初中中考数学总复习考点突破(第28讲)视图与投影(含答案)
中考数学常考易错点之视图与投影含答案
5.3视图与投影易错清单1.由三视图确定小正方体的个数时,因无实物图,导致容易出错.【例1】(2014·宁夏模拟)如图是一个用相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是().A. 2B. 3C. 4D. 5【解析】由俯视图可知,该几何体有一行三列,再由主,左视图可知第一列有1个小立方块;第2列有2个小立方块;第3列有1个小立方块,一共有4个小立方块.【答案】 C【误区纠错】解答此类由视图还原几何体的问题,一般情况下都是由俯视图确定几何体的位置(有几行几列),再由另外两个视图确定第几行第几列处有多少个小正方体,简便的方法是在原俯视图上用标注数字的方法来解答.2.根据视图求几何图形的表面积和体积,因缺乏合理的方法而出错.【例2】(2014·云南模拟)如图所示,是一个几何体的三视图,则这个几何体的侧面积是().A. 18cm2B. 20cm2【解析】根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18(cm2).【答案】 A【误区纠错】由物体的三视图求几何体的侧面积,表面积,体积等,关键是由三视图想象出几何体的形状.名师点拨1.明确常见几何体的展开图,通过几何体的展开与折叠,体会平面图形与立体图形之间的关系.2.三视图是中考必考热点,一般考查由物体确定视图,由视图确定物体较少见,抓住三视图从三个方向观看这个特点,发挥空间想象力,便可做出准确判断.提分策略1.图形的展开与折叠.常见几何体的展开与折叠:①棱柱的平面展开图是由两个相同的多边形和一些长方形组成,按棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图,特别关注正方体的表面展开图;②圆柱的平面展开图是由两个相同的圆形和一个长方形连成的;③圆锥的平面展开图是由一个圆形和一个扇形组成的.【例1】如图给定的是纸盒的外表面,下面能由它折叠而成的是().【解析】将A,B,C,D分别展开,能和原图相对应的即为正确答案.A项展开得到,不能和原图相对应,故本选项错误;B项展开得到,能和原图相对应,故本选项正确;C项展开得到,不能和原图相对应,故本选项错误;D项展开得到,不能和原图相对应,故本选项错误.【答案】 B2.几何体的三视图三个视图是分别从正面、左面、上面三个方向看同一个物体所得到的平面图形,要注意用平行光去看.画三个视图时应注意尺寸的大小,即三个视图的特征:主视图(从正面看)体现物体的长和高,左视图体现物体的高和宽,俯视图体现物体的长和宽.【例2】如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是().A. 3个或4个或5个B. 4个或5个C. 5个或6个D. 6个或7个【解析】本题考查了由三视图判断几何体,主要考查了考生的空间想象能力以及三视图的相关知识.左视图与主视图相同,可判断出底面最少有2个小正方体,最多有4个小正方体,而第二行则只有1个小正方体,则这个几何体的小立方体可能有3个或4个或5个.根据这个思路可判断出该几何体有多少个小立方体.本题最大误区在于:判断不出左视图与主视图相同时最多有多少个小正方体,最少有多少个小正方体.【答案】 A【例3】如图(1),是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得图(2)所示几何体的视图().A. 主视图改变,俯视图改变B. 主视图不变,俯视图不变C. 主视图不变,俯视图改变D. 主视图改变,俯视图不变【解析】此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.只有熟练掌握三种视图的画法,本题才不会出现误判.根据图形可得:图(1)及图(2)的主视图一样,俯视图不一样,即主视图不变,俯视图改变.【答案】 C专项训练一、选择题1.(2014·湖北天门模拟)一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是().(第1题)A. 15个B. 13个C. 11个D. 5个2. (2014·江苏苏州高新区一模)如图是一个几何体的三视图,则这个几何体的侧面积是().(第2题)A. 12πcm2B. 8πcm2C. 6πcm2D. 3πcm23.(2014·云南曲靖模拟)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是().(第3题)A. ①②B. ②③C. ②④D. ③④4. (2014·江苏南京二模)若干桶方便面摆放在桌面上,它的三个视图如图,则这一堆方便面共有().(第4题)A. 7桶B. 8.桶C. 9桶D. 10桶5. (2014·天津塘沽区一模)如图是五棱柱形状的几何体,则它的三视图为().(第5题)6.(2013·山西模拟)如图是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数为().(第6题)A. 2B. 3C. 4D. 67. (2013·广西南丹中学一模)如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是( ).(第7题)A. 2B. 3C. 4D. 58. (2013·河北四模)一个几何体的三视图如下:(第8题)其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( ). A. 2π B.C. 4πD. 8π二、 解答题9. (2014·四川乐山模拟)如图(1),是由一些棱长都为1cm 的小正方体组合成的简单几何体.(第9题(1))(1)该几何体的表面积(含下底面)为 ;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.(第9题(2))参考答与解析1. A 2. B 3. B 4. C 5. A 6. C 7. C 8. C 9. (1)26cm2(2)如图.(第9题)。
新初中数学投影与视图知识点总复习附答案
新初中数学投影与视图知识点总复习附答案一、选择题1.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()A.B.C.D.【答案】C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图2.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【答案】B【解析】分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形.详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.故选B.点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.3.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体A.10:2B.9:2C.10:1D.9:1【答案】C【解析】【分析】由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.【详解】解:这个几何体由10个小正方体组成;∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.故选:C.【点睛】本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.4.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B.点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.5.如图所示,该几何体的主视图是()A.B.C.D.【答案】D【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】该几何体为三棱柱,它的主视图是由1个矩形,中间的轮廓线用虚线表示.故选D.【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【答案】D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.7.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A.从前面看到的形状图的面积为5 B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3 D.三种视图的面积都是4【答案】B【解析】A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故A 错误;B. 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积是3,故B 正确;C. 从上边看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故C错误;D.左视图的面积是3,故D错误;故选B.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.8.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.【答案】C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.9.如果一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是圆且中间有一点,那么这个几何体的表面积是()A.8πB.12πC.43πD.8【答案】B【解析】【分析】【详解】解:由图片中的三视图可以看出这个几何体应该是圆锥,且其底面圆半径为1,母线长为2,因此它的表面积=π×2×4+π×22=12π.故选B.考点:1.由三视图判断几何体;2.圆锥的计算.10.一个几何体的三视图如图所示,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为()A.6πB.8πC.10πD.12π【答案】B【解析】【分析】根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=14482ππ⨯⨯=. 故选:B .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm【答案】C【解析】【分析】 根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm .所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C .【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.12.如图是某兴趣社制作的模型,则它的俯视图是( )A .B .C .D .【答案】B【解析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.13.从不同方向观察如图所示的几何体,不可能看到的是()A.B.C.D.【答案】B【解析】【分析】找到不属于从正面,左面,上面看得到的视图即可.【详解】解:从正面看从左往右3列正方形的个数依次为2,1,1,∴D是该物体的主视图;从左面看从左往右2列正方形的个数依次为2,1,∴A是该物体的左视图;从上面看从左往右3列正方形的个数依次为1,1,2,∴C是该物体的俯视图;没有出现的是选项B.故选B.14.如图所示的几何体,它的左视图是()A.B.C.D.【答案】D分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.15.发展工业是强国之梦的重要举措,如图所示零件的左视图是()A.B.C.D.【答案】D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】如图所示零件的左视图是.故选D.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.16.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】C【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,故选C.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.17.如图,这是一个机械模具,则它的主视图是()A.B.C.D.【答案】C【解析】【分析】根据主视图的画法解答即可.【详解】A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;D.是俯视图,故本选项错误.故答案选C.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断.18.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.19.下列水平放置的几何体中,俯视图是矩形的为()A.B. C.D.【答案】B【解析】【分析】俯视图是从物体上面看,所得到的图形.【详解】A.圆柱俯视图是圆,故此选项错误;B.长方体俯视图是矩形,故此选项正确;C.三棱柱俯视图是三角形,故此选项错误;D.圆锥俯视图是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.20.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【详解】解:四棱锥的主视图与俯视图不同.故选B.【点睛】考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.。
2024年中考九年级数学一轮复习考点突破练习-投影与视图(含答案)
投影与视图1.如图中影子是中心投影的有()A.0个B.1个C.2个D.3个2.如图所示的几何体由5个大小相同的立方块搭成,则该几何体的左视图是()3.下列几何体中,三视图的三个视图完全相同的几何体是()4.如图所示的几何体的俯视图可能是()5.如图所示的几何体,从正面看,得到的平面图形是()6.如图是一个立体图形的三视图,该立体图形是()A.三棱柱B.圆柱C.三棱锥D.圆锥7.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同8.由若干个完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体所用的小正方体的个数最多是()A.6B.7C.8D.99.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是()10.某同学学习了正方体的表面展开图后,在如图所示的正方体的表面展开图上写下了“传承红色文化”六个字,还原成正方体后,“红”的对面是( )A .传B .承C .文D .化 11.某款“不倒翁”(如图1)的主视图是图2,PA ,PB 分别与AMB ︵所在圆相切于点A ,B.若该圆半径是10 cm ,∠P =60°,则主视图的面积为______cm 2.12.一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有________个.13.两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到玉璧,玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物,据《尔雅·释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现来看,这两种玉器的“肉”与“好”未必符合该比例关系.(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为_________;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法):①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.参考答案1.D 2.A 3.D 4.C 5.A 6.D 7.A 8.B 9.D 10.D11.1003+200π3 12.6 13.解:(1)32∶27(2)①在该圆环任意画两条相交的线,交点在外圆的圆上,且与外圆的交点分别为A ,B ,C ,则分别以点A ,B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段AB ,AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以点O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可.由作图可知满足比例关系为1∶2∶1的关系,该玉器的比例关系符合“肉好若一”.②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以点A 为圆心,适当长为半径画弧,交点分别为C ,D ,E ,且AC =CD =DE ,连接BE ,然后分别过点C ,D 作BE 的平行线,交AB于点F,G,进而以FG为直径画圆,则问题得解,如图所示.。
中考数学复习专题精品导学案:第28讲投影与视图含答案详解
2013年中考数学专题复习第二十八讲投影与视图【基础知识回顾】一、投影:1、定义:一般地,用光线照射物体,在某个平面上得到得影子叫做物体的其中照射光线叫做投影所在的平面叫做2、平行投影:太阳光可以近似地看作是光线,像这样的光线所形成的投影称为平行投影3、中心投影:由圆一点(点光源)发出的光线形成的投影叫做如物体在、、等照射下所形成的投影就是中心投影【名师提醒:1、中心投影的光线平行投影的光线2、在同一时刻,不同物体在太阳下的影长与物离成3、物体投影问题有时也会出现计算解答题,解决这类问题首先要根据图形准确找出比例关系,然后求解】三、视图:1、定义:从不同的方向看一个物体,然后描绘出所看到的图形即视图其中,从看到的图形称为立视图,从看到的图形称为左视图,从看到的图形称为俯视图2、三种视图的位置及作用⑴画三视图时,首先确定的位置,然后在主视图的下面画出在主视图的右边画出⑵主视图反映物体的和,左视图反映物体的和俯视图反映物体的和【名师提醒:1、在画几何体的视图时,看得见部分的轮廓线通常画成线,看不见部分的轮廓线通常画成线2、在画几何体的三视图时要注意主俯对正,主左平齐,左俯相等】三、立体图形的展开与折叠:1、许多立体图形是由平面图形围成的,将它们适当展开即为平面展开图,同一个立体图形按不同的方式展开,会得到不同的平面展开图2、常见几何体的展开图:⑴正方体的展开图是⑵几边形的柱展开图是两个几边形和一个⑶圆柱的展开图是一个和两个⑷圆锥的展开图是一个与一个【名师提醒:有时会出现根据物体三视图中标注的数据求原几何体的表面积,体积等题目,这时要注意先根据三种视图还原几何体的形状,然后想象有关尺寸在几何体展开图中标注的是哪些部分,最后再根据公式进行计算】【重点考点例析】考点一:投影例1 (2012•湘潭)如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱考点:平行投影.分析:根据圆柱的左视图的定义直接进行解答即可.解答:解:如图所示圆柱从左面看是矩形,故选:B.点评:本题主要考查了简单几何体的三视图,关键是根据三视图的概念得出是解题关键.对应训练2.(2012•梅州)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是(写出符合题意的两个图形即可)考点:平行投影.专题:开放型.分析:平行投影的特点:在同一时刻,平行物体的投影仍旧平行.解答:解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故答案为:正方形、菱形(答案不唯一).点评:本题考查了平行投影,太阳光线是平行的,那么对边平行的图形得到的投影依旧平行.考点二:几何题的三视图例 2 (2012•咸宁)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.考点:简单几何体的三视图.分析:看哪个几何体的三视图中有长方形,圆,及三角形即可.解答:解:A、三视图分别为长方形,三角形,圆,符合题意;B、三视图分别为三角形,三角形,圆及圆心,不符合题意;C、三视图分别为正方形,正方形,正方形,不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,不符合题意;故选A.点评:考查三视图的相关知识;判断出所给几何体的三视图是解决本题的关键.例3 (2012•岳阳)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图()A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图不变,俯视图改变D.主视图改变,俯视图不变考点:简单组合体的三视图.分析:主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.解答:解:根据图形可得,图①及图②的主视图一样,俯视图不一样,即主视图不变,俯视图改变.故选C.点评:此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,难度一般.对应训练2.(2012•随州)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个考点:简单几何体的三视图.分析:分别分析四种几何体的三种视图,再找出有两个相同,而另一个不同的几何体.解答:解:①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆;故答案为:D.点评:本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.3.(2012•宜昌)球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是()A.两个相交的圆B.两个内切的圆C.两个外切的圆D.两个外离的圆考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到两个外切的圆,故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解决此类问题时既要有丰富的数学知识,又要有一定的生活经验.考点三:判几何体的个数例4(2012•宿迁)如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()A.2 B.3 C.4 D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.对应训练4.(2012•孝感)几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是()A.4 B.5 C.6 D.7考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故选:B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.考点四:几何体的相关计算例 5 (2012•荆州)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 cm2.(结果可保留根号)考点:由三视图判断几何体;解直角三角形.分析:根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积.解答:解:根据该几何体的三视图知道其是一个六棱柱,∵其高为12cm,底面半径为5,∴其侧面积为6×5×12=360cm2密封纸盒的侧面积为:12×5×6×53=753cm2∴其全面积为:(753+360)cm2.故答案为:(753+360).点评:本题考查了由三视图判断几何体及解直角三角形的知识,解题的关键是正确的判定几何体.对应训练1.(2012•南平)如图所示,水平放置的长方体底面是长为4和宽为2的矩形,它的主视图的面积为12,则长方体的体积等于()A.16 B.24 C.32 D.48考点:简单几何体的三视图.分析:由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论.解答:解:依题意,得长方体的体积=12×2=24.故选B.点评:本题考查了简单几何体的三视图.关键是明确主视图是由长和高组成的.【聚焦山东中考】1.(2012•济南)下面四个立体图形中,主视图是三角形的是()A.B.C.D.考点:简单几何体的三视图.分析:找到立体图形从正面看所得到的图形为三角形即可.解答:解:A、主视图为长方形,不符合题意;B、主视图为中间有一条竖线的长方形,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意;故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.(2012•烟台)如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:俯视图是从上面看到的图形,共分三列,从左到右小正方形的个数是:1,1,1.解答:解:这个几何体的俯视图从左到右小正方形的个数是:1,1,1,故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图所看的方向:从上面看所得到的图形.3.(2012•潍坊)如图空心圆柱体的主视图的画法正确的是()A.B.C.D.考点:简单组合体的三视图.分析:找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选C.点评:本题考查了三视图的知识,主视图是从物体的前面看得到的视图,考查了学生细心观察能力,属于基础题.4.(2012•威海)如图所示的机器零件的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据左视图的定义,找到从左面看所得到的图形即可.解答:解:机器零件的左视图是一个矩形.中间有1条横着的虚线.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的棱用实线表示,看不到的用虚线表示.5.(2012•泰安)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个大长方形,第二层中间有一个小正方形.故选A.点评:本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中.6.(2012•济宁)如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个考点:由三视图判断几何体.分析:左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有3个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.解答:解:左视图与主视图相同,可判断出底面最少有3个小正方体,最多有4个小正方体.而第二行则只有1个小正方体.则这个几何体的小立方块可能有4或5个.故选B.点评:本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.7.(2012•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2 B.20cm2 C.(18+23)cm2 D.(18+43)cm2考点:由三视图判断几何体.专题:数形结合.分析:根据三视图判断出该几何体是底面边长为2cm,侧棱长为3cm的正三棱柱,然后根据矩形的面积公式列式计算即可得解.解答:解:根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18cm2.故选A.点评:本题考查了由三视图判断几何体,熟练掌握三棱柱的三视图,然后判断出该几何体是三棱柱是解本题的关键.【备考真题过关】一、选择题1.(2012•绵阳)把一个正五菱柱如图摆放,当投射线由正前方射到后方时,它的正投影是()A.B.C.D.考点:平行投影.分析:根据正投影的性质:当投射线由正前方射到后方时,其正投影应是矩形.解答:解:根据投影的性质可得,该物体为五棱柱,则正投影应为矩形.故选B.点评:本题考查正投影的定义及正投影形状的确定,解题时要有一定的空间想象能力.2.(2012•益阳)下列命题是假命题的是()A.中心投影下,物高与影长成正比B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径考点:中心投影;三角形中位线定理;切线的性质;命题与定理;平移的性质.分析:分别利用中心投影的性质以及切线的性质、平移的性质、三角形中位线定理等进行判断即可得出答案.解答:解:A.中心投影下,物高与影长取决于物体距光源的距离,故此选项错误,符合题意;B.平移不改变图形的形状和大小,根据平移的性质,故此选项正确,不符合题意;C.三角形的中位线平行于第三边,根据三角形中位线的性质,故此选项正确,不符合题意;D.圆的切线垂直于过切点的半径,利用切线的判定定理,故此选项正确,不符合题意.故选:A.点评:此题主要考查了中心投影的性质以及切线的性质、平移的性质、三角形中位线定理等知识,熟练掌握并区分这些性质是解题关键.3.(2012•玉林)下列基本几何体中,三视图都相同图形的是()A.B.C.D.圆柱三棱柱球长方体考点:简单几何体的三视图.分析:根据三视图的基本知识,分析各个几何体的三视图然后可解答.解答:解:A、圆柱的主视图与左视图均是矩形,俯视图是圆,故本选项错误;B、三棱柱的主视图与左视图均是矩形,俯视图是三角形,故本选项错误;C、球体的三视图均是圆,故本答案正确;D、长方体的主视图与俯视图是矩形,左视图是正方形,故本答案错误.故选C.点评:本题难度一般,主要考查的是三视图的基本知识.解题时也应具有一定的生活经验.4.(2012•永州)如图所示,下列水平放置的几何体中,俯视图是矩形的是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体的上面看得到的视图,仔细观察各个简单几何体,便可得出选项.解答:解:A、圆柱的俯视图为矩形,故本选项正确;B、圆锥的俯视图为圆,故本选项错误;C、三棱柱的俯视图为三角形,故本选项错误;D、三棱锥的俯视图为三角形,故本选项错误.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.本题比较简单.5.(2012•义乌市)下列四个立体图形中,主视图为圆的是()A.B.C.D.考点:简单几何体的三视图.分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.解答:解:A、主视图是正方形,故此选项错误;B、主视图是圆,故此选项正确;C、主视图是三角形,故此选项错误;D、主视图是长方形,故此选项错误;故选:B.点评:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.6.(2012•六盘水)如图是教师每天在黑板上书写用的粉笔,它的主视图是()A.B.C.D.考点:简单几何体的三视图.分析:首先判断该几何体是圆台,然后确定从正面看到的图形即可.解答:解:该几何体是圆台,主视图是等腰梯形.故选C.点评:本题考查了简单几何体的三视图,属于基础题,比较简单.7. (2012•黄冈)如图,水平放置的圆柱体的三视图是()A.B.C.D.考点:简单几何体的三视图.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,即可得出答案.解答:解:依据圆柱体放置的方位来说,从正面和上面可看到的长方形是一样的;从左面可看到一个圆.故选A.点评:本题考查了几何体的三种视图,掌握定义是关键,本题是基础题,常规题型.8.(2012•白银)将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.考点:简单几何体的三视图;点、线、面、体.分析:首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.解答:解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选:D.点评:此题主要考查了面动成体,以及简单几何体的三视图,关键是正确判断出Rt△ACB 绕直角边AC旋转一周所得到的几何体的形状9.(2012•资阳)如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A.B.C.D.考点:简单组合体的三视图;截一个几何体.分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面看,是正方形右边有一条斜线,故选:A.点评:本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.10.(2012•云南)如图是由6个形同的小正方体搭成的一个几何体,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看到的识图分析解答.解答:解:从上面看,是1行3列并排在一起的三个正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.11.(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A.B.C.D.考点:简单组合体的三视图.分析:主视图是从正面看,注意所有的看到的棱都应表现在主视图中.解答:解:从上面看,圆锥看见的是:三角形,两个正方体看见的是两个正方形.故答案为B.点评:此题主要考查了三视图的知识,关键是掌握三视图的几种看法.12.(2012•西宁)如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画好它的三视图,那么他所画的三视图的俯视图应该是()A.两个外切的圆B.两个内切的圆C.两个相交的圆D.两个外离的圆考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到两个外切的圆.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.13.(2012•武汉)如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.解答:解:从左边看得到的是两个叠在一起的正方形.故选D.点评:此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.14.(2012•温州)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.解答:解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.点评:此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.15.(2012•肇庆)如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选A.点评:主视图和左视图的大致轮廓为长方形的几何体为锥体.16.(2012•扬州)如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是()A.4个B.5个C.6个D.7个考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17.(2012•厦门)如图是一个立体图形的三视图,则这个立体图形是()A.圆锥B.球C.圆柱D.三棱锥考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、圆锥的三视图分别为三角形,三角形,圆,故选项正确;B、球的三视图都为圆,错误;C、圆柱的三视图分别为长方形,长方形,圆,故选项错误;D、三棱锥的三视图分别为三角形,三角形,三角形及中心与顶点的连线,故选项错误.故选A.点评:本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析.二、填空题18.(2012•新疆)请你写出一个主视图与左视图相同的立体图形是.考点:简单几何体的三视图.专题:开放型.分析:主视图、左视图是分别从物体正面、左面看,所得到的图形.解答:解:圆柱的主视图与左视图都为长方形.故答案为:圆柱(答案不唯一).点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为.考点:由三视图判断几何体.分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.20.(2012•鸡西)由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是.考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.21.(2012•大庆)用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是个.考点:由三视图判断几何体;简单组合体的三视图.。
2023 数学浙教版新中考 考点27视图与投影(解析版)
考点27视图与投影考点总结1.三视图:(1)主视图:物体在正投影面上的正投影.(2)左视图:物体在侧投影面上的正投影.(3)俯视图:物体在水平投影面上的正投影.2.画“三视图”的原则(1)大小:长对正,高平齐,宽相等.(2)虚实:在画图时,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.3.判断简单物体的三视图,能根据三视图描述基本几何体或实物原型.4.直棱柱、圆锥的侧面展开图分别是矩形和扇形,能根据展开图判断和制作立体模型.真题演练一、单选题1.(2021·浙江丽水·中考真题)如图是由5个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看下面一层是三个正方形,上面一层中间是一个正方形.即:故选:B.2.(2021·浙江宁波·中考真题)如图所示的几何体是由一个圆柱和一个长方体组成的,它的主视图是()A.B.C.D.【答案】C【分析】根据主视图是从物体的正面看到的图形解答即可.【详解】解:由于圆柱的主视图是长方形,长方体的主视图是长方形,所以该物体的主视图是:.故选:C.3.(2021·浙江台州·中考真题)用五个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.【答案】B【分析】从正面看所得到的图形即为主视图,因此选项B的图形符合题意.【详解】解:根据主视图的意义可知,从正面看到四个正方形,故选:B.4.(2021·浙江温州·中考真题)直六棱柱如图所示,它的俯视图是()A.B.C.D.【答案】C【分析】直接从上往下看,得到的是一个六边形,即可选出正确选项.【详解】解:从上往下看直六棱柱,看到的是个六边形;故选:C.5.(2021·浙江绍兴·中考真题)如图的几何体由五个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】D【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.6.(2021·浙江嘉兴·中考真题)如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【答案】C【分析】根据俯视图是从上边看得到的图形,可得答案.【详解】解:从上边看第一行是两个小正方形,第二行是一个小正方形并且在第二列,故选:C.7.(2021·浙江衢州·中考真题)如图是由四个相同的小正方体搭成的立体图形,它的主视图是()A.B.C.D.【答案】B【分析】根据主视图是从几何体正面看得到的图形即可得到答案.【详解】从正面看可以看到有3列小正方形,从左至右小正方体的数目分别为1、2、1,所以主视图为:,故选B.8.(2021·浙江·温州绣山中学三模)某物体如图所示,它的俯视图为()A.B.C.D.【答案】D【分析】俯视图是从上向下看得到的视图,结合选项即可做出判断.【详解】解:所给图形的俯视图是D选项所给的图形,故选:D.9.(2021·浙江鹿城·二模)由4个相同的正方体搭成的几何体如图所示,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面看得到的图形是主视图,从而得到答案.【详解】解:从正面看,第一层是一个正方形,且在右边;第二层为两个正方形,故选A.10.(2021·浙江桐乡·一模)如图是由5个相同小正方形搭成的几何体,若将小正方体A放到小正方体B的正上方,则关于该几何体变化前后的三视图,下列说法正确的是().A.主视图不变B.俯视图不变C.左视图改变D.以上三种视图都改变【答案】B【分析】根据三视图的定义即可判断.【详解】解:根据三视图的定义,A,主视图会变,故选项错误,不符合题意;B,俯视图不会变,故选项正确,符合题意;C,左视图不会改变,故选项错误,不符合题意;D,主视图改变,俯视图记左视图不会改变,故选项错误,不符合题意;故选:B.二、填空题11.(2021·浙江永康·一模)如图为一个圆锥的三视图,这个圆锥的侧面积为_________2mm.【答案】60【分析】利用三视图得到这个圆锥的高为8mm,底面圆的半径为6mm,再利用勾股定理计算出圆锥的母线长,然后利用扇形的面积公式计算圆锥的侧面积.【详解】解:这个圆锥的高为8mm,底面圆的半径为6mm,所以圆锥的母线长(mm),所以圆锥的侧面积=12610602ππ⨯⨯⨯=(mm2).故答案为:60π.12.(2021•三门县一模)如图,圣诞帽的主视图是正三角形,把帽子压平整,成双层扇形摆放在桌子上(不考虑帽子的厚度).则这个扇形的圆心角度数为.【分析】可设正三角形的边长为a,双层扇形的圆心角为n.先计算出圆锥的底面圆的周长=πa,再根据圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面圆的周长的一半,扇形的半径为圆锥的母线长得到弧长为πa,半径为a,然后利用弧长公式得到关于n的方程,解方程即可.【答案】解:设正三角形的边长为a,双层扇形的圆心角为n.∴圆锥的底面圆的周长=πa,由题意:πa=,∴n=90°.故答案为:90.13.(2021•朝阳区三模)在如图所示的几何体中,主视图是三角形的是③.(填序号)【分析】找到从正面看所得到的图形,得出主视图是三角形的即可.【答案】解:①的主视图是矩形;②的主视图是矩形,③的主视图是等腰三角形.∴主视图是三角形的是③.故答案为:③.14.(2021秋•江夏区校级月考)如图是一个正方体的平面展开图,其中每两个相对面上的数的和都相等,则A表示的数字为.【答案】解:根据题意得:3+x=3x+(x+4),解得:x=2,∴A﹣2=3x+(x+4)=12,解得:A=14,故答案为:14三、解答题15.(2021秋•漳州期末)在学习《展开与折叠》这一课时,老师让同学们将准备好的正方体或长方体沿某些棱剪开,展开成平面图形.其中,阿中同学不小心多剪了一条棱,把一个长方体纸盒剪成了图①、图②两部分.根据你所学的知识,回答下列问题:(1)阿中总共剪开了几条棱?(2)现在阿中想将剪断的图②重新粘贴到图①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,他有几种粘贴方法?请在图①上画出粘贴后的图形(画出一种即可);(3)已知图③是阿中剪开的图①的某些数据,求这个长方体纸盒的体积.【分析】(1)根据总共12条棱,其中有4条未剪开,即可得到阿中总共剪开了8条棱.(2)依据展开图的特征,即可得到4种粘贴方法(答案不唯一);(3)设高为xcm,则宽为(4﹣x)cm,长为[7﹣(4﹣x)]=(3+x)cm,依据等量关系列方程求解即可得到x的值,进而得出长方体的体积.【答案】解:(1)总共12条棱,其中有4条未剪开,故阿中总共剪开了8条棱.(2)答:有4种粘贴方法.如图,四种情况:(3)设高为xcm,则宽为(4﹣x)cm,长为[7﹣(4﹣x)]=(3+x)cm,∴4+(3+x)=8,解得:x=1,∴体积为:(3+1)×(4﹣1)×1=12cm3,答:这个长方形纸盒的体积为12cm3.16.(2021秋•锦江区校级期中)由7个相同的小立方块搭成的几何体如图所示,(1)请画出它的三视图?(2)请计算它的表面积?(棱长为1)【分析】(1)主视图从左往右3列正方形的个数依次为2,1,2;左视图从左往右2列正方形的个数依次为2,1;俯视图从左往右3列正方形的个数依次为2,2,1,依此画出图形即可;(2)查出从前后,上下,左右可以看到的面,然后再加上中间空两边的两个正方形的2个面,进行计算即可求解.【答案】解:(1)如图所示:(2)从正面看,有5个面,从后面看有5个面,从上面看,有5个面,从下面看,有5个面,从左面看,有3个面,从右面看,有3个面,中间空处的两边两个正方形有2个面,∴表面积为(5+5+3)×2+2=26+2=28.17.(2021秋•修水县月考)一个长方体的三视图如图所示.若其俯视图为正方形,求这个长方体的表面积.【分析】根据三视图图形得出AC=BC=3,EC=4,然后求出这个长方体的表面积.【答案】解:如图所示:AB=3,∵AC2+BC2=AB2,∴AC=BC=3,∴正方形ACBD面积为:3×3=9,侧面积为:4AC×CE=3×4×4=48,故这个长方体的表面积为:48+9+9=66.18.(2021秋•温州月考)每个正方体相对两个面上写的数之和等于2.(1)求图1的正方体看不见的三个面上的数字的积.(2)现将两个这样的正方体黏合放置(如图2),求所有看不见的七个面上所写的数的和.【答案】解:(1)∵每个正方体上相对两个面上写的数字之和都等于2,∴正方体的下底面数字是1,后面的数字是4,左面的数字是﹣1,∴它们的积是1×4×(﹣1)=﹣4;(2)∵每个正方体上相对两个面上写的数字之和都等于2,∴左边的正方体的下底面数字是1,后面的数字是,左右两面的数字的和是2,右面的正方体下底面数字是6,左面的数字是﹣1,后面的数字是0,∴它们的和是1++2+6﹣1+0=8.。
初中数学九年级29章视图与投影知识点总结及习题
人教版九年级数学下册第29章投影与视图题型训练一、目标与要求1.掌握平行投影、中心投影、正投影的定义及它们的应用.2.学会关注生活中有关投影的数学问题,提高数学的应用意识.3.掌握常见物体(直棱柱、圆柱、圆锥、球)的三视图的画法及其作用.4.了解视点、视角及盲区的含义.二、知识清单1.一般地,用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做,投影所在的平面叫做。
2.由平行光线形成的投影是。
由同一点发出的光线形成的投影叫做中心投影。
投影线垂直于投影面产生的投影叫做。
3.当我们从某一角度观察一个物体时,所看到的图像叫做物体的一个。
4.一个物体在三个投影面内同时进行正投影,从物体的前面向后面投射所得的视图称;从物体的上面向下面投射所得的视图称俯视图;从物体的左面向右面投射所得的视图称。
5.视点、视线与盲区人朝着某个方向看时,眼睛的位置称为视点;由视点发出的线称为;视线之外看不到的地方称为。
三、易混点清单1.当物体的某个平面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同。
2.物体的正投影的形状、大小与它相对于投影面的位置有关。
3.三视图位置有规定,主视图要在左上方,在下方应是俯视图,左视图坐落在主视图的右边,画三视图时,三个视图要放在正确的位置,并且使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等。
四、常见几何体的三视图由视图到立体图形①主视图反映物体的长和高,主要提供正面的形状;②左视图反映物体的高和宽,主要提供左侧面的形状;③俯视图反映物体的长和宽,主要提供上面的形状,由俯视图看不出物体的高.五、例题分析1.傍晚,小明陪妈妈在路灯下散步,当他们经过路灯时,身体的影长()A. 先由长变短,再由短变长B. 先由短变长,再由长变短C. 保持不变D. 无2.王丽和赵亮两个小朋友晚上在广场的一盏灯下玩,如图,AB的长表示王丽的身高,BM表示她的影子,CD的长表示赵亮的身高,DN表示他的影子,请画出这盏灯的位置.3.某几何体的三视图如图所示,则这个几何体是( )A.圆柱B.正方体C.球D.圆锥3. 将如图所示的Rt△ABC绕直角边BC旋转一周,所得几何体的左视图是( )A B C D4.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )A B C D5.小华拿着一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影不可能是( )A B C D跟踪练习1.如图所示的几何体的俯视图是()A、B、C、D、2.下面四个几何体中,左视图是四边形的几何体共有()A、1个B、2个C、3个D、4个3.若右图是某几何体的三视图,则这个几何体是()A.圆柱B.正方体C.球D.圆锥4.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A、①②B、②③C、②④D、③④5.如图是一根钢管的直观图,则它的三视图为()6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为()A、3B、4C、5D、67.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A.0.5m B.0.55m C.0.6m D.2.2m8.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有()A、4个B、5个C、6个D、7个9.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于。
人教版初中数学投影与视图知识点总复习附答案
人教版初中数学投影与视图知识点总复习附答案一、选择题1.如图中的几何体是由一个圆柱和个长方体构成的,该几何体的俯视图是()A.B.C.D.【答案】 D【分析】【剖析】依据从上面看获得的图形是俯视图,可得答案.【详解】解:从上面看是一个圆形,圆形内部是一个虚线的正方形.应选: D.【点睛】本题考察了简单组合体的三视图,从上面看获得的图形是俯视图.2.如图是某几何体的三视图及有关数据,则该几何体的表面积是()A.8 2 2B.11C.9 2 2D.12【答案】 D【分析】【剖析】先依据几何体的三视图可得:该几何体由圆锥和圆柱构成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高 =4,而后依据圆锥的侧面积等于它睁开后的扇形的面积,即 S= 1LR,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等2于睁开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积 +圆柱的侧面积+圆柱的底面积.【详解】依据几何体的三视图可得:该几何体由圆锥和圆柱构成,圆锥的底面直径=2,圆锥的母线长为 3,∴圆锥的侧面积 = 1?2π ?1?3=3,π2圆柱的侧面积 =2π?1?4=8π,2π +8π +π =12.π圆柱的底面积 =π?1=π,∴该几何体的表面积 =3应选 D.【点睛】本题考察了圆锥的侧面积的计算方法:圆锥的侧面积等于它睁开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考察了看三视图和求圆柱的侧面积的能力.3.图 2 是图 1 中长方体的三视图,若用S 表示面积, S主 x2 3x , S左 x2 x ,则S俯()A.x24x 3B.x23x 2C.x22x 1D.2x24x 【答案】 A【分析】【剖析】直接利用已知视图的边长联合其面积得出另一边长,即可得出俯视图的边进步而得出答案.【详解】解:∵ S 主x23x x( x 3) ,S左x2x x( x 1) ,∴主视图的长x 3 ,左视图的长x 1 ,则俯视图的两边长分别为:x 3 、 x1,S 俯( x 3)( x1) x24x 3 ,应选: A.【点睛】本题主要考察了已知三视图求边长,正确得出俯视图的边长是解题重点.4.小亮领来n 盒粉笔,齐整地摆在讲桌上,其三视图如图,则n 的值是 ( )A.7B.8C.9D.10【答案】 A【分析】【剖析】【详解】解:由俯视图可得最基层有 4 盒,由正视图和左视图可得第二层有 2 盒,第三层有 1 盒,共有 7 盒,则 n 的值是 7.应选 A.【点睛】本题考察由三视图判断几何体.5.如图,一个几何体由 5 个大小同样、棱长为 1 的小正方体搭成,以下对于这个几何体的说法正确的选项是 ( )A.以前方看到的形状图的面积为5B.从左面看到的形状图的面积为3C.从上面看到的形状图的面积为3D.三种视图的面积都是 4【答案】 B【分析】A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故 A 错误;B. 从左侧看第一层是两个小正方形,第二层左侧一个小正方形,左视图的面积是3,故 B 正确;C. 从上面看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故 C错误;D.左视图的面积是3,故 D 错误;应选 B.点睛:本题考察了简单组合体的三视图,从正面看获得的图形是主视图,从左侧看获得的图形是左视图,从上面看获得的图形是俯视图.6.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】 D【分析】【剖析】找到从左面看到的图形即可.【详解】从左面上看是 D 项的图形 .应选 D.【点睛】本题考察三视图的知识,左视图是从物体左面看到的视图.7.以下图的几何体的俯视图为()A.B.C.D.【答案】 D【分析】【剖析】【详解】从上往下看,易得一个正六边形和圆.应选 D.8.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出同样的姿势,才能穿墙而过,不然会被墙推入水池.近似地,有一块几何体恰巧能以右图中两个不一样形状的“姿势”分别穿过这两个空洞,则该几何体为 ()A.B.C.D.【答案】 C【分析】试题剖析:经过图示可知,要想经过圆,则能够是圆柱、圆锥、球,而能经过三角形的只能是圆锥,综合可知只有圆锥切合条件.应选 C9.以下图,该几何体的主视图为()A.B.C.D.【答案】 B【分析】【剖析】找到从正面看所获得的图形即可.【详解】从正面看两个矩形,中间的线为虚线,应选: B.【点睛】考察了三视图的知识,主视图是从物体的正面看获得的视图.10.在同一时辰的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子同样长D.两人的影子长度不确立【答案】 D【分析】【剖析】在同一路灯下因为地点不确立,依据中心投影的特色判断得出答案即可.【详解】在同一路灯下因为地点不一样,影长也不一样,因此没法判断谁的影子长.应选 D.【点睛】本题综合考察了平行投影和中心投影的特色和规律.平行投影的特色是:在同一时辰,不同物体的物高和影长成比率.中心投影的特色是:① 等高的物体垂直地面搁置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.② 等长的物体平行于地面搁置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体自己的长度还短.11.如图是由 7 个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该地点小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】C【分析】【剖析】由已知条件可知,左视图有 2 列,每列小正方形数量分别为 3 ,1.据此可作出判断.【详解】解:从左面看可获得从左到右分别是3,1个正方形.应选 C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数同样,且每列小正方形数量为俯视图中相应行中正方形数字中的最大数字.12.发展工业是强国之梦的重要措施,以下图部件的左视图是()A.B.C.D.【答案】 D【分析】【剖析】依据从左侧看获得的图形是左视图,可得答案.【详解】以下图部件的左视图是.应选 D.【点睛】本题考察了简单组合体的三视图,从左侧看获得的图形是左视图,注意看到的线画实线.13.如图是某个几何体的三视图,该几何体是()A.三棱柱B.圆柱C.六棱柱D.圆锥【答案】 C【分析】【剖析】由主视图和左视图确立是柱体,锥体仍是球体,再由俯视图确立详细形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图剖析可知为六棱柱,应选 C.【点睛】本题考察学生对三视图掌握程度和灵巧运用能力,同时也表现了对空间想象能力方面的考察.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所获得的图形.14.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该地点的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】 B【分析】【剖析】【详解】解:依据题意画主视图以下:应选 B.考点:由三视图判断几何体;简单组合体的三视图.15.如图是由 5 个同样的正方体搭成的几何体,其左视图是()A.B.C.D.【答案】 A【分析】【剖析】依据三视图的定义即可判断.【详解】2 个小正方形,第二层左侧有 1 个小正方形.应选A.依据立体图可知该左视图是基层有【点睛】本题考察三视图,解题的重点是依据立体图的形状作出三视图,本题属于基础题型.16.如图是一个几何体的三视图(图中尺寸单位:cm ),依据图中所示数据求得这个几何体的侧面积是()A.12cm2B.12π cm2C.6πcm2D.8πcm2【答案】C【分析】【剖析】依据三视图确立该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确立该几何体是圆柱体,底面半径是2÷2= 1cm,高是 3cm .因此该几何体的侧面积为2π× 1×3=6π(cm 2).应选 C.【点睛】本题主要考察了由三视图确立几何体和求圆柱体的侧面积,重点是依据三视图确立该几何体是圆柱体.17.以下图是由6个大小同样的小正方体构成的几何体,它的左视图是()A.B.C.D.【答案】 B【分析】【剖析】依据三视图的意义进行剖析,要注意察看方向是从左侧看.【详解】解:从物体左面看,是左侧1个正方形,中间 2 个正方形,右侧1个正方形.应选 B.【点睛】查核知识点:简单组合体的三视图.18.由 6 个同样的立方体搭成的几何体以下图,则它的从正面看到的图形是( )A.B.C.D.【答案】 C【分析】【剖析】.察看立体图形的各个面,与选项中的图形对比较即可获得答案【详解】察看立体图形的各个面,与选项中的图形对比较即可获得答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】本题考察了从不一样方向察看物体和几何体,有优秀的空间想象力和抽象思想能力是解决本题的重点 .19.某个几何体的三视图以下图,该几何体是( )A.B.C.D.【答案】 D【分析】【剖析】依据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.应选 D.【点睛】考察了由三视图判断几何体的知识,解题的重点是拥有较强的空间想象能力,难度不大.人教版初中数学投影与视图知识点总复习附答案20.一个几何体的三视图以下图,此中主视图与左视图都是边长为这个几何体的侧面睁开图的面积为()4 的等边三角形,则A.6B.8C.10D.12【答案】 B【分析】【剖析】依据三视图获得这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,而后依据圆锥的侧面睁开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,因此这个几何体的侧面睁开图的面积= 14 4 8.2应选: B.【点睛】本题考察了圆锥的计算:圆锥的侧面睁开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考察了三视图.。
2021年数学中考一轮单元总复习达标精准突破专题29 投影与视图(解析版)
专题29 投影与视图知识点一:与投影有关的基本概念1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影。
2.平行投影:由平行光线形成的投影是平行投影。
3.中心投影:由同一点发出的光线形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
知识点二:与视图有关的基本概念1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。
视图可以看作物体在某一方向光线下的正投影。
2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。
主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。
知识点三:视图知识的应用1.通过三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
2.由三视图判断几何体形状主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念。
通过下面知识导图加深对本章内容的了解。
【例题1】一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是( )A B C D【答案】B.【解析】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.根据看等边三角形木框的方向即可得出答案.竖直向下看可得到线段,沿与平面平行的方向看可得到C,延与平面不平行的方向看可得到D,不论如何看都得不到一点.【例题2】(2020广元)如图所示的几何体是由5个相同的小正方体组成,其主视图为()A. B. C. D.【答案】D【解析】根据从正面看得到的图形是主视图,可得答案.从正面看第一层是一个小正方形,第二层是三个小正方形,∴主视图为:【点拨】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.【例题3】(2020湖南岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A. B.C. D.【答案】A【解析】根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.观察图形,从左边看得到两个叠在一起的正方形,如下图所示:【点拨】本题考查了简单几何体的三视图,解题的关键是掌握左视图的观察位置.【例题4】(2020苏州)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A. B. C. D.【答案】C【解析】根据组合体的俯视图是从上向下看的图形,即可得到答案.组合体从上往下看是横着放的三个正方形.【点拨】本题主要考查组合体三视图,熟练掌握三视图的概念,是解题的关键.《投影与视图》单元精品检测试卷本套试卷满分120分,答题时间90分钟一、选择题(每小题3分,共30分)1.(2020成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A. B. C. D.【答案】D【解析】根据左视图的定义“从主视图的左边往右边看得到的视图就是左视图”进一步分析即可得到答案.【详解】从主视图的左边往右边看得到的视图为:【点拨】本题考查了左视图的识别,熟练掌握相关方法是解题关键.2.(2020山东济宁)已知某几何体的三视图(单位:cm )如图所示,则该几何体的侧面积等于( )的A. 12πcm2B. 15πcm2C. 24πcm2D. 30πcm2【答案】B【解析】由三视图可知这个几何体是圆锥,高是4cm,底面半径是3cm5(cm),∴侧面积=π×3×5=15π(cm2),故选B.3.(2020山东菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为()A. B. C. D.【答案】A【解析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出主视图图形即可.从正面看所得到的图形为A选项中的图形.【点拨】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.4.(2020哈尔滨)五个大小相同的正方体塔成的几何体如图所示,其左视图是()A. B. C. D. 【答案】C【解析】根据从左边看得到的图形是左视图,可得答案.从左边看第一层有两个小正方形,第二层右边有一个小正方形,【点拨】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(2020河南)如下摆放的几何体中,主视图与左视图有可能不同的是()A. B.C. D.【答案】D【解析】分别确定每个几何体的主视图和左视图即可作出判断.A.圆柱的主视图和左视图都是长方形,故此选项不符合题意;B.圆锥的主视图和左视图都是三角形,故此选项不符合题意;C.球的主视图和左视图都是圆,故此选项不符合题意;D.长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,【点拨】本题考查了简单几何体的三视图,熟练掌握确定三视图的方法是解答的关键.6.(2020甘肃武威)下列几何体中,其俯视图与主视图完全相同的是()A. B. C. D.【答案】C【解析】俯视图是指从上面往下看,主视图是指从前面往后面看,根据定义逐一分析即可求解.选项A:俯视图是圆,主视图是三角形,故选项A错误;选项B:俯视图是圆,主视图是长方形,故选项B错误;选项C:俯视图是正方形,主视图是正方形,故选项C正确;选项D:俯视图是三角形,主视图是长方形,故选项D错误.【点拨】本题考查了视图,主视图是指从前面往后面看,俯视图是指从上面往下看,左视图是指从左边往右边看,熟练三视图的概念即可求解.7.(2020福建)如图所示的六角螺母,其俯视图是()A. B. C. D.【答案】B【解析】根据图示确定几何体的三视图即可得到答案.由几何体可知,该几何体的三视图依次为.主视图为:左视图为:俯视图为:【点拨】此题考查简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键.8.(2020新疆兵团)如图所示,该几何体的俯视图是()A. B. C. D.【答案】C【解析】根据俯视图是从上边看的到的视图,可得答案.从上边可以看到4列,每列都是一个小正方形,故C符合题意;【点拨】本题考查了简单组合体的三视图,从上边看的到的视图是俯视图.掌握俯视图的含义是解题的关键.9.(2020贵州黔东南)桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A. 12个B. 8个C. 14个D. 13个【答案】D【解析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.【点拨】本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需正方体的个数.10.(2020贵州黔西南)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A. B. C. D.【答案】D【解析】找到从上面看所得到的图形即可.解:从上面看可得四个并排的正方形,如图所示:【点拨】本题考查了三视图的知识,.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.二、填空题(每空3分,共30分)11.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.【答案】4.【解析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm)12.如图所示,一个空间几何体的主视图和左视图都是边长为l的正三角形,俯视图是一个圆及圆心,那么这个几何体的侧面积是.【答案】见解析。
2021年九年级数学中考一轮复习知识点中考真题演练28:视图与投影(附答案)
2021年九年级数学中考一轮复习知识点中考真题演练:视图与投影(附答案)1.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是()A.6B.5C.4D.32.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是()A.80﹣2πB.80+4πC.80D.80+6π3.某几何体的三视图及相关数据(单位:cm)如图所示,则该几何体的侧面积是()A.πcm2B.60πcm2C.65πcm2D.130πcm24.如图是一个三棱柱的立体图形,它的主视图是()A.B.C.D.5.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.6.由5个相同的小正方体组成的几何体如图所示,该几何体的俯视图是()A.B.C.D.7.如图放置的几何体的左视图是()A.B.C.D.8.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π9.下列说法正确的是()①平行四边形既是中心对称图形,又是轴对称图形;②同一物体的三视图中,俯视图与左视图的宽相等;③线段的正投影是一条线段;④主视图是正三角形的圆锥的侧面展开图一定是半圆;⑤图形平移的方向总是水平的,图形旋转后的效果总是不同的.A.①③B.②④C.③⑤D.②⑤10.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是()A.AB=CD B.AB≤CD C.AB>CD D.AB≥CD11.圆锥的主视图是边长为4cm的等边三角形,则该圆锥侧面展开图的面积是cm2.12.一个几何体的三视图如图所示,则该几何体的表面积为.13.如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为.(结果保留π)14.已知某几何体的三视图如图,其中主视图和左视图都是腰长为5,底边长为4的等腰三角形,则该几何体的侧面展开图的面积是.(结果保留π)15.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.16.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高米.(结果保留根号)17.如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而(填“变大”、“变小”或“不变”).18.如图所示是一个直四棱柱及其正视图和俯视图(等腰梯形).(1)根据图中所给数据,可得俯视图(等腰梯形)的高为;(2)在虚线框内画出其左视图,并标出各边的长.(尺规作图,不写作法,保留作图痕迹)19.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.20.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.21.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位)(2)画出该几何体的主视图和左视图.22.(1)一木杆按如图1所示的方式直立在地面上,请在图中画出它在阳光下的影子;(用线段CD表示)(2)图2是两根标杆及它们在灯光下的影子.请在图中画出光源的位置(用点P表示);并在图中画出人在此光源下的影子.(用线段EF表示)23.如图,晚上,小亮在广场上乘凉.图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯(P)照射下的影子;(2)如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度.参考答案1.解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有2个小正方体,上面最少要有1个小正方体,故该几何体最少有3个小正方体组成.故选:D.2.解:由三视图可知,该几何体是长方体,中间是空心圆柱体,长方体的长宽高分别为4,4,3,圆柱体直径为2,高为3,长方体表面积:4×4×2+4×3×4=80,圆柱体侧面积2π×3=6π,上下表面空心圆面积:2π,∴这个几何体的表面积是:80+6π﹣2π=80+4π,故选:B.3.解:观察图形可知:圆锥母线长为:=13,所以圆锥侧面积为:πrl=5×13×π=65π(cm2).答:该几何体的侧面积是65πcm2.故选:C.4.解;从正面看是矩形,看不见的棱用虚线表示,故选:B.5.解:从几何体的上面看俯视图是,故选:D.6.解:从上边看第一列是一个小正方形,第二列是两个小正方形且第一个小正方形位于第一层,第三列是一个小正方形,且位于第二层,故B选项符合题意,故选:B.7.解:左视图可得一个正方形,上半部分有条看不到的线,用虚线表示.故选:C.8.解:这个几何体的表面积=π•22+π•3•2+2π•2•2=18π,故选:B.9.解:①平行四边形是中心对称图形,不是轴对称图形,故错误;②同一物体的三视图中,俯视图与左视图的宽相等,故正确;③线段的正投影是一条线段或一个点,故错误;④设底面圆的半径为r,则圆锥的母线长为2r,底面周长=2πr,侧面展开图是个扇形,弧长=2πr=,所以n=180°.所以主视图是正三角形的圆锥的侧面展开图一定是半圆,故正确;⑤图形平移的方向不一定是水平的,图形旋转后的效果不一定是不同的,故错误.故选:B.10.解:根据正投影的定义,当AB与投影面平行时,AB=CD,当AB与投影面不平行时,AB大于CD.故选D.11.解:根据题意得:圆锥的底面半径为2cm,母线长为4cm,则该圆锥侧面展开图的面积是8πcm2.故答案为:8π12.解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,高为2,故其表面积为:π×12+(π+2)×2=3π+4,故答案为:3π+4.13.解:∵某圆锥的主视图是一个腰长为2的等腰直角三角形,∴斜边长为2,则底面圆的周长为2π,∴该圆锥侧面展开扇形的弧长为2π,故答案为2π.14.解:由三视图可知,该几何体是圆锥,∴侧面展开图的面积=π•2•5=10π,故答案为10π.15.解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.16.解:如图,在Rt△ABC中,tan∠ACB=,∴BC==,同理:BD=,∵两次测量的影长相差8米,∴﹣=8,∴x=4故答案为4.17.解:连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.则他在墙上投影长度随着他离墙的距离变小而变小.18.解:(1)4(3分)作AE⊥BC于点E,则BE=(8﹣2)÷2=3,∴高AE==4.(2)(6分).19.解:(1)根据三视图的知识,主视图以及左视图都是三角形,俯视图为圆形,故可判断出该几何体是圆锥;(2)表面积S=S扇形+S圆=+πr2=πrR+πr2=12π+4π=16π(平方厘米),即该几何体全面积为16πcm2;(3)如图将圆锥侧面展开,得到扇形ABB′,则线段BD为所求的最短路程.设∠BAB′=n°.∵=4π,∴n=120即∠BAB′=120°.∵C为弧BB′中点,∴∠ADB=90°,∠BAD=60°,∴BD=AB•sin∠BAD=6×=cm,∴路线的最短路程为3cm.20.解:如图所示,注:答案不唯一.21.解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个正方形,左右共6个正方形(外面4个加里面2个),每个正方形的面积为1,∴组合几何体的表面积为22.故答案为:5,22;(2)作图如下:22.解:(1)如图1,CD是木杆在阳光下的影子;(2)如图2,点P是影子的光源,EF就是人在光源P下的影子.23.解:(1)连接P A并延长交地面于点C,线段BC就是小亮在照明灯(P)照射下的影子.(2分)(2)在△CAB和△CPO中,∵∠C=∠C,∠ABC=∠POC=90°∴△CAB∽△CPO∴(5分)∴∴BC=2m,∴小亮影子的长度为2m(7分)。
九年级数学下册常考点微专题提分精练(投影与视图最新中考真题与模拟精练(解析版)
专题28 投影与视图最新中考真题与模拟精练1.(2022·安徽·定远县育才学校一模)学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6 m的小明(AB)的影子BC长是3 m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6 m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度GH;(3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH的中点B1处时,其影子长为B1C1;当小明继续走剩下路程的13到B2处时,其影子长为B2C2;当小明继续走剩下路程的14到B3处,…,按此规律继续走下去,当小明走剩下路程的11n+到Bn处时,其影子BnCn的长为m.(直接用含n的代数式表示)3AB BC 1.63122B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C,请依据上述定义解决如下问题.(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;(2)如图2,在Rt△ABC中,△ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;(3)如图3,在钝角△ABC中,△A=60°,点D在AB边上,△ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).7【点睛】本题是三角形综合题,考查了正投影的定义,解直角三角形,相似三角形的判定与直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN的距离皆为100cm.王诗嬑观测到高度90cm矮圆柱的影子落在地面上,其长为72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN互相垂直,i=,在不计圆柱厚度与影子宽度的情况下,请并视太阳光为平行光,测得斜坡坡度1:0.75解答下列问题:(1)若王诗嬑的身高为150cm,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm,则高圆柱的高度为多少cm?【点睛】本题考查了解分式方程,解直角三角形,平行投影,矩形的判定和性质等知识,解正面,设A、B、C三个几何体的主视图分别是A1、B1、C1;左视图分别是A2、B2、C2;俯视图分别是A3、B3、C3.(1)请你分别写出A1、A2、A3、B1、B2、B3、C1、C2、C3图形的名称;(2)小刚先将这9个视图分别画在大小、形状完全相同的9张卡片上,并将画有A1、A2、A3的三张卡片放在甲口袋中,画有B1、B2、B3的三张卡片放在乙口袋中,画有C1、C2、C3的三张卡片放在丙口袋中,然后由小亮随机从这三个口袋中分别抽取一张卡片.①画出树状图,求出小亮随机抽取的三张卡片上的图形名称都相同的概率;②小亮和小刚做游戏,游戏规则规定:在小亮随机抽取的三张卡片中只有两张卡片上的图形名称相同时,小刚获胜;三张卡片上的图形名称完全不同时,小亮获胜.这个游戏对双方公平吗?为什么?4由树状图可知,共有27种等可能结果,其中三张卡片上的图形名称都相同的结果有12种,图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B 、O 三点在同一直线上,且AO △OD ,EF △FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【答案】旗杆的高AB 为3米.2,在图2中,点A 可在BD 上滑动,当伞完全折叠成图3时,伞的下端点F 落在F '处,点C 落在C '处,AE EF =,90cm AC BC CE ===,70cm DF '=.(1)BD 的长为______.(2)如图2,当54cm AB =时.①求ACB ∠的度数;(参考数据:sin17.50.30︒≈,tan16.70.30︒≈,sin36.90.60︒≈,tan31.00.60︒≈)②求伞能遮雨的面积(伞的正投影可以看作一个圆).90BC AC ==cm ,54cm AB =AG GB ∴=sin ACG ∠ACG ∴∠=ACB ∴∠=AE EF =AH ∴=根据题意可知EAH ∴∠180cm AE =sin17.5EH ∴=2AH ∴=∴伞能遮雨的面积为【点睛】本题考查了解直角三角形的应用,正投影,理解题意是解题的关键.7.(2018·长度定义如下:设点 P (1x , 1y ) ,Q (2x , 2y ) 是图形 W 上的任意两点,若12x x -的最大值为 m ,则图形 W 在 x 轴上的投影长度为 lx = m ;若12y y -的最大值为 n ,则图形 W 在 y 轴上的投影长度为 ly = n .如图 1,图形 W 在 x 轴上的投影长度为 lx =40- = 4 ;在 y 轴上的 投影长度为 ly =30-= 3 .(1)已知点 A (1, 2) , B (2, 3) , C (3,1) ,如图 2 所示,若图形 W 为四边形 OABC , 则 lx = , ly = ;(2)已知点 C (-32, 0) ,点 D 在直线 y = 12x - 1(x < 0) 上,若图形 W 为 ∆OCD ,当 lx =ly时,求点 D 的坐标;(3 )若图形 W 为函数 y = x 2(a ≤ x ≤ b ) 的图象,其中 (0 ≤ a < b ) ,当该图形满足 lx = ly ≤ 1时,请直接写出 a 的取值范围.图 1 图 2设D(x,2x+6),则PD=2x+6.设D(x,2x+6),则PD=-2x-6.设A (a ,a 2)、B (b ,b 2).则CE=b -a ,DF=b 2-a 2=(b+a )(b -a ).模拟预测)测量金字塔高度:如图O 是正方形ABCD 的中心SO 垂直于地面,是正四棱锥S ABCD -的高,泰勒斯借助太阳光.测量金字塔影子PBC 的相关数据,利用平行投影测算出了金字塔的高度,受此启发,人们对甲、乙、丙三个金字塔高度也进行了测量.甲、乙、丙三个金字塔都用图1的正四棱锥S ABCD -表示.(1)测量甲金字塔高度:如图2,是甲金字塔的俯视图,测得底座正方形ABCD 的边长为80m ,金字塔甲的影子是50m PBC PC PB ==,,此刻,1米的标杆影长为0.7米,则甲金字塔的高度为______m .(2)测量乙金字塔高度:如图1,乙金字塔底座正方形ABCD 边长为80m ,金字塔乙的影子是PBC ,75,PCB PC ∠=︒=,此刻1米的标杆影长为0.8米,请利用已测出的数据,计算乙金字塔的高度.四边形ABCD 是正方形,PC PB =OP ∴垂直平分12OT ∴=PT ∴=OP OT ∴=设金子塔的高度为10.7h OP =100h ∴=故答案为:(2)如图,根据图4575120OCP OCB PCB ∠=∠+∠=︒+︒=︒,OCR ∴∠=80BC =12OC ∴=CR OC ∴=OR OC =PR PC ∴=10.8SO OP =50SO ∴=∴乙金字塔的高度为【点睛】本题考查了正方形的性质,解直角三角形,俯视图,物长与影长成正比等知识,正确的添加辅助线构造直角三角形是解题的关键.9.(2021·体或门.在点A 处安装了360度旋转摄像头,由于墙体的的遮挡,阴影部分无法监控,这部分无法监控到的区域通常称为监控盲区.(1)小红同学进入校史荣誉室随意参观,站在监控盲区的概率是多少?(2)为了监控效果更好,使得监控盲区最小,请你帮助学校在墙体AB 上重新设计摄像头安装的位置,画出示意图,并说明理由.【点睛】本题主要考查几何概率,掌握概率公式和方格纸的面积的计算,是解题的关键.发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?【点睛】本题考查了相似三角形的判定与性质,要求学生能根据题意画出对应图形,能判定线段长的问题等,蕴含了数形结合的思想方法.11.(2021·全国·九年级专题练习)小华想用学过的测量知识来测量家门前小河BC的宽度:如图所示,他们在河岸边的空地上选择一点C,并在点C处安装了测倾器CD,选择了河对岸边的一棵大树,将其底部作为点B,顶部作为点A,现测得古树的项端A的仰角为37°,再在BC的延长线上确定一点F,使CF=5米,小华站在F处,测得小华的身高EF=1.8米,小华在太阳光下的影长FG=3米,此时,大树AB在太阳光下的影子为BF.已知测倾器的高度CD=1.5米,点G、F、C、B在同一水平直线上,且EF、CD、AB均垂直于BG,求小河的宽度BC.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)可得四边形DCBH是矩形,解得x=10,所以BC=10(米),答:小河的宽度BC为10米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题、平行投影,解决本题的关键是设出未知数,利用同一时刻物高与影长的比相等建立方程.12.(2021·全国·九年级专题练习)在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?路灯;一天上午小刚在观看新安的照明灯时,发现在太阳光的正面照射下,照明灯的灯杆的投影的末端恰好落在2.5米高文化走廊墙的顶端,小刚测得照明灯的灯杆的在太阳光下的投影从灯杆的杆脚到文化走廊的墙脚的影长为4.6米,同一时刻另外一个前来观看照明路灯小静测得身高1.5米小刚站立时在太阳光下的影长恰好为1米,请同学们画出与问题相关联的线条示意图并求出新安装的照明路灯的灯杆的高度?由题意可得:DC=BE=4.6m,DE=BC=2. 5m,5m,某一时刻,AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.【答案】(1)答案见解析;(2)7.5m【详解】解:(1)作法:连接AC,过点D作DF△AC,交直线BE于F,则EF就是DE的投影.出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)NC=NB tan60°=×=(米).明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1) 平行;(2)电线杆的高度为7米.【分析】(1)有太阳光是平行光线可得利用的是平行投影;(2)连接AM、CG,过点E作EN△AB于点N,过点G作GM△CD于点M,根据平行投影时同一时刻物体与他的影子成比例求出电线杆的高度.【详解】(1)平行;(2)连接AM、CG,过点E作EN△AB于点N,过点G作GM△CD于点M,则BN=EF=2,GH=MD=3,EN=BF=10,DH=MG=5所以AN=10-2=8,由平行投影可知:即解得CD=7所以电线杆的高度为7m .18.(2020·甘肃白银·二模)如图,一棵被大风吹折的大树在B 处断裂,树梢着地.经测量,折断部分AB 与地面的夹角33α︒=,树干BC 在某一时刻阳光下的影长6CD =米,而在同时刻身高1.8米的人的影子长为2.7米.求大树未折断前的高度(精确到0.1米). (参考数据:330. 54,330. 84,330.65sin cos tan ︒︒︒≈≈≈)【答案】11.4米有一堵与地面互相垂直的墙,且圆柱与墙的距离皆为120公分.敏敏观察到高度90公分矮圆柱的影子落在地面上,其影长为60公分;而高圆柱的部分影子落在墙上,如图所示.已知落在地面上的影子皆与墙面互相重直,并视太阳光为平行光,在不计圆柱厚度与影子宽度的情况下,请回答下列问题:(1)若敏敏的身高为150公分,且此刻她的影子完全落在地面上,则影长为多少公分? (2)若同一时间量得高圆柱落在墙上的影长为150公分,则高圆柱的高度为多少公分?请详细解释或完整写出你的解题过程,并求出答案. //AB EF △四边形ABFE AB EF ∴=设BC y =9012060y ∴=180y ∴=【点睛】本题考查相似三角形的应用,平行投影,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(2021·江苏·南闸实验学校九年级阶段练习)如图,灯杆AB与墙MN的距离为18米,小丽在离灯杆(底部)9米的D处测得其影长DF为3m,设小丽身高为1.6m.(1)求灯杆AB的高度;(2)小丽再向墙走7米,她的影子能否完全落在地面上?若能,求此时的影长;若不能,求落在墙上的影长.【答案】(1)6.4米;(2)不能完全落在地面上;墙上的影长为1米.。
2023年中考数学复习考点一遍过——投影与视图附答案
2023年中考数学复习考点一遍过——投影与视图附答案一、单选题(每题3分,共30分)1.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.2.如图是一个立体图形的正视图、左视图和俯视图,那么这个立体图形是()A.圆锥B.三棱锥C.四棱锥D.五棱锥3.如图所示的几何体,其主视图是()A.B.C.D.4.如图是由5个完全相同的小正方体摆成的几何体,则这个几何体俯视图是()A.B.C.D.5.如图是一个由5个相同的正方体组成的立体图形,从其正面看,得到的平面图形是()A.B.C.D.6.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为20cm光源,到屏幕的距离为40cm,且幻灯片中图形的高度为8cm,则屏幕上图形的高度为()A.8cm B.12cm C.16cm D.24cm7.如图所示是由5个完全相同的小正方体搭成的几何体,如果将小正方体B放到小正方体A的正上方,则它的()A.左视图会发生改变,其他视图不变B.俯视图会发生改变,其他视图不变C.主视图会发生改变,其他视图不变D.三种视图都会发生改变8.如图是由5个相同的正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.9.如图,甲、乙、丙三个几何体均由四个大小相同的正方体组合而成,则下列说法错误的是()A.甲与乙的主视图不同,左视图与俯视图都相同B.甲与丙的主视图不相同,左视图与俯视图都不相同C.甲与丙的主视图与俯视图相同,左视图不相同D.甲、乙和丙的俯视图都相同10.如图,图2是图1长方体的三视图,若用S表示面积,S主视图=a2,S左视图=2a2+a,则S俯视图=()A.a2+a B.2a2C.a2+2a+1D.2a2+a二、填空题(每空3分,共15分)11.台灯照射文具盒所形成的影子属于投影.(填“平行”或“中心”)12.已知同一时刻物体的高与影子的长成正比例.身高1.68m的小明的影子长为0.84m,这时测得一棵树的影长为4m,则这棵树的高为m.13.如图是一个几何体的三视图,则该几何体的体积为.14.如图,是用若干个边长为1的小正方体堆积而成的几何体,该几何体的左视图的面积为。
人教版初中数学投影与视图知识点总复习有答案
人教版初中数学投影与视图知识点总复习有答案一、选择题1 .如下图的几何体的主视图是〔 〕【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右 2列一个长方形和一个小正方形, 应选A.【点睛】此题考查了三视图的知识,主视图是从物体的正面看得到的视图.2 .如图,小明用由5个相同的小立方体搭成的立体图形研究几何体的三视图的变化情况.假设由图1变到图2,不变化的是〔〕【解析】【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边 看得到的图形,可得答案.【详解】主视图都是第一层三个正方形,第二层左边一个正方形,故主视图不变; 左视图都是第一层两个正方形,第二层左边一个正方形,故左视图不变; 俯视图底层的正方形位置发生了变化.••.不改变的是主视图和左视图.应选:B.A.B.D-B.主视图和左视图C.主视图和俯视图D.左视图和俯视图 【答案】B2 2 2 2 A. 5cmB. 8cm C 9cm D. 10cm 【答案】D【解析】【分析】 由题意推知几何体为长方体,长、宽、高分别为1cm 、1cm 、2cm ,根据长方体的外表积公式即可求其外表积. 此题考查了简单组合体的三视图,利用三视图的意义是解题关键.3.图2是图1中长方体的三视图,假设用 S 表示面积,国 2 2x 3x,包 x x,那么S 俯〔〕----- […I ~~gx J三正面ffil桥但. 2 2 2 2 .A. x 4x 3B. x 3x 2C. x 2x 1D. 2x 4x 【答案】A【解析】【分析】 直接利用视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:: S 主 x 2 3x x(x 3) , S 左 x 2 x x(x 1),,主视图的长 x 3,左视图的长x 1, 那么俯视图的两边长分别为:x 3、x 1,2 S 俯(x 3)(x 1) x 4x3 ,应选:A.【点睛】此题主要考查了三视图求边长,正确得出俯视图的边长是解题关键.4. 一个几何体的三视图如下图,那么这个几何体的外表积是( )左视图阳 一1〕口修口由题意推知几何体是长方体,长、宽、高分别 1cm 、1cm 、2cm,所以其面积为:2 1112 1210 cm 2 ,应选D.【点睛】此题考查了由三视图复原几何体、长方体的外表积,熟练掌握常见几何体的三视图是解题 的关键. 小正体的个数是〔〕 根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有 3+2+1=6个小正方体,第二层有 1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.应选C.【点睛】此题意在考查学生对三视图掌握程度和灵活运用水平,同时也表达了对空间想象水平方面的考查.如果掌握口诀 俯视图打地基,主视图疯狂盖,左视图拆违章 了. 6.如下图的几何体的俯视图为 〔 〕】视方向【详解】从上往下看,易得一个正六边形和圆.应选D.7.以下几何体中,主视图与俯视图不相同的是〔 〕5.如图是 个由假设干个相同的小正方体组成的几何体的三种形状图,那么组成这个几何体的从正面看A. 7【答案】C【解析】【分析】B.8 从上面看 C. 9 D. 10〞就容易得到答案 从左面看 A.B. C.【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【详解】解:四棱锥的主视图与俯视图不同.应选B.【点睛】考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.8.圆锥的三视图如下图,那么这个圆锥的侧面展开图的面积为〔〕幅厂、视茵&A. 60 71cmiB. 65 71c吊C. 90 71c吊D. 130 71c吊【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为所以圆锥的母线长= J 52 1 22 13 "m). (1)C 所以这个圆锥的侧面积= 5g25 13 65 (cm 2), 应选:B. 【点睛】 此题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周 长,扇形的半径等于圆锥的母线长.也考查了三视图.9 .下面是从不同的方向看一个物体得到的平面图形,那么该物体的形状是(由主视图和左视图可得此几何体为锥体,根据俯视图可判断出该物体的形状是三棱锥. 【详解】解:.「主视图和左视图都是三角形,,此几何体为椎体,••・俯视图是3个三角形组成的大三角形, 该物体的形状是三棱锥.应选:C.【点睛】 此题考查了几何体三视图问题,掌握几何体三视图的性质是解题的关键.10 .由假设干个相同的小正方体摆成的几何体的主视图和左视图均为如下图的图形,那么最 多使用小正方体的个数为( )【答案】C【解析】【分析】 由主视图和左视图可复原该几何体每层的小正方体个数 ^D,三棱柱B. 9个C. 10 个D. 11 个三棱锥A. 8个解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,那么最多使用小正方形的个数为10.应选C【点睛】此题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.11.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是〔〕/王视方向【答案】A【解析】【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案^【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【点睛】此题考查三视图的知识,主视图是从物体的正面看得到的视图.12.图甲是由假设干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是〔〕【解析】【分析】根据主视图的画法解答即可【详解】A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;D.是俯视图,故本选项错误【解析】【分析】解:根据题意画主视图如下:应选B.考点:由三视图判断几何体;简单组合体的三视图.13.如图,这是一个机械模具,那么它的主视图是〔 〕故答案选C.【点睛】此题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断 〔一种小零件〕的两个台阶的高度和宽度相等,那么它的左视图为【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:从左面看去,是两个有公共边的矩形,如下图:【点睛】此题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线 框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.【答案】C【解析】【分析】根据从上面看这个物体的方法,确定各排的数量可得答案.14.如下图的支架15.如图是由七个相同的小正方体堆成的物体 ,从上面看这个物体的图是〔〕D. B.C.【详解】从上面看这个物体,可得后排三个,前排一个在左边,应选:C.【点睛】此题考查了三视图,注意俯视图后排画在上边,前排画在下边.16.如图是某几何体得三视图,那么这个几何体是〔〕A.球B.圆锥C.圆柱D.三棱体【答案】B【解析】分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥. 应选B.17.以下水平放置的几何体中,俯视图是矩形的为〔〕【解析】【分析】俯视图是从物体上面看,所得到的图形.【详解】A.圆柱俯视图是圆,故此选项错误;B.长方体俯视图是矩形,故此选项正确;C.三棱柱俯视图是三角形,故此选项错误;D.圆锥俯视图是圆,故此选项错误;应选B.【点睛】此题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图 中.【答案】C【解析】试题解析:A 、的主视图是矩形,故 A 不符合题意;B 、的主视图是正方形,故 B 不符合题意;G 的主视图是圆,故 C 符合题意;D 、的主视图是三角形,故 D 不符合题意;应选C.考点:简单几何体的三视图.【答案】C【解析】【分析】 根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.19.如图是一个几何体的三视图〔图中尺寸单位: cm 〕,根据图中所示数据求得这个几 2 B. 12 c cm2D. 8 冗cm 18.下面的几何体中,主视图为圆的是〔【详解】先由三视图确定该几何体是圆柱体,底面半径是2-2= 1cm,高是3cm.所以该几何体的侧面积为2兀*1-36兀〔cm2〕.应选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.D.根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是一个矩形,其中间含一个圆,如下图:应选:B.【点睛】此题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.。
中考数学复习 《视图与投影》练习题含答案
中考数学复习视图与投影一、选择题1.正方形的正投影不可能是( D )A.线段B.矩形C.正方形D.梯形2.如图由7个小正方体组合而成的几何体,它的主视图是( A )3.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是( C )A.20B.22C.24D.264.将图①围成图②的正方体,则图①中的红心“”标志所在的正方形是正方体中的( A )A.面CDHE B.面BCEFC.面ABFG D.面ADHG5.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)( B )A.40πcm2B.65π cm2C.80π cm2D.105π cm2【解析】由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8 cm,底面半径为10÷2=5(cm),故表面积=πrl+πr2=π×5×8+π×52=65π(cm2).故选B.6.如图是几何体的俯视图,小正方形内所表示数字为该位置小正方体的个数,则该几何体的主视图是( B )二、填空题7.某几何体的主视图和左视图如图所示,则该几何体可能是__圆柱体__.8.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小__相同__.(填“相同”“不一定相同”或“不相同”)9.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是__5__个.【解析】综合三视图,可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5(个).10.一个侧面积为162πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为__4__ cm.【解析】设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴l=2r,∴侧面积S =πrl=2πr2=162π,解得r=4,l=42,∴圆锥的高h=4 cm.侧三、解答题11.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8 m,若两次日照的光线互相垂直,求树的高度.解:4 m12.如图是一张铁皮.(单位:m)(1)计算该铁皮的表面积;(2)此铁皮能否做成长方体的盒子?若能,画出它的几何图形,并求出它的体积;若不能,说明理由.解:(1)22 m2(2)能够,图略,6 m313.根据三视图求几何体的表面积,并画出物体的展开图.解:由三视图可知,该几何体由上部分是底面直径为10,高为5的圆锥和下部分是底面直径为10,高为20的圆柱组成,物体的展开图如图.圆锥、圆柱底面半径为r =5,由勾股定理得圆锥母线长R =52,S 圆锥表面积=12lR =12×10π×52=252π,∴S 表面积=π×52+10π×20+252π=225π+252π=(225+252)π14.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体上的点B 出发,沿表面爬到AC 的中点D ,请求出这个路线的最短路程.解:(1)圆锥(2)S 表=S 底+S 侧=π(42)2+π×2×6=16π(cm 2) (3)3 3 cm15.某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图),请你按照三视图确定制作每个密封罐所需钢板的面积.解:由三视图可知,密封罐的形状是正六棱柱(如图①),密封罐的高为50,底面正六边形的直径为100,边长为50,图②是它的展开图.由展开图可知,制作一个密封罐所需钢板的面积为6×50×50+2×6×12×50×50sin60°=75003+15000。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
视图与投影
一、选择题(每小题6分,共24分)
1.(2014·温州)如图所示的支架是由两个长方体构成的组合体,则它的主视图是( D)
2.(2014·宁夏)如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是( D)
3.(2014·陕西)如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( A)
4.(2014·呼和浩特)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( B)
A.60πB.70πC.90πD.160π
解析:观察三视图发现该几何体为空心圆柱,其内径为3,外径为4,高为10,所以其体积为10×(42π-32π)=70π,故选B
二、填空题(每小题7分,共28分)
5.(2014·梅州)写出一个在三视图中俯视图与主视图完全相同的几何体__球或正方体__.
6.(2014·湖州)如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是__3__.
7.(2012·河源)春蕾数学兴趣小组用一块正方形木板在阳光下做投影试验,这块正方形木板在地面上形成的投影可能是__正方形、菱形(答案不唯一)__.(写出符合题意的两个图形即可)
解析:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形或线段
8.(2014·黔东南)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为__5__.解析:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成
三、解答题(共48分)
9.(12分)(2012·自贡)画出如图所示立体图形的三视图.
解:如图所示:
10.(12分)5个棱长为1的正方体组成如图的几何体.
(1)该几何体的体积是____立方单位,表面积是____平方单位;
(2)画出该几何体的主视图和左视图.
解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个正方形,左右共6个正方形,每个正方形的面积为1,∴组合几何体的表面积为22.故答案为5,22
(2)作图如下:
11.(12分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.
(1)请在下面方格纸中分别画出这个几何体的主视图和左视图.
(2)根据三视图,请你求出这个组合几何体的表面积.(包括底面积) (1)图形如下所示:
(2)几何体的表面积为:(3+4+5)×2=24
12.(12分)如图,公路旁有两个高度相等的路灯AB ,CD.小明上午上学时发现路灯B 在太阳光下的影子恰好落到里程碑E 处,他自己的影子恰好落在路灯CD 的底部C 处.晚自习放学时,站在上午同一个地方,发现在路灯CD 的灯光下自己的影子恰好落在里程碑E 处.
(1)在图中画出小明的位置(用线段FG 表示),并画出光线,标明太阳光、灯光;
(2)若上午上学时候高1米的木棒的影子为2米,小明身高为1.5米,他离里程碑E 恰好5米,求路灯高.
解:(1)
(2)∵上午上学时候高1米的木棒的影子为2米,小明身高为1.5米,∴小明的影长CF
为3米,∵GF ⊥AC ,DC ⊥AC ,∴GF ∥CD ,∴△EGF ∽△EDC ,∴GF CD =EF EC ,∴1.5CD =5
5+3
,解得
CD =2.4.答:路灯高为2.4米
2015年名师预测
1.如图是某个几何体的三视图,则该几何体的形状是( D ) A .长方体 B .圆锥 C .圆柱 D .三棱柱
2.三棱柱的三视图如图所示,△EFG 中,EF =8 cm ,EG =12 cm ,∠EGF =30°,则AB 的长为__6__ cm .
解析:过点E 作EQ⊥FG 于点Q ,由题意可得出EQ =AB ,∵EG =12 cm ,∠EGF =30°,
∴EQ =AB =1
2
×12=6(cm )。