年高中数学北师大版选修1-2练习:第三章 推理与证明 4](https://img.taocdn.com/s3/m/bf9712611fd9ad51f01dc281e53a580216fc50f9.png)
明目标、知重点 1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.1.反证法在证明数学命题时,先假定命题结论的反面成立,在这个前提下,若推出的结果与定义、公理、定理相冲突,或与命题中的已知条件相冲突,或与假定相冲突,从而说明命题结论的反面不行能成立,由此断定命题的结论成立,这种证明方法叫作反证法.2.反证法的证题步骤(1)作出否定结论的假设;(2)进行推理,导出冲突;(3)否定假设,确定结论.[情境导学]王戎小时候,爱和小伴侣在路上玩耍.一天,他们发觉路边的一棵树上结满了李子,小伴侣一哄而上,去摘李子,独有王戎没动,等到小伴侣们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子肯定是苦的.”这就是有名的“道旁苦李”的故事.王戎的论述,运用的方法即是本节课所要学的方法——反证法.探究点一反证法的概念思考1通过情境导学得上述方法的一般模式是什么?答(1)假设原命题不成立(提出原命题的否定,即“李子苦”),(2)以此为条件,经过正确的推理,最终得出一个结论(“早被路人摘光了”),(3)判定该结论与事实(“树上结满李子”)冲突,因此说明假设错误,从而证明白原命题成立,这样的证明方法称为反证法.思考2反证法证明的关键是经过推理论证,得出冲突.反证法引出的冲突有几种状况?答(1)与原题中的条件冲突;(2)与定义、公理、定理、公式等冲突;(3)与假设冲突.思考3反证法主要适用于什么情形?答①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清楚;②假如从正面证明,需要分成多种情形进行分类争辩,而从反面进行证明,只要争辩一种或很少的几种情形.探究点二用反证法证明几何问题例1已知直线a,b和平面α,假如a⃘α,bα,且a∥b,求证:a∥α.证明由于a∥b,所以经过直线a,b 确定一个平面β.由于a⃘α,而aβ,所以α与β是两个不同的平面.由于bα,且bβ,所以α∩β=b.下面用反证法证明直线a与平面α没有公共点.假设直线a与平面α有公共点P,如图所示,则P∈α∩β=b,即点P 是直线a与b的公共点,这与a∥b冲突.所以a∥α.反思与感悟数学中的一些基础命题都是数学中我们经常用到的明显事实,它们的判定方法极少,宜用反证法证明.正难则反是运用反证法的常见思路,即一个命题的结论假如难以直接证明时,可考虑用反证法.跟踪训练1 如图,已知a∥b,a∩平面α=A.求证:直线b与平面α必相交.证明假设b与平面α不相交,即bα或b∥α.①若bα,由于b∥a,a⃘α,所以a∥α,这与a∩α=A相冲突;②如图所示,假如b∥α,则a,b确定平面β.明显α与β相交,设α∩β=c,由于b∥α,所以b∥c.又a∥b,从而a∥c,且a⃘α,cα,则a∥α,这与a∩α=A相冲突.由①②知,假设不成立,故直线b与平面α必相交.探究点三用反证法证明否定性命题例2 求证:2不是有理数.证明假设2是有理数.于是,存在互质的正整数m,n,使得2=mn,从而有m=2n ,因此m2=2n2,所以m为偶数.于是可设m=2k(k是正整数),从而有4k2=2n2,即n2=2k2,所以n也为偶数.这与m,n互质冲突.由上述冲突可知假设错误,从而2不是有理数.反思与感悟当结论中含有“不”、“不是、“不行能”、“不存在”等否定形式的命题时,由于此类问题的反面比较具体,适于应用反证法.跟踪训练2已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,∴(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列冲突,故a,b,c不成等差数列.探究点四含至多、至少、唯一型命题的证明例3 若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多有一个实根.证明假设方程f(x)=0在区间[a,b]上至少有两个实根,设α、β为其中的两个实根.由于α≠β,不妨设α<β,又由于函数f(x)在[a,b]上是增函数,所以f(α)<f(β).这与假设f(α)=0=f(β)冲突,所以方程f(x)=0在区间[a,b]上至多有一个实根.反思与感悟当一个命题的结论有“最多”、“最少”、“至多”、“至少”、“唯一”等字样时,常用反证法来证明,用反证法证明时,留意精确写出命题的假设.跟踪训练3若a,b,c均为实数,且a=x2-2y+π2,b=y2-2z+π3,c=z2-2x+π6.求证:a、b、c中至少有一个大于0.证明假设a,b,c都不大于0,即a≤0,b≤0,c≤0,所以a+b+c≤0,而a+b+c=(x2-2y+π2)+(y2-2z+π3)+(z2-2x+π6)=(x2-2x)+(y2-2y)+(z2-2z)+π=(x-1)2+(y-1)2+(z-1)2+π-3,所以a+b+c>0,这与a+b+c≤0冲突,故a、b、c中至少有一个大于0.1.证明“在△ABC中至多有一个直角或钝角”,第一步应假设()A.三角形中至少有一个直角或钝角B.三角形中至少有两个直角或钝角C.三角形中没有直角或钝角D.三角形中三个角都是直角或钝角答案B2.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中()A.有一个内角小于60° B.每一个内角都小于60°C.有一个内角大于60° D.每一个内角都大于60°答案B3.“a <b ”的反面应是( ) A .a ≠b B .a >b C .a =b D .a =b 或a >b 答案 D4.用反证法证明“在同一平面内,若a ⊥c ,b ⊥c ,则a ∥b ”时,应假设( ) A .a 不垂直于c B .a ,b 都不垂直于c C .a ⊥bD .a 与b 相交答案 D5.已知a ≠0,证明:关于x 的方程ax =b 有且只有一个根.证明 由于a ≠0,因此方程至少有一个根x =ba.假如方程不止一个根,不妨设x 1,x 2是它的两个不同的根,即ax 1=b , ① ax 2=b . ②①-②,得a (x 1-x 2)=0.由于x 1≠x 2,所以x 1-x 2≠0,所以应有a =0,这与已知冲突,故假设错误. 所以,当a ≠0时,方程ax =b 有且只有一个根. [呈重点、现规律] 1.反证法证明的基本步骤(1)假设命题结论的反面是正确的;(反设)(2)从这个假设动身,经过规律推理,推出与已知条件、公理、定义、定理、反设及明显的事实冲突;(推缪) (3)由冲突判定假设不正确,从而确定原命题的结论是正确的.(结论) 2.反证法证题与“逆否命题法”的异同反证法的理论基础是逆否命题的等价性,但其证明思路不完全是证明一个命题的逆否命题.反证法在否定结论后,只要找到冲突即可,可以与题设冲突,也可以与假设冲突,还可以与定义、定理、公式、事实冲突.因此,反证法与证明逆否命题是不同的.一、基础过关1.反证法的关键是在正确的推理下得出冲突.这个冲突可以是( )①与已知条件冲突 ②与假设冲突 ③与定义、公理、定理冲突 ④与事实冲突A .①②B .①③C .①③④D .①②③④答案 D2.否定:“自然数a ,b ,c 中恰有一个偶数”时正确的反设为( ) A .a ,b ,c 都是偶数 B .a ,b ,c 都是奇数 C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数 答案 D解析 自然数a ,b ,c 的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a ,b ,c 中恰有一个偶数”时正确的反设为“a ,b ,c 中都是奇数或至少有两个偶数”.3.有下列叙述:①“a >b ”的反面是“a <b ”;②“x =y ”的反面是“x >y 或x <y ”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有( ) A .0个 B .1个 C .2个 D .3个 答案 B解析 ①错:应为a ≤b ;②对;③错:应为三角形的外心在三角形内或在三角形的边上;④错:应为三角形可以有2个或2个以上的钝角.4.用反证法证明命题:“a 、b ∈N ,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a ,b 不都能被5整除D .a 不能被5整除答案 B解析 “至少有一个”的否定是“一个也没有”,即“a ,b 都不能被5整除”.5.用反证法证明命题:“若整系数一元二次方程ax 2+bx +c =0有有理根,那么a ,b ,c 中存在偶数”时,否定结论应为______________.答案 a ,b ,c 都不是偶数解析 a ,b ,c 中存在偶数即至少有一个偶数,其否定为a ,b ,c 都不是偶数. 6.“任何三角形的外角都至少有两个钝角”的否定应是__________________. 答案 存在一个三角形,其外角最多有一个钝角解析 “任何三角形”的否定是“存在一个三角形”,“至少有两个”的否定是“最多有一个”.7.设二次函数f (x )=ax 2+bx +c (a ≠0)中,a 、b 、c 均为整数,且f (0),f (1)均为奇数.求证:f (x )=0无整数根. 证明 设f (x )=0有一个整数根k ,则 ak 2+bk =-c .①又∵f (0)=c ,f (1)=a +b +c 均为奇数,∴a +b 为偶数,当k 为偶数时,明显与①式冲突;当k 为奇数时,设k =2n +1(n ∈Z ),则ak 2+bk =(2n +1)·(2na +a +b )为偶数,也与①式冲突,故假设不成立,所以方程f (x )=0无整数根. 二、力量提升8.已知x 1>0,x 1≠1且x n +1=x n ·(x 2n +3)3x 2n +1(n =1,2,…),试证:“数列{x n }对任意的正整数n 都满足x n >x n +1”,当此题用反证法否定结论时应为( ) A .对任意的正整数n ,有x n =x n +1 B .存在正整数n ,使x n =x n +1 C .存在正整数n ,使x n ≥x n +1 D .存在正整数n ,使x n ≤x n +1 答案 D解析 “任意”的反语是“存在一个”.9.设a ,b ,c 都是正数,则三个数a +1b ,b +1c ,c +1a ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2 答案 C解析 假设a +1b <2,b +1c <2,c +1a<2,则(a +1b )+(b +1c )+(c +1a )<6.又(a +1b )+(b +1c )+(c +1a )=(a +1a )+(b +1b )+(c +1c)≥2+2+2=6,这与假设得到的不等式相冲突,从而假设不正确,所以这三个数至少有一个不小于2.10.若下列两个方程x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根,则实数a 的取值范围是__________________. 答案 a ≤-2或a ≥-1解析 若两方程均无实根,则Δ1=(a -1)2-4a 2=(3a -1)(-a -1)<0,∴a <-1或a >13.Δ2=(2a )2+8a =4a (a +2)<0,∴-2<a <0,故-2<a <-1.若两个方程至少有一个方程有实根,则a ≤-2或a ≥-1. 11.已知a +b +c >0,ab +bc +ca >0,abc >0. 求证:a >0,b >0,c >0. 证明 用反证法:假设a ,b ,c 不都是正数,由abc >0可知,这三个数中必有两个为负数,一个为正数, 不妨设a <0,b <0,c >0,则由a +b +c >0, 可得c >-(a +b ),又a +b <0,∴c (a +b )<-(a +b )(a +b ), ab +c (a +b )<-(a +b )(a +b )+ab , 即ab +bc +ca <-a 2-ab -b 2, ∵a 2>0,ab >0,b 2>0,∴-a 2-ab -b 2=-(a 2+ab +b 2)<0, 即ab +bc +ca <0,这与已知ab +bc +ca >0冲突,所以假设不成立. 因此a >0,b >0,c >0成立.12.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不行能都大于14.证明 假设三个式子同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )a ·(1-b )b ·(1-c )c >143,①又由于0<a <1,所以0<a (1-a )≤(a +1-a 2)2=14.同理0<b (1-b )≤14,0<c (1-c )≤14,所以(1-a )a ·(1-b )b ·(1-c )c ≤143,②①与②冲突,所以假设不成立,故原命题成立.三、探究与拓展13.已知f(x)是R上的增函数,a,b∈R.证明下面两个命题:(1)若a+b>0,则f(a)+f(b)>f(-a)+f(-b);(2)若f(a)+f(b)>f(-a)+f(-b),则a+b>0.证明(1)由于a+b>0,所以a>-b,b>-a,又由于f(x)是R上的增函数,所以f(a)>f(-b),f(b)>f(-a),由不等式的性质可知f(a)+f(b)>f(-a)+f(-b).(2)假设a+b≤0,则a≤-b,b≤-a,由于f(x)是R上的增函数,所以f(a)≤f(-b),f(b)≤f(-a),所以f(a)+f(b)≤f(-a)+f(-b),这与已知f(a)+f(b)>f(-a)+f(-b)冲突,所以假设不正确,所以原命题成立.。
高中数学选修~课件第三章§反证法
![高中数学选修~课件第三章§反证法](https://img.taocdn.com/s3/m/66d5a127ae1ffc4ffe4733687e21af45b207fe6b.png)
推理不严谨,结论不成立
推理过程中存在漏洞
在使用反证法时,需要确保推理过程的严谨性。如果推理过程中存在漏洞,就可 能导致结论不成立。
未能正确运用逻辑规则
在反证法中,需要正确运用逻辑规则进行推理。如果未能正确运用逻辑规则,就 可能导致推理结果出现错误。
05 练习题与拓展思考
针对性练习题
证明
若$a,b,c in mathbb{R}$,且$a=b+c$,则$a,b,c$中至少有一个数不小于$frac{a}{3}$ 。
错误地否定原命题
在反证法中,需要假设原命题的否定 形式成立,然后进行推理。如果错误 地否定了原命题,就会导致推理方向 偏离正确轨道。
未能找到矛盾点或突破口
对已知条件理解不足
在使用反证法时,需要充分利用已知条件进行推理。如果对 已知条件理解不足,就可能无法找到矛盾点或突破口。
缺乏解题经验
对于一些较为复杂的题目,需要具备一定的解题经验才能找 到矛盾点或突破口。如果缺乏解题经验,就可能无法有效地 运用反证法。
假设$x,y$都不大于$1$,即$x leq 1, y leq 1$,则$x+y leq 2$,与已知条件 $x+y>2$矛盾,故假设不成立,原命题成立。
答案及解析
• 假设在这$99$个数中,任意三个数的和都不是$3$的倍数。 考虑这$99$个数除以$3$的余数,只能为$0,1,2$。由于 $99$个数中任意三个数的和都不是$3$的倍数,故余数为 $0,1,2$的数应各出现$33$次。但在这$99$个连续自然数中 ,必有一个数能被$3$整除,即余数为$0$的数至少有$34$ 个,与假设矛盾,故原命题成立。
高中数学选修~课件 第三章§反证法
汇报人:XX 20XX-01-30
高中数学解题常用方法:反证法
![高中数学解题常用方法:反证法](https://img.taocdn.com/s3/m/bdc7a09971fe910ef12df8cf.png)
反证法一、填空题1. 用反证法证明命题"三角形的内角中至少有一个钝角"时反设是.2. 用反证法证明“如果,那么”,假设的内容是.3. 用反证法证明命题“三角形的内角中至少有一个大于”时,与命题结论相矛盾的假设为.4. 用反证法证明命题“如果,,那么”,证明的第一个步骤是.5. 用反证法证明命题时,其结论为“直线在平面内”,那么假设的内容是.6. 用反证法证明命题“若正整数,,满足,则,,中至少有一个是偶数”时,反设应为.7. 用反证法证明命题:"若整数系数一元二次方程:有有理根,那么中至少有一个是偶数"时,第一步应假设.8. 用反证法证明"一个三角形至少有两个锐角",则反设是.9. 否定"自然数,,中恰有一个偶数"时,正确的反设是.10. 用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①,这与三角形内角和为相矛盾,则不成立;②所以一个三角形中不能有两个直角;③假设,,中的两个角是直角,不妨设.正确顺序的序号排列为.11. 用反证法证明"若,则 "时,第一步反设应为.12. 命题“关于的方程的解是唯一的”的结论的否定是.13. 用反证法证明命题:“如果,,可被整除,那么,中至少有一个能被整除”时,假设的内容应为.14. 用反证法证明命题"若实数满足,则中至少有一个是非负数"时,第一步要假设结论的否定成立,那么结论的否定是.15. 用反证法证明“若,则或”时’应假设.16. “任何三角形的外角都至少有两个钝角”的否定应是.17. 用反证法证明命题:"如果,是奇数,那么方程没有整数根"时,应该提出的假设是.18. 用反证法证明命题“若,是实数,且,则”时,应作的假设是.19. 和两条异面直线,都相交的两条直线,的位置关系是.20. 已知函数,,.对任意都有,且是增函数,则.二、解答题21. 已知,,.求证:,中至少有一个不小于.22. 设函数中,均为整数,且均为奇数.求证:无整数根.23. 设平面四边形的内角分别为,,,.求证:,,,中至少有一个角大于等于.24. 用反证法证明:如果一个三角形的两条边不相等,那么这两条边所对的角也不相等.25. 若,求证:,,不可能都是奇数.26. 已知,,,证明:,,都大于零.27. 已知直线与直线和分别交于,且,求证:过,,有且只有一个平面.28. 若,且,求证:与中,至少有一个成立.29. 用反证法证明:"在同圆中,如果两条弦不等,那么它们的弦心距也不等."30. 已知数列和是公比不相等的两个等比数列,.求证:数列不是等比数列.31. 实数,,,满足,.求证:,,,中至少有一个是负数.32. 求证:当关于的方程有两个不相等的非零实数根时,.33. 已知,且,.求证:,,,中至少有一个是负数.34. 已知,为夹在两个平行平面,间的线段,,分别为线段,中点,求证:平面.35. 已知的三边长,,的倒数成等差数列,求证:.36. 在中,,,的对边分别为,,,若,,三边的倒数成等差数列,求证:.37. 证明:,,不可能是同一等差数列中的三项.38. 已知函数,证明方程没有负数根.39. 求证:一元二次方程()至多有两个不相等的实数根.40. 证明:对于直线,不存在这样的实数,使得直线与双曲线的交点,关于直线(为常数)对称.答案第一部分1 假设三角形的内角中没有钝角2 如果,那么3 假设三角形的三个内角都不大于4 假设与不平行5 假设直线平面6 假设,,都是奇数7 ,,都不是偶数8 一个三角形至多有一个锐角9 自然数,,都是奇数,或至少有两个偶数10 ③①②11 假设成立12 关于的方程无解或至少两解13 ,都不能被整除14 全是负数15 且16 存在一个三角形,其外角至多有一个钝角17 假设方程有整数根18 或19 异面20第二部分21 假设,都小于,即,,则有.而.这与假设得出的结论相矛盾,故假设不成立.所以原结论成立.22 假设有整数根,则.而,均为奇数,即为奇数,为偶数.则同时为奇数或同时为偶数,为奇数.当为奇数时,为偶数;当为偶数时,也为偶数.即为奇数,与矛盾.所以无整数根.23 假设,,,四个角均小于.则.这与四边形内角和等于矛盾.所以,,,中至少有一个角大于等于.24 假设这两边所对的角相等,那么这两条边就相等.这与已知矛盾.故原命题成立;25 假设,,都是奇数,则,,都是奇数,因此为偶数,而为奇数.即,与矛盾,所以假设不成立.原命题成立.26 假设,,不都大于,不妨设,因为,所以,由,得,所以,与已知矛盾.又若,则与矛盾,所以必有.同理可证,.所以,,都大于零.27 因为,所以过,有一个平面.又,,所以,,所以,,又,,所以.所以过,,有一个平面.假设过,,还有一个异于平面的平面,则,,,这与,过,有且只有一个平面相矛盾.因此,过,,有且只有一个平面.28 证明:假设都不成立,即,成立.因为,所以,,所以所以,与已知矛盾,所以假设不成立,所以原结论成立.29 证明:假设在同圆中,两条弦不等而它们的弦心距相等,即,则、中,即与已知矛盾,所以假设不成立,原命题成立.30 假设是等比数列,则,,成等比数列.设,的公比分别为和,且,则,,,.因为,,成等比数列,所以,即.所以.所以.所以.所以.所以,与已知矛盾.所以不是等比数列.31 假设,,,都是非负数.则,即.这与已知矛盾,所以假设不成立.故,,,中至少有一个是负数.32 假设.(i)若,,方程变为;则是方程的两根,这与方程有两个不相等的实数根矛盾.(ii)若,,方程变为;但,此时方程无解,与有两个不相等的非零实数根矛盾.(iii)若,,方程变为,方程的根为,,这与方程有两个非零实根矛盾.综上所述,可知.33 假设,,,都是非负数,,..这与>矛盾.所以假设不成立,即,,,中至少有一个负数.34 ()若,在同一平面内,则平面与平面,的交线为,.因为,所以,又,为,的中点,所以.又在平面内,不在平面内,所以.()若,不共面,如图所示,过作交于,取中点,连接,,.由,可知,确定平面.平面与平面,的交线分别为,,因为,所以.又,为,的中点,所以,.在中,,是,的中点,从而,,所以平面,又在平面内,所以.35 解法1:由已知,,成等差数列,所以,假设不成立,则,即是最大的内角,所以,,从而,,所以,这与矛盾.所以假设不成立,因此.解法2:由已知,,成等差数列,所以,,根据余弦定理,所以.36 假设不成立,即,从而是的最大角,是的最大边,即,.,,相加得,这与矛盾.故不成立..37 假设,,是同一等差数列中的三项,不妨设此等差数列的公差为,则存在自然数,,使得,,从而,于是有,为无理数,这与为有理数相矛盾,所以假设不成立.故,不可能是同一等差数列中的三项.38 假设是方程的负数根,则,且.因为,所以,即,解得,这与矛盾,所以假设不成立,故方程没有负数根.39 假设方程()至少有三个不相等的实数根,,,则得因为,所以同理化简得得因为,所以,这与相矛盾.所以一元二次方程()至多有两个不相等的实数根.40 假设存在实数,使得,关于直线对称,设,,则有直线与直线垂直;点在直线上;线段的中点在直线上,所以由得由得由知,代入并整理得,这与矛盾.所以假设不成立,故不存在实数,使得,关于直线对称.。
2020高中数学 检测(十五)反证法(含解析)2-2
![2020高中数学 检测(十五)反证法(含解析)2-2](https://img.taocdn.com/s3/m/04d6c77649d7c1c708a1284ac850ad02de800793.png)
课时跟踪检测(十五)反证法一、题组对点训练对点练一用反证法证明“否定性”命题1.应用反证法推出矛盾的推理过程中,可作为条件使用的是( )①结论的否定;②已知条件;③公理、定理、定义等;④原结论.A.①②B.②③C.①②③D.①②④解析:选C 根据反证法的基本思想,应用反证法推出矛盾的推导过程中可把“结论的否定”、“已知条件”、“公理、定理、定义”等作为条件使用.2.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°。
上述步骤的正确顺序为________.答案:③①②3.等差数列{a n}的前n项和为S n,a1=1+2,S3=9+3错误!.(1)求数列{a n}的通项a n与前n项和S n;(2)设b n=错误!(n∈N*),求证:数列{b n}中任意不同的三项都不可能成为等比数列.解:(1)设公差为d,由已知得错误!解得d=2,故a n=2n-1+错误!,S n=n(n+错误!).(2)证明:由(1)得b n=错误!=n+错误!.假设数列{b n}中存在三项b p,b q,b r(p,q,r互不相等)成等比数列,则b错误!=b p b r,即(q+错误!)2=(p+错误!)(r+错误!),所以(q2-pr)+(2q-p-r)错误!=0。
又p,q,r∈N*,所以错误!所以错误!2=pr。
(p-r)2=0,所以p=r,这与p≠r矛盾.所以数列{b n}中任意不同的三项都不可能成为等比数列.对点练二用反证法证明“至多”、“至少"型命题4.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,假设正确的是( )A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至少有一个大于60°D.假设三内角至多有两个大于60°解析:选B “至少有一个”即“全部中最少有一个".5.设实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于________.解析:假设a、b、c都小于错误!,则a+b+c<1与a+b+c=1矛盾.故a、b、c中至少有一个不小于错误!.答案:错误!6.若x,y,z均为实数,且a=x2-2y+π2,b=y2-2z+错误!,c=z2-2x+错误!,则a,b,c中是否至少有一个大于0?请说明理由.解:是.假设a,b,c都不大于0,即a≤0,b≤0,c≤0,则a+b+c≤0。
2020高中数学 7 反证法(含解析)1-2
![2020高中数学 7 反证法(含解析)1-2](https://img.taocdn.com/s3/m/05ee68787f21af45b307e87101f69e314332faeb.png)
课时分层作业(七)(建议用时:40分钟)[基础达标练]一、选择题1.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是()A.有两个内角是钝角B.有三个内角是钝角C.至少有两个内角是钝角D.没有一个内角是钝角[解析] “最多有一个”的反设是“至少有两个”,故选C.[答案]C2.下列命题错误的是( )A.三角形中至少有一个内角不小于60°B.四面体的三组对棱都是异面直线C.闭区间[a,b]上的单调函数f(x)至多有一个零点D.设a,b∈Z,若a,b中至少有一个为奇数,则a+b是奇数[解析] a+b为奇数⇔a,b中有一个为奇数,另一个为偶数,故D错误.[答案] D3.“自然数a,b,c中恰有一个偶数”的否定正确的为( )A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数[解析] 自然数a,b,c的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数.所以否定正确的是a,b,c中都是奇数或至少有两个偶数.[答案] D4.设x,y,z都是正实数,a=x+错误!,b=y+错误!,c=z+错误!,则a,b,c三个数( )A.至少有一个不大于2B.都小于2C.至少有一个不小于2D.都大于2[解析] 若a,b,c都小于2,则a+b+c<6,而a+b+c=x+错误!+y+错误!+z+错误!≥6,显然①②矛盾,所以C正确.[答案]C5.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A,B,C中有两个直角,不妨设A=B=90°,正确顺序的序号为() A.①②③B.①③②C.②③① D.③①②[解析]根据反证法的步骤,应该是先提出假设,再推出矛盾,最后否定假设,从而肯定结论.[答案]D二、填空题6.命题“任意多面体的面至少有一个是三角形或四边形或五边形"的结论的否定是__________________.[解析]“至少有一个”的否定是“没有一个”.[答案]任意多面体的面没有一个是三角形或四边形或五边形7.用反证法证明命题“如果a〉b,那么错误!>错误!”时,假设的内容应是________.[解析]3,a与错误!的关系有三种情况:错误!〉错误!,错误!=错误!和错误!<错误!,所以“错误!〉错误!"的反设应为“错误!=错误!或错误!<错误!”.[答案]错误!=错误!或错误!<错误!8.设a,b是两个实数,给出下列条件:①a+b=1;②a+b=2;③a+b>2;④a2+b2〉2.其中能推出“a,b中至少有一个大于1"的条件是________(填序号).[解析]若a=错误!,b=错误!,则a+b=1,但a〈1,b〈1,故①不能推出.若a=b=1,则a+b=2,故②不能推出.若a=-2,b=1,则a2+b2〉2,故④不能推出.对于③,即a+b〉2,则a,b中至少有一个大于1。
高中数学 第二章 推理与证明 2.2.2 反证法练习(含解析)新人教A版选修2-2-新人教A版高二选
![高中数学 第二章 推理与证明 2.2.2 反证法练习(含解析)新人教A版选修2-2-新人教A版高二选](https://img.taocdn.com/s3/m/1aa23d77a36925c52cc58bd63186bceb19e8ed79.png)
2.2.2 反证法一、选择题1.用反证法证明命题:“三角形的内角至少有一个不大于60度”时,反设正确的是()A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度【答案】B【解析】由反证法的证明命题的格式和语言可知答案B 是正确的,所以选B.2.用反证法证明“如果a b >>A =<=C D =<【答案】D【解析】>反证法需假设结论的反面,应为小于或等于,=<3.用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是()A .方程02=++b ax x 没有实根B .方程02=++b ax x 至多有一个实根C .方程02=++b ax x 至多有两个实根D .方程02=++b ax x 恰好有两个实根【答案】A【解析】方程02=++b ax x 至少有一个实根的否定是方程02=++b ax x 没有实根,∴用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是方程02=++b ax x 没有实根.故选A .4.用反证法证明命题“a b ∈N ,,如果ab 可以被5整除,那么a ,b 至少有1个能被5整除.”假设的内容是()A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a 不能被5整除D .a ,b 有1个不能被5整除【答案】B【解析】用反证法证明时,要假设所要证明的结论的反面成立,本题中应反设a ,b 都不能被5整除.5.用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的假设为()A .自然数c b a ,,都是奇数B .自然数c b a ,,都是偶数C .自然数c b a ,,中至少有两个偶数D .自然数c b a ,,中至少有两个偶数或都是奇数【答案】D【解析】反证法证明时应假设所要证明的结论的反面成立,本题需反设为自然数c b a ,,中至少有两个偶数或都是奇数.6.设椭圆22221x y a b +=(a >b >0)的离心率为e =12,右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )A .必在圆x 2+y 2=2上B .必在圆x 2+y 2=2外C .必在圆x 2+y 2=2内D .以上三种情形都有可能【答案】C 【解析】∵12c e a ==,∴a =2c ,∴b 2=a 2-c 2=3c 2.假设点P (x 1,x 2)不在圆 x 2+y 2=2内,则22122x x +≥,但()222212121222b c x x x x x x a a ⎛⎫+=+-=-+ ⎪⎝⎭ 223272424c c c c =+=<,矛盾.∴假设不成立.∴点P 必在圆x 2+y 2=2内.故选C.二、填空题7.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是.【答案】方程x 3+ax +b =0没有实根【解析】因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根个数大于或等于1”,所以假设是“方程x 3+ax +b =0没有实根”.8.用反证法证明命题“若210x -=,则1x =-或1x =”时,应假设.【答案】1-≠x 且1≠x【解析】反证法的反设只否定结论,或的否定是且,所以是1-≠x 且1≠x .9.用反证法证明命题:“设实数a 、b 、c 满足a +b +c =1,则a 、b 、c 中至少有一个数不小于31”时,第一步应写:假设.【答案】c b a ,,都小于31 【解析】反证法第一步是否定结论,a 、b 、c 中至少有一个数不小于31的否定是c b a ,,都小于31. 10.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误. ②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°.上述步骤的正确顺序为________.【答案】③①②【解析】由反证法证明数学命题的步骤可知,步骤的顺序应为③①②.。
高中数学专题—函数中的证明题
![高中数学专题—函数中的证明题](https://img.taocdn.com/s3/m/b4d85512ba1aa8114431d929.png)
高中数学专题——函数中的证明题一、偶函数证明1、我们把定义在R 上,且满足)()(x af T x f =+(其中常数T a ,满足0,0,1≠≠≠T a a )的函数叫做似周期函数.若某个似周期函数)(x f y =满足1=T 且图像关于直线1=x 对称.求证:函数)(x f 是偶函数;证明:因为R x ∈关于原点对称,又函数)(x f y =的图像关于直线1=x 对称, 所以)1()1(x f x f +=-……①, 又1=T ,,)()1(x af x f =+∴ ……② 用x -代替x 得,)()1(x af x f -=+-……③ 由①②③可知,)()(x af x af -=01≠≠a a 且 ,)()(x f x f -=∴.即函数)(x f 是偶函数;二、唯一零点证明2、设函数()(,,)n n f x x bx c n N b c R *=++∈∈. 设2,1,1n b c ==-≥,证明:()n f x 在区间1(,1)2内存在唯一的零点; 证明:因为 n 1()<02f ,n (1)>0f 。
所以n 1()2f ⋅n (1)<0f 。
所以n (x)f 在1(1)2,内存在零点。
12121212121x (,1),x <(x )-f (x )=(x -)+(x -x )<02n n n n x x f x ∈任取、且,则,所以n (x)f 在1(1)2,内单调递增,所以n (x)f 在1(1)2,内存在唯一零点。
三、函数中的不等式证明3、已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1,1]-上的最大值. 证明:当||2a ≥时,(,)2M a b ≥;证明:由已知可得()11f a b =++,()11f a b -=-+,对称轴为2ax =-, 因为2a ≥,所以12a -≤-或12a-≥,所以函数()f x 在[]1,1-上单调, 则()()(){}{},max 1,1max 1,1M a b f f a b a b =-=++-+,所以()()()()111,1+11(1)22222M a b a b a b a b a b a a ≥++-+≥++--+≥=≥, 从而得证.四、单调性证明4、设121()log 1axf x x x -=+-为奇函数,a 为常数.求出a 的值并证明函数()f x 在(1,)x ∈+∞ 上的单调递增. 解:121()log 1axf x x x -=+- 为奇函数,()()0f x f x ∴-+=对定义域内的任意x 都成立,112211log log 011ax ax x x x x +-∴-++=---,11111ax axx x +-∴⋅=--- , 解得1a =-或1a =(舍去). 证明:121()log 1xf x x x +=+-, 任取12,(1,)x x ∈+∞ ,设12x x < ,则1221121211011(1)(1)x x x x x x x x ++--=>----, 121211011x x x x ++∴>>-- 1211122211log log 11x x x x ++∴<-- 121112122211log log 11x x x x x x ++∴+<+-- 12()()f x f x ∴< ()f x ∴ 在(1,)x ∈+∞ 上是增函数.五、反函数的存在性证明 5、已知函数9()||f x x a a x=--+,[1,6]x ∈,a R ∈.当()3,1∈a 时,求证函数()f x 存在反函数.证明:因为13a <≤,所以92(),1,()9,6,a x x a xf x x a x x ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪⎩当13a <≤时,()f x 在[1,]a 上是增函数——证明略, 同理,()f x 在[,6]a 上也是增函数——证明略; 当13a <≤时,()x f y =[]6,1∈x 上是增函数 所以任意一个[]6,1∈x ,均能找到唯一的y 和它对应, 所以()x f y =[]6,1∈x 时,()f x 存在反函数。
高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题
![高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题](https://img.taocdn.com/s3/m/abe85a277275a417866fb84ae45c3b3567ecddb8.png)
第二章 推理与证明(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.证明:n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式子等于( ) A.1 B.1+12C.1+12+13D.1+12+13+14解析:选D.n =2时中间式子的最后一项为14,所以中间式子为1+12+13+14.2.用反证法证明命题:“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A.假设|f (1)|,|f (2)|,|f (3)|都不小于12B.假设|f (1)|,|f (2)|,|f (3)|都小于12C.假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D.假设|f (1)|,|f (2)|,|f (3)|至多有一个小于12解析:选B.“|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”.3.设x >0,则不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,推广到x +axn ≥n +1,则a=( )A.2nB.2nC.n 2D.n n解析:选D.结合已知的三个不等式可以发现第二个加数的分子是分母x 的指数的指数次方,可得a =n n.4.下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立.以上推理中( )A.大前提错误B.小前提错误C.结论正确D.推理形式错误解析:选A.f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )≥0恒成立,故大前提错误,故选A.5.用数学归纳法证明:1+11+2+11+2+3+…+11+2+3+…+n =2nn +1时,由n =k 到n =k +1左边需要添加的项是( )A.2k (k +2)B.1k (k +1)C.1(k +1)(k +2)D.2(k +1)(k +2)解析:选D.由n =k 到n =k +1时,左边需要添加的项是11+2+3+…+(k +1)=2(k +1)(k +2).故选D.6.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A.a -b >0B.a -c <0C.(a -b )(a -c )>0D.(a -b )(a -c )<0解析:选C.要证明 b 2-ac <3a ,只需证b 2-ac <3a 2,只需证(a +c )2-ac <3a 2,只需证-2a 2+ac +c 2<0,即证2a 2-ac -c 2>0,即证(a -c )(2a +c )>0,即证(a -c )(a -b )>0.7.若sin A a =cos B b =cos C c,则△ABC 是( )A.等边三角形B.有一个内角是30°的直角三角形C.等腰直角三角形D.有一个内角是30°的等腰三角形解析:选C.因为sin A a =cos B b =cos C c,由正弦定理得,sin A a =sin B b =sin Cc,所以sin B b =cos B b =cos C c =sin C c.所以sin B =cos B ,sin C =cos C , 所以∠B =∠C =45°,所以△ABC 是等腰直角三角形.8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A.大于0B.等于0C.小于0D.正负都可能解析:选A.f (x )为奇函数,也是增函数,因此由a +b >0可得a >-b ,所以f (a )>f (-b ),即f (a )>-f (b ),于是f (a )+f (b )>0,同理,f (a )+f (c )>0,f (b )+f (c )>0,所以f (a )+f (b )+f (c )>0.9.我们把平面中的结论“到定点的距离等于定长的点的轨迹是圆”拓展至空间中为“到定点的距离等于定长的点的轨迹是球”,类似可得:已知A (-1,0,0),B (1,0,0),则点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹描述正确的是( )A.以A ,B 为焦点的双曲线绕轴旋转而成的旋转曲面B.以A ,B 为焦点的椭球体C.以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面D.以上都不对解析:选C.在平面中,点集{P (x ,y )||PA |-|PB |=1}是以A ,B 为焦点的双曲线的一支,点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹是以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面,故选C.10.我国古代数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是高,“幂”是截面积.意思是:如果两个等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,区域①是一个形状不规则的封闭图形,区域②是一个上底长为1、下底长为2的梯形,且当实数t 取[0,3]上的任意值时,直线y =t 被区域①和区域②所截得的两线段长总相等,则区域①的面积为( )A.4B.92 C.5D.112解析:选B.根据题意,由祖暅原理分析可得①的面积等于②的面积,又②是一个上底长为1、下底长为2的梯形,所以①的面积为(1+2)×32=92.11.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A.(7,5)B.(5,7)C.(2,10)D.(10,2)解析:选B.依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A.△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B.△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C.△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D.△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:选D.因为三角形内角的正弦值是正值,所以△A 1B 1C 1的三个内角的余弦值均大于0.因此△A 1B 1C 1是锐角三角形.假设△A 2B 2C 2也是锐角三角形,并设cos A 1=sin A 2,则cos A 1=cos (90°-∠A 2), 所以∠A 1=90°-∠A 2.同理设cos B 1=sin B 2,cos C 1=sin C 2, 则有∠B 1=90°-∠B 2,∠C 1=90°-∠C 2. 又∠A 1+∠B 1+∠C 1=180°,所以(90°-∠A 2)+(90°-∠B 2)+(90°-∠C 2)=180°, 即∠A 2+∠B 2+∠C 2=90°. 这与三角形内角和等于180°矛盾,所以原假设不成立.若△A 2B 2C 2是直角三角形,不妨设A 2=π2,则sin A 2=1=cos A 1,而A 1在(0,π)内无解.故选D.二、填空题:本题共4小题,每小题5分.13.补充下列证明过程: 要证a 2+b 2+c 2≥ab +bc +ac (a ,b ,c ∈R ),即证,即证W. 因为a ,b ,c 为实数,上式显然成立,故命题结论成立. 答案:2(a 2+b 2+c 2)≥2ab +2bc +2ac (a -b )2+(b -c )2+(a -c )2≥014.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为W.解析:因为当0<a <1时,函数f (x )=a x为减函数,a =5-12∈(0,1),所以函数f (x )=(5-12)x为减函数.故由f (m )>f (n )得m <n .答案:m <n15.有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是W.解析:为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A ,B ,C .从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A 或B ,无论是哪一X ,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C ,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B ,此时丙所拿的卡片为A .答案:1和316.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第7行第4个数(从左往右数)为W. 11 1212 131613 14112112141512013012015…解析:由“第n 行有n 个数且两端的数均为1n ”可知,第7行第1个数为17,由“每个数是它下一行左右相邻两数的和”可知,第7行第2个数为16-17=142.同理易知,第7行第3个数为130-142=1105,第7行第4个数为160-1105=1140.答案:1140三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)定义在[-1,1]上的奇函数f (x ),当a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0.证明:函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直.证明:假设函数f (x )的图象上存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直,则A ,B 两点的纵坐标相同.设它们的横坐标分别为x 1和x 2,x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)=f (x 2). 又f (x )是奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)[x 1+(-x 2)].又由题意,得f (x 1)+f (-x 2)x 1+(-x 2)>0,且x 1+(-x 2)<0,所以f (x 1)+f (-x 2)<0,即f (x 1)-f (x 2)<0, 这与f (x 1)=f (x 2)矛盾,故假设不成立,即函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直. 18.(本小题满分12分)已知:A ,B 都是锐角,且A +B ≠90°,(1+tan A )(1+tan B )=2.求证:A +B =45°.证明:因为(1+tan A )(1+tan B )=2, 展开化简为tan A +tan B =1-tan A tan B . 因为A +B ≠90°,tan (A +B )=tan A +tan B 1-tan A tan B =1.又因为A ,B 都是锐角,所以0°<A +B <180°.所以A +B =45°.19.(本小题满分12分)已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab . 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,只需证(a -c )2<(c 2-ab )2, 只需证a 2-2ac +c 2<c 2-ab ,即证2ac >a 2+ab ,因为a >0,所以只需证2c >a +b .因为2c >a +b 已知, 所以原不等式成立.20.(本小题满分12分)如图,在直三棱柱ABC A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .证明:(1)因为ABC A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AD ⊂平面ABC ,所以CC 1⊥AD .因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1. 因为AD ⊂平面ADE , 所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点, 所以A 1F ⊥B 1C 1,因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, 所以CC 1⊥A 1F .因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, 所以A 1F ⊥平面BCC 1B 1. 由(1)知AD ⊥平面BCC 1B 1, 所以A 1F ∥AD .因为AD ⊂平面ADE ,A 1F ⊄平面ADE , 所以A 1F ∥平面ADE .21.(本小题满分12分)设函数f (x )=x 3+11+x ,x ∈[0,1].证明:(1)f (x )≥1-x +x 2;(2)34<f (x )≤32.证明:(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由第一问得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f (12)=1924>34,所以f (x )>34.综上,34<f (x )≤32.22.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想. 解:(1)易求得a 1=1,a 2=2-1,a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *)证明:①当n =1时,a 1=1-0=1,命题成立. ②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立, 则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫a k +1ak=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以,a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k .即n =k +1时,命题成立. 由①②知,n ∈N *时,a n =n -n -1.。
【全程复习方略】2014-2015学年高中数学 2.2.2 反证法课时提升作业 新人教A版选修1-2
![【全程复习方略】2014-2015学年高中数学 2.2.2 反证法课时提升作业 新人教A版选修1-2](https://img.taocdn.com/s3/m/2ddb95e0aeaad1f346933f12.png)
反证法一、选择题(每小题3分,共18分)1.(2014·合肥高二检测)用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是( )A.有两个内角是钝角B.有三个内角是钝角C.至少有两个内角是钝角D.没有一个内角是钝角【解析】选C.“最多有一个”的反设是“至少有两个”.2.实数a,b,c满足a+2b+c=2,则( )A.a,b,c都是正数B.a,b,c都大于1C.a,b,c都小于2D.a,b,c中至少有一个不小于【解析】选D.假设a,b,c均小于,则a+2b+c<+1+=2,与已知矛盾,故假设不成立,所以a,b,c中至少有一个不小于.3.(2014·唐山高二检测)(1)已知:p3+q3=2,求证:p+q≤2.用反证法证明时,可假设p+q≥2.(2)已知:a,b∈R,|a|+|b|<1,求证:方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是( )A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确,(2)的假设错误D.(1)的假设错误,(2)的假设正确【解析】选D.(1)错,应假设为p+q>2.(2)假设正确.故选D.4.(2014·杭州高二检测)设a,b,c大于0,则3个数:a+,b+,c+的值( )A.都大于2B.至少有一个不大于2C.都小于2D.至少有一个不小于2【解题指南】因为三个数的和不小于6,可以判断三个数至少有一个不小于2,所以可假设这三个数都小于2来推出矛盾.【解析】选D.假设a+,b+,c+都小于2,即a+<2,b+<2,c+<2,所以++<6,又a>0,b>0,c>0,所以++=++≥2+2+2=6.这与假设矛盾,所以假设不成立.【变式训练】已知x1>0,且x1≠1,且x n+1=(n=1,2,3…).试证:数列{x n}对任意正整数n都满足x n<x n+1,或者对任意正整数n都满足x n>x n+1.当此题用反证法否定结论时,应为( )A.对任意的正整数n,都有x n=x n+1B.存在正整数n,使得x n=x n+1C.存在正整数n,使x n≥x n-1且x n≥x n+1D.存在正整数n,使得(x n-x n-1)(x n-x n+1)≥0【解析】选B.对于数列中的连续两项来说,要么不相等,要么相等.5.设a,b,c是正数,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R同时大于零”的( )A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件【解析】选C.必要性显然,充分性:若PQR>0,则P,Q,R同时大于零或其中两个为负,不妨设P<0,Q<0,R>0,因为P<0,Q<0,即a+b<c,b+c<a,所以a+b+b+c<c+a,即b<0,这与b>0矛盾,所以P,Q,R同时大于零,故选C.6.若△ABC能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【解析】选B.分△ABC的直线只能过一个顶点且与对边相交,如直线AD(点D在BC上),则∠ADB+∠ADC=π,若∠ADB为钝角,则∠ADC为锐角.而∠ADC>∠BAD,∠ADC>∠ABD,△ABD与△ACD不可能相似,与已知不符,只有当∠ADB=∠ADC=∠BAC=时,才符合题意.二、填空题(每小题4分,共12分)7.(2014·南昌高二检测)命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是.【解析】“至少有一个”的否定是“没有一个”.答案:没有一个是三角形或四边形或五边形8.(2014·石家庄高二检测)设a,b是两个实数,给出下列条件:①a+b=1;②a+b=2;③a+b>2;④a2+b2>2.其中能推出“a,b中至少有一个大于1”的条件是(填序号).【解题指南】可采用特殊值法或反证法逐一验证.【解析】若a=,b=,则a+b=1,但a<1,b<1,故①不能推出.若a=b=1,则a+b=2,故②不能推出.若a=-2,b=1,则a2+b2>2,故④不能推出.对于③,即a+b>2,则a,b中至少有一个大于1.反证法:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,故a,b中至少有一个大于1.答案:③9.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为__________.【解析】由反证法证明的步骤知,先反设即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.答案:③①②三、解答题(每小题10分,共20分)10.(2013·南阳高二检测)已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数.【解题指南】反证法来证明正难则反的运用,先否定结论,假设a,b,c,d都是非负数,然后推出矛盾来得到证明.【证明】假设a,b,c,d都是非负数,因为a+b=c+d=1,所以(a+b)(c+d)=1.又(a+b)(c+d)=ac+bd+ad+bc≥ac+bd,所以ac+bd≤1,这与已知ac+bd>1矛盾,所以a,b,c,d中至少有一个是负数.【拓展提升】适用反证法证明的题型适用反证法证明的题型有:(1)一些基本命题、基本定理.(2)易导出与已知矛盾的命题.(3)“否定性”命题.(4)“唯一性”命题.(5)“必然性”命题.(6)“至多”“至少”类命题.(7)“必然性”命题.(8)涉及“无限”结论的命题等.11.求证过一点只有一条直线与已知平面垂直.【解题指南】文字叙述题的证明应先写出已知,求证,本题证明时应分两种情况,即点P在平面α内和点P 在平面α外.【证明】已知:平面α和一点P.求证:过点P与平面α垂直的直线只有一条.证明:如图所示,不论点P在α内或α外,设PA⊥α,垂足为A(或P).假设过点P还有另一条直线PB⊥α,设PA,PB确定的平面为β,且α∩β=a,于是在平面β内过点P有两条直线PA,PB垂直于a,这与在同一平面内过一点有且只有一条直线与已知直线垂直相矛盾,所以假设不成立,原命题成立.一、选择题(每小题4分,共16分)1.(2014·济宁高二检测)用反证法证明命题“+是无理数”时,假设正确的是( )A.假设是有理数B.假设是有理数C.假设或是有理数D.假设+是有理数【解析】选D.假设结论的反面成立,+不是无理数,则+是有理数.2.(2014·潍坊高二检测)否定结论“至多有两个解”的说法中,正确的是( )A.有一个解B.有两个解C.至少有三个解D.至少有两个解【解析】选C.在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”.3.已知直线a,b为异面直线,直线c平行于直线a,那么c与b的位置关系为( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线【解析】选C.假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.4.已知数列{a n},{b n}的通项公式分别为a n=an+2,b n=bn+1(a,b是常数,且a>b),那么两个数列中序号与相应项的数值相同的项的个数是( )A.0B.1C.2D.无穷多个【解题指南】假设存在两个数列中序号与相应项的数值相同的项,推理得出矛盾.【解析】选A.假设存在两个数列中序号与相应项的数值相同的项,则有an+2=bn+1,得到(a-b)n=-1,这样的n是不存在的,故假设不成立.二、填空题(每小题5分,共10分)5.(2014·郑州高二检测)若下列两个方程x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a 的取值范围是.【解析】假设两个一元二次方程均无实根,则有即解得{a|-2<a<-1},所以其补集{a|a≤-2或a≥-1}即为所求的a的取值范围.答案:{a|a≤-2或a≥-1}6.完成反证法证题的全过程.设a1,a2,…,a7是1,2,…,7的一个排列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.证明:假设p为奇数,则a1-1,a2-2,…,a7-7均为奇数.因奇数个奇数之和为奇数,故有奇数= = =0.但0≠奇数,这一矛盾说明p为偶数.【解题指南】利用奇数个奇数之和为奇数,把a1-1,a2-2,…,a7-7相加,利用a1+a2+…+a7=1+2+…+7可推出矛盾.【解析】据题目要求及解题步骤,因为a1-1,a2-2,…,a7-7均为奇数,所以(a1-1)+(a2-2)+…+(a7-7)也为奇数.即(a1+a2+…+a7)-(1+2+…+7)为奇数.又因为a1,a2,…,a7是1,2,…,7的一个排列,所以a1+a2+…+a7=1+2+…+7,故上式为0.所以奇数=(a1-1)+(a2-2)+…+(a7-7)=(a1+a2+…+a7)-(1+2+…+7)=0.答案:(a1-1)+(a2-2)+…+(a7-7)(a1+a2+...+a7)-(1+2+ (7)三、解答题(每小题12分,共24分)7.(2013·临沂高二检测)已知a,b,c∈(0,1).求证:(1-a)b,(1-b)c,(1-c)a不能都大于.【证明】假设(1-a)b,(1-b)c,(1-c)a都大于.因为0<a<1,0<b<1,所以1-a>0.由基本不等式,得≥>=.同理,>,>.将这三个不等式两边分别相加,得++>++,即>,这是不成立的,故(1-a)b,(1-b)c,(1-c)a不能都大于.8.(2014·温州高二检测)设{a n},{b n}是公比不相等的两个等比数列,c n=a n+b n.证明数列{c n}不是等比数列. 【解题指南】假设数列{c n}是等比数列,利用{a n},{b n}是公比不相等的等比数列的条件推出矛盾,即知假设不成立.【证明】假设数列{c n}是等比数列,则(a n+b n)2=(a n-1+b n-1)(a n+1+b n+1). ①因为{a n},{b n}是公比不相等的两个等比数列,设公比分别为p,q,所以=a n-1a n+1,=b n-1b n+1.代入①并整理,得2a n b n=a n+1b n-1+a n-1b n+1=a n b n(+),即2=+②.当p,q异号时,+<0,与②相矛盾;当p,q同号时,由于p≠q,所以+>2,与②相矛盾.故数列{c n}不是等比数列.【拓展延伸】适用反证法证明的题型适用反证法证明的题型有:(1)一些基本命题、基本定理.(2)易导出与已知矛盾的命题.(3)“否定性”命题.(4)“唯一性”命题.(5)“必然性”命题.(6)“至多”“至少”类命题.(7)涉及“无限”结论的命题等. 【变式训练】已知f(x)=x2+px+q.求证:(1)f(1)+f(3)-2f(2)=2.(2)|f(1)|,|f(2)|,|f(3)|中至少有一个不小于.【解题提示】至少有一个不小于的反面是都小于.【证明】(1)f(1)+f(3)-2f(2)=(1+p+q)+(9+3p+q)-2(4+2p+q)=2.(2)假设|f(1)|,|f(2)|,|f(3)|都小于,则|f(1)|+2|f(2)|+|f(3)|<2,而|f(1)|+2|f(2)|+|f(3)|≥f(1)+f(3)-2f(2) =(1+p+q)+(9+3p+q)-(8+4p+2q)=2,这与|f(1)|+2|f(2)|+|f(3)|<2相矛盾,从而假设不成立,原命题成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-反证法练习
基础达标(水平一)
1.若a,b,c不全为0,则只需().
A.abc≠0
B.a,b,c中至少有一个为0
C.a,b,c中只有一个是0
D.a,b,c中至少有一个不为0
【解析】a,b,c不全为0,即a,b,c中至少有一个不为0.
【答案】D
2.若两个数之和为正数,则这两个数().
A.一个是正数,一个是负数
B.都是正数
C.至少有一个是正数
D.都是负数
【解析】这两个数中至少有一个是正数.否则,若这两个数都不是正数,则它们的和一定是非正数,这与“两个数之和为正数”相矛盾,故选C.
【答案】C
3.有以下结论:
①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;
②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.
下列说法中正确的是().
A.①与②的假设都错误
B.①与②的假设都正确
C.①的假设正确;②的假设错误
D.①的假设错误;②的假设正确
【解析】用反证法证明问题时,其假设是原命题的否定,故①的假设应为“p+q>2”;②的假设为“两根的绝对值不都小于1”.故①的假设错误,②的假设正确.
【答案】D
4.若a2+b2=c2,则a,b,c().
A.都是偶数
B.不可能都是偶数
C.都是奇数
D.不可能都是奇数
【解析】假设a,b,c都是奇数,则a2,b2,c2都是奇数,因此a2+b2为偶数,而c2为奇数,即
a2+b2≠c2,这与a2+b2=c2矛盾,所以假设不成立,所以a,b,c不可能都是奇数.
【答案】D
5.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设.
【解析】“x≠a且x≠b”形式的否定为“x=a或x=b”.
【答案】x=a或x=b
6.用反证法证明“一个三角形不能有两个直角”有三个步骤:
①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误;
②所以一个三角形不能有两个直角;
③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.
上述步骤的正确顺序为.
【解析】由反证法证明的步骤,知先反证,即③;再推出矛盾,即①;最后做出判断,肯定结论,即②.所以正确的顺序应为③①②.
【答案】③①②
7.过平面α内的一点A作直线a,使得a⊥α,求证:直线a是唯一的.
【解析】假设直线a不唯一,则过点A至少还有一条直线b,使得b⊥α.
因为直线a与直线b是两条相交直线,所以直线a与直线b可以确定一个平面β.
设α和β相交于过点A的直线c,
因为a⊥α,b⊥α,所以a⊥c,b⊥c.
因此,在平面β内,过直线c上的点A就有两条直线a,b垂直于直线c,这与“平面内过直线上一点只能作一条该直线的垂线”矛盾,所以假设不成立,
故直线a是唯一的.
拓展提升(水平二)
8.设a,b,c为正实数,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R同时大于零”的().
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】若P>0,Q>0,R>0,则必有PQR>0;反之,若PQR>0,也必有P>0,Q>0,R>0.因为当PQR>0时,若P,Q,R不同时大于零,则P,Q,R中必有两个负数,一个正数.不妨设P<0,Q<0,R>0,即
a+b<c,b+c<a,两式相加得b<0,这与已知b为正实数矛盾,因此必有P>0,Q>0,R>0.
【答案】C
9.已知a,b,c∈(0,1),则对于(1-a)b,(1-b)c,(1-c)a,下列说法正确的是().
A.不能同时大于
B.都大于
C.至少有一个大于
D.至多有一个大于
【解析】假设三个式子同时大于,即(1-a)b>,(1-b)c>,(1-c)a>,三式相乘得
(1-a)b(1-b)c(1-c)a>. ①
因为0<a<1,所以0<a(1-a)≤=.
同理,0<b(1-b)≤,0<c(1-c)≤.
所以(1-a)a(1-b)b(1-c)c≤. ②
因为①与②矛盾,所以假设不成立,故选A.
【答案】A
10.有甲、乙、丙、丁四位歌手参加比赛,其中一位获奖.有人走访了这四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是.
【解析】若甲获奖,则甲、乙、丙、丁四位歌手说的话都是假的,同理可推出乙、丙、丁获奖的情况,最后可知获奖的歌手是丙.
【答案】丙
11.已知非零实数a,b,c构成公差不为0的等差数列,求证:,,不能构成等差数列.
【解析】假设,,能构成等差数列,则有=+,即bc+ab=2ac. ①
而由a,b,c构成等差数列,得2b=a+c. ②
联立①②两式,得(a+c)2=4ac,即(a-c)2=0,于是得a=c,这与a,b,c构成公差不为0的等差数列矛盾.故假设不成立,因此,,不能构成等差数列.。