2019年北师大九年级上册期末专题《第五章投影与视图》单元试卷(有答案)[精品]

合集下载

2019--2020年北师大版九年级数学上册第五章:投影视图 单元测试试卷

2019--2020年北师大版九年级数学上册第五章:投影视图  单元测试试卷

北师大版九年级上册第五章《视图与投影》单元测试试卷一、选择题(共12小题;共36分)1. 把一个正五棱柱如图摆放,当投射线由正前方射到后方时,它的正投影是( )A. B.C. D.2. 如图,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )A. B.C. D.3. 如图所示,把正方体的一个顶点朝上立放,在它下面放一张白纸,使纸面与太阳光线垂直,那么该正方体在纸上的投影是( )A. B.C. D.4. 结合地理知识,在下列地区中,有太阳直射现象的是( )A. 河北省B. 河南省C. 北京D. 海南省5. 如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的数是( )A. 2B. 3C. 4D. 56. 有两个完全相同的长方体,按下面方式摆放,其主视图是( )A. B.7. 如图是一个包装盒的三视图,则这个包装盒的体积是( )A. 1000πcm3B. 1500πcm3C. 2000πcm3D. 4000πcm38. 如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A. 主视图的面积为5B. 左视图的面积为3C. 俯视图的面积为3D. 三种视图的面积都是49. 如图,一个空心圆柱体,其主视图正确的是( )A. B.10. 如图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是( )A. 6个B. 8个C. 10个D. 12个11. 如图是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是( )A. B.C. D.12. 如图所示是由一些相同的小正方体构成的几何体的三视图,则构成这个几何体的小正方体的个数是( )A. 5个B. 6个C. 7个D. 8个二、填空题(共6小题;共24分)13. 在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)14. 路灯下,小强对小华说:“我可以踩到你的影子.”从而可以断定他们在路灯的.(填“同侧”或“异侧”)15. 如果一个几何体的视图之一是三角形,那么这个几何体可能是(写出两个几何体即可).16. 将一个三角尺放在太阳下,它所形成的投影是_____,也可能是_____.17. 如图所示,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.18. 如图是由7个棱长均为1的正方体组成的几何体,则它的左视图和俯视图的面积之和为.三、解答题(共7小题;共60分)19. (8分)如图是由几个小立方块所搭成几何体从正面和从上面看的形状图:这样搭建的几何体,最少、最多各需要多少个小立方块?20. (8分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.21. (8分)立体图形的三视图如下,请你画出它的立体图形:22. (8分)如图所示,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度(即AB的值).23. (8分)如图是两棵小树在一个路灯下的影子.(1)请画出光线与路灯灯泡的位置.(2)在适当位置画出电线杆.(3)若左边树AB的高度是3m,影长是4m,树的根茎B离电线杆的距离是2m,求电线杆的高度.24. (10分)如图1,是由一些大小相同的小正方体组合成的简单几何体,并放在墙角.(注:图3、图4、图5每一个小方格的边长为1cm)(1)该几何体主视图如图3所示,请在图4方格纸中分别画出它的右视图;(2)若将其外面涂一层漆,则其涂漆面积为cm2.(正方体的棱长为1cm)(3)一个全透明的玻璃正方体(正方体的棱长为2cm)(如图2),上面嵌有一根黑色的金属丝,在如图5中画出金属丝在俯视图中的形状.25. (10分)如图是由几个小立方体所搭成的几何体的左视图,小正方体中的数字表示在该位置上小立方体的个数,请画出相应的几何体的主视图和俯视图.答案第一部分1. B2. D3. C4. D5. C6. C7. C 【解析】结合三视图,可以得出这个几何体应该是个圆柱体,且底面半径为10cm,高为20cm.因此它的体积是π×10×10×20=2000π(cm3).8. B9. B10. A【解析】俯视图知,最下层有4个小正方体,由主视图知第二层至少有2个小正方体.11. C12. D第二部分13. ①②【解析】长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆.14. 同侧15. 圆锥、三棱锥(答案不唯一)16. 三角形一条线段17. 54【解析】由三视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10(个)小立方体.若搭成一个大正方体,共需4×4×4=64(个)小立方体,所以至少还需64−10=54(个)小立方体.18. 10【解析】左视图是五个正方形,从左数第一列一个,第二列三个,第三列一个,五个正方形面积为5.俯视图也是五个正方形,从左数第一列三个,第二列一个,第三列一个,五个正方形面积为5,所以左视图和俯视图面积之和为5+5=10.第三部分19. 搭这样的几何体最少需要8+2+1=11个小正方体,最多需要8+6+3=17个小正方体;故最多需要17个小正方体,最少需要11个小正方体.20.21. 如图所示:22. 由于阳光是平行光线,即AE∥BD,所以∠AEC=∠BDC.又因为∠C是公共角,所以△AEC∼△BDC,从而有ACBC =ECDC.又AC=AB+BC,DC=EC−ED,EC=3.9,ED=2.1,BC=1.2,于是有AB+1.21.2= 3.93.9−1.2,解得AB=1.4m.答:窗口的高度为1.4m.23. (1)如图所示.(2)如图所示,EO为电线杆.(3)∵△ABC∽△OEC,∴ABBC =OFBC+BE∵AB=3,BC=4,BE=2,∴OE=4.5,∴电线杆的高度为4.5m.24. (1)如图,(2)17【解析】∵每个小正方体的面积为1cm2,∴涂漆面积为:6+7+4=17cm2.(3)如图,25. (答案不唯一)主视图如图①所示,俯视图如图②所示.。

第5章 投影与视图 九年级上册数学北师大版单元质检卷(A卷 含解析)

第5章 投影与视图 九年级上册数学北师大版单元质检卷(A卷 含解析)

第五章投影与视图单元质检卷(A卷)【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列投影是平行投影的是( )A.太阳光下窗户的影子B.台灯下书本的影子C.在手电筒照射下纸片的影子D.路灯下行人的影子2.下列几何体中,主视图是三角形的是( )A. B. C. D.3.如图所示的几何体的俯视图是( )A. B.C. D.4.如图是某一几何体的主视图、左视图、俯视图,该几何体是( )A.四棱柱B.四棱锥C.三棱柱D.三棱锥5.如图,小明居住的小区内有一条笔直的小路,有一盏路灯位于小路上M,N两点的正中间,晚上,小明由点M处径直走到点N处,他在灯光照射下的影长y与行走路程x之间的变化关系用图象表示大致是( )A. B.C. D.6.如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为( )A. B. C. D.7.如图,小颖身高为,在阳光下影长,当她走到距离墙角(点D)处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为( )A. B. C. D.8.由圆柱和长方体(底面为正方形)组成的几何体如图放置,该几何体的俯视图是( )A. B. C. D.9.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自己正前方的水果盘中,则这块西瓜的三视图是( )A. B. C. D.10.如图,在平面直角坐标系中,点是一个光.木杆两端的坐标分别为,.则木杆在x轴上的投影长为( )A. B. C.5 D.6二、填空题(每小题4分,共20分)11.如图,日晷仪也称日晷,是观测日影计时的仪器,主要是根据日影的位置,以指定当时的时辰或刻数,是我国古代较为普遍使用的计时仪器.但在史籍中却少有记载,现在史料中最早的记载是“汉书•律历志•制汉历”一节:太史令司马迁建议共议“乃定东西,主晷仪,下刻漏”.看来日晷是我国古代利用日影测定时刻的仪器,晷针在晷面上所形成的投影属于___________投影.12.图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为__________.13.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转至地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定),影长的最大值为m,最小值为n,那么下列结论:①;②;③;④影子的长度先增大后减小.其中正确结论的序号是__________.14.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,_____.15.图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中的度数是_____°.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)画出如图所示物体的主视图、左视图、俯视图.17.(8分)小红想利用阳光下的影长测量学校旗杆AB的高度.如图,某一时刻她在地面上竖立了一根2米长的标杆CD,测得其影长米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果米,求旗杆AB的高.18.(10分)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图中有__________块小正方体;(2)该几何体的主视图如图所示,请分别画出它的左视图和俯视图.19.(10分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图所示,此时测得地面上的影长为8米,坡面上的影长为4米已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,请计算出树的高度.20.(12分)图(1)是由两个长方体组成的立体图形,图(2)中的长方体是图(1)中的两个长方体的另一种摆放形式,图①②③是从不同的方向看图(1)所得的平面图形.(1)填空:图①是从___________面看得到的平面图形,图②是从___________面看得到的平面图形,图③是从___________面看得到的平面图形,(2)请根据各图中所给的信息(单位:cm),计算出图(1)中上面的小长方体的体积.21.(12分)为测量水平操场上旗杆的高度,九(2)班各学习小组运用了多种测量方法.(1)如图1,小张在测量时发现,自己在操场上的影长EF恰好等于自己的身高DE.此时,小组同学测得旗杆AB的影长BC为,据此可得旗杆高度为________m;(2)如图2,小李站在操场上E点处,前面水平放置镜面C,并通过镜面观测到旗杆顶部A.小组同学测得小李的眼睛距地面高度,小李到镜面距离,镜面到旗杆的距离.求旗杆高度;(3)小王所在小组采用图3的方法测量,结果误差较大.在更新测量工具,优化测量方法后,测量精度明显提高,研学旅行时,他们利用自制工具,成功测量了江姐故里广场雕塑的高度.方法如下:如图4,在透明的塑料软管内注入适量的水,利用连通器原理,保持管内水面M,N两点始终处于同一水平线上.如图5,在支架上端P处,用细线系小重物Q,标高线PQ始终垂直于水平地面.如图6,在江姐故里广场上E点处,同学们用注水管确定与雕塑底部B处于同一水平线的D,G两点,并标记观测视线DA与标高线交点C,测得标高,.将观测点D后移到D处,采用同样方法,测得,.求雕塑高度(结果精确到).答案以及解析1.答案:A解析:太阳光下窗户的影子是平行投影;台灯下书本的影子是中心投影;在手电筒照射下纸片的影子是中心投影;路灯下行人的影子是中心投影.故选A.2.答案:A解析:A.主视图是三角形,故本选项符合题意;B.主视图是矩形,故本选项不符合题意;C.主视图是矩形,故本选项不符合题意;D.主视图是正方形,故本选项不符合题意.故选:A.3.答案:D解析:这个几何体的俯视图为,故选D.4.答案:B解析:由主视图与左视图是三角形,俯视图是正方形且有两条对角线,可知该几何体是四棱锥,故选B.5.答案:C解析:小路MN路段的正中间有一盏路灯,小明在灯光照射下的影长y与行走路程x之间的变化关系为当小明从M处走到灯下时y随x的增大而减小,离开灯继续走到N处时y随x的增大而增大,用图象表示出来应为选项C.故选C.6.答案:B解析:由三视图可得,该几何体是空心圆柱,其小圆半径是1,大圆半径是2,则大圆面积为,小圆面积为,故这个几何体的体积为.故选B.7.答案:B解析:如图,过E作于F.设投射在墙上的影子DE的长度为.由题意,得,,即,解得.故投射在墙上的影子DE的长度为.故选B.8.答案:C解析:竖立圆柱的俯视图是圆,底面为正方形的长方体的俯视图是正方形,且所有轮廓线均为实线,故选C.9.答案:B解析:观察图形可知,这块西瓜的三视图是.故选B.10.答案:D解析:延长、分别交x轴于、,作轴于E,交于D,如图,,,.,,,,,,即,,故选:D.11.答案:平行解析:因为太阳光属于平行光线,而日晷利用日影测定时刻,所以晷针在晷面上所形成的投影属于平行投影.故答案为:平行.12.答案:解析:由三视图知该几何体为圆柱,且底面圆的半径是1,高是3,这个几何体的体积为.故答案为.13.答案:①③④解析:木杆AB绕点A按逆时针方向旋转,如图所示,当木杆AB与光线垂直时,影子最长,则,①成立,②不成立.当木杆AB到达地面时,影子最短,故,③成立.由上可知,影子的长度先增大后减小,④成立.故答案为①③④.14.答案:16解析:易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体,,,所以.故答案为:16.15.答案:60解析:如图,,,,,,故答案为:60.16.答案:见解析解析:如图所示:17.答案:(1)见解析(2)8米解析:(1)如图,连接CE,过点A作交BD于点F,则BF即为所求.(2),.又,,,即,米.答:旗杆AB的高为8米.18.答案:(1)11(2)图见解析解析:(1)如图所示:上层有5个小正方体;底层比上层多了1个小立方体,即图中共有11块小正方体,故答案为:11;(2)由题中立体图形及主视图可知,正面看组合体的方向如图所示:左视图是;俯视图是.19.答案:如图,延长AC交直线BD于点F,过点C作于点E.在中,米,,则米,所以米.根据同一时刻物高与影长对应成比例,得,则米,所以米.又,所以米,所以树的高度为米.解析:20.答案:(1)正或后;上;左或右(2)解析:(1)正或后;上;左或右(2)由题图可得解得所以题图(1)中上面的小长方体的长、宽、高分别为,,,所以,即题图(1)中上面的小长方体的体积为.21.答案:(1)11.3(2)旗杆高度为12m(3)雕塑高度为29m解析:由题意得,由题意得:,,故答案为:;(2)如图,由题意得,,,,根据镜面反射可知:,,,,,,即,,答:旗杆高度为;(3)设,由题意得:,,,,即,,,整理得,解得,经检验符合,,答:雕塑高度为.。

2018-2019学年度北师大版九年级数学上册《第五章投影与视图》单元检测试卷(有答案)

2018-2019学年度北师大版九年级数学上册《第五章投影与视图》单元检测试卷(有答案)

2018-2019学年度第一学期北师大版九年级数学上册第五章投影与视图单元评估检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.傍晚,小明陪妈妈在路灯下散步,当他们经过路灯时,身体的影长()A.先由长变短,再由短变长B.先由短变长,再由长变短C.保持不变D.无法确定2.如图是由个同样大小的正方体摆成的几何体.将标有“ ”的这个正方体移走后,所得几何体()A.俯视图改变,左视图改变B.主视图改变,左视图不变C.俯视图不变,主视图不变D.主视图不变,左视图改变3.若一个立体图形的正视图、左视图都是长方形,俯视图为圆形,则这个图形可能是()A.圆柱B.球C.圆锥D.三棱锥4.图①是五棱柱形状的几何体,则它的三视图为()A. B.C. D.5.在操场上练习双杠的过程中发现双杠的两横杠在地上的影子()A.相交B.互相垂直C.互相平行D.无法确定6.下面的几何体中,俯视图为三角形的是()A. B.C. D.7.下列几何体的主视图与众不同的是()A. B.C. D.8.如图所示的立体图形是由个棱长为的小立方体组成的,其俯视图是()A. B.C. D.9.如图是由一些相同的小正方体堆叠成的几何体的三种视图,则此几何体中的小正方体的个数是()A. B. C. D.10.如图,正六棱柱的左视图是()A. B.C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,计算所给三视图表示的几何体的体积是________.12.一个透明的玻璃正方体内镶嵌了一条铁丝(如图所示的粗线),请指出右边的两个图是从正方体的哪个方向看到的视图.________;________.13.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体________.14.一个几何体的主视图为长方形,这个几何体可能是________(只需填上一种几何体的名称).15.物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是________现象.16.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小________.17.两个物体映在地上的影子有时在同侧,有时在异侧,则这可能是________投影.18.图中八边形表示一个正八棱柱形状的高大建筑物的俯视图,小明站在地面上观察该建筑物,图中标注的个区域中,他只能同时看到其中三个侧面的是________.19.从不同的方向观察同一物体时,可能看到不同的图形,我们把从正面看到的图叫________,从________面看到的图叫做左视图,从上面看到的图叫做________.20.小明同学在教室透过窗户看外面的小树,他能看见小树的全部吗?请在图中画说明.如果他想看清楚小树的全部,应该往________(填前或后)走.在图中画出视点(小明眼睛)的位置.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图是由小立方体组成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,请画出相应的主视图和左视图.22.一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.23.如图是同一时刻的两棵树及其影子,请你在图中画出形成树影的光线,并判断它是太阳光线还是灯光的光线?若是灯光的光线,请确定光源的位置;请判断如图所示的两棵树的影子是在太阳光下形成的,还是灯光下形成的?并画出同一时刻旗杆的影子(用线段表示).24.在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如图所示.请画出这个几何体的三视图.如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有________个正方体只有一个面是黄色,有________个正方体只有两个面是黄色,有________个正方体只有三个面是黄色.若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?25.某一时刻,树在阳光下的影子一部分在地面上,另一部分在建筑物的墙面上.设树在地面上的影长为,墙面上的影长为;同一时刻测得竖立于地面长的木杆的影长为,求树高.26.晚上,一个身高米的人站在路灯下,发现自己的影子刚好是块地砖的长(地砖是边长为米的正方形),当他沿着影子的方向走了块地砖时,发现自己的影子刚好是块地砖的长,根据他的发现,你能不能计算路灯的高度?答案1.A2.B3.A4.A5.C6.C7.D8.D9.C10.B11.12.俯视图主视图13.略14.长方体15.投影16.相同17.中心①19.主视图左俯视图20.前21.解:如图所示:22.解:如图所示:23.解:如图所示是灯光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线,再过另一棵树的顶端及其影子的顶端作一条直线,两直线相交,其交点就是光源的位置;如图所示,是太阳光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线,再过另一棵树的顶端及其影子的顶端作一条直线,两直线平行.然后再过旗杆的顶端作一条与已知光线平行的直线,交地面于一点,连接这点与旗杆底端的线段就是旗杆的影子.24.解:如图所示:最多可以再添加个小正方体.25.树的高度为.26.路灯的高度为.。

2019—2020年新北师大版数学九年级上册(新)第五章投影与视图单元测试及答案.docx

2019—2020年新北师大版数学九年级上册(新)第五章投影与视图单元测试及答案.docx

新北师大版九年级上册投影与视图单元测试(二)一、填空题(30分)1、甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长的关系是2、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子(填“长”或“短”)3、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m,小刚比小明矮5cm,此刻小明的影长是________m。

4、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都为1.6m,小明向墙壁走1m到B处发现影子刚好落在A点,则灯泡与地面的距离CD=_______。

5、下图的几何体由若干个棱长为数1的正方体堆放而成,则这个几何体的体积为__________。

6、如图是某个几何体的展开图,这个几何体是.俯视图左视图主视图7、如图,是由几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是8、如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得 BC=3.2m ,CA=0.8m, 则树的高度为9、春分时日,小明上午9:00出去,测量了自己的影长,出去一段时间后回来时,发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为 小时。

10、直角坐标系内,身高为1.5米的小强面向y 轴站在x 轴上的点A(-10,0)处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是224113二、选择题:(30分)11、下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )A. B. C. D.12、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A 小明的影子比小强的影子长B 小明的影长比小强的影子短C 小明的影子和小强的影子一样长D 无法判断谁的影子长13下图中几何体的主视图是().(A) (B) (C) (D)A BC D第16题14、对左下方的几何体变换位置或视角,则可以得到的几何体是 ( )第Ⅱ卷(非选择题,共98分)15、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有( )(A )5桶 (B ) 6桶 (C )9桶 (D )12桶16、一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是( )17.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )AB CD214俯视图主(正)视图左视图18、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数( )A 5个B 6个 C 7个 D 8个19、水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )A .OB . 6C .快D .乐20、图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( )A P 区域 B Q 区域 C M 区域 D N 区域三、解答题(60分)21、(6分)中午,一根1.5米长的木杆影长1.0米,一座高21米的住宅楼的影子是否会落在相距18米远的商业楼上?傍晚,该木杆的影子长为2.0米,这时住宅楼的影子是否会落在商业楼上?为什么?22、(12分)画出下列几何体的三视图:N P Q M第13题图2图123、(6分)将下列所示的几何体进行两种不同的分类,并说明理由。

北师版九年级数学 第五章 投影与视图(单元综合测试卷)

北师版九年级数学  第五章 投影与视图(单元综合测试卷)

第五章投影与视图(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A.物体在太阳光下产生的投影是物体的正投影B.正投影一定是平行投影C.物体在灯光下产生的投影是物体的正投影D.正投影可能是中心投影2.如图中的几何体的主视图是()A.B.C.D.3.下列四个几何体中,主视图与俯视图不同的几何体是()A.B.C.D.4.一个矩形的平行投影不可能是()A.梯形B.矩形C.平行四边形D.线段5.下图是一个螺母,它的左视图是()A.B.C.D.6.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A.0.5m B.0.55m C.0.6m D.2.2m7.圆柱及其正视图的有关数据如图所示,则该圆柱的侧面展开图的面积为()A.3πB.4πC.6πD.9π8.如图所示,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E 处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米9.如图,在平面直角坐标系中,点()2,2是一个光源,木杆AB两端的坐标分别为()0,1,()3,1,则木杆AB 在x轴上的投影A B''长为()C.5D.6A.B.10.若干小立方块搭一个几何体,如果使其主视图和俯视图如图所示,那么搭建一个这样的几何体,最少需要()块小立方块.A.8B.9C.10D.11二、填空题(本大题共8小题,每小题3分,共24分)11.下列投影:①中午林荫道旁树的影子;②海滩上撑起的伞的影子;③跑道上同学们的影子;④晚上路灯下亮亮的手在墙上的投影.其中是平行投影的是(填序号).12.三视图中的三个视图完全相同的几何体可能是(写出一个即可).13.如图,同一时刻小诚和大树的影子长分别为1.5m和2.5m,已知小诚身高1.8m,则大树的高度为m.14.如图所示是由6个同样大小的小正方体摆成的几何体.将正方体①移走后,所得几何体主视图,俯视图,左视图.(均填“改变”或“不变”)15.小亮在上午8时、9时、12时、17时四次到室外的阳光下观察一棵树的影子随太阳变化的情况,他发现这四个时刻这棵树影子的长度各不相同,那么影子最长的时刻为;影子最短的时刻是.16.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是(用“=、>或<”连起来)17.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知CD=12m,DE=18m,小明和小华的身高都是1.5m,同一时刻小明站在E处,影子落在坡面上,影长为2m,小华站在平地上,影子也落在平地上,影长为1m,则塔高AB是米.18.如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、解答题(本大题共9小题,共66分)19.把下列物体与它们的投影连接起来.20.有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD 的影子.21.画出如图几何体的三种视图.22.一位同学想利用有关知识测旗杆的高度,他在某一时刻测得高为0.5m 的小木棒的影长为0.3m ,但当他马上测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子 1.0CD m =,又测地面部分的影长 3.0BC m =,你能根据上述数据帮他测出旗杆的高度吗?23.下列几何体是由五个棱长为1cm 的小正方体组成的.(1)该几何体的体积是_______,表面积是________;(2)分别画出该几何体从正面、左面、上面看到的形状图.24.如图,某光源下有三根杆子,甲杆GH 的影子为GM ,乙杆EF 的影子一部分落在地面EA 上,一部分落在斜坡AB 上的AD 处.(1)请在图中画出形成影子的光线,确定光源所在的位置R ,并画出丙杆PQ 在地面的影子.(2)在(1)的结论下,若过点F 的光线FD AB ⊥,斜坡与地面的夹角为60°,1AD =m ,2AE =m ,请求出乙杆EF 的高度:(结果保留根号).25.在平整的地面上,有若干个完全相同棱长为1的小正方体堆成一个几何图所示.(1)请画出这个几何体的三视图.(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加______个小正方体.(3)如果需要给原来这个几何体表面喷上红漆,则喷漆面积是多少?26.如图,在一个长40m ,宽30m 的长方形小操场上,王刚从A 点出发,沿着A→B→C 的路线以3m/s 的速度跑向C 地.当他出发4s 后,张华有东西需要交给他,就从A 地出发沿王刚走的路线追赶,当张华跑到距B 地223m 的D 处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A 处的小旗在阳光下的影子也恰好落在对角线AC 上.求:(1)他们的影子重叠时,两人相距多少米(DE 的长)?(2)张华追赶王刚的速度是多少?27.操作与研究:如图,ABC V 被平行于CD 的光线照射,CD AB 于D ,AB 在投影面上.(1)指出图中线段AC 的投影是______,线段BC 的投影是______.(2)问题情景:如图1,Rt ABC △中,90ACB ∠=︒,CD AB ⊥,我们可以利用ABC V 与ACD 相似证明2AC AD AB =⋅,这个结论我们称之为射影定理,请证明这个定理.(3)【结论运用】如图2,正方形ABCD 的边长为15,点O 是对角线AC BD ,的交点,点E 在CD 上,过点C 作CF BE ⊥,垂足为F ,连接OF ,①试利用射影定理证明BOF BED ∽;②若2DE CE =,求OF 的长.第五章投影与视图(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A.物体在太阳光下产生的投影是物体的正投影B.正投影一定是平行投影C.物体在灯光下产生的投影是物体的正投影D.正投影可能是中心投影【答案】B【分析】首先明确:平行投射线垂直于投影面的称为正投影;接下来根据正投影的定义进行分析即可得答案.【解析】解:A.物体在太阳光下产生的投影不一定是物体的正投影,错误,不合题意;B.正投影一定是平行投影,正确,符合题意;C.物体在灯光下产生的投影不一定是物体的正投影,错误,不合题意;D.正投影是平行投影,错误,不合题意.故选:B.【点睛】本题考查平行投影中正投影的相关知识,解题需掌握正投影的特点.2.如图中的几何体的主视图是()A.B.C.D.【答案】D【分析】本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体三视图的画法是正确判断的前提.根据简单组合体三视图的画法画出它的主视图即可.【解析】解:此几何体的主视图由四个正方形组成,下面一层三个正方形,且有边有两层.如图:故选D.3.下列四个几何体中,主视图与俯视图不同的几何体是()A.B.C.D.【答案】C【分析】判断出每一个立体图形的主视图和俯视图,由此即可得到答案.【解析】解:A、正方体的主视图和俯视图是相同的正方形,不符合题意;B、圆柱的主视图和俯视图是相同的长方形,不符合题意;C、圆锥的主视图是三角形,俯视图是圆,符合题意;D、球的主视图与俯视图是相同的圆,不符合题意;故选C.【点睛】本题考查三视图,熟练掌握常见立体图形的三视图是解题的关键.4.一个矩形的平行投影不可能是()A.梯形B.矩形C.平行四边形D.线段【答案】A【分析】本题考查平行投影问题,根据平行投影得出矩形的投影图形解答即可.【解析】解:在平行投影下,矩形的投影可能是线段、矩形、平行四边形,不可能是梯形,故选:A.5.下图是一个螺母,它的左视图是()A.B.C.D .【答案】D【分析】找出从左侧看到的图形即可.【解析】解:该螺母为非实体,那么左视图应该为:故选:D .【点睛】本题考查三视图,建立空间想象能力是解题的关键.6.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶()A .0.5mB .0.55mC .0.6mD .2.2m7.圆柱及其正视图的有关数据如图所示,则该圆柱的侧面展开图的面积为()A .3πB .4πC .6πD .9π【答案】C 【分析】由正视图可知圆柱的底面直径及高,再根据圆柱侧面积=底面周长⨯高求解即可.【解析】由题意可知:圆柱的底面直径为2,高为3,则侧面展开图是一个矩形,它的长是底面圆的周长,即2π,宽为圆柱的高3,所以它的侧面展开图的面积为326ππ⨯=.故选:C .【点睛】考查了空间几何体的三视图及圆柱的侧面积,掌握特殊立体图形的侧面展开图的特点,是解决此类问题的关键.8.如图所示,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E 处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米即路灯A的高度AB=6米.故选:B.【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度.9.如图,在平面直角坐标系中,点()2,2是一个光源,木杆AB两端的坐标分别为()0,1,()3,1,则木杆AB 在x轴上的投影A B''长为()A.B.C.5D.6【点睛】本题考查中心投影,熟练掌握中心投影的概念证明PAB PA B''是解题的关键.10.若干小立方块搭一个几何体,如果使其主视图和俯视图如图所示,那么搭建一个这样的几何体,最少需要()块小立方块.A.8B.9C.10D.11【答案】D【分析】根据三视图的知识可得,几何体的底层确定有7个立方块,而第二层最少有2个立方块,第三层最少要2个,故这个几何体最少要7+2+2个.【解析】解:综合主视图和俯视图,这个几何体最少要7+2+2=11个小立方块,因此搭建一个这样的几何体,最少需要11小立方块.故选:D.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖”就更容易得到答案.二、填空题(本大题共8小题,每小题3分,共24分)11.下列投影:①中午林荫道旁树的影子;②海滩上撑起的伞的影子;③跑道上同学们的影子;④晚上路灯下亮亮的手在墙上的投影.其中是平行投影的是(填序号).【答案】①②③【分析】对于①②③,光源都是太阳光线,是平行投影;而④中的路灯是点光源,其光线不平行,是中心投影,由此可得出答案.【解析】根据平行投影的定义:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影.因为①②③中的光源都是太阳光,所以①②③都是平行投影;④中的路灯是点光源,不是平行投影,故④错误,故答案为:①②③.【点睛】本题考查的是平行投影和中心投影,明确平行投影和中心投影的联系与区别是解本题的关键.12.三视图中的三个视图完全相同的几何体可能是(写出一个即可).【答案】球(答案不唯一)【分析】本题考查了三视图的知识,常见的三视图相同的几何体的名称要掌握.根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.据此解答即可.【解析】解:球的三视图都是圆,正方体的三视图都是正方形,∴三视图中的三个视图完全相同的几何体可能是球、正方体等,故答案为:球(答案不唯一).13.如图,同一时刻小诚和大树的影子长分别为1.5m和2.5m,已知小诚身高1.8m,则大树的高度为m.14.如图所示是由6个同样大小的小正方体摆成的几何体.将正方体①移走后,所得几何体主视图,俯视图,左视图.(均填“改变”或“不变”)【答案】不变改变改变【分析】根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解析】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2,1,主视图不变;将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,左视图发生改变;将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数为1,2,1,俯视图发生改变.故答案为:不变;改变;改变.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.15.小亮在上午8时、9时、12时、17时四次到室外的阳光下观察一棵树的影子随太阳变化的情况,他发现这四个时刻这棵树影子的长度各不相同,那么影子最长的时刻为;影子最短的时刻是.【答案】17时12时【分析】根据利用光线与地面的夹角的变换进行判断.【解析】解:上午8时、9时、12时、17时,太阳光线与地面的夹角不同,其中17时太阳光线与地面的夹角最小,所以此时树的影子最长;12时太阳光线与地面的夹角最大,所以此时树的影子最短,故答案为:17时;12时.【点睛】本题考查了平行投影,由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影,从早晨到傍晚物体的指向是:西一西北一北一东北一东,影长由长变短再变长.16.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是(用“=、>或<”连起来)【答案】S1=S<S2【分析】根据长方体的概念得到S1=S,根据矩形的面积公式得到S<S2,得到答案.【解析】解:∵立体图形是长方体,∴底面ABCD∥底面EFGH.∵矩形EFGH的投影是矩形ABCD,∴S1=S.∵EM>EF,EH=EH,S<S2,∴S1=S<S2.故答案为S1=S<S2.【点睛】本题考查了平行投影和立体图形,平行投影:由平行光线形成的投影是平行投影.17.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知CD=12m,DE=18m,小明和小华的身高都是1.5m,同一时刻小明站在E处,影子落在坡面上,影长为2m,小华站在平地上,影子也落在平地上,影长为1m,则塔高AB是米.【答案】22.5【分析】过D点作DF∥AE,交AB于F点,设塔影留在坡面DE部分的塔高AF=h1,塔影留在平地BD部分的塔高BF=h2,再根据小明和小华的身高在斜面与平地上的影长特点分别求出h1,h2即可.【解析】解:过D点作DF∥AE,交AB于F点,如图所示:设塔影留在坡面DE部分的塔高AF=h1,塔影留在平地BD部分的塔高BF=h2,则铁塔的高为h1+h2.∵h1∶18m=1.5m∶2m,∴h1=13.5m;∵h2∶6m=1.5m∶1m,∴h2=9m.∴AB=13.5+9=22.5(m).∴铁塔的高度为22.5m,故答案为:22.5.【点睛】此题主要考查平行投影的应用,解题的关键是将影长分开两类进行计算.18.如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.【答案】16【分析】根据新几何体的三视图,取走后得到的面与原来的几何体相同解答即可.【解析】若新几何体与原正方体的表面积相等,则新几何体的面与原来的几何体的面相同,所以最多可以取走16个小立方块,只需要保留正中心三个正方体,四个角各两个,保留11个小正方体.故答案为16【点睛】本题主要考查了几何体的表面积,理解三视图是解答本题的关键.用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.三、解答题(本大题共9小题,共66分)19.把下列物体与它们的投影连接起来.【答案】见解析【分析】根据投影的定义解答即可.【解析】解:如图:【点睛】本题主要考查了投影,理解投影的定义成为解答本题的关键.20.有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.【答案】图形见解析.【解析】试题分析:首先连接AE,过点C作AE的平行线;然后再过点C作BE的平行线,相交于点F,DF 即为所求.试题解析:如图所示.21.画出如图几何体的三种视图.【答案】见解析【分析】本题考查了画简单几何体的三视图,根据三视图的画法即可求解,熟练掌握简单组合体的三视图的画法是解题的关键.【解析】解:如图:22.一位同学想利用有关知识测旗杆的高度,他在某一时刻测得高为0.5m 的小木棒的影长为0.3m ,但当他马上测量旗杆的影长时,因旗杆靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影子 1.0CD m =,又测地面部分的影长 3.0BC m =,你能根据上述数据帮他测出旗杆的高度吗?23.下列几何体是由五个棱长为1cm 的小正方体组成的.(1)该几何体的体积是_______,表面积是________;(2)分别画出该几何体从正面、左面、上面看到的形状图.【答案】(1)35cm ;222cm (2)见解析【分析】本题考查组合几何体的计算和三视图的画法;用到的知识点为:主视图、左视图、俯视图分别是从物体的正面、左面、上面看到的平面图形.(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为1,2,1;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为2,1,1.【解析】(1)解:几何体的体积:()311155cm ⨯⨯⨯=,表面积:()244334422cm+++++=;故答案为:35cm ,222cm ;(2)解:如图所示:24.如图,某光源下有三根杆子,甲杆GH 的影子为GM ,乙杆EF 的影子一部分落在地面EA 上,一部分落在斜坡AB 上的AD 处.(1)请在图中画出形成影子的光线,确定光源所在的位置R ,并画出丙杆PQ 在地面的影子.(2)在(1)的结论下,若过点F 的光线FD AB ⊥,斜坡与地面的夹角为60°,1AD =m ,2AE =m ,请求出乙杆EF 的高度:(结果保留根号).25.在平整的地面上,有若干个完全相同棱长为1的小正方体堆成一个几何图所示.(1)请画出这个几何体的三视图.(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加______个小正方体.(3)如果需要给原来这个几何体表面喷上红漆,则喷漆面积是多少?【答案】(1)画图见解析;(2)4;(3)32【分析】(1)根据三视图的画法,画出从正面、左面、上面看到的形状即可;(2)俯视图和左视图不变,构成图形即可解决问题;(3)求出这个几何体的表面积即可解决问题.【解析】(1)这个几何体有10个立方体构成,三视图如图所示;(2)(2)在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,++=(个),故最多可再添加4个小正方体,2114故答案为:4;(3)这个几何体的表面有38个正方形,去了地面上的6个,32个面需要喷上红色的漆,∴表面积为32,故喷漆面积为32.【点睛】本题考查了三视图的画法,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示,注意涂色面积指组成几何体的外表面积.26.如图,在一个长40m,宽30m的长方形小操场上,王刚从A点出发,沿着A→B→C的路线以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B地223m的D处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A处的小旗在阳光下的影子也恰好落在对角线AC上.求:(1)他们的影子重叠时,两人相距多少米(DE的长)?(2)张华追赶王刚的速度是多少?27.操作与研究:如图,ABC V 被平行于CD 的光线照射,CD AB ⊥于D ,AB 在投影面上.(1)指出图中线段AC 的投影是______,线段BC 的投影是______.(2)问题情景:如图1,Rt ABC △中,90ACB ∠=︒,CD AB ⊥,我们可以利用ABC V 与ACD 相似证明2AC AD AB =⋅,这个结论我们称之为射影定理,请证明这个定理.(3)【结论运用】如图2,正方形ABCD 的边长为15,点O 是对角线AC BD ,的交点,点E 在CD 上,过点C 作CF BE ⊥,垂足为F ,连接OF ,①试利用射影定理证明BOF BED ∽;②若2DE CE =,求OF 的长.∵CD AB ⊥,90ACB ∠=︒,∴90ADC ACB ∠=∠=︒,而CAD BAC ∠=∠,∴Rt Rt ACD ABC ∽△△,∵四边形ABCD 为正方形,∴OC BO ⊥,90BCD ∠=︒,∴2BC BO BD =⋅,∵CF BE ⊥,∴2BC BF BE =⋅,。

新北师大版九年级数学上册第五章《投影与视图》章末复习题含答案解析 (20)

新北师大版九年级数学上册第五章《投影与视图》章末复习题含答案解析 (20)

一、选择题1.几个相同的小正方体所搭成的几何体的俯视图和左视图如图所示,则小正方体的个数最多是( )A.5个B.7个C.8个D.9个2.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为( )A.B.C.D.3.从上面看如图中的几何体,得到的平面图形正确的是( )A.B.C.D.4.如图是一个机器的零件,则下列说法正确的是( )A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图均不相同5.一个几何体如图,则它的左视图是( )A.B.C.D.6.如图,几何体由5个相同的小正方体构成,该几何体三视图中为轴对称图形的是( )A.主视图B.左视图C.俯视图D.主视图和俯视图7.已知一个组合体是由几个相同的正方体叠合在一起组成的,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )A.10B.9C.8D.78.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是( )A.B.C.D.9.几个相同的正方体叠合在一起,该组合体的主视图和俯视图如图所示,那么组合体中正方体的个数至少有几个?至多有几个?( )A.5,6B.6,7C.7,8D.8,1010.如图是由一个立方体挖去一个小立方体后的示意图,则它的主视图是( )A.B.C.D.二、填空题11.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是.12.在图①中写出图②所示这个物体的三个视图的名称.13.如图,是由一些相同的小正方体构成的几何体从三个不同方向看到的形状图,则构成这个几何体的小正方体有个.14.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是.15.几个完全相同的小正方体搭成如图的几何体,从上面拿掉一个或者几个小正方体(不能直接拿掉被压在下面的小正方体)而不改变几何体的三视图的方法有种.16.三棱柱的三视图如图所示,在△EFG中,FG=18cm,EG=14cm,∠EGF=30∘,则AB的长是cm.17.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的表面积等于.三、解答题18.图(1)是一张长为18cm,宽为12cm的长方形硬纸板,在它的四个角都剪去一个边长为x cm的小正方形,然后把它折成一个无盖的长方体盒子,如图(2)所示,请回答下列问题:(1) 折成的无盖长方体盒子的容积V=cm3;(用含x的代数式表示即可,不需化简)(2) 请完成下表,并根据表格回答,当x取什么正整数时,长方体盒子的容积最大?x/cm12345V/cm316021680(3) 从正面看折成的长方体盒子,它的形状可能是正方形吗?如果可能是正方形,求出x的值;如果不可能是正方形,请说明理由.19.在平整的地面上,有若干个完全相同的棱长为1cm的小正方体堆成一个几何体,如图所示:(1) 从正面、上面观察这个几何体,分别画出你所看到的形状图.(2) 如果这个几何体露在外面的表面喷上黄色的漆,每平方厘米用2克,则共需克漆.(3) 若现在你手头还有一些相同的小正方体,如果保持从正面看和从上面看的形状图不变,最多可以再添加个小正方体.20.在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示.(1) 现已给出这个几何体的俯视图,请你画出这个几何体的主视图与左视图;(2) 若现在你手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变,①在图1所示的几何体上最多可以再添加几个小正方体?②图1所示的几何体中最多可以拿走几个小正方体?③在②的情况下,把这个几何体放置在墙角,如图2所示是此时这个几何体放置的俯视图,若给这个几何体表面喷上红漆,则需要喷漆的面积最少是多少?21.画出如图所示立体图形的三视图.22.如图是由一些棱长都为的小正方体组合成的简单几何体.(1) 该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2) 如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.23.一个几何体的三视图如图所示,你能画出这个几何体吗?并求出它的表面积和体积.(π取3.14)24.已知:一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方体的个数.请画出从正面和从左面看到的这个几何体的形状图.25.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.答案一、选择题1. 【答案】B【解析】由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:【知识点】由视图到立体图形、从不同方向看物体2. 【答案】B【知识点】由立体图形到视图3. 【答案】B【解析】从上边看是,故B.【知识点】由立体图形到视图4. 【答案】A【知识点】由立体图形到视图5. 【答案】A【知识点】由立体图形到视图6. 【答案】B【解析】由如图所示的几何体可知:该几何体的主视图、左视图和俯视图分别是其中左视图是轴对称图形.【知识点】轴对称图形、由立体图形到视图7. 【答案】B【解析】由俯视图可得该几何体最底层有5个正方体,由主视图可得该几何体上面一层有2个,3个或4个正方体,则组成这个几何体的正方体的个数是7或8或9,故组成这个几何体的正方体的个数最多是9.【知识点】由视图到立体图形8. 【答案】A9. 【答案】D【解析】由所给视图可得此几何体有3列,3行,2层,分别找到第二层的最多个数和最少个数,加上第一层的正方体的个数即为所求答案.第一层有1+2+3=6个正方体,第二层最少有2个正方体,所以这个几何体最少有8个正方体组成;第一层有1+2+3=6个正方体,第二层最多有4个正方体,∴这个几何体最多有10个正方体组成.【知识点】由视图到立体图形10. 【答案】A【解析】从几何体的正面看所得到的图形是,故选:A.【知识点】由立体图形到视图二、填空题11. 【答案】18cm2【知识点】由立体图形到视图、点、线、面、体12. 【答案】主视图;俯视图;左视图【知识点】由立体图形到视图13. 【答案】5【解析】如图,故2+1+1+1=5,共5个正方体.【知识点】由视图到立体图形14. 【答案】4【解析】由主视图可得有2列,根据左视图和俯视图可得每列的方块数如图,则搭成这个几何体的小正方体的个数是2+1+1=4个.15. 【答案】4【解析】第一种可以把第二层前面这两个的左边这个拿掉,第二种可以把第二层前面这两个的右边这个拿掉,第三种可以把第二层后面这三个的中间这个拿掉,第四种可以把第二层前面这两个的左边这个拿掉和第二层后面这三个的中间这个拿掉.【知识点】由立体图形到视图16. 【答案】7【知识点】30度所对的直角边等于斜边的一半、由视图到立体图形17. 【答案】52【知识点】由立体图形到视图三、解答题18. 【答案】(1) (18−2x)⋅(12−2x)⋅x(2) 把x=2代入(18−2x)⋅(12−2x)⋅x,得(18−2x)⋅(12−2x)⋅x=14×8×2=224.把x=4代入(18−2x)⋅(12−2x)⋅x,得(18−2x)⋅(12−2x)⋅x=10×4×4=160.故答案为224,160.结合表格可知,当x=2时长方体盒子的容积最大.(3) 从正面看折成的长方体盒子,它的形状不可能是正方形.理由如下:当18−2x=x时,解得x=6.此时宽为12−2x=0.此时硬纸板无法折成一个长方体盒子,故从正面看它的形状不可能是正方形.【解析】(1) 由题意得长方体盒子的长为(18−2x)cm,宽为(12−2x)cm,高为x cm,因此容积V=[(18−2x)⋅(12−2x)⋅x]cm3.故答案为(18−2x)⋅(12−2x)⋅x.【知识点】直棱柱的展开图、由立体图形到视图、简单列代数式、简单的代数式求值19. 【答案】(1) 这个几何体有10个立方体构成,如图所示:(2) 64(3) 3【解析】(2) 这个几何体的表面有38个正方形,去了地面上的6个,32个面需要喷上黄色的漆,∴表面积为32cm2,32×2=64(克),∴共需64克漆.(3) 如果保持俯视图和左视图不变,最多可以再添加1+2=3(个).【知识点】由立体图形到视图、由三视图计算表面积、体积20. 【答案】(1) 如图所示.(2) ① 2个.② 2个.③根据每一个面的面积是10×10=100,∴需要喷漆的面积最少是:19×100=1900(cm2).【知识点】由立体图形到视图21. 【答案】如图所示:【知识点】由立体图形到视图22. 【答案】(1) 如图所示:(2) 6【解析】(2) 保持俯视图和左视图不变,最多可以再添加6块小正方体,故答案为:6.【知识点】由立体图形到视图23. 【答案】几何体如图所示:表面积是:3.14×(8÷2)2×2+3.14×8×(10−5)+3.14×8÷2×5+8×5=100.48+125.6+62.8+40=328.88.体积是:3.14×(8÷2)2×5+3.14×(8÷2)2÷2×5=251.2+125.6=376.8.【知识点】由三视图计算表面积、体积、由视图到立体图形24. 【答案】如图所示.【知识点】由视图到立体图形、由立体图形到视图25. 【答案】如图所示,答案不唯一.【知识点】由视图到立体图形、由立体图形到视图、轴对称图形。

2019北师大版九年级数学上册第五章投影与视图达标测试卷含答案

2019北师大版九年级数学上册第五章投影与视图达标测试卷含答案

第五章达标检测卷、选择题(每题3分,共30分)1.下面四个几何体中,主视图是圆的几何体是 ( )2.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影是一个圆 面,当把球向上平移时,圆面的大小变化是(D .不能确定6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()7. 如图是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小 正方3.与如图所示的三视图对应的几何体是( 主现图左视图(第 3 题)4.如图相似比为2 : 5,A . 8 cmB . 20 cmC . 3.2 cm5.太阳光透过一个矩形玻璃窗户,照射在地面上,影子的形状不可能10 cm 是()A .平行四边形B .等腰梯形C .矩形 正方形A .主视图改变,左视图改变 C .俯视图改变,左视图改变B .俯视图不变,左视图不变 D .主视图改变,左视图不变ABCDA .越来越小B .越来越大C .大小不变 三角尺(第2题) (第4题)(第6题)俯挠图D体个数是()C . 4个8. 如图①②③④是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序排列正确的一项是( )9. 某学校小卖部货架上摆放着某品牌的桶装方便面,它们的三视图如图所示, 则货架上的方便面至少有()10 .某数学课外活动小组想利用树影测量树高,他们在同一时刻测得一身高为1.5 m 的同学的影长为1.35 m ,由于大树靠近一幢建筑物,因此树影的一部 分落在建筑物上,如图,他们测得地面部分的影长为 3.6 m ,建筑物上的影长为1.8 m ,则树的高度为() A . 5.4 mB . 5.8 mC . 5.22 mD . 6.4 m二、填空题(每题3分,共24分)11 .写出一个在三视图中左视图与主视图完全相同的几何体: __________________. 12 .某学校操场上立着高度不同的甲、 乙两种篮球架,那么在某一时刻的太阳光的照射下,甲种篮球架的高度与其影长的比 _________ 填 大于”小于”或等 于”乙种篮球架的高度与其影长的比.13 .如图,正方形ABCD 的边长为3 cm ,以直线AB 为轴,将正方形旋转一周,A .④③①B .①②③④C .②③①④D .③①④②A . 7桶B . 8桶C . 9桶D . 10 桶(第9题) (第10所得几何体的左视图的面积是_________ cm2.14 .由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,贝U 搭成该几何体的小正方体最多有 __________ •15.对于下列说法:①太阳光线可以看成平行光线, 这样的光线形成的投影是平 行投影;②物体投影的长短在任何情况下,仅与物体的长短有关;③物体的 俯视图是光线垂直照射时,物体的投影;④看书时人们之所以使用台灯,是 因为台灯发出的光线是平行光线.其中正确的是 ______________________ (把所有正确结论的 序号都填上).16•如图,这是圆桌正上方的灯泡(看成一个点)发出的光线照射桌面后,在地面 上形成阴影(圆形)的示意图,已知桌面的直径为1.2 m ,桌面距地面1 m ,灯 泡距地面3 m ,则地面上阴影部分的面积是 _____________ . (第17题) (第18题) 仃.如图是一个正六棱柱的主视图和左视图,则图中的a = ________ .18.如图,一根直立于水平地面上的木杆 AB 在灯光下形成影子 AC (AC >AB ), 当木杆绕点A 按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已 知AE = 5 m ,在旋转过程中,影长的最大值为 5 m ,最小值为3 m ,且影长 最大时,木杆与光线垂直,则路灯 EF 的高度为 ____________________ .三、解答题(19〜21题每题10分,其余每题12分,共66分) 佃.如图,大王站在墙前,小明站在墙后,小明不能让大王看见,请你画出小明的活动区域.大王(第 13题) (第14题) (第16主規图 左規图(第19题)20.如图①是一个组合几何体,图②是它的两种视图.(1)在图②的横线上填写出两种视图的名称;(第20题)(2)根据两种视图中的数据(单位:cm),计算这个组合几何体的表面积.(结果保留一位小数,n取3.14)21.已知CD为一幢3 m高的温室,其西面窗户的底框G距地面1 m, CD在地面上留下的最大影长CF为2 m,现欲在距C点7 m的正西方A处建一幢12 m高的楼房AB.(设A, C, F在同一水平线上)(1)按比例较精确地作出高楼AB及它的最大影长AE;⑵大楼AB建成后是否影响温室CD的采光?试说明理由.A(第21题)22•如图,已知线段AB = 2 cm,投影面为P.⑴当AB垂直于投影面P时(如图①),请画出线段AB的正投影;⑵当AB平行于投影面P时(如图②),请画出它的正投影,并求出正投影的长;⑶在⑵的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30。

九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)

九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)

九年级数学上册第五章《投影与视图》测试卷-北师大版(含答案)(满分120 分)一、选择题(每题3分,共30 分)1. 如图放置的圆柱体的左视图为()2.小明从路灯底部走开时,他的影子()A.逐渐变长B. 逐渐变短C.不变D.无法确定3.下面所给几何体的俯视图是()4.小红拿着一块正方形纸板站在阳光下,则正方形纸板的影子不可能是()A.正方形B. 平行四边形C. 圆形D.线段5.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是()6.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A. 越来越小B. 越来越大C. 大小不变D.不能确定7.下列投影一定不会改变△ABC 的形状和大小的是()A.中心投影B.平行投影C.当△ABC 平行于投影面时的正投影D.当△ABC 平行于投影面时的平行投影8.如图是一个几何体的三视图,则该几何体的展开图可以是()9.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()10.如图是某工件的三视图,则此工件的体积为()A.144π c m3B. 12π c m3C. 36π c m3D.24π c m3二、填空题(每题4 分,共28分)11.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是____________.12.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:"广场上的大灯泡一定位于两人__________________________.13.如图,三角尺与其在灯光照射下的投影组成位似图形,它们的相似比为2 :5,且三角尺的一边长为8 c m,则这条边在投影中的对应边长为____________________.14. 太阳光线形成的投影称为____________________像手电筒、路灯、台灯的光线形成的投影称为_______________________.15.长方体的主视图、俯视图如图所示,则其左视图面积为____________________.16.一个几何体的三视图如图所示,其中主视图、左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的体积为_________________.17.如图,在A 时测得旗杆CD的影长DE是4 m,B时测得的影长DF是8 m,两次的日照光线恰好垂直,则旗杆的高度为______________.三、解答题(一)(每题 6 分,共18 分)18. 画出如图所示几何体的三视图.19.如图,水平放置长方体底面是长为4和宽为2的矩形,它的主视图的面积为12.(1)求长方体的体积;(2)画出长方体的左视图.(用1c m代表1个单位长度)20.如图,小明利用所学的数学知识测量旗杆AB 的高度.(1)请你根据小明在阳光下的投影,画出旗杆AB 在阳光下的投影;(2)已知小明的身高为1.6 m,在同一时刻测得小明和旗杆AB 的投影长分别为0.8 m和6 m,求旗杆AB 的高.四、解答题(二)(每题8分,共24 分)21.一个几何体的三视图如图所示,(1)这个几何体名称是___________;(2)求该几何体的全面积.22.小明把镜子放在离树(AB)8 米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,CD=1.6 米,请你计算树(AB)的高度.23.如图所示为一几何体的三视图.(1)写出这个几何体的名称;(2)若三视图中的长方形的长为10 c m,正三角形的边长为4 c m,求这个几何体的侧面积.五、解答题(三)(每题10 分,共20 分)24. 5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是________(立方单位),表面积是______________(平方单位);(2)画出该几何体的主视图和左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图;(2)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.参考答案一、1.A 2.A 3.B 4.C 5.A 6.A 7.C 8.A 9.C 10.B 二、11.3 12.之间 13.20c m 14.平行投影 中心投影 15. 3 16.15317.42m 三、18.解:三视图如下图所示:19.解:(1 )12 x 2 =2420.解:(1)如图所示:(2)如图,∵ DE 、AB 都垂直于地面,且光线DF //AC , ∴∠DEF=∠ABC , ∠DFE=∠ACB , ∴ Rt △DEF~Rt △ABC=,=1.60.86DE EF AB BC AB 即 ∴AB=12(m )答:旗杆AB 的高为12 m .四、21.解:(1)圆柱 (2)S 底圆=π·12=π S 侧=2π· 1·3=6π ∴S 全=2π+6π=8π(c m 2)22.解:由题意得∠B=∠D =90° 又由光的反射原理可知∠AEB =∠CED ∴△ABE~△CDE)81.6=2.41,(6=3A B AB B E AB CD DE 即∴米23.解:(1)三棱柱(2)侧面积为:3 x 4 x 10= 120(c m 2) 五、24.解:(1)5 22(2)如图所示:25.解:(1)这个几何体的主视图和左视图如图所示:(2)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:。

2019年北师大九年级上册期末专题《第五章投影与视图》单元试卷(有答案)[精]

2019年北师大九年级上册期末专题《第五章投影与视图》单元试卷(有答案)[精]

北师大版九年级数学上册期末专题第五章投影与视图单元检测试卷一、单选题(共8题;共24分)1.将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A. B. C. D.2.下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A. B. C. D.3.如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()A. B. C. D.4.由5个大小相同的正方体组成的几何体如图所示,从正面看到的图形是()A. B. C. D.5.下面由8个完全相同的小正方体组成的几何体从正面看是()A. B. C. D.6.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A. B. C. D.7.有一圆柱形的水池,已知水池的底面直径为4米,水面离池口2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为()A. 45°B. 60°C. 90°D. 135°8.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A. B. C. D.二、填空题(共10题;共33分)9.物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是________现象.10.一个长方形的正投影的形状、大小与原长方形完全一样,则这个长方形________投影面;一个长方形的正投影的形状、大小都发生了变化,则这个长方形________投影面.11.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是________.12.如图,电影胶片上每一个图片的规格为3.5cm×3.5cm,放映屏幕的规格为2m×2m,若放映机的光S距胶片20cm,那么光S距屏幕________ 米时,放映的图象刚好布满整个屏幕.13.如图,光P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.14.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是________(用“=、>或<”连起)15.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走________ 个小正方体.16.一个几何体由几个大小相同的小正方形搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是________.17.两根不一样长的木杆垂直竖立在地面上,若它们的影长相等,则此时的投影是________.(填写“平行投影”或“中心投影”)18.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于________ 米.三、解答题(共8题;共63分)19.如图所示的是从上面看12个小立方体所搭几何体的平面图形,小正方形中的数字表示在该位置的小立方体的个数,请画出从正面和左面看这个几何体的形状.20.如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。

北师版九年级数学上册 第5章 投影与视图 综合测试卷(含答案)

北师版九年级数学上册  第5章  投影与视图  综合测试卷(含答案)

北师版九年级数学上册第五章投影与视图综合测试卷第Ⅰ卷(选择题)一、选择题(共10小题,3*10=30)1.下面属于中心投影的是( )A.太阳光下的树影B.皮影戏C.月光下房屋的影子D.海上日出2.灯光下的两根小木棒A和B,它们竖立放置时的影子长分别为l A和l B.若l A>l B,则它们的高度h A 和h B满足( )A.h A>h B B.h A<h BC.h A≥h B D.不能确定3. 下列几何体中,主视图与俯视图不相同的是( )4.已知某物体的三视图如图所示,那么与它对应的物体是( )5.圆桌面(桌面中间有一个直径为0.4 m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m,桌面离地面1 m,若灯泡离地面3 m,则地面圆环形阴影的面积是( )A.0.324π m2B.0.288π m2C.1.08π m2D.0.72π m26.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,表示她在灯光照射下的影长l与行走的路程s之间的变化关系的图象是()7. 如图所示的几何体的俯视图是( )8.如图是一个几何体的三视图,则这个几何体的表面积是()A.60π+48 B.68π+48C.48π+48 D.36π+489.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )10.如图是一个几何体的三视图,则这个几何体是( )A.正方体B.长方体C.三棱柱D.三棱锥第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.太阳光线形成的投影是___________,电动车车灯所发出的光线形成的投影是______________.12.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH 与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是__________.(用“=”“>”或“<”连起来)13. 如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是___________.14.如图是一个几何体的三视图,根据图中提供的数据(单位:cm),可求得这个几何体的体积为________.15. 如图是某物体的三视图,则此物体的体积为_____________.(结果保留π)16. 一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是______.17.如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)①.(①越来越长,②越来越短,③长度不变.)在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是_________米.18. .圆柱的轴截面平行于投影面S,它的正投影是长4,宽3的矩形,则这个圆柱的表面积是________________.(结果保留π)三.解答题(共7小题,46分)19.(6分) 画出如图所示的几何体的三种视图.20. (6分) 根据几何体的三视画出述物体的形状.21. (6分) 如图,由六个棱长为1 cm的小正方体组成一个几何体.(1)分别画出这个几何体的主视图、左视图、俯视图.(2)该几何体的表面积是24cm2.22.(6分) 如图所示的是一个几何体的两种视图,请你求出该几何体的体积.(结果保留π)23.(6分) 用小正方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置小立方体的个数,请解答下列问题:(1)a,b,c各表示多少?(2)这个几何体最少由几个小正方体组成,最多又是多少?(3)当d=e=1,f=2时,画出这个几何体的左视图.24.(8分) 如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.6 m,他的影子BC=2.4 m,旗杆的高DE=15 m,旗杆与高墙的距离EG =16 m,请求出旗杆的影子落在墙上的长度.25.(8分) 李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2 m,CE=0.6 m,CA=30 m(点A、E、C在同一直线上).已知李航的身高EF是1.6 m,请你帮李航求出楼高AB.参考答案 1-5 BDBBD 6-10 CDADB11. 平行投影,中心投影 12. S 1=S<S 2 13.俯视图 14.3 cm 3 15.8753π 16. 5 17. 5.95 18. 20π或332π19. 解:如图所示:20. 解:几何体的形状为:21. 解:(1)如图所示:(2)该几何体的表面积是:4×2+5×2+3×2=24(cm 2),22. 解:该几何体由长方体与圆柱体两部分组成,长方体的长为30 cm ,宽为25 cm ,高为40 cm , 圆柱体的直径为20 cm ,高为32 cm ,所以V =30×40×25+π×102×32=30000+3200π(cm 3). 答:该几何体的体积是(30000+3200π)cm 323. 解:(1)由俯视图可知,这个几何体共有三排三列,第三列只有一排,第二列有两排.而由主视图可知,第三列的层数为3,第二列的层数为1,所以a 为3,b ,c 均为1.(2)d ,e ,f 既可为1,也可为2,但至少有一个应为2.当均为2时,共有11个小正方体;当其中一个为2,另外两个为1时,共有9个小正方体. (3) 如图所示:24. 解:(1)如图,线段MG 和GE 就表示旗杆在阳光下形成的影子.(2)解:过M 作MN ⊥DE 于N ,设旗杆的影子落在墙上的长度即MG 为x m ,则MG =NE =x m ,由题意易得DN MN =ABBC .又∵AB =1.6 m ,BC =2.4 m ,DN =DE -NE =(15-x) m ,MN =EG =16 m , ∴15-x 16=1.62.4,解得x =133,旗杆的影子落在墙上的长度为133m 25. 解:过点D 作DN ⊥AB ,垂足为N.交EF 于M 点, ∴四边形CDME 、ACDN 是矩形,∴AN =ME =CD =1.2 m ,DN =AC =30 m ,DM =CE =0.6 m , ∴MF =EF -ME =1.6-1.2=0.4(m), ∴依题意知,EF ∥AB ,∴△DFM ∽△DBN , ∴DM DN =MF BN, 即:0.630=0.4BN ,解得:BN =20,AB =BN +AN =20+1.2=21.2. 答:楼高为21.2米。

第5章 投影与视图 九年级上册数学北师大版单元质检卷(B卷 含解析)

第5章 投影与视图 九年级上册数学北师大版单元质检卷(B卷 含解析)

第五章投影与视图单元质检卷(B卷)【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.一个矩形木框在太阳光的照射下,在地面上的投影不可能是( )A. B.C. D.2.下列常见的几何体中,主视图和左视图不同的是( )A. B.C. D.3.如图所示的几何体为圆台,其主视图正确的是( )A. B. C. D.4.如图的立体图形由相同大小的正方体积木堆叠而成.判断拿走图中的哪一个积木后,此图形主视图的形状会改变( )A.甲B.乙C.丙D.丁5.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长,窗户下檐到地面的距离,,那么窗户的高AB为( )A. B. C. D.6.如图是由七个相同的小正方体拼成的立体图形,下面有关它的三视图的结论中,正确的是( )A.左视图是轴对称图形B.主视图是中心对称图形C.俯视图是中心对称图形但不是轴对称图形D.俯视图既是中心对称图形又是轴对称图形7.如图是嘉淇在室外用手机拍下大树的影子随太阳转动情况的照片(上午8时至下午5时之间),这五张照片拍摄的时间先后顺序是( )A. B. C. D.8.榫卯是我国古代建筑、家具的一种结构方式,它通过两个构件上凹凸部位相结合来将不同构件组合在一起,如图是其中一种榫,其主视图是( )A. B. C. D.9.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是( )A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边10.手影游戏利用的物理原理是:光是沿直线传播的.图中小狗手影就是我们小时候常玩的游戏.在一次游戏中,小明距离墙壁1米,爸爸拿着的光与小明的距离为2米.在小明不动的情况下,要使小狗手影的高度增加一倍,则光与小明的距离应( )A.减少米B.增加米C.减少米D.增加米二、填空题(每小题4分,共20分)11.一个人在灯光下向远离光的方向行走的过程中人的影长越来越____________(填“长”或“短”).12.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻,测得OA是268米,则金字塔的高度BO是__________米.13.由大小相同的小正方体搭成一个几何体,若搭成的几何体的左视图和俯视图如图所示,则所需小正方体的最少个数为___________.14.一个几何体由若干个大小相同的小立方块搭成,如图分别是它的主视图和俯视图.若该几何体用小立方块的个数为n,则n的最大值和最小值之和为_________.15.在“测量物体的高度”活动中,小丽在同一时刻阳光下,测得一根长为1米的竹竿的影长为0.8米:测量树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图),落在地面上的影长为4.8米,一级台阶高为0.25米,落在第一级台阶上的影子长为0.2米,则树高度为____________米.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)在一直线上有几根竹竿.它们在同一灯光下的影子如图所示(图中的粗线段).(1)根据灯光下的影子确定光的位置;(2)画出竹竿AB的影子(用线段表示);(3)画出影子为CD的竹竿(用线段表示).17.(8分)把边长为1厘米的10个相同正方体如图摆放.(1)画出该几何体的主视图、左视图、俯视图;(2)该几何体的表面积为_____;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加个小正方体.18.(10分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直.为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是_________投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.19.(10分)用小立方块搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中的字母表示在该位置小立方块的个数.试回答下列问题:(1)a,b,c各表示几?(2)这个几何体最少由几个小立方块搭成?最多呢?(3)当,时,画出这个几何体的左视图.20.(12分)每当优美的“东方红”乐曲从北京站的钟楼响起时,会唤起很多人的回忆,也引起了同学们的关注.某数学兴趣小组测量北京站钟楼的高度,同学们发现在钟楼下方有建筑物遮挡,不能直接到达钟楼底部点B的位置,被遮挡部分的水平距离为的长度.通过对示意图的分析讨论,制定了多种测量方案,其中一种方案的测量工具是皮尺和一根直杆.同学们在某两天的正午时刻测量了钟楼顶端A的影子D到点C的距离,以及同一时刻直杆的高度与影长.设的长为x米,的长为y米.测量数据(精确到0.1米)如表所示:的长(1)由第一次测量数据列出关于x,y的方程是______,由第二次测量数据列出关于x,y的方程是______;(2)该小组通过解上述方程组成的方程组,已经求得,则钟楼的高度约为______米. 21.(12分)在一节数学课上,小红画出了某四棱柱的三视图如图所示,其中主视图和左视图为矩形,俯视图为等腰梯形,已知该四棱柱的侧面积为.(1)三视图中,有一图未画完,请在图中补全;(2)根据图中给出的数据,俯视图中的长度为________;(3)左视图中矩形的面积为________;(4)这个四棱柱的体积为________.答案以及解析1.答案:B解析:一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:B.2.答案:B解析:A、圆台的主视图和左视图都是梯形,本选项不符合题意;B、圆柱的主视图是长方形,左视图是圆,本选项符合题意;C、圆锥的主视图与左视图相同,都是等腰三角形,本选项不符合题意;D、球的主视图和左视图相同,都是圆,本选项不符合题意.故选:B.3.答案:C解析:根据题意得:其主视图正确的是故选:C.4.答案:B解析:拿走图中的“乙”一个积木后,此图形主视图的形状会改变,第二列小正方形的个数由原来的两个变成一个.故选:B.5.答案:A解析:,,,即.又,,,,.故选A.6.答案:A解析:画出三视图后,发现左视图是轴对称图形,主视图不是中心对称图形,俯视图是轴对称图形但不是中心对称图形.故选A.7.答案:B解析:一天中太阳位置的变化规律是:从东到西.太阳的高度变化规律是:低高低.影子位置的变化规律是:从西到东,影子的长短变化规律是:长短长.根据影子变化的特点,按时间顺序给这五张照片排序是.故选:B.8.答案:B解析:该几何体的主视图是:故选:B.9.答案:D解析:由题意可得,甲说他看到的是“6,丁说他看到的是“9”,说明两人坐对面,乙和丙坐对面,又乙说他看到的是“”,乙在甲右边,则丙在丁右边.故选D.10.答案:A解析:如图,点O为光,表示小明的手,表示小狗手影,则,过点O作,延长交于F,则,,,则,米,米,则米,,设,,在小明不动的情况下,要使小狗手影的高度增加一倍,如图,即,,米,,,则,米,光与小明的距离变化为:米,故选:A.11.答案:长解析:一个人在灯光下离开的过程中人的影长越来越长.故答案为:长.12.答案:134解析:设金字塔的高度BO为x米,则,解得,米.13.答案:9解析:由左视图和俯视图可知,小正方体的最少个数为(个),故答案为:9.14.答案:22解析:根据主视图、俯视图,可以得出小立方块最少时(图中只画了其中一种情况)、最多时,在俯视图的相应位置上所摆放的个数如下:所以最少需要小立方块9个,最多需要13个,因此.故答案为22.15.答案:解析:根据同一时刻物高与影长成正比例,如图所示:则其中为树高,为树影在第一级台阶上的影长,为树影在地上部分的长,的长为台阶高,并且由光沿直线传播的性质可知即为树影在地上的全长,延长交于G,则,,,又,,,,,即树高为米,故答案为:.16.答案:(1)见解析(2)见解析(3)见解析解析:(1)如图,点P即为光所在的位置.(2)BE即为竹竿AB的影子.(3)CF是影子为CD的竹竿.17.答案:(1)见解析(2)38(3)3解析:(1)如图:(2)该几何体的表面积,故答案为:38;(3)再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,可使第一列的高度均为3,故可添加3个小正方体,故答案为:3.18.答案:(1)平行(2)7米解析:(1)平行(2)如图,过点E作于点M,过点G作于点N.则米,米,米,米,(米).由平行投影的性质可知,即,米,即电线杆的高度为7米.19.答案:(1)3,1,1(2)9,11(3)见解析解析:(1),,.(2)这个几何体最少由(个)小立方块搭成,最多由(个)小立方块搭成.(3)左视图如图所示.20.答案:(1);(2)43解析:(1)由同一时刻测量,可得,第一次测量:,化简得,,第二次测量:,化简得,,故答案为:;;(2)对于,代入,得,,解得:,钟楼米,故答案为:43.21.答案:(1)见解析(2)(3)8(4)解析:(1)所在的面在前,所在的面在后,主视图中应补充两条虚线,补充完整如图所示:(2)俯视图为等腰梯形,,该四棱柱的侧面积为,,,故答案为:;(3)如图,作于E,于F,,俯视图为等腰梯形,,,,,,,,四边形是矩形,,,,,,,,左视图中矩形的面积为:,故答案为:8;(4)由题意得:这个四棱柱的体积为,故答案为:32.。

北师大新版九年级上册《第5章投影与视图》单元测试卷(4)及答案解析

北师大新版九年级上册《第5章投影与视图》单元测试卷(4)及答案解析

北师大新版九年级上册《第5章投影与视图》单元测试卷一、选择题:(每小题3分,共30分)1.小明从正面观察如图所示的物体,看到的是( )A.B.C.D.2.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为( ) A.16m B.18m C.20m D.22m3.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )A.B.C.D.4.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为( )A.汽车开的很快B.盲区减小C.盲区增大D.无法确定5.由下列光线形成的投影不是中心投影的是( )A.手电筒B.探照灯C.太阳D.电灯6.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形8.圆形的物体在太阳光的投影下是( )A.圆形B.椭圆形C.以上都有可能D.以上都不可能9.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )A.B.C.D.10.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于( )A.4.5米B.6米C.7.2米D.8米二.填空题:(每小题3分,共18分)11.我们常说的三种视图分别是指__________、__________、__________.12.请写出三种视图都相同的两种几何体是__________.13.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称__________.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有__________个碟子.15.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米.则电线杆AB长=__________米.16.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是__________cm2.三、作图题(按要求画出图形并写出名称)17.画出如图组合体的三种视图.18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.四、解答题(19题12分,20题12分,21题13分)19.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图,测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)20.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.21.(13分)为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?北师大新版九年级上册《第5章投影与视图》单元测试卷一、选择题:(每小题3分,共30分)1.小明从正面观察如图所示的物体,看到的是( )A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看所得到的图形,圆柱从正面看是长方形,正方体从正面看是正方形,所以从左往右摆放一个圆柱体和一个正方体,它们的主视图是左边一个长方形,右边一个正方形.故选C.【点评】此题主要考查了三视图的知识,主视图是从物体的正面看得到的视图.2.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为( ) A.16m B.18m C.20m D.22m【考点】相似三角形的应用.【专题】计算题.【分析】设旗杆高为xm,则利用在同一时刻物高与影长的比相等得到=,然后根据比例性质求x即可.【解答】解:设旗杆高为xm,根据题意得=,解得x=20,即旗杆高为20.故选C.【点评】本题考查了相似三角形的应用:通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.3.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )A.B.C.D.【考点】简单组合体的三视图.【专题】压轴题.【分析】找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.【解答】解:从正前方观察,应看到长有三个立方体,且中间的为三个立方体叠加;高为两个立方体,在中间且有两个立方体叠加.故选B.【点评】此题主要考查三视图的知识、学生的观察能力和空间想象能力.4.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为( )A.汽车开的很快B.盲区减小C.盲区增大D.无法确定【考点】视点、视角和盲区.【分析】前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了,说明看到的范围减少,即盲区增大.【解答】解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选C.【点评】本题结合了实际问题考查了对视点,视角和盲区的认识和理解.5.由下列光线形成的投影不是中心投影的是( )A.手电筒B.探照灯C.太阳D.电灯【考点】中心投影.【分析】利用中心投影和平行投影的定义判断即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有C 选项得到的投影为平行投影.故选C.【点评】本题考查了中心投影的定义,解题的关键是理解中心投影的形成光源是灯光.6.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【考点】平行投影.【分析】解答本题关键是要理解平行投影,平行投影中的光线是平行的,如阳光等.【解答】解:平行投影中的光线是平行的.故选A.【点评】本题考查平行投影的定义,需注意与中心投影定义的区别.A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上得到的光区仍是矩形【分析】根据球的三视图即可作出判断.【解答】解:A,错误,三视图是平行投影;B,错误,小华是视点;C,正确;D,错误,也可以是平行四边形;故选C.【点评】本题考查了三视图,投影,视点的概念.8.圆形的物体在太阳光的投影下是( )A.圆形B.椭圆形C.以上都有可能D.以上都不可能【考点】平行投影.【分析】根据圆形的物体与太阳光线的位置关系进行判断.【解答】解:圆形的物体在太阳光的投影下可能为圆形,也可能为椭圆形.故选C.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.9.小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )A.B.C.D.【考点】几何体的展开图.【分析】本题考查了正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【解答】解:根据题意及图示只有A经过折叠后符合.故选:A.【点评】本题着重考查学生对立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,由几何图形想象出实物的形状”的要求相一致,充分体现了实践操作性原则.要注意空间想象哦,哪一个平面展开图对面图案都相同10.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于( )A.4.5米B.6米C.7.2米D.8米【考点】相似三角形的应用.【专题】压轴题;转化思想.【分析】由于人和地面是垂直的,即和路灯到地面的垂线平行,构成两组相似.根据对应边成比例,列方程解答即可.【解答】解:如图,GC■BC,AB■BC,■GC■AB,■■GCD■■ABD(两个角对应相等的两个三角形相似),■,设BC=x,则,同理,得,■,■x=3,■,■AB=6.故选:B.【点评】本题考查相似三角形性质的应用.在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中的“”.二.填空题:(每小题3分,共18分)11.我们常说的三种视图分别是指主视图、俯视图、左视图.【考点】平行投影.【分析】根据三视图的定义求解.【解答】解:我们常说的三种视图分别是指主视图、俯视图、左视图.故答案为主视图、俯视图、左视图.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.记住三视图的定义.12.请写出三种视图都相同的两种几何体是球,正方体(答案不唯一).【考点】由三视图判断几何体.【专题】开放型.【分析】球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形.【解答】解:球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为球,正方体(答案不唯一).【点评】考查由三视图判断几何体;常见的三视图相同的几何体如球,正方体等应熟记.13.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称圆锥.【考点】由三视图判断几何体.【分析】从主视图以及左视图都为一个三角形,俯视图为一个圆形看,可以确定这个几何体为一个圆锥.【解答】解:根据三视图可以得出立体图形是圆锥,故答案为:圆锥.【点评】本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析得出是解题关键.14.一张桌子摆放若干碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有12个碟子.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:易得三摞碟子数分别为3,4,5则这个桌子上共有12个碟子.故答案为:12.【点评】本题考查对三视图的理解应用及空间想象能力.15.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米.则电线杆AB长=4.5米.【考点】相似三角形的应用.【分析】根据题意求出■ECD■■EBA,利用相似三角形的对应边成比例即可解答.【解答】解:■CD■AB,■■ECD■■EAB,■ED:EB=CD:AB,■2:6=1.5:AB,■AB=4.5米.答:电线杆AB长为4.5米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出电线杆AB长.16.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是36cm2.【考点】几何体的表面积.【专题】计算题.【分析】解此类题应利用视图的原理从不同角度去观察分析以进行解答.【解答】解:从上面看到的面积为6×(1×1),从正面看面积为6×2×(1×1),从两个侧后面看面积为2×6×(1×1),底面看到的面积为6×(1×1),故这个几何体的表面积为36cm2.故答案为36cm2.【点评】几何体的表面积是所有围成几何体的表面面积之和.三、作图题(按要求画出图形并写出名称)17.画出如图组合体的三种视图.【考点】作图-三视图.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为1,3,1,左视图有2列,每列小正方形数目分别为2,3,2.俯视图有3列,每一列的正方形个数为3,3,3据此可画出图形.【解答】解:如图所示:.【点评】此题主要考查了画三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.18.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.【考点】中心投影.【专题】作图题.【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把已知影长的两个人的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接小赵顶部的直线与地面相交即可找到小赵影子的顶端.【解答】解:【点评】本题考查平行投影和中心投影的作图,解题的关键是要知道:连接物体和它影子的顶端所形成的直线必定经过点光源.四、解答题(19题12分,20题12分,21题13分)19.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图,测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)【考点】相似三角形的应用.【专题】阅读型.【分析】如图容易知道CD■BD,AB■BE,即■CDE=■ABE=90°.由光的反射原理可知■CED=■AEB,这样可以得到■CED■■AEB,然后利用对应边成比例就可以求出AB.【解答】解:由题意知■CDE=■ABE=90°,又由光的反射原理可知■CED=■AEB,■■CED■■AEB■■.■AB≈5.2米.答:树高是5.2米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.20.已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【考点】平行投影;相似三角形的性质;相似三角形的判定.【专题】计算题;作图题.【分析】(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系.计算可得DE=10(m).【解答】解:(1)连接AC,过点D作DF■AC,交直线BC于点F,线段EF即为DE的投影.(2)■AC■DF,■■ACB=■DFE.■■ABC=■DEF=90°■■ABC■■DEF.■,■■DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识并结合图形解题.21.(13分)为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?【考点】解直角三角形的应用;平行投影.【专题】应用题;压轴题.【分析】在不违反规定的情况下,需使阳光能照到旧楼的一楼;据此构造Rt■DCE,其中有CE=30米,■DCE=30°,解三角形可得DE的高度,再由DB=BE+ED可计算出新建楼房的最高高度.【解答】解:过点C作CE■BD于E.■AB=40米,■CE=40米,■阳光入射角为30°,■■DCE=30°,在Rt■DCE中tan■DCE=.■,■DE=40×=米,■AC=BE=1米,■DB=BE+ED=1+=米.答:新建楼房最高为米.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.需注意通过投影的知识结合图形相似的性质巧妙地求解或解直角三角形.。

最新2019-2020年度北师大版数学九年级上册(新)第五章投影与视图单元测试及答案-精品试题

最新2019-2020年度北师大版数学九年级上册(新)第五章投影与视图单元测试及答案-精品试题

新北师大版九年级上册投影与视图单元测试(二)一、填空题(30分)1、甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长的关系是2、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子(填“长”或“短”)3、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m ,小刚比小明矮5cm ,此刻小明的影长是________m 。

4、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都为1.6m ,小明向墙壁走1m 到B处发现影子刚好落在A点,则灯泡与地面的距离CD =_______。

5、下图的几何体由若干个棱长为数1的正方体堆放而成,则这个几何体的体积为__________。

6、如图是某个几何体的展开图,这个几何体是.7、如图,是由几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是8、如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得 BC=3.2m ,CA=0.8m, 则树的高度为俯视图左视图主视图2241139、春分时日,小明上午9:00出去,测量了自己的影长,出去一段时间后回来时,发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为小时。

10、直角坐标系内,身高为1.5米的小强面向y轴站在x轴上的点A(-10,0)处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是二、选择题:(30分)11、下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )A. B. C. D.12、在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A 小明的影子比小强的影子长B 小明的影长比小强的影子短C 小明的影子和小强的影子一样长D 无法判断谁的影子长13下图中几何体的主视图是().(A) (B) (C) (D)14、对左下方的几何体变换位置或视角,则可以得到的几何体是()第Ⅱ卷(非选择题,共98分)15、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有()(A)5桶(B)6桶(C)9桶(D)12桶16、一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是()俯视图主(正)视图左视图17.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )18、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数( )A 5个B 6个 C 7个 D 8个19、水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是( )214A .OB .6C .快D .乐20、图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( )A P 区域 B Q 区域 C M 区域 D N 区域三、解答题(60分)21、(6分)中午,一根1.5米长的木杆影长1.0米,一座高21米的住宅楼的影子是否会落在相距18米远的商业楼上?傍晚,该木杆的影子长为2.0米,这时住宅楼的影子是否会落在商业楼上?为什么?N P Q M第13题图2图122、(12分)画出下列几何体的三视图:23、(6分)将下列所示的几何体进行两种不同的分类,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版九年级数学上册期末专题第五章投影与视图单元检测试卷
一、单选题(共8题;共24分)
1.将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()
A. B. C. D.
2.下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()
A. B. C. D.
3.如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()
A. B. C. D.
4.由5个大小相同的正方体组成的几何体如图所示,从正面看到的图形是()
A. B. C. D.
5.下面由8个完全相同的小正方体组成的几何体从正面看是()
A. B. C. D.
6.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()
A. B. C. D.
7.有一圆柱形的水池,已知水池的底面直径为4米,水面离池口2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为()
A. 45°
B. 60°
C. 90°
D. 135°
8.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()
A. B. C. D.
二、填空题(共10题;共33分)
9.物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是________现象.
10.一个长方形的正投影的形状、大小与原长方形完全一样,则这个长方形________投影面;一个长方形的正投影的形状、大小都发生了变化,则这个长方形________投影面.
11.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是________.
12.如图,电影胶片上每一个图片的规格为3.5cm×3.5cm,放映屏幕的规格为2m×2m,若放映机的光S距胶片20cm,那么光S距屏幕________ 米时,放映的图象刚好布满整个屏幕.
13.如图,光P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.
14.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是________(用“=、>或<”连起)
15.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走________ 个小正方体.
16.一个几何体由几个大小相同的小正方形搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是________.
17.两根不一样长的木杆垂直竖立在地面上,若它们的影长相等,则此时的投影是________.(填写“平行投影”或“中心投影”)
18.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于________ 米.
三、解答题(共8题;共63分)
19.如图所示的是从上面看12个小立方体所搭几何体的平面图形,小正方形中的数字表示在该位置的小立方体的个数,请画出从正面和左面看这个几何体的形状.
20.如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图。

21.如图,这是一个由大小相等的正方体堆成的几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请你画出它的主视图和左视图.
22.如图,是由8个大小相同的小正方体组合成的简单几何体.
(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;
(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请画出添加小正方体后所得几何体可能的左视图.
23.如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=14.5米,NF=0.2米.设太阳光线与水平地面的夹角为α,当α=56.3°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的NF 这层上晒太阳.
(1)求楼房的高度约为多少米?
(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.(参考数据:sin56.3°≈1.50,cos56.3°≈0.83,tan56.3°≈0.55)
24.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)
25.如图,AB和DE是直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;
(2)在测量AB的影子长时,同时测量出EF=6m,计算DE的长.
26.假山具有多方面的造景功能,与建筑、植物等组合成富于变化的景致.某公园有一座假山,小亮、小慧等同学想用一些测量工具和所学的几何知识测量这座假山的高度检验自己掌握知识和运用知识的能力,如图,在阳光下,小亮站在水平地面的D处,此时小亮身高的影子顶端与假山的影子顶端E重合,这时小亮身高CD的影长DE=2米,一段时间后,小亮从D点沿BD的方向走了3.6米到达G处,此时小亮身高的影子顶端与假山的影子顶端H重合,这时小亮身高的影长GH=2.4米,已知小亮的身高CD=FG=1.5米,点G,E,D均在直线BH上,AB⊥BH,CD⊥BH,GF⊥BH,请你根据题中提供的相关信息,求出假山的高度AB.
答案解析部分
一、单选题
1.【答案】C
2.【答案】A
3.【答案】B
4.【答案】A
5.【答案】D
6.【答案】C
7.【答案】C
8.【答案】D
二、填空题
9.【答案】投影
10.【答案】//
;不平行于
11.【答案】9
12.【答案】
13.【答案】0.9m
14.【答案】S1=S<S2
15.【答案】27
16.【答案】4
17.【答案】中心投影
18.【答案】10
三、解答题
19.【答案】
20.【答案】解:正面看到的形状为:
左面看到的形状为:
正面看到的形状为:
21.【答案】
22.【答案】解:(1)如图所示:

(2)添加后可得如图所示的几何体:

左视图分别是:

23.【答案】解:
(1)当α=56.3°时,在Rt△ABE中,
∵tan56.3°=≈1.50,
∴AB=10•tan56.3°≈10×1.50=15(m),
即楼房的高度约为15米;
(2)当α=45°时,小猫不能再晒到太阳,
理由如下:假设没有台阶,当α=45°时,从点B射下的光线与地面AD交于点P,此时的影长AP=1B≈15m,设MN的延长线交AD于点H,
∵AC≈14.5m,NF=0.2m,
∴PH=AP﹣AC﹣CH≈15﹣14.5﹣0.2=0.3(m),
设直线MN与BP交于点Q,则HQ=PH=0.3m,
∴HQ=PH=0.3m,
∴点Q在MN上,
∴大楼的影子落在MN这个侧面上,
∴小猫不能晒到太阳.
24.【答案】解:由于阳光是平行光线,即AE∥BD,
所以∠AEC=∠BDC.又因为∠C是公共角,
所以△AEC∽△BDC,从而有=.
又AC=AB+BC,DC=EC﹣ED,EC=3.9,ED=2.1,BC=1.2,
于是有=,解得AB=1.4(m).
答:窗口的高度为1.4m.
25.【答案】解:(1)如图所示:EF即为所求;
(2)由题意可得:

解得:DE=10,
答:DE的长为10m.
26.【答案】解:由题意得:∠ABD=∠CDE=∠FGH=90°,∵∠CED=∠AEB,∠AHB=∠FHG,
∴△AEB∽△CED,△AHB∽△FHG,
∴= ,= ,
即= ,
= ,
解得AB=15米,
∴假山的高度AB为15米.。

相关文档
最新文档