push over

合集下载

midas关于Pushover分析总结

midas关于Pushover分析总结

M i das进行P ushover分析的总结 1.1版-----完全是个人体会,有所错误在所难免一.不得不说的基本概念1.P ushover是什么和前提条件P ushover也叫推倒分析,是一种静力弹塑性分析方法,或者叫非线性静力分析方法,在特定前提下,可以近似分析结构在地震作用下的性能变化情况。

给桥梁用某种方式,比如墩顶集中力方式,施加单调增加的荷载,相应的荷载位移关系就会呈现明显的非线性特征。

这里可以认为IO是处在正常使用状态,LS为承载能力极限状态,CP是完全倒塌破坏。

从IO开始结构开始进入弹塑性状态,在LS前结构的损伤尚可修复,且结构整体是安全的,而越过LS 损伤就难以修复了,但是CP前还不至于倒塌。

设计中对于不同构件或部位,在特定地震作用下,其性能要求是不一样的。

而特定的前提很明确,就是在整个地震反应时程中,结构反应由单一振型控制,在《公路桥梁抗震细则》(以下简称《细则》)中,认为常规桥梁中的规则桥梁都满足这一条件(条文说明 6.3.4),因此E1地震可以采用简化反应谱方法,也可用一般的多振型反应谱方法,E2则用Pus hover。

2.P ushover的分析目的在E2地震作用下,《细则》要求:可见,对于规则桥梁,只需要检算墩顶位移就可以了。

对于单柱墩,容许位移可按7.4.7条推荐的公式进行计算,而双柱墩按7.4.8条要求进行Pus hover分析根据塑性铰的最大容许转角(7.4.3)得到。

而无论是7.4.3还是7.4.7都要用到Φy和Φu,对于圆形或者矩形截面可按附录B计算,而特殊的截面,可按7.4.4和7.4.5的要求计算。

计算方法可以自己编程实现,也可用现成的软件如R es ponse2000等来作为工具。

而对于在特定的E2地震作用下,墩顶的位移,都需要用P ushover的能力谱法得到。

所以Pus hover的目的一个是画出荷载位移曲线后,找到塑性铰达到最大容许转角时的曲线点,计算出墩顶容许位移,第2个目的是应用能力谱法,找到性能点,得到E2地震作用下,墩顶的位移。

浅谈静力弹塑性分析(Pushover)的理解与应用

浅谈静力弹塑性分析(Pushover)的理解与应用

浅谈静力弹塑性分析(Pushover )的理解与应用摘要:本文首先介绍采用静力弹塑性分析(Pushover )的主要理论基础和分析方法,以Midas/Gen 程序为例,采用计算实例进行具体说明弹塑性分析的步骤和过程,表明Pushover 是罕遇地震作用下结构分析的有效方法。

关键词:静力弹塑性 Pushover Midas/Gen 能力谱 需求谱 性能点一、基本理论静力弹塑性分析方法,也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种静力分析方法,在一定精度范围内对结构在罕遇地震作用下进行弹塑性变形分析。

简要地说,在结构计算模型上施加按某种规则分布的水平侧向力或侧向位移,单调加荷载(或位移)并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到控制点达到目标位移或建筑物倾覆为止,得到结构能力曲线,之后对照确定条件下的需求谱,并判断是否出现性能点,从而评价结构是否能满足目标性能要求。

Pushover 分析的基本要素是能力谱曲线和需求谱曲线,将两条曲线放在同一张图上,得出交会点的位移值,同位移容许值比较,检验是否满足特定地震作用下的弹塑性变形要求。

能力谱曲线由能力曲线(基底剪力-顶点位移曲线)转化而来(图1)。

与地震作用相应的结构基底剪力与结构加速度为正相关关系,顶点位移与谱位移为正相关关系,两种曲线形状一致。

其对应关系为:1/αG V S a =roofroof d X S ,11γ∆=,图1 基底剪力-顶点位移曲线转换为能力谱曲线其中1α、1γ、roof X ,1分别为第一阵型的质量系数,参与系数、顶点位移。

该曲线与主要建筑材料的本构关系曲线具有相似性,其实其物理意义亦有对应,在初始阶段作用力与变形为线性关系,随着作用力的增大,逐渐进入弹塑性阶段,变形显著增长,不论对于构件,还是结构整体,都是这个规律。

需求谱曲线由标准的加速度响应谱曲线转化而来。

PUSHOVER分析方法全攻略

PUSHOVER分析方法全攻略
性能控制点确定方法
4、操作流程详解-分析与结果查看
第37页/共50页
结果图形——层-剪力曲线
4、操作流程详解-分析与结果查看
第38页/共50页
最大弹塑性层间位移角,判断是否满足《建筑抗震设计规范条或高规条要求
结果图形——层-层间位移角曲线
4、操作流程详解-分析与结果查看
第39页/共50页
4、操作流程详解-分析与结果查看
各步骤铰状态图形结果
第40页/共50页
各步骤铰状态结果
4、操作流程详解-分析与结果查看
第41页/共50页
ATC-40将房屋遭受地震后,可能出现的状态主要分为:IO(ImmediateOccupancy) -立即居住DC(DamageControl) -损坏控制LS(LifeSafety) -生命安全SS(StructuralStability)-结构稳定 ATC-40给出了梁、柱、墙等构件在上述几种相应状态下的塑性限值,无论何种类型铰,都可以用图表示,纵轴表示轴力、弯矩、剪力等,横轴表示轴向变形、曲率、转角等,其中B、IO、LS、CP(CollapsePrevention)、C为性能点,其中B点出现塑性铰,C点为倒塌点,CP为预防倒塌点,各性能点所对应的横坐标为相应的弹塑性位移限值。
4、操作流程详解-定义推覆工况
加载方式
第21页/共50页
4、操作流程详解-定义推覆工况
第22页/共50页
最大位移一般为 总高度×弹塑性层间位移角限值,参见《建筑抗震设计规范 条
选择基本模态作为Pushover荷载的分布模式 。X向推覆,取x向平动的模态号,y向推覆,取y向平动的模态号。
4、操作流程详解-定义推覆工况
第18页/共50页
荷载增量很难获得稳定解

Pushover分析(弹塑性分析)

Pushover分析(弹塑性分析)

Pushover曲线 能力谱加速度Sa 基底剪力Vb
能力谱曲线
V Sa G1
(Sdt,sat)
Sd
top
1 X top ,1
顶点位移Dt
能力谱位移Sd
有效质量比
1
[ (Gi X i1 ) / g ]2
i 1
n
Sd T 2 Sa G
Gi 为结构第i楼层重量
[ Gi / g ][ (Gi X i2 1) / g]
Push-over的基本问题可以概括为三个方面:
如何求得结构的能力曲线? 如何确定结构的目标位移? 如何对计算结果进行评价?
结构能力曲线的计算包括两个方面的主要内容 一 计算模型的建立 二 侧向力的分布形式
结构计算模型—纤维模型
基于平截面假定,将梁柱的内力-变形关系转化成混凝土与钢 筋的单轴应力-应变关系。
为阻尼修正系数,取0.3~1.0
ED为阻尼所消耗的能量(图中虚线部分平行四边形的面积) EE为最大应变能(图中斜线阴影部分的三角形的面积)
Sa A1 A2 T 能力谱曲线 Sa api ay T 能力谱曲线 P EE
P
dy Sd ED
dpi
Sd
用双线型代替能力谱曲线的条件:A1=A2
Teq
T 1
T 2 Sdp Sd ( ) Sa R R 2
R表示由于结构的非弹性变 形对弹性地震力的折减系数
R ( 1) T 1 T T0 T0

R T T0
T0 0.65 0.3Tg Tg
采用Push-over方法对 抗震性能进行评估
最简单的方法是直接得到目标位移点(性能点)与结构的能力曲线。 得到性能点后,经过转化可以得到能力曲线上相应的点,能力曲线上的每 一个点都对应着结构的一个变形状态。根据性能点对应的变形,可以对结 构进行以下方面的评价:顶点侧移和层间位移角是否满足抗震规范规定的 位移限值;构件的局部变形(指梁、柱等构件的塑性铰变形),检验他是 否超过建筑某一性能水平下的允许变形;结构构件的塑性铰分布是否构成 倒塌机构。

push over 形容人

push over 形容人

push over: 形容人一、任务说明根据任务名称”push over”,本文将对这个形容人的词汇进行全面详细的探讨。

首先,我们将解释这个词汇的含义,并探讨它的历史背景和起源。

然后,我们将介绍一个被认为是”push over”的人的特征和行为。

最后,我们将分析这个形容词的正面和负面意义,以及它在不同语境下的使用。

二、词汇解释“push over”是一个英语词汇,通常用来形容一个容易被别人操控、影响或指使的人。

这个词汇可以用于描述一个软弱或易受欺负的人,他们往往缺乏自信和坚定的意志。

“push over”的直译是”推倒”,这个词汇暗示了这类人在决策和行动上缺乏坚定性,容易被他人推动。

三、历史背景和起源“push over”这个词汇最早起源于美国,最初用于描述拳击场上的一个情景。

当一个拳击手容易被对手推倒,无法保持稳定的立场时,人们开始使用这个词汇来形容这样的拳击手。

随着时间的推移,这个词汇逐渐扩展到其他领域,用来形容那些容易被他人推动的人。

四、被认为是”push over”的人的特征和行为1.缺乏坚定的意志力:“push over”通常指那些容易在决策面前动摇、犹豫不决的人。

他们缺乏坚定的意志力,对他人的建议容易采纳,无法坚持自己的意见。

2.容易受人操控:这类人在人际关系中容易被他人影响和操控。

他们常常为了迎合他人而改变自己的决策,缺乏独立思考和行动的勇气。

3.自信心不足:“push over”往往在表达自己的观点时缺乏自信,容易被他人的批评和质疑所动摇。

他们容易受到打击,无法坚定地维护自己的权益。

4.容易让步或妥协:这类人在处理冲突或分歧时容易退让,往往为了避免冲突而妥协或让步。

他们不愿意与他人发生冲突,导致被他人利用或欺负。

5.无法拒绝他人的请求:被认为是”push over”的人通常无法拒绝他人的请求或要求。

他们不愿意让他人感到失望或伤心,因此容易屈从于他人的意愿。

五、“push over”的正面和负面意义“push over”这个形容词具有一定的正面和负面意义,具体的解读取决于使用语境和描述的框架。

SAP2000之Pushover分析

SAP2000之Pushover分析

Pushover分析:基本概念静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。

静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。

控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。

Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。

从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。

正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。

这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。

第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。

两者在理论上是一致的。

在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移和结果评价的内容。

Pushover分析方法一般过程

Pushover分析方法一般过程

Pushover分析是基于性能设计的有力工具。

基于性能的设计可以使工程师更深入的理解和控制不同荷载水平下的结构行为。

SAP2000的非线性版本提供了Pushover分析功能。

进行Pushover分析的一般过程如下。

下面列出了Pushover分析的一般步骤,注意,其中某些步骤是由SAP2000自动完成的。

1)建立结构和构件的计算模型。

2)定义框架铰属性并指定其给框架/索单元。

3)定义钢或混凝土设计可能需要的任意荷载工况和静力与动力分析工况,特别是使用默认铰时。

4)运行设计需要的分析。

5)若任何混凝土铰属性是基于程序计算的默认值时,必须进行混凝土设计,这样确定配筋。

6)若任何钢铰基于程序对于自动选择框架界面计算的默认值,必须进行钢设计且接受程序选择的截面。

7)定义Pushover分析所需的荷载工况,包括:ν重力荷载和其他可能在施加横向地震荷载前作用在结构的荷载。

可能在前面对于设计已经定义了这些荷载工况。

ν用来推结构的横向荷载。

若准备使用加速度荷载或模态荷载,不需要任何新的荷载工况,虽然模态荷载需要定义一个模态分析工况。

8)定义Pushover分析使用的非线性静力分析工况,包括:ν一系列的一个或多个使用荷载控制的从零开始施加重力和其他固定荷载的工况。

这些工况包括阶段施工和几何非线性。

ν从此系列开始并施加横向Pushover荷载的一个或多个Pushover工况。

这些荷载应使用位移控制。

被监测的位移通常位于结构的顶部,将用来绘制Pushover曲线。

9)运行Pushover分析工况。

10)审阅Pushover结果:绘制Pushover曲线、显示铰状态的变形形状、力和弯矩图形,且打印或显示需要的结果。

11)按需要修改模型并重复。

应考虑几种不同的横向Pushover工况来代表可能在动力加载时发生的不同顺序的响应,这是很重要的。

特别地,应在X和Y两个方向推结构,且可能在两者间有角度。

对于非对称结构,在正和负方向推结构可能产生不同的结果。

Push-over方法的理论与应用共3篇

Push-over方法的理论与应用共3篇

Push-over方法的理论与应用共3篇Push-over方法的理论与应用1Push-over方法是一种基于地震工程的方法,用于评估建筑结构的抗震性能。

由于这种方法具有计算简单、易于理解和预测的优点,因此已成为目前世界上最常用的结构抗震性能评估方法之一。

本文将从理论与应用两个方面,介绍Push-over方法的基本原理、计算过程以及推广与应用情况。

一、Push-over方法的基本原理Push-over方法基于结构静力学理论,通过给结构施加已知的额定荷载,以推算结构的受力状态和应变状态。

具体地,这种方法是基于通常结构的弹塑性行为,使其处于不同的荷载水平,并对其进行了计算。

结构在不同的负载水平条件下施加不同的荷载,模拟地震发生时不同的荷载水平。

在Push-over方法中,结构以单自由度系统的形式进行拟合分析。

在单自由度分析中,结构的柔度和阻尼被用作两个关键参数。

推倒分析将使用图解来绘制荷载位移曲线,该曲线显示结构所承受的荷载级别,以及当结构逐渐失效并且最终完全崩塌时所吸收的能量水平。

在Push-over方法中,结构的抗震性能能力,通常以强度和韧性来表达。

结构强度是指结构能够在峰值地震荷载下保持完整性的能力。

结构韧性则是指结构能够在地震期间保持较高的能量吸收能力,防止过度占用结构的强度,从而实现逐渐崩溃的过程,使结构能够在地震后继续使用。

二、Push-over方法的计算过程Push-over方法的计算过程包括以下几个步骤:1、定义模型:定义模型为目标结构,并对模型进行规范化处理,以便将结构抽象为SDOF系统。

2、输入参数:确定结构的初始参数,包括质量、自振周期、自然频率、阻尼等参数。

3、定义荷载:定义几个最关键和最具代表性的荷载进行分析。

4、施加荷载:分别施加每个荷载,并记录模型的位移和刚度。

5、绘制行为曲线:将荷载和相应的位移遍历,在荷载与位移的坐标中画出行为曲线,并绘制文件图。

6、分析曲线:分析行为曲线的形状和特征,比较强度、韧性等性能指标,并评估结构的抗震性能。

静力弹塑性分析方法

静力弹塑性分析方法
在实际计算中必须注意一下几个问题:
(1)、计算模型必须包括对结构重量、强度、刚度及稳定性有较大影响的所有结构部件。
(2)对结构进行横向力增量加载之前,必须把所有重力荷载(恒载和参加组合的活荷载)施加在相应位置。
(3)结构的整体非线性及刚度是根据增量静力分析所求得的基底剪力-顶点位移的关系曲线确定的。
静力弹塑性分析方法(pushover法)分为两个部分,首先建立结构荷载-位移曲线,然后评估结构的抗震能力,基本工作步骤为:
第一步:准备结构数据:包括建立模型、构件的物理参数和恢复力模型等;
第二步:计算结构在竖向荷载作用下的内力。
第三步:在结构每层质心处,沿高度施加按某种规则分布的水平力(如:倒三角、矩形、第一振型或所谓自适应振型分布等),确定其大小的原则是:施加水平力所产生的结构内力与第一步计算的内力叠加后,恰好使一个或一批构件开裂或屈服。在加载中随结构动力特征的改变而不断调整的自适应加载模式是比较合理的,比较简单而且实用的加载模式是结构第一振型。
静力弹塑性分析方法
静力弹塑性分析方法(pushover法)的确切含义及特点
结构弹塑性分析方法有动力非线性分析(弹塑性时程分析)和静力非线性分析两大类。动力非线性分析能比较准切而完整的得出结构在罕遇地震下的反应全过程,但计算过程中需要反复迭代,数据量大,分析工作繁琐,且计算结果受到所选用地震波及构件恢复力和屈服模型的影响较大,一般只在设计重要结构或高层建筑结构时采用。
第四步:对于开裂或屈服的杆件,对其刚度进行修改,同时修改总刚度矩阵后,在增加一级荷载,又使得一个或一批构件开裂或屈服;
不断重复第三、四步,直到结构达到某一目标位移(当多自由度结构体系可以等效为单自由度体系时)或结构发生破坏(采用性能设计方法时,根据结构性能谱与需求谱相交确定结构性能点)。

PUSHOVER分析方法全攻略

PUSHOVER分析方法全攻略
静力弹塑性分析方法-Gen 730版
北京迈达斯技术有限公司
CCooppyyriigghht tⓒⓒ20200-0200-0270M0ID3 AMSIIDnAfoSrmIantfionrmTaetcihonnoloTgeycChnoo.,lLotdg.y
内容目录
• 1 大震分析程序简介 • 2、MIDAS/Gen适用范围 • 3、 pushover分析原理 • 4、操作流程详解 • 5、 常见问题与解答
可以做墙元。——操作便利,但 人为可干预性较弱。
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
2、MIDAS/Gen适用范围
高层结构 空间结构 体育场
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
分析目的: Pushover分析前要经过一般设计方法先进行耐震设计使结构满足小震不
坏、中震可修的规范要求,然后再通过pushover分析评价结构在大震作用下 是否满足预先设定的目标性能。如:
1、通过pushover分析得到结构能力曲线。与需求谱曲线比较,判断结 构是否能够找到性能点,从整体上满足设定的大震需求性能目标。
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
1、主要大震分析程序
方法
优缺点
应用程序 主要特点
1、优点:方法简单,便于理解。与动力时
静力弹塑性 程分析法相比,Pushover方法概念清晰, 实施相对简单,能使设计人员在一定程度
分析
性能点处基底剪力、控制点的位移。可与小震下基底剪力及控制点位移 比较,判断大震pushover分析结果的合理性。一般为3~4倍。

英语语法:短语pushover,putacross的用法?

英语语法:短语pushover,putacross的用法?

英语语法:短语pushover,putacross的用法上几期学习了英语语法:短语look around,look back的用法、短语look up,look up and down的用法、短语mess up,mix up的用法、短语pass by,pass down的用法、短语pay off,pay back的用法关注微博:@读外刊学英语动词短语是由动词和介词、副词、名词等构成的,在句中作谓语。

281.push over推倒用法:push over既可以用于主动语态,也可以用于被动语态,即be pushed over。

例句:We can see from the video that an old man was pushed over.我们从视频中可以看到一位老人被推倒了。

结构分析:We是主语,can see是谓语,from the video是介词词组作状语,that引导定语从句,an old man是主语,was pushed over是谓语。

282.put across解释清楚,使理解用法:put across后一般接名名词或者名词词组,与get across 同义。

例句:If he can’t put across the problem, he wouldn’t leave for home.如果他不能把问题解释清楚,他就不能离开并回家。

283.put aside置之不理,放一边用法:put aside后须接宾语,如果是人称代词,必须放在aside 前面。

例句:In order to achieve the cooperation, the two sides put aside their personal affairs.为了达成合作,双方把私人事务放在一边。

284.put away打消,抛弃用法:put away与perish the thought同义,也可以表示“储存,放好”。

PUSHOVER方法总结

PUSHOVER方法总结

PUSHOVER方法1.介绍PushOVER计算是属于非线性静力计算,可以考虑多种非线性:材料非线性(在连接/支座单元内的多种类型的非线性属性;框架单元内的拉和/或压极限;框架单元内的塑性铰);几何非线性(P-delta 效应;大位移效应);阶段施工(结构改变;龄期、徐变、收缩)。

所有在模型中定义的材料非线性将在非线性静力分析工况中考虑。

用户可选择考虑几何非线性的类型: 无 P-delta 效应 大位移效应。

阶段施工可作为一个选项。

即使独立的阶段是线性的,结构从一个阶段到下一阶段被考虑为非线性。

2 加载用户可施加任意荷载工况组合、加速度荷载和模态荷载。

其中模态荷载是用于pushover分析的特定类型的荷载。

它是在节点的力的模式,与特定振型形状、圆频率平方(ω2)、分配至节点质量的乘积成正比。

指定的荷载组合同时施加。

一般地,荷载从零增加至完全指定的量。

对于特殊目的(如pushover 或snap-though 屈曲),用户可选择使用监控结构所产生的位移来控制加载。

当用户知道所施加的荷载量,且期望结构能够承担此荷载时,选择荷载控制。

例如,施加重力荷载。

在荷载控制下,所有荷载从零增加至完全指定的量。

当用户知道所期望的结构位移,但不知道施加多少荷载时,选择位移控制。

这对于在分析过程中可能失去承载力而失稳的结构,是十分有用的。

标准的应用包括静力pushover 或snap-though 屈曲分析。

用户必须选择一个位移分量来监控,可以是节点的单个自由度,或一个用户以前定义的广义位移。

用户必须指定分析中的目标位移。

程序将试图施加达到此位移的荷载。

荷载量在分析中可被增加或减少。

确认选择一个在加载过程中单调增加的位移分量。

若这不可能,则用户必须将分析分割至两个或更多的顺序工况,在不同的工况中改变所监控的位移。

注意使用位移控制和在结构施加位移荷载是不同的!位移控制只用来计量从所施加荷载产生的位移,来调整荷载量,以试图达到某种计量的位移值。

PUSHOVER分析

PUSHOVER分析

静力非线性(Pushover)分析静力非线性(包括 pushover)分析是一个强有力的功能,仅提供在ETABS 非线性版本中。

除了为基于抗震设计性能执行 Pushover 分析外,此功能还可用于执行常规静力非线性分析和分段式(增加)构造的分析。

执行任何非线性将花费许多时间与耐性。

在执行静力非线性分析前,请仔细阅读下列全部信息。

要特别注意其中的重要事项。

非线性静力非线性分析中可以考虑几类非线性特征。

在框架/线单元中不连续的用户定义铰的材料非线性。

铰沿着任何框架单元长度指定到任何位置数上(参见线对象的框架非线性铰指定)。

非耦合弯矩、扭矩、轴力和剪力铰是有效的。

也有根据铰位置上的交互作用轴力和弯矩所屈服的耦合 P-M2-M3 铰。

在相同的位置可存在多于一种的铰类型。

例如,可以指定一个 M3(弯矩)和一个 V2(剪力)铰到框架单元的相同端部。

所提供的默认铰属性是基于 ATC-40 和 FEMA-273 标准的。

在连接单元中材料的非线性。

有效非线性特征包括沿任何自由角度的缝隙(仅压力)、hook(仅张力)、单轴塑性,以及两种基本隔震器类型(双轴塑性和双轴磨擦/摆动)(参见线对象的连接属性指定)。

连接阻尼属性在静力非线性分析中没有效应。

所有单元中的几何非线性。

可以选择仅考虑 P-△ 效应或考虑 P-△ 效应加上大位移(请参见几何非线性效应)。

大位移效应考虑变形配置的平衡,并允许用于大平移和旋转。

但是,每个单元中的应变被假设保留为小值。

分段(顺序)施工。

在每个分析工况中,可按阶段施工顺序添加或删除构件(请参见静力非线性分段施工)。

分析工况静力非线性分析可由任何数量的工况组成。

每个静力非线性工况在结构中可有不同的荷载分布。

例如:典型静力非线性分析可由三种工况组成。

第一种为结构应用重力荷载,其次为在结构的高度上应用一个横向荷载分布,第三种将在结构高度上应用另一个横向荷载分布。

静力非线性工况可从零初始状态开始,或从前一工况末的结果开始。

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点比较

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点比较

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点比较一、Pushover分析法1、Pushover分析法优点:(1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。

(2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。

2、Pushover分析法缺点:(1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。

(2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。

(3)只能从整体上考察结构的性能,得到的结果较为粗糙。

且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。

不能完全真实反应结构在地震作用下性状。

二、弹塑性时程分析法1、时程分析法优点:(1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。

(2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。

(3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。

(4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。

2、时程分析法缺点:(1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。

(2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。

所以此法的计算工作十分繁重,必须借助于计算机才能完成。

pushover分析

pushover分析
如何利用Pushover能力曲线来确定不同地震作用下结构的目标位 移,进而对结构的抗震性能作出评价,目前主要有以下两种:美国 ATC-40采用的能力谱法,美国FEMA-273推荐的等效位移系数法。
目标位移反映了结构在特定地震作用水平下可能达到的最大位 移,问题的核心实际上是反应谱(需求谱)的确定。
能力谱法
2021/10/10
26
结构能力曲线的分析步骤
(1)建立结构的计算模型,模型中应考虑所有对结构刚度、质量、强度 以及抗震性能有重要作用的构件。然后给结构加上重力荷载,重力荷载 包括全部恒载和部分静载。
(2)施加沿高度分布的某种水平荷载 静力弹塑性分析时所采用的水平侧力加载模式代表结构上地震惯
性力的分布,水平侧力加载模式直接影响分析结果。 水平侧力加载模式主要有均匀加载、倒三角形加载、基本振型加
xyrMr Qyr
将多自由度体系等效为单自由度体系的目的: 以单自由度体系的弹性、弹塑性反应反推多自由度体系的弹性、 弹塑性反应。 优点: 利用反应谱进行弹性范围内的计算,单自由度体系在理论上是 严密的;可以将反应谱的概念推广到弹塑性阶段,亦即所谓的 “弹塑性反应谱”; 针对单自由度体系的工作量大大少于针对多自由度体系的工作 量。上述这种基于振型向量与结构反应水平无关的等效方法最 为常见。
Chopra提出的弹塑性反应谱曲线 (不需要迭代求解)
Sdp
RSd
R(2T)2Sa
R表示由于结构的非弹性变 形对弹性地震力的折减系数
R(1)T 1
T0
TT0
R TT0
T00.650.3Tg Tg
采用Push-over方法对 抗震性能进行评估
最简单的方法是直接得到目标位移点(性能点)与结构的能力曲线。 得到性能点后,经过转化可以得到能力曲线上相应的点,能力曲线上的每 一个点都对应着结构的一个变形状态。根据性能点对应的变形,可以对结 构进行以下方面的评价:顶点侧移和层间位移角是否满足抗震规范规定的 位移限值;构件的局部变形(指梁、柱等构件的塑性铰变形),检验他是 否超过建筑某一性能水平下的允许变形;结构构件的塑性铰分布是否构成 倒塌机构。

pushover分析

pushover分析
(4)累加各个加载阶段的力和变形,就可以获得所有构件在所有加载阶段的总内力和总变形。不断重复步骤(3)直到结构 的侧向位移达到预定的目标位移,或者结构中出现的塑性铰过多成为机构。
(a)倒三角形加载
(b)抛物线加载
均匀加载
Pj

V n
(c)均匀加载
此模式适宜于刚度与质量沿高度分布较均匀,且薄弱层为底层的结构。
(d)变振形加载
(a)倒三角形加载
(b)抛物线加载
(c)均匀加载
(d)变振形加载
倒三角加载(底部剪力法模式)
Pj
Wjhj
n
V
Wi hi
i 1
此模式适宜于高度不大于40米,以剪切变形为主且刚度与质量沿高度分布较均匀的结构。
由Pushover方法基本假定(2)可知,结构的高度变形由结
构的形状向量{Φ}表示,并且在整个加载过程中,结构的形
状向量是固定不变的。
假定结构的相对位移向量可由结构顶点位移xtop 和形状向量
{Φ}表示:
x xtop
[M ] xtop [C] xtop R [M ]I xg (t)
Push-over的基本问题可以概括为三个方面:
如何求得结构的能力曲线? 如何确定结构的目标位移? 如何对计算结果进行评价?
结构能力曲线的计算包括两个方面的主要内容 一 计算模型的建立 二 侧向力的分布形式
结构计算模型—纤维模型
基于平截面假定,将梁柱的内力-变形关系转化成混凝土与钢筋的单轴应力-应变关系。
静力弹塑性(Pushover)分析方法
静力推覆分析是结构分析模型在一个沿结构高度为某种 规定分布形式且逐渐增加的侧向力或侧向位移作用下,采用 荷载控制或位移控制的方式,在加载过程中根据构件屈服程 度不断调整结构刚度矩阵,直至结构模型控制点达到目标位 移或结构倾覆为止,得到结构的基底剪力—顶点位移能力谱 曲线。

SAP2000:Pushover工况的定义

SAP2000:Pushover工况的定义

SAP2000:Pushover工况的定义点击定义>分析工况命令,选择分析工况类型为Static、分析类型为非线性。

如下图所示。

1.荷载施加控制Pushover 分析一般需要多个分析工况。

一个典型的Pushover 分析可能由3个工况构成:第一个将施加重力荷载给结构,第二个和第三个可施加不同的横向荷载。

Pushover 工况可以从零初始条件开始,或从前一个Pushover工况结束处的结果开始。

例如,重力工况从零初始条件开始,而两个横向工况的每一个从重力工况的结束处开始。

因为Pushover分析是非线性的,所以将其分析结果和其它线性或非线性分析叠加是不合理的。

当按规范要求比较Pushover 的结果时,需要在Pushover工况内施加所有适当的设计荷载组合。

这可能需要多种不同的Pushover工况来考虑所有规范规定的设计规范荷载组合。

当进行Pushover 分析时,必须在结构上施加代表惯性力的分布静荷载。

一般地,将荷载定义为下面一个或多个的比例组合:1)自定义的静荷载工况或组合。

2)作用于任意的整体X、Y、Z方向的均匀加速度。

在每一节点的力和分配给节点的质量成比例,且作用在指定的方向。

3)从指定特征类型或RITZ类型振型的振型荷载。

在每一节点的力和振型位移,振型角频率平方,及分配给节点的质量成比例。

力作用于振型位移方向。

对其他类型的分布形式,可以定义OTHER类型的静力荷载工况,分布为侧向分布的均匀或倒三角形分布,然后使用此静力荷载工况作为侧向荷载的分布。

比例系数在位移控制情况下只表示相对比例,不代表荷载的绝对数值。

2.分析控制参数点击对应施加荷载、结果保存、非线性参数对应的修改/显示按钮可以对Pushover 分析的其他控制参数进行设置。

在Pushover分析中,荷载与指定的荷载样式成比例的施加给结构。

指定荷载样式的初始乘数为零。

随着Pushover 分析的进行,此乘数逐步增加,直至到达指定的Pushover 结尾,或在某些情况直至结构不能承受附加的荷载。

Pushover分析(同济大学翁大根)

Pushover分析(同济大学翁大根)

基本安全指标 建筑性能水平
小震
地震地面运动
中震
小震
可用 (Operational)
立即居住 (Immediate Occupation)
生命安全 (Life Safety)

大震 大震
中震
√ √

注:基本安全指标如上表所示,是达到3-C(生命安全水准)及5-E(结构稳定水准)的双水准性能指标。
非线性静力分析(1)
速评估方法。
从形式上看,这是一种将静力弹塑性分析与反应谱相结
合、进行图解的快捷计算方法,它的结果具有直观、信息
丰富的特点。
非线性静力分析(3)
(Nonlinear Static Procedure)
Pushover方法是90年代以后出现的基于位移的抗震设计
(Displacement-Based Seismic Design)和基于性能(功能) 的抗震设计(Performance-Based Seismic Design, PBSD) 方法得于实现的重要工具。
退化;或者是某一构件(或一组构件)的侧向变形达到某一数值时, 导致结构失去重力承载能力。
11、精确模拟整体的强度退化。如果结构在第10步达到了侧向变形极
限,便停止加载,此时会有一个或者一组构件已经无法继续承担大部分或 所有的荷载,即其强度已明显退化,然后这根(批)构件的刚度会减少, 或者消失。从第3步开始再建立新的能力曲线。建立尽可能多的 Pushover曲线,可以更充分地表现强度丧失的全过程。图8.2中以三条不 同的能力曲线为例子表现这个过程。
(Nonlinear Static Procedure)
Pushover方法从本质上说是一种静力分析方法,对结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

采用Midas/Gen 进行剪力墙结构Pushover分析的方法介绍(2011-05-18 21:27:41)转载▼标签:剪力墙结构房产提要:本文首先介绍采用Midas/Gen进行Pushover分析的主要方法及使用心得,然后结合工程实例进行具体说明,其结果反映出此类结构在大震下表现的一些特点,可供类似设计参考。

关键词:Pushover 剪力墙结构超限高层 Midas/Gen静力弹塑性分析(Pushover)方法是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,本质上是一种静力分析方法。

具体地说,就是在结构计算模型上施加按某种规则分布的水平侧向力,单调加荷载并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到结构达到预定的状态(成为机构、位移超限或达到目标位移),得到结构能力曲线,并判断是否出现性能点,从而判断是否达到相应的抗震性能目标[1]。

Pushover方法可分为两个部分,第一步建立结构能力谱曲线,第二步评估结构的抗震性能。

对剪力墙结构体系的超限高层而言,选取Pushover计算程序的关键是程序对墙单元的设定。

SAP2000、ETABS软件没有提供剪力墙塑性铰,对框-剪结构可将剪力墙人工转换为模拟支撑框架进行分析;对剪力墙结构来说,进行转换不可行。

而Midas/Gen程序提供了剪力墙Pushover单元(类似薄壁柱单元,详见用户手册),对剪力墙能够设置轴力-弯矩铰以及剪切铰。

下面将详细介绍如何在Midas/Gen中进行Pushover分析的步骤(以Midas/Gen 6.9.1为例):一 Pushover分析步骤1. 结构建模并完成静力分析和构件设计直接在Midas/Gen中建模比较繁琐,可以用接口转换程序从SATWE(或其他程序如SAP2000)中导入。

SATWE转换程序由Midas/Gen提供,会根据PKPM的升级而更新。

转换仅需要SATWE中的Stru.sat和Load.sat文件。

转换时需要注意的是,用转换程序导入SATWE的模型文件后,形成的是Midas/Gen的Stru.mgt文件,是模型的文本文件形式,需要在Midas/Gen中导入此文件,导入后还应该注意以下几个问题:1) 风荷载及反应谱荷载没有导进来,需要在Midas/Gen中重新定义;2) 需要定义自重、质量;3) 需要定义层信息,以及墙编号;此外,还应注意比较SATWE的质量与Midas/Gen的质量,并比较两者计算的周期结果实否一致。

2. 输入Pushover分析控制用数据荷载最大增幅次数用于定义达到设定的目标位移(或荷载)的分步数,一般来说,分步越多,每次的增幅越小,最终得到的能力谱曲线越平滑。

但是分步过多带来计算时间上的大大增加,所以取值应该由少至多进行试算,直到取得满意的曲线结果为止。

图1 10分步,每步最大10次迭代结果图2 20分步,每步最大10次迭代结果最大迭代/增幅步骤数用于定义每一分步中的迭代/增幅次数,每进行一次迭代则对结果进行判断,收敛值若小于设定值就完成此分步,进入下一步。

如果迭代次数达到设定值还未收敛,则停止迭代进入下一步。

计算过程在“工程名.puh”文件中可以查看,输出结果包括每一步的迭代结果及收敛误差。

如下图所示。

表1 Pushover过程的文本输出(工程名.puh)3. 输入Pushover荷载工况静力弹塑性分析的荷载工况荷载控制即每步增加的侧向荷载是相同的,直至达到最终设定预估倒塌荷载。

当定义的塑性铰为FEMA类型时,不能用此种方法。

位移控制即将设定的目标位移按步数均分,每步增加侧向荷载至满足该步的位移增量,每步的荷载增量不一定相同。

在每步计算中以结构某一节点的最大平动位移达到该步目标位移为控制条件。

应该注意的是,每步产生最大位移的节点可能不相同,且每次所取的平动位移是在XYZ三个方向中取的大值。

所以一般情况下采用主节点控制。

主节点号的选择和主位移方向相关,设定主位移方向后,可取相应于侧向荷载模式的实际荷载条件下,求得的主位移方向上最大位移点的节点号。

例如:采用模态振型1的侧向荷载模式(假设振型1主要在X 方向产生位移),主方向为Dx,节点号就根据结构在振型1下X方向最大位移点来选择。

而采用静力荷载工况,如Wy时,主方向为Dy,节点号就根据结构在Wy下Y方向的最大位移点来选择。

最大位移初始值可取结构高度与弹塑性层间位移角限值的乘积,当得到能力谱曲线后可根据得到的性能点处位移调整最大位移限值,只要能够使需求谱与能力谱曲线得到交点即可。

初始荷载即竖向静力荷载,该荷载条件下的弹性内力结果将作为Pushover的初应力来处理。

一般是取“1.0恒+0.5活”(相当于重力荷载代表值)。

Midas/Gen提供了三类侧向荷载模式,分别为模态、静力荷载工况、加速度常量,每一类下面还有细分选项。

1) 模态可选静力分析得到的所有振型中任意一项。

常用的模态为第1、2平动振型,对矩形平面结构而言,分别对应于X或Y方向;对主轴与X或Y轴成一定角度的结构而言,如L型平面,则对应于结构平面的主轴或主轴垂直方向。

对后一类结构,采用模态分布的荷载进行Pushover分析,得到的是地震作用最大的方向的结果,反映了结构最不利方向的抗震性能。

高阶平动振型也可作为侧向分布荷载进行分析,用于需要考虑高阶振型影响的结构。

2) 静力荷载工况下包括了所有定义过的静力荷载工况,侧向荷载模式可选择X或Y向风荷载模式;3) 加速度常量可选择X、Y或Z三个方向,是将荷载以惯性力的方式加到每层上,作用力的大小仅与楼层质量有关。

如果各标准层质量基本相同,这种模式可看作均匀分布的侧向荷载。

在进行Pushover分析时很重要的一点就是要确定结构侧向荷载的加载模式,分析时所选模式应既能反映地震作用下结构各层惯性力的分布特征,又能体现地震作用下结构的位移形状[2]。

由于在一种固定荷载分布方式作用下不可能预测结构构件的各种变形情况,应此建议最少用两种侧向荷载分布方式进行分析。

根据有关文献,对于层数较低的结构,不同侧向加载方式下,其Pushover曲线、塑性铰分布、屈服机制、结构层间位移等指标差别不大,薄弱层出现的位置大致相同。

当层数较高时,结果差异逐渐加大[3]。

可先对各种分布方式计算的能力曲线进行分析,然后确定采用何种分布。

4. 定义塑性铰及分配塑性铰一般选用带有性能状态阶段划分的FEMA铰类型,位移结果中可显示不同颜色区分铰的各个阶段,并可在图例中看到各阶段的铰所占比例。

对梁分配弯矩铰,对柱和剪力墙分配轴力-弯矩铰。

剪力墙除分配轴力-弯矩铰之外,还须指定剪切铰。

考虑剪力墙在罕遇地震下应以弯曲破坏为主,避免出现剪切破坏,以保证结构整体足够的延性。

5. 分析结果Pushover曲线输出结果如下图所示。

要得到性能点,应该先将结构能力曲线转化成加速度谱-位移谱表示的能力谱曲线。

然后定义设计需求谱,设计谱只能在程序内设的各种规范的地震反应谱曲线中选取(注:由于6度区的罕遇地震谱规范没有说明,所以程序中没有预设)。

每种侧向力模式下得到的结构能力谱只有一条,反映的是结构自身的抗震能力;而需求谱是可以选择多条,对于不同的地震反应谱,得到的性能点不同。

程序提供了两种求性能点的方式,Procedure-A或B,具体计算方法可参见文献[1]。

如果能力谱和需求谱有交点,程序会自动给出此时交点的参数,如Sd(谱位移)、Sa(谱加速度);及相应的D(位移)、V(底部剪力)、Teff(等效周期)、Deff(等效阻尼比)。

在找到性能点以后,点下方的重画按钮,可以自动添加性能点的输出步骤。

在“添加层间位移输出的Pushover步骤”里可以看到性能控制点的结果。

另外,可以在结果>变形>变形形状中查看结构在整个Pushover过程中的变形以及铰生成情况。

打开图例选项,能够看到各分步中,处于各个阶段(界限点为B、IO、LS、CP、CD、E)的铰的比例。

如下图所示:塑性铰分布图在MIDAS/Gen中采用与FEMA-273或ATC-40中推荐的方法类似的方法评价构件的性能。

如图所示性能铰状态分为下列阶段。

图 1 构件的性能评价A点:未加载状态。

AB段:弹性阶段,具有初始刚度。

B点:公称屈服强度状态。

BC段:强度硬化阶段,刚度一般为初始刚度的5-10%,对相邻构件间的内力重分配有较大影响。

对BC段做了更细致的划分:IO = 直接居住极限状态(Immediate Occupancy)LS = 安全极限状态(Life Safety)CP = 坍塌防止极限状态(Collapse Prevention)C点:由公称强度开始,构件抵抗能力下降。

CD段:构件的初始破坏状态,钢筋混凝土构件的主筋断裂或混凝土压碎状态,钢构件抗剪能力急剧下降区段。

DE段:残余抵抗状态,公称强度的20%左右。

E点:最大变形能力位置,无法继续承受重力荷载的状态。

对构件层面而言,性能铰的状态与性能水准的对应如下:1) 构件完好、无损伤:构件性能铰处于AB段,此时构件完全处于弹性阶段;2) 构件轻微损坏,出现轻微裂缝:构件性能铰处于B~IO阶段,此时构件刚进入塑性,塑性程度较浅;3) 构件中等损坏,出现明显裂缝:构件性能铰处于IO~LS阶段,此时构件已进入屈服阶段;4) 构件严重损坏,但不发生局部倒塌:构件性能铰处于LS~CP、CP~C阶段,此时构件塑性承载力充分发挥,接近破坏。

二工程实例:1 项目概况单元为地上56层的高层建筑,平面呈“T”形,建筑物长度(L) 32.85 m、最大宽度(Bmax) 19.50m、高度(H)为179.60m,平面在128.35m标高处沿长度方向收进后的长度(L1)为27.25m,高宽比H/Bmax为9.21。

结构类型为钢筋混凝土全部落地剪力墙结构。

总高度和高宽比均超过规范B级高度钢筋混凝土高层建筑结构的限值,为超B级高度钢筋混凝土高层建筑。

属超限高层建筑工程,根据相关文件要求,须进行基于性能的抗震设计。

2 结构抗震性能设计结构抗震性能目标确定为性能目标“D”,即满足小、中、大震各阶段下的性能水准。

具体内容详见参考文献[1]。

性能设计时,先按现行规范进行小震阶段的结构设计,再通过Pushover分析校核中、大震性能水准。

根据校核结果调整结构设计进行第二次设计。

3 Pushover分析过程水平推覆力分布采用模态分布、风荷载分布、常量加速度分布三种形式,通过Pushover法建立结构的能力谱,由规范反应谱变换为结构中、大震作用下的需求谱,找出结构性能点。

根据性能点时的结构变形,对以下两个方面进行评价:a)层间位移角:是否满足抗震规范规定的弹塑性层间位移角限值;b)结构变形:由结构塑性铰的分布,判定结构薄弱位置。

相关文档
最新文档