高二数学上学期期中必背知识点:《数列的概念与简单表示法》

合集下载

数列的概念与简单表示法-高考数学复习

数列的概念与简单表示法-高考数学复习
当 k≥5 时,a2k+1-a2k-1>0,数列{a2k-1}为递增数列.故此时{an}有最小项 a9.
综上,{an}既有最大项,又有最小项.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
14.斐波那契数列{an}可以用如下方法定义:an+2=an+1+an,且a1=a2=1.若此
1
9
9
因为 a1+a2+a3+a4=1+2+2+1=2,所以 S20=5× 2=22.5,故 D 正确.
故选 AD.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12.(2024·山东潍坊模拟)若数列{an}的前n项积Tn=1-
2
15
n,则an的最大值与
最小值的和为( C )
所以 an=2n(n-1)+8.

8
所以 =2n+ -2≥2
8
2· -2=6,当且仅当
n=2 时,等号成立.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
综合提升练
11.(多选题)(2024·浙江嘉兴八校联考)设数列{an}的前 n 项和为 Sn,且满足
2 ,为奇数,
解析 当 n≥2 时,an=Sn-Sn-1=-2n+10.
9, = 1,
又 a1=S1=9≠-2×1+10,所以 an=
-2 + 10, ≥ 2,
则{an}是递减数列,故 A 正确,B 错误;
当 n>5 时,an=10-2n<0,故 C 正确;

1
1

高考数学复习知识点讲解教案第34讲 数列的概念与简单表示法

高考数学复习知识点讲解教案第34讲 数列的概念与简单表示法

1
3

10
−1
1−
1
10
B. =
1
3
D. =
3
10

10
C
)
−1

10
−1
[解析] 根据题意,数列9,99,999,9999,⋯ 的一个通项公式为 =

10
− 1,
则数列0.9,0.99,0.999,0.999 9,⋯ 的一个通项公式为
=
1
10
×

(10
− 1) = 1 −
1


分母之间的关系;⑥对于符号交替出现的情况,可用 −1 或 −1
+1

, ∈ 来处理.
变式题(1)
5
7
9
数列1,− , ,− ,⋯
8 15
24
A. = −1
+1 2−1
2 +
C. = −1
+1 2−1
2 +2
[解析]






的一个通项公式是(
B. = −1
+1 − 2 = 1 − ,且1 = 3,则{ }的通项公式是________________________
[思路点拨](1)由题意可得{ − }是以2为首项,2为公比的等比数列,即可
求出 ,再由 与 的关系求出{ }的通项公式.
[解析] ∵ +1 − 2 = 1 − ,∴ +1 − + 1 = 2 − ,
当 = 1时,1 = 1 = 4 − .当 = 1时,1 = 3不满足(*)式,
3, = 1,

第二章第一单元数列的概念和简单表示法递推公式

第二章第一单元数列的概念和简单表示法递推公式

第二章 数列 第一单元 数列的概念与简单表示法 (山东济宁市嘉祥县第三中学数学组 李本强)2010-11-9 【考纲要求】1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式)。

(2)了解数列是自变量为正整数的一类特殊函数。

2.等差数列、等比数列(1)理解等差数列、等比数列的概念。

(2)掌握等差数列、等比数列的通项公式与前项和公式。

(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。

(4)了解等差数列与一次函数的关系、等比数列与指数函数的关系。

【方法点拨】用函数知识解决数列问题 数列是一种特殊的函数,数列的通项公式和前n 项和公式都可以看成是关于n 的函数,特别是等差数列的通项公式可以看成是关于n 的一次函数(公差d ≠0时),而其求和公式可以看成是关于n 的二次函数.数列的单调性的判断可以借助于函数单调性的判断方法,数列中各项大小的比较,可以借助函数图象的直观性来比较.因此,许多数列问题可以用函数的知识进行分析,加以解决.1.等差数列的通项公式可以看成自变量为n 的一次函数(公差d ≠0时)例1已知等差数列{}n a ,其前n 项和为n S ,是否存在常数k ,使得2211n n n ka S S +-=-成立.分析:将n a 看成是n 的一次函数,设出函数解析式并代入进行求解.解:设存在常数k ,使得2211n n n ka S S +-=-成立,令n a pn q =+(p 、q 为常数), 则221()1n n k pn q S S ++-=-.① 又∵(12)(1)2n pS p n nq n n nq =++++=++ ,, 代入①式变为22223121()22kp n kpqn kq pn p q n p q ⎛⎫++-=+-+-+ ⎪⎝⎭, 22321221()kp p kpq p q kq p q ⎧=⎪⎪⎪∴=-+⎨⎪⎪-=-+⎪⎩, ②, ③, ④由②,得 0p =或32kp =. 将p=0代入③、④不成立.将kp=代入③,得 4p q =-, 代入④,得21164kp pp -=-+,即331324p p -=-, ∴3227p =,从而得出8164k =. ∴存在常数k ,使得2211n n n ka S S +-=-成立.评注:存在型探索性问题,是指判断在某些确定条件下的某一数学对象(数值、图形、函数等)不确定的问题.这类问题常常出现“是否存在”、“是否有”等形式的疑问句,以示结论有待于确定.解答此类问题的思路是:通常假设题中的数学对象存在(或结论成立)或暂且认可其中一部分的结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论的证明.2.等差数列的前n 项和可看成是关于n 的二次函数例2 已知等差数列{}n a ,首项1a ,且310S S =,问此数列前几项的和最大?最大值是多少?分析:等差数列前n 项和n S 为特殊的二次函数,所以可采用配方法求其最值. 解:设等差数列公差为d ,前n 项和为n S , ∵310S S =,即116d a =-, ∴211111111113169(1)(1)22612248n S na n n d na n n a a n a ⎛⎫⎛⎫=+-=+--=--+ ⎪ ⎪⎝⎭⎝⎭,∴当n=6或n=7时,67172S S a ==为最大. 评注:关于等差数列前n 项和最大(小)问题,可转化为二次函数问题,再结合二次函数的最值问题加以分析,但应特别注意,当对称轴不是正自然数时,应将与对称轴最接近的两个自然数代入函数关系式,再求值比较,以便确定n 取何值时,n S 最大(最小). 第一单元 数列及数列的递推公式⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. ⒊数列的一般形式: ,,,,,321n a a a a ,或简记为}{a n ,其中n a 是数列的第n 项. ⒋ 数列的通项公式:如果数列}{a n 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:⑴并不是所有数列都能写出其通项公式.⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是2)1(11+-+=n n a ,也可以是|21cos |π+=n a n .⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项. 数列的通项公式具有双重身份,它表示了数列的第n 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 5.数列与函数的关系数列可以看成以正整数集N *(或它的有限子集{1,2,3,…,n})为定义域的函数()n a f n =,当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1)、 f(2)、 f(3)、 f(4)…,f(n),… 6.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6.是有穷数列 无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列 2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列. 递减数列:从第2项起,每一项都不大于它的前一项的数列. 常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 7.数列的表示法:(1)通项公式法:如果数列}{a n 的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。

2019高考数学数列:数列的概念与简单表示法

2019高考数学数列:数列的概念与简单表示法

数列的概念与简单表示法【考点梳理】1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.数列的递推公式如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.6.a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1,n =,S n -S n -1,n【考点突破】考点一、由a n 与S n 的关系求通项a n【例1】(1)已知数列{a n }的前n 项和为S n =14n 2+23n +3,则数列{a n }的通项公式a n =________.(2)设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .64 [答案] (1) ⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2 (2) A[解析] (1)当n =1时,a 1=S 1=4712,当n ≥2时,a n =S n -S n -1=14n 2+23n +3-⎣⎢⎡⎦⎥⎤14(n -1)2+23(n -1)+3 =12n +512, 经检验a 1=4712不满足上式所以这个数列的通项公式为a n=⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2.(2)当n =8时,a 8=S 8-S 7=82-72=15. 【类题通法】 已知S n 求a n 的3步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)注意检验n =1时的表达式是否可以与n ≥2的表达式合并. 【对点训练】1.已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________. [答案] 4n -5[解析] a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合上式,∴a n =4n -5.2.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10 B .15 C .-5 D .20[答案] D[解析] 当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.【例2】(1)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.(2)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________. [答案] (1) (-2)n -1(2) -1n[解析] (1)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2. 又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1.(2)∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1. ∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n.【类题通法】S n 与a n 关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化. (1)利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. (2)利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解. 【对点训练】1.已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n =( ) A .2n +1B .2nC .2n -1D .2n -2[答案] A[解析] 由S n =2a n -4可得S n -1=2a n -1-4(n ≥2),两式相减可得a n =2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).又a 1=2a 1-4,a 1=4,所以数列{a n }是以4为首项,2为公比的等比数列,则a n =4×2n -1=2n +1,故选A.2.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A .31 B .42 C .37 D .47 [答案] D[解析] 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47.考点二、由递推公式求数列的通项公式【例3】在数列{a n }中,(1)若a 1=2,a n +1=a n +3n +2,则数列{a n }的通项公式a n =________. (2)若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________. [答案] (1) 32n 2+n 2 (2) 2n +1 (3) 2n +1-3[解析] (1)由题意,得a n +1-a n =3n +2,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(3n -1)+(3n -4)+…+5+2=n (3n +1)2.即a n =32n 2+n 2.(2)由na n -1=(n +1)a n (n ≥2),得a n a n -1=nn +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =nn +1·n -1n ·n -2n -1·…·34·23·1 =2n +1,又a 1也满足上式. 所以a n =2n +1. (3)设递推公式a n +1=2a n +3可以转化为a n +1+t =2(a n +t ),即a n +1=2a n +t ,解得t =3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3.【类题通法】1.形如a n +1=a n +f (n )的递推关系式利用累加法求通项公式,特别注意能消去多少项,保留多少项.2.形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n=f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项. 3.形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键. 【对点训练】 在数列{a n }中, (1)若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)若a 1=1,a n +1=2na n ,则通项公式a n =________.(3)若a 1=1,a n +1=3a n +2,则数列{a n }的通项公式a n =________. [答案] (1) 4-1n(2) ()122n n - (3) 2·3n -1-1[解析] (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n,以上(n -1)个式子的等号两端分别相加得,a n =a 1+1-1n,故a n =4-1n.(2)由a n +1=2na n ,得a n a n -1=2n -1(n ≥2), 所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=()122n n -.又a 1=1适合上式,故a n =()122n n -.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1.考点三、数列的性质及应用【例3】已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 018=( )A .-1B .12 C .1 D .2[答案] D[解析] 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…, 于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+2=a 2=2. 【类题通法】解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 【对点训练】已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 018=________. [答案] 0[解析] ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 018=a 2=0.。

第一讲+数列的概念与简单表示法课件-2025届高三数学一轮复习

第一讲+数列的概念与简单表示法课件-2025届高三数学一轮复习

a6=( )
A.3×44
B.3×44+1
C.44
D.44+1
解析:由an+1=3Sn,得到an=3Sn-1(n≥2),
两式相减,得an+1-an=3(Sn-Sn-1)=3an, 则an+1=4an(n≥2),因为a1=1,a2=3S1=3a1=3,所以此数 列除去第一项后,为首项是3,公比为4的等比数列,所以an= a2qn-2=3×4n-2(n≥2).则a6=3×44.故选A.
1

(2n

1)
7 8
n+1

an+1 an

(2n+1)78n+1 (2n-1)78n

14n+7 16n-8
.

aan+n1>1 时,n<125;当aan+n1<1 时,n>125.∵an>0,∴数列{an}的最大项 是 a8.
答案:8
考向 2 数列的周期性
[例3]已知数列{an}满足:an+1=an-an-1(n≥2,n∈N*),a1=
2.数列的表示方法
列表法
列表格表示n与an的对应关系
图象法
把点(n,an)画在平面直角坐标系中
公 通项公式 把数列的通项用公式表示
式 法
递推公式
使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an, an-1)等表示数列的方法
3.an 与 Sn 的关系 若数列{an}的前 n 项和为 Sn, 则 an=SS1n, -nSn=-11,,n≥2.
4.数列的分类
分类标准
类型
项数
有穷数列 无穷数列
项与项间的 大小关系
递增数列 递减数列
常数列

高中数学课件-第1讲 数列的概念与简单表示法

高中数学课件-第1讲 数列的概念与简单表示法

第六章 数列第1讲 数列的概念与简单表示法1.了解数列的概念和几种简单的表示方法(列表、图象、通考试要求项公式).2.了解数列是自变量为正整数的一类特殊函数,理解单调性是数列的一项重要性质,可用来求最值.01聚焦必备知识知识梳理1.数列的有关概念(1)数列的定义一般地,我们把按照__________________排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数数列{a n}是从正整数集N*(或它的有限子集{1,2,…,n})到实数集R 的函数,其自变量是__________,对应的函数值是________________,记为a n=f (n).数列是一种特殊的函数,在研究数列问题时,既要注意函数方法的普遍性,又要考虑数列方法的特殊性.提醒2.数列的表示法解析式法、表格法、____________.3.数列的单调性从第2项起,每一项都_________它的前一项的数列叫做递增数列;从第2项起,每一项都_________它的前一项的数列叫做递减数列.特别地,__________________的数列叫做常数列.4.数列的通项公式和递推公式(1)如果数列{a n}的__________________与它的____________之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.(2)如果一个数列的相邻两项或多项之间的关系可以用_______________来表示,那么这个式子叫做这个数列的递推公式.提醒(1)并不是所有的数列都有通项公式;(2)同一个数列的通项公式在形式上未必唯一.5.数列的前n项和公式如果数列{a n}的前n项和S n与它的____________之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的前n项和公式.常用结论1.思考辨析(在括号内打“ √”或“×”)(1)根据数列的前几项归纳出数列的通项公式可能不止一个.( )(2)1,1,1,1,…,不能构成一个数列.( )(3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( )夯基诊断√××√(2)已知数列{a n }的前n 项和公式为S n =n 2,则a n =____________.答案:2n -1当n=1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1,且a 1=1也满足此式,故a n =2n -1,n ∈N *.(3)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n=____________.答案:5n -4由a1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,a 4=16=5×4-4,…,归纳可知a n =5n -4.02突破核心命题考 点 一由an与S n的关系求通项公式C(2)已知数列{a n}的前n项和为S n,且满足S n=2n+2-3,则a n=_____.已知S n 求a n 的3个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.反思感悟训练1 (1)已知数列{a n}的前n项和为S n,且2a1+22a2+23a3+…+2n a n=n·2n,则数列{a n}的通项公式为a n=____________.(2)已知S n为数列{a n}的前n项和,a1=1,S n S n+1=-a n+1(n∈N*),则a10=____________.例2 设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{a n }的通项公式为a n =____________.考 点 二由数列的递推关系求通项公式考向1累加法例3 已知a 1=2,a n +1=2n a n ,则数列{a n }的通项公式a n =_______.2累乘法反思感悟B考 点 三数列的性质考向 1数列的单调性D2数列的周期性答案:13数列的最值A反思感悟训练3 (1)如表,定义函数f (x ):对于数列{a n },a 1=4,a n =f (a n -1),n =2,3,4,…,则a 2023=( )A.1B.2C.5D.4C x12345f (x )54312C 由题意,a1=4,a n=f(a n-1),所以a2=f(a1)=f(4)=1,a3=f(a2)=f(1)=5,a4=f(a3)=f(5)=2,a5=f(a4)=f(2)=4,a6=f(a5)=f(4)=1,a7=f(a6)=f(1)=5,…,则数列{a n}是以4为周期的周期数列,所以a2023=a2020+3=a3=5,故选C.突破核心命题限时规范训练聚焦必备知识 4103限时规范训练(四十)ADB4.大衍数列,来源于我国的《乾坤谱》,是世界数学史上第一道数列题,主要用于解释中国传统文化中的太极衍生原理.其前11项依次是0,2,4,8,12,18,24,32,40,50,60,则大衍数列的第41项为( )CA.760B.800C.840D.924BCD6.(2023·珠海质检)数列{a n }满足a 1=1,a 2=2且a n +2=a n +(-1)n ,n ∈N *,则该数列的前40项之和为( )A.-170B.80C.60D.230C C 由a n +2=a n +(-1)n ,n ∈N *,得a 2k +2=a 2k +1,a 2k +1=a 2k -1-1,所以a 2k +1+a 2k +2=a 2k -1+a 2k =…=a 1+a 2=3,所以数列{a n }的前40项之和为20(a 1+a 2)=60.。

《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案第一章:数列的定义1.1 学习目标:理解数列的定义,能够识别数列的基本特征。

1.2 教学内容:1.2.1 数列的定义:按照一定的顺序排列的一列数。

1.2.2 数列的项:数列中的每一个数称为项。

1.2.3 数列的顺序:数列中项的排列顺序称为数列的顺序。

1.3 教学活动:1.3.1 引入数列的概念,让学生通过观察实际例子来理解数列的定义。

1.3.2 引导学生分析数列的基本特征,如顺序、项等。

1.3.3 进行数列的实例练习,让学生能够识别和描述不同的数列。

第二章:数列的表示法2.1 学习目标:掌握数列的常见表示法,能够正确写出数列的前几项。

2.2 教学内容:2.2.1 列举法:将数列的每一项按顺序写出来。

2.2.2 描述法:用数学公式或文字描述数列的规律。

2.2.3 数列的通项公式:用公式表示数列中任意一项的值。

2.3 教学活动:2.3.1 介绍列举法和描述法,让学生通过实际例子学会用不同的方式表示数列。

2.3.2 引导学生理解数列的通项公式,并能够根据规律写出数列的前几项。

2.3.3 进行数列表示法的练习,让学生能够灵活运用不同的表示法。

第三章:数列的性质3.1 学习目标:理解数列的性质,能够运用数列的性质进行问题的解决。

3.2 教学内容:3.2.1 数列的项数:数列中项的个数称为数列的项数。

3.2.2 数列的项的公共性质:数列中所有项都具有的性质称为数列的项的公共性质。

3.2.3 数列的性质:数列的项的公共性质称为数列的性质。

3.3 教学活动:3.3.1 引导学生通过观察和分析数列的实例,发现数列的性质。

3.3.2 让学生通过实际的例题,学会运用数列的性质进行问题的解决。

3.3.3 进行数列性质的练习,让学生能够熟练运用数列的性质。

第四章:数列的分类4.1 学习目标:了解数列的分类,能够识别不同类型的数列。

4.2 教学内容:4.2.1 数列的分类:按照数列的性质和规律,将数列分为不同的类型。

高考数学知识点:数列的概念与简单表示法

高考数学知识点:数列的概念与简单表示法

高考数学知识点:数列的概念与简单表示法1500字数列是指按照一定规律排列的数字集合。

在高考数学中,数列是一个重要的知识点,它不仅会在选择题和填空题中出现,还会涉及到解答题的证明和计算。

本文将从数列的概念、简单表示法、常见数列以及数列的应用等方面,详细介绍高考数学数列知识点。

一、数列的概念数列中的数字按照一定的顺序排列,每个数字依次被称为数列的项。

一般来说,数列用字母表示,如a₁, a₂, a₃, ...,其中a₁表示数列的第一项,a₂表示数列的第二项,以此类推。

数列中的项可以是整数、分数或者实数,也可以是变量。

数列可以分为等差数列和等比数列两种。

等差数列是指相邻的两项之差都是一常数的数列,等差数列的通项公式一般为an = a₁ + (n-1)d,其中a₁表示首项,d表示公差,n表示项数。

等比数列是指相邻的两项之比都是一常数的数列,等比数列的通项公式一般为an = a₁ * r^(n-1),其中a₁表示首项,r表示公比,n表示项数。

二、数列的简单表示法在高考数学中,常见的数列表示法有两种:通项公式和递推公式。

通项公式是指通过数列的第n项表示数列的任意一项,递推公式是指通过数列的前一项表示数列的后一项。

以等差数列为例,该数列的递推公式为an = an-1 + d,表示每一项都是前一项与公差之和。

而通项公式为an = a₁ + (n-1)d,表示数列的任意一项可以通过项数和公差计算得出。

另外,数列也可以通过数列的前几项给出,例如{1, 2, 3, ...}表示自然数列,{2, 4, 6, ...}表示偶数列。

这种表示法在高考数学中较少使用,但在解答题时可能会用到。

三、常见数列在高考数学中,有一些常见的数列被广泛应用。

这些数列包括等差数列、等比数列、等差数列的前n项和、等比数列的前n项和、斐波那契数列等等。

1. 等差数列:等差数列是指相邻的两项之差都是一常数的数列。

例如{1, 3, 5, 7, ...}是一个公差为2的等差数列。

高中数学数列 数列的概念与简单表示法

高中数学数列    数列的概念与简单表示法
【解】 (1)各项减去 1 后为正偶数,∴an=2n+1. (2)每一项的分子比分母少 1,而分母组成数列 21,22, 23,24,„. 2n-1 ∴an= n . 2
自 主 落 实 · 固 基 础
课 后 作 业


新课标 ·文科数学(安徽专用)
网 络 构 建 · 览 全 局 策 略 指 导 · 备 高 考 典 例 探 究 · 提 知 能 高 考 体 验 · 明 考 情
自 主 落 实 · 固 基 础
菜 单
课 后 作 业
新课标 ·文科数学(安徽专用)
网 络 构 建 · 览 全 局 策 略 指 导 · 备 高 考
第一节
数列的概念与简单表示法
典 例 探 究 · 提 知 能 高 考 体 验 · 明 考 情
自 主 落 实 · 固 基 础
菜 单
课 后 作 业
新课标 ·文科数学(安徽专用)
【答案】 B
自 主 落 实 · 固 基 础
菜 单
课 后 作 业
新课标 ·文科数学(安徽专用)
网 络 构 建 · 览 全 局 策 略 指 导 · 备 高 考
nπ 4.(2012· 福建高考)数列{an}的通项公式an=ncos , 2 其前n项和为Sn,则S2 012等于( A.1 006 B.2 012 ) C.503 D.0
序号n 如果数列{an}的第n项与_______之间的关系可以用一个
式子来表示,那么这个公式叫做这个数列的通项公式.
4.数列的递推公式 若一个数列首项确定,其余各项用an与an-1的关系式表 示(如an=2an-1+1,n>1),则这个关系式称为数列的递推公 式.
5.an 与 Sn 的关系 若数列{an}的前 n 项和为 Sn,通项公式为 an, S1, (n=1), 则 an= Sn-Sn-1, (n≥2).

高中数学选择性必修二(人教版)《4.1 数列的概念 第一课时 数列的概念与简单表示法》课件

高中数学选择性必修二(人教版)《4.1  数列的概念  第一课时  数列的概念与简单表示法》课件

()
(2)数列1,0,-1,-2与数列-2,-1,0,1是相同的数列.
()
(3)数列的项可以相等.
()
(4)数列a,b,c和数列c,b,a一定不是同一数列.
()
答案:(1)× (2)× (3)√ (4)×
2.所有正奇数的立方按从小到大的顺序组成数列,其前3项为______.
答案:1,27,125
知识点二 数列的分类与通项公式
[对点练清]
[多选]下面四个结论中正确的是
()
A.数列可以看作是一个定义在正整数集(或它的有限子集
{1,2,3,…,n})上的函数
B.数列若用图象表示,从图象上看都是一群孤立的点
C.数列的项数是无限的
D.数列的通项公式是唯一的 解析:数列的项数可以是有限的,也可以是无限的,C错;数列的通
项公式可能不唯一,比如数列1,0,-1,0,1,0,-1,0,…的通项公
(1)从图(2)开始观察每个图案从上往下的小正方形个数有什么规律? 提示:按照1,3,5,7,…,1的顺序分布. (2)按照此图规律,f(6)为多少? 提示:f(1)=1=2×1×0+1, f(2)=1+3+1=2×2×1+1, f(3)=1+3+5+3+1=2×3×2+1, f(4)=1+3+5+7+5+3+1=2×4×3+1, 故f(n)=2n(n-1)+1. 当n=6时,f(6)=2×6×5+1=61.
题型一 数列的概念及分类 [学透用活]
(1) 数 列 的定 义 中 要 把 握 两 个 关 键 词 : “ 一 定 顺 序 ” 与 “ 一 列 数”.也就是说,构成数列的元素是数,并且这些数是按照“一定顺序” 排列着的,即确定的数在确定的位置上.
(2)数列的项与它的项数是两个不同的概念:项是指出现在这个数列 中的某一个确定的数,它是一个函数值,即 an=f(n);而项数是指这个 数列共有多少项.

数学知识点:数列的概念及简单表示法_知识点总结

数学知识点:数列的概念及简单表示法_知识点总结

数学知识点:数列的概念及简单表示法_知识点总结
一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。

从函数角度看数列:
数列可以看作是一个定义域为正整数集N'(或它的有限子集{l,2,3,…,n})的函数,即当自变量从小到大依次取值时对应的一列函数值,这里说的函数是一种特殊函数,其特殊性为自变量只能取正整数,且只能从I开始依次增大.可以将序号作为横坐标,相应的项作为纵坐标描点画图来表示一个数列,从数列的图象可以看出数列中各项的变化情况。

特别提醒:
①数列是一个特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,学习规律,即用共性来解决特殊问题;
②还要注意数列的特殊性(离散型),由于它的定义域是N'或它的子集{1,2,…,n},因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性.。

数列的概念与简单表示法-高考数学复习

数列的概念与简单表示法-高考数学复习
第六章 数列
高考一轮总复习 • 数学
返回导航
[解析] (1)符号可通过(-1)n或(-1)n+1调节,其各项的绝对值的排 列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为an =(-1)n(6n-5).
(2)观察各项的特点:每一项都比2的n次幂多1,所以an=2n+1. (3)将原数列改写为59×9,59×99,59×999,…,易知数列 9,99,999,…
第六章 数列
高考一轮总复习 • 数学
返回导航
5.(选修 2P9T5 改编)已知数列{an}的前 n 项和为 Sn=nn+ +12,则 a5+ 1
a6=___2_4___.
[解析] a5+a6=S6-S4=66+ +12-44+ +12=78-56=214.
第六章 数列
高考一轮总复习 • 数学
返回导航
2n .
(5)将原数列改写为32,55,170,197,…,对于分子 3,5,7,9,…,是序
号的 2 倍加 1,可得分子的通项公式为 bn=2n+1,对于分母 2,5,10,17,…,
联想到数列 1,4,9,16,…,即数列{n2},可得分母的通项公式为 cn=n2+1,
故可得原数列的一个通项公式为 an=2nn2++11.
第六章 数列
返回导航
考点突破 · 互动探究
高考一轮总复习 • 数学
返回导航
由数列的前几项求数列的通项公式——自主练透
根据数列的前几项,写出下列各数列的一个通项公式an. (1)-1,7,-13,19,…; (2)3,5,9,17,33,…; (3)5,55,555,5 555,…; (4)1,0,13,0,15,0,17,0,…; (5)32,1,170,197,….

数学知识点:数列的概念及简单表示法

数学知识点:数列的概念及简单表示法

数学知识点:数列的概念及简单表示法
一般地按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项,数列的一般形式可以写成,简记为数列{an},其中数列的第一项a1也称首项,an是数列的第n项,也叫数列的通项2、数列的递推公式:如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法。

从函数角度看数列:
数列可以看作是一个定义域为正整数集N'(或它的有限子集{l,2,3,…,n})的函数,即当自变量从小到大依次取值时对应的一列函数值,这里说的函数是一种特殊函数,其特殊性为自变量只能取正整数,且只能从I开始依次增大.可以将序号作为横坐标,相应的项作为纵坐标描点画图来表示一个数列,从数列的图象可以看出数列中各项的变化情况。

特别提醒:
①数列是一个特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,学习规律,即用共性来解决特殊问题;
②还要注意数列的特殊性(离散型),由于它的定义域是N'
或它的子集{1,2,…,n},因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性.。

高中数学选择性必修二 4 1 数列的概念与简单表示法(含答案)

高中数学选择性必修二 4 1 数列的概念与简单表示法(含答案)

课时同步练4.1 数列的概念与简单表示法(1)一、单选题1.已知数列{}n a 中,2n+5,则3a =( ) A .13 B .12 C .11 D .10【答案】C【解析】由已知得2×3+5=11. 故选C .2.有下面四个结论:①数列的通项公式是唯一的;②每个数列都有通项公式;③数列可以看作一个定义在正整数集上的函数;④数列的图象是坐标平面上有限或无限个离散的点.其中真命题的个数为( ) A .0个B .1个C .2个D .3个 【答案】B【解析】对①,数列1,1,1,1,--其通项公式1(1)n n a +=-,也可以是3(1)n n a +=-,故①错误; 对②,数列的项与n 具备一定的规律性,才可求出数列的通项公式,所以有的数列是无通项公式的,故②错误;对③,数列可以看作一个定义在正整数集上或正整数集的子集上的函数,故③错误; 对④,由数列的定义知命题正确.故选B.3.已知数列-1,0,19,18,…,22n n -,…中,则572是其( ) A .第14项 B .第12项 C .第10项 D .第8项【答案】B 【解析】令22n n-=572,化为:5n 2﹣72n +144=0, 解得n =12,或n =125(舍去). 故选B .4.数列{}n a 的通项公式()*2n a n n =∈N不满足下列递推公式的是( ) A .()122n n a a n -=+ B .()1223n n n a a a n --=-C .()()()11222n n n n a a a a n ---=-D .()122n n a a n -= 【答案】D【解析】将2n a n =代入四个选项得:A. 22(1)2n n =-+ 成立;B. 222(1)2(2)n n n =⨯--- 成立;C. ()2222(1)2(1)][2n n n n -=--- 成立;D. 222n n =⨯ 不恒成立。

高考数学-第六章 §6.1 数列的概念与简单表示法

高考数学-第六章 §6.1 数列的概念与简单表示法

数列的概念与简单表示法考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.1.数列的有关概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. (2)数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.若已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).(3)数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式. 2.数列与函数数列{a n }是从正整数集N *(或它的有限子集{1,2,…,n })到实数集R 的函数,其自变量是序号n ,对应的函数值是数列的第n 项a n ,记为a n =f (n ).也就是说,当自变量从1开始,按照从小到大的顺序依次取值时,对应的一列函数值f (1),f (2),…,f (n ),…就是数列{a n }. 3.数列的分类分类标准 类型 满足条件 项数 有穷数列 项数有限 无穷数列 项数无限 项与项间递增数列a n +1>a n其中的大小 关系递减数列 a n +1<a n n ∈N *常数列a n +1=a n4.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 微思考1.数列的项与项数是一个概念吗?提示 不是.数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号. 2.数列作为一种特殊函数,特殊性体现在什么地方?提示 体现在定义域上,数列的定义域是正整数集N *(或它的有限子集{1,2,3,…,n }).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)数列的通项公式是唯一的.( × )(2)所有数列的第n 项都能使用公式表达.( × ) (3)2,2,2,2,…,不能构成一个数列.( × )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( √ ) 题组二 教材改编2.数列13,18,115,124,135,…的通项公式是a n =________.答案 a n =1n (n +2),n ∈N *3.已知数列a 1=2,a n =1-1a n -1(n ≥2).则a 2 022=________.答案 -1解析 a 1=2,a 2=1-12=12,a 3=1-2=-1,a 4=1+1=2,所以数列{a n }满足a n =a n +3,所以a 2 022=a 3=-1.4.已知数列{a n }的通项公式为a n =n 2-λn +1,若{a n }是递增数列,则实数λ的取值范围是________. 答案 (-∞,3)解析 由题意得a n +1>a n ,即(n +1)2-λ(n +1)+1>n 2-λn +1. 化简得,λ<2n +1,n ∈N *,∴λ<3. 题组三 易错自纠5.已知数列{a n }的前n 项和为S n =-2n 2+1,则{a n }的通项公式为a n =________.答案 ⎩⎪⎨⎪⎧-1,n =1,-4n +2,n ≥2(n ∈N *) 解析 当n =1时,a 1=S 1=-1.当n ≥2时,a n =S n -S n -1=-2n 2+1+2(n -1)2-1=-4n +2,a 1=-1不适合上式,所以a n =⎩⎪⎨⎪⎧-1,n =1,-4n +2,n ≥2,n ∈N *.6.若a n =-n 2+9n +10,则当数列{a n }的前n 项和S n 最大时,n 的值为________. 答案 9或10解析 要使S n 最大,只需要数列中正数的项相加即可, 即需a n >0,-n 2+9n +10>0,得-1<n <10, 又n ∈N *,所以1≤n <10. 又a 10=0,所以n =9或10.题型一 由a n 与S n 的关系求通项公式1.已知数列{a n }的前n 项和S n =n 2+2n ,则a n =________. 答案 2n +1解析 当n =1时,a 1=S 1=3.当n ≥2时,a n =S n -S n -1=n 2+2n -[(n -1)2+2(n -1)]=2n +1.由于a 1=3适合上式,∴a n =2n +1.2.已知数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________. 答案 -2n -1解析 当n =1时,a 1=S 1=2a 1+1,∴a 1=-1. 当n ≥2时,S n =2a n +1,① S n -1=2a n -1+1.②①-②,S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,即a n =2a n -1(n ≥2),∴{a n }是首项a 1=-1,q =2的等比数列. ∴a n =a 1·q n -1=-2n -1.3.设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -12n -1,n ≥2解析 当n =1时,a 1=21=2. ∵a 1+3a 2+…+(2n -1)a n =2n ,①∴a 1+3a 2+…+(2n -3)a n -1=2n -1(n ≥2),② 由①-②得,(2n -1)·a n =2n -2n -1=2n -1, ∴a n =2n -12n -1(n ≥2).显然n =1时不满足上式,∴a n=⎩⎪⎨⎪⎧2,n =1,2n -12n -1,n ≥2.4.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则下列结论正确的是_______. ①a n =1n (n -1)②a n =⎩⎪⎨⎪⎧-1,n =1,1n (n -1),n ≥2③S n =-1n④数列⎩⎨⎧⎭⎬⎫1S n 是等差数列答案 ②③④解析 ∵a n +1=S n ·S n +1=S n +1-S n ,两边同除以S n +1·S n ,得1S n +1-1S n =-1.∴⎩⎨⎧⎭⎬⎫1S n 是以-1为首项,d =-1的等差数列,即1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n . 当n ≥2时,a n =S n -S n -1=-1n +1n -1=1n (n -1),又a 1=-1不适合上式,∴a n=⎩⎨⎧-1,n =1,1n (n -1),n ≥2.思维升华 (1)已知S n 求a n 的常用方法是利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2转化为关于a n 的关系式,再求通项公式.(2)S n 与a n 关系问题的求解思路方向1:利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. 方向2:利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解. 题型二 由数列的递推关系式求通项公式命题点1 累加法例1 在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n答案 A解析 因为a n +1-a n =ln n +1n =ln(n +1)-ln n ,所以a 2-a 1=ln 2-ln 1, a 3-a 2=ln 3-ln 2, a 4-a 3=ln 4-ln 3, ……a n -a n -1=ln n -ln(n -1)(n ≥2),把以上各式分别相加得a n -a 1=ln n -ln 1, 则a n =2+ln n (n ≥2),且a 1=2也适合, 因此a n =2+ln n (n ∈N *). 命题点2 累乘法例2 已知数列{a n }的前n 项和为S n ,其首项a 1=1,且满足3S n =(n +2)a n ,则a n =______. 答案n (n +1)2解析 ∵3S n =(n +2)a n ,① 3S n -1=(n +1)a n -1(n ≥2),②由①-②得,3a n =(n +2)a n -(n +1)a n -1, 即a n a n -1=n +1n -1, ∴a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1=n +1n -1×n n -2×n -1n -3×…×31×1=n (n +1)2.当n =1时,满足a n =n (n +1)2,∴a n =n (n +1)2.本例2中,若{a n }满足2(n +1)·a 2n +(n +2)·a n ·a n +1-n ·a 2n +1=0,且a n >0,a 1=1,则a n =____________. 答案 n ·2n -1解析 由2(n +1)·a 2n +(n +2)·a n ·a n +1-n ·a 2n +1=0得 n (2a 2n +a n ·a n +1-a 2n +1)+2a n (a n +a n +1)=0,∴n (a n +a n +1)(2a n -a n +1)+2a n (a n +a n +1)=0, (a n +a n +1)[(2a n -a n +1)·n +2a n ]=0, 又a n >0,∴2n ·a n +2a n -n ·a n +1=0, ∴a n +1a n =2(n +1)n, 又a 1=1,∴当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1=2n n -1×2(n -1)n -2×2(n -2)n -3×…×2×32×2×21×1=2n -1·n .又n =1时,a 1=1适合上式,∴a n =n ·2n -1.思维升华 (1)根据形如a n +1=a n +f (n )(f (n )是可以求和的函数)的递推关系式求通项公式时,常用累加法求出a n -a 1与n 的关系式,进而得到a n 的通项公式.(2)根据形如a n +1=a n ·f (n )(f (n )是可以求积的函数)的递推关系式求通项公式时,常用累乘法求出a na 1与n 的关系式,进而得到a n 的通项公式.跟踪训练1 (1)在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.答案 4-1n解析 ∵a n +1-a n =1n (n +1)=1n -1n +1,∴当n ≥2时,a n -a n -1=1n -1-1n ,a n -1-a n -2=1n -2-1n -1,……a 2-a 1=1-12,∴以上各式相加得,a n -a 1=1-1n ,∴a n =4-1n ,a 1=3适合上式,∴a n =4-1n.(2)已知a 1=2,a n +1=2n a n ,则数列{a n }的通项公式a n =________. 答案 2222n n -+解析 ∵a n +1a n =2n ,∴当n ≥2时,a n a n -1=2n -1,a n -1a n -2=2n -2,……a 3a 2=22,a 2a 1=2, ∴a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1=2n -1·2n -2·…·22·2·2 =21+2+3+…+(n -1)·22(1)212222,n nn n -⋅-++==,又a 1=2满足上式, ∴a n =2222n n -+.题型三 数列的性质命题点1 数列的单调性例3 已知数列{a n }的通项公式为a n =3n +k2n ,若数列{a n }为递减数列,则实数k 的取值范围为( )A .(3,+∞)B .(2,+∞)C .(1,+∞)D .(0,+∞)答案 D解析 (单调性)因为a n +1-a n =3n +3+k 2n +1-3n +k 2n =3-3n -k2n +1,由数列{a n }为递减数列知,对任意n ∈N *,a n +1-a n =3-3n -k2n +1<0,所以k >3-3n 对任意n ∈N *恒成立,所以k ∈(0,+∞). 思维升华 解决数列的单调性问题的三种方法(1)用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. (2)用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.(3)函数法.命题点2 数列的周期性例4 (2021·广元联考)已知数列{a n },若a n +1=a n +a n +2(n ∈N *),则称数列{a n }为“凸数列”.已知数列{b n }为“凸数列”,且b 1=1,b 2=-2,则{b n }的前2 022项的和为( ) A .0 B .1 C .-5 D .-1 答案 A解析 ∵b n +2=b n +1-b n ,b 1=1,b 2=-2, ∴b 3=b 2-b 1=-2-1=-3, b 4=b 3-b 2=-1,b 5=b 4-b 3=-1-(-3)=2, b 6=b 5-b 4=2-(-1)=3, b 7=b 6-b 5=3-2=1.∴{b n }是周期为6的周期数列, 且S 6=1-2-3-1+2+3=0.∴S 2 022=S 337×6=0.思维升华 解决数列周期性问题根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和. 命题点3 数列的最值例5 已知数列{a n }满足a 1=28,a n +1-a n n =2,则a nn 的最小值为( )A.293 B .47-1 C.485 D.274 答案 C解析 由a n +1-a n =2n ,可得a n =n 2-n +28, ∴a n n =n +28n-1, 设f (x )=x +28x ,可知f (x )在(0,28]上单调递减,在(28,+∞)上单调递增,又n ∈N *,且a 55=485<a 66=293,故选C.思维升华 求数列的最大项与最小项的常用方法 (1)函数法,利用函数求最值.(2)利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1(n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2)确定最小项.(3)比较法:若有a n +1-a n =f (n +1)-f (n )>0⎝ ⎛⎭⎪⎫或当a n >0时,a n +1a n >1,则a n +1>a n ,则数列{a n }是递增数列,所以数列{a n }的最小项为a 1;若有a n+1-a n =f (n +1)-f (n )<0⎝ ⎛⎭⎪⎫或当a n >0时,a n +1a n <1,则a n +1<a n ,则数列{a n }是递减数列,所以数列{a n }的最大项为a 1.跟踪训练2 (1)已知数列{a n }的通项公式是a n =n3n +1,那么这个数列是( ) A .递增数列 B .递减数列 C .摆动数列 D .常数列 答案 A解析 a n +1-a n =n +13n +4-n 3n +1=1(3n +1)(3n +4)>0,∴a n +1>a n ,∴选A.(2)已知数列{a n }满足a n +2=a n +1-a n ,n ∈N *,a 1=1,a 2=2,则a 2 021等于( ) A .-2 B .-1 C .1 D .2 答案 A解析 由题意,数列{a n }满足a n +2=a n +1-a n , 且a 1=1,a 2=2,当n =1时,可得a 3=a 2-a 1=2-1=1; 当n =2时,可得a 4=a 3-a 2=1-2=-1; 当n =3时,可得a 5=a 4-a 3=-1-1=-2; 当n =4时,可得a 6=a 5-a 4=-2-(-1)=-1; 当n =5时,可得a 7=a 6-a 5=-1-(-2)=1; 当n =6时,可得a 8=a 7-a 6=1-(-1)=2; ……可得数列{a n }是以6为周期的周期数列, 所以a 2 021=a 336×6+5=a 5=-2. 故选A.(3)在数列{a n }中,a n =(n +1)⎝⎛⎭⎫78n,则数列{a n }的最大项是第________项. 答案 6或7解析 a n +1a n =(n +2)⎝⎛⎭⎫78n +1(n +1)⎝⎛⎭⎫78n=78×n +2n +1≥1.得n ≤6,即当n ≤6时,a n +1≥a n , 当n >6时,a n +1<a n ,∴a 6或a 7最大.课时精练1.数列3,3,15,21,33,…,则9是这个数列的第( ) A .12项 B .13项 C .14项 D .15项 答案 C解析数列3,3,15,21,33,…,可化为3,9,15,21,27,…,则数列的通项公式为a n=6n-3,当a n=6n-3=9时,6n-3=81,∴n=14,故选C.2.若数列{a n}满足a1=1,a n+1-a n-1=2n,则a n等于()A.2n+n-2 B.2n-1+n-1C.2n+1+n-4 D.2n+1+2n-2答案A解析∵a n+1-a n=2n+1,∴a2-a1=21+1,a3-a2=22+1,a4-a3=23+1,…,a n-a n-1=2n-1+1(n≥2),以上各式相加得,a n-a1=21+…+2n-1+(n-1)=2(1-2n-1)1-2+n-1=2n+n-3,∴a n=2n+n-2,选A.3.在一个数列中,如果∀n∈N*,都有a n a n+1a n+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{a n}是等积数列,且a1=1,a2=2,公积为8,则a1+a2+…+a2 021等于()A.4 711 B.4 712C.4 714 D.4 715答案C解析由题意可知a n a n+1a n+2=8,则对任意的n∈N*,a n≠0,则a1a2a3=8,∴a3=8a1a2=4,由a n a n+1a n+2=8,得a n+1a n+2a n+3=8,∴a n a n+1a n+2=a n+1a n+2a n+3,∴a n+3=a n,∵2 021=3×673+2,因此a1+a2+…+a2 021=673(a1+a2+a3)+a1+a2=673×7+1+2=4 714.故选C.4.已知数列{a n }的通项公式为a n =n 2-11n +a n,a 5是数列{a n }的最小项,则实数a 的取值范围是( )A .[-40,-25]B .[-40,0]C .[-25,25]D .[-25,0]答案 B解析 由已知条件得a 5是数列{a n }的最小项, 所以⎩⎪⎨⎪⎧a 5≤a 4,a 5≤a 6, 即⎩⎨⎧ 52-11×5+a 5≤42-11×4+a 4,52-11×5+a 5≤62-11×6+a 6,解得⎩⎨⎧a ≥-40,a ≤0. 故选B.5.(多选)下列四个命题中,正确的有( )A .数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项为1+1k B .已知数列{a n }的通项公式为a n =n 2-n -50,n ∈N *,则-8是该数列的第7项C .数列3,5,9,17,33,…的一个通项公式为a n =2n -1D .数列{a n }的通项公式为a n =n n +1,n ∈N *,则数列{a n }是递增数列 答案 ABD解析 对于A ,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n +1n 的第k 项为1+1k ,A 正确; 对于B ,令n 2-n -50=-8,得n =7或n =-6(舍去),B 正确;对于C ,将3,5,9,17,33,…的各项减去1,得2,4,8,16,32,…,设该数列为{b n },则其通项公式为b n =2n (n ∈N *),因此数列3,5,9,17,33,…的一个通项公式为a n =b n +1=2n +1(n ∈N *),C 错误;对于D ,a n =n n +1=1-1n +1,则a n +1-a n =1n +1-1n +2=1(n +1)(n +2)>0,因此数列{a n }是递增数列,D 正确.故选ABD.6.(多选)若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(a ∈N *),其中是“差递减数列”的有( )A .a n =3nB .a n =n 2+1C .a n =nD .a n =ln n n +1答案 CD解析 对于A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不为递减数列,故A 错误;对于B ,若a n =n 2+1,则a n +1-a n =(n +1)2-n 2=2n +1,所以{a n +1-a n }为递增数列,故B 错误;对于C ,若a n =n ,则a n +1-a n =n +1-n =1n +1+n ,所以{a n +1-a n }为递减数列,故C 正确; 对于D ,若a n =ln n n +1,则a n +1-a n =ln n +1n +2-ln n n +1=ln ⎝ ⎛⎭⎪⎫n +1n +2·n +1n =ln ⎝ ⎛⎭⎪⎫1+1n 2+2n ,由函数y =ln ⎝ ⎛⎭⎪⎫1+1x 2+2x 在(0,+∞)上单调递减,所以{a n +1-a n }为递减数列,故D 正确. 故选CD.7.若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2 解析 当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.8.(2021·北京市昌平区模拟)设数列{a n }的前n 项和为S n ,且∀n ∈N *,a n +1>a n ,S n ≥S 6.请写出一个满足条件的数列{a n }的通项公式a n =________.答案 n -6(n ∈N *)(答案不唯一)解析 ∀n ∈N *,a n +1>a n ,则数列{a n }是递增的,∀n ∈N *,S n ≥S 6,即S 6最小,只要前6项均为负数,或前5项为负数,第6项为0,即可, 所以,满足条件的数列{a n }的一个通项公式a n =n -6(n ∈N *)(答案不唯一).9.已知在数列{a n }中,a 1a 2a 3·…·a n =n 2(n ∈N *),则a 9=________. 答案 8164解析 ∵a 1a 2·…·a 8=82=64,①a 1·a 2·…·a 9=92=81,②②÷①得a 9=8164. 10.已知数列的通项为a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项. 答案 5解析 因为a n =n +13n -16,数列{a n }的最小项必为a n <0,即n +13n -16<0,3n -16<0,从而n <163,又因为n ∈N *,且数列{a n }的前5项递减,所以n =5时,a n 的值最小.11.已知数列{a n }的前n 项和为S n ,求数列{a n }的通项公式.(1)S n =2n -1,n ∈N *;(2)S n =2n 2+n +3,n ∈N *.解 (1)∵S n =2n -1(n ∈N *),∴当n =1时,a 1=S 1=2-1=1;当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1.经检验,当n =1时,符合上式,∴a n =2n -1(n ∈N *).(2)∵S n =2n 2+n +3(n ∈N *),∴当n =1时,a 1=S 1=2×12+1+3=6;当n ≥2时,a n =S n -S n -1=2n 2+n +3-[2(n -1)2+(n -1)+3]=4n -1. 经检验,当n =1时,不符合上式,∴a n =⎩⎪⎨⎪⎧6,n =1,4n -1,n ≥2,n ∈N *. 12.在数列{a n }中,a n =-2n 2+9n +3.(1)-107是不是该数列中的某一项?若是,其为第几项?(2)求数列中的最大项.解 (1)令a n =-107,-2n 2+9n +3=-107,2n 2-9n -110=0,解得n =10或n =-112(舍去).所以a 10=-107. (2)a n =-2n 2+9n +3=-2⎝⎛⎭⎫n -942+1058, 由于n ∈N *,所以最大项为a 2=13.13.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024答案 C解析 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .所以a 6=a 3·a 3=64,a 3=8.所以a 9=a 6·a 3=64×8=512.故选C.14.已知数列{a n }的前n 项和为S n ,且满足4(n +1)·(S n +1)=(n +2)2a n ,则数列{a n }的通项公式为( )A .(2n +1)2-1B .(2n +1)2C .8n 2D .(n +1)3答案 D解析 在4(n +1)·(S n +1)=(n +2)2a n 中,令n =1,得8(a 1+1)=9a 1,所以a 1=8,因为4(n +1)·(S n +1)=(n +2)2a n ,①所以4n ·(S n -1+1)=(n +1)2a n -1(n ≥2),②①-②得,4a n =(n +2)2n +1a n -(n +1)2n a n -1, 即n 2n +1a n =(n +1)2n a n -1,a n =(n +1)3n 3a n -1,所以a n =a n a n -1×a n -1a n -2×…×a 2a 1×a 1 =(n +1)3n 3×n 3(n -1)3×…×3323×8 =(n +1)3(n ≥2),又a 1=8也满足此式,所以数列{a n }的通项公式为(n +1)3. 故选D.15.设数列{a n }的前n 项和为S n ,满足S n =(-1)n a n +12n ,则S 1+S 3+S 5等于( ) A .0 B.1764 C.564 D.2164答案 D解析 数列{a n }的前n 项和为S n ,满足S n =(-1)n a n +12n , 当n 为偶数时,S n =S n -S n -1+12n , 即有S n -1=12n ,所以S 1+S 3+S 5=14+116+164=2164. 故选D.16.(2020·鹰潭模拟)S n 是数列{a n }的前n 项和,且a n -S n =12n -12n 2. (1)求数列{a n }的通项公式;(2)若b n =2n a-5a n ,求数列{b n }中最小的项.解 (1)对任意的n ∈N *,由a n -S n =12n -12n 2,得a n +1-S n +1=12(n +1)-12(n +1)2, 两式相减得a n =n ,因此数列{a n }的通项公式为a n =n .(2)由(1)得b n =2n -5n ,则b n +1-b n =[2n +1-5(n +1)]-(2n -5n )=2n -5. 当n ≤2时,b n +1-b n <0, 即b n +1<b n ,∴b 1>b 2>b 3; 当n ≥3时,b n +1-b n >0, 即b n +1>b n ,∴b 3<b 4<b 5<…,所以数列{b n}的最小项为b3=23-5×3=-7.。

高中二年级数学 第二章 数 列§2.1 数列的概念与简单表示法(一)

高中二年级数学 第二章 数 列§2.1 数列的概念与简单表示法(一)

第二章 数 列§2.1 数列的概念与简单表示法(一) 课时目标1.理解数列及其有关概念;2.理解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前n 项写出它的通项公式.1.按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项.2.数列的一般形式可以写成a 1,a 2,…,a n ,…,简记为{a n }.3.项数有限的数列称有穷数列,项数无限的数列叫做无穷数列.4.如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.一、选择题1.数列2,3,4,5,…的一个通项公式为( )A .a n =nB .a n =n +1C .a n =n +2D .a n =2n答案 B2.已知数列{a n }的通项公式为a n =1+(-1)n +12,则该数列的前4项依次为( ) A .1,0,1,0 B .0,1,0,1C.12,0,12,0 D .2,0,2,0 答案 A3.若数列的前4项为1,0,1,0,则这个数列的通项公式不可能是( )A .a n =12[1+(-1)n -1] B .a n =12[1-cos(n ·180°)] C .a n =sin 2(n ·90°)D .a n =(n -1)(n -2)+12[1+(-1)n -1] 答案 D解析 令n =1,2,3,4代入验证即可.4.已知数列{a n }的通项公式为a n =n 2-n -50,则-8是该数列的( )A .第5项B .第6项C .第7项D .非任何一项答案 C解析 n 2-n -50=-8,得n =7或n =-6(舍去).5.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n 2+1 答案 C解析 令n =1,2,3,4,代入A 、B 、C 、D 检验即可.排除A 、B 、D ,从而选C.6.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),那么a n +1-a n 等于( ) A.12n +1 B.12n +2C.12n +1+12n +2D.12n +1-12n +2答案 D解析 ∵a n =1n +1+1n +2+1n +3+…+12n ∴a n +1=1n +2+1n +3+…+12n +12n +1+12n +2, ∴a n +1-a n =12n +1+12n +2-1n +1=12n +1-12n +2. 二、填空题7.已知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3n +1(n 为正奇数)4n -1(n 为正偶数) .则它的前4项依次为____________.答案 4,7,10,158.已知数列{a n }的通项公式为a n =1n (n +2)(n ∈N *),那么1120是这个数列的第______项. 答案 10解析 ∵1n (n +2)=1120, ∴n (n +2)=10×12,∴n =10.9.用火柴棒按下图的方法搭三角形: 按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是______________.答案 a n =2n +1解析 a 1=3,a 2=3+2=5,a 3=3+2+2=7,a 4=3+2+2+2=9,…,∴a n =2n +1.10.传说古希腊毕达哥拉斯(Pythagoras ,约公元前570年—公元前500年)学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们将石子摆成如图所示的三角形状,就将其所对应石子个数称为三角形数,则第10个三角形数是______.答案 55解析 三角形数依次为:1,3,6,10,15,…,第10个三角形数为:1+2+3+4+…+10=55.三、解答题11.根据数列的前几项,写出下列各数列的一个通项公式:(1)-1,7,-13,19,…(2)0.8,0.88,0.888,…(3)12,14,-58,1316,-2932,6164,…(4)32,1,710,917,… (5)0,1,0,1,…解 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n -5)(n ∈N *).(2)数列变形为89(1-0.1),89(1-0.01), 89(1-0.001),…,∴a n =89⎝⎛⎭⎫1-110n (n ∈N *). (3)各项的分母分别为21,22,23,24,…易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,因此原数列可化为-21-321,22-322,-23-323,24-324,…, ∴a n =(-1)n ·2n -32n (n ∈N *). (4)将数列统一为32,55,710,917,…对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…联想到数列1,4,9,16…即数列{n 2},可得分母的通项公式为c n =n 2+1,∴可得它的一个通项公式为a n =2n +1n 2+1(n ∈N *). (5)a n =⎩⎪⎨⎪⎧0 (n 为奇数)1 (n 为偶数)或a n =1+(-1)n 2(n ∈N *) 或a n =1+cos n π2(n ∈N *). 12.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1; (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎝⎛⎭⎫13,23内有、无数列中的项?若有,有几项?若没有,说明理由.(1)解 设f (n )=9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1. 令n =10,得第10项a 10=f (10)=2831. (2)解 令3n -23n +1=98101,得9n =300. 此方程无正整数解,所以98101不是该数列中的项. (3)证明 ∵a n =3n -23n +1=3n +1-33n +1=1-33n +1, 又n ∈N *,∴0<33n +1<1,∴0<a n <1. ∴数列中的各项都在区间(0,1)内.(4)解 令13<a n =3n -23n +1<23,则⎩⎪⎨⎪⎧3n +1<9n -69n -6<6n +2,即⎩⎨⎧ n >76n <83.∴76<n <83. 又∵n ∈N *,∴当且仅当n =2时,上式成立,故区间⎝⎛⎭⎫13,23上有数列中的项,且只有一项为a 2=47. 能力提升13.数列a ,b ,a ,b ,…的一个通项公式是______________________.答案 a n =a +b 2+(-1)n +1⎝⎛⎭⎫a -b 2解析 a =a +b 2+a -b 2,b =a +b 2-a -b 2, 故a n =a +b 2+(-1)n +1⎝⎛⎭⎫a -b 2.14.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.解 图(1)只有1个点,无分支;图(2)除中间1个点外,有两个分支,每个分支有1个点;图(3)除中间1个点外,有三个分支,每个分支有2个点;图(4)除中间1个点外,有四个分支,每个分支有3个点;…;猜测第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点,故第n 个图中点的个数为1+n (n -1)=n 2-n +1.1.与集合中元素的性质相比较,数列中的项也有三个性质:(1)确定性:一个数在不在数列中,即一个数是不是数列中的项是确定的.(2)可重复性:数列中的数可以重复.(3)有序性:一个数列不仅与构成数列的“数”有关,而且与这些数的排列次序也有关.2.并非所有的数列都能写出它的通项公式.例如,π的不同近似值,依据精确的程度可形成一个数列3,3.1,3.14,3.141,…,它没有通项公式.3.如果一个数列有通项公式,则它的通项公式可以有多种形式.例如:数列-1,1,-1,1,-1,1,…的通项公式可写成a n =(-1)n ,也可以写成a n =(-1)n +2,还可以写成a n =⎩⎪⎨⎪⎧-1 (n =2k -1),1 (n =2k ),其中k ∈N *.。

高中数学_数列的概念与简单表示法教学设计学情分析教材分析课后反思

高中数学_数列的概念与简单表示法教学设计学情分析教材分析课后反思

教课方案一、教材剖析《数列的观点与简单表示法》是高中数学必修 5 第二章第一节的内容,起着承上启下的作用。

一方面,数列与前方学习的函数有着亲密的联系。

数列是刻画失散现象的函数,是一种重要的数学模型;另一方面,数列观点的学习又为进一步学习等差数列、等比数列等内容作了准备。

作为数列的开端课,为达到新课标的要求,从一开始就培育学生的研究意识、创新意识、合作意识和应意图识,打造数列教与学的优秀初步。

二、教课目的1. 理解数列的观点,认识数列是反应自然规律的基本数学模型;2.认识数列的分类,并会依据数列的前几项抽象归纳出数列的通项公式;3.领会数列是一种特别的函数;认识数列的三种表示法。

三、教课重难点教课要点:理解数列的观点;教课难点:依据数列的前几项抽象归纳出数列的通项公式;将数列作为一种特别函数去认识,认识数列和函数之间的关系。

四、教法与学法启迪式教课——指引学生去思虑,鼓舞学生去研究,培育学生的创建性思想。

研究式学——学生小,合作沟通,共同解决。

五、教课程(一)“国象棋”小故事述“国象棋”小故事,提学生“国王有没有能力足老人的要求?”,激学生的学趣。

而后,和学生一同研究,获得一数: 1, 2, 22 , 23,⋯⋯ , 263通数的剖析,学生真实理解国王是没有能力足老人的要求的。

进而最,引入的学内容:《数列的观点与表示法》(二)情境,引入观点1.自然界中,花瓣的个数: 2、3、5、8、132.古:一尺之棰,日取其半,万世不停。

3.古希腊达哥拉斯学派的基本点:数是万物的根源。

他曾在沙上画点或用小石子来表示数,获得三角形数、正方形数。

以上案例波及 5 数,学生察并其共同特色,引入数列及其有关观点。

活:典例 1 你会判断?1.由无多个 3 所成的一列数是数列? 3,3,3,3,3, ⋯2.以下两个数列是同一数列?54, 60, 55, 58, 64, 55, 58, 60, 57, 54.54, 60, 55, 58, 55, 64, 58, 60, 57, 54.3.由 2,3,a,5,b,6,几个元素能组成数列?:合三个目 , 数列与会合的区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学上学期期中必背知识点:《数列的概念
与简单表示法》
按一定次序排列的一列数称为数列。

以下是为大家整理的高二数学上学期期中必背知识点,希望可以解决您所遇到的相关问题,加油,一直陪伴您。

1.数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,构成数列:-1,1,-1,1,. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5
个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合. 2.数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,或1,3,5,7,9,,2n-1,,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,
这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一.如:数列1,2,3,4,,
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,
没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用1,2,3,去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,0.1,0.01,0.001,0.000 1,所构成的数列1,1.4,1.41,1.414,1.414 2,就没有通项公式.
(4)有的数列的通项公式,形式上不一定是唯一的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一. 4.数列的图象
对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:
序号:1 2 3 4 5 6 7
项: 4 5 6 7 8 9 10
这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集{1,2,3,,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数. 由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.
数列是一种特殊的函数,数列是可以用图象直观地表示的. 数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确. 把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.
5.递推数列
最后,希望小编整理的高二数学上学期期中必背知识点对您有所帮助,祝同学们学习进步。

相关文档
最新文档