二次根式考点复习及典型题
二次根式知识点及典型例题(含答案)
4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。
练习1、x为何值时,下列各式有意义。
【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。
(完整版)二次根式的复习(附答案)
页眉内容二次根式的复习知识精要1、二次根式的概念)0a≥叫做二次根式。
其中a是被开方数(可为整式或分式a≥.2、二次根式的性质性质1 ()0a a=≥;※⎪⎩⎪⎨⎧<-=>==)0()0(0)0(2aaaaaaa性质2 ()20a a=≥;性质3 =()0,0a b≥≥※)0,0(≤≤-⋅-=babaab性质4 =(ba,0≥>0)一般地,==3、最简二次根式化简二次根式把二次根式里被开方数所含的完全平方因式移到根号外,或者化去被开方数的分母的过程,称为化简二次根式,通常把形如)0a≥的式子叫做最简二次根式。
4、同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个根式叫做同类二次根式。
5.二次根式的混合运算6.分母有理化把分母中的根号化去就是分母有理化.即是指分母不含二次根式的运算的技术。
分母有理化的方法是把分子和分母都乘以同一个适当的代数式,使分母不含根号. 上述的适当代数式即是指有理化因式。
精解名题二次根式有意义的条件:例1:求下列各式有意义的所有x 的取值范围。
();();();();();()13221312411521645332-++-++-----x x x x x xx x x x解:(1)要使32-x 有意义,必须320-≥x ,由320-≥x 得x ≤32, ∴当x ≤32时,式子32-x 在实数范围内有意义。
(2)要使x +13有意义,x +1为任意实数均可, ∴当x 取任意实数时x +13均有意义。
(3)∴当x x ≥-≠12且时,式子x x +-12在实数范围内有意义。
(4)当x x ≥-≠11,且时,x x++-113有意义。
(5)当x ≥12时,式子x x --21在实数范围内有意义。
(6)当x x x x ≤-≠-≥≠2525且或且时式子x x 245--有意义 最简二次根式例2.根式x x ma a 12,62,3,17,4,522+中最简二次根式为 ___________________________________________________.解:42+a ,17,2x 6同类二次根式根式: 例 3. 已知二次根式5,23+a 是同类二次根式,写出三个a 的可能值_________________________. 解:3a+2是5的倍数a 为6,11,16(答案不唯一)分母有理化:例4.将下列二次根式分母有理化 (1)242++a a (2)22+-a a解:(1)22+a(2)2222--+a aa(3)x125 (4)qp q p --222(p>q )解:(3)xx615 (4)2)(qp q p -+化简:例5:化简:()()()1424422242242222a ba ba ab ba a a a a a--÷++++++++-解: ()()()()原式122222=+--÷+a ba b a ba b()()()=+÷+=+=--=+++++-+=++++->≥<<≥=++++-=++++-a b a b a ba b a ba a a a a a a a a a a a a a a a a a a a a a a a a a a a a a aa a a a 2212242121224424421212222222202022121222222222222222()原式原题只保证,因此要分类讨论时,及时当时,原式||||Θ23222021212222222222222622a a aaa a a a a a a aa aa a a a a a aa=+<<=++++-=++++-=+当时,原式化简求值:例6:已知:223223-=+=b a ,,求:a b ab 33+的值。
二次根式知识点总结及练习题大全
二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a ≥0,b ≥0);=b ≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】(2)、平方法当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。
例1、比较与的大小。
例2、比较a (a >0)a -(a <0)0 (a =0);(3)、分母有理化法通过分母有理化,利用分子的大小来比较。
例3(4)、分子有理化法通过分子有理化,利用分母的大小来比较。
例4 (5)、倒数法例5的大小。
(6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。
例633的大小。
(7)、作差比较法在对两数比较大小时,经常运用如下性质: ①0a b a b ->⇔>;②0a b a b -<⇔<例7的大小。
(8)、求商比较法它运用如下性质:当a>0,b>0时,则: ①1a a b b>⇔>; ②1a a b b<⇔<例8、比较5与2+二次根式的概念和性质1.判断题(对的打“∨”,错的打“×”)(12=-12 ( );(2=-12 ( )(3)(2=-12 ( );(4)(2=2×12=1 ( ) 2.下面的计算中,错误..的是 ( )A=±0.03 B=±C.3.下列各式中一定成立的是( )AC .(213=2342=________; 5+(2=________.6.-7.数a│1-a │=_______.8.9-(12)210、35-23|11二次根式的乘除练习题1、填空:(1)二次根式的乘法法则用式子表示为__________(2)二次根式的除法法则用式子表示为__________(3)把分母中的___化去,叫做分母有理化. 将式子22a 分母有理化后等于_________(4)44162+⋅-=-x x x 成立的条件是_________(5)x x -=-2)2(2成立的条件是_________(6)(6)2121+-=+-x x x x 成立的条件是_________(7)化简: =24 =⨯1259 =-222129 =c b a 324=499 =944=224c b a (8)计算: =⋅1510 =⋅x xy 1312 =÷653211.下列运算正确的是( )A 2=-5 B.(2=-5 C.=5 D2.下面的计算中,正确的是( )A =0.1; B .=-0.03; C±13; Dπ-4 3.下列命题中,错误..的是( )A,则x=5;B .若a (a≥0Cπ-3D54)A .-11B .11C .22D .-225.(2=________; 67-(2=__________.8.比较大小>”,“=”,“<9.数a 在数轴上的位置如图所示,化简:│-a-1│. 10=________.11+…=______. 12│b-2│=0,求以a 、b 为边长的等腰三角形的周长.1、判断题:下列运算是否正确.( )(1)ππ-=-14.3)14.3(2( )(2)767372=⨯ ( )(3)636)9()4(94==-⨯-=--( )(4)5125432516925169=⨯=⋅= ( )(5)5.045.16=( )(6)73434342222=+=+=+( )(7)228= ( )(8)32123= 1、运用乘法分配律进行简单的根式运算.例1 计算 (1))2732(3+ (2)24)654(-(1) )82(2+ (2) a a a 5)5320(+(3) ab abb a a b ab ⋅--+)12(2、比较两个实数的大小.例2 比较下列两个数的大小(1)6与7 (2)23与321、8.2与4322、67与763、65-与56-4、323-与533- 3、二次根式的乘除混合运算.(1)21223222330÷⨯(2))23(62325b a a b b a ab b -⨯÷(1)21223151437⨯÷- (2))23()23(3a abab -⨯-÷4、运用分母有理化进行计算.例3 化简100991431321211++++++++分析:当分母里二次根式的被开方数都相差1时,如果分母有理化后则变为1或-1,就可将原式变为不含分母的二次根式.思考题:计算324213-+⋅-二次根式的加减1.若a a=_______,b=_______.2_________.3.4,则它的周长是________. 5.在实数范围内分解因式:a 2-4=_________.6大小关系是_________. 7.下列根式中与其他三个不同类的是( )A B D 8.下列各组二次根式中,可以进行加减合并的一组是( )A B D .18 9.下列根式合并过程正确的是( )A .-=2B .C .1212.13-14=1121013- )A B ..11.若,则y 值为( )A .1 C ..312.一个等腰三角形的两边分别为,则这个三角形的周长为( )A ..C ..或 13.计算:(1) (2)(3(4)1414.如果△ABC 的三边P . 巩固练习1. )2. 下面说法正确的是( )A. 被开方数相同的二次根式一定是同类二次根式D. 同类二次根式是根指数为2的根式3. )4. 下列根式中,是最简二次根式的是( )★5. 若12x)A. 21x -B. 21x -+C. 3D. -3★6. 的整数部分为x ,小数部分为y y -的值是( )A. 37. 下列式子中正确的是( )=a b =-C. (a b =-22==8. 是同类二次根式的是 。
清单05 二次根式 全章复习(3个考点梳理+11种题型+10类型)(解析版)
清单05二次根式全章复习(3个考点梳理+10种题型+10类型)考点一二次根式的相关概念二次根式的概念:一般地,我们把形如(≥0)的式子叫做二次根式,“”称为二次根号,二次根号下的数叫做被开方数.二次根式有意义的条件:当a≧0时,即被开方数大于或等于0,二次根式有意义.最简二次根式:开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.最简二次根式必须同时满足以下两个条件:①开方数所含因数是整数,因式是整式(分母中不应含有根号);②不含能开得尽方的因数或因式的二次根式,即被开方数的因数或因式的指数都为1.同类二次根式的概念:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式.【考试题型1】二次根式有意义的条件1.(20-21九年级上·吉林长春·在实数范围内有意义的条件是.x的值.2.(2023·浙江杭州·1.(22-23七年级下·广东汕头·m的最小值是()A.2B.3C.8D.11∴12m -是完全平方数,当120m -=时,即12m =,当121m -=时,即11m =,当124m -=时,即8m =,当129m -=时,即3m =,综上所述,自然数m 的值可以是3、8、11、12,所以m 的最小值是3,故答案选:B .【点睛】本题考查了二次根式的化简及自然数的定义,掌握二次根式的化简法则及自然数是指大于等于0的整数是解答本题的关键.2.(22-23八年级下·福建莆田·开学考试)若实数a ,b 4b +,则a b -=.3.(20-21七年级下·广东广州·期中)若()230a -+=,则a b -的立方根是.【点睛】本题考查平方、二次根式的非负性以及求立方根,得到30a -=,50b +=是解题的关键.4.(20-21八年级上·四川达州·期中)已知a ,b 0b =(1)a=_______,b=______(2)把a ,b 的值代下以下方程并求解关于x 的方程()221a xb a ++=-1.(23-24八年级上·上海青浦·)ABC D2.(23-24八年级上·山东滨州·期末)下列各式化成最简二次根式正确的是()A=B =C =D 10=()A .2个B .3个C .4个D .5个4.(22-23八年级下·海南省直辖县级单位·是同类二次根式,则=a .【答案】5-【分析】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键,化成最简二1.(23-24九年级上·四川宜宾·a 的值可能是()A .16B .0C .2D .任意实数2.(22-23九年级上·四川遂宁·是同类二次根式,则m 的值为()A .4m =B .3m =C .5m =D .6m =3.(22-23八年级下·山东泰安·是最简二次根式,则m,n的值为()A.0,1-B.1-,0C.1,1-D.0,04.(21-22八年级下·江西赣州·期中)若考点二二次根式的性质与化简二次根式的化简方法:1)利用二次根式的基本性质进行化简;2)利用积的算术平方根的性质和商的算术平方根的性质进行化简.a =•(≥0,≥0)(≥0,>0)化简二次根式的步骤:1)把被开方数分解因式;2)利用积的算术平方根的性质,把各因式(或因数)积的算术平方根化为每个因式(或因数)的算术平方根的积;3)化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【考试题型5】利用二次根式的性质化简【类型一】数形结合法1.(22-23八年级下·四川绵阳·阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简2a b b c --+.【答案】a-【分析】本题考查了数轴的定义、二次根式的运算、绝对值运算.观察数轴可得0c b a <<<,从而得到0,0,0a b c a b c ->-<+<,再根据二次根式的运算、绝对值运算计算即可.【详解】解:观察数轴得:0c b a <<<,2.(23-24八年级上·重庆万州·阶段练习)已知实数x 、y 、z 在数轴上的对应点如图所示:(1)若5x =-,y =x 对应的点与z 对应的点恰好关于y 对应的点对称,求z 的值.(2)2+3.(23-24八年级上·湖北襄阳·开学考试)已知实数x ,y ,z 在数轴上的对应点如图所示,试化简:.【类型二】估值法方法简介:先运用二次根式的运算法则化简,再将最后的化简结果化成根式再确定取值范围.1.(2023·重庆·(最接近的整数是()A .7B .8C .9D .10A .5m <-B .54m -<<-C .43m -<<-D .3m >-3.(23-24九年级上·四川宜宾·阶段练习)若a ,则a 的值所在的范围为()A .2a ≥B .2a >C .12a <<D .01a <<【类型三】公式法方法简介:根据题目已知条件,通过变形、凑元等方法,凑成可用乘法公式,快速求解.1.(23-24九年级上·河南周口·阶段练习)已知2M=,2N,则M与N的关系为()A.相等B.绝对值相等C.互为相反数D.互为倒数2.(23-24八年级上·云南文山·阶段练习)计算题:;(2)【类型四】换元法方法简介:根据已知条件,利用未知变量替换有规律表达式,寻找规律,快速求解.1.(19-20八年级上·福建泉州·期中)若ab=1,我们称a与b1与1互为倒数:方法一:∵)22111211+-=-=-=1+1互为倒数.()2211111211⋅--====--111互为倒数.(1)互为倒数;(2)若()21x x -=,求21x x ⎛⎫- ⎪⎝⎭的值;(3)利用“换元法”求((101022⨯的值.=1.【点睛】本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质是,选择合适的解题途径,往往能事半功倍.【类型五】拆项法【类型六】整体代入法方法简介:由已知条件,通过加减乘除运算,得到与求解表达式相关的表达数值,整体代入.1.(23-24八年级下·云南昭通·期中)已知x =2(8x x -+的值.2.(23-24八年级下·海南省直辖县级单位·期中)已知33a b ==-求下列各式的值:(1)a b +和ab ;(2)22a ab b ++.22(1)223x xy y ++(2)x y y x +【类型七】因式分解法【类型八】配方法1.(23-24八年级下·北京·期中)阅读材料:材料一:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)1===-.材料二:配方法是初中数学思想方法中的一种重要的解题方法,配方法的最终目的就是配成完全平方式,利用完全平方式来解决问题,它的应用非常广泛,在解方程、化简根式、因式分解等方面都经常用到.如:(2222311x x x++=+++=+,(20x+≥,(211x∴+≥,即231x++≥.23x∴++的最小值为1.阅读上述材料解决下面问题:_______=______;(2)求211x++的最值;(3)2-2.阅读材料:材料一:数学上有一种根号内又带根号的数,它们能通过完全平方式及二次根式的性质化去一层(或多层)根号,1材料二:配方法是初中数学思想方法中的一种重要的解题方法,配方法的最终目的就是配成完全平方式,利用完全平方式来解决问题,它的应用非常广泛,在解方程、化简根式、因式分解等方面都经常用到.如:2222321(x 1x x x ++=+++=+∵2(0x ≥,∴2(11x ++≥,即231x ++≥∴23x ++的最小值为1阅读上述材料解决下面问题:(1=,=;(2)求211x ++的最值;(3)已知x =221(41)54x y xy -++-的最值.【类型九】辅元法【类型十】先判断后化解解题的关键.【考试题型6】分母有理化1.(新疆维吾尔自治区克孜勒苏柯尔克孜自治州2023-2024学年八年级下学期4月期中考试数学试题)在进样的式子,这样的式子我们可以将其进一步化简:行二次根式化简时,我们有时会碰上如1==;====.以上这种化简的方法叫做分母有理化,通过观察请利用分母有理化解答下列问题:(1)利用你观察到的规律,化简L(2)2.(23-24八年级下·山东济宁·期中)【阅读材料】(材料一)细心观察图形,认真分析各式,总结其中蕴含的规律.22212OA =+=,112S =(1S 是12RtA A O △的面积);22313OA =+=,22S =(2S 是23Rt A A O △的面积);22414OA =+=,32S =(3S 是34Rt A A O △的面积);.==【问题解决】利用你总结的规律,解答下面的问题:(1)填空:100S =_________,11OA =_________;(2)求11111S S S S S S S S S S +++++++++的值.3.(23-24七年级下·上海嘉定·期中)阅读下列解题过程:1⨯-()()221⨯===-请回答下列问题:(1)=______()2n≥.(2)利用上面所提供的解法,请化简:+(3)模仿上面所提供的解法,试一试化简:+考点三二次根式的运算乘法法则:两个二次根式相乘,把被开方数相乘,根指数不变.即:a =•(≥0,≥0).除法法则:=加减法法则:先把各个二次根式化为最简二次根式后,再将被开方数相同的二次根式合并.【口诀】一化、二找、三合并.分母有理化:通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程.【分母有理化方法】==2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分.==混合运算顺序:先乘方、再乘除,最后加减,有括号的先算括号里的(或先去掉括号).【考试题型7】二次根式的乘除运算1.(2024·陕西西安·三模)计算:)()02252π---2.(23-24八年级下·安徽铜陵·00)b ⎛÷⨯>> ,3.(23-24八年级下·全国·课后作业)计算:(1)÷;()0,0x y ⎫÷>>⎪⎪⎭.1.(23-24八年级下·吉林松原·期中)计算:((-.2.(23-24八年级下·广东阳江·期中)已知b=-,求22a=+,11a b+的值.3.(23-24八年级下·北京海淀·这个数叫做黄金分割数,著名数学家华罗庚优选法中就应用了黄金分割数.设a=b=(1)直接写出a b+和ab的值:a b+=______,ab=______;(2)求1111sa b=+的值.2.(23-24九年级下·山东烟台·期中)计算:(2)3.(23-24八年级下·辽宁营口·期中)(1)先化简,再求值:111a a -⎛⎫-÷⎪--⎝⎭,其中,2a =.1.(23-24八年级下·浙江金华·的计算,将分母转化为有理数,这就是“分母有理化()22==;()()2232++====+--.类似地,将分子转化为有理数,就称为“分子有理化21===()222111+-==.根据上述知识,请你解答下列问题:(1)(2)的大小,并说明理由.2.(23-24八年级下·福建福州·期中)如图,正方形A,B的面积分别为25cm和27cm,现将正方形A的边长分别增加2cm和3cm得到矩形甲;将正方形B的边长都增加2cm得到一个新的正方形乙,请通过计算比较甲、乙两个图形的面积的大小.【答案】矩形甲的面积小于矩形乙的面积.【分析】此题考查了二次根式混合运算的应用,根据题意表示出矩形甲和乙的面积,然后相减得到3.(23-24八年级下·江苏扬州·阶段练习)观察下列等式:1==-;==;==;……像)221-=()0a a =≥,)()1110b b -=-≥,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.11,与-答下列问题:(1)化简:(2)=___________(n为正整数).(3)计算:)1+ =___________;(4)已知a==b试比较a、b的大小,则a___________b.(填“<”“>”或“=”)1.(23-24八年级下·甘肃庆阳·期中)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛出的物体下落的时间t(单位:s)和高度h(单位:m)近似满足t=(不考虑风速的影响).(1)从30m高处抛下的物体落地所需的时间1t=s;从60m高处抛下的物体落地所需的时间2t=s(2)2t是1t的多少倍?(3)若从高空抛下的物体经过4s落地,则该物体下落的高度是多少?2.(23-24八年级下·江西宜春·阶段练习)有一块长方形木板,木工师傅采用如图所示的方式,在木板上截出面积分别为218dm 和232dm 的两块正方形木板.(1)截出的两块正方形木板的边长分别为______dm ,______dm ;(2)求剩余木板的面积;(3)如果木工师傅想从剩余的木板中截出长为1.5dm 、宽为1.2dm 的长方形木条,最多能截出______个这样的木条. 1.414≈)3.(23-24八年级下·广东东莞·期中)小乐是一个善于思考的学生,学习完“二次根式”和“勾股定理”后,他发现可以有多种方法求三角形的面积,以下是他的数学笔记,请认真阅读并完成任务,的面积;(1)请根据思路1的公式,求ABC(2)请你结合思路2,在如图所示的网格中(正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点),完成下列任务,,要求三个顶点都在格点上;①画出ABC面积的计算过程.②结合图形,写出ABC②过点A 作AD CB ⊥∴4.(23-24八年级下·广西南宁·期中)安全问题,时刻警醒.高空坠物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.经过查阅相关资料,小南同学得到高空坠物下落的时间t (单位:s )和高度h (单位:m )近似满足公式t 10N /kg g ≈)(1)求从45m 高空抛物到落地的时间;(2)已知高空拋物动能(单位:J )10=(单位:N /kg )⨯物体质量(单位:kg )⨯高度(单位:m ),某质量为0.2kg 的玩具在高空被抛出后经过4s 后落在地上,根据以上信息,小南判断这个玩具产生的动能会伤害到楼下的行人,请通过计算说明小南的判断是否正确.(注:伤害无防护人体只需要65J 的动能)5.(23-24八年级下·安徽铜陵·期中)铜陵市各小区都有“禁止高空抛物”的宣传标语,高空抛物极其危险,是我们必须杜绝的行为.据研究,从高度为h(单位:m)的高空抛出的物体下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=(不考虑风速的影响).(1)从50m高空抛出的物体从抛出到落地所需时间1t,从100m高空抛出的物体从抛出到落地所需时间2t,那么2t是1t的多少倍?(2)从足够高的高空抛出物体,经过1.5s,所抛物体下落的高度是多少?6.(23-24八年级下·湖北孝感·期中)学习完《二次根式》后,聪聪发现了下面这类有趣味的试题,请你根据他的探索过程,解答下列问题:(1)具体运算,发现规律:131711122236=+==+=⨯⨯11313412=+=⨯,…计算:=(2)观察归纳,写出结论=(1n ≥且n 为正整数)(3)灵活运用,提升能力请利用你所发现的规律,。
二次根式知识点及典型例题
第17章:二次根式第一课时:二次根式的概念与性质知识点1:二次根式的定义:(1)(a ≥0)的式子叫做二次根式。
(2)(a ≥0)表示非负数a 的算术平方根 (3) 二次根式的要求① 根指数为2② 被开方数可以是数,也可以是单项式、多项式、分式等,但必须是非负数类型一:二次根式的识别例1:已知式子 其中一定是二次根式的是 ①②④ 。
知识点2:二次根式中字母的取值范围:(1) 二次根式有意义的条件:被开方数大于或等于0。
(2) 二次根式无意义的条件:被开方数小于0 (3) 二次根式做分母时: 被开方数大于0.类型一:求字母的取值范围例1:x 取何值时,下列各式有意义?11(62501 6.6016630122102201122x x x x x x x x x x x x x ----⎧⎨-⎩+-⎧-⎪-⎨⎪-⎩--≥解:()由题意知解得≥5且≠≠ 所以当≥5且≠有意义≥ ()由题意知>解得<x ≤3且x ≠2≠ 所以当<x ≤3且x ≠2有意义类型二:根据字母隐含的的取值范围,求代数式的值(较难) 例2:x y y =若、为实数,且222224040, 14,20,2,4x x x x x x x y --=+==≥,即≥4, ≥即≤4, 所以又因为≠所以22240404,120,2432x x xx x y--∴=+∴=∴====解:由题意知:≥且≥又≠知识点3:二次根式的性质:(1)双重非负性:①被开方数为非负数,即a≥0;②二次根式的值为非负数,即a≥0(2)两个性质:性质1:(a)2= a(a≥0)语言叙述:一个非负数的算术平方根的平方等于它本身。
或叙述为:一个非负数先开平方再平方等于这个数本身。
性质2(0)(0)a aaa a⎧==⎨-⎩≥<语言叙述:一个数先平方再开平方等于这个数的绝对值。
22222221==2(0),(0)1a(0)(0)(0)(0)x a x xx ax ax x xa ax x x aa aa aaa a=======⎧===⎨-⎩⎧==⎨-⎩证明:性质:设①则把把性质≥两边平方得:≥由性质得:≥所以<≥<类型一:简单的计算与化简例1:计算与化简2222;4=243=12.8881113(0)433(0)x xxx x⨯=⨯=-====-===-⎧-=⎨-⎩(解:(1)(≥(<类型二:在实数范围内因式分解例2:在实数范围内因式分解。
第十六章 二次根式考点整合及2022中考真题精炼(解析版)
第十六章二次根式考点整合及2022中考真题精炼(解析版)第一部分考点整合提升考点一二次根式有意义的条件1x的取值范围是 .思路引领:根据二次根式有意义的条件:被开方数为非负数求解即可.解:由题意知6﹣4x≥0,解得x≤3 2.故答案为:x≤3 2.总结提升:本题主要考查二次根式有意义的条件,二次根式中的被开方数是非负数.2.无论x m的取值范围为( )A.m≥9B.m>36C.m≤9D.m≤6思路引领:将被开方数配方,再根据二次根式有意义,被开方数大于等于0进行判断即可.∵无论x∴m﹣9≥0,∴m≥9.故选:A.总结提升:本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.考点二二次根式的化简3.若a<0,化简其结果是( )A.0B.2a C.﹣2a D.2a或﹣2a思路引领:根据二次根式的性质得出|a﹣(﹣a)|,绝对值的意义去绝对值符号即可求出答案.解:∵a<0,∴原式=|a﹣(﹣a)|=|2a|=﹣2a,故选:C.总结提升:本题主要考查对绝对值,二次根式的性质等知识点的理解和掌握,能正确去绝对值符号是解此题的关键.4解=+=0.位同学的解答正确吗?若不正确,请指出错误原因,并加以改正.思路引领:根据题目中的步骤即可发现问题所在,分类讨论x 与y 的大小,然后根据分母有理化即可解答本题.解:该同学解答不正确,错误原因是不知道x 与y 哪个大,从而x ﹣y 是正值还是负值不清楚,故解答错误,并且第一步的式子就抄错了,改正:当x =y 时,x−y−当x >y 时,x−y−==当x <y 时,x−y−=+=总结提升:本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.我们已经学过完全平方公式a 2±2ab +b 2=(a ±b )2,知道所有的非负数都可以看作是一个数的平方,如22,32,72,0=02,那么,我们可以利用这种思想方法和完全平方公式来计算下面的题:例:求3﹣解:3﹣=212=)2,∴3﹣1.你看明白了吗?请根据上面的方法化简:(1(2(3+++思路引领:(1)将3分成2+1,利用完全平方公式即可求出结论;(2)结合(118分成16+2,利用完全平方公式即可求出结论;(3)将3分成2+1、5分成2+3、7分成3+4、9分成4+5、11分成5+6,利用完全平方公式结合二次根式的加、减法,即可求出结论.解:(1+1;(2)=4(3)原式=++=+==1+22+=1.总结提升:本题考查了二次根式的混合运算以及完全平方公式,读懂题意,将整数分成两个合适的整数相加是解题的关键.6.观察下列等式:①1==;③1…请你利用规律化简:(1(2)1.思路引领:仿照给出二次根式的化简方法,化简即可:(1)分子分母同乘(2解:(1)1=(2总结提升:此题考查了分母有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.考点三二次根式的运算7.下列计算中,正确的是( )A.=21B.3+C÷3D×思路引领:根据二次根式的加减法对A、B进行判断;根据二次根式的性质对C、D进行判断.解:A.原式=A选项不符合题意;B.3B选项不符合题意;C.原式C选项不符合题意;D.原式=D选项符合题意.故选:D.总结提升:本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则是解决问题的关键.8.计算(1)(2)(3)(4−2−)0.思路引领:(1)直接化简二次根式进而求出答案;(2)直接化简二次根式进而利用除法运算法则求出答案;(3)直接利用平方差公式计算,进而化简二次根式求出答案;(4)直接化简二次根式进而求出答案.解:(1)=+4×=(2)=(+÷=43(3)=5﹣12+2+=﹣5+(4)0=1=+1.总结提升:此题主要考查了二次根式的化简以及二次根式的混合运算,正确化简二次根式是解题关键.9.计算:(1)(2)0(3)−2)2−312;(4(5)++.思路引领:(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的乘除法,平方差公式和零指数幂运算即可;(3)利用完全平方公式和有理数减法法则运算即可;(4)把二次根式化为最简二次根式运算即可;(5)先去绝对值符号,然后再合并即可.解:(1)原式=(2)原式=5−4+1+1=1(3)原式=(5﹣4+45)﹣312=145−312=﹣1710;(4)原式=(5)原式=1+=1.总结提升:本题考查了二次根式的混合运算,熟练掌握平方差公式,完全平方公式和零指数幂是解题关键.考点四 二次根式的条件求值101的整数部分为a ,小数部分为b a )(b +1)的值.思路引领:由于34,则可得到a=2,b=1﹣2=32)1﹣3),然后利用平方差公式进行计算即可.解:根据题意得a=2,b=1﹣2=3,+2)+1﹣32﹣22=11﹣4=7.总结提升:本题考查了二次根式的化简求值:先根据已知条件把所求的代数式变形,然后利用整体的思想求值.也考查了无理数的估算.11.已知a2+b2﹣6a﹣8b=﹣25,求a、b的值.分析:“若几个非负数的和为零,则这几个非负数皆为零”,当一个等式里含有几个未知数时,若能将该等式化为几个非负数的和的形式,便能利用上述性质来求解.例如,讲方程a2+b2﹣6a﹣8b=﹣25,化为(a﹣3)2+(b﹣4)2=0,从而求得a=3,b=4.再如,将方程a+b+1=0化为a﹣+1+(b﹣1)1=0,1)2+1)2=0,从而求得a=1,b=2.使用类似的方法解决下面的问题:(1)已知a+b=a>0,b>0)(2)已知a+b+c=+14.求a、b、c的值.思路引领:(1)首先把a+b=a﹣b)2=0,得出a=b,进一步代换求得数值即可;(2)先移项,再利用配方法得到a+1﹣+1+b+1﹣+4+c﹣2﹣9=0即有1)2+2)2+3)2=0,1=02=03=0解得a=0,b=3,c=11.解:(1)∵a+b=∴a2+2ab+b2=4ab,∴(a﹣b)2=0,∴a=b,==1 2;(2)∵a+b+c=++14,∴a+1﹣+1+b+1﹣+4+c﹣2﹣9=0,1)2+2)2+3)2=0,1=02=03=0,∴a +1=1,b +1=4,c ﹣2=9,∴a =0,b =3,c =11.总结提升:本题考查了配方法的应用:用配方法解一元二次方程,配方法的理论依据是公式a 2±2ab +b 2=(a ±b )2;利用配方法求二次三项式是一个完全平方式时所含字母系数的值.也考查了非负数的性质.12.已知:m思路引领:先估算得到m =2,则1m ==2,即1m >m ,利用完全平方公式得到原式=|m −1m |,去绝对值得原式=﹣m +1m ,然后把m 和1m 的值代入计算即可.解:∵m∴m =2,原式=|m −1m |∵m =2,∴1m 1+2,即1m >m ,∴原式=﹣(m −1m)=﹣m +1m2)+2=4.总结提升:=|a |.也考查了无理数的估算以及完全平方公式.13.已知a =2+b =2,求b a−a b 的值.思路引领:先计算出a +b ,b ﹣a 以及ab 的值,再把所求代数式变形为(b a)(b−a)ab,然后代值计算即可.解:∵a =2b =2∴a +b =4,b ﹣a =﹣ab =4﹣3=1,∴原式=b 2−a 2ab =(b a)(b−a)ab =−总结提升:本题二次根式的化简求值,通过先计算a +b ,b ﹣a 以及ab 的值,变形所求代数式,从而使计算变得简便.考点五 二次根式的规律探索14.观察下列各式1+11−12=32;1+12−13=76;1+13−14=1312.(1 ;(2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式,并验证;(3思路引领:(1)根据题意给出的规律即可求出答案;(2)由题意的规律即可用n 表示该等式;(3)根据(2)中的结论即可求出答案.解:(11+14−15=2120;故答案为:2120;(2=n(n 1)1n(n 1).验证:等式左边==n(n 1)1n(n 1)=等式右边.(3=5756.总结提升:本题主要考查了二次根式的性质,解题的关键是正确理解题中给出的规律.2022中考真题精炼一.选择题(共6小题)1.(2022•x 应满足的条件为( )A .x ≠﹣1B .x >﹣1C .x <﹣1D .x ≤﹣1思路引领:直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.解:代数式1有意义时,x +1>0,解得:x >﹣1.故选:B .总结提升:此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确掌握相关定义是解题关键.2.(2022•广州)下列运算正确的是( )A =2B .a 1a −1a=a (a ≠0)C D .a 2•a 3=a 5思路引领:直接利用立方根的性质以及分式的加减运算法则、二次根式的加减运算法则、同底数幂的乘法运算法则分别判断得出答案.解:A −2,故此选项不合题意;B .a 1a −1a=1,故此选项不合题意;C D .a 2•a 3=a 5,故此选项符合题意;故选:D .总结提升:此题主要考查了立方根的性质以及分式的加减运算、二次根式的加减运算、同底数幂的乘法运算,正确掌握相关运算法则是解题关键.3.(2022•湖北)下列各式计算正确的是( )A B .=1C ÷2=D ×思路引领:利用二次根式的加减法的法则,二次根式的乘除法的法则对各项进行运算即可.解:A A 不符合题意;B 、B 不符合题意;C 2=C 不符合题意;D =D 符合题意;故选:D .总结提升:本题主要考查二次根式的混合运算,解答的关键是对相应的运算法则的掌握.4.(2022•内蒙古)实数a +1+|a ﹣1|的化简结果是( )A.1B.2C.2a D.1﹣2a思路引领:根据数轴得:0<a<1,得到a>0,a﹣1<0|a|和绝对值的性质化简即可.解:根据数轴得:0<a<1,∴a>0,a﹣1<0,∴原式=|a|+1+1﹣a=a+1+1﹣a=2.故选:B.总结提升:|a|是解题的关键.5.(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=a为子弹的加速度,s 为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为( )A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s思路引领:把a=5×105m/s2,s=0.64m代入公式v=解:v==8×102(m/s),故选:D.总结提升:此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2022•x﹣2在实数范围内有意义,则x的取值范围是( )A.x>﹣1B.x≥﹣1C.x≥﹣1且x≠0D.x≤﹣1且x≠0思路引领:根据二次根式的被开方数是非负数,a﹣p=1a p(a≠0)即可得出答案.解:∵x+1≥0,x≠0,∴x≥﹣1且x≠0,故选:C.总结提升:本题考查了二次根式有意义的条件,负整数指数幂,掌握二次根式的被开方数是非负数,a﹣p=1a p(a≠0)是解题的关键.二.填空题(共6小题)7.(2022•荆州)若3a,小数部分为b,则代数式(2+)•b的值是 .思路引领:3a、b的值,代入所求式子计算即可.解:∵12,∴1<32,∵若3a,小数部分为b,∴a=1,b=31=2∴(2+)•b=(2+(22,故答案为:2.总结提升:本题考查了估算无理数的大小的应用,解题的关键是求出a、b的值.8.(2022•随州)已知m为正整数,=m有最小值3×7=21.设n1的整数,则n的最小值为 ,最大值为 .思路引领:n最小为31越小,300 n越小,则n=2时,即可求解.∴n最小为3,1的整数,越小,300n越小,则n越大,2时,300n=4,∴n=75,故答案为:3;75.总结提升:本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.9.(2022•+1)1)的结果等于 .思路引领:根据平方差公式即可求出答案.2﹣12=19﹣1=18,故答案为:18.总结提升:本题考查平方差公式与二次根式的混合运算,解题的关键是熟练运用平方差公式,本题属于基础题型.10.(2022•遂宁)实数a 、b 在数轴上的位置如图所示,化简|a +1| 2 .思路引领:根据数轴可得:﹣1<a <0,1<b <2,然后即可得到a +1>0,b ﹣1>0,a ﹣b <0,从而可以将所求式子化简.解:由数轴可得,﹣1<a <0,1<b <2,∴a +1>0,b ﹣1>0,a ﹣b <0,∴|a +1|+=a +1﹣(b ﹣1)+(b ﹣a )=a +1﹣b +1+b ﹣a=2,故答案为:2.总结提升:本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.11.(2022•内蒙古)已知x ,y 是实数,且满足y+18,则的值是 .思路引领:根据负数没有平方根求出x 的值,进而求出y 的值,代入计算即可求出值.解:∵y =18,∴x ﹣2≥0,2﹣x ≥0,∴x =2,y =18,则原式==12,故答案为:12总结提升:此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.12.(2022• .思路引领:先化简各个二次根式,再合并同类二次根式.0.故答案为0.总结提升:本题考查二次根式的加减,解题的关键是首先化简各个二次根式,再合并同类二次根式.三.解答题(共4小题)13.(2022•河池)计算:|﹣3﹣1(π﹣5)0.思路引领:先去绝对值,计算负整数指数幂,零指数幂和二次根式乘法,再合并即可.解:原式=−13−1=23.总结提升:本题考查实数的混合运算,解题的关键是掌握实数相关运算的法则.14.(2022•思路引领:根据二次根式的乘法法则和二次根式的化简计算,再合并同类二次根式即可.解:原式==总结提升:=a ≥0,b ≥0)是解题的关键.15.(2022•思路引领:原式利用二次根式乘法法则计算,合并即可得到结果;解:原式====1x−2,总结提升:此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.16.(2022•济宁)已知a =2+b =2a 2b +ab 2的值.思路引领:利用因式分解,进行计算即可解答.解:∵a=2b=2∴a2b+ab2=ab(a+b)=(2+(2(2++2=(4﹣5)×4=﹣1×4=﹣4.总结提升:本题考查了二次根式的混合运算,代数式求值,熟练掌握因式分解是解题的关键.。
专题06 二次根式篇(解析版)
专题06 二次根式考点一:二次根式之定义与有意义的条件1. 二次根式的定义:形如()0≥aa的式子叫做二次根式。
2. 二次根式有意义的条件:二次根式的被开方数大于等于0。
即a中,0≥a。
1.(2022•湘西州)要使二次根式63-x有意义,则x的取值范围是( )A.x>2B.x<2C.x≤2D.x≥2【分析】根据二次根式有意义的条件:被开方数是非负数即可得出答案.【解答】解:∵3x﹣6≥0,∴x≥2,故选:D.2.(2022•广州)代数式11+x有意义时,x应满足的条件为( )A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【解答】解:代数式有意义时,x+1>0,解得:x>﹣1.故选:B.3.(2022•贵阳)代数式3-x在实数范围内有意义,则x的取值范围是( )A.x≥3B.x>3C.x≤3D.x<3【分析】直接利用二次根式的定义得出x﹣3≥0,进而求出答案.【解答】解:∵代数式在实数范围内有意义,∴x ﹣3≥0,解得:x ≥3,∴x 的取值范围是:x ≥3.故选:A .4.(2022•绥化)若式子21-++x x 在实数范围内有意义,则x 的取值范围是( )A .x >﹣1B .x ≥﹣1C .x ≥﹣1且x ≠0D .x ≤﹣1且x ≠0【分析】根据二次根式的被开方数是非负数,a ﹣p =(a ≠0)即可得出答案.【解答】解:∵x +1≥0,x ≠0,∴x ≥﹣1且x ≠0,故选:C .5.(2022•雅安)使2-x 有意义的x 的取值范围在数轴上表示为( )A .B .C .D .【分析】根据二次根式有意义的条件,得出关于x 的不等式,解不等式,即可得出答案.【解答】解:∵∴x ﹣2≥0,∴x ≥2,故选:B .6.(2022•菏泽)若31-x 在实数范围内有意义,则实数x 的取值范围是 .【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得,x ﹣3>0,解得x >3.故答案为:x >3.7.(2022•青海)若式子11-x 有意义,则实数x 的取值范围是 .【分析】根据二次根式的被开方数为非负数,分式的分母不等于零列式计算可求解.【解答】解:由题意得x ﹣1>0,解得x >1,故答案为:x >1.8.(2022•包头)若代数式x x 11++在实数范围内有意义,则x 的取值范围是 .【分析】根据二次根式有意义的条件,分式有意义的条件是分母不等于零,列不等式组,解出即可.【解答】解:根据题意,得,解得x ≥﹣1且x ≠0,故答案为:x ≥﹣1且x ≠0.9.(2022•常德)要使代数式4-x x 有意义,则x 的取值范围为 .【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:x ﹣4>0,解得:x >4,故答案为:x >4.10.(2022•邵阳)若21-x 有意义,则x 的取值范围是 .x 的不等式组,求出x 的取值范围即可.【解答】解:∵有意义,∴,解得x >0.故答案为:x >2.考点二:二次根式之性质与化简1. 二次根式的性质:①二次根式的双重非负性:二次根式本身是一个非负数,恒大于等于0。
专题02 二次根式综合(压轴33题10个考点)(解析版)
专题02二次根式综合(压轴33题10个考点)一.二次根式的定义(共1小题)1.若是整数,则正整数n的最小值是51.【答案】51.【解答】解:∵204=4×51,∴,∴,∵是整数,且n是整数,∴n的最小值为:51.故答案为:51.二.二次根式有意义的条件(共3小题)2.使式子有意义的x的取值范围是()A.x≥﹣1B.﹣1≤x≤2C.x≤2D.﹣1<x<2【答案】B【解答】解:根据题意,得,解得,﹣1≤x≤2;故选:B.3.已知|2004﹣a|+=a,则a﹣20042=2005.【答案】2005.【解答】解:∵有意义,∴a﹣2005≥0,解得:a≥2005,∴|2004﹣a|+=a﹣2004+=a,故=2004,∴a﹣2005=20042,∴a﹣20042=a﹣(a﹣2005)=a﹣a+2005=2005.故答案为:2005.4.已知,则x2022y2023=﹣.【答案】.【解答】解:∵,即,解得:,∴x=2,∴,∵x2022y2023=(xy)2022•y,将x=2,代入,∴x2022y2023=(xy)2022•y=[2×(﹣)]2022×(﹣)=(﹣1)2022×(﹣)=﹣.故答案为:.三.二次根式的性质与化简(共8小题)5.已知x<1,则化简的结果是()A.x﹣1B.x+1C.﹣x﹣1D.1﹣x【答案】D【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选:D.6.实数a,b表示的点在数轴上的位置如图,则将化简的结果是()A.4B.2a C.2b D.2a﹣2b【答案】A【解答】解:由数轴知:﹣2<a<﹣1,1<b<2,a<b,∴a+2>0,b﹣2<0,a﹣b<0.∴=|a+2|+|b﹣2|+|a﹣b|=a+2+2﹣b+b﹣a=4.故选:A.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.【答案】C【解答】解:由图中规律知,前(n﹣1)行的数据个数为2+4+6+…+2(n﹣1)=n(n ﹣1),所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数的被开方数是n(n﹣1)+n﹣3=n2﹣3,所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是.故选:C.8.已知T1===,T2===,T3===,…T n=,其中n为正整数.设S n=T1+T2+T3+…+T n,则S2021值是()A.2021B.2022C.2021D.2022【答案】A【解答】解:由T1、T2、T3…的规律可得,T1==1+(1﹣),T2==1+(﹣),T3==1+(﹣),……T2021==1+(﹣),所以S2021=T1+T2+T3+…+T2021=1+(1﹣)+1+(﹣)+1+(﹣)+…+1+(﹣)=(1+1+1+…+1)+(1﹣+﹣+﹣+…+﹣)=2021+(1﹣)=2021+=2021,故选:A.9.已知a≠0,b≠0且a<b,化简的结果是﹣a.【答案】﹣a.【解答】解:由题意:﹣a3b≥0,即ab≤0,∵a<b,∴a<0<b,所以原式=|a|=﹣a,故答案为:﹣a.10.已知|x+2|+|1﹣x|=9﹣﹣,则x+y的最小值为﹣3.【答案】﹣3.【解答】解:∵|x+2|+|1﹣x|=9﹣﹣,∴|x+2|+|x﹣1|+|y+1|+|y﹣5|=9,∵|x+2|+|x﹣1|可理解为在数轴上,数x的对应的点到﹣2和1两点的距离之和;|y+1|+|y ﹣5|可理解为在数轴上,数y的对应的点到﹣1和5两点的距离之和,∴当﹣2≤x≤1,|x+2|+|x﹣1|的最小值为3;当﹣1≤y≤5时,|y+1|+|y﹣5|的最小值为6,∴x的范围为﹣2≤x≤1,y的范围为﹣1≤y≤5,当x=﹣2,y=﹣1时,x+y的值最小,最小值为﹣3.故答案为﹣3.11.若,则m的取值范围是m≤4.【答案】见试题解答内容【解答】解:,得4﹣m≥0,解得m≤4,故答案为:m≤4.12.若x<2,化简|﹣x|的正确结果是2x+2或﹣4x+2.【答案】2x+2或﹣4x+2.【解答】解:当0≤x<2时,原式=|x﹣2|+3x=2﹣x+3x=2x+2;当x<0时,原式=|x﹣2|﹣3x=2﹣x﹣3x=﹣4x+2.故答案为:2x+2或﹣4x+2.四.二次根式的乘除法(共4小题)13.使式子成立的条件是()A.a≥5B.a>5C.0≤a≤5D.0≤a<5【答案】B【解答】解:由题意得:,解得:a>5.故选:B.14.“分母有理化”是我们常用的一种化简的方法,如:==7+ 4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣3【答案】D【解答】解:设x=﹣,且>,∴x<0,∴x2=6﹣3﹣2+6+3,∴x2=12﹣2×3=6,∴x=,∵=5﹣2,∴原式=5﹣2﹣=5﹣3,故选:D.15.若a,b为有理数且满足,则a+b=4.【答案】1.【解答】解:∵,∴=.∴a=3,b=1.∴a+b=3+1=4.故答案为:4.16.阅读下面的解题过程体会如何发现隐含条件并回答下面的问题化简:.解:隐含条件1﹣3x≥0,解得:.∴1﹣x>0.∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x.【启发应用】(1)按照上面的解法,试化简.【类比迁移】(2)实数a,b在数轴上的位置如图所示,化简:.(3)已知a,b,c为A B C的三边长.化简:.【答案】(1)1;(2)﹣a﹣2b;(3)2a+2b+2c.【解答】解:(1)隐含条件2﹣x≥0,解得:x≤2,∴x﹣3<0,∴原式=(3﹣x)﹣(2﹣x)=3﹣x﹣2+x=1;(2)观察数轴得隐含条件:a<0,b>0,|a|>|b|,∴a+b<0,b﹣a>0,∴原式=﹣a﹣a﹣b﹣b+a=﹣a﹣2b;(3)由三角形的三边关系可得隐含条件:a+b+c>0,a﹣b<c,b﹣a<c,c﹣b<a,∴a﹣b﹣c<0,b﹣a﹣c<0,c﹣b﹣a<0,∴原式=(a+b+c)+(﹣a+b+c)+(﹣b+a+c)+(﹣c+b+a)=a+b+c﹣a+b+c﹣b+a+c﹣c+b+a=2a+2b+2c.五.分母有理化(共1小题)17.阅读材料:我们已经知道,形如的无理数的化简要借助平方差公式:例如:.下面我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样=m,,那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即=7,∴.模型应用1:利用上述解决问题的方法化简下列各式:(1);(2);模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(结果化成最简).【答案】(1)1+;(2)2﹣;(3)2﹣2.【解答】解:(1)这里m=6,n=5,由于1+5=6,1×5=5,即12+()2=6,1×=,所以:===1+;(2)首先把化为,这里m=13,n=40,由于5+8=13,5×8=40,即()2+()2=13,×=,所以====﹣=2﹣;(3)在Rt△ABC中,由勾股定理得,AC2+BC2=AB2,所以,所以,.六.同类二次根式(共1小题)18.已知最简二次根式与是同类二次根式,则a的值为()A.16B.0C.2D.不确定【答案】B【解答】解:∵=3,而最简二次根式与是同类二次根式,∴a+2=2,解得a=0.故选:B.七.二次根式的加减法(共1小题)19.若,则x﹣x2的值为﹣6.【答案】﹣6.【解答】解:由题意得,x﹣2≥0.∴x≥2.∴1﹣x<0.∴.∴x﹣1+=x.∴.∴x=3.∴x﹣x2=3﹣9=﹣6.故答案为:﹣6.八.二次根式的混合运算(共4小题)20.已知,,则2y﹣3x的平方根为±4.【答案】±4.【解答】解:∵,∴96﹣x≥0,∴x≤96,∴100﹣x+96﹣x=200,解得x=﹣2,∵,∴m+23≥0,m﹣2≥0,2﹣m≥0,解得m=2,∴y=5,∴±=±=±4,故答案为:±4.21.计算的结果是+.【答案】+.【解答】解:原式=[(﹣)(+)]2022×(+)=(2﹣3)2022×(+)=+.故答案为:+.22.已知a=,b=.(1)求a+b的值;(2)设m是a小数部分,n是b整数部分,求代数式4m2+4mn+n2的值.【答案】(1)2;(2)20.【解答】解:(1)a===﹣2,b===+2.a+b=﹣2++2=2,(2)∵2<<3,∴0<﹣2<1,4<+2<5,∴m=﹣2,n=4,∴4m2+4mn+n2=(2m+n)2=(2﹣4+4)2=20.23.先阅读下面的材料,再解答下列问题.∵,∴.特别地,,∴.这种变形叫做将分母有理化.利用上述思路方法计算下列各式:(1);(2).【答案】(1)2020;(2)1.【解答】解:(1)===2021﹣1=2020;(2)====1.九.二次根式的化简求值(共8小题)24.已知,则代数式x2﹣2x﹣6的值是()A.B.﹣10C.﹣2D.【答案】C【解答】解:∵,∴x﹣1=,∴x2﹣2x﹣6=(x﹣1)2﹣7=()2﹣7=5﹣7=﹣2,故选:C.25.已知,,则a与b的关系是()A.a=b B.ab=1C.ab=﹣1D.a+b=0【答案】D【解答】解:a===3﹣=﹣(﹣3),A.a=﹣b,故本选项不符合题意;B.ab=(3﹣)×(﹣3)=﹣(﹣3)2=﹣(5﹣6+3)=﹣5+6﹣3=﹣8+6,故本选项不符合题意;C.ab=﹣8+6,故本选项不符合题意;D.a+b=3﹣+﹣3=0,故本选项符合题意.故选:D.26.若x2+y2=1,则++的值为()A.0B.1C.2D.3【答案】D【解答】解:∵x2+y2=1,∴﹣1≤x≤1,﹣1≤y≤1,∵==,x+1≥0,y﹣2<0,(x+1)(y﹣2)≥0,∴x+1=0,∴x=﹣1,∴y=0,∴++=2+1+0=3.故选:D.27.若a=2+,b=2﹣,则=8.【答案】8.【解答】解:∵a=2+,b=2﹣,∴a2=(2+√5)2=4+4+5=9+4,b2=(2﹣)2=4﹣4+5=9﹣4,ab=(2+)(2﹣)=4﹣5=﹣1.﹣===8.故答案为:8.28.若m=,则m3﹣m2﹣2017m+2015=4030.【答案】见试题解答内容【解答】解:∵m====,∴原式=m2(m﹣1)﹣2017m+2015=(+1)2×﹣2017(+1)+2015=(2017+2)﹣2017﹣2017+2015=2017+2×2016﹣2017﹣2017+2015=4032﹣2=403029.已知a=2+,b=,则a2﹣3ab+b2的值为11.【答案】11.【解答】解:当a=2+,b=时,a2﹣3ab+b2,=﹣+,=,=,=11.30.某同学在解决问题:已知,求2a2﹣8a+1的值.他是这样分析与求解的:先将a进行分母有理化,过程如下,,∴,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据上述分析过程,解决如下问题:(1)若,请将a进行分母有理化;(2)在(1)的条件下,求a2﹣2a的值;(3)在(1)的条件下,求2a3﹣4a2﹣1的值.【答案】(1);(2)1;(3).【解答】解:(1)a===;(2)∵,∴(a﹣1)2=2,(a﹣1)2=a2﹣2a+1,∴a2﹣2a+1=2,∴a2﹣2a=1;(3)根据(2)可知,a2﹣2a=1,∴2a3﹣4a2﹣1=2a(a2﹣2a)﹣1=2a﹣1,当a=时,原式=2()﹣1=2.31.小芳在解决问题:已知a=,求2a2﹣8a+1的值.他是这样分析与解的:a==2﹣,∴a=2﹣,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小芳的分析过程,解决如下问题:(1)计算:.(2)若a=.①化简a,求4a2﹣8a﹣1的值;②求a3﹣3a2+a+1的值.【答案】(1)9;(2)①a=+1,4a2﹣8a﹣1的值是3;②0.【解答】解:(1)=﹣1+++…+=﹣1+=﹣1+10=9;(2)①a====+1,∴a=+1,∴(a﹣1)2=()2=2,∴a2﹣2a+1=2,∴a2﹣2a=1,∴4a2﹣8a﹣1=4(a2﹣2a)﹣1=4×1﹣1=4﹣1=3;②由①知a2﹣2a=1,∴a3﹣3a2+a+1=a(a2﹣2a)﹣(a2﹣2a)﹣a+1=a×1﹣1﹣a+1=a﹣1﹣a+1=0.十.二次根式的应用(共2小题)32.俊俊和霞霞共同合作将一张长为,宽为1的矩形纸片进行裁剪(共裁剪三次),裁剪出来的图形刚好是4个等腰三角形(无纸张剩余).霞霞说:“有一个等腰三角形的腰长是1”;俊俊说:“有一个等腰三角形的腰长是﹣1”;那么另外两个等腰三角形的腰长可能是1或或2﹣.【答案】1或或2﹣.【解答】解:如图1方式裁剪,另两个等腰三角形腰长是或;如图2方式裁剪,另两个等腰三角形腰长都是1.故答案为:1或或2﹣.33.古希腊几何学家海伦通过证明发现:如果一个三角形的三边长分别为a,b,c.记,那么三角形的面积为,俗称海伦公式,若在△ABC中,AB=3,BC=6,AC=7,则用海伦公式求得△ABC的面积为.【答案】【解答】解:由题意可得:a=6,b=7,c=3,∴,∴===,故答案为:.。
专题02 《二次根式》计算、解答题重点题型分类(解析版)
专题02 《二次根式》计算、解答题重点题型分类专题简介:本份资料专攻《二次根式》中“二次根式的性质与化简”、“二次根式的乘除法”、“二次根式的加减法”、“二次根式的混合运算”、“二次根式的化简求值”计算、解答题重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。
考点1:二次根式的性质与化简方法点拨:(1)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.(2)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.1.化简:(1(2(3(4(50,0)>>a b【答案】(1)(2)(3)(4)13;(5)2【分析】先将被开方数进行因数分解或因式分解,再应用积的算术平方根的性质,将能开得尽方的因数或因式开出来即可.【详解】解:(1===(2===;(3===;(413===;(52=【点睛】本题主要考查了利用二次根式的性质化简,解题的关键在于能够熟练掌握相关求解方法.2.已知数a,b,c在数轴上的位置如图所示:【答案】0【分析】由三个数在数轴上的位置即可确定它们的符号及大小关系,从而可确定a -b 及c -a 的符号,最后可化简绝对值与二次根式,从而可求得结果.【详解】由数轴知:0c b a<<<∴0a b ->,0c a -<=-b -(a -b )-(c -a )-(-c )=-b -a +b +a -c +c=0【点睛】本题考查了算术平方根的性质、绝对值的化简、数轴上数的大小关系等知识,注意:当a 为负数a .3.已知实数a ,b【答案】1a b +-【分析】根据题意得:2,b 2a >-< ,可得20,30a b +>-< ,然后根据二次根式的性质化简原式,即可求解.【详解】解:根据题意得: 2,b 2a >-< ,∴20,30a b +>-< ,23a b =+--()23a b =++-1a b =+- .【点睛】本题主要考查了二次根式的性质,有理数的大小比较,根据题意得到2,b 2a >-< 是解题的关键.4.已知130a -£-£+.【答案】5【分析】先解不等式组可得23,a ££则有10,40,a a +>-<再化简二次根式即可得到答案.【详解】解:130a -£-£Q ,23,a \££10,40,a a \+>-<4-14 5.a a =++-=【点睛】本题考查的是一元一次不等式组的解法,二次根式的化简,解本题的关键是得到“10,40a a +>-< ”.5.阅读下列材料,然后回答问题.一样的式子,其实我们还可以将其进一====1===以上这种化简的步骤叫做分母有理化.(1 (2【答案】(2【分析】(1(2)根据分母有理化的步骤进行化简,即可求解.(2【点睛】本题主要考查了分母有理化,明确题意,理解分母有理化的步骤是解题的关键.6a ,b ,使a b m +=,ab n =,即22m +==0)a b ==>>.,这里7m =,12n =,由于437+=,4312´=,所以22+==,2===(1(2(3【答案】(11+;(2(3【详解】解:(1)∴4m =,3n =,∵314+=,313´=,∴224+==,1===;(2),∴13m =,42n =,∵7613+=,7642´=,∴2213+===∴8m =,15n =,∵358+=,3515´=,∴228+=====【点睛】本题考查了二次根式的化简,根据题中的范例把根号内的式子整理成完全平方的形式是解答此题的关键.7这样的根式叫做复合二次根式.有一些复合二次根式可以借助构造完全平1====;再如:==请用上述方法探索并解决下列问题:(1=,=;(2)若2()a m+=+,且a,m,n为正整数,求a的值.【答案】(13;(2)a的值为46或14【分析】(1)根据题意利用完全平方公式和二次根式的性质进行求解即可;(2)由222()5a m m n+==++,可得225a m n=+,62mn=,则3mn=,再根据a,m,n为正整数,可得1m=,3n=或3m=,1n=,由此求解即可.【详解】解:(1===3===-.3-;(2)∵222()5a m m n+==++,225a m n\=+,62mn=,∴3mn=又∵a,m,n为正整数,1m\=,3n=或3m=,1n=,∴当1m=,3n=时,2215346a=+´=;当3m=,1n=时,2235114a=+´=.综上所述,a的值为46或14.【点睛】本题主要考查了完全平方公式和二次根式的性质化简,解题的关键在于能熟练掌握完全平方公式.8.(阅读材料)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如=(12.善于思考的小明进行了以下探索:若设a +=(m +)2=m 2+2n 2+2a 、b 、m 、n 均为整数),则有a =m 2+2n 2,b =2mn .这样小明就找到了一种把类似a +法.请你仿照小明的方法探索并解决下列问题:(问题解决)(1)若a +=(m +2,当a 、b 、m 、n 均为整数时,则a = ,b = .(均用含m 、n 的式子表示)(2)若x =(m +2,且x 、m 、n 均为正整数,分别求出x 、m 、n 的值.(拓展延伸)(3= .【答案】(1)m 2+5n 2,2mn ;(2)当m =1,n =2时,x=13;当m =2,n =1时,x =7;(3.【分析】(1)利用完全平方公式展开可得到用m 、n 表示出a 、b ;(2)利用(1)中结论得到4=2mn ,利用x 、m 、n 均为正整数得到12m n =ìí=î或21m n =ìí=î,然后利用x =m 2+3n 2计算对应x 的值;(3)=m +,两边平方(25m +=+,可得22651m n mn ì+=í=î消去n 得42560m m -+=,可求m【详解】解:(1)设a +m +2=m 2+5n 2+2a 、b 、m 、n 均为整数),则有a =m 2+5n 2,b =2mn ;故答案为m 2+5n 2,2mn ;(2)∵(22232x m m n +=+=++∴4=2mn ,∴mn =2,∵x 、m 、n 均为正整数,∴12m n =ìí=î或21m n =ìí=î,当m =1,n =2时,x =m 2+3n 2=1+3×4=13;当m =2,n =1时,x =m 2+3n 2=4+3×1=7;即x 的值为为13或7;(3=m +,∴(25m +=+,∴226522m n mn ì+=í=î,∴1n m=,22165m m æö+=ç÷èø,∴42560m m -+=,∴(m 2-2)(m 2-3)=0,∴m,m∴n =n =.∴m n ìïíïîm nìïí=ïî====.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.一元高次方程,二元方程组,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.1.计算(1)(2;(3;(4【答案】(1)12;(2(3)34;(4)【分析】(1)根据二次根式乘除运算法则从左到右顺序计算即可;(2)根据二次根式乘除运算法则从左到右顺序计算即可;(3)先化简二次根式,根据二次根式乘除运算法则从左到右顺序计算即可;(4)根据二次根式除运算法则转化为乘法计算,再化简即可.【详解】解:(1)原式==12;(2)原式=64(3)原式=´´=34;(4)原式=【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.2.若y =+【分析】根据二次根式的被开方数是非负数,可得不等式组,根据解不等式组,可得x ,根据x 的值可得y的值,再根据二次根式的除法,可得答案.2x -3≥0,3-2x ≥0,即x =32,y=【点睛】本题考查了二次根式有意义的条件,利用二次根式的被开方数是非负数得出不等式组是解题关键.3==的值.【答案】4【分析】根据二次根式分母有理化计算即可;2=+2==原式===+224==;【点睛】本题主要考查了二次根式分母有理化和乘除运算,准确化简是解题的关键.4.若99a和b ,求4312ab a b ---的值【答案】37-【分析】先求出99a ,b 的值,再代入求值即可.【详解】∵34∴12,95,∴99,995=4,∴a =3,b=4∴原式=3)(443)-3(4-12-13﹣12-=37-.【点睛】本题考查了无理数的估算,无理数都可以写成整数部分+小数部分的形式,从而得到小数部分=这个无理数﹣整数部分,这是解题的关键.5.(13=,求a的值;(2能够合并,求a的值,并求出这两个二次根式的积.【答案】(1)a=7;(2)a=8,两个二次根式的积为5.【分析】(1)两边同时平方得关于a的方程,求解即可;(2)根据同类二次根式的意义可求出a的值,从而确定二次根式,进一步得出答案.【详解】解:(1)3=∴a+2=32解得a=7(2=能够合并=解得a=8∴5=.【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.6.如图,从一个大正方形中裁去面积为215cm和224cm的两个小正方形,求留下部分的面积.【答案】2【分析】先根据两个小正方形的面积可求得它们的边长,进而可得大正方形的边长,再利用大正方形的面积减去两个小正方形的面积列式计算即可求得答案.【详解】解:∵两个小正方形的面积分别为215cm和224cm,∴=,∴∴留下部分(即阴影部分)的面积是21524--152241524=++--=2)cm =,答:留下部分的面积为2.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解决本题的关键.7.在平面直角坐标系xOy 中,对于点P 和线段ST ,我们定义点P 关于线段ST 线段比()()PS PS PT ST k PTPS PT ST ì<ïï=íïïî….已知点(0,1)A ,(1,0)B .(1)点(2,0)Q 关于线段AB 的线段比k = ;(2)点(0,)C c 关于线段AB的线段比k =c 的值.【答案】(1(2)3c =或c =.【分析】(1)求出QA 、QB 、AB ,根据线段比定义即可得到答案;(2)方法同(1),分0c >和0c …讨论.【详解】解:(1)∵(0,1)A ,(1,0)B ,(2,0)Q ,∴AB =QA ,1QB =,根据线段比定义点(2,0)Q 关于线段AB的线段比QB k AB ==;;(2)∵(0,1)A ,(1,0)B ,(0,)C c ,∴AB =|1|AC c =-,BC =2212AC c c =+-,221BC c =+,当0c >时,22AC BC <,即AC BC <,由(0,)C c 关于线段AB的线段比k =,解得3c =或1c =-(舍去),∴3c =,当0c …时,22AC BC …,即AC BC …,由(0,)C c 关于线段AB 的线段比k ==,解得c =c =,∴c =综上所述,点(0,)C c 关于线段AB 的线段比k 3c =或c =【点睛】本题考查坐标与图形的性质,解题的关键是读懂线段比的定义,找出“临界点”列不等式.8.先阅读下面的解题过程,然后再解答:a ,b ,使a b m +=,ab n =,即22m +=,=)a b ==>7m =,12n =因为437+=,4312´=即227+=所以2===根据上述方法化简:(1(2【答案】(1(2【分析】根据a b m +=,ab n =,即22m +==代入计算即可;【详解】(1)根据题意,可知13m =,42n =,因为6713+=,6742´=,即2213+=====(2)根据题意,可知8m =,15n =,因为538+=,5315´=即228+===【点睛】本题主要考查了二次根式的化简求值,准确计算是解题的关键.9.材料1:因为无理数是无限不循环小数,所以无理数的小数部分我们不可能全部写出来.比如:π等,而常用的“…”或者“≈”的表示方法都不够百分百准确.材料2:2.5的整数部分是2,小数部分是0.5,小数部分可以看成是2.5−2得来的.材料3:任何一个无理数,都夹在两个相邻的整数之间,如23<<<<.根据上述材料,回答下列问题:(1的整数部分是,小数部分是.+的值.(2)5+5<<,求a ba b(3)已知3x y=+,其中x是整数,且0<y<1,求x+4y的倒数.【答案】(1)44-;(2)13;(3【分析】(1的整数部分和小数部分;(2(3的整数部分,得到x的值,从而表示出y,求出x+4y的结果,再求x+4y的倒数即可.【详解】解:(1)<∴45<,的整数部分是4,故答案为:44;(2)<<,∴12<,∴67<<,∵5<<,a b∴a=6,b=7,∴a+b=13;(3)∵12,∴1+3<2+3,∴4<5,∴x=4,y1,x+4y)∴x+4ya≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.在应用“夹逼法”估算无理数时,关键是找出位于无理数两边的平方数,则无理数的整数部分即为较小的平方数的算术平方根.1+(2)()14---.【答案】(1);(2【分析】(1)先化简二次根式,然后再进行二次根式的加减运算;(2)根据绝对值、化简二次根式、立方根可直接进行求解.【详解】解:(1)原式=+(2)原式134+【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的运算是解题的关键.2.计算或化简下列各题:(1)2021(1)(+--;(2)【答案】(1)1-;(2.【分析】(1)根据二次根式的加减运算法则计算即可;(2)去掉绝对值符号,根据二次根式的加减运算法则计算即可.【详解】(1)解:原式=(1)-+=1;(2)解:原式==【点睛】本题考查了二次根式的加减混合运算,熟练掌握二次根式的加减运算法则是解题的关键.3.先化简再求值:当a =时,求a【答案】21,1a -【分析】本题应先根据二次根式的性质把原式进行化简,再将a 的值代入即可求解.【详解】解:当a a -1>0,∴原式=a =a +(a -1)=2a ﹣1∴原式1.故答案为:2a ﹣1;1【点睛】本题考查了二次根式的性质化简求值,熟知二次根式的性质是解题的关键.4.已知【答案】2y-【分析】先根据已知条件判断出0y < ,30x -£ ,再根据0y < ,3x £ 化简即可.【详解】解:0=<Q ,0y \< ,30x -£ ,3x \£ ,=413x y x =-+---413x y x =-+--+2y =- .5.嘉琪准备完成题目“计算:()﹣”时,发现“■”处的数字印刷不清楚,(1)他把“■”处的数字猜成6,请你计算()﹣(2)他妈妈说:“”通过计算说明原题中“■”是几?【答案】(1)0;(2)原题中“■”是152【分析】(1)先去括号,然后根据二次根式加减运算法则进行计算即可;(2)将原式进行整理,设“■”为m【详解】解:(1)(﹣)﹣==0;(2)设“■”为m ,-=,解得:152m =,∴原题中“■”是152.【点睛】本题考查了二次根式的加减混合运算,熟练掌握运算法则是解本题的关键.6.阅读下列内容:因为139<<,所以13<<11.试解决下列问题:(1的整数部分和小数部分;(2)若已知8+a ,8的整数部分是b ,求34ab a b -+的值.【答案】(1的整数部分是33-;(2)34ab a b -+13.【分析】(1的大小即可;(2,a 、b 的值,代入计算即可.【详解】解:(1)∴3<4,的整数部分是3-3;(2)∵34,∴11<12,∴a ,∵34,∴-4<-3,∴4<5,∴b =4,∴ab -3a +4b=)×4-3×)+4×4,答:ab -3a +4b .【点睛】本题考查估算无理数的大小,理解算术平方根的定义是解决问题的前提,求出a 、b 的值是正确解答的关键.7111111112=+-=+;111112216=+-=+;1111133112=+-=+.(1)请你根据上面三个等式提供的信息,猜想.(2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).【答案】(1)111441+-+,1120,1119+2)11(1)n n ++【分析】(11120的结果为11380;(2)第n 1与1n(n 1)+的和.【详解】解:(11111144120=+-=+;1111119191380=+-=+;故答案是:111441+-+,1120,11119191+-+,11380;(2)通过观察等式右边为1与1n(n 1)+的和,故第n 11(1)n n =++.【点睛】本题考查了二次根式的加减法:解题的关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.8.观察下列一组等式,解答后面的问题:=﹣1,==应用计算:(1(2= ;(3+LL= .【答案】(1(2(310【分析】(1),然后利用平方差公式计算;(2)利用题中的计算结果和(1)小题的计算结果找出规律求解;(3)先分母有理化,然后合并即可.【详解】解:(1=(2、(3...+10.10.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法是解决问题的关键.考点4:二次根式的混合运算方法点拨:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的; (2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用; (3)二次根式混合运算的结果要写成最简形式.1.计算:(1)3)(−5)(2))(3)()×(4)()2018×(3)2018【答案】(1)2)2(3)-30(4)12.已知1x=+,求代数式229-+的值.x x【答案】11.【分析】先将代数式配方,然后再把1x =+代入要求的代数式中进行求解即可.【详解】解: ()222918x x x -+=-+当1x =时,原式)21183811=-+=+=.【点睛】本题主要考查了代数式求值,解题的关键在于能够熟练掌握完全平方公式和二次根式的混合计算法则.3.如图,一只蚂蚁从点A 沿数轴向右爬行2个单位长度到达点B ,点A 所表示的数为,设点B 所表示的数为m .(1)求m 的值;(2)求|m ﹣1|+(2)(4﹣m )的值.【答案】(1)2m =(21【分析】(1)根据一只蚂蚁从点A 沿数轴向右爬行2个单位长度到达点B ,可得2AB =,再由点A 表示的数为B 表示的数为m ,即可得到(2m -=,由此求解即可;(2)根据(1)求出的结果,代入m 的值,根据实数的混合计算法则求解即可.【详解】解:(1)由题意得:2AB =,∵点A 表示的数为,点B 表示的数为m ,∴(2m -=,∴2m =-;(2)∵2m =-∴(()124m m -+--(21242=--+-(122=-+-142=-+-1.【点睛】本题主要考查了实数与数轴,实数的混合运算,平方差公式,解题的关键在于能够根据题意求出2m =4.某居民小区有块形状为长方形ABCD 的绿地,长方形绿地的长BC AB长方形绿地中修建一个长方形花坛(即图中阴影部分)1)米.(1)长方形ABCD 的周长是 米;(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/m 2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果均化为最简二次根式)【答案】(1)(2)600元【分析】(1)由长方形的周长等于相邻两边和的2倍,再计算二次根式的加法,后计算乘法即可;(2)先求解通道的面积,再乘以单价即可得到答案.(1)解:Q 长方形绿地的长BC AB\ 长方形ABCD 的周长为:(2=2答:长方形ABCD 的周长为:米.故答案为:(2)11-131=-+ =11212100,-=Q 通道要铺上造价为6元/m 2的地砖,则购买地砖需要花费:1006600´=,答:购买地砖需要花费600元.【点睛】本题考查的是二次根式的加法与二次根式的乘法及混合运算的应用,熟练的进行二次根式的的化简与运算是解本题的关键.5.阅读下列材料,然后回答问题这样的式子,我们可以将其分母有理化:1====;1====-.(1(2【答案】(12)1【分析】(1)法一:原式==(2):原式=(1=;===;(2)解:原式=+=+=.1【点睛】本题考查了二次根式的分母有理化,二次根式的加法运算,平方差公式等知识.解题的关键在于正确的将分式中的分母有理化.6.在初、高中阶段,要求二次根式化简的最终结果中分母不含有根号,也就是说当分母中有无理数时,要将其化为有理数,实现分母有理化.比如:(1==.(21试试看,将下列各式进行化简:(1(2(3【答案】(11;(3)2【分析】(1)根据第一个例子可以解答本题;(2)根据第二个例子和平方差公式可以解答本题;(3)根据第二个例子和平方差公式把原式化简,找出式子的规律得出结果即可.【详解】解:==;(211++¼+,1,=3-1=2.【点睛】本题考查了二次根式的混合运算、分母有理化和平方差公式,解答本题的关键是明确分母有理化的方法.7.阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如下方法将其进一步1===,化简:(1)(2)【答案】(1(2【分析】(1)利用分母有理化的形式进行化简;(2,然后分母有理化,最后进行二次根式的乘法运算.【详解】解:(1===;L(2+=L2=L==【点睛】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和平方差公式是解决问题的关键.81====.==2根据以上解法,试求:(1n为正整数)的值;(2×××【答案】(1(2)9【分析】(1)由题意根据材料所给出的解法进行分析计算求解即可;(2)根据题意直接依据材料所给出的解法得出规律进行计算即可.【详解】解:(1==;(2×××1=×××110=-+9=.【点睛】本题考查二次根式的运算,熟练掌握二次根式分母有理化的方法是解题的关键.考点5:二次根式的化简求值方法点拨:(1)数形结合法:用坐标轴和数学表达式相结合,达到快速化简的目标。
二次根式性质常考题、易错题、压轴题集锦
二次根式性质常考题、易错题、压轴题集锦1. 二次根式的定义与性质- 什么是二次根式?- 二次根式是指形如√a的数,其中a是非负实数。
- 二次根式的可化简形式有哪些?- 可化简的二次根式有:整数根式、分数根式、循环小数根式。
- 二次根式的性质有哪些?- 二次根式的性质包括:四则运算、开方原理(即:开方运算的逆运算是平方运算,平方运算的逆运算是开方运算)、指数与对数关系等。
2. 常考题1. 计算以下各式的值:a) √(4 + √(9 - √(5 + √4)))b) (√3 +√2)^2 - (√3 - √2)^22. 一个三角形的两条边的长度分别为3和4,夹角为60度,求第三条边的长度。
3. 易错题1. 若 a 和 b 是非负实数,则√(a + b)等于多少?a) a + bb) √a + √bc) √(a^2 + b^2)d) √a + b2. 若 (x - 3)^2 = 16,则 x 的值可能是多少?a) 1b) -1c) 5d) -54. 压轴题1. 已知 x + 1/x = 4,求 x^2 + 1/x^2 的值。
2. 已知 x^2 + 1/x^2 = 7,求 x + 1/x 的值。
---希望以上二次根式的常考题、易错题和压轴题的集锦对您有所帮助。
如果您还有其他问题,请随时提问。
- Note: The content above is a sample document containing the requested information. Feel free to add, modify, or remove any information to better meet your needs.。
(word完整版)二次根式知识点总结及常见题型,推荐文档
应用与书写规范:∵ A B 2 C 0 ,
A ≥0, B 2 ≥0, C ≥0
∴ A 0, B 0, C 0 . 该性质常与配方法结合求字母的值.
第1页
(2)
A B2
AB
A B
BA AA
B B;主要用于二次根式的化简.
(3) A
B
A2 B A 0
,其中 B ≥0;
A2 B A 0
(1)双重非负性: a ≥0, a ≥0;(主要用于字母的求值)
2
(2)回归性: a a ( a ≥0);(主要用于二次根式的计算)
(3)转化性:
a2
a
a(a a(a
0) 0)
.(主要用于二次根式的化简)
重要结论:
(1)若几个非负数的和为 0,则每个非负数分别等于 0.
若 A B 2 C 0 ,则 A 0, B 0, C 0 .
a2 三、二次根式的乘法
一般地,有: a b ab ( a ≥0, b ≥0)
(1)以上便是二次根式的乘法公式,注意公式成立的条件: a ≥0, b ≥0.即参与乘法运算的 每个二次根式的被开方数均为非负数; (2)二次根式的乘法公式用于二次根式的计算;
第9页
(3)两个带系数的二次根式的乘法为: m a n b mn ab ( a ≥0, b ≥0); (4)二次根式的乘法公式可逆用,即有:
第4页
例 6. 计算:
2
(1) 6 ;
2
(2) 2x 3 ;
(3) 3
2 3
2
.
2
分析:本题考查二次根式的性质: a a ( a ≥0).该性质主要用于二次根式的计算.
2
解:(1) 6 6 ;
第十六章 二次根式压轴题考点训练(解析版)
第十六章 二次根式压轴题考点训练1.化简A B C D 【答案】C【详解】根据二次根式有意义的条件可知﹣1x>0,求得x <0,然后根据二次根式的化简,可得x ﹣.故选C .2.已知0a ≠且a b <的正确结果是( )A .B .-C .D .-【答案】D【详解】解:由题意:30a b -³,即ab ≤0,∵a <b ,∴a <0,b ≥0,=-故选:D .3.若6x ,小数部分为y ,则(2x y 的值是( )A .5-B .3C .5-D .3-【答案】B【详解】解:34<<Q6\2x =则小数部分是:624=则()(244x =16133=-=故选:B4=___________.【详解】因为(2231211+=+=++=,1=+故答案为:1.5.已知a =b =22a b -的值是______.【答案】-【详解】解:∵a =,b +,∴22()()a b a b a b -=+-=éùéù+-ëûëû(-.故答案为:-6.已知a ,b ,c ++.【答案】a b c++【详解】由三角形的三边关系定理得:,,a b c a c b b c a+>+>+>0,0,0a b c b a c b c a \+->--<+->++a b c a c b b c a=+-++-++-a b c=++故答案为:a b c ++.7.已知x +y =-7,xy =12,求的值.【答案】-【详解】解:∵x +y =﹣7,xy =12,∴x ,y 为负数.原式==---.8.已知等式|a -2 018|a 成立,求a -2 0182的值.【答案】2019【解析】试题解析:由题意,得a -2 019≥0. ∴a≥2 019.原等式变形为a -2 018+=a.整理,得=2 018.两边平方,得a -2 019=2 0182.∴a -2 0182=2 019.9.若x 、y 为实数,1y <+,化简:2y 【答案】33-y【详解】解:∵1y <,∴20x -³,20x -³,∴2x =,∴1y <,∴22y <∴10,220y y -<-<∴2y (22)(1)y y ---- 221y y =-+-33y=-10.(1) 观察下列各式的特点:12>22>,2>,…填“>”“<”或“=”).(2)1==,====…n≥2)的化简过程.(3)根据上面(1)(2)得出的规律计算下面的算式:【答案】(1)>;9.【详解】(1)=(3)原式=1)﹣)﹣﹣﹣)|=1)﹣)﹣﹣﹣﹣)=1)﹣)﹣1+9.11+解:设x222x=++2334x=,x2=10∴x=.0.【详解】设x两边平方得:x2=)2+2即x2+4,x2=14∴x.0,∴x.12.阅读下列解题过程:=====请回答下列问题:(1)观察上面的解答过程,请写出=;(2)请你用含n(n 为正整数)的关系式表示上述各式子的变形规律;(3)利用上面的解法,请化简:......【答案】(1)10-(2=-(3)9.【详解】(1===10=-;故答案为:10-(2=-(3=-......+......=......=1-=-1+10=9.13.先阅读,再解答=-=2可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,由22我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的==,请完成下列问题:(11的有理化因式是 ;(2= ,= ;(3【答案】(11+;(2,3+;(3)<.【详解】(11(2)3===(3=142=时采用了下面的方法:由22(24)(8)16x x =-=---=2=8+=,将这两式相加可得53=5=两边平方可解得1x =-,经检验1x =-是原方程的解、请你学习小16+=.【答案】x =【详解】解:∵22=-()()22421032x x =+-+=,16+=,2-=,两式相减得14=7=,两边平方得到239x =,∴x =,经检验x =是原方程的解.。
考点02 二次根式(解析版)
考点二二次根式知识点整合1.二次根式的有关概念(1)二次根式的概念形如)0(≥a a 的式子叫做二次根式.其中符号“”叫做二次根号,二次根号下的数叫做被开方数.【注意】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0.(2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式.2.二次根式的性质(1)a ≥0(a ≥0);(2))0()(2≥=a a a ;(32(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)ab a b a b =≥≥;(50,0)a a a b b b=≥>.3.二次根式的运算(1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.(2)二次根式的乘除0,0)a b ab a b =≥≥;除法法则:(0,0)a aa b bb=≥>.(3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.考向一二次根式的概念及性质1.二次根式的有关概念(1)二次根式的概念形如)0(≥a a 的式子叫做二次根式.其中符号“”叫做二次根号,二次根号下的数叫做被开方数.2.二次根式的性质(1)a ≥0(a ≥0);(2))0()(2≥=a a a ;(32(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)ab a b a b =≥≥;(50,0)a a a b b b=≥>.1.在函数12x y x -=-中,自变量x 的取值范围是()A .0x ≥且2x ≠B .2x >C .1x ≥且2x ≠D .1x >且2x ≠【答案】C【分析】本题考查了函数的自变量有意义的条件,分式有意义的条件、二次根式有意义的条件.根据分式的分母不能为0,被开方数不0即可得.【详解】解:在函数12x y x -=-中,.B..D.【答案】B【分析】根据二次根式有意义的条件列出不等式组求解即可.考向二二次根式的运算(1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.(2)二次根式的乘除0,0)a b =≥≥;0,0)a b≥>.(3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.-【答案】2a-【答案】(1)5;(2)2a(1)______的解法是错误的;(2)当2a =时,求26911a a a -++-的值.【答案】(1)小亮OA=__________(1)填空:210(2)请用含有n(n为正整数)的式子填空:(133+(1)求出这个魔方的棱长.(2)图甲中阴影部分是一个正方形ABCD,求出阴影部分正方形(3)把正方形ABCD放置在数轴上,如图乙所示,使得点的数为______.【答案】(1)4cm(1)则原来大正方形的边长为号)(2)求这个长方体盒子的底面边长和体积分别是多少2 1.414,3 1.732,≈≈【答案】(1)42;2A.20cm B.5【答案】A【分析】本题考查二次根式的应用,出关系式,去括号合并即可得到结果.。
二次根式部分知识点及习题
1、二次根式的定义 一般地,形如)(0≥a a 的代数式叫做二次根式,其中a 叫做被开方数。
重点:
①根指数必须是2,即我们所看到的根指数没有数字显示
②根号下的被开方数须是非负数
2、二次根式有意义的条件
根号下的被开方数是非负数,即a ≥0
3、二次根式的性质
⑴双重非负性,即被开方数a ≥0,二次根式0≥a ⑵一个非负数的算术平方根的平方等于这个非负数,即()a a =2
,a ≥0 ⑶一个数的平方的算术平方根等于这个数的绝对值,即⎩⎨⎧-≥==)0()0(2
<a a a a a a 4、二次根式的乘除 乘法法则:)0,0(≥≥=⋅b a ab b a 逆用:)0,0(≥≥⋅=b a b a ab 除法法则:)0,0(>b a b a b
a ≥= 逆用:)0,0(>
b a b
a b a ≥= 5、最简二次根式
同时满足以下要求:
⑴被开方数中不含开方开的尽的因数或因式;
⑵被开方数中不含分母;
⑶分母中不含根式。
二次根式知识点总结及习题带答案
二次根式知识点总结及习题带答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【基础知识巩固】一、二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
二、取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
三、二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
四、二次根式()的性质:一个非负数的算术平方根的平方等于这个非负数。
()注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.五、二次根式的性质:一个数的平方的算术平方根等于这个数的绝对值。
1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
六、与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.七、二次根式的运算1、最简二次根式必须满足以下两个条件(1)被开方数不含分母,即被开方的因式必须是整式;(2)被开方数中不含能开得尽方的因数或因式,即被开方数中每一个因数或因式的指数都是1.2ab a·b(a≥0,b≥0);积的算术平方根的性质即乘法法则的逆用.3、除法法则:b ba a(b≥0,a>0);商的算术平方根的性质即除法法则的逆用.4、合并同类项的法则:系数相加减,字母的指数不变.5、二次根式的加减(1)二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并。
二次根式期末复习知识清单及典型例题
二次根式期末复习知识清单及典型例题知识点1:二次根式的定义:形如()0≥a a 的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,a 才有意义.【例1】以下各式()511,()52-,()232+-x ,()44,()2315⎪⎭⎫⎝⎛-,()a -16,()1272+-a a 其中是,二次根式的是_________〔填序号〕.变式:1、以下各式中,一定是二次根式的是〔 〕A a 10-1a +21a+2a 2a b 1x +21x +3______个【例2】3x -有意义,那么x 的取值范围是 . 变式:1、使代数式43--x x 有意义的x 的取值范围是〔 〕 A 、x>3 B 、x ≥3 C 、 x>4 D 、x ≥3且x ≠4 2、如果代数式mnm 1+-有意义,那么,直角坐标系中点P 〔m ,n 〕的位置在〔 〕A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3221x x-+-x 的取值范围是【例3】假设y=5-x +x -5+2021,那么x+y=变式:111x x --2()x y =+,那么x -y 的值为〔 〕A .-1 B .1 C .2 D .3 2、当a 取什么值时,代数式112++a 取值最小,并求出这个最小值。
【例4】a 5b 是512a b ++的值。
变式:1、假设3的整数局部是a ,小数局部是b ,那么=-b a 3 。
2、假设17的整数局部为x ,小数局部为y ,求yx 12+的值.知识点2:2、双重非负性:a a ()≥0是一个非负数.即①0≥a ;②0≥a3、平方的形式〔双胞胎公式〕:〔1〕()()a aa 20=≥;〔2〕a a a a a a 200==≥-<⎧⎨⎩||()() . 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系: 〔1〕a 2表示求一个数的平方的算术根,a 的范围是一切实数. 〔2〕()a 2表示一个数的算术平方根的平方,a 的范围是非负数. 〔3〕a 2和()a 2的运算结果都是非负的.【例5】假设()04322=-+-+-c b a 那么c b a +-= .变式:假设1+-b a与42++b a 互为相反数,那么()2017b a -= 。
二次根式知识点总结及常见题型
二次根式知识点总结及常见题型二次根式知识点总结及常见题型一、二次根式的定义形如$a\sqrt{a}$的式子叫做二次根式。
其中$\sqrt{a}$叫做二次根号,$a$叫做被开方数。
1) 二次根式有意义的条件是被开方数为非负数。
据此可以确定字母的取值范围。
2) 判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“$\sqrt{}$”;②被开方数是否为非负数。
若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式。
3) 形如$m\sqrt{a}$的式子也是二次根式,其中$m$叫做二次根式的系数,它表示的是:$m\sqrt{a}=m\cdot\sqrt{a}$。
4) 根据二次根式有意义的条件,若二次根式$A-B$与$B-A$都有意义,则有$A=B$。
二、二次根式的性质二次根式具有以下性质:1) 双重非负性:$a\geq0$,$\sqrt{a}\geq0$。
(主要用于字母的求值)2) 回归性:$(\sqrt{a})^2=a$,其中$a\geq0$。
(主要用于二次根式的计算)begin{cases}sqrt{a}(a\geq0)\\sqrt{a}(a\leq0)end{cases}$(主要用于二次根式的化简)重要结论:1) 若几个非负数的和为0,则每个非负数分别等于0.若$A+B^2+C=0$,则$A=0$,$B=0$,$C=0$。
应用与书写规范:$\because A+B^2+C=0$,$A\geq0$,$B^2\geq0$,$C\geq0$,$\therefore A=0$,$B=0$,$C=0$。
该性质常与配方法结合求字母的值。
2) $\begin{cases}A-B(A\geq B)\\frac{(A-B)^2}{A+B}\end{cases}$(主要用于二次根式的化简)3) $AB=\begin{cases}A\cdot B(A>0)\\A\cdot B(A<0)\end{cases}$,其中$B\geq0$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式考点复习
考点一:二次根式的定义和双重非负性
1、 )0a ≥的式子,叫做二次根式。
2、
有意义的前提条件:被开方数;0a ≥0≥ 例1、当
2
2-+a a 有意义时,a 的取值范围是 ( )
A .a≥2
B .a >2
C .a≠2
D .a≠-2
例2、若1a b -+()2011
a b -的值是
针对训练:
1、 下列各式一定是二次根式的是( )
A.a
B.2-
C.1a +
D.3
2a 2
+
2、 式子
2
x +有意义,则x 的取值范围是( ) A 1
2x x >-≠-且 B 1x ≥ C 1x ≥- D 2x ≠-
3、已知实数x 、y 2
16640,y y -+= ( )
A 16-
B 16
C 4-
D 4
4、若实数x y 、满足4y =
等于( )
A 2-
B 2
C 22-或
D 不能确定
5 x 的最小整数值是 . 6、有意义,则x 的取值范围是 .
考点二:二次根式的计算或化简
两个核心公式 ()2
0a a =≥
()
(){
00a a a a a ≥-<==
例3 、若2
12,1x x =--化简
例4、已知a 、b 、c 实数在数轴上对应的位置为A 、B 、C ,化简()2
2c a b c b a b --
-++
-
针对训练
1、 下列等式不正确的是 ( )
A
a = B
a = C
2
a = D
a =
2、当0a <时,化简2a 的结果是 ( )
A a
B 2-
C 3a
D 3a -
32x =-,那么x 的取值范围是 ( )
A 2x >
B 2x ≥
C 2x <
D 2x ≤
4、化简二次根式 ( )
A B C
D
5、已知
2
3x =-,则9x 6x 2++= 。
6= .
7、x 、y 是两个连续的的整数,<y 35x <,则x-y 的值 .
8、已知a 实数,且满足1a +=-,则1a -= .
92
= .
10、已知实数a b 、在数轴上的对应点如图所示: 化简()()2
2
2
b a 2b a --
-+
考点三:分母有理化
1、 定义:将无理式分母转化为有理式分母的过程,叫做分母有理化。
2、 操作方法:分子、分母同时乘以分母的有理化因式
3、 理论依据:分式的基本性质.
a a +-
例6
分母有理化的值
针对训练
1、 已知
x y =
=
( ) A 、 2 B 、3 C 、4 D 、5
2、已知x =
,则2
1025x x -+的值为 ( )
A 20
B 20-
C 24
D 24-
3
,其结果为 ( )
A
B C 1 D 1
4、已知
a b =
=
,则a 与b 的大小关系是( ) A a b > B a b = C a b < D 不能确定
5
= .
6、计算
①(
)
311
4812⨯- ② ③ ⎛⨯ ⎝
④ 已知215y ,215x -=+=
,求()
y x x y
y x 1y 1++++的值.
考点四:最简二次根式
1、 定义:同时满足以下两个条件的二次根式叫做最简二次根式:
● 被开方数不含能开得尽方的因数和因式. ● 被开方数不含分母.
2、 约定:作为最终结果的二次根式,一般都要求化为最简的二次根式的形式.
例6)
2 练习、 b
a c abc 43
22-
考点五:同类二次根式
几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式
知识点:判别同类二次根式的基本程序:①把二次根式化成最简二次根式;②比较最简二次根式的被开方数是否相同.
例7 )
A 1、已知a 、b 为有理数,m 、n 分别表示5−6的整数部分和小数部分,且amn+bn 2=1,则a+b= .
2 ( )
A
B
C D
3a 的值为 ( ) A 34-
B 4
3
C. 1 D 1- 考点六:二次根式的混合运算
加减法.把各二次根式化成最简的二次根式后,再把同类的二次根式进行合并.
乘除法.)0,0a b =≥≥)0,0a b =≥≥ 练习. ①521312321⨯÷; ②)(b
a b b a 1223÷⋅ ③ (
)()
3
312532325++
+--
④ ()
a a 2a 232
⨯- ⑤ n m a a
n m 23a 2n 3m 332
2222-⨯+÷--。