景德镇一中
景德镇一中学生英语阅读现状的调查报告
问卷 汇总后 , 我们对 问卷做 了有效性筛 选 , 对 有效 问卷遗
①
收 稿 日期 : 2 0 1 3— 0 4—2 8
作者简介 : 梅
岚( 1 9 7 4一) 。 女。 江 西 南 昌人 。 中教高级。
语 阅 读 的 目的 。
2 . 2 英 语 阅 读 材 料
本调查 问卷涉及被调查者 相关 背景信 息 , 采 用单选 形式 。 为了确保调查质量 , 本课题组完成 问卷初稿后专题 研讨 , 审稿 后在课题组成员 间进行 试调 查 , 而后对 问卷 每一 小题进 行认 真地讨论和修订 , 修 订稿 出炉后选取 2 0名学 生进行小 范 围试 测, 分析研究试 测结果 , 再 次修 订后才 定稿 问卷 , 然 后在 全校 范围展开正式调查 。为 了消除 被调查 者 的顾虑 , 提 高调 查信 度, 我们要求学 生在作 答 问卷时 不写姓 名 , 让其 自由、 客 观地 表达 自己真实的意愿和情况 。为 了使 被调查 者清楚 了解调查 意图并减 少废卷 , 我们要 求任 课教 师利用 课前 时 间进 行 并在 发放 问卷 之前 对问卷作必要的讲解 。
关键词 : 中学生; 英语 阅读 ; 调查报告 中图分类号 : G 6 3 3 . 4 文献 标 识 码 : B 文章 编 号 : 1 0 0 8 — 8 4 5 8 ( 2 0 1 3 ) 0 3— 0 1 3 5 — 0 2
一
直以来 , 景德镇一 中无 论是在高考 还是 中考 , 英语 学科
1 . 3 问 卷 及 数 据 处 理
调查 显示 , ( 1 ) 在 阅读题材 的喜 好上 , 总体 而言 , 大多 数 的 学生欢迎 轻松 愉快 的读 物 ; 具体地讲 , 学生 在童话故事 的喜好 上大致相 当 ; 但对 于幽默 读物 、 动漫 , 英 语基础 好 的学生 比差
2022-2023学年江西省景德镇一中高一(18班)上学期期中考试数学试题(解析版)
2022-2023学年江西省景德镇一中高一(18班)上学期期中考试数学试题一、单选题1.已知全集为R ,集合{}|21xA x =≥,{}2|320B x x x =-+<,则RAB =A .{|01}x x ≤≤B .{|01x x ≤≤或2}x ≥C .{|12}x x <<D .{|01x x ≤<或2}x >【答案】B【分析】由运算法则先求B R,再求RAB【详解】{}|21{|0}xA x x x =≥=≥,{}{}{}2|320|(1)(2)0|12B x x x x x x x x =-+<=--<=<<,则{|2R B x x =≥或}1x ≤, 则{|01R A B x x ⋂=≤≤或2}x ≥, 故选:B.【点睛】本题考查集合的交并补运算,属于基础题2.已知函数()()ln 2e,0,3,0,x x f x f x x +⎧≤⎪=⎨->⎪⎩则()2021f =( )A .2eB .2eC .22e D .22e【答案】A【分析】先分析出0x >时()f x 的周期性,然后根据周期性以及已知条件将问题转化为计算()1f -的值,由此求解出结果.【详解】当0x >时,因为()()3f x f x =-,所以()()3f x f x =+,所以()f x 是周期为3的函数, 所以()()()2021367322f f f =⨯+=, 又因为()()ln 21ln 2221e f f e e e-+=-===,所以()22021f e =,故选:A.【点睛】结论点睛:周期性常用的几个结论如下:(1)()y f x =对x ∀∈R 时,若()()f x a f x a +=-或()()2f x a f x -=(0a ≠)恒成立,则2a 是()f x 的一个周期;(2)()y f x =对x ∀∈R 时,若()()f x f x a -=+或()()1f x a f x +=或()()1f x a f x +=-(0a ≠)恒成立,则2a 是()f x 的一个周期;(3)若()f x 为偶函数,其图象又关于()0x a a =≠对称,则()f x 是以2a 为一个周期的周期函数; (4)若()f x 为奇函数,其图象又关于()0x a a =≠对称,则()f x 是以4a 为一个周期的周期函数. 3.若13a <<,42b -<<,则||a b -的范围是( ) A .33a b -<-≤ B .3||5a b -<-< C .(33)-, D .(14),【答案】C【分析】根据绝对值的定义及不等式的性质即得. 【详解】因为42b -<<,所以04b ≤<,40b -<-≤,又13a <<, 所以3||3a b -<-<. 故选:C.4.满足函数()()ln 3f x mx =+在(],1-∞上单调递减的一个充分不必要条件是( ) A .42m -<<- B .30m -<< C .40m -<< D .3<1m -<-【答案】D【分析】根据复合函数的单调性,求出m 的取值范围,结合充分不必要条件的定义进行求解即可. 【详解】解:若()ln(3)f x mx =+在(],1-∞上单调递减, 则满足0m <且30m +>, 即0m <且3m >-, 则30m -<<,即()f x 在(],1-∞上单调递减的一个充分不必要条件是3<1m -<-, 故选:D .5.函数572()ln ||x f x x =在其定义域上的图象大致为( )A .B .C .D .【答案】D【分析】求函数的定义域,判断函数的奇偶性和对称性,利用排除法,进行判断即可 【详解】函数的定义域为{|01}x x x ≠≠±且.因为572()ln ||x f x x =,()775522()()ln ln xx f x f x x x --==-=--,所以()f x 是奇函数,图象关于原点对称,排除A,B ;当x →+∞,()0f x > ,排除C. 故选:D.6.已知1()1log 1xf x x π+=+-,则不等式(21)(2)2f x f x -+<的解集为( ) A .11()24-,B .11()42,C .1(0)4,D .1()20,【答案】C【分析】先根据对数函数的定义域求出x 的范围作为前提条件,通过运算将不等式转换为对数函数的图象问题,根据对数函数的图象求出x 的取值范围,与前提条件取交集即可.【详解】因为对数函数定义域为()0+∞,, 所以101xx+>-,解得11x -<<, 所以()f x 的定义域为()1,1-,所以1211121x x -<-<⎧⎨-<<⎩,解得:102x <<,关于不等式(21)(2)2f x f x -+<,代入表达式可得:2122212log log 0xxx x ππ+--+<,即()()()2122212log 0x x x x π+--<,所以()()()212012212x x x x +<<--,因为102x <<, 所以解不等式()()()212012212x x x x +<<--可得104x <<, 所以不等式的解集为1(0)4,. 故选:C7.已知正实数x y ,满足ln lg x yy x>,则( ) A .ln ln(1)x y >+ B .ln(1)lg x y +< C .132x y -<D .122x y ->【答案】D【分析】题目主要是关于单调性的应用,根据题目确定,x y 的大小关系,再去判断各选项是否正确 【详解】解:由题意lnlg x yy x>变形可得:ln ln lg lg x y y x ->-,移项得:ln lg ln lg x x y y +>+,构造函数()ln lg φx x x =+,易得函数()x ϕ在区间()0+∞,单调递增,因为()()φx φy >,所以可得:x y >,选项A 中,由x y >无法判断1x y +,的大小关系,所以无法判断,故A 错误;选项B 中,取2,1x y ==代入得:ln30<,错误,故选项B 错误;同理代入选项C 中,可得,选项C 错误;选项D 中,因为x y >,所以0x y ->,所以1212x y->>,选项D 正确,故选:D8.已知函数()()21,1ln 1,1x x f x x x -≤⎧⎪=⎨->⎪⎩,则方程()()1f f x =根的个数为A .3B .5C .7D .9【答案】C【分析】令()u f x =,先求出方程()1f u =的三个根11u =,211u e =+,31u e =+,然后分别作出直线1u =,11u e=+,1u e =+与函数()u f x =的图象,得出交点的总数即为所求结果.【详解】令()u f x =,先解方程()1f u =. (1)当1u ≤时,则()211f u u =-=,得11u =;(2)当1u >时,则()()ln 11f u u =-=,即()ln 11u -=±,解得211u e=+,31u e =+.如下图所示:直线1u =,11u e=+,1u e =+与函数()u f x =的交点个数为3、2、2,所以,方程()1f f x ⎡⎤=⎣⎦的根的个数为3227++=. 故选:C.【点睛】本题考查复合函数的零点个数,这类问题首先将函数分为内层函数与外层函数,求出外层函数的若干个根,再作出这些直线与内层函数图象的交点总数即为方程根的个数,考查数形结合思想,属于中档题.二、多选题9.已知()f x 为奇函数,且()1f x +为偶函数,若()10f =,则( ) A .()30f = B .()()35f f = C .(3)(1)f x f x +=- D .(2)(1)1f x f x +++=【答案】ABC【分析】综合已知,利用奇偶性的定义和性质判定f (x )的周期为4,进而可求得()()()3,5,2f f f ,然后即可判定AB ;根据周期性可判定C;根据已得数据可以判定0x =时D 中的方程不成立,从而判定D 不正确.【详解】因为函数()1f x +为偶函数,所以()()11f x f x +=-, 又因为f (x )是R 上的奇函数,所以()()()111f x f x f x +=-=--, 所以()()()()()242f x f x f x f x f x +=-+=-+=,,所以f (x )的周期为4, 又()()()()()()103110510,f f f f f f ==-=-===,,故A ,B 正确;()()()3341f x f x f x +=+-=-,∴C 正确;()()()2242f f f =-=-,同时根据奇函数的性质得()()()()22,2,2f f f f =--∴-既相等又互为相反数,故f (2)=0,所以()()2101f f +=≠,即(2)(1)1f x f x +++=对于0x =不成立,故D 不正确. 故选:ABC.【点睛】本题考查抽象函数的奇偶性和周期性,关键难点在于结合奇偶性得到周期性,同时注意,定义域为R 的周期为2a 奇函数,必有()()0f a f a =-=这一结论值得记忆. 10.下列说法正确的是( ) A .“0x >且0y >”是“2x yy x+≥”的充要条件 B .若0a b >>,0m <,则b b m a a m+<+ C .方程2(3)0x m x m +-+=有一正一负根的充要条件是{}|0m m m ∈<D .若实数a b ,满足004a b a b >>+=,,,则2222+++a b a b 的最小值为2 【答案】CD【分析】特例可判断AB ,根据一元二次方程根的分布可判断C ,利用均值不等式可判断D . 【详解】当1x y ==- 时满足2x yyx+,但不满足0x >且0y >,故A 错误; 当4a =,3b =,2m =-时,满足0a b >>,0m <,但3142>,故B 错误; 方程2(3)0x m x m +-+=有一正一负根的充要条件是2Δ(3)400m m m ⎧=-->⎨<⎩,解得:0m <,故C 正确;因为0a >,0b >,4a b +=,所以22224444(2)(2)4(2)(2)4442222222222a b a b a a b b a b a b a b a b a b +-+-+-+-+++=+=+=-+-++++++++++441142222a b a b ⎛⎫=+=+ ⎪++++⎝⎭, 所以1141112214[(2)(2)]2(222228222222b a a b a b a b a b ++⎛⎫⎛⎫⎛⎫+=+++⋅+=+++= ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭, 当且仅当2a b ==时等号成立,即2222+++a b a b 的最小值为2,故D 正确. 故选:CD .11.若函数()()2log 3332x xf x a π-=+--的值域为R ,则实数a 的值可以是( )A .1-B 1C .32D .2【答案】CD【分析】由题意得到93323xxa +--可以取遍任意正实数,然后由其最小值小于等于零求解. 【详解】解:因为函数()()2log 3332x xf x a π-=+--的值域为R ,所以93323xxa +--可以取遍任意正实数, 又9933223323233x x x x a a a +--≥⋅--=-, 当且仅当933xx =,即1x =时,等号成立,则320a -≤,解得32a ≥, 所以则实数a 的值可以是32,2,故选:CD12.已知函数()21xf x =-,设()f a m =,()()f b n a b =< ,则( )A .若m n =,则222a b +=B .若m n =,则0a b +<C .若m n >,则1b >D .若m n >,则1b <【答案】ABD【分析】作出函数()21xf x =-的图象,m n =时,由于()()(),a a f b b f m =<=,可得到1221a b -=-,化简可判断A ,结合基本不等式可判断B;数形结合,结合函数的单调性,可判断C,D.【详解】作出函数()21xf x =-的图象,如图示:当m n =时,由于()()(),a a f b b f m =<=,可知0,0a b <>,则2121a b-=-,则1221a b -=- ,即222a b +=,A 正确;由于a b <,则2222222a b a b a b +=+>⋅=21,0a b a b +<∴+< ,B 正确;当1x ≥时,()2121x xf x =-=-单调递增,当1a b ≤<时,有()()f a f b < ,即m n <,不符合C,D 选项;当1b =时,()1f b =,由于a b <,则()1()f a f b <=,即m n <,当[0,)x ∈+∞时,()2121x xf x =-=-递增,若0a b ≤<,则()()f a f b <即m n <,当],(0x ∈-∞时,()12xf x =-递减,若0a b <≤,则()()f a f b >,即m n > ;若0a b <<,则由()12a f a =- ,令2112,222x a x a -=-∴=-, 由于此时2(0,1),22(1,2)a a ∈∴-∈,则(0,1)x ∈,由m n >,可得2121b x -<-,即,1b x b <∴< ,故C 错误,D 正确, 故选:ABD三、填空题13.已知幂函数()()231mf x m m x =++在第一象限单调递减,若()41gx m x =-,则函数()g x 的解析式为______.【答案】()242435g x x x =-+,3x ≥【详解】因为函数是幂函数,所以2311m m ++=,解得:0m =或3m =-,因为函数在第一象限单调递减,所以3m =-,即()3f x x -=,则)341gx x =-33x t =≥,()23x t =-,即()()2243142435g t t t t =--=-+,所以函数()g x 的解析式为()242435g x x x =-+,3x ≥故答案为:()242435g x x x =-+,3x ≥14.若315235131(),(),log 252a b c ===,则,,a b c 的大小关系为______.【答案】c b a >>##a b c <<【分析】根据指对幂函数的单调性判断大小关系即可.【详解】由指对幂函数的性质知:311522335511331()()()1log log 22552<<<=<,所以c b a >>. 故答案为:c b a >>15.已知1a >,关于x 的不等式2(1)46(3)0a x a a x ⎡⎤--+-⋅+<⎣⎦的解集为M ,设N M=Z ,当a 变化时,集合N 中的元素个数最小时的集合N 为______. 【答案】{}2,1,0,1--【分析】利用一元二次不等式的解法求出解集确定出M ,利用基本不等式可得到M 的最小范围,再根据N M=Z 可得到集合N 中最少的元素个数时集合N 的元素.【详解】由1a >可得10a ->,所以()222246203111a a a a a a -+-+=≥>>----,则原不等式的解集为2463,1a a M a ⎛⎫-+=- ⎪-⎝⎭,设()()()22121346312,1111x x x x f x x x x x x ---+-+===-+->---,由基本不等式可得312221x x -+-≥=-, 当且仅当311x x-=-即1x = 所以当1x>时,()min 2f x =, 所以()3,2M -⊆,又122<<, 所以(){}22,1,0,1-=--Z ,则集合N 中的元素最少有4个时集合{}2,1,0,1N --=, 故答案为:{}2,1,0,1--16.已知,0x y >,32xy <,且22333yy xy x ++=,则22x y x+-的最小值为______. 【答案】【分析】将题设等量关系转化为2()(3)5x y y x +-=,结合222(3)()x y y x y x x +-=-++及基本不等式求最小值,注意取值范围.【详解】由题设22222(33)()3()()(3)5y y xy x y y x y x y y x x x+-+=+-+=+-=, 32xy <且,0x y >,则230y x->,0x y +>,所以222(3)()x y y x y x x +-=-++≥当且仅当23y x y x -=+=,即x y ⎧=⎪⎪⎨⎪=⎪⎩时等号成立,此时满足32xy <.所以目标式最小值为故答案为:四、解答题 17.计算:210.253216()(8)849-+-+(2)2(log 31)431lg 25lg 2log 9log 822-++-⨯++【答案】(1)9 (2)4【分析】(1)根据根式与指数式的互化结合指数幂的运算性质即可得解; (2)根据对数的运算性质计算即可.【详解】(1)解:原式()11233443137π222π244⨯⨯=-++-+⨯+-3429=++=;(2)解:原式234log 2231lg5lg 2log 33log 222=++-⨯++ 31413422=+-++=.18.已知集合{}|4,1xA y y x ==≤,211|12x B x x+⎧⎫=≥⎨⎬-⎩⎭,()12log 11C x x ⎧⎫⎪⎪=-≥-⎨⎬⎪⎪⎩⎭. (1)求A B ⋃;(2)若对任意x ∈C ,不等式2350x x a ---<恒成立,求a 的取值范围. 【答案】(1)1,45⎡⎤-⎢⎥⎣⎦(2)5a >-【分析】(1)根据指数函数的性质以及分式不等式的解法,求得集合A 与B ,结合并集运算,可得答案;(2)根据对数函数的性质,求得集合C ,问题等价于二次不等式在区间上恒成立,结合二次函数的性质,求得在区间上的最值,可得答案.【详解】(1)由1x ≤,则044x <≤,即(]0,4A =;由21112x x +≥-,211012x x +-≥-,()()2211021x x x +-+≥-,()51021x x +≥-,()()2511010x x x ⎧+-≥⎨-≠⎩,解得115x -≤<,即1,15B ⎡⎫=-⎪⎢⎣⎭;故1,45A B ⎡⎤⋃=-⎢⎥⎣⎦.(2)由()12log 11x -≥-,()1122log 1log 2x -≥,012x <-≤,解得13x <≤,则(]1,3C =;故不等式2350x x a ---<在(]1,3上恒成立, 令235y x x a =---,易知其对称轴为直线32x =, 则函数235y x x a =---在31,2⎛⎫⎪⎝⎭上单调递减,在3,32⎛⎤ ⎥⎝⎦上单调递增,当1x =时,7y a =--;当3x =时,5y a =--. 故在(]1,3上,max 5y a =--,令50a --<,解得5a >-.19.已知()2()log 41xf x ax =++是偶函数.(1)求a 的值;(2)设22()()222x x f x g x m -=++⋅的最小值为3-,则实数m 的值. 【答案】(1)1-(2)52-【分析】(1)已知()2()log 41xf x ax =++是偶函数,在定义域R 上符合()()f x f x -=,利用等式即可求出a 的值;(2)由1a =-可得函数()2()log 22xxf x -=+,则()22()22224x xm m g x -⎡⎤=++--⎢⎥⎣⎦,令222x x t -=+≥,设函数()22()2224m mh t t t ⎛⎫=+--≥ ⎪⎝⎭,根据一元二次函数在定义域范围内最值,讨论参数,即可求出m 的值.【详解】(1)解:函数()2()log 41xf x ax =++的定义域为R ,因为函数()f x 是偶函数,所以()()f x f x -=,又()()22241()log 41log log 4124x xxx f x ax ax x ax -⎛⎫+-=+-=-=+-- ⎪⎝⎭,()2()log 41x f x ax =++,所以()()22log 412log 41x xx ax ax +--=++,所以221x ax a -=⇒=-;(2)解:由(1)知,()()()2222241()log 41log 41log 2log log 222x xxxx xx f x x -⎛⎫+=+-=+-==+ ⎪⎝⎭,所以()2log 22()2222x xf x x x -+-==+,所以,22()()222x x f x g x m -=++⋅ ()222222x x x x m --=+++ ()()222222x xx x m --=+++-()2222224x xm m -⎡⎤=++--⎢⎥⎣⎦令222x x t -=+≥=,当且仅当22-=x x ,即0x =时等号成立,设函数()22()2224m mh t t t ⎛⎫=+--≥ ⎪⎝⎭,其图像是开口向上,对称轴方程为2mx =-的抛物线, 当22m-<时,即4m >-时, ()()2min 222224m m h t h ⎛⎫==+-- ⎪⎝⎭,解得52m =-,当22m-≥时,即4m ≤-时,()2min2324m m h t h ⎛⎫=-=--=- ⎪⎝⎭,解得2m =±(舍去), 综上可知,52m =-.20.某生物研究者于元旦在湖中放入一些凤眼蓝,这些凤眼蓝在湖中的蔓延速度越来越快,二月底测得凤眼蓝覆盖面积为24m 2,三月底测得覆盖面积为36m 2,凤眼蓝覆盖面积y (单位:m 2)与月份x (单位:月)的关系有两个函数模型(0,1)=>>xy ka k a 与12(0,0)y px k p k =+>>可供选择. (1)试判断哪个函数模型更合适,并求出该模型的解析式; (2)求凤眼蓝覆盖面积是元旦放入面积10倍以上的最小月份. (参考数据:lg2≈0.3010,lg3≈0.4771)【答案】(1)选择(0,1)=>>xy ka k a 较为合适;323,32xy x N ⎛⎫=∈ ⎪⎝⎭(2)6月【分析】(1)根据指数函数和幂函数的性质可得合适的函数的模型. (2)根据选择的函数模型可求最小月份.【详解】(1)指数函数()1x y a a =>随着自变量的增大其函数的增长速度越大,幂函数y =自变量的增大其函数的增长速度越小,因为凤眼蓝在湖中的蔓延速度越来越快,故选择(0,1)=>>x y ka k a 较为合适.故232436kaka⎧=⎪⎨=⎪⎩,故32a =,323k =. 所以323,32xy x N ⎛⎫=∈ ⎪⎝⎭.(2)由(1),放入面积为032332323⎛⎫⎪= ⎝⎭,令3233213032x⎛⎫ ⎪⎝⎭>⨯,则115.68lg 3lg 20.1761x >≈≈-,故凤眼蓝覆盖面积是元旦放入面积10倍以上的最小月份为6月. 21.已知22()|1|f x x x kx =-++.(1)若2k =,1x ≤-,求方程()0f x =的解; (2)若关于x 的方程()0f x =在(0)2,上有两解12x x ,.①求k 的取值范围;②证明:12114x x +<. 【答案】(1)⎪⎪⎩⎭(2)①712k -<<-;②证明见解析【分析】(1)当2k =时,()2212f x x x x =-++,去绝对值后,再求方程的解;(2)去掉绝对值,将()f x 表示成分段函数,分段讨论方程根的情况,可判断两根一个在(]0,1,一个在()1,2,根据根的分布,求k 的取值范围;分别解出两根12,x x ,并化简1211+x x ,根据函数的单调性,进行求证即可【详解】(1)当2k =时,22()|1|20f x x x x =-++=, 当1x ≤-时,方程化为22210x x +-=,解得x因为01<<,舍去,所以x (2)22221,12()11,01x kx x f x x x kx kx x ⎧+-<<=-++=⎨+<≤⎩,因为方程2210x kx +-=在(1,2)上至多有1个实根, 方程10kx +=,在(0,1]上至多有一个实根,结合已知,可得方程()0f x =在(0,2)上的两个解1x ,2x 中的1个在(]0,1, 1个在(1,2),不妨设1(0x ∈,1],2(0,2)x ∈,设2()21g x x kx =+-,数形结合可分析出(1)0(2)0g g <⎧⎨>⎩,解得712k -<<-,11x k =-,2x ,∴1211x x +712k -<<-,令t k =-,7(1,)2t ∈,1211x x +7(1,)2t ∈上递增,当72t =时,12114x x +=,因为7(1,)2t ∈, 所以12114x x +<; 22.对于函数()f x ,若存在实数对(),a b ,使得等式()()f a x f a x b +⋅-=对定义域中的任意x 都成立,则称函数()f x 是“(),a b 型函数”.(1)若函数()2x f x =是“(),a b 型函数”,且12log 1a b +=,求出满足条件的实数对(),a b ;(2)已知函数()421xh x x -=+.函数()g x 是“(),a b 型函数”,对应的实数对(),a b 为()1,4,当[]0,1x ∈时,()()211(0)g x x m x m =--+>.若对任意[]10,2x ∈时,都存在[]20,1x ∈,使得()()12g x h x =,试求m 的取值范围.【答案】(1)1(1,)4-; (2)(0,3].【分析】(1)利用定义,直接判断求解即可.(2)由题意得,g (1+x )g (1﹣x )=4,所以当[]0,1x ∈时,()()42g x g x =-,其中[]21,2x -∈, 所以只需使当[]0,1x ∈时,()14g x ≤≤恒成立即可,即()21114x m x ≤--+≤在[]0,1上恒成立,若1x =,显然不等式在[]0,1上成立,若1x ≠,分离参数m ,分别求得不等式右边的函数的最值,取交集即可得到m 的范围.【详解】(1)由题意,若()2xf x =是“(a,b)型函数”,则22a x a x b -+⋅=,即4a b =,代入12log 1a b +=得11,4a b =-=,所求实数对为11,4⎛⎫- ⎪⎝⎭.(2)由题意得:()g x 的值域是()h x 值域的子集,易知()h x 在[]0,1x ∈的值域为[]1,4, 只需使当[]0,2x ∈时,()14g x ≤≤恒成立即可,()()114g x g x +-=,即()()24g x g x -=, 而当[]0,1x ∈时,[]21,2x -∈, 故由题意可得,要使当[]0,2x ∈时,都有()14g x ≤≤, 只需使当[]0,1x ∈时,()14g x ≤≤恒成立即可,即()21114x m x ≤--+≤在[]0,1上恒成立,若1x =,显然不等式在[]0,1上成立,若1x ≠,则可将不等式转化为()()2211321x m x x m x ⎧≥⎪⎪-⎨-⎪≤⎪-⎩, 因此只需上述不等式组在[)0,1上恒成立,显然,当0m >时,不等式(1)成立,令 ()[)23212,0,111x u x x x x x -==--+∈-- ()u x 在[)0,1上单调递增,∴()()min 03h x h ==, 故要使不等式(2)恒成立,只需3m ≤即可,综上所述,所求m 的取值范围是(]0,3.【点睛】本题考查函数与方程的综合应用,新定义的应用,抽象函数以及分类讨论思想的转化思想的应用,属于难题.。
2022-2023学年江西省景德镇一中高一(19班)上学期期中考试数学试题(解析版)
2022-2023学年江西省景德镇一中高一(19班)上学期期中考试数学试题一、单选题1.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中具有表现力的瞬间(如图).现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4πm ,肩宽约为8πm ,“弓”所在圆的半径约为5m 4,则掷铁饼者双手之间的距离约为(参考数据:2 1.414≈,3 1.732≈)( )A .1.012mB .1.768mC .2.043mD .2.945m【答案】B【分析】由题意分析得到这段弓形所在的弧长,结合弧长公式求出其所对的圆心角,双手之间的距离,求得其弦长,即可求解.【详解】如图所示,由题意知“弓”所在的弧ACB 的长54488l ππππ=++=,其所对圆心角58524ππα==,则两手之间的距离()522sin 1.768m 44AB AD π==⨯⨯≈.故选:B .2.已知实数x ,0y >满足1x y +=,则21x xy+的最小值为( )A .6 B.C.D .8【答案】C【分析】根据“1”的变形技巧化简,再运用均值不等式求解即可. 【详解】由条件1x y +=可得2212()()232244x y x y y x y y x x xy x xy x y x x y +++=+=++++=++≥+ 当且仅当+=13=x y y x x y ⎧⎪⎨⎪⎩,即x y ⎧⎪⎪⎨⎪⎪⎩时等号成立,故选:C .3.已知()f x 是定义在R 上的奇函数,且(1)f x +是偶函数,当01x ≤≤时,2()log (1)f x x =-+.若关于x 的方程()()20(0)f x f x mx m +--=>有5个不同的实数根,则实数m 的取值范围是( ) A .11,65⎛⎤⎥⎝⎦B .11,64⎛⎫ ⎪⎝⎭C .11,54⎡⎫⎪⎢⎣⎭D .11,53⎛⎤ ⎥⎝⎦【答案】B【分析】根据题意和函数的奇偶性求出函数的周期,利用函数奇偶性求出函数()()()g x f x f x =+分别在01x ≤≤、12x <≤、23x <≤、34x <≤时的解析式,作出函数()y g x =与2y mx =+的图象,结合图象即可得出结果.【详解】因为()1f x +是偶函数,所以函数()f x 的对称轴为1x =,而()f x 是定义在R 上的奇函数, 所以有()()f x f x -=-,因此有()(2)f x f x =-+,所以()(4)f x f x =+,因此函数()f x 的周期为4, 设()()()g x f x f x =+,易知()y g x =是偶函数,且当0x ≥时,()()()()()g x f x f x f x f x =+=+, 所以()()()()()444()g x f x f x f x f x g x +=+++=+=, 因此有:当01x ≤≤时,()()()()()22log 1log 01g x f x f x x x +=-+-+==, 当12x <≤时,()()()()()22log 3lo 0g 3g x f x f x x x =+----==,当23x <≤时,()()()()()()222log 1log 1log 21g x f x f x x x x =+=-+-=+-++,当34x <≤时,()()()()()()222log 5log 5log 52g x f x f x x x x =+-+=--=, 作出函数()()()g x f x f x =+的图象如下图所示:关于x 的方程()20g x mx --=有5个不同的实根,等价于函数()y g x =的图象与直线2y mx =+有5个不同的交点, 当直线2y mx =+过点()12,0-时,有6个交点,此时16m =, 当直线2y mx =+过点()8,0-时,有4个交点,此时14m =, 所以当11,64⎛⎫⎪⎝⎭时,函数()y g x =的图象与直线2y mx =+有5个不同的交点故选:B.4.若函数()2f x +为偶函数,对任意,[)12,2,x x ∈+∞,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则( )A .()()233log 6log 122f f f ⎛⎫<< ⎪⎝⎭B .()()323log 12log 62f f f ⎛⎫<< ⎪⎝⎭C .()()323log 12log 62f f f ⎛⎫<< ⎪⎝⎭D .()()233log 6log 122f f f ⎛⎫<< ⎪⎝⎭【答案】B【分析】先判断单调性,再利用函数()2f x +为偶函数,求得对称性,故可利用计算判断答案. 【详解】由对任意,[)12,2,x x ∈+∞,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,所以函数()f x 在[2)∞+,上递增,又函数()2f x +为偶函数,所以函数()f x 关于2x =对称,所以3522f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.又2233log 61log 32,log 121log 42,=+>=+>因为25log 312+-23log 32=-3222log 3log 2=-2log 3log 80,=-所以251og 312+>.因为3233333353log 41log 4log 4log 3log 4log 27022+-=-=-=-<,所以35log 412+<,因为235log 6log 1222>>>,所以()()323log 12log 62f f f ⎛⎫<< ⎪⎝⎭, 故选:B.5.已知函数()e e 21x xf x x -=--+ ,则不等式()()232f x f x -+> 的解集为( )A .[)1,∞+B .()1,∞+C .[)0,∞+D .()0,∞+【答案】B【分析】首先构造出新函数()()1e e 2x xg x f x x -=-=--,证明其为奇函数,再利用函数的单调性得到不等式,解出即可.【详解】令()()1e e 2x xg x f x x -=-=--,定义域为R ,且()()e e 2x xg x x g x --=-+=-,所以()()1e e 2x xg x f x x -=-=--为奇函数,()()232f x f x -+>变形为()()2311f x f x -->-,即()()()23g x g x g x ->-=-,其()e e 22e e 20x x x x g x --=+-≥⋅-=',当且仅当e e x x -=,即0x =时,等号成立,所以()()1e e 2x xg x f x x -=-=--在R 上单调递增,所以23x x ->-,解得:1x >, 所以解集为()1,∞+. 故选:B.6.函数()e 1cos e 1x x f x x +=⋅-的部分图象大致为( )A .B .C .D .【答案】B【分析】利用奇偶性可排除AD ;根据x 从正方向无限接近0时()0f x >可排除C ,由此可得结果. 【详解】由e 10x -≠得:0x ≠,则()f x 定义域为()(),00,∞-+∞;()()()e 11e cos cos e 11ex xx xf x x x f x --++-=-⋅=⋅=---, f x 为奇函数,图象关于原点对称,可排除AD ;当x 从正方向无限接近0时,cos 0x >,e 10x +>,e 10x ->,则()0f x >,可排除C. 故选:B.7.已知1a >,1b >,且lg 12lg a b =-,则log 2log 4a b +的最小值为( ) A .10 B .9C .9lg 2D .8lg 2【答案】C【分析】由已知,可设log 2a m =,log 4b n =,利用换底公式表示出lg 2lg a m=,lg 42lg 2lg b n n ==带入lg 12lg a b =-中,得到m ,n 的等量关系,然后利用“1”的代换借助基本不等式即可求解最值. 【详解】由已知,令lg 2log 2lg a m a ==,lg 4log 4lg b n b==, 所以lg 2lg a m =,lg 42lg 2lg b n n ==,代入lg 12lg a b =-得:lg 24lg 21m n+=, 因为1a >,1b >,所以lg 24lg 24log 2log 4()1()()5lg 2(lg 2lg 2)a b m nm n m n m n n m+=+⨯=++=++ 4lg 2lg 25lg 225lg 24lg 29lg 2m n n m≥+=+=.当且仅当4lg 2lg 2m n n m=时,即1310a b ==时等号成立. log 2log 4a b +的最小值为9lg 2.故选:C.8.已知,R x y ∈,且x y ≠,则2221()xy x y x y+++-的最小值为( ) A 3B 2 C .12D .1【答案】D【分析】令z y =-,则原不等式等价于2221()xz x z x z-+++,应用柯西不等式得2222]1[|13()|xz xz x z x z x x z z ≥-++-++++,再两次应用基本不等式求|1|xzx z x z -+++的最小值,注意最小值的取值条件.【详解】令z y =-,即x z ≠-,则2222]|11(11)|1[()xz xz x x z x z x z z --++++++≥++, 当且仅当111x zx z xz+==-时等号成立,又23()114||||x z xz x z x z x z ++-≥≥=++++ 当且仅当x z =)1x z +=,即x z ==综上,2222]|)31[(|13x xz xz x z x z x z z --+++++≥=+,即2221()xy x y x y +++-=22211()xz x z x z-++≥+,当且仅当x y ==时等号成立. 故选:D【点睛】关键点点睛:令z y =-,应用柯西不等式求得2222]1[|13()|xz xz x z x z x x z z ≥-++-++++,再利用基本不等式求|1|xzx zx z -+++的最值即可.二、多选题9.下列命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题:1p x ∃<,21x >是假命题C .已知a ,b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件D2【答案】AC【分析】对于A 、C 根据充分条件和必要条件的要求即可判断; 对于B 适当举出反例即可;对于D 根据基本不等式等号成立要求判断x 是否存在. 【详解】对于A.充分性:⸪1a >,⸪11a <充分性成立;必要性:若0a <,即使11a<,1a <,必要性不成立.所以“1a >”是“11a<”的充分不必要条件,故A 正确.对于B.当1x <-时,21x >,故B 错误.对于C. 充分性: 0a ≠,=0b 时,0ab =,所以充分性不成立;必要性:当0ab ≠时,0a ≠且0b ≠,必要性成立;所以“0a ≠”是“0ab ≠”的必要不充分条件,故C 正确.对于D.2=D 错误.故选:AC.10.下列命题正确的是( ) A .若0a b >>,0m >,则+<+a a mb b m;B .若正数a 、b 满足+=1a b ,则114113a b +≥++;C .若0x >,则423x x--的最大值是2-D .若()2x x y =-,0x >,0y >,则2x y +的最小值是9; 【答案】BC【分析】A 选项用作差法即可,B ,C ,D 选项都是利用基本不等式判断. 【详解】对于选项A ,()()+=++a b ma a mb b m b b m --,因为0a b >>,0m >,所以0a b ->,()()>0+a b m b b m -,即+>0+a a m b b m-,故+>+a a mb b m ,所以A 错误;对于选项B ,因为+=1a b ,所以113a b +++=,()111111114112113113113b a a b a b a b a b ++⎛⎫⎛⎫+=++++=++≥ ⎪ ⎪++++++⎝⎭⎝⎭ 当且仅当1111b a a b ++=++,即12a b ==时,等号成立,故B 正确;对于选项C ,因为0x >,43x x +≥43x x =即x =时,等号成立,所以4232x x--≤-C 正确; 对于选项D ,因为()2x x y =-,所以121y x+=,所以()1242248x y x y x y y x y x ⎛⎫+=++=+≥= ⎪⎝⎭,当且仅当4x y y x =即4,2x y ==时,等号成立,所以2x y +的最小值是8,故D 错误. 故选:BC.11.已知函数()()πsin 0,0,2f x x ωϕωϕ⎛⎫⎛⎫=+>∈ ⎪ ⎪⎝⎭⎝⎭,直线π12x =和点π,06⎛⎫- ⎪⎝⎭是()f x 的图象的一组相邻的对称轴和对称中心,则下列说法正确的是( )A .函数π12f x ⎛⎫+ ⎪⎝⎭为偶函数B .函数()f x 的图象关于点2π,03⎛⎫- ⎪⎝⎭对称C .函数()f x 在区间ππ,34⎡⎤-⎢⎥⎣⎦上为单调函数D .函数()f x 在区间35π0,3⎡⎤⎢⎥⎣⎦上有23个零点【答案】ABD【分析】根据三角函数的性质结合条件可得()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,然后根据正弦函数的性质逐项分析即得.【详解】由题可知()f x 的最小正周期为ππ4π126T ⎛⎫=⋅+= ⎪⎝⎭,所以2ω=,由ππ2122π2π6k k ϕπϕ⎧⨯+=+⎪⎪⎨⎛⎫⎪⨯-+= ⎪⎪⎝⎭⎩,ππ3k ϕ=+,Z k ∈,又π0,2ϕ⎛⎫∈ ⎪⎝⎭,所以π3ϕ=,()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,所以()ππππsin 2sin 2cos 2121232f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫+=++=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦为偶函数,故A 正确;因为()2π2ππsin 2sin π0333f ⎡⎤⎛⎫⎛⎫-=⨯-+=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,2π,03⎛⎫- ⎪⎝⎭为一个对称中心,故B 正确;当ππ34x -≤≤时,ππ5π2336x -≤+≤,所以函数()f x 区间ππ,34⎡⎤-⎢⎥⎣⎦上不单调,故C 错误;由π2π3x k +=,Z k ∈,可得ππ35π0263k x ≤=-≤,所以17133k ≤≤,Z k ∈,即函数()f x 在区间35π0,3⎡⎤⎢⎥⎣⎦上有23个零点,故D 正确.故选:ABD.12.已知()f x 是定义在R 上周期为4的函数,且(2)(2)0f x f x ++-=,当[0,2]x ∈时,()(2)f x x x =-,对于闭区间I ,用I M 表示()y f x =在I 上的最大值.若正数k 满足[0,][,2]2k k k M M =,则k 的值可以是( ) ABCD【答案】AD【分析】先利用函数的对称性与周期性推导得()()f x f x =--,进而计算得[)2,0x ∈-的解析式,结合函数的周期从而计算得(]2,4x ∈与[]4,6x ∈的解析式,作出函数图像,然后分类讨论102k <≤,112k <≤,12k <≤,23k <≤,[)3,k ∈+∞五种情况下,[0,][,2],k k k M M ,并根据[0,][,2]2k k k M M =计算并得复合条件的k 值.【详解】由(2)(2)0f x f x ++-=,且()f x 周期为4,(2)(2)(2)(2)0f x f x f x f x ∴++-=-+-=,即()()()()22f x f x f x f x -=--⇒=--,令[)2,0x ∈-,则(]0,2x -∈,所以()()()2f x x x f x -=-+=-, 所以()()2f x x x =+;所以当(]2,4x ∈时,()()(4)2f x x x =--,[]4,6x ∈时,()()(4)6f x x x =--… 作出函数()f x 的部分图像如图所示:若102k <≤,则021k <≤,()f x 在[]0,1上单调递增, 所以[]()0,2k M k k =-,[](),2222k k M k k =-, 显然不满足[][]0,,22k k k M M =;若112k <≤,则122k <≤, ()f x 在[]0,1上单调递增,在[]1,2上单调递减,所以[]()0,2k M k k =-,[],21k k M =,显然不满足[][]0,,22k k k M M =, 若12k <≤,则224k <≤,所以[]0,1k M =,[](),22k k M k k =-,由[][]0,,22k k k M M =, 即()122k k =-,解得222k +=或222k =; 若23k <≤,则426k <≤,所以[]0,1k M =,[]()(),22462(425)k k M k k k =--<<或[](),21526k k M k =≤≤,由[][]0,,22k k k M M =,即()()()122462425k k k =--<<,解得k =k =; 当[)3,k ∈+∞时,[)26,k ∈+∞,所以[]0,1k M =,[],21k k M =, 显然不满足[][]0,,22k k k M M =,故舍去;故k =k =故选:AD【点睛】思路点睛:根据函数的对称性与周期性推导函数的奇偶性,即可计算[)2,0x ∈-的解析式,再结合周期写出函数(]2,4x ∈与[]4,6x ∈的解析式,再作出函数图像,注意利用数形结合与分类讨论的方法,计算[0,][,2],k k k M M 的值,并代入[0,][,2]2k k k M M =计算.三、填空题13.己知函数()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭的图象向左平移π12个单位后得到函数()g x 的图象,若实数1x ,2x 满足()()124-=f x g x ,则12x x -的最小值为______. 【答案】5π12##5π12【分析】首先根据题意得到()2cos2g x x =,根据题意得到()()()()1max 2min f x f x g x g x ⎧=⎪⎨=⎪⎩,从而得到12125πππ12x x k k -=-+-,1k Z ∈,2Z k ∈,即可得到答案. 【详解】()πππ2sin 22cos 212123g x f x x x ⎡⎤⎛⎫⎛⎫=+=++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为实数1x ,2x 满足()()124-=f x g x , 所以()()()()1max 2min f x f x g x g x ⎧=⎪⎨=⎪⎩. 所以11ππ22π32x k +=+,1Z k ∈,解得11ππ12x k =+,1k Z ∈,222π2πx k =+,2k Z ∈,解得22ππ2x k =+,2k Z ∈, 所以12125πππ12x x k k -=-+-,1k Z ∈,2Z k ∈. 所以12min 5π12x x -=.综上:12min 5π12x x -=. 故答案为:5π1214.命题p :实数x 满足22430(0)x ax a a -+<<;命题q :实数x 满足260x x --≤或2280x x +->.已知p 是q 的充分不必要条件,则实数a 的取值范围是________________. 【答案】{4a a ≤-或}203a -≤<【分析】先求出命题p 和q 对应的集合,根据p 是q 的充分不必要条件列出对应的不等式即可得到答案【详解】由22430x ax a -+<得(3)()0x a x a --<,因为a<0,所以3a a >,解得3a x a <<, 故命题p 对应的集合为{}3x a x a <<;由260x x --≤解得23x -≤≤,由2280x x +->解得<4x -或2x >, 故命题q 对应的集合为{4x x <-或}2x ≥-,因为p 是q 的充分不必要条件,所以{}3x a x a << {4x x <-或}2x ≥-, 所以4340a a a ≤-⎧⎪≤-⎨⎪<⎩或3220a a a ≥-⎧⎪≥-⎨⎪<⎩,解得4a ≤-或203a -≤<,故实数a 的取值范围是{4a a ≤-或}203a -≤<,故答案为:{4a a ≤-或}203a -≤<15.函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭在区间5π2π,63⎡⎤-⎢⎥⎣⎦上单调递增,且存在唯一05π0,6x ⎡⎤∈⎢⎥⎣⎦,使得()01f x =,则ω的取值范围为_______.【答案】21,52⎡⎤⎢⎥⎣⎦【分析】根据函数得单调性可得2π5π2362πππ362T ω⎧≥+⎪⎪⎨⎪+≤⎪⎩,根据后一个条件可得π5ππ5π2662ω≤+<,解之即可得解.【详解】解:由5π2π,63x ⎡⎤∈-⎢⎥⎣⎦,得π5ππ2ππ,66636x ωωω⎡⎤+∈-++⎢⎥⎣⎦,因为函数()f x 在区间5π2π,63⎡⎤-⎢⎥⎣⎦上单调递增,且5πππ662ω-+<,所以π2π5π2362πππ362T ωω⎧=≥+⎪⎪⎨⎪+≤⎪⎩,解得12ω≤,由05π0,6x ⎡⎤∈⎢⎥⎣⎦,得0ππ5ππ,6666x ωω⎡⎤+∈+⎢⎥⎣⎦,因为存在唯一05π0,6x ⎡⎤∈⎢⎥⎣⎦,使得()01f x =所以π5ππ5π2662ω≤+<,解得21455ω≤<,综上所述ω的取值范围为21,52⎡⎤⎢⎥⎣⎦.故答案为:21,52⎡⎤⎢⎥⎣⎦.16.已知函数()242,021,0x x x f x x x ⎧-+≥=⎨+<⎩,若存在互不相等的实数123,,x x x ,满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________. 【答案】5,42⎛⎫⎪⎝⎭【分析】作出函数的图象,不妨设123x x x <<,数形结合可得234x x +=,求出1302x -<<,即可求得答案.【详解】作出函数()242,021,0x x x f x x x ⎧-+≥=⎨+<⎩的图象如图,若存在互不相等的实数123,,x x x ,满足()()()123f x f x f x ==, 不妨设123x x x <<,如图示,则234x x +=, 由于(2)2f =- ,令212x +=-,则32x =-,故1302x -<< ,则1233442x x x -+<++<,即1235,42x x x ⎛⎫++∈ ⎪⎝⎭,故答案为:5,42⎛⎫⎪⎝⎭四、解答题17.已知二次函数()f x 满足(1)()22f x f x x +-=-,且(1)=0f : (1)求()f x 的解析式;(2)若[]1,4x ∈时,函数()f x 的图象恒在2y kx =图象的上方,求实数k 的取值范围. 【答案】(1)2()32f x x x =-+ (2)1,8⎛⎫-∞- ⎪⎝⎭【分析】(1)设二次函数2()f x ax bx c =++,利用题目条件可以得到关于,,a b c 的方程组,解方程组得到,,a b c ,即可得到()f x 解析式;(2)因为k 的取值不同,函数2y kx =的图象不同,所以我们可以先分类讨论k ,其次函数()f x 图象恒在函数2y kx =图象上方,即有()0f x y ->恒成立,于是问题转化为一元二次不等式恒成立问题,即可利用∆求解.【详解】(1)设二次函数2()f x ax bx c =++,(0)a ≠,由题意知:(1)=0(+1)()=22f f x f x x ⎧⎨--⎩,整理得:++=02++=22a b c ax a b x -⎧⎨⎩, 即:++=02=2+=2a b c a a b ⎧⎪⎨⎪-⎩,解得:=1=3=2a b c -⎧⎪⎨⎪⎩,∴2()32f x x x =-+.(2)由(1)知,2()32f x x x =-+的图象开口向上, ()=0f x 时,2320x x -+=,解得:=1x 或=2x ,∴当(1,2)x ∈,()0f x <,图象在x 轴下方,当(]2,4x ∈,()0f x >,图象在x 轴上方, 对于2y kx =,当=0k 时,=0y ,当(1,2)x ∈时,图象在()f x 图象的上方,不合题意,舍去; 当0k >时,2y kx =,开口向上,当(1,2)x ∈时,图象在()f x 图象的上方,不合题意,舍去;当0k <时,2y kx =,开口向下,函数()f x 的图象恒在2y kx =图象的上方,即()0f x y ->恒成立, 即:22320x x kx -+->恒成立,即:2(1)320k x x --+>恒成立,10k ->, 即有:2(3)4(1)2180k k ∆=--⨯-⨯=+<,即:18k <-.综上,k 的取值范围是:1,8⎛⎫-∞- ⎪⎝⎭.18.解关于x 的不等式:()()21R 21a x a x -≤∈-.【答案】答案见解析【分析】先移项通分合并同类项得到()221021a x a x --+≤-,问题转化为()()221210a x a x ⎡⎤--+-≤⎣⎦且210x -≠,再对0a =,2a =,a<0,02a <<,2a >五种情况进行分类讨论,即可得到不等式的解集. 【详解】由()2121a x x -≤-得()221021a x x x --+≤-,即()221021a x a x --+≤-,故不等式转化为:()()221210a x a x ⎡⎤--+-≤⎣⎦且210x -≠, 当0a =时,原不等式为21021x x -+≤-,即10-≤且210x -≠,故12x ≠,即不等式的解集为12x x ⎧⎫≠⎨⎬⎩⎭; 当2a =时,原不等式为3021x -≤-,解得12x >,故不等式的解集为12x x ⎧⎫>⎨⎬⎩⎭; 当2a ≠时,()()221210a x a x ⎡⎤--+-=⎣⎦的两个根为212a x a -=-,12x =,当a<0时,20a -<,()()()()221221*********a a a a a a a -----==>---,即21122a a ->-, 故不等式的解集为12x x ⎧<⎨⎩或212a x a -⎫≥⎬-⎭;当02a <<时,20a -<,21122a a -<-,故不等式的解集为212a x x a -⎧≤⎨-⎩或12x ⎫>⎬⎭; 当2a >时,20a ->,21122a a ->-,故不等式的解集为12122a x x a -⎧⎫<≤⎨⎬-⎩⎭;综上:当0a =时,不等式的解集为12x x ⎧⎫≠⎨⎬⎩⎭; 当2a =时,不等式的解集为12x x ⎧⎫>⎨⎬⎩⎭;当a<0时,不等式的解集为12x x ⎧<⎨⎩或212a x a -⎫≥⎬-⎭;当02a <<时,不等式的解集为212a x x a -⎧≤⎨-⎩或12x ⎫>⎬⎭;当2a >时,不等式的解集为12122a x x a -⎧⎫<≤⎨⎬-⎩⎭;19.已知关于x 的方程()12log 22xt x -=-有解,设满足题意的实数t 构成的集合为T .(1)求集合T ;(2)若1m >,1n >且t T ∃∈使得不等式33log log m n t ⋅≥成立,求+m n 的最小值. 【答案】(1)[)4,+∞ (2)18【分析】(1)方程()12log 22xt x -=-有解,等价于方程222x x t -=+有解,利用基本不等式求右侧式子的值域即可;(2)原问题等价于33min log log m n t ⋅≥,借助基本不等式求最值即可.【详解】(1)若关于x 的方程()12log 22xt x -=-有解,则方程222x x t -=+有解,因为2422242x x x x -+=+≥=, 当且仅当422xx=,即=1x 时,等号成立,所以实数t 的取值范围为[)4,+∞. (2)若t T ∃∈,使得不等式33log log m n t ⋅≥成立,只需33min log log m n t ⋅≥, 所以33log log 4m n ⋅≥,又因为1m >,1n >,所以3log 0m >,3log 0n >,则()2233333log log +log 4log log =24mn m n m n ≤⋅≤⎛⎫ ⎪⎝⎭, 即81mn ≥,(当且仅当=9m n =时等号成立)所以18m n +≥(当且仅当=9m n =时等号成立),即+m n 的最小值为18.20.已知函数()sin 0,0,π()(||)f x A x A ωϕωϕ=+>><的部分图象如图所示,将函数()f x 的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数()g x 的图象.(1)求函数()g x 的解析式;(2)若对于()()2π0,,303x g x mg x ⎡⎤⎡⎤⎣⎦⎢⎥∀-⎣-⎦∈≤恒成立,求实数m 的取值范围.【答案】(1)π()2sin 36g x x ⎛⎫=+ ⎪⎝⎭,(2)1,22⎡⎤⎢⎥⎣⎦.【分析】(1)先根据函数图象求出()f x 的解析,再利用图象变换规律可求出()g x 的解析式; (2)由π0,3x ⎡⎤∈⎢⎥⎣⎦,得ππ7π3,666x ⎡⎤⎢⎥⎣∈⎦+,从而可得[]()1,2g x ∈-,然后分()0g x =,()[1,0)g x ∈-和(,])2(0g x ∈求解即可.【详解】(1)由()f x 的图象可得2A =,5πππ212122T ⎛⎫=--= ⎪⎝⎭, 所以πT =,所以2ππω=,得2ω=,所以()()(|2sin 2π|)f x x ϕϕ=+<,因为()f x 的图象过5,212π⎛⎫- ⎪⎝⎭,所以52sin 2212πϕ⎛⎫⨯+=- ⎪⎝⎭,所以5sin 16πϕ⎛⎫+=- ⎪⎝⎭, 所以5ππ2π,Z 62k k ϕ+=-∈,得4π2π,Z 3k k ϕ=-∈, 因为||πϕ<,所以2π3ϕ=, 所以()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,将函数()f x 的图象上所有点的横坐标变为原来的23,纵坐标不变,可得32π2π2sin 22sin 3233y x x ⎛⎫⎛⎫=⨯+=+ ⎪ ⎪⎝⎭⎝⎭,再将所得函数图象向右平移π6个单位长度,得π2ππ2sin 32sin 3636y x x ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π()2sin 36g x x ⎛⎫=+ ⎪⎝⎭(2)由π0,3x ⎡⎤∈⎢⎥⎣⎦,得ππ7π3,666x ⎡⎤⎢⎥⎣∈⎦+,所以π1sin 3,162x ⎛⎫+∈- ⎪⎝⎭⎡⎤⎢⎥⎣⎦,所以[]π2sin 31,26x ⎛⎫+∈- ⎪⎝⎭,所以[]()1,2g x ∈-,当()0g x =时,30-≤恒成立,当()[1,0)g x ∈-时,则由()()230g x mg x -⎤⎦-⎣≤⎡, 得3()()m g x g x ≤-, 因为函数3y x x=-在[1,0)-上为增函数,所以min 33()12()1g x g x ⎡⎤-=--=⎢⎥-⎣⎦ 所以2m ≤,当(,])2(0g x ∈,则由()()230g x mg x -⎤⎦-⎣≤⎡, 得3()()m g x g x ≥-, 因为函数3y x x=-在(0,2]上为增函数,所以max 331()2()22g x g x ⎡⎤-=-=⎢⎥⎣⎦ 所以12m ≥, 综上122m ≤≤,即实数m 的取值范围为1,22⎡⎤⎢⎥⎣⎦.21.已知点11(,())A x f x ,22(,())B x f x 是函数()2sin()(0,0)2f x x πωϕωϕ=+>-<<图象上的任意两点,函数f (x )的图象关于直线x =1118π对称,且函数f (x )的图象经过点(0,P ,当()()124f x f x -=时,12x x -的最小值为3π.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间;(3)当x ∈06,π⎡⎤⎢⎥⎣⎦时,不等式()2()mf x m f x +≥恒成立,求实数m 的取值范围.【答案】(1)()2sin(3)3f x x π=-;(2)252[,](Z)183183k k k ππππ-++∈; (3)1[,)3+∞.【分析】(1)根据给定的条件,结合正弦型函数的图象性质求出周期,进而求出,ωϕ作答. (2)由(1)的结论,利用正弦函数的单调性求解作答.(3)求出函数()f x 在给定区间上的取值集合,再分离参数求解作答.【详解】(1)由()()124f x f x -=知,函数()f x 在12,x x 处的函数值一个是最大值,另一个是最小值,又12x x -的最小值为3π, 于是得函数()f x 的周期T =23π,即2πω=23π,则3ω=, 有()()2sin 3f x x ϕ=+,又函数f (x )的图象关于直线1118x π=对称, 因此113,Z 182k k ππϕπ⨯+=+∈,而02πϕ-<<,于是有1,3k πϕ==-, 所以函数f (x )的解析式是()2sin(3)3f x x π=-. (2)由(1)知,()2sin(3)3f x x π=-,由232,Z 232k x k k πππππ-+≤-≤+∈,得252,Z 183183k k x k ππππ-+≤≤+∈, 所以函数f (x )的单调递增区间为252[,](Z)183183k k k ππππ-++∈.(3)当[0,]6x π∈时,3336x πππ-≤-≤,有1sin(3)32x π≤-≤,则()1f x ≤,即有2()0f x +>,因此()2()2()12()2()f x mf x m f x m f x f x +≥⇔≥=-++,显然22()3f x +≤,则当()1f x =时,()2()f x f x +取得最大值13,从而得13m ≥,所以实数m 的取值范围是1[,)3+∞.22.已知正实数a ,b ,c 满足3a b c ++=. (1)求111a b c++的最小值;(2)求证:()22222211112b c a ab bc ca a b c ++≥+++++.【答案】(1)3 (2)证明见解析【分析】(1) 由3a b c ++=,有()113a b c ++=,与111a b c ++相乘,利用基本不等式求最小值.(2) 要证()22222211112b c a ab bc ca a b c ++≥+++++,利用柯西不等式转化为证明()2229132ab bc ca a b c ≥+++++,由3a b c ++=,只需证()()1222218ab bc ca ab bc ca ++-++≤⎡⎤⎣⎦,换元,利用基本不等式可证.【详解】(1)正实数a ,b ,c 满足3a b c ++=,由基本不等式,()111111113333a b c b a c a b c a b c a b c b a b c c a ⎛⎫⎛⎫++=++++=++++++≥ ⎪ ⎪⎝⎭⎝⎭,当且仅当1a b c ===时等号成立.111a b c++的最小值为3. (2)222222222111b c a a b c ⎛⎫⎛⎫⎛⎫++=+++++,由柯西不等式,()22222229b c a ⎡⎤⎡⎤⎢⎥++++≥++=⎢⎥⎣⎦⎢⎥⎣⎦∴22222222291113b c a a b c a b c ++≥++++++ 要证()22222211112b c a ab bc ca a b c ++≥+++++ 只需证()2229132ab bc ca a b c ≥+++++ 即证()()222183ab bc ca a b c ≥+++++由3a b c ++=,2222229a b c ab bc ca +++++=,()2229222a b c ab bc ca ++=-++()()()()222312222ab bc ca a b c ab bc ca ab bc ca +++++=++-++⎡⎤⎣⎦令ab bc ca t ++=,0t >()()()()2612222122262182t t ab bc ca ab bc ca t t t t +-⎛⎫++-++=-=-≤⨯=⎡⎤ ⎪⎣⎦⎝⎭∴()()222318ab bc ca a b c +++++≤,得证.∴()22222211112b c a ab bc ca a b c ++≥+++++,当且仅当1a b c ===时等号成立.,。
江西省景德镇市景德镇一中2020-2021学年八年级下学期期末英语试题
绝密★启用前江西省景德镇市景德镇一中2020-2021学年八年级下学期期末英语试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单项选择 1.Trees can help reduce air pollution. ________, they can make the city cooler in hot summer. A .HoweverB .MoreoverC .OtherwiseD .Especially2.—How are you today?—Oh, I ________ as ill as I do now for a long time. A .didn’t feelB .wasn’t feelingC .haven’t feltD .don’t feel3.—What? We can take buses with just a mobile phone? —Yes. Buses in Nanjing began to ________ Alipay app. A .shareB .saveC .searchD .support4.It's said that ________ of the water around the world ________ polluted. A .two third; hasB .two thirds; haveC .two thirds; is5.—Are all the students from in your class?—No, there are only three in our class. The others are from other countries. A .Germany; Germen B .Germany; Germans C .German; GermansD .German; Germany6.The Hunchback of Notre Dame is the best novel that I ________ these years. A .have watchedB .was watchingC .have seenD .have read……订………________考号:______…○……………………—Yes, it’s bigger than ________ city in China. A .the biggest city; any B .the biggest cities; any C .the biggest city; any otherD .the biggest cities; any other8.He spends more time than he used to ____ with his parents. A .talkB .talkingC .talksD .talked二、完形填空What makes a hero? Most of us might not have the ____9____ to fight bravely in a war, as we imagine many heroes do. _____10_____, facing the spread of the novel coronavirus, many Chinese have shown their ____11____, resilience (韧性) and dedication (奉献), just like heroes do.“A hero is ______12______ who, in spite of weakness, doubt or not always knowing the answers, goes ahead and overcomes anyway,” said US actor Christopher Reeve, who was best known for playing Superman. ____13____ the epidemic ( 传 染 病 ), everyone is afraid of the deadly disease. But out of ____14____, compassion ( 同 情) or just simply wanting to do their jobs, some choose to hold their ____15____ down, stand out and fight the virus. They are known as “heroes in harm’s way”.Medical workers and scientists are always on the frontlines. Since the start of the novel coronavirus outbreak, scientists have been busy doing research and looking for new _____16_____. Experts Zhong Nanshan, 84, and Li Lanjuan, 73, for example, have worked day and night to develop rapid test kits and treat severe (重症的) patients. Doctor Zhang Wenhong from Shanghai tried to educate the public about the virus in a humorous way. Li Wenliang and some other medical workers even ____17____ their lives while fighting the epidemic. “China is always well protected by _______18_______ of them,” former US secretary of state Henry Kissinger once wrote. Indeed, it is medical workers who are riskingtheir lives in the battle._____19_____ these well-known names, many heroes remain _____20_____,although they also take risks and play their own parts. Construction ( 建筑) workers race ______21______ time to build makeshift ( 临时的) hospitals; volunteers ensure the transportation of supplies; and thousands of media workers keep the public updated with news and _____22_____ stories.Chinese writer Lu Xun said, “True heroes dare to look bravely to the gloomy ( 惨淡的) life and are bold ( 勇 敢 的 ) in facing up to the dripping ( 淋漓的 ) blood.” The battle against an epidemic is hard, but ____23____ there are heroes and heroic deeds, victory will be guaranteed (保证). 9.A .time B .choice C .chance D .challenge 10.A .Besides B .Anyway C .Therefore D .However 11.A .wisdom B .courage C .creativity D .strength 12.A .someone B .anyone C .everyone D .one 13.A .Instead ofB .DuringC .In case ofD .As for 14.A .responsibility B .interests C .pressure D .possibility 15.A .tear B .fear C .heart D .weakness 16.A .solutions B .treatments C .instructions D .technologies 17.A .lost B .saveC .improveD .progress 18.A .the best B .the most excellent C .the smartest D .the bravest 19.A .With B .Besides C .Without D .In spite of 20.A .unknown B .silent C .ordinary D .quiet 21.A .for B .against C .along with D .together with 22.A .creative B .interesting C .inspiring D .educational 23.A .in case thatB .even thoughC .only ifD .as long as三、阅读单选 How important is shopping to you? How much time do you spend buying things? Andtime will you spend in movie theaters, at amusement parks, at shopping malls, or at convenience stores? When you add it all up, you will probably see you spend a lot of your life consuming things. Consuming products is not necessarily bad. However, if we spend too much time doing it, we should look at it carefully.Imagine that you have a week off from school. You don’t have to go to class. However, in this week, you cannot spend any money—no shopping, no movies, no eating out. How would you spend your time? What things would bring you happiness? Perhaps you would take a walk with your best friend. Perhaps you would help a child read. Or you might spend time with your family.When we look back, it is likely that non-consuming experiences like these will be our most important memories. Why? Non-consuming activities are active, not passive. They don’t come in a package. You make the experience yourself. For example, each person who reads to a child will have a different experience. The experience changes with the reader, the child, and the book. Similarly, when you have a conversation with a friend, you are actively creating an experience. The conversation that you have with your friend cannot be experienced or recreated by anyone else. However, if you watch a movie with a friend, you will each have a packaged experience. It requires no action and little interaction between the two of you.The environment we live in encourages us to have packaged experiences. We feel that we must consume because we believe that buying is doing. However, we can start a personal revolution against consumerism. How? By consuming less. We can ask ourselves what experiences bring us the greatest satisfaction. Then we can organize our lives so that we have more of those kinds of experiences.24.If consuming products takes too much time, we should ________.A.spend less money B.think about it carefullyC.organize our things D.buy more things25.The word “those kinds of experiences” in the last sentence means ________. A.consuming experiences B.non-consuming experiences C.experiences that bring us great satisfaction D.experiences that let us relax 26.What is the writer’s main purpose in writing this passage?A.To introduce some ways of enjoying our spare time.B.To encourage people to have more active experiences.C.To explain reasons behind people’s shopping behavior.Considered as one of the English language’s most talented poets, John Keats wrote poems that focused on imagination, human nature, and life. Although Keats didn't receive much education on literature, his own studies and interests brought him much success. Also, his own life situation made a great difference to his poems.Growing up as a young boy in London in a lower middle-class family, the young John didn't attend a private school, but went to a public one. His mother was not well educated. His teachers and his family’s friends considered him as a common boy who preferred playing and fighting much more to minding his studies. After his father’s death in the early 1800s, followed by his mother's because of tuberculosis(肺结核), he began seeing life differently. He wanted to keep away from the world and did so by reading anything he could get his hands on.At around the age of 16, the teenage John Keats began studying medical treatment so that he too might become a doctor. However, his literary dream had taken too much of his life,especially with his love for the poems of Ehmund Spenser. He was able to have his first full poem published in the Examiner in 1816, named O Solitude!If I Must With Thee Dwell. Within two months in 1817, Keats had written another full poem, but was sharply criticized (批评) by a magazine. However, it didn’t stop his dream of poems.John Keats’ next work was Endymion, which was published in May 1818. The story includes a farmer who falls in love with the moon and leads him to a trip of one boy's hope to deal with the limitations (限制) of being human. Following Endymion, however, he tried something more story-based and wrote Isabella. During this time, John Keats began seeing his limitations in poetry because of his own limit in life experiences. He would have to have the “knowledge” connected to his poems. His next work was Hyperion that would like to mix all that he learned together. However, a bout (发作) with tuberculosis while visiting Italy would keep him from his work and finally take his life in 1821.27.John Keats' thoughts about life changed because of __________ .A.Edmund Spenser's poetry B.the deaths of his parentsC.the criticism of a magazine D.his early education from school 28.What is the common thing between John Keats and his mother?A.They received little education.B.They went to a private school.C.They died of the same disease.D.They showed strong interest in poetry. 29.What can we infer from the passage?A.Keats once had a chance of becoming a doctor.B.The poem Hyperion wasn’t completed by Keats.C.Edmund Spenser was the greatest poet in Keats’ time.D.Keats’ family must have been very poor when he was young.Four years ago, when I was a boy of 11, I got into the biggest trouble as a kid. It was a Saturday morning. Both my parents were out, leaving me and my 10-month-old sister became alone. Anyway, my sister was still asleep in her room. In fact, I had the house to myself. I decided to do some drawing. Soon I gave up. Nothing was on TV, so I felt bored and touched the candles on the shelf... I had an idea! What would happen if I set fire to some kitchen paper? Well, of course it went on fire, but it wasn’t the tiny flame(火箭)I’d expected, and I couldn’t blow it out. I threw it on the floor, and then luckily got my dad’s boots and stamped it out.I thought I was safe until there was a HUGE hole in my room. When my mum came home later, she smelt the smoke immediately. She dropped the shopping bag, luckily for me, over the hole. I thought this meant she would never see it. However, after running round the house checking for a fire, she of course picked up the bag and saw the hole. Next I was grounded(关禁闭)and in trouble for months. Even though, the hole was still there, reminding me of what I did.30.How old was the writer when he wrote the passage?A.11 years old.B.13 years old.C.15 years old.D.17 years old. 31.The underlined words “stamp out” in the first paragraph mean ________.A.吹灭B.扑灭C.杀灭D.浇灭32.Put the sentences in the right order according to the passage. ________①The boy set fire to some kitchen paper.①The boy did some drawing.①The boy was grounded.①The boy stamped the fire out.①His mother checked for a fire.A.①①①①①B.①①①①①C.①①①①①D.①①①①①33.What’s the main idea of the passage?A.It’s difficult to put out a fire.B.The boy didn’t look after his sister.C.The boy made a big trouble when he was 11.D.Don’t leave children home alone while shopping.When we look at animals, we know that they are not humans. But how do our closest friends dogs see us? Do they know that we are humans? Or do they actually think that we are just strange-looking dogs?You may be surprised to know that many kinds of animals do not notice such differences very much at all. For example, the cuckoo (布谷鸟) lays its eggs in the nest of another bird. These birds will feed the baby cuckoos, even though they look nothing like their real babies. This is because the birds feed in an instinctive ways.Other animals, it seems, will simply separate the world into animals they eat, and animals that eat them. When it comes to dogs, though, there is no simple answer to this question.Sheepdogs leave their mothers when they are born. They grow up with sheep, and come to see them as their family. For this reason, they never attack the sheep, and help protect them, they probably think the sheep are dogs too, but we can’t be certain.Similarly, if you keep a dog from birth, the way it sees the world will be different to a dog that grows up with other dogs. It will probably think it is the same kind of animal as you. This can even be true of humans. A Russian boy called Ivan Mishukov, born in 1998, was raised by dogs for two years and came to believe that he was a dog himself.34.What do some animals usually see other animals as?A.Food or enemies.B.Friends or enemies.C.Neighbors and relatives.D.Friends and neighbors.35.Why do sheepdogs protect the sheep?A.They are afraid of being punished.B.They regard the sheep as their family. C.They think of the sheep as their owners.D.They think sheep are a kind of dogs. 36.What can we learn from the last paragraph?A.Dogs can give humans a lot of help.B.Different dogs see the world similarly.订…………○…__考号:___________…………………○………C .People should see the world from a dog’s view. D .Environment influences how a person sees himself. 37.Which of the following is TRUE? A .Dogs see other animals as dogs too.B .The cuckoo prefers feeding other animals’ babies.C .Animals don’t know they are different from others.D .Dogs raised by humans may regard themselves as humans.The world's nights are getting surprisingly brighter. This is bad news for all kinds of creatures, including humans - as light pollution is becoming worse, taking away the darkness of night almost everywhere.Satellite* observations* made by researchers show Earth's artificially-lit* outdoor area grew by 2% a year from 2012 to 2016. So did night time brightness. Light pollution was even worse than that, according to the German-led team, because satellites cannot observe some of the LED lighting, especially blue light."Honestly, I had hoped that with LEDs we were improving the situation, for this new lighting technology has been developed to use less energy. But it turns out quite disappointing. ", said Kyba, the lead author of the study."Asia, Africa and South America, for the most part, have seen an increase in artificial night lighting. The cities in developing nations are brightening quite rapidly. Other bright places include greenhouses in the Netherlands and areas of agriculture. More and more places are fixing outdoor lighting because of its low cost and the growth in communities' wealth," the scientists said.One of the co-authors, Franz Holker of the Leibniz Institute of Freshwater Ecology and Inland Fisheries in Berlin, said things were already in a terrible situation."Many people are using light at night without really thinking about the cost," Holker said. "Not just the economic cost, but also the cost that you have to pay for environmentaldamage."The effect from the increasing artificial light is obvious, according to the researchers. People's sleep can be marred, which in turn can hurt their health. The life of birds, fish, insects and bats can be harmed. Plants can have longer growing periods. And people may forget about seeing stars or the Milky Way if the light pollution continues.Kyba and his team suggest avoiding bright lights whenever possible and using more useful ways to shine light on places such as parking lots or city streets. For example, dim, closely spaced lights can provide better visibility than bright lights that are more spread out. 38.Why is light pollution becoming worse according to the passage? A .Because LED lighting gives off blue light. B .Because there is increasing artificial lighting.C .Because people can pay for the electricity bill for home.D .Because scientists didn't suggest avoiding artificial lighting. 39.What can we learn from the passage? A .We can use bright lights in city streets. B .LED lighting can help reduce light pollution.C .Maybe we can't see the stars because of light pollution.D .The cities in developing nations don't fix outdoor lighting. 40.What does the underlined word "marred" probably mean? A .recordedB .controlledC .improvedD .influenced41.What's the best title of the passage? A .The Disadvantages of LEDs B .Brighter Nights Are Dangerous C .What Causes Light Pollution D .Ways to Reduce Light Pollution四、阅读还原7选5 根据文章内容从短文后的选项中选出能填入1-5小题横线上的最佳选项。
江西省景德镇一中2020-2021学年八年级下学期期末数学试题含答案
7.若关于x的一元二次不等式组 有解,则m的取值范围为__________.
8.平移小菱形”的图案,按图中规律,第20个图案中,小菱形的个数是_________.
9.如图所示,已知在梯形ABCD中,AD BC, ,则 _________.
三、解答题
16.如图,在 ABC中,AD是中线,∠ABC=30°,∠ADC=45°.
(1)求 的值;
(2)求 ACB的度数.
17.已知:在圆O内,弦 与弦 交于点 分别是 和 的中点,联结 .
(1)求证: ;
(2)联结 ,当 时,求证:四边形 为矩形.
18.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装,专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店支付员工的工资为每人每天82元,每天还应该支付其它费用为106元(不包含债务).
景德镇一中2020~2021学年第二学期期末考试卷初二(1)班数学
一、选择题
1.已知实数a,b满足 ,则 的值为()
A.-2B.0C.2D.0或2
2.已知a≠0,在同一坐标系中,y=ax与y=ax2的图象有可能是()
A. B. C. D.
3.如图,在Rt ABC中, C=90°,AC=1cm,BC=2cm,点P从A出发,以1cm/s 速沿折线AC→CB→BA运动,最终回到A点.设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图像大致是()
B.x1+x2< 0,x1·x2> 0
景德镇一中“十二五”发展规划
景德镇一中“十二五”发展规划为深入贯彻落实十七届四中全会精神,以科学发展观为指导,认真谋划好我校“十二五”的发展,促进我校在新的起点上实现更快更好的发展。
现结合我校“十二五”期间发展的实际,制定本规划。
一、“十一五”回顾----学校办学规模取得历史性突破,优质高中工程全面推进。
“十一五”期间,学校办学规模从2700余人共53个教学班发展到3600余人共65个教学班,规模扩大了33.3%,是我校教育发展史上发展最好的时期。
学校共投资1300万元,完成了综合大楼的校园建设,完善了实验教学的条件,促进了学校素质教育的蓬勃发展。
校园建设发生了翻天覆地的变化。
“十一五”期间,我校共向大学输送了4247名大学生,其中仅2010年,一本上线人数278人,二本上线581人,保送清华、北大等一流大学16人;五年中,录取清华、北大优秀学生共20名。
——教师队伍建设得到进一步加强。
以办人民满意的教育为宗旨,内强素质,外塑形象,切实加强师德师风建设,涌现出一批师德标兵和优秀教师,如全国劳动模范、特级教师武智理老师和全省优秀教师、省劳模梁宪平老师以及全市师德标兵徐幸老师。
我们在全校教师中开展了评选“双十佳”(十佳青年教师、十佳师德先进个人)活动,树立了一批师德好、业务强的先进教师典型,进一步激发了广大教师教书育人的积极性。
积极鼓励教师在岗进修,不断促进教师教学业务水平的提高。
——学生综合素质全面提升。
全面实施素质教育,既着力加强学科教学,发展学生智力;又注重学生的非智力因素培养,培养学生创新精神和实践能力,促进学生全面发展。
我们每年举办一次“谷雨诗会”,举行体育运动会,举办学校文化艺术节,开展学生才艺展示等活动,通过这些丰富多彩的活动进一步陶冶了学生的情操、增长了才干。
我校学生每年在参加全国、全省主体学科竞赛中,都有学科获得团体总分前六名,居全市乃至全省领先水平。
在每年举行的全国、全省中学生科技创新大赛、电脑作品比赛中,我校均处于全省领先水平,学生的社会实践活动也得到了长足的发展。
2022-2023学年江西省景德镇市一中高二下学期期中(17)、(18)、(19)班生物试题
2022-2023学年江西省景德镇市一中高二下学期期中(17)、(18)、(19)班生物试题1.运动神经元与骨骼肌之间的兴奋传递过度会引起肌肉痉挛,严重时会危及生命。
下列治疗方法中合理的是()A.通过药物加快神经递质经突触前膜释放到突触间隙中B.通过药物阻止神经递质与突触后膜上特异性受体结合C.通过药物抑制突触间隙中可降解神经递质的酶的活性D.通过药物增加突触后膜上神经递质特异性受体的数量2.下列有关人体内激素的叙述,正确的是A.运动时,肾上腺素水平升高,可使心率加快,说明激素是高能化合物B.饥饿时,胰高血糖素水平升高,促进糖原分解,说明激素具有酶的催化活性C.进食后,胰岛素水平升高,其既可加速糖原合成,也可作为细胞的结构组分D.青春期,性激素水平升高,随体液到达靶细胞,与受体结合可促进机体发育3. IFN-I是机体被病毒感染后产生的一类干扰素,具有广抗病毒活性,已被用于乙型肝炎的治疗。
研究人员对新冠患者的病情与IFN-I的相关性进行了3项独立的研究,结果如下。
研究①:危重症患者的血清中检测不到或仅有微量IFN-I,轻症患者血清中能检测到IFN-I。
研究②:10.2%的危重症患者体内检测到抗IFN-I的抗体,血清中检测不到IFN-I。
轻症患者血清中未检测到该种抗体,血清中检测到IFN-I。
研究③:3.5%危重症患者存在IFN-I合成的相关基因缺陷,血清中检测不到IFN-I。
下列相关叙述错误的是()A.研究②中10.2%的危重症患者不能用IFN-I治疗B.研究③中3.5%的危重症患者同时还患有自身免疫病C.部分危重症患者的生理指标之一是血清中缺乏IFN-ID.结果提示测定血清中的IFN-I含量有助于对症治疗新冠患者4.有人从真菌中提取到甲、乙和丙三种生长素类似物,分别测试三种类似物的不同浓度对莴苣幼根生长的影响,结果如图。
以下说法不正确的是A.甲、乙和丙对莴苣幼根生长的影响均具有两重性B.在0~20 ppm范围内,甲对莴苣幼根的促进作用大于丙C.乙的浓度大于20 ppm后,对莴苣幼根生长起抑制作用D.据图推测,用30 ppm的甲处理莴苣幼芽可抑制其生长5.实验发现,物质甲可促进愈伤组织分化出丛芽;乙可解除种子休眠;丙浓度低时促进植株生长,浓度过高时抑制植株生长;丁可促进叶片衰老。
江西省景德镇市景德镇一中2023-2024学年八年级上学期期中数学试题
江西省景德镇市景德镇一中2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题a<B.2a-A.||26.已知点A(-1,0),点B(2,的坐标为()A.(0,4)B.(0,二、填空题-9.比较大小:113510.《西江月》中描述:平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地.翻译成现代文为:如图,秋千EB=往前推进两步(10为.11.在一次夏令营活动中,老师将一份行动计划藏在没有任何标记的点学们两个标志点A,B1个单位长度表示1km离.12.在长方形ABCD中,沿AE翻折,得到AB'三、解答题(1)B 点关于y 轴对称的点的坐标为___________;(2)11OA B 是与OAB 关于x 轴对称的三角形,请画出15.中国机器人创意大赛于2014年7月15日在哈尔滨开幕.机器人比赛时行走的路径,机器人从A 处先往东走往西走2m ,再转向北走4.5m 处往东一拐,仅走0.5m 点B 之间的距离是多少?16.在平面直角坐标系中,已知点(23,3)P a +,(Q -b 的值.(1)P ,Q 两点关于x 轴对称;(2)P ,Q 两点关于y 轴对称;(3)直线PQ y ∥轴.18.计算:(1)24612+++(2)已知31a =+,b =19.已知点(34,2P a --(1)若点P 在x 轴上,则点(2)若(5,8)Q ,且PQ ∥(3)若点P 在第二象限,且它到20.如图所示,每个小正方形的边长都相等,的度数.21.(图1)是由10个边长均为它剪开后,重新拼成一个大正方形(1)在图(1)中,拼成的大正方形ABCD 的面积为___________,边(2)现将图(1)水平放置在如图(2)所示的数轴上,使得大正方形的顶点示1-的点重合,若以点B 为圆心,BC 边的长为半径画圆,与数轴交于点示的数.22.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点(1)a=,b=,点B的坐标为(2)当点P移动4秒时,请指出点(3)在移动过程中,当点23.我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.(1)特殊感知①等腰直角三角形___________②如图1,已知△ABC为勾股高三角形,其中BD=2AD=2,试求线段CD(2)深入探究如图2,已知△ABC为勾股高三角形,其中的高.试探究线段AD于。
20XX年景德镇一中、二中择校及普高分数线
20XX年景德镇一中、二中择校及普高分数线
20XX年景德镇一中、二中择校及普高分数线
根据江西省中招委20XX年有关政策,江西省教育厅等有关部门关于“招收择校生比例要严格控制在本校当年高中招生计划数的30%以下,低于此比例的不得提高”的规定,《景德镇市20XX年中等学校招生、普通高中学业水平考试工作意见》和《景德镇市20XX年中招工作有关规定》的精神,经市教育局党政联席会审定,现将景德镇一中、景德镇二中择校分数线及收费标准、市直一般普通高中最低控制分数线和普通中专、职业高中录取办法公告
一、景德镇一中、景德镇二中择校分数线及收费标准
1、景德镇一中择校生计划:184人
A类:520以上3000元/年
B类:500-519分5000元/年
C类:460-499分6000元/年
D类:459-400分8000元/年
2、景德镇二中择校生计划:138人
A类:520分以上3000元/年;
B类:500-519分4000元/年;
C类:480-499分6000元/年;
二、市直一般普通高中最低控制分数线
1、景德镇市第七中学
普通班统招最低控制分数线474分
美术班统招最低控制分数线第一志愿380分,第二志愿400分
2、景德镇市昌河中学统招最低控制分数线486分
3、景德镇市第十六中学统招最低控制分数线420分
4、景德镇市外国语学校统招最低控制分数线380分
5、景德镇市第三中学、景德镇市第十九中学最低控制分数线为360分
6、景德镇市太白园实验中学最低控制分数线460分
三、景德镇一专、景德镇机电中专、商
校及职业高中实行自主招生、注册录取。
市中招办
二O一0年七月十七日。
2021-2022学年江西省景德镇市第一中学九年级上学期期末化学试题(重点班)
2021-2022学年江西省景德镇市第一中学九年级上学期期末化学试题(重点班)1.下列资源的利用过程中发生了化学变化的是A.葡萄酿酒B.干冰制冷C.海水晒盐D.风能发电2.下列关于金属和合金的叙述中错误的是A.合金的硬度一般比各成分金属大B.生铁可以完全溶解在足量的稀盐酸中C.金属与金属、金属与非金属都可能形成合金D.长期使用铁锅烹调可以摄入铁元素从而预防缺铁性贫血3.某课外小组讨论、辨析以下说法,其中正确的是:①不锈钢和目前流通的硬币都是合金②天然气和酒精都是可再生能源③盐酸和食醋既是化合物又是酸④干冰和冰既是化合物又是氧化物⑤纯碱和烧碱都是碱⑥矿石和溶液都是混合物A.①②③④B.①④⑥C.①③④⑤⑥D.②③④⑤4.下列各组括号内除杂质的方法或试剂错误的是()A.CO 2中混有CO(点燃)B.Cu粉中混有CuO(稀硫酸)C.CO中混有CO 2 (氢氧化钠溶液)D.Cu粉中混有Fe粉(用磁铁吸引)5.下列变化,能通过加盐酸一步反应实现的是①AgNO3→HNO3②Fe2O3→FeCl2③Cu→CuCl2④Cu(OH)2→CuCl2⑤Fe→FeCl3A.①②B.②④C.①④D.③⑤6.“纸火锅”是用纸张代替金属材料做容器盛放汤料,当酒精燃烧时纸张未燃烧。
对此现象,下列解释合理的是A.纸张不是可燃物,不能燃烧B.空气不充足,纸张不会燃烧C.纸张被水浸湿后,导致其着火点降低D.水蒸发时吸热,温度达不到纸张的着火点7.对已变质的NaOH溶液进行如下实验,其中实验方案能达到实验目的的是A.A B.B C.C D.D8.下图是氢氧化钙的溶解度曲线。
在冬天气温为5℃时配制的氢氧化钙饱和溶液,在夏天气温为38℃时(水的蒸发忽略不计),不可能出现的情况是A.溶液变浑浊B.溶液变为不饱和C.溶液质量变小D.溶质质量分数变小9.为除去KCl溶液中少量的MgSO4和CaCl2杂质,需进行下列4项操作:①加入过量BaCl2溶液;②加入稀盐酸调pH=7;③加入过量K2CO3溶液;④过滤。
景德镇一中
景德镇一中
第二十期学生参加业余党校学习安排
宗旨:党校是学习马列主义、毛泽东思想、邓小平理论、“三个代表”讲话和践行科学发展观的重要阵地,是提高理论素养,增强党性观念,加强党性锻炼的熔炉,是培养入党积极分子、党的后备力量的摇篮。
目的要求:学习贯彻党的十七大会议精神,进行党的基本知识的教育,提高学员对党的认识,端正入党动机,坚定社会主义、共产主义信念,认真解决从思想上入党的问题。
学习安排:
二、观看革命教育影片
时间:3月24日和3月31日第8节课
地点:办公大楼一楼合班教室(二)
三、分组研讨
时间:4月7日第8节课
地点:团委办公室、办公大楼一楼合班教室(一)(二)
内容:结合课程内容,谈谈个人如何解决从思想上入党的问题
四、交流学习心得体会及结业典礼
时间:4月14日第8节课
地点:办公大楼一楼合班教室(二)
共青团景德镇一中委员会
2011年3月17日。
江西省景德镇市第一中学2021-2022学年高一上学期期中考试化学试题 Word版缺答案
景德镇一中2021—2022年度第一学期高一(13、14)班化学期中考试试卷可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 S 32 Fe 56 Ag 108 Ba 137一、选择题(共16题,每小题只有一个答案符合题意)1.设N A表示阿伏加德罗常数,下列叙述中正确..的是 ( )①标准状况下,11.2L以任意比例混合的氮气和氧气所含的原子数为N A②常温常压下, 8gCH4含有的电子数为5N A③0.5mol/L硫酸钠溶液中含有的Na+数为N A④标准状况下,4.48 L CCl4所含的原子数为N A⑤32g O2和O3混合气体中含有原子数为2N AA.①②③ B.①②⑤ C.②③⑤ D.③④⑤2.下列关于物质的检验说法正确的是 ( )A.向某溶液中加入足量稀盐酸后无变化,再加入BaCl2溶液产生白色沉淀,则原溶液中肯定含有SO42-B.钾元素焰色反应的操作:用铂丝蘸取氯化钾置于煤气灯的火焰上进行灼烧,直接观看其焰色C.NH4+的检验:向待检液中加入NaOH溶液并加热,可生成使潮湿的蓝色石蕊试纸变红的气体D.待检液加入盐酸可生成使澄清石灰水变浑浊的无色气体,则待检液中肯定含有CO32-3.在KCl、MgCl2、Mg(NO3)2形成的混合溶液中,c(K+)=0.1mol/L,c(Mg2+)=0.25mol/L,c(Cl-)=0.2mol/L,则c(NO3-)为: ( )A.0.15 mol/L B. 0.20 mol/L C.0.25 mol/L D. 0.40 mol/L4.下列有关金属冶炼的说法中,不正确的是()A.用电解熔融氯化钠的方法得到活泼金属钠 B.在加热的状况下利用氢气还原三氧化二铝得到金属铝C.用铝热反应原理炼得熔点较高的金属铬 D.热分解法直接加热HgO得到金属Hg5.在下列溶液中通入CO2气体至过量,原溶液最终消灭浑浊状态的是 ( )A.澄清石灰水 B.氢氧化钡溶液 C.氯化钙溶液 D.饱和碳酸钠溶液6.设N A为阿伏加德罗常数的值,下列说法正确的是 ( )A. 2.3g钠与水反应产生氢气的分子数为0.05N AB. 28gN2和N4组成的混合气体中含有的原子数为3N AC. 0.1 mol·L-1Na2SO4溶液含有0.1N A个SO42-D. 22.4L氯气中含有的电子总数肯定为34N A7.N2、O2、CO2的混合气体通过足量的Na2O2,充分反应后,体积变成原体积的7/9(同温同压),则原混合气体中N2、O2、CO2物质的量之比不行能为( )A. 4∶3∶2 B.1∶4∶4 C.3∶2∶4 D.5∶5∶88.在加入铝粉能产生氢气的溶液中,下列各组离子可能大量共存的是 ( ) A.Na+、 Ba2+、Cl-、NO3-B. Fe2+、 K+、NO3-、Cl-C.Na+、NH4+、AlO2-、SO42-D.NH4+、ClO-、SO42-、Na+9.只用试管和胶头滴管而不用其它试剂无法区分的一组试剂是 ( )A.KOH溶液和明矾的水溶液 B.Na2CO3溶液和HCl溶液C.NaHCO3溶液和HCl溶液 D.盐酸和NaAlO2溶液10.NaClO2可用作造纸的漂白剂,它由H2O2+2ClO2+2NaOH=2NaClO2+2H2O+O2制得,下列说法正确的是 ( ) A.H2O2是氧化剂,H2O2中的氧元素被还原 B.每生成1 mol O2转移的电子的物质的量为4 molC.ClO2中的氯元素被氧化 D.ClO2是氧化剂,H2O2是还原剂11.把NaHCO3和Na2O2的混合物放在密闭容器中加热,关于混合物加热前后消耗盐酸的物质的量,下列推断正确的是()A.加热前消耗得多B.加热后消耗得多C.加热前后一样多D.当Na2O2适量时才会一样多12.分类法是一种行之有效、简洁易行的科学方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
景德镇一中
第二十期学生参加业余党校学习安排
宗旨:党校是学习马列主义、毛泽东思想、邓小平理论、“三个代表”讲话和践行科学发展观的重要阵地,是提高理论素养,增强党性观念,加强党性锻炼的熔炉,是培养入党积极分子、党的后备力量的摇篮。
目的要求:学习贯彻党的十七大会议精神,进行党的基本知识的教育,提高学员对党的认识,端正入党动机,坚定社会主义、共产主义信念,认真解决从思想上入党的问题。
学习安排:
一、理论知识学习
二、观看革命教育影片
时间:3月24日和3月31日第8节课
地点:办公大楼一楼合班教室(二)
三、分组研讨
时间:4月7日第8节课
地点:团委办公室、办公大楼一楼合班教室(一)(二)
内容:结合课程内容,谈谈个人如何解决从思想上入党的问题
四、交流学习心得体会及结业典礼
时间:4月14日第8节课
地点:办公大楼一楼合班教室(二)
共青团景德镇一中委员会
2011年3月17日。