NMR evidence for selective enhancement of Mo magnetic moment by electron doping in SrxLa2-x
NMR实验技术
1600
1400
1200
1000
800
600
400
Hz
二、液体核磁共振谱分析对样品的要求
1、样品要求:
人们往往把注意力集中在谱仪操作上,而忽视样品准备。作为样品
提供者来说所关心的是得到一个信噪比好、分辩力高的谱图。所以, 花几分钟把样品准备好,可以节省几小时的谱仪的操作时间,同样, 处理好的纯样品可以得到可靠,准确的结构(分离手段的应用与纯 度非常重要)信息 。
一、NMR技术的起源与发展
二、液体NMR谱仪的基本结构和对样品
的要求
三、实验技术,方法,特点和选择
四、实验技术的新进展
一、NMR的起源与发展
1、原理的发现
核磁共振(NMR)现象是于1946年由美国斯坦福大学F. Bloch和哈佛大学的E. M. Purcell领导的两个研究小组分 别在水和石腊中观察到质子在静磁场里对射频(Radio Frequency,RF)辐射的共振吸收现象,即NMR现象。因此, 他们两人获得了1952年的诺贝尔物理学奖。自从1948年由 Bloch教授的几位学生参于制造NMR谱仪后,60多年来核磁 共振不仅形成为一门有完整理论的新兴学科——核磁共振 波谱学,并且各种新的实验技术不断发展,仪器不断完善, 在化学、生物、医学、药物等许多领域得到了广泛的应用。
3、样品管及样品用量:
作为一般常观实验,无论是高场谱仪还是一般谱仪对测试样品管 要求并不高(做大分子样品和微量样品除外),但样品管必需清洗干 净、无残留溶剂和杂质,以免影响测试结果。 虑样品的匀场和接收信号线形正常,另外,是送样量的要求,分了量 在300~500的样品,用样量5mg左右。测13C谱得加倍量。谱图的灵敏 度主要取决于样品的摩尔浓度。
NMR确定鸡血藤中1个新的降倍半萜类化合物布卢门醇A-6-O-反式-对羟基肉桂酸酯
·基础研究·△[基金项目] 国家中药标准化项目(ZYBZH C HUN 21)[通信作者] 杨秀伟,教授,博士生导师,研究方向:中药有效物质基础和药物代谢;Tel:(010)82801569,E mail:xwyang@bjmu edu cnNMR确定鸡血藤中1个新的降倍半萜类化合物布卢门醇A6 O 反式 对羟基肉桂酸酯△杨秀伟 ,刘晓艳,崔泽旭北京大学药学院天然药物学系/天然药物及仿生药物国家重点实验室,北京 100191[摘要] 目的:研究鸡血藤水提取物中的化学成分。
方法:采用硅胶、高效液相等柱色谱方法进行分离纯化,通过化合物的核磁共振(NMR)数据鉴定其结构。
结果:从鸡血藤水提取物中分离出1个降倍半萜类化合物,根据其NMR数据鉴定其化学结构为布卢门醇A 6 O 反式 对羟基肉桂酸酯。
结论:布卢门醇A 6 O 反式 对羟基肉桂酸酯为1个新的化合物。
[关键词] 鸡血藤;豆科;降倍半萜;布卢门醇A 6 O 反式 对羟基肉桂酸酯[中图分类号] R284 [文献标识码] A [文章编号] 1673 4890(2021)03 0432 05doi:10 13313/j issn 1673 4890 20200823001BlumenolA 6 O trans p HydroxycinnamateasaNewNorsesquiterpenoidDeterminedbyNMRMethodfromSpatholobiCaulisYANGXiu wei ,LIUXiao yan,CUIZe xuStateKeyLaboratoryofNaturalandBiomimeticDrugs,DepartmentofNaturalMedicines,SchoolofPharmaceuticalSciences,PekingUniversity,Beijing100191,China[Abstract] Objective:TostudythechemicalconstituentsofaqueousextractofSpatholobiCaulis Methods:Thecompoundwasseparatedandpurifiedbyrepeatedcolumnchromatographyonsilicagelandhighperformanceliquidchromatography,andthechemicalstructurewasdeterminedbynuclearmagneticresonance(NMR)spectroscopicdataanalyses Results:Anorsesquiterpenoidcompoundwasobtained ItschemicalstructurewasidentifiedasblumenolA 6 O trans p hydroxycinnamate Conclusion:BlumenolA 6 O trans p hydroxycinnamateisanewcompound[Keywords] SpatholobiCaulis;Leguminosae;norsesquiterpenoid;blumenolA 6 O trans p hydroxycinnamate鸡血藤SpatholobiCaulis为豆科植物密花豆SpatholobussuberectusDunn的干燥藤茎[1],主产于中国云南、广西等地,在缅甸、印度尼西亚等热带地区也有分布。
NMR-核磁共振碳谱解析
NOESY 记录分子中所有质子NOE效应的二维谱
b
a
CHO
c d
HO OCH3
e
10
H
1 5 4
9 7
H O
800<M<3000时 NOE信号较弱,此时采用ROESY作谱
2D-INADEQUATE谱(Incredible natural abundance double quantum transfer experiment) 直接显示13C-13C连接技术(灵敏度低,需要100mg以上样品)
TOCSY(Total Correlation Spectroscopy) 全相关谱:对于所有均为相同自旋体系部分的质子可发现交叉峰,在COSY中对
于一个具有三个偶合自旋的AMX体系,仅在A对M和M对X 可以发现交叉峰,在 TOCSY中A与X也有交叉峰。因此这种技术的优势在于它可以在共振重叠的地方解 释图谱。AMX体系中的M和A’M’X’体系中的M’共振重叠,从COSY 中不能判定A到 底是与x 还是与X’是相同自旋体系的一部分。在相应的TOCSY谱中可以看到对角线 下面的峰,它直接指出A与X 是相同自旋体系的一部分。
t1cocch3chch2对于同种类型的碳核可用峰高粗略估计碳数比例选择氢核去偶谱selectiveprotondecouplingspectrumsel远程选择氢核去偶谱longrangeselectiveprotondecouplingspectrumlspd在氢核信号归属已经明确的前提下用弱的能量选择性照射特定氢核以分别消除它们对相关碳偶合的影响以紫罗兰酮的9c为例偏共振去偶谱offresonancedecouplingspectrumofr当照射1h核用的电磁辐射偏离所有1h核的共振频率一定距离时测得的13cnmrofr谱中将不能完全消除直接相连氢的偶合影响此时可判断碳的类型j为剩余偶合常数而非真正偶合常数无畸变极化转移技术distortionlessenhancementbypolarizationtransferdeptofr因还部分保留1h核偶合的影响信号灵敏度大大降低且信号间有可能重叠13cnmr常用溶剂的化学位移2dnmr1h1hcosy对角峰相关峰2dchj分解谱横轴按13c的化学位移纵轴为1h和13c的偶合常数hmqc
具有一氧化氮释放功能的人工血管材料
Chinese Journal of Tissue Engineering Research |Vol 25|No.28|October 2021|4531具有一氧化氮释放功能的人工血管材料申瑞秋1,刘志明1,2,宋俊祎1, 胡碧茹1文题释义:人工血管:是严重狭窄或闭塞性血管的人工替代品,多是以尼龙、涤纶、聚四氟乙烯等合成材料人工制造的,适用于全身各处的血管转流术,大、中口径人工血管应用于临床已取得满意的效果。
一氧化氮:为氮氧化合物,化学式NO ,相对分子质量为30.01,为二价化合物,是一种无色无味气体难溶于水的有毒气体,化学性质非常活泼。
摘要背景:人工血管材料在生理水平上的一氧化氮(NO)稳定可控释放是抑制小直径人工血管内壁血栓形成的技术关键,对新型人工血管材料的研发具有重要意义。
目的:梳理近年来人工血管材料的研究和应用进展,重点对NO 释放型人工血管材料进行综述。
方法:以“vascular graft 、blood vessel 、catalytic Nitric oxide 、tissue engineering ;人工血管,催化NO ”等为检索关键词,检索CNKI 、万方、谷歌学术和PubMed 数据库2000年1月至2020年7月发表的相关文献,再对检索到的文献进行筛选、归纳和总结。
结果与结论:一系列聚合物材料、涂层材料和纳米复合材料展现出与天然内皮组织相似的NO 产生通量和释放速率,其中负载有机硒、铜离子、角蛋白、纳米贵金属等的人工血管材料显示出可用于心血管疾病治疗的巨大潜力。
负载有机硒的人工血管材料催化持续时间长,生物相容性好,机械性能优良;负载铜的人工血管材料生物安全性好,抗血栓能力强;同时负载有机硒和铜离子的人工血管材料表现出长期稳定的催化能力,以及选择性的内皮细胞活性增强能力;含有角蛋白的人工血管材料具有出色的细胞相容性和功能可拓展性;其他含有催化NO 生成物质的人工血管材料未来发展空间较大。
Si-NMR
I = 1的自旋核,共有3种取向
(+1,0, -1)
z
z
z
B0
m = +1/2
m =+1 m =
m = m = m = m = 1
6(98.9%) 14
16O
8
32S 30Si
162Leabharlann Si(92.2%)14(3.1%)
I0的原子核都具有自旋现象产生 磁矩(),与自旋角动量P有关。
=
· P
I ( I 1)
h P = 2
I值不同,原子核表面电荷分布情况不 同,可用电四极矩eQ来衡量, eQ是核表面 电荷偏离球体的物理量度.
H Taube 是一位无机化学家,他对金属
络合物电子转移机理的卓越研究成果,
使得他独享1983年诺贝尔化学奖。
其创立的接触位移理论,成为后来人们
用NMR研究稀土配位化合物的基础。
1991年诺贝尔化学奖授予了瑞士苏黎世联邦高 等工业学院的R. R. Ernst教授,奖励他在NMR 方面的贡献。
Ernst教授毕生从事NMR研究,他发明的傅立 叶变换技术和二维技术使得NMR成为现代仪 器分析不可缺少的重要手段。正是由于这一技 术的发明,大量难以用NMR谱仪进行的实验 得以完成。也正是由于这一技术,使得NMR 在化学、医学、生命科学等领域中得以应用。
( = · P )。 自旋核的取向,即磁矩 的取向。 无外磁场(B0)时,磁矩 的取向是任意
的。
在B0中
I 0的自旋核,磁矩的取向不是任意的,而
是量子化的,共有(2I + 1)种取向。可用磁量
子数m表示:m:I,I-1,,-I+1,-I I = 1/2的自旋核,共有2种取向 (+1/2,-1/2)
拉曼光谱法在快速筛查紫杉醇脂质体制剂中的应用
拉曼光谱法在快速筛查紫杉醇脂质体制剂中的应用目的应用拉曼光谱法建立定性鉴别模型,实现紫杉醇脂质体制剂的现场快速筛查。
方法隔包装采集注射用紫杉醇脂质体的拉曼光谱,使用主成分分析(PCA)算法去除包装的干扰信号,提取紫杉醇脂质体的拉曼信号,用经典最小二乘(CLS)建立定性鉴别模型。
对模型进行正向验证和反向验证确定判别的阈值,模型输出的相关系数值同阈值比较进行定性判定。
使用外标法实现方法在三种仪器上的转移。
结果排除玻璃包装的干扰提取的光谱与直接测量的光谱相关系数达0.9744,建立的紫杉醇脂質体定性模型,判断阈值为0.85,正向验证(脂质体制剂)和反向验证(脂质体膜成分和紫杉醇)结果均为通过。
通过使用传递光谱和峰位检索,方法能够在便携式拉曼光谱仪、傅里叶拉曼光谱仪和显微成像拉曼光谱仪上实现转移。
结论本研究所建立的快速筛查方法可满足抗癌类贵重药品的现场和实验室快速筛查,为监管和公安打假提供一种科学有效的手段。
[Abstract] Objective To realize the rapid screening on site,Raman spectroscopy was applied to establish an identification model of paclitaxel liposome preparation. Methods Raman spectra of the whole paclitaxel liposome product with package were first collected,and principal component analysis(PCA)algorithm was then used to extract paclitaxelliposome signals from the identified signals. Classic least squares (CLS)algorithm was used to established the identification model. The threshold was determined by the positive validation and negative challenge tests,and identification results would be get by compare the the correlation coefficients with the threshold. External standard method was utilized to realize the model transfer on three different kinds of Raman spectrometer. Results The correlation coefficient between the extracted spectrum and directly-measured spectrum was 0.9744. The paclitaxelliposome identification model was built with a threshold of 0.85,and results of both positive validation and negative challenge tests were all passed. Model transfer results also indicated that with the use of transfer spectra and peak search,the method established could be used on portable Raman,microscope imaging Raman and FT-Raman spectroscopes. Conclusion The Raman method established in this study could realize expensive anticarcinogen both on-site non-invasively and laboratory use,which can provide a scientific and efficient means for regulation and crackdown on counterfeit expensive medicine.[Key words] Raman spectroscopy;Classic least squares algorithm;Paclitaxel liposome;Counterfeit medicines公安机关公布的假药案件中,假冒抗癌类药物日渐猖獗。
锰离子增强MRI活体视神经示踪技术研究进展
锰离子增强MRI活体视神经示踪技术研究进展
陈瑶;胡运韬;马志中
【期刊名称】《中华实验眼科杂志》
【年(卷),期】2016(034)006
【摘要】锰离子增强MRI(MEMRI)视神经示踪利用Mn2+可在神经细胞轴索内运输并跨突触传递和其顺磁性特点可反映视神经轴浆流和视路连接情况,被广泛应用于视神经示踪研究,是一种极具潜力的神经示踪技术.Mn2+通过钙离子门控通道进入细胞后通过不依赖电活动的微管系统的慢性轴浆运输,但其跨突触传递则需要细胞电活动的参与.眼科可利用MEMRI的特点进行视神经损伤相关的研究.Mn2+属于细胞内MRI增强剂且具有金属毒性,给药宜多次少量靶点给药.就Mn2+神经示踪的机制、MEMRI在眼科研究中的应用、Mn2+给药途径及其毒性做一概述.【总页数】4页(P562-565)
【作者】陈瑶;胡运韬;马志中
【作者单位】北京清华长庚医院眼科,北京102218
【正文语种】中文
【中图分类】R774.6
【相关文献】
1.稀土上转换材料活体干细胞示踪技术的研究进展 [J], 张慧中
2.锰离子增强MRI活体视神经示踪技术研究进展 [J], 陈瑶
3.细胞治疗中活体细胞体内示踪分子影像技术研究进展 [J], 刘晶晶;王燕;王辛宇;
李晓天
4.纳米示踪剂在移植干细胞活体示踪中的研究进展 [J], 黄思渝;成昱;秦瑶
5.利用双入路双室示踪动力学模型活体评价肝转移瘤动态对比增强MRI的灌注参数 [J], T.S.Koh;C.H.Thng;P.S.Lee;S.Hartono;H.Rumpel;B.C.Goh;贺李
因版权原因,仅展示原文概要,查看原文内容请购买。
基于纳米金与纳米银簇间表面等离子增强能量转移效应特异性检测microRNA
基于纳米金与纳米银簇间表面等离子增强能量转移效应特异性检测microRNA王红亚;尹斌成;叶邦策【摘要】There is high demand for a sensitive method for miRNA detection in clinical diagnosis. In this work, we developed a method for miRNA detection based on the surface plasmon-enhanced energy transfer ( SPEET ) between gold nanoparticles ( AuNPs ) and silver nanoclusters ( AgNCs ) , coupled with DNA polymerase and nicking enzyme-assisted isothermal amplification for target recycling. Two DNA probes ( Probe a and Probe b) were assembled onto the surface of AuNPs to form Probe b-Probe a-AuNP conjugates. Probe a consisted three domains:the complementary sequence of miRNA, the specific site of the nicking enzyme, and the self-assembly sequence for AgNCs. The 3′ end of Probe a was modified with thiol as a binding site for AuNPs. The SPEET of AgNCs and AuNPs was inhibited when miRNA was added to produce the dumbbell shaped template by polymerase. The template could promote synthesis of AgNCs, resulting in replacement and subsequently recycling of the target molecule for signal amplification. In comparison with the traditional method of miRNA detection with commercial RT-PCR kits, this method avoided the processof reverse transcription and was easy to perform. In addition, this method with a detection limit of 2. 5×10-11 mol/L was cost-effective, label-free, and highly selective for detecting miRNA, and could be applied to the analysis of miRNA in biological samples.%microRNAs(miRNAs)的灵敏检测对临床诊断具有十分重要的意义.本研究采用偶联DNA聚合酶和核酸内切酶介导的恒温扩增反应实现靶标循环再生的策略,利用纳米金(AuNPs)与纳米银簇(AgNCs)间表面等离子增强能量转移效应,开发了一种miRNA定量检测方法.在AuNPs表面组装两种探针(Probe a和Probe b)制备响应元件Probe b-Probe a-AuNP,其中Probe a通过3′端巯基共价偶联到AuNPs表面,此外具有靶标miRNA互补序列、核酸内切酶酶切序列和Probe b互补序列,Probe b为荧光AgNCs合成模板.靶标miRNA存在时,启动酶级联恒温扩增反应,导致Probe b脱离AuNPs表面,抑制了Probe b为模板合成的AgNCs与AuNPs间表面等离子增强能量转移效应,使得反应体系荧光信号增强.本方法的检出限为2.5×10-11 mol/L,与miRNAs商业化检测试剂盒相比,避免了逆转录反应,而且操作简单,检测成本低,可应用于生物样本中miRNAs分析.【期刊名称】《分析化学》【年(卷),期】2017(045)012【总页数】8页(P2018-2025)【关键词】microRNA检测;纳米金;纳米银簇;表面等离子增强能量转移效应【作者】王红亚;尹斌成;叶邦策【作者单位】石河子大学化学和化学工程学院,石河子832000;华东理工大学生物反应器工程国家重点实验室,上海200237;华东理工大学生物反应器工程国家重点实验室,上海200237;石河子大学化学和化学工程学院,石河子832000;华东理工大学生物反应器工程国家重点实验室,上海200237【正文语种】中文MicroRNAs(miRNAs)是一类内源性的具有调控功能的非编码RNA,其长约19~25个核苷酸,通过碱基互补配对的方式识别靶mRNA,并根据互补程度的不同指导沉默复合体降解靶mRNA或者阻遏靶mRNA的翻译[1,2]。
NMR中常用的英文缩写和中文名称
Dynamic NMR动态NMR
DNP
Dynamic Nuclear Polarization动态核极化
DQ(C)
Double Quantum (Coherence)双量子(相干)
DQD
Digital Quadrature Detection数字正交检测
DQF
Double Quantum Filter双量子滤波
T1
Longitudinal (spin-lattice) relaxation time for MZ纵向(自旋-晶格)弛豫时间
T2
Transverse (spin-spin) relaxation time for Mxy横向(自旋-自旋)弛豫时间
tm
mixing time混合时间
τc
rotational correlation time旋转相关时间
DQF-COSY
Double Quantum Filtered COSY双量子滤波COSY
DRDS
Double Resonance Difference Spectroscopy双共振差谱
EXSY
Exchange Spectroscopy交换谱
FFT
Fast Fourier Transformation快速傅立叶变换
TOCSY
Total Correlation Spectroscopy全(总)相关谱
TORO
TOCSY-ROESY Relay TOCSY-ROESY接力
TQF
Triple-Quantum Filter三量子滤波
WALTZ-16
A broadband decoupling sequence宽带去偶序列
子宫内膜癌组织近红外光谱预处理与波段选择研究
子宫内膜癌组织近红外光谱预处理与波段选择研究
随着近年来医学技术的不断发展,近红外光谱已经被广泛应用于医学领域中疾病的快速检测。
其中,子宫内膜癌的诊断也得到了越来越多的关注。
然而,近红外光谱检测结果的精确性受到许多因素的影响,预处理与波段选择是影响近红外光谱检测的两个主要因素之一。
对于子宫内膜癌组织的近红外光谱预处理,主要包括噪声滤波、光谱标准化和波长校正。
其中,噪声滤波可去除检测过程中所产生的各种噪声,如仪器噪声、环境噪声等,从而提高近红外光谱的信噪比。
光谱标准化则是将不同样本所得到的光谱曲线进行标准化,消除了不同样本之间的差异性,以便进行后续的数据处理。
波长校正可消除由于仪器或环境因素引起的波长漂移,以确保采集到的光谱数据的准确性。
在波段选择方面,采用合适的波段可提高子宫内膜癌的检测准确率。
研究表明,在900~1800 nm的区间内,较好的波段为1300~1400 nm、1420~1460 nm、1650~1700 nm三个波段。
其中,1300~1400 nm波段是由于水分子和一些有机分子的振动
共振引起的;1420~1460 nm和1650~1700 nm波段分别是由于
C-H基团和COO-基团的存在而引起的,这三个波段的特征与
子宫内膜癌的不同组织特征有关。
综上所述,子宫内膜癌组织的近红外光谱检测需要进行有效的预处理与波段选择,以提高检测准确率。
通过对噪声滤波、光谱标准化和波长校正的处理,可消除不同样本之间的差异性,
提高光谱数据的准确性;通过选择适当的波段,可提高子宫内膜癌的检测准确率。
【材料研究方法】NMR 核磁共振
Larmor precess.
• Larmor frequency (ω0)
ω0 = 2πν 0 = γH 0
Where ω0 : angular spinning speed of nuclei ν0:Lamor frequency, H0:applied magnetic field。 γ : magnetic ratio of nuclei, is characteristics of nuclei.
NMR
Splitting of spinning energy levels
NMR
¾ In the absence of an applied magnetic field, the magnetic moment vectors are orientated randomly and the spinning nuclei all possess the same energy.
scarcely used in NMR. I=1/2:1H、19F、31P、13C posses nuclear spins, can be used in NMR.
2. Nuclear Magnetic Resonance Spin of 1H Spin quantum number I=1/2。 Magnetic field will produce according to right-hand rule while a proton spins.
新颖的分析方法增强了先前不可见区域的核磁共振信号检测
新颖的分析方法增强了先前不可见区域的核磁共振信号检测自20世纪中叶首次广泛使用以来,核磁共振(NMR)已成为检查材料直至其原子,揭示分子结构和其他细节而不干扰材料本身的必不成少的技术。
加州大学圣塔芭芭拉分校的化学教授Songi Han说:“它是化学分析,材料表征,MRI领域中被广泛使用的技术,您可以在其中进行非侵入性分析,但具有原子和分子细节。
” 通过将样品置于强磁场中,然后用无线电波对其进行探测,科学家可以按照材料原子中振荡核的响应确定材料的分子结构。
韩说:“但是,核磁共振的问题在于,由于它是一种低能耗技术,因此不太灵敏。
” “它非常详细,但是您不会收到太多信号。
” 结果,相对于其他技术,可能需要大量的样品材料,并且信号的总体弱点使NMR对于研究复杂的化学过程而言并不睬想。
解决这种情况的一种办法是使用动态核极化(DNP),这是一种流行的技术,其中能量从附近的电子“借来”以增强从核发出的信号。
韩解释说:“电子的能量比原子核高得多。
” 这些未成对电子的极化内置于特别设计的“自由基”分子中,被转移到原子核以改善其信号。
然而,在过去的十年中,DNP已经成为热门话题,但Han认为我们仍在摸索中。
汉说:“尽管DNP从根本上改变了NMR的格局,但最终只使用了少数设计者的偏振剂。
” “一种极化剂已经用于极化氢核,但是DNP的能力却更大。
原则上,许多其他电子自旋源可以极化许多其他类型的核自旋。
”在颁发于《化学》杂志上的一篇论文中,Han和他的同事通过使用过渡金属钒(IV)进行的动态核极化的首次演示,突破了NMR的领域。
Han认为,他们的新方法被称为“超细DNP 光谱学”,使人们可以一眼了解过渡金属周围通常晦涩难懂的局部化学反应,这对于催化和还原氧化反应等过程至关重要。
汉说:“现在我们可能能够使用催化剂和许多其他重要材料中存在的内源性金属,而不必添加极化剂(那些自由基分子)来产生更强的NMR信号。
”Han解释说,对钒和铜等过渡金属的讽刺意味是,这些原子往往倾向于成为功能中心,而这些中心是发生重要化学反应的地方。
核磁共振光谱NMR光谱
弛豫可分为纵向弛豫和横向弛豫。
32
纵向弛豫:
处于高能级的核将其能量及时转移给周围分子骨架(晶格)
中的其它核,从而使自己返回到低能态的现象。又称自旋
-晶格弛豫。
其半衰期用T1表示
横向弛豫: 当两个相邻的核处于不同能级,但进动频率相同时,高 能级核与低能级核通过自旋状态的交换而实现能量转移 所发生的弛豫现象。又称自旋-自旋弛豫。
N NH i N NL
j
E
h
e kT e kT
通 过 计 算 , 在 常 温 下 , 1H 处 于 B0 为 2.3488T的磁场中,处于低能级的1H 核数目仅比高能级的核数目多出百万 分之十六!
会造成什么后果?
27
随实验进行,低能级核越来越少,最后高、低能级上的 核数目相等--------饱和-----从低到高与从高到低能级的 跃迁的数目相同---体系净吸收为0-----共振信号消失!
问世,NMR开始广泛应用
4
第二阶段 70年代:Fourier Transform的应用
13C-NMR技术(碳骨架) (GC,TLC,HPLC技术的发展) 第三阶段 80年代:Two-dimensional (2D) NMR诞生 (COSY,碳骨架连接顺序,非键原 子间距离,生物大分子结构,……)
5
这个过程称之弛豫过程(Relaxation),即 高能态的核以非辐射的形式放出能量回到 低能态重建Boltzmann分布。
30
两种弛豫过程:
N
h
Relaxation
N+
31
谱线宽度
据Heisenberg测不准原理,激发能量E与体系处于激发态的平均时 间(寿命)成反比,与谱线变宽成正比,即:
采用 HEVC 的精细可分级编码
采用 HEVC 的精细可分级编码洪佳庆;林其伟【摘要】针对新一代的视频编码标准 HEVC(high efficient video coding),提出一种改进的精细可分级编码方案。
该方案的基本层采用 HEVC 的编码器,提高了基本层的编码效率;通过统计编码单元的分割方式,自适应找到图像中的细节区域;采用选择增强技术,提高细节区域的图像质量。
实验结果表明:编码方案能够精细匹配信道带宽的变化,且基本层与增强层相互独立,不会带来误差传递;利用 HEVC 编码单元的分割方式,可以自适应找到视频序列图像中的细节区域,对运动区域进行提升,视频图像的主观质量有了很大的改善。
%According to the new generation of video coding standard HEVC (high efficient video coding),an improved scheme of fine granularity scalable coding is proposed.This scheme adopts the HEVC coder in based layer to improve coding efficiency;through statistics the segmentation of codingunit,adaptive find details in the image,by choosing en-hanced technology improve the detail area's quality.The experiment results show that this scheme can match the change of the channel bandwidth well.Because the based layer and enhanced layer are independent of each other,it will not bring error transfer.By using the segmentation of coding unit we can find the details of the image adaptive,and the video image quality can be improved effectively for elevating the moving regions.【期刊名称】《华侨大学学报(自然科学版)》【年(卷),期】2014(000)003【总页数】4页(P253-256)【关键词】精细可分级编码;视频编码标准;编码单元;细节区域【作者】洪佳庆;林其伟【作者单位】华侨大学信息科学与工程学院,福建厦门 361021;华侨大学信息科学与工程学院,福建厦门 361021【正文语种】中文【中图分类】TP312精细可分级(FGS)编码方案最先是基于MPEG-4提出的,之后被正式纳入MPEG-4标准中[1].近年来,随着H.264的广泛实用,许多国内外学者提出了一些基于H.264的FGS方案[2].在这些基于H.264的FGS方案中,原始视频流被分为两个码流:基本层码流,增强层码流.基本层码流可以保证最基本的视频质量[3],而增强层码流则可以提高增强的细节上的视频质量.FGS的增强层可以根据当时网络带宽的情况对码流进行任意位置的截断,只传输保留的部分,用户端接收到的增强层码流越多,解码的视频质量将会越高.FGS能够提供连续的可分级编码性能,在信道带宽时变较大时,能很好地调节增强层的码流,使视频图像质量过渡平滑.对于H.264 FGS,国内外学者从主观图像效果和客观编码效率两方面提出多种改进方法.如基于双环的MC+FGS[4]、基于关键帧的开环、闭环混合编码[5]等,可以有效地提高编码效率,但也存在误差传递和积累问题,而且需要更大的计算复杂度.本文在新一代的视频编码标准[6]HEVC(high efficient video coding)基础上,提出一种改进的精细可分级编码方案.1 基于离散余弦变换系数的位平面编码将位平面编码量化后的离散余弦变换(DCT)系数看作是由若干个比特组成的二进制数[7].对每个8×8的DCT块,采用Zig-Zag扫描的顺序,把64个DCT系数的绝对值写成二进制的形式,将相同位置的比特提取出来,得到一个位平面.位平面的个数由DCT系数的绝对值的最大值决定,编码从最高平面到最低平面.每个平面用(RUN,EOP)符号表示,通过VLC编码产生输出码流[8].RUN表示1前面连续0的个数,EOP表示是否还有值为1的系数未被编码.若一个平面64个比特全为零,则用ALLZERO表示.按照这种位平面编码方法形成的(RUN,EOP)符号具有“嵌入式”的特性,能够在符号流的任意位置进行截断.2 改进的FGS编码器结构在以往的改进算法中,FGS的基本层采用的是H.264编码器,提高基本层的编码效率.但随着视频应用的发展,H.264的局限性不断凸显,而HEVC是面向更高清晰度、更高帧率、更高压缩率视频应用的协议标准,将成为今后视频应用发展的趋势.因此,对FGS的基本层进行改进,在基本层采用HEVC编码器.图1 改进的FGS编码器结构Fig.1 Improved structure of FGS encoder改进的FGS编码方案编码器结构,如图1所示.将一个视频序列编码为一个基本层码流和一个增强层码流.上面部分为FGS增强层的处理流程,对原始图像与基本层重建图像的差值图像采用基于DCT系数的位平面编码方式,得到增强层码流,具有可分级能力;基本层采用完整的HEVC编码器,将原始视频图像与预测图像的差值进行变换、量化、熵编码,从而得到基本层码流.3 改善视频图像主观效果3.1 选择增强为了提高视频的视觉质量,FGS提供了3种功能:频率加权[9]、选择增强[10]和错误恢复特性[11].选择增强是根据人们在观察图像时,往往对某一区域感兴趣,通过将感兴趣的数据块的比特平面进行上移,保证这些数据优先编码.在带宽有限时,感兴趣区域的数据能够尽可能多地保留下来,在接收端能够保证用户感兴趣区域的主观质量.选择增强示意图,如图2所示.3.2 HEVC编码单元的分割方式HEVC采用了更加灵活的编码结构来提高高分辨率视频的编码效率,包括编码单元、预测单元和变换单元.将一帧图像分割成互不重叠的最大编码单元(largest coding units,LCU),每个LCU以递归方式划分为多个编码单元(CU)[12],直到8×8的CU为止.假如LCU设置为64×64,则CU的可能划分方式有64×64,32×32,16×16,8×8(编码单元的尺寸必须为2 N×2 N,其中N为以2为底的幂)几种方式,如图3所示.总的来说,对于较平坦的区域采用较大的分割尺寸,对于运动剧烈的区域采用较小的分割方式.图2 选择增强示意图Fig.2 Schematic of selective enhancement图3 最大编码单元的分割图Fig.3 Segmentation of the biggest coding unit3.3 基于编码单元分割的FGS编码器在HEVC中,分割尺寸的选择会影响压缩性能.通常情况下,大的分割尺寸适合于图像中的平坦区域,小的分割尺寸适合于图像中的细节比较丰富的区域.对于LCU设置为64×64的情况,在编码增强层之前,根据HEVC编码单元分割模式的选择特点,对于尺寸为16×16和8×8的CU进行位平面提升,提升3个位平面,但对于尺寸为64×64,32×32的CU不进行位平面提升.将提升的区域作为感兴趣区域进行优先编码和传输,改善解码后视频主观质量,编码器结构如图4所示.第一帧CU分割图,如图5所示.从图5可以看出:运动剧烈的区域分割尺寸较小.通常在视频序列中人们感兴趣的是运动的前景对象,因此将分割尺寸小的CU进行位平面提升,能有效改善主观效果.图4 基于编码单元分割的FGS编码器结构Fig.4 Structure for FGS encoderbased on coding units segmentation图5 第一帧编码单元分割图Fig.5 Coding units segmentation for first frame code4 实验结果及分析使用 HM 10.0[13]测试不同码率下改进算法的编码性能,配置文件选encoder _lowdelay_P_main.cfg与BasketballDrill.cfg.测试序列为Flowervase_832×480_30.yuv和BasketballPass_416×240_50.yuv,编码10帧.将重建图像序列的亮度分量的平均峰值信噪比(RSN)作为客观评价视频质量的标准,FGS的基本层中采用HEVC编码器,增强层中采用MPEG-4 FGS增强层编码.结构编码视频与仅采用HEVC编码视频性能比较,如图6所示.从图6中可以看出:码率较小时,HEVC FGS编码的视频图像质量略高于HEVC;随着码率的升高,视频图像的质量越高.对16×16,8×8块进行提升、优先编码和传输,其图像质量与不进行提升编码感兴趣区域的图像质量对比,如图7所示.从图7中可以看出:感兴趣区域的PSNR 有很大的提升,其中BasketballPass序列平均提升了近5.661 d B,Flowervase 序列平均提升了近1.934 dB;且随着码率的提升,差值逐渐增大.图6 基于HEVC的FGS与HEVC性能比较Fig.6 Comparison between HEVC and FGS based on HEVC图7 基于编码单元分割FGS性能比较Fig.7 Comparison between FGS and FGS based on CU segmentation5 结束语在新一代视频编码标准HEVC的基础上构建可分级编码方案,其基本层采用完整的HEVC编码器,增强层采用MPEG-4 FGS的增强层编码方案.通过统计编码单元的分割方式,对小的分割方式优先编码与传输.实验结果表明:整体视频图像的质量、细节区域的视频图像质量都得到了有效提高.参考文献:[1]郑夜星.精细可分级视频编码算法研究[D].厦门:华侨大学,2010:8-14. [2] HE Yu-wen,WU Feng,LI Shi-peng,et al.H.26L-based fine granularity scalable video coding[C]∥IEEE International Symposium on Circuits and Systems.Scottsdale:ISCAS,2002:548-551.[3]谢建国.基于预取得视频带宽适应性传输算法[J].计算机研究与发展,2009,46(2):211-216.[4]贺艳春.基于 H.264的FGS视频编码技术的研究[D].厦门:华侨大学,2012:23-25.[5]叶晓彤,邓云,蔡乐才.基于关键帧的开环-闭环混合FGS编码框架[J].西南交通大学学报,2009,44(4):484-489.[6] BROSS B,HAN W J,OHM J R,et al.High efficiency video coding (HEVC)text specification draft 10(for FDIS &Consent),JCTVC-L1003_v2[R].Geneva:Joint Collaborative Team on Video Coding,2013:1-296.[7] LI Wei-ping.Overview of fine granularity scalability in MPEG-4 video standard[J].IEEE Transactions on Circuits and Systems for Video Technology,2001,11(3):301-317.[8]饶琴.精细粒度可分级编码算法研究[D].厦门:华侨大学,2011:20-22. [9] KIM S,HO Y-S.HVS-based frequency weighting for fine granular scalability[J].Proc Information Communication Technologies,2003,8(10):127-131.[10]周孝.精细可分级编码技术的研究[D].厦门:华侨大学,2008:19.[11]王相海,宋传鸣.图像及视频可分级编码[M].北京:科学出版社,2009:24.[12] HAN W J,MIN J,LEE T,et al.Improved video compression efficiency through flexible unit representation and corresponding extension of coding tools[J].IEEE Transactions on Circuits and Systemsfor Video Technology,2010,20(12):1709-1720.[13] BOSSEN F,FLYNN D,SUEHRING K.HEVC HM10 reference software,JCTVC-L1010[R].Geneva:Joint Collaborative Team on Video Coding,2013:1-4.。
nmr用途英文介绍
nmr用途英文介绍NMR Applications: An Introduction in EnglishNuclear Magnetic Resonance (NMR) spectroscopy is a powerful analytical technique that plays a crucial role in various scientific fields. Its ability to provide detailed information about molecular structure and dynamics has contributed significantly to advancements in chemistry, biology, medicine, and materials science. This article serves as an introductory guide to the applications of NMR, highlighting its versatility and importance.1. Chemical Structure ElucidationNMR spectroscopy is commonly used to determine the chemical structure of organic and inorganic compounds. By analyzing the unique magnetic properties of atoms within a molecule, NMR can identify functional groups, confirm molecular connectivity, and provide insights into the three-dimensional arrangement of atoms. It is an indispensable tool for chemists, enabling them to characterize and understand the properties of new compounds.2. Drug Development and Pharmaceutical AnalysisIn the pharmaceutical industry, NMR aids in the development and analysis of drugs. It allows researchers to determine the purity and identify impurities in drug substances, ensuring high-quality pharmaceutical products. NMR can also assess the stability of drug formulations and investigate drug-protein interactions, facilitating the design of more effective and safe medications.3. MetabolomicsMetabolomics, the study of small molecules involved in metabolic processes, heavily relies on NMR spectroscopy for metabolite identification and quantification. NMR can provide a comprehensive analysis of biological samples such as blood, urine, and tissues, allowing researchers to understand the metabolic changes associated with diseases, drug responses, and environmental factors. This information contributes to the development of personalized medicine and biomarker discovery.4. Structural BiologyIn structural biology, NMR spectroscopy plays a vital role in determining the three-dimensional structures of macromolecules, including proteins and nucleic acids. By studying the interactions and dynamics of these biological molecules, NMR provides insights into their functions and mechanisms. This information is essential for understanding diseases at a molecular level and designing targeted therapies.5. Materials ScienceNMR spectroscopy is instrumental in characterizing various materials, including polymers, catalysts, and nanoparticles. It can elucidate the molecular structure, composition, and physical properties of materials, aiding in their design and optimization. NMR techniques such as solid-state NMR and diffusion NMR provide valuable information about material properties at the atomic and molecular levels.6. Environmental AnalysisEnvironmental scientists employ NMR spectroscopy to investigate pollutants, monitor water quality, and study interactions between contaminants and natural substances. NMR can identify and quantify organic compounds in environmental samples, helping to assess their impact on ecosystems and human health. This knowledge supports environmental remediation efforts and the development of sustainable practices.7. Food ScienceNMR spectroscopy finds extensive applications in food science and quality control. It can analyze food composition, detect adulteration, and determine nutritional content. NMR also assists in identifying flavor compounds and understanding the mechanisms behind food spoilage. This information is vital for ensuring food safety and improving food processing techniques.In conclusion, NMR spectroscopy is an invaluable scientific tool with diverse applications across numerous disciplines. Its ability to provide detailed molecular insights has revolutionized research and contributed to significant advancements in various fields. From chemical structure elucidation to drug development, from structural biology to environmental analysis, NMR continues to shape our understanding of the world around us. As technology advances, NMR will undoubtedly uncover new applications, further expanding its impact in science and beyond.。
[核磁共振]外参比试样
[核磁共振]外参比试样
核磁共振(NMR)外参比试样,是一种重要的实验手段,为精细及准确的分子结构分析奠定基础。
该比试样以具有特殊结构的羧基携带的芳香硼氧烷为代表,能够以相对较为简洁的实验设计,从分子振动的角度,帮助科学家获得分子结构的特性参数。
NMR外参比试样是一种特殊的简谱样品,通常由含有所需原子的量子化学计算计算得到。
经过核磁共振仪检测后,可推导出结构中分子中原子的配置,从而验证先前的计算结果,以及识别分子的构型,揭示其结构的细节。
特别是在复杂的有机分子结构上,外参比试样可以方便结果加以确认。
而且,实验结果一旦获得,还可以用于在具有相同结构的分子群中,做出正确的辨识和鉴别。
因此,NMR外参比试样在分子结构研究中具有极高的价值,可以说是提高研究准确性和有效性的重要工具。
作为一种科学仪器,它被如今广泛应用在生物、化学和物理等多个领域,而且不断推出新的成果,被大家所熟知的MRI也是一种核磁共振技术的应用。
se注意力中文说法
se注意力中文说法在注意力研究领域中,SE(Selective Enhancement)是一种重要的概念。
SE的中文说法为"注意力选择性增强"。
它指的是人类大脑对特定刺激的选择性增强处理能力。
在日常生活中,我们会面对各种各样的信息和刺激。
然而,我们的大脑并不会对所有的信息一视同仁地进行处理,而是会按照一定的规律进行选择性增强处理。
这种选择性增强是基于我们个体的兴趣、目标和需求而进行的。
注意力选择性增强的机制可以帮助我们过滤掉无关的刺激,集中精力和资源处理那些与当前任务和目标相关的信息。
通过这种机制,我们可以更有效地处理信息,提高思维和认知能力。
研究表明,SE机制在人类的认知过程中起着重要的作用。
例如,在学习新知识时,将注意力集中在重要的信息上能够提高学习效果。
在解决问题和做决策时,注意力选择性增强可以帮助我们辨别重要信息,从而做出更准确的判断。
然而,现代社会中存在许多干扰和诱惑,如社交媒体、手机通知等,它们往往会分散我们的注意力,降低我们的SE能力。
因此,保持良好的注意力选择性增强能力对于应对这些干扰至关重要。
为了提高注意力选择性增强能力,我们可以采取一些有效的方法。
首先,我们可以减少干扰源,比如关闭手机通知,避免多任务处理。
其次,我们可以培养集中注意力的习惯,如通过冥想练习来提高专注力。
此外,保持良好的睡眠和饮食习惯也对注意力选择性增强有积极影响。
总而言之,“注意力选择性增强”是指人类大脑对特定刺激进行选择性增强处理的能力。
它在我们日常生活和认知过程中起着重要作用,帮助我们高效地处理信息。
通过采取一些有效的方法,我们可以提高注意力选择性增强能力,更好地应对干扰,提升个人认知和思维水平。
样品检查中的图像对比度增强[发明专利]
专利名称:样品检查中的图像对比度增强专利类型:发明专利
发明人:王義向,张楠
申请号:CN201880062821.4
申请日:20180925
公开号:CN111433881A
公开日:
20200717
专利内容由知识产权出版社提供
摘要:本文中公开了一种方法,包括:在第一时间段期间,将第一数量的电荷沉积到样品的区域中;在第二时间段期间,将第二数量的电荷沉积到该区域中;在扫描带电粒子的束在样品上生成的探针斑点的同时,从探针斑点中记录表示带电粒子的束与样品的相互作用的信号;其中第一时间段期间的平均沉积速率和第二时间段期间的平均沉积速率不同。
申请人:ASML荷兰有限公司
地址:荷兰维德霍温
国籍:NL
代理机构:北京市金杜律师事务所
代理人:傅远
更多信息请下载全文后查看。
英文杂志要求
我们现在接受下列格式的补充数据:文字:最好是Microsoft Word 文件,也可以是WordPerfect 文件、纯文本文件、或者是基本的HTML (不包括JavaScript 或CSS)。
我们不接受TeX 或LaTeX文件的补充数据。
表格:最好是Microsoft Excel spreadsheets,或是以tab键隔开的纯文本。
链接的HTML表格也可以接受,但是需是基本的HTML,请不要用JavaScript 或CSS。
示意图和图片:Photoshop, Illustrator, or Freehand文件,Tagged Image File Format (TIFF)文件,Macintosh PICT 文件,Encapsulated PostScript (EPS) 文件,Adobe Portable Document Format (PDF) 文件,Graphical Interchange Format (GIF)文件,以及JPEG 图像文件。
电影或录像片段:QuickTime. (根据质量和大小,Multipart GIFs也许也可以接受。
)声音文件:WAV, AIFF, 或AU 格式可以接受。
插图的说明应按图的次序单独在另一页纸上隔行打印。
任何一个插图的说明不应长于一页。
图中所用的术语、缩写、符号和单位应与正文中用的一致。
插图的名称应作为说明的第一行。
Format. Electronic figure files at the revision stage must be in one of the following formats: Adobe Portable Document Format (PDF), Encapsulated PostScript (EPS), or Adobe Illustrator (AI) for vector illustrations or diagrams; Tagged Image File Format (TIFF) (minimum 300 dpi) for raster illustrations and diagrams, EPS or PDF for vector and raster combinations, Tagged Image File Format (TIFF), (minimum 300 dpi) for raster photograph or microscopy images. Authors who have created their files using Adobe Illustrator or Adobe Photoshop should provide their files in these native file formats.We cannot accept files in other formats. In particular, we cannot accept:∙Microsoft PowerPoint files.∙Figures prepared in PowerPoint that have been converted to other, acceptable formats such as PostScript or PDF.Figures should be sized to fit on single 8.5" ×11" sheets.Modification of figures. Science does not allow certain electronic enhancements ormanipulations of micrographs, gels, or other digital images. Figures assembled from multiple photographs or images, or non-concurrent portions of the same image, must indicate theseparate parts with lines between them. Linear adjustment of contrast, brightness, or color must be applied to an entire image or plate equally. Nonlinear adjustments must be specified in the figure legend. Selective enhancement or alteration of one part of an image in not acceptable. In addition, Science may ask authors of papers returned for revision to provide additionaldocumentation of their primary data.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :c o n d -m a t /0310689 29 O c t 2003NMR evidence for selective enhancement of Mo magnetic moment by electrondoping in Sr x La 2-x FeMoO 6M. Wojcik, E. Jedryka, S. NadolskiInstitute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02 668Warszawa, Poland J. Navarro, D.Rubi and J. Fontcuberta Institut de Ciencia de Materials de Barcelona, CSIC, Campus Universitari de Bellatera, E-08193 Bellatera, Spain. ABSTRACT 95, 97Mo NMR experiments have been performed on a series of Sr 2FeMoO 6 and electron-doped Sr 2-x La x FeMoO 6 ceramics. Detailed analysis of the NMR spectra from pristine Sr 2FeMoO 6 conclusively shows that the Mo hyperfine field is mainly due to atomic Mo magnetic moments. No contribution of transferred hyperfine field has been observed, confirming the absence of s-electrons in the conduction band. Upon Ladoping, the NMR frequency (hyperfine field) gradually increases proving that the concentration of spin polarized electrons at Mo ion is enhanced by the La substitution.A simple linear correlation between magnetic moment at Mo sites and the Curie temperature of the system has been found. Implications for understanding the electronic structure and the ferromagnetic coupling in these systems are underlined.PACS: 76.60.Lz , 71.20.-b, 75.30.-m, 75.20.HrMagnetic oxides with the double perovskite structure, derived from the parent compound Sr2FeMoO6 (SFMO), have recently received a lot of attention following a report of Kobayashi et al. that this material is a half-metallic ferromagnet with the Curie temperature of 415 K [1], making it a very suitable candidate for applications in magnetoelectronics. Its crystal structure (denoted as A2BB’O6) consists of an ordered arrangement of perovskite (ABO3) building units, in such way that their B sites are alternatively occupied by Fe and Mo ions. Sr ions occupy the central A positions in each perovskite unit.The electronic structure consists of localized spin-up states originating from Fe 3d orbitals (t2g and e g) and a conduction band formed by hybridized Fe 3d and Mo 4d spin-down t2g states [2] . The spin-up states are fully occupied by five 3d electrons of the high-spin state of Fe3+, whereas the conducting spin down band is partially filled by one d electron formally originating from Mo5+. In this way, the experimentally observed ferromagnetic alignment of localized Fe spins (S=5/2) implies that the magnetic polarization of Mo ion is antiparallel with respect to the Fe moments.However, it is not obvious how magnetic interaction is transmitted. It is experimentally found that magnetic moment at Mo sites is very small (~0.3 µB [3]) thus suggesting a weak exchange with neighbouring Fe-ions. In spite of this, the Curie temperature is well above that of manganites. Consequently, enormous efforts have been dedicated to obtain experimental confirmation of the antiferromagnetic coupling between itinerant carriers and localized moments at Fe-sites and to reach a microscopic understanding of the nature of the magnetic interactions. An important breakthrough was the demonstration (on grounds of the analysis of paramagneticsusceptibility) that the localized Fe moments are antiferromagnetically coupled to the conduction electrons [4]. This antiferromagnetic interaction governs the ferromagnetic order of the Fe sublattice, and consequently the Curie temperature should depend on the strength of the coupling between the conduction electrons in the hybridized Fe and Mo t2g band and the Fe localized moments. It was thus postulated that the Curie temperature can be increased by enhancing electron density in the conduction band, e.g. by partial substitution of divalent Sr with trivalent La. The correctness of this approach has been successfully demonstrated and the systematic increase of T c upon doping with La was achieved in Sr2-x La x FeMoO6 [5-9]. Recently, it has also been shown that other electron donors –such as Nd3+- when substituted into SFMO also promote an enhancement of the Curie temperature [10]. Subsequent photoemission (PES) studies performed on Sr2-x La x FeMoO6have confirmed that indeed density of states at the Fermi edge increases upon La doping [11]. Moreover, the observed increase of density of states seems to arise selectively from the Mo t2g spin-down states. However, the PES data cannot positively attribute the observed changes in the density of states to a purely electronic effect, since the La/Sr substitution introduces a modification of the Mo-O-Fe bond topology [9]. Therefore, with the aim to obtain a microscopic information on the carrier injection mechanism, we have performed an extensive Nuclear Magnetic Resonance (NMR) study on a series of Sr2-x La x FeMoO6 (LSMO) (0≤x≤ 0.8) samples. In order to separate the effects of electron doping (e-doping) from possible lattice distortion due to modification of the A sublattice, a reference sample isoelectronic doped with Ca 2+ ions of composition Sr1.8Ca0.2FeMoO6 has also been studied.We will first show that the 95,97Mo NMR spectrum is insensitive to the disorder on either BB’ sublattice (Fe-Mo antisites) or AA’sublattice (Sr/La or Sr/Cadistribution). We will argue that this remarkable property is a direct consequence of the electronic structure of the SFMO and the absence of s electrons in the conducting band. This implies that the transferred hyperfine field on Mo is negligible and the measured hyperfine field (HF) is determined only by the on-site magnetic moment (µ(Mo)). It follows that, in SFMO, HF is a direct measure of µ(Mo) and thus it can be used as a probe of carrier injection into Mo orbitals. We will show that the NMR spectra of La-substituted LSMO reveal a dramatic increase of µ(Mo) which is thus a clear evidence of the e-doping into Mo orbitals. Moreover, we are able to prove that the hyperfine field on Fe remains invariant with the e-doping. The implication of these findings for the understanding of the ferromagnetic coupling in double perovskites is emphasized.Three different sets of samples have been used. Undoped SFMO oxides having distinct concentration of antisites (AS) (determined from refinement of X-ray diffraction patterns and magnetization measurements as described in [5, 12]) have been prepared as described in [5,8,12]. The corresponding AS concentrations are: 3%, 7%, 14% and 28% and the corresponding saturation magnetization (M S) values are: 3.95 µB, 3.67 µB, 2.89 µB and 1.76 µB , respectively. Another set of samples with composition Sr2-x La x FeMoO6 (0≤x≤ 0.8), having T C= 432K, 440K, 455K, and 473K for x=0.2, 0.4 and 0.6 and 0.8 respectively, has also been prepared. Refinement of neutron diffraction profiles have been used to confirm that, within the experimental resolution, all samples here reported are oxygen stoichiometric [9]. Finally, a sample of composition Sr1.8Ca0.2FeMoO6 (AS= 6% and M S= 3.6 µB) has also been prepared and characterized in a similar manner.NMR spectra have been recorded in the frequency range from 20 MHz up to 200 MHz, using an automated, coherent, phase sensitive spin-echo spectrometer.Experiments have been carried out at 4.2 K in zero external magnetic field and varying the power of r.f. pulses. A usual ω2correction of signal intensity has been applied as well as a correction for the intrinsic enhancement factor, which was determined at each frequency from the spin echo intensity dependence on the excitation r.f. power level [13].In Fig.1 we show the 95,97Mo NMR spectra of SFMO specimens having distinct AS concentrations (3%, 7%, 14% and 28%). The spectrum consists of the main asymmetric resonance line with a peak at about ~67 MHz and a low frequency tail with broad maxima. The macroscopic magnetic parameters of studied samples, such as the NMR restoring field and the magnetic stiffness defined as the saturation magnetization over the initial susceptibility (1/χin*M sat), are plotted in the inset in Fig.1. We note that their values increase by an order of magnitude over the studied AS concentration range, thus indicating that AS harden the magnetic system [14]. At the same time, the NMR spectra recorded in the frequency range from 20 MHz to 90 MHz are totally insensitive to the degree of B/B’ sublattice disorder. This surprising observation can be understood considering the origins of hyperfine field, which can be expressed by the following formula:HF = A coreµl + A condµl + A tranΣn iµj(1)The hyperfine coupling coefficients have the following origin: A core- core polarization due to the exchange interaction between s electrons of the inner shells and the on-site magnetic moment of the d electrons, A cond - spin polarization of the s conduction electrons due to the on-site magnetic moment of the atom itself, A tran-conduction s electron polarization due to the moments of neighbouring atoms (transferred hyperfine field).According to electronic structure calculations of SFMO [1,2] the conduction band is primarily formed by admixtures of 3d(Fe) and 4d(Mo) and 2p(O) orbitals. Due to the absence of significant s electron contributions, the second and the third terms in eqn.1 are inactive and the on-site magnetic moment becomes the only source of hyperfine field on Mo, i.e HF ≈ A coreµl.In the SFMO structure (space groups I4/m or P21/n [9]) all Mo sites are equivalent, giving rise to the main resonance line at ~67 MHz. The low frequency tail (Fig.1a), being independent of AS concentration (see Fig. 1a) and present in both ceramic and single crystal specimens [15], can not be attributed to antisites or surface effects. Possible scenarios for the origin of the low frequency tail will be presented later.In Fig. 2 we show the NMR spectra recorded at 4.2 K from some representative SFMO specimens containing an admixture in the A sublattice. In the middle panel the spectrum recorded from the pristine SFMO (AS= 5 %) sample is shown as a reference. As can be seen in Fig.2a (top) substitution of as much as 10% of Ca in the A sublattice and the concomitant Ca/Sr disorder, does not influence significantly the resonance line position in the NMR spectrum. The only effect of Ca doping is reflected in a weak asymmetric broadening of the main line, which reveals its doublet-like structure: two peaks can now be distinguished, one at 65.8 MHz and the other one at 68 MHz. The peak at 65.8 MHz has a distinctly higher restoring field (NMR enhancement factor), suggesting its different origin with respect to the rest of the spectrum. Indeed, comparing the 57Fe hyperfine field value given by the Mössbauer experiment: 47.7 T [16] this line can be positively interpreted as the 57FeNMR signal. To illustrate its contribution, we present it as a shaded part of the overall intensity and, additionally, we plot it as a separate shaded line at the bottom of Fig.2a. The remaining intensity in the NMR spectrum is attributed to the 95Mo and 97Mo isotopes - the gyromagnetic constants of these Mo isotopes are too close to each other (1.7433, -1.7799 (107 rad T-1s-1) for 95Mo and 97Mo , respectively [17]), to separate their respective NMR signals.In sharp contrast to the mild influence of Ca doping, the admixture of La has a dramatic influence on the NMR spectra: the resonant lines rapidly broaden up and shift towards higher frequencies. Fig. 2c illustrates this effect for x=0.2. Remarkably, the 57Fe NMR line at 65.8 MHz does not change its position and can now be resolved from the background of a much stronger main Mo NMR signal which is shifted towards higher frequencies.In the crystal structure of SFMO, every site in the A sublattice has four Mo and four Fe neighbours of the B/B’ sublattice. The fact that Fe local HF field is not modified by La substitution confirms that the local environment effects (modification of a local field via transferred hyperfine field) are completely inactive in these materials, as it was already indicated by the insensitivity of hyperfine fields to presence of Fe-Mo antisites. While the magnetic moment on Fe did not change with 10% La substitution, the Mo magnetic moment did increase considerably, as evidenced by the NMR frequency up shift (Fig.1b-bottom). This means that the additional electrons introduced into the system by replacing divalent Sr with trivalent La enhance selectively the charge density at the Mo sites, not altering the charge at the Fe site (at least for low La concentration). This result can be considered as an experimental evidence of the predicted tendency for the additional electrons to enter the Mo orbitals.Fig. 3 shows the evolution of the NMR spectrum of Sr2-x La x FeMoO6for various La content. With the growing La content the resonance line is clearly shifted towards higher frequency. The linewidth increases rapidly and the resolution in the low frequency tail is quickly lost. In order to bring out the details of the increasingly featureless spectra and follow their evolution upon La doping, we show in the inset to Fig. 3 some of the spectra normalized to the same amplitude and fitted with 3 gaussian lines. The frequency of the main NMR line (ν0) as well as the spectrum gravity center (<ν>) are presented in Fig.4 as a function of La content. From data in Fig. 4 it is clear that the NMR resonance frequency increases roughly linearly with the La concentration. The frequency of the main line increases at a rate dν0/dx of about ~49.5 MHz/(La atom). This means that replacement of one Sr2+ ion by one La3+ ion in the SFMO lattice, causes an increase by 72% of the hyperfine field at Mo nucleus. The spectrum gravity center moves (d<ν>/dx) upwards with a lower slope of only ~28 MHz/(La atom). The slower frequency up-shift of the spectrum gravity center possibly reflects that the influence of La is not homogenous for all Mo ions. As we have argued above, the Fe/Mo antisites are not expected to be the source of this inhomogeneity.More important, the frequency up-shift of the Mo NMR spectrum indicates the increasing presence of the additional electrons in the immediate vicinity of Mo site, which are responsible for the increase of magnetic moment and local field on Mo. Assuming that only the t2g band is being filled, the increase of magnetic moment is equivalent to the growing number of “spin down” electrons. We note that this observation is fully consistent with the reported evolution of the unit cell upon e-doping and the tiny expansion of the Mo-O octahedra as observed by neutron diffraction [7,9].According to Tovar et al [4], the filling up of the conduction band should promote an increase of the Curie temperature of SFMO. Indeed, our study indicates a simple linear relationship with a slope of ~1.8 K/MHz between the average NMR frequency (<ν>) for the particular samples and the corresponding critical temperatures, as shown in Fig. 3b. This is a solid experimental evidence of a direct correlation between the number of electrons on Mo and the Curie temperature of the system. That is: not only the density of states at the Fermi edge projected on Mo orbitals increases as indicated by PES experiments [11] but also the concentration of carriers is clearly enhanced upon La substitution.Before concluding we would like to indicate that the low-frequency tail in the NMR spectra of the pristine SFMO (Figs. 1a and 1b) could find its origin in an intrinsic electronic phase separation, producing non-equivalent Mo ions. We have also mentioned that low-frequency tail shifts to higher frequency upon La doping but with a smaller slope than the main resonance, accompanied by the visible broadening of the spectra. This is an indication that not only Mo magnetic moment itself, but also the NMR spectrum features (linewidth and mechanisms responsible for the low frequency structure) are proportional to the electronic charge. The charge-sensitive low frequency structure observed in the NMR spectra might be thus regarded as a manifestation of Mo moment instability. Indeed, the existence of some charge separation in double perovskites has been recently proposed by Sarma et al. [2].In summary, we have shown that La doping promotes a carrier injection (electrons) into the conduction band of Sr2FeMoO6 that produces an increase of the resonant frequency reflecting the enhancement of the magnetic moment of Mo. Theseresults provide a convincing evidence of selective carrier injection in double perovskites and of its relevance for the strength of the magnetic coupling.This work has been supported in part by Research Framework Programme V (Growth) of the European Community under contract number G5RD-CT2000-00138" (AMORE), by the KBN grant number 72/E-67/SPUB/5.PR UE/DZ 481/2002-2003, by the grant from the Ford Motor Company (Poland) and by the MCyT (Spain) project MAT2002-03431.References1. K.-I. Kobayashi , T. Kimura, H. Sawada, K. Terakura and Y. Tokura, Nature(London) 395, 677 (1998).2. K.-I. Kobayashi, T. Kimura, Y. Tomioka, H. Sawada, K. Terakura, and Y.Tokura, Phys.Rev. B. 59, 11159(1999), Hua Wu, Phys. Rev.B 64, 125126(2001),D.D. Sarma, Priya Mahadevan, T. Saha-Dasgupta, Sugata Ray,and AshawiKumar, Phys. Rev. Lett 85, 2549(2000), Z. Fang, K. Terakura, and J. Kanamori, Phys. Rev. B 63, 180407-1(2001).3. M. Besse, V. Cros, A. Barthelemy, H. Jaffres, J. Vogel, F. Petroff, A. Mirone, A.Tagliaferri, P. Benock, P. Decorse, P. Berthet, Z. Szotek, W.M. Temmeran, S.S.Dhesi, N.B. Brookes, A. Rogalev and A. Fert, Europhys. Lett. 60, 608(2002).4. M. Tovar, M. Causa, A. Butera, J. Navarro, B. Martinez, J. Fontcuberta and M.Passegi, Phys. Rev.B 66, 024409 (2002)5. J. Navarro, C. Frontera, L. Balcells, B. Martinez and J. Fontcuberta Phys. Rev.B64, 092411 (2001)6. D. Serrate, J. de Teresa, J.Blasco, M. Ibarra , L. Morellon and C. Ritter, Appl.Phys. Lett. 80, 4573 (2002);7. D. Sánchez, J.A. Alonso, M. García-Hernandez, M.J. Martínez-Lope, M.T. Casaisand J.L. Martínez, J. Mater. Chem. 13, 1771 (2003)8. J. Navarro, J. Nogués, J.S. Muñoz and J. Fontcuberta, Phys. Rev. B 67, 174416(2003)9. C. Frontera, D. Rubi, J. Navarro, J. L. García-Muñoz, J. Fontcuberta and C. Ritter,Phys. Rev. 68, 012412 (2003)10. D. Rubi, C. Frontera, J. Nogués, and J. Fontcuberta. Submitted11. J. Navarro, J. Fontcuberta, M. Izquierdo, J. Avila, and M. Asensio (arXiv:cond-mat/0303464 (2003)12. Ll. Balcells, J. Navarro, M. Bibes, A. Roig, B. Martínez and J. Fontcuberta, Appl.Phys. Lett. 78, 781 (2001)13. P. Panissod, M. Malinowska, E. Jędryka, M. Wójcik, S. Nadolski,, M. Knobel,J.E. Schmidt, Phys. Rev. B vol. 63, 014408 (2001).14. M. Wojcik, E. Jedryka, S. Nadolski, J. Navarro and J. Fontcuberta, J. Magn.Magn. Mater. Proc ICM’2003 Conference – in press.15. M. Wojcik , P. Berthet et al . in preparation16. J. Lindén, T. Yamamoto, M. karppinen, H. Yamauchi, T. Pietari, Appl. Phys. Lett.76, 2925 (2000); J. M. Greneche, M. Venkatesan, R. Suryanaryanan, and J.M.D.Coey, Phys Rev. B 63, 174403(2001).17. The Handbook of Physics and Chemistry, Robert C. Weast editor 1987.Figure CaptionsFig. 1 NMR spectra at 4.2 K of: Sr2FeMoO6 ceramics having different antisites (AS) concentrations. Inset: NMR restoring field (squares) and sample’s magnetic stiffness (triangles) as a function of AS concentration.Fig.2NMR spectra recorded at 4.2 K from (a) isoelectronic substituted (Sr1.8Ca0.2FeMoO6) , (b) Sr2FeMoO6(AS= 5 % ) and (c) heterovalent substituted (Sr1.8La0.2FeMoO6) .Fig. 3 (a) NMR spectra of Sr2-x La x FeMoO6 ceramics. (b) Detailed view of some of the spectra showing a deconvolution as described in the text.Fig. 4 (a) NMR frequencies of the main line (ν0) and of the spectrum gravity center (<ν>) as a function of the La content (x) in Sr2-x La x FeMoO6. (b) Relationship between the Curie temperature T C and <ν>.Frequency (MHz)S p i n E c h o I n t e n s i t y (n o r m a l i z e d )Fig.1, M. Wojcik et alS p i n E c h o I n t e n s i t y (n o r m a l i z e d )Frequency (MHz)Fig.2, M. Wojcik et alS p i n E c h o I n t e n s i t yFrequency (MHz)Fig.3, M. Wojcik et alT e m p e r a t u r e T C (K )Average Mo frequency (MHz)Fig.4, M. Wojcik et al。