二次函数导学案3

合集下载

6.2 二次函数的图象和性质(3)导学案

6.2 二次函数的图象和性质(3)导学案

6.2 二次函数的图象和性质(3)学习目标:1、会画二次函数y =a(x +m)2的图象,并理解二次函数y =a(x +m)2的图象与二次函数y =ax 2的图象的关系。

2、掌握y =a(x +m)2的图象和性质。

学习过程:一、知识复习1、二次函数y =2x 2+3与二次函数y =2x 2的图象之间的关系。

2和y =ax 2+k 的图象和性质1、在同一坐标系中画出下列函数的图象。

①y =x 2 ②y =(x +3)2 ⑴列表⑵描点并连线2、观察与思考:⑴函数y =(x +3)2与y =x 2的图象形状相同吗?⑵从列表的数值看,它们的函数值相等时,所对应的自变量的值有什么关系? ⑶从点的位置看,函数y =(x +3)2的图象与y =x 2的图象有什么关系? 3、在上题的坐标系中画出函数y =(x -2)2的图象,并说明它与y =x 2的图象的关系。

三、对比练习在同一坐标系中画出函数212y x=-、21(2)2y x =-+、21(3)2y x =--的图象,并观察它们的关系。

四、课堂小结抛物线y =a(x +m)2与抛物线y =x 2的形状______,只是________不同。

当m >0时,抛物线y =a(x +m)2可由y =ax 2的图象向_____平移_____个单位得到;当m <0时,抛物线y =a(x +m)2可由y =ax 2的图象向_____平移_____个单位得到。

五、随堂练习: ⑴函数21(1)2y x =-的图象可由函数212y x=向 平移 个单位得到;函数y =-2(x +3)2的图象可由函数y =-2x 2向 平移 个单位得到。

⑵函数y =-3(x -2)2的图象向 平移 个单位得y =-3x 2的图象;函数y =-2(x +4)2的图象向 平移 个单位得 y =2x 2的图象。

⑶将抛物线y =(x -2)2向 平移 个单位可得抛物线y =(x +1)2。

⑷抛物线y =-2(x +1)2可由抛物线y =-2(x -2)2向 平移 个单位得到的。

5.2 二次函数的图像和性质(3) 导学案

5.2 二次函数的图像和性质(3) 导学案

5.2.1二次函数的图像与性质⑷班级 姓名 【学习目标】1.会用描点法画二次函数()k h x a y ++=2的图像,掌握它的性质.2.渗透数形结合思想.【课前自习】22.抛物线22+=x y 的开口向 ,对称轴是 ;顶点坐标是 ,说明当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 3.抛物线()232--=x y 的开口向 ,对称轴是 ;顶点坐标是 ,说明当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 4.抛物线()2121+-=x y 与抛物线 关于x 轴成轴对称; 抛物线()2121+-=x y 与抛物线 关于y 轴成轴对称【课堂助学】一、 自主探索: 1.画出二次函数()2121-=x y 和()21212+-=x y 的图像:⑵在下列平面直角坐标系中描出表中各点,并把这些点连成平滑的曲线:2.观察上图:⑴函数 的图像与的图像的 相同, 相同, 不同, 不同;⑵函数可以看成 的图像先向 平移 个单位长度得到 函数 的图像,再向 平移 个单位长度得到.⑶函数 的对称轴是 ,在对称轴的左侧,即x 时,y 随x 的增大而 ;在对称轴的右侧,即x 时,y 随x 的增大而 .⑷函数 顶点坐标是 ,说明当x = 时,y 有最 值是 .二、探究归纳:1.二次函数()k h x a y ++=2的图像是一条 ,它对称轴是 ;顶点坐标是 ,说明当x = 时,y 有最值是 .2.当0>k 时,()k h x a y ++=2的图像可以看成是()2h x a y +=的图像向 平移个单位得到;当0<k 时,()k h x a y ++=2的图像可以看成是()2h x a y +=的图像向 平移 个单位得到.3.当0>a 时,抛物线开口向 ,顶点是抛物线的最 点.在对称轴的左侧,即x 时,y 随x 的增大而 ;在对称轴的右侧,即x 时,y 随x 的增大而 ;当0<a 时,抛物线开口向 ,顶点是抛物线的最 点.在对称轴的左侧,即x 时,y 随x 的增大而 ;在对称轴的右侧,即x 时,y 随x 的增大而 .4. 由于根据()k h x a y ++=2的解析式可直接得到函数图像的顶点坐标,故称之为. 三、典型例题:例1、⑴已知抛物线开口大小与221x y =的开口大小一样,但方向相反,且当x =-2时, y 有最值4,该抛物线的解析式是 ;()21212+-=x y ()21212+-=x y 221x y =221x y =()21212+-=x y ()21212+-=x y⑵抛物线()5122+--=x y 是由一抛物线先向左平移2个单位,再向下平移3个单位得到,则原抛物线的解析式是 ;⑶抛物线()212-+-=x y 与抛物线 关于x 轴成轴对称;抛物线()212-+-=x y 与抛物线 关于y 轴成轴对称.【课堂检测】1.二次函数()3522-+=x y 的图像是 ,开口 ,对称轴是 ;顶点坐标是 ,说明当x= 时,y 有最 值是 . 2.二次函数()2432+--=x y 的图像是由抛物线23x y -=先向 平移 个单位,再向 平移 个单位得到的;开口 ,对称轴是 ,顶点坐 标是 ,说明当x= 时,y 有最 值是 .3.将二次函数y=2x 2的图像向左平移3个单位后得到函数 的图像,再向上平移2个单位得到函数 的图像;新函数的顶点坐标是 ,其对称轴是 ,说明当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小.4.在同一坐标系中画出下列函数的图像:①()23+-=x y ②()23--=x y观察左图:⑴函数()122++-=x y 图像与()22+-=x y 的图像的 相同, 相同,相同, 不同.⑵函数()122++-=x y 可以看成2x y -=的图像先向 平移 个单位长度得到函数 的图像,再向 平移 个单位长度得到.⑶函数()122++-=x y 的对称轴是 ,在对称轴的左侧,即x 时,y 随x 的增大而 ;在对称轴的右侧,即x 时,y 随x 的增大而 .⑷函数()122++-=x y 顶点坐标是 ,说明当x = 时,y 有最 值是 .【课外作业】1.将抛物线y= -3x 2的图像先向左平移3个单位,再向下平移2个单位得到 的图像,新图像的对称轴是 ,顶点坐标是 ,当x= 时,y 有最 值是 . 2.函数y=3(x+6)2+2的图象是由函数y=3x 2的图象先向 平移 个单位,再向 平 移 个单位得到的;其图象开口向 ,对称轴是 ,顶点坐标 是 ;当x= 时,y 有最 值是 ;当x 时,y 随x 的增大而增大. 3.抛物线y=a (x+h )2+k 是由函数y=231x 的图象先向左平移1个单位长度,再向下平移2 个单位长度得到的,则a= ,h= ,k= .4.将函数y=3(x -4)2+3的图象沿x 轴对折后得到的函数解析式是 ;将函数y=3(x -4)2+3的图象沿y 轴对折后得到的函数解析式是 .5.将抛物线y= -2(x-3)2-1先向上平移3单位,就得到函数 的 图象,再向 平移 个单位得到函数y= 2(x+1)2+2的图象.6.抛物线()k h x a y ++=2经过点(-1,-4),且当x=1时,y 有最值是-2,求该抛物线的解析式.。

二次函数全章导学案(不分版本,通用)

二次函数全章导学案(不分版本,通用)

26.1二次函数§26.1.1《二次函数》导学案【学习目标】1. 了解二次函数的有关概念.2. 会确定二次函数关系式中各项的系数。

3. 确定实际问题中二次函数的关系式。

【学法指导】类比一次函数,反比例函数来学习二次函数,注意知识结构的建立。

【学习过程】【活动一】知识链接(5分钟)1.若在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的 ,x 叫做 。

2. 形如___________y =0)k ≠(的函数是一次函数,当______0=时,它是 函数;形如 0)k ≠(的函数是反比例函数。

【活动二】自主交流 探究新知(25分钟)1.用16m 长的篱笆围成长方形圈养小兔,圈的面积y(㎡)与长方形的长x(m)之间的函数关系式为 。

分析:在这个问题中,可设长方形生物园的长为x 米,则宽为 米,如果将面积记为y 平方米,那么y 与x 之间的函数关系式为y = ,整理为y = .2.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.3.用一根长为40cm 的铁丝围成一个半径为r 的扇形,求扇形的面积S 与它的半径r 之间的函数关系式是 。

4.观察上述函数函数关系有哪些共同之处?。

5.归纳:一般地,形如 ,(,,a b c a 是常数,且 )的函数为二次函数。

其中x 是自变量,a 是__________,b 是___________,c 是_____________.【活动三】课内小结 (学生归纳总结) (3分钟)(1)二次项系数a 为什么不等于0?答: 。

(2)一次项系数b 和常数项c 可以为0吗?答: . 【活动四】快乐达标(学生先独立完成5分钟,后组内互查2分钟.)1.观察:①26y x =;②235y x =-+;③y =200x 2+400x +200;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有 。

北师大版九年级数学下册2.1 二次函数 导学案(含答案)

北师大版九年级数学下册2.1 二次函数 导学案(含答案)

第二章二次函数2.1 二次函数学习目标:1.理解、掌握二次函数的概念和一般形式;(重点)2.会利用二次函数的概念解决问题;(重点)3.列二次函数表达式解决实际问题.(难点)一、复习回顾1.下列函数中哪些是一次函数?为什么?(x 是自变量)(4) y = kx + 1;(5) y2 = x;(6) y = 2x + 1.一、要点探究知识点一:二次函数的定义问题1 某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些树,以提高产量.但是树种多了,那么树之间的距离和每棵树接收的阳光就会减少.根据经验,估计每多种一棵树,平均每棵树就会少结5个橙子.(1) 问题中有那些变量?其中哪些是自变量?哪些是因变量?(2) 假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3) 如果果园橙子的总产量为y 个,那么请你写出y 与x之间的关系式.做一做银行的储蓄利率是随时间变化的,也就是说,利率是一个变量.在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的.设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是100 元,那么请你写出两年后的本息和y (元)的表达式.想一想(1) 两数的和是20,设其中一个数是x,你能写出这两数之积y 的表达式吗?(2) 已知矩形的周长为40 cm,它的面积可能是100 cm2吗? 可能是75 cm2吗? 还可能是多少? 你能表示这个矩形的面积与其一边长的关系吗?自主学习合作探究合作探究问题1~3 中函数关系式有什么共同点?同学们,以小组的形式讨论,并由每组代表总结.知识要点二次函数的定义:一般地,若两个自变量x,y 之间的对应关系可以表示成y = ax²+ bx + c( a,b,c 是常数,a≠0)的形式,则称y 是x 的二次函数.a为二次项系数,ax2叫做二次项;b为一次项系数,bx 叫做一次项;c为常数项.同学们,可以自己举出具体的二次函数吗?典例精析例1 下列函数中哪些是二次函数? 为什么? (x 是自变量)① y = (x + 3)² − x²;① y = 3 − 2x²;① y = x2;① y = 1x2;① y = x² + x³ + 25;① y = ax2 + bx + c.方法总结判断一个函数是否为二次函数的步骤:合作探究链接中考1.(西湖区月考) 已知( m 为常数),根据下列条件求m 的值:(1) y 是x 的一次函数;(2) y 是x 的二次函数;知识点二:二次函数的自变量取值范围问题:上述问题中的三个函数的自变量的取值范围是什么?① y = -5x² + 100x + 60000 ② y = 100x2 + 200x + 100③y = -x2 + 20x总结:二次函数的自变量的取值范围是所有实数,但在实际问题中,它的自变量的取值范围会有一些限制.知识点三:列二次函数关系式例3 一个正方形的边长是12 cm,若从中挖去一个长为2x cm,宽为(x + 1) cm的小长方形.剩余部分的面积为y cm2. 写出y与x之间的函数关系式,并指出y 是x 的什么函数?二、课堂小结1. (武汉)下列函数中,是二次函数的是( )2. 已知函数y = 3x2m-1-5① 当m =__时,y 是关于x 的一次函数;① 当m =__时,y 是关于x 的二次函数.3. 矩形的周长为16 cm,它的一边长为x cm,面积为y cm2.求(1) y 与x 之间的函数解析式及自变量x 的取值范围;(2) 当x = 3 时矩形的面积.参考答案一、创设情境,导入新知1.答案:(1) 是;(2)不是,是反比例函数;(3)不是,x 最高次数是二次;(4)不一定是,缺少k ≠0 的条件;(5) 不是,函数是每个唯一的x 都有唯一对应的y 值;(6)是.二、小组合作,探究概念和性质知识点一:二次函数的定义问题1:答案:(2) 果园共有(100 + x)棵树,平均每棵树结(600 - 5x)个橙子.y = (100 + x)(600 - 5x)= -5x² + 100x + 60000.当堂检测做一做答:y = 100x2 + 200x + 100.想一想(1) y = x(20 - x) = -x2 + 20x(2) 设矩形的其中一边长为x,面积为S.S = x(20 - x) = -x2 + 20x当S = 100 时,-x2 + 20x = 100. 解得x = 10.当S = 75 时,-x2 + 20x = 75. 解得x1 = 5,x2 = 15.典例精析答案:①不是,y = 6x + 9 ;②是;③是;④不是,等式右边是分式;⑤不是,x 的最高次数是 3 ;⑥不一定是,缺少a ≠0 的条件.链接中考1.解:(1) 由题意得∴m = 1.(2)y 是x 的二次函数,只须m2- m≠0.① m≠1 且m≠0.例3解:由题意得y=122-2x(x+1),又①x+1<2x≤12,①1<x≤6,即y=-2x2-2x+144(1<x≤6),① y 是x 的二次函数.当堂检测1.A2.① 1 ②3 23.解:(1) y=(8-x)x=-x2+8x (0<x<8);(2) 当x=3 时,y=-32+8×3=15 (cm2 ).。

6.4二次函数的应用(3)导学案

6.4二次函数的应用(3)导学案

BAh6.4二次函数的应用(3)学习目标:1、能运用二次函数的解析式解决简单的实际问题。

2、结合具体情景体会二次函数的意义,体会二次函数是刻画现实世界的一个有效的数学模型,了解数学的建模思想。

3、在数学的学习过程中培养情感体验,了解数学给人们带来价值及美感。

学习过程: 一、情景创设拱桥造型美,应用广,常见的桥孔形状除半圆形,椭圆形,马蹄形,还有抛物线形,下面请大家欣赏一组图片。

二、探索活动问题1: 河北省赵县的赵州桥的桥拱是抛物线型,所示的坐标系,其函数的表达式为y= -251x 2,当水位线在AB 位置时,水面宽 AB = 30这时水面离桥顶的高度h 是( )A 、5米B 、6米;C 、8米;D 、9米问题2: AB 宽20m ,水位上升到警戒线CD 时,CD 到拱桥顶O 的距离仅为1m,这时水面宽度为10m 。

⑴在如图所示的坐标系中求抛物线的解析式; ⑵若洪水到来时,水位以每小时0.3m 的速度上升, 从正常水位开始,持续多少小时到达警戒水位线?三、典型例题。

问题3:如图,一座抛物线拱桥架在一条河流上,这座拱桥下的水面离桥孔顶部3m ,水面AB 宽6m 时,能建立适当的平面直角坐标系吗?并求出相应的函数关系式。

BAA思考与交流当水位上升1m 时,水面宽多少(精确到0.1m )?四、拓展与延伸一艘装满防汛器材的船,在“问题3”所说的河流中航行,露出水面部分的高为0.5米、宽为4米,当水位上升1米时 ,这艘船能从桥下通过吗?六、巩固练习1、闻名中外的赵州桥是我国隋朝工匠发明并建造的一座扁平抛物线形石拱桥,石拱跨37.02m ,拱高7.23m 。

试在恰当的直角坐标系中求出与该抛物线桥拱对应的二次函数关系式。

2、我国台湾南投县附近的高速公路,有一座结构柔和典雅的钢拱桥,索塔为抛物线,塔高60m ,塔底宽85m 。

试在恰当的直角坐标系中求出与该抛物线过塔对应的函数关系式,并与同学交流。

七、课堂作业1、如图所示,桥拱形状为抛物线,其函数关系式为y =-41x 2,当水位线在AB 位置时,水面的宽度为12m ,这时水面离桥拱顶的高度h 是( )A .3mB .26mC .43mD .9m2、如图所示,一桥拱呈抛物线形,桥的最大高度为16m,跨度为40m,在线段AB上离中点5m的地方M处桥的高度为m。

二次函数(导学案)九年级数学上册同步备课系列(人教版)(解析版)

 二次函数(导学案)九年级数学上册同步备课系列(人教版)(解析版)

22.1.1二次函数学习目标:1)从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,经一步体验如何用数学的方法去描述变量之间的数量关系。

2)理解二次函数的概念,掌握二次函数的形式。

学习重点:二次函数的概念和解析式。

学习难点:用数学的方法去描述变量之间的数量关系。

1)学习过程一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.目前,我们已经学习了哪种类型的函数?问题一正方体的六个面是全等的正方形,设正方体的棱长为a,表面积为S,则S与a之间有什么关系?问题二n个球队参加比赛,每两队之间进行一场比赛。

比赛的场次数m与球队数有什么关系?问题三某工厂一种产品现在的年产量是20吨,计划今后两年增加产量。

如果每一年都比上一年的产量增加x倍,那么两年后,这种产品的产量y与x之间的关系应怎样表示?观察这三个式子你发现了什么?等号左边是函数,右边是关于自变量x的二次式,x的最高次数是22)归纳小结一般地,形如�=ax2+푏 +�(a、b、c是常数,a≠0)的函数叫做二次函数。

二次函数的特殊形式:1)当b=0时,y=ax2+c2)当c=0时,y=ax2+bx3)当b=0,c=0时,y=ax23)自我测试(基础)1.一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x 的函数关系式为()A.y=100(1﹣x)B.y=100﹣x2C.y=100(1+x)2D.y=100(1﹣x)2【详解】解:根据题意知y=100(1﹣x)2,故选:D.2.线段AB=5.动点以每秒1个单位长度的速度从点出发,沿线段AB运动至点B,以线段AP为边作正方形APCD,线段PB长为半径作圆.设点的运动时间为t,正方形APCD周长为y,⊙B的面积为S,则y与t,S与t满足的函数关系分别是()A.正比例函数关系,一次函数关系B.一次函数关系,正比例函数关系C.正比例函数关系,二次函数关系D.反比例函数关系,二次函数关系【详解】解:依题意:AP=t,BP=5-t,故y=4t,S=(5-t)2故选择:C3.下列函数表达式中,一定为二次函数的是()A.y=2x﹣5B.y=ax2+bx+c C.h=t22D.y=x2+1x【详解】解:A.是一次函数,故此选项错误;B.当a≠0时,是二次函数,故此选项错误;C.是二次函数,故此选项正确;D.含有分式,不是二次函数,故此选项错误;故选:C.4.对于y=ax2+bx+c,有以下四种说法,其中正确的是()A.当b=0时,二次函数是y=ax2+c B.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+c D.以上说法都不对【详解】A.当b=0,a≠0时.二次函数是y=ax2+c,故此选项错误;B.当c=0,a≠0时,二次函数是y=ax2+bx,故此选项错误;C.当a=0,b≠0时.一次函数是y=bx+c,故此选项错误;D.以上说法都不对,故此选项正确.故选D.5.设a,b,c分别是二次函数y=﹣x2+3的二次项系数、一次项系数、常数项,则()A.a=﹣1,b=3,c=0B.a=﹣1,b=0,c=3C.a=﹣1,b=3,c=3D.a=1,b=0,c=3【详解】解:二次函数y=﹣x2+3的二次项系数是a=﹣1,一次项系数是b=0,常数项是c=3;故选:B.6.y=mx m2+1是二次函数,则m的值是()A.m≠0B.m=±1C.m=1D.m=﹣1【详解】解:∵y=mx m2+1是二次函数,∴m≠0且m2+1=2,解得:m=±1.故选:B.7.已知函数y=m−2x m2−2+2x−7是二次函数,则m的值为()A.±2B.2C.-2D.m为全体实数【详解】解:∵函数y=m−2x m2−2+2x−7是二次函数∴m-2≠0,m2−2=2,解得:m=-2.故选:C.4)巩固练习(提高)8.一个二次函数y=(k−1)x k2−3k+4+2x−1.(1)求k的值.(2)求当x=3时,y的值?【详解】解:(1)依题意有k2−3k+4=2k−1≠0,解得:k=2,∴k的值为2;(2)把k=2代入函数解析式中得:y=x2+2x−1,当x=3时,y=14,∴y的值为14.5)本节课的收获、体会及存在问题。

2014-2015东北师大附属中学高三第一轮复习导学案--二次函数(3)

2014-2015东北师大附属中学高三第一轮复习导学案--二次函数(3)

二次函数(3) 二次函数在高考中占有重要地位,函数的很多题型都与二次函数有关,函数的单调性,奇偶性,周期性,三次函数求导,图象讨论等等,所以二次函数的有关问题必须过关。

五.课时作业三个二次问题(二次函数、不等式、方程)典题:【2014高考江苏卷第10题】已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 .1. 解关于的不等式:(1) x 2-(a +1)x +a <0,(2) .2 设集合A={x |x 2+3k 2≥2k (2x -1)},B={x |x 2-(2x -1)k +k 2≥0},且A B ,试求k的取值范围.3.不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,求实数m 的取值范围.4.已知二次函数y =x 2+px +q ,当y <0时,有-<x <,解关于x 的不等式qx2x 0222>++mx x ⊆2131+px +1>0.5.若不等式的解集为,求实数p 与q 的值.6. 设,若,,, 试证明:对于任意,有.7.【尖刀班】 设二次函数,方程的两个根满足. 当时,证明.8. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围.(2)若方程两根均在区间(0,1)内,求m 的范围.012>++p qx x p{}42|<<x x ()()f x ax bx c a =++≠20()f 01≤()f 11≤()f -11≤-≤≤11x ()f x ≤54()()02>++=a c bx ax x f ()f x x -=0x x 12,ax x 1021<<<()1,0x x ∈()1x x f x <<9. 已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R ).(1)求证:两函数的图象交于不同的两点A 、B ; (2)求线段AB 在x 轴上的射影A 1B 1的长的取值范围.10.已知实数t 满足关系式 (a >0且a ≠1) (1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2时,y 有最小值8,求a 和x 的值.11.如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围.12.二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足=0,其中m >0,求证:(1)pf ()<0; (2)方程f (x )=0在(0,1)内恒有解.33log log a y a t a a=]mrm q m p ++++121+m m13.一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元?14. 已知a 、b 、c 是实数,函数f(x)=ax 2+bx +c ,g(x)=ax +b ,当-1≤x ≤1时,|f(x)|≤1.(1)证明:|c|≤1;(2)证明:当-1≤x ≤1时,|g(x)|≤2;15. 设二次函数,方程的两个根满足. 且函数的图像关于直线对称,证明:.()()f x ax bx c a =++>20()f x x -=0x x 12,0112<<<x x a ()f x x x =0x x 012<16. 已知二次函数,设方程的两个实数根为和.(1)如果,设函数的对称轴为,求证:; (2)如果,,求的取值范围. 17. 设,,,求证:(Ⅰ) a >0且-2<<-1; (Ⅱ)方程在(0,1)内有两个实根.18. 已知二次函数的图象如图所示:(1)试判断及的符号;(2)若|OA|=|OB|,试证明。

人教版九年级数学二次函数的应用之三(桥洞问题)导学案教案

人教版九年级数学二次函数的应用之三(桥洞问题)导学案教案

九年级数学导学案班级姓名使用日期:201809 九年级数学导学案班级姓名使用日期:201809二次函数的应用之三(桥洞问题)1.会根据实际问题构建函数模型,把实际问题中的变量关系表示成二次函数关系;2.会运用二次函数的知识解决有关桥洞、隧道问题.【预习案】如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为多少米?【探究案】探究一桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A、C、B三点的抛物线,以桥面的水平线为x轴,经过抛物线的顶点C与x轴垂直的直线为y轴,建立平面直角坐标系,已知此桥垂直于桥面的相邻两柱之间距离为2米(图中用线段AD、CO、BE等表示桥柱)CO=1米,FG=2米.(1)求经过A、B、C三点的抛物线的解析式.(2)求柱子AD的高度.探究二某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示.(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由.探究三一座拱桥的轮廓是抛物线型(图1),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.【训练案】1.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若CA=米,则水面的宽度DC为().A.160米B.170米C.180米D.190米第2题2.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.。

九年级(人教版)集体备课导学案:第26章 二次函数 学案(三)

九年级(人教版)集体备课导学案:第26章 二次函数 学案(三)

二次函 数(1)一.导入:用长为20cm 的铁丝围成一个矩形,设矩形的一边长为x cm ,面积为y 2cm . 求:y 与x 的函数关系式.二.二次函数:形如c bx ax y ++=2(其中b 、c 为常数,且0≠a )的函数叫做x 的二次函数. 注:0≠a ,若0=b 可化为c ax y +=2;0≠a ,若0=c 可化为bx ax y +=2三.例题与练习:1.下列各式中:①2x y =,②012=-+y x ,③122=-y x ,④1212-+-=x xy ,⑤1+=x y ,⑥012=--x y ,其中y 是x 的二次函数的是 .练习:下列各式中,y 是x 的二次函数的是( )A .12=+x xy B.0222=-+y x C.22-=-ax y D.012=++y x2.若函数()22++-=x x m y m 是二次函数,则m 的值为 .练习:若函数()13112+-+=+x x m y m 是二次函数,则m 的值为 .3.若二次函数12++=mx x y 的图象经过点(2,1),则m 的值为 .练习:若二次函数()32122--+++=m m x x m y 图象经过原点,则m 的值为 .4.若二次函数c bx ax y ++=2满足1=++c b a ,则此二次函数的图象必经过点 ;若满足0=+-c b a ,则此二次函数的图象必经过点 .练习:若二次函数c bx ax y ++=2满足024=+-c b a ,则此二次函数的图象必经过点 .5.将函数3822--=x x y 化成 练习:将函数1632+--=x x y 化成 ()k h x a y +-=2的形式 ()k h x a y +-=2的形式7.将进货单价为30元的故事书按40元售出时,就能卖出500本书,已知这种书每本每涨价1元,其销售量就会减少10本.设销售单价为x 元,销售总利润为y 元.⑴写出y 与x 的函数关系式; ⑵求当销售单价为多少元时,销售总利润最大?最大利润为多少?练习:某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60kg ,单价每降低1元,日均多售出2kg ,在销售过程中,每天还要支出其他费用500元(天数不足一天,俺整天计算).设销售单价为x 元,日均获利为y 元.⑴求y 与x 的函数关系式,并注明x 的取值范围; ⑵求单价定为多少时,日均获利最多?最多为多少?课 后 作 业(1)1.下列各式中,y 是x 的二次函数的是( )A .0212=-+x yB.022=+y x C.22-=-x x D.0422=+-y x 2.若函数()4331-++=-x xm y m 是二次函数,则m 的值为( ) A .3或3- B.3 C.3- D.2或2-3.对于二次函数2432+-=x x y ,当1-=x 时,y 的值为( )A .9 B.1 C.3 D.3-4.二次函数c bx ax y ++=2,若2-=x 时,0=y ,则下列式子成立的是( )A .024=++c b a B.024=+-c b a C.024=++-c b a D.024=+--c b a5.二次函数42-=x y 与x 轴交点的坐标为( )A .(0,4-) B.(2,0) C.(2,0)和(2-,0) D.(2-,0)6.二次函数4322-+=x x a y 经过点(2,6),则a 的值为( )A .1 B.1- C.1或1- D.2或2-7.将下列二次函数化成一般形式.⑴()()232+--=x x y ⑵()2423--=x x y8.将下列二次函数化成()k h x a y +-=2的形式⑴51222+-=x x y ⑵342---=x x y9.求下列二次函数与x 轴、y 轴的交点坐标.⑴x x y 642-= ⑵542--=x x y10.某零售商购进一批单价为16元的玩具,销售一段时间后,为了获得更多的利润,商店决定提高销售价格,经过试验发现,当销售单价为20元时最多能销售360件,在这基础上每提高1元每月就少销售30件.设销售单价为x (元/件),每月的销售利润为y (元).⑴写出y 与x 的函数关系式; ⑵求当销售单价为多少元时,每月销售利润最大?最大利润为多少? 二 次 函 数(2)二次函数的图象与性质:一.例题与练习:1.二次函数2x y =⑴_______=a ,_______=b ,_______=c⑵当____=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:练习1:二次函数2x y -=⑴_______=a ,_______=b ,_______=c⑵当____=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:2. 相关知识: ⑴二次函数的图象为 ;⑵二次函数的图象为 图形; ⑶开口方向 ;⑷顶点坐标 ;⑸对称轴为 . ⑹增减性: . 练习2:在同一直角坐标系中画出二次函数22x y =与22x y -=的图象22x y =⑴列表:⑵描点,画出图象22x y -=⑴列表:⑵描点,画出图课 后 作 业(2)1.将二次函数()()x x y 323--=化为一般形式为 .2.对于二次函数6432---=x x y 来说,a = ,b = ,c = .3.若二次函数()21x m y -=的图象的开口方向向上,则m 的取值范围为 .4.二次函数241x y -=的顶点坐标为 ,对称轴为 . 5.若点A (2,8)与点B (2-,m )都在二次函数2ax y =的图象上,则m 的值为 . 6.已知点(m ,4-)在二次函数221x y -=的图象上,则m 的值为 . 7.请你写出一个顶点为原点,且开口方向向下的二次函数表达式为: .8.若二次函数()23x m y -=在对称轴右边的图象上,y 随x 的增大而减小,则m 的取值范围为 . 9.二次函数2ax y =的图象必经过的一点的坐标为 .10.若点A (4-,n )与点B (m ,8-)都在二次函数2ax y =的图象上,且关于对称轴对称,则n m +的值为 .11. 将函数下列各函数化成()k h x a y +-=2的形式⑴42212--=x x y ⑵2134322+--=x y12.在同一直角坐标系中画出下列函数的图象:⑴23x y = ⑵231x y -=13.请你利用上题中的直角坐标系和函数23x y =⑴画出23x y =向右平移3个单位的图象;⑵观察新得到的抛物线图象回答:顶点坐标为 ,对称轴为 ,与y 轴交点为 .※⑶请你试求出变换后的二次函数的解析式.二 次 函 数(3)二次函数的图象与性质:一.例题与练习:1.二次函数12+=x y⑴_______=a ,_______=b ,_______=c⑵当____=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:相关结论:⑴开口方向 ;⑵顶点坐标 ;⑶与2x y =的图象的关系 ;⑷对称轴为 ;⑸其图象是由2x y =的图象经过怎样的图形变换得到的?2.二次函数12--=x y⑴_______=a ,_______=b ,_______=c⑵当____=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:相关结论:⑴开口方向 ;⑵顶点坐标 ;⑶与2x y -=的图象的关系 ; ⑷对称轴为 ;⑸其图象是由2x y -=的图象经过怎样的图形变换得到的?练习:1.二次函数52-=x y 的图象是由2x y =的图象经过怎样的图形变换得到的?⑴开口方向 ;⑵顶点坐标 ;⑶对称轴为 . 2.练习:二次函数422--=x y 的图象是由22x y -=的图象经过怎样的图形变换得到的?⑴开口方向 ;⑵顶点坐标 ;⑶对称轴为 .3.练习:将二次函数23x y =的图象沿y 轴向上平移3个单位长度得到的函数解析式为 ,再沿y 轴向下平移7个单位长度得到的函数解析式为 .课 后 作 业(3)1.下列二次函数的开口方向向上的是( )A .132+-=x yB .32-=ax yC .2312-=x y D .()512--=x a y 2.若二次函数()1632--=x m y 的开口方向向下,则m 的取值范围为( ) A .2>m B .2<m C .2≠m D .2->m3.若二次函数1211-=x a y 与二次函数3222+=x a y 图象的形状完全相同,则1a 与2a 的关系为( )A .1a =2aB .1a =2a -C .1a =2a ±D .无法判断4.将二次函数22x y -=的图象向下平移5个单位,得到的抛物线的解析式为( )A .522+=x yB .522--=x yC .522+-=x yD .522-=x y5.若二次函数()2622--=x m y 由二次函数25x y -=平移得到的,则m 的值为( )A .1B .1-C .1 或1-D .0或1-6.二次函数3312--=x y 图象的顶点坐标为( ) A .(0,3) B .(0,3-) C .(31-,3) D .(31-,3-) 7.将二次函数122--=x y 图象向下平移5个单位得到的抛物线的顶点坐标为( )A .(0,6-)B .(0,4)C .(5,1-)D .(2-,6-)8.将二次函数12+-=x y 图象向左平移3个单位得到的抛物线的对称轴为( )A .直线0=xB .直线4=xC .直线3-=x D .直线3=x9.二次函数22x y =⑴将其向下平移2个单位得到的抛物线解析式为 .⑵通过列表,描点,画出⑴中抛物线的图象;⑶求⑵中抛物线与x 轴的交点坐标,并求出顶点与x 轴的交点所组成三角形的面积;⑷若点A (1x ,m )、B (2x ,n )在⑵中抛物线的图象上,且021<<x x ,则m 与n 的大小关系为 .※⑸若将二次函数22x y =图象沿x 轴翻折,再向上平移5个单位得到的抛物线的解析式为 .※⑹求直线1-=x y 与⑵中抛物线的交点坐标.二 次 函 数(4) 二次函数的图象与性质: 一.例题与练习: 1.二次函数()21+=x y⑴将此函数化成一般形式为 ,其中_______=a ,_______=b ,_______=c⑵当__________=x 时,函数值y 有最 (填大或小)值为⑶完成表格:⑷描点,画出图象:相关结论:⑴开口方向 ;⑵顶点坐标 ;⑶与2x y =的图象的关系 ;⑷对称轴为 ;⑸其图象是由2x y =的图象经过怎样的图形变换得到的?⑹猜想:二次函数()25-=x y 的图象是由2x y =的图象经过怎样的图形变换得到的?1.二次函数()21--=x y⑴将此函数化成一般形式为 ,其中_______=a ,_______=b ,_______=c ⑵当__________=x 时,函数值y 有最 (填大或小)值为⑶列表:⑷描点,画出图象相关结论:⑴开口方向 ;⑵顶点坐标 ;⑶与2x y -=的图象的关系 ; ⑷对称轴为 ;⑸其图象是由2x y -=的图象经过怎样的图形变换得到的? 练习:1.二次函数()26-=x y 的图象是由2x y =的图象经过怎样的图形变换得到的?⑴开口方向 ;⑵顶点坐标 ;⑶对称轴为 .2.练习:二次函数()232+-=x y 的图象是由22x y -=的图象经过怎样的图形变换得到的?⑴开口方向 ;⑵顶点坐标 ;⑶对称轴为 .3.练习:将二次函数23x y =的图象沿y 轴向上平移3个单位长度得到的函数解析式为 ,再沿x 轴向左平移7个单位长度得到的函数解析式为 .课 后 作 业(4) 1.对于二次函数4232-+-=x x y 来说,_______=a ,_______=b ,_______=c .2.抛物线322+-=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .3.将抛物线231x y =沿y 轴向下平移2个单位得到的抛物线的解析式为 ,再沿y 轴向上平移3个单位得到的抛物线的解析式为 .4.把抛物线c ax y +=2沿y 轴向下平移7个单位得到的抛物线的解析式为432-=x y ,则=a , =c .5.抛物线()232+-=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .6.将抛物线25x y -=沿x 轴向左平移6个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .7.把抛物线()2h x a y -=沿x 轴向右平移3个单位长度得到的新的二次函数解析式为()255--=x y ,则=a , =h .8.把抛物线221x y =向左平移3个单位,再向上平移2个单位,得到的抛物线的解析式为 ,此时抛物线的开口方向 ,顶点坐标为 ,对称轴为 .9.二次函数1422--=x x y⑴将其化成()k h x a y +-=2的形式;⑵说明⑴中抛物线是由22x y =的图象经过怎样的图形变换得到的?⑶写出⑴中抛物线的顶点坐标,对称轴.⑷求⑴中抛物线与x 轴、y 轴的交点坐标.10.二次函数()222--=x y⑴将此函数化成一般形式为 ,其中_______=a ,_______=b ,_______=c⑵当__________=x 时,函数值y 有最 (填大或小)值为⑶列表:⑷描点,画出图象⑸将该函数图象向右平移5个单位,再向下平移3个单位得到的抛物线的解析式为 ,此时抛物线的顶点坐标为 ,对称轴为 .二 次 函 数(5)二次函数的图象与性质:一.探究:1.将二次函数22x y -=的图象沿y 轴向上平移5个单位长度,再沿x 轴向左平移3个单位长度得到的函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .2.猜想二次函数()2122+-=x y 的图象顶点坐标为 ,对称轴为 ,是由22x y =的图象经过怎样的图形变换得到的? 3.将二次函数()2122+-=x y 化为一般形式为 .二.例题与练习1.二次函数4422+-=x x y⑴将其化为()k h x a y +-=2的形式⑵通过列表、描点画出该函数图象;⑶此函数的开口方向 ;顶点坐标为 ,意义为 ;对称轴为 .⑷其图象是由22x y =的图象经过怎样的图形变换得到的?⑷若将此图象沿y 轴向上平移5个单位长度,再沿x 轴向左平移2个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .2.相关规律:二次函数322+-=x x y 图象的画法⑴利用配方法将一般形式化为()k h x a y +-=2的形式即顶点式 顶点坐标为(h ,k ),对称轴为h x = ⑵列表:中间列分别为顶点的横坐标与纵坐标,共选7对有序实数对,⑶描点,画出图象3. 对于二次函数1632---=x x y⑴利用配方法将一般形式化为顶点式⑵通过列表、描点画出该函数图象;⑶此函数的开口方向 ;顶点坐标为 ,意义为 ;对称轴为 .⑷其图象是由22x y =的图象经过怎样的图形变换得到的?⑸若将此图象沿y 轴向上平移5个单位长度,再沿x 轴向左平移2个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .课 后 作 业(5)1.对于二次函数4222+-=x x y 来说,_______=a ,_______=b ,_______=c .2.抛物线2212--=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .3.将抛物线22x y -=沿y 轴向下平移5个单位得到的抛物线的解析式为 ,再沿y 轴向上平移2个单位得到的抛物线的解析式为 .4.把抛物线c ax y +=2沿y 轴向下平移4个单位得到的抛物线的解析式为432-=x y ,则=a , =c . 5.抛物线()2221--=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .6.将抛物线24x y =沿x 轴向左平移3个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .7.把抛物线()2h x a y -=沿x 轴向右平移3个单位长度得到的新的二次函数解析式为()255--=x y ,则=a , =h .8.把抛物线221x y =向左平移3个单位,再向上平移2个单位,得到的抛物线的解析式为 ,此时抛物线的开口方向 ,顶点坐标为 ,对称轴为 .9.二次函数3422+--=x x y⑴利用配方法将一般形式化为顶点式⑵此函数的开口方向 ;顶点坐标为 ,意义为 ;对称轴为 .⑶其图象是由22x y -=的图象经过怎样的图形变换得到的?⑷画出该函数的图象⑸在所提供的图中,画出该图象关于x 轴的对称图形,并直接写出所得新的抛物线的解析式.二 次 函 数(6)一.二次函数的性质:1.表达式:①一般式:c bx ax y ++=2(0≠a ); ②顶点式:()k h x a y +-=2(0≠a )2.顶点坐标:①(ab 2-,a b ac 442-) ②(h ,k ) 3.意义:①当ab x 2-=时,0>a ,y 有最小值为a b ac 442-;0<a ,y 有最大值为a b ac 442- ②当h x =时,0>a ,y 有最小值为k ;0<a ,y 有最大值为k4.a 的意义:0>a ,图象开口向上;0<a ,图象开口向下;21a a ±=说明两函数图象大小形状相同.5.对称轴:①ab x 2-=;②h x = 6.对称轴位置分析:①0=b ,对称轴为y 轴; ②0<ab ,对称轴在y 轴的右侧;③0>ab ,对称轴在y 轴的左侧;(左同右异)7.增减性:①0>a ,a b x 2->时,y 随x 的增大而增大;ab x 2-<时,y 随x 的增大而减小 ②0<a ,a b x 2->时,y 随x 的增大而减小;ab x 2-<时,y 随x 的增大而增大 8.与y 轴的交点为(0,c ) 9.与x 轴的交点:02=++c bx ax①042=-=∆ac b ,有一个交点; ②042>-=∆ac b ,有两个交点; ③042<-=∆ac b ,没有交点10.平移:化成顶点式()k h x a y +-=2,上加下减:m k ±;左加右减:m h ±二.练习:1.已知抛物线c bx ax y ++=2的图象如图,判断下列式子与0的关系.(填“<”“>”“=”) ①0____a ; ②0_____b ; ③0____c ; ④0____c b a ++;⑤0____c b a +-; ⑥0_____42ac b -; ⑦0____2b a +; ⑧0____2b a -;2.若二次函数b ax y +=2(0≠⋅b a ),当x 取1x 、2x 时,函数的值相等,则当x取21x x +时,函数值为 .3.若(5-,0)是抛物线c ax ax y ++=22与x 轴的一个交点,则另一交点坐标为 .4.已知抛物线322--=x x y⑴求此抛物线与x 轴的交点A 、B 两点的坐标,与y 轴的交点C 的坐标.⑵求ABC ∆的面积.⑶在直角坐标系中画出该函数的图象⑷根据图象回答问题:①当0>y 时,x 的取值范围?②当0<x 时,y 的取值范围?③当______x 时,y 随x 的增大而增大;当______x 时,y 随x 的增大而减小;课 后 作 业(6)1.已知二次函数()12322--+=x x m y 的图象的开口方向向上,则m 的取值范围为( )A .23>mB .23->mC .32->m D .23-<m 2.二次函数c bx ax y ++=2的图象如图,则下列结论错误的是( )A .0>aB .0<bC .0>abD .0=c3.将二次函数22x y -=向右平移2个单位,在向下平移3个单位得到的二次函数的解析式为( )A .()3222+--=x yB .()2322---=x yC .()3222---=x yD .()3222-+-=x y4.二次函数()k h x a y +-=2,当2-=x 时,y 有最大值为5,则下列结论错误的是( )A .0<aB .顶点坐标为(2-,5)C .对称轴为直线2-=xD .2=h5.抛物线c bx ax y ++=2的对称轴为直线0=x ,则下列结论一定正确的是( )A .0<aB .0=bC .0=cD .0>c6.下列点在二次函数42--=x y 的图象上的是( )A .(1,3-)B .(1-,3-)C .(1-,5-)D .(0,4)7.二次函数11211c x b x a y ++=与22222c x b x a y ++=的图象关于x 轴对称,则1a 与2a 的关系为( )A .相等B .互为相反数C .互为倒数D .相等或互为相反数8.已知点A (2,m )与点B (3,n )在二次函数()312+--=x y 的图象上,则m 与n 的关系为( )A .n m >B .n m =C .n m <D .无法判断9.已知二次函数c bx ax y ++=2的图象如图.⑴请你写出一元二次方程02=++c bx ax 的根;⑵请你写出不等式02>++c bx ax 的解集;⑶请你再写出3条从图象中得出的结论.10.已知二次函数12212--=x x y . ⑴求该抛物线的顶点坐标和对称轴;⑵通过列表、描点画出该函数图象;⑶求该图象与坐标轴的交点坐标.11.某商店经销一种销售成本为每千克40元的农产品,所市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减小10千克,设每千克农产品的销售价格为x (元),月销售总利润为y (元).⑴求y 与x 的函数关系式;⑶当销售价定为多少元时,月获利最大,最大利润是多少?二 次 函 数(7)二次函数解析式的确定: 一般形式:c bx ax y ++=2(0≠a )一.例题与练习:例题1.已知二次函数32++=bx ax y 的图象经过点(1,6)和点(1-,2),求此函数的解析式练习1.已知二次函数c bx x y ++=221的图象经过点(3-,6)和点(1-,0),求此函数的解析式 练习2.已知二次函数c x ax y +-=52的图象如图,求此函数的解析式例题2.已知二次函数的图象与x 轴的交点为(1-,0)和(3,0),且交y 轴于(0,4),求此函数的解析式练习1.已知二次函数与x 轴的交点为(2,0)和(6-,0),且经过点(3,9),求此函数的解析式练习2.已知二次函数的图象如图,求此函数的解析式练习3.已知二次函数的图象经过点(0,4)、(1,1)和(2,4),求此函数的解析式课 后 作 业(7)1.已知二次函数12+=ax y 经过点(1,2),则a 的值为 .2.已知二次函数c ax y +=2经过点(1-,3),则c a +的值为 .3.已知二次函数c bx ax y ++=2的图象经过点(1,4)、(0,3)和(2-,5-).⑴求该函数的解析式⑵利用配方法求出顶点坐标和对称轴⑶列表、画图⑷求出该函数与坐标轴的交点坐标,并求出以各交点为顶点的三角形的面积⑸当x 为何值时,y 随着x 的增大而增大?当x 为何值时,y 随着x的增大而减小?⑹分别写出0>y 和0<y 时,x 的取值范围.4.已知二次函数32++=bx ax y 的图象经过点(1,6)和点(1-,2),求此函数的解析式5.已知二次函数c bx ax y ++=2的图象经过点(3-,6)、(1-,0)和,求此函数的解析式6.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数。

苏科版九年级数学第六章《二次函数》全章导学案

苏科版九年级数学第六章《二次函数》全章导学案

《6.1 二次函数》导学案学习目标:1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义;2.了解二次函数关系式,会确定二次函数关系式中各项的系数。

一、知识准备:1.设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的 ,x 叫做 。

2.我们已经学过的函数有:一次函数、反比例函数,其中 的图像是直线, 的图像是双曲线。

我们得到它们图像的方法和步骤是:① ;② ;③ 。

3. 形如___________y =,( )的函数是一次函数,当______0=时,它是 函数,图像是经过 的直线;形如k y x=,( )的函数是 函数,它的表达式还可以写成:① 、② 二、提出问题(展示交流):1.一粒石子投入水中,激起的波纹不断向外扩展,扩大的圆的面积S 与半径r 之间的函数关系式是 。

2.用16m 长的篱笆围成长方形圈养小兔,圈的面积y(㎡)与长方形的长x(m)之间的函数关系式为 。

3.要给一个边长为x (m)的正方形实验室铺设地板,已知某种地板的价格为每平方米240元,踢脚线价格为每米30元,如果其它费用为1000元,那么总费用y (元)与x (m )之间的函数关系式是 。

三、归纳提高(讨论归纳):观察上述函数函数关系有哪些共同之处?它们与一次函数、反比例函数的关系式有什么不同? 。

一般地,形如 ,( ,且 )的函数为二次函数。

其中x 是自变量, 函数。

四、例题精讲(小组讨论交流): 例1 函数y=(m +2)x22-m +2x -1是二次函数,则m= .点拨:从二次函数的定义出发:看二次项的系数和次数确定m 的取值例2.下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=21x+x .A .1个B .2个C .3个D .4个例3、写出下列各函数关系,并判断它们是什么类型的函数.⑴圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;⑵某种储蓄的年利率是1.98%,存入10000元本金,若不计利息税,求本息和y (元)与所存年数x 之间的函数关系;⑶菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系五、课堂训练1.下列函数中,二次函数是( ) A .y=6x 2+1 B .y=6x +1 C .y=x 6+1 D .y=26x +12.函数y=(m -n )x 2+mx +n 是二次函数的条件是( ) A .m 、n 为常数,且m ≠0 B .m 、n 为常数,且m ≠n C .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数3.半径为3的圆,如果半径增加2x ,则面积S 与x 之间的函数表达式为( ) AS=2π(x +3)2B.S=9π+xC.S=4πx 2+12x +9 D S=4πx 2+12πx +9π4.下列函数关系中,满足二次函数关系的是( )A.圆的周长与圆的半径之间的关系;B.在弹性限度内,弹簧的长度与所挂物体质量的关系;C.圆柱的高一定时,圆柱的体积与底面半径的关系;D.距离一定时,汽车行驶的速度与时间之间的关系.5.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系_________.6.若一个边长为x cm 的无盖..正方体形纸盒的表面积为y cm 2,则___________y =,其中x 的取值范围是 。

22.1.3二次函数y=a(x-h)^2+k的图象和性质(3)导学案

22.1.3二次函数y=a(x-h)^2+k的图象和性质(3)导学案

课题 22.1.3二次函数k h x a y +-=2)(的图像和性质(3)课型:新 授 主备:张新年 时间:2020年09月 审核:张 峰 班级:九 班 姓名:【素养目标】(一)知识技能:1.能作出函数k h x a y +-=2)(的图象,能根据图象认识和理解二次函数k h x a y +-=2)(的性质并会初步应用.2. 掌握抛物线k h x a y +-=2)(的平移规律.3. 理解a 、h 、k 对二次函数图象的影响.(二)过程方法:1.经历从特殊到一般的研究过程,掌握数形结合思想方法.2.感受数学直观性、抽象性、严谨性,在方法迁移的过程中获得成功的体验.(三)情感态度:1.通过探索活动,认识理解二次函数的性质.2.在利用图象讨论二次函数k h x a y +-=2)(的性质时,深度合作交流,学会多角度解决问题,准确理解二次函数的性质.【学习重点】作函数2()y a x h k =-+的图象,根据图象认识和理解二次函数2()y a x h k =-+的性质,二次函数的初步应用.【学习难点】能利用二次函数的图象特征推测函数的性质,并利用二次函数的解析式对其图象特征进行解释和判断.【知识链接】九年级数学(上册.人教版)P 35—P 37 【学前准备】1.前几节课,我们都学习了形如什么样的二次函数的图像?你能说说它们的开口方向、对称轴和顶点坐标吗?(1)二次函数y=ax 2,当a 0时,开口向 ,当a 0时,开口向 ,其对称轴为 ,顶点( , ).(2)二次函数y=ax 2+k,当a 0时,开口向 ,当a 0时,开口向 ,其对称轴为 ,顶点( , ).(3)二次函数y=a(x-h)2,当a 0时,开口向 ,当a 0时,开口向 ,其对称轴为 ,顶点( , ).2.根据二次函数图像填空.(1)函数221y x -=,开口向 ,其对称轴为 ,顶点( , ),并且图像以 为界,呈左 右 增减变化趋势.(2)函数1-y 221x -=,开口向 ,其对称轴为 ,当x= ,y 有 值(填“最大”或“最小”) .(3)函数2211y )(+-=x ,开口向 ,其对称轴为 ,顶点( , ). 3.(2019年.惠州)二次函数图像如图所示,则a 1, a 2,a 3,a 4的大小关系是( )A .a 1>a 2>a 3>a 4B .a 1<a 2<a 3<a 4C .a 4>a 1>a 2>a 3D .a 2>a 3>a 1>a 4 【新知探究】画出1-1y 221)(+-=x 的图像,并指出它的开口方向、对称轴和顶点.怎样移动抛物线221y x -=就可以得到抛物线1-1y 221)(+-=x ? x ...... y描点、连线: 观察:1-1y 221)(+-=x 的图像,它的开口向 、 对称轴 和顶点 .抛物线221y x -=向 移动 个单位长度,在向 移动 个单位长度就得到1-1y 221)(+-=x . 『共同归纳』一般地,抛物线k h x a y +-=2)(与 形状相同, 不同.把抛物线y=ax ²向 (或 )向 (或 )平移,可以得到抛物线k h x a y +-=2)(.平移的方向、距离要根据 、 的值来决定.抛物线y=a(x -h)2+k 的特点:(1)当a 0时,开口向上;当a<0时,开口向 ;(2)对称轴是直线 ;(3)顶点坐标是( , ).(4)增减性:如果a>0,当x<h 时,y 随x 的增大而 ,当x>h 时,y 随x 的增大而 ;如果a<0,当x<h 时,y 随x 的增大而 ,当x>h 时,y 随x 的增大而 . 【新知应用】问题情景:要修建一个圆形喷水池,在池中心竖直安装一根水管.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?解:『共同归纳』二次函数实际应用题解体基本步骤:审题→ 模(建立二次函数模型) → 模(求解) →作答. 【随堂练习】1.说出下列抛物线的开口方向、对称轴及顶点.(1)5)3(22++=x y (2)2)1(32---=x y (3)7)3(42+-=x y 解:开口向 ;对称轴 ; 顶 点 .(4)6)2(52-+-=x y (5)b a x y ++=2)(2 (6)b a x y --=2)(2 解:开口向 ;对称轴 ; 顶 点 .2.抛物线5)3(22++=x y 与5)32(2++=x y 形状是否相同?为什么?3.填空:y =2(x -1)2+1的图象可以看成是将函数 的图象向上 平移1个单位得到的,也可以看成是将函数y=2x 2的图象向 平移 个单位再向 平移 个单位得到的.当x <1时,函数值y 随x 的增大而 ,当x >1时,函数值y 随x 的增大而 ;当x= 时,函数取得最 值,最小值y= .4.已知y =a(x -h)2+k 是由抛物线y =-12x 2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线则a= ,h= ,k= . 【拓展提高】1.(2019.桂林)将抛物线y =3(x -1)2+1向 平移 个单位长度,再向 平移 个单位长度得到抛物线y =3(x+1)2-1.2.(2018.西宁)如果抛物线k h x a y +-=2)(与y =-(x+1)2-1关于x 轴对称,那么抛物线k h x a y +-=2)(的解析式是: .3.(2019.呼和浩特)设A(-2,y 1),B(1,y 2),C(2,y 3)是抛物线y =a(x+1)2+a(a>0)上的三点,则y 1、y 2、y 3的大小关系为( )A.y 1>y 2>y 3B.y 1>y 3>y 2C.y 3>y 2>y 1D.y 3>y 1>y 2 4.(2020.上海)若二次函数y =(x -1)2-1的图像的顶点在直线y=kx-3上,则k= . 5.(2019.北京海淀)抛物线y 1=-x 2+2向右平移1个单位长度得到抛物线y 2,解答下列问题:(1)抛物线y 2的顶点坐标是( , ). (2)阴影部分的面积S= 。

新版苏科版九年级下5.2二次函数的图像和性质(3)导学案

新版苏科版九年级下5.2二次函数的图像和性质(3)导学案

6.2 二次函数的图像和性质(3)学生姓名:______ 班级:目标导航:1、能解释..二次函数222)(ax y m x a y k ax y =+=+=和二次函数、的图像的位置关系; 2、体会本节中图形的变化与图形上的点的坐标变化之间的关系(转化),感受形数结合的数学思想等。

学习重点与难点:对二次函数222)(ax y m x a y k ax y =+=+=和二次函数、的图像的位置关系解释和研究问题的数学方法的感受是学习重点;难点是对数学问题研究问题方法的感受和领悟。

学习过程: 一、知识准备本节课的学习的内容是课本P 12-P 14的内容,内容较长,课本上问题较多,需要你操作、观察、思考和概括,请你注意:学习时要圈、点、勾.....、画..,随时记录甚至批注课本,想想“那个人”是如何研究出来的。

你有何新的发现呢?二、问题导学:1.思考:二次函数12+=x y 的图象是个什么图形?是抛物线吗?为什么?(请你仔细看课本P12-P13,作出合理的解释)类似的:二次函数k ax y +=2的图象与函数2ax y =的图象有什么关系?它的对称轴、顶点、最值、增减性如何?()23+=x 的图象是抛物线吗?如果结合下表和看课本P13-P14你的解释是什么?x24类似的:二次函数()2m x a y +=的图象与二次函数2ax y =的图象有什么关系?它的对称轴、顶点呢?它的对称轴、顶点、最值、增减性如何呢 三、知识梳理1、二次函数222)(ax y m x a y k ax y =+=+=和二次函数、图像的形状,位置的关系是:2、它们的性质是:四、例题点评:例1: 函数y=4x 2+5的图象可由y=4x 2的图象向 平移 个单位得到; y=4x 2-11的图象可由 y=4x 2的图象向 平移 个单位得到。

五、当堂检测⒈将抛物线y=4x 2向上平移3个单位,所得的抛物线的函数式是 。

将抛物线y=-5x 2+1向下平移5个单位,所得的抛物线的函数式是 。

二次函数的应用(3)

二次函数的应用(3)

B A O二次函数应用导学案一、情景创设例 1 如图所示,桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O 恰在水面中心,OA=1.25m.由柱子顶端A 处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA 距离为1m 处达到距水面最大高度2.25m.(1)如果不计其它因素,那么水池的半径至少要多少m,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达到多少m(精确到0.1m)?例 2 一场篮球赛中,球员甲跳起投篮如图所示,已知球出手时离地面920m ,与篮筐中心的水平距离是7m,当球运行的水平距离是4m 时,达到最大高度4m 。

设篮球运行的路线为抛物线,篮筐距地面3m 。

⑴问此球能否投中?⑵此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m ,他如何做才能盖帽成功?巩固练习1、如图是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下。

建立如图所示的坐标系,如果喷头所在处A (0,1.25),水流路线最高处B (1,2.25),则该抛物线的表达式为 。

如果不考虑其他因素,那么水池的半径至少要____米,才能使喷出的水流不致落到池外。

2、小明是学校田径队的运动员,根据测试资料分析,他掷铅球的出手高度(铅球脱手时离地面的高度)为2m 。

如果出手后铅球在空中飞行的水平距离x(m)与高度y (m )之间的关系为二次函数y=a(x -4)2+3,那么小明掷铅球的出手点与铅球落地点之间的水平距离是多少(精确到0.1m )?六、课堂作业1、在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛出,在不计空阻力的情况下,其上升高度s(m)与抛出时间t(s)满足s= v 0t -21gt 2(其中g 是常数,通常取10m/s 2),若v 0=10m/s ,则该物体在运动至最高点时距离地面 m.2、如图所示,小明在今年的校运动会跳远比赛中跳出院满意的成绩,函数h=3.51-4.9t 2+0.5(t 的单位:s ,h 的单位:m)可以描述他跳远时重心高度的变化,则他起跳后到重心最高所用的时间大约是A .0.71sB .0.70sC .0.63sD .0.6s3、某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个装饰柱OA ,O恰在水面中心,柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,形状如图①。

确定二次函数解析式导学案3

确定二次函数解析式导学案3

【课前预习案】1.重点知识复习:(1)二次函数的三种形式:一般式:y=ax2+bx+c(a≠0)顶点式:y=a(x-h)2+k(a≠0)交点式:y=a(x-x1)(x-x2)(2)待定系数法2.问题导学:如何设出适当的形式求出二次函数的解析式?导学训练:例1. 已知二次函数y=ax2的图象经过点(2,8),求其解析式。

变式:已知抛物线的顶点在原点,且经过点(3,18),求其解析式。

例2. 已知二次函数图象的顶点在y轴上,并且经过点(2,8),求其解析式。

变式:已知抛物线的对称轴是y轴,且经过点(1,5)和(2,8),求其解析式。

例3. 已知抛物线的顶点在x轴上,对称轴为直线x=2,且经过点(1,-3),求其解析式。

【课内探究学案】一、学习目标:1.经历用待定系数法确定二次函数解析式的过程。

通过确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识2.能利用待定系数法确定二次函数的解析式(重点)。

3.自主学习、合作交流,体验数学学习活动充满探索性、趣味性,增强学习数学的兴趣和自信心。

4.激情投入,高效学习,养成扎实严谨的数学思维品质。

二、学习重点难点:重点:利用待定系数法求二次函数的解析式.难点:经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验.学习过程:一、自主探究,合作交流;探究一:如何根据已知三点求二次函数解析式例1.二次函数的图像过点(0,2)(1,0)与(-2,3),求这个二次函数的解析式。

探究二:如何根据抛物线顶点坐标求二次函数解析式例2:二次函数的图像的顶点坐标是(-1,-6),并且图像经过点(2,3)。

求这个函数的解析式。

二、分组展示、释疑解惑1.已知抛物线与x轴的两交点为(-1,0)和(3,0),且过点(2,-3),求此抛物线的解析式。

2. 抛物线的顶点坐标是(-2,3),且点(-1,5)在这条抛物线上,则这个二次函数的解析式是什么?三、学以致用、巩固训练1.已知抛物线y=2ax+bx+c经过点(1,2)与点(-1,4),则a+c的值是多少?2.抛物线的形状、开口方向都与抛物线y= -122x相同,顶点在(1,-2),求抛物线的解析式?3. 抛物线的对称轴是直线x=1,与x轴的一个交点为(-2,0),与y轴交于点(0,12),求二次函数的解析式。

二次函数的图像与性质导学案

二次函数的图像与性质导学案

二次函数的图像与性质导学案第二节二次函数的图像与性质环节一:回顾旧知,导入新课。

1.一次函数的图像是直线,反比例函数的图像是双曲线。

2.画函数图像的一般步骤是确定定义域和值域,列出函数表达式,选择合适的坐标系,计算出函数对应的点,然后用平滑的曲线将这些点连接起来。

环节二:小组合作,探究新知。

1.试画出二次函数 $y=x^2$ 的图像。

由 1、2、3 组用黑色笔完成以下步骤:1)列出函数表格:x$ | $2y=x$ | $y=2x^2$8$| $-16$ | $128$6$| $-12$ | $72$4$| $-8$。

| $32$2$| $-4$。

| $8$0$ | $0$。

| $0$2$ | $4$。

| $8$4$ | $8$。

| $32$6$ | $12$。

| $72$8$ | $16$。

| $128$2)描点3)连线2.试画出二次函数 $y=-x^2$ 的图像。

由 4、5、6 组用黑色笔完成以下步骤:1)列出函数表格:x$ | $y=-x^2$ | $y=-2x^2$8$| $-64$。

| $-128$6$| $-36$。

| $-72$4$| $-16$。

| $-32$2$| $-4$。

| $-8$0$ | $0$。

| $0$2$ | $-4$。

| $-8$4$ | $-16$。

| $-32$6$ | $-36$。

| $-72$8$ | $-64$。

| $-128$2)描点3)连线3.在第一题中画出二次函数 $y=2x^2$ 的图像。

由 1、2、3 组用红色笔完成。

4.在第二题中画出二次函数 $y=-2x^2$ 的图像。

由 4、5、6 组用红色笔完成。

环节三:归纳总结,提炼升华。

二次函数 $y=ax^2(a>0)$ 和 $y=ax^2(a<0)$ 的性质如下:对称轴:$x=0$。

顶点坐标:$(0,0)$。

位置:$y=ax^2$ 的图像上下平移 $|a|$ 个单位。

开口方向:$y=ax^2$ 的图像开口向上;$y=ax^2$ 的图像开口向下。

二次函数导学案(全章)

二次函数导学案(全章)

第1课时 二次函数的概念【学习目标】1.经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;2.探索并归纳二次函数的定义;3.能够表示简单变量之间的二次函数关系。

【学习重点】掌握二次函数的概念并能利用概念解答相关的题型。

【课时类型】概念课 【学习过程】 一、学习准备1.函数的定义:在某个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称 是 的函数,其中 是自变量, 是因变量。

2.一次函数的关系式为y= (其中k 、b 是常数,且k ≠0);正比例函数的关系式为y = (其中k 是 的常数);反比例函数的关系式为y= (k 是 的常数)。

二、解读教材——数学知识源于生活3.某果园有100棵橙子树,每一棵树平均结600个橙子。

现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。

根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。

假设果园增种x 棵橙子树,那么果园共有 棵橙子树,这时平均每棵树结 个橙子,如果果园橙子的总产量为y 个,那么y= 。

4.如果你到银行存款100元,设人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存。

那么你能写出两年后的本息和y(元)的表达式(不考虑利息税)吗? 。

5.能否根据刚才推导出的式子y=-5x 2+100x+60000和y=100x 2+200x+100猜想出二次函数的定义及一般形式吗?一般地,形如y =ax 2+bx+c(a ,b ,c 是常数,a ≠0)的函数叫做x 的二次函数。

它就是二次函数的一般形式,理解并熟记几遍。

例1 下列函数中,哪些是二次函数?(1)2321x y +-= (2)112+=x y(3)x y 222+=(4)251t t s ++= (5)22)3(xx y -+= (6)210rs π=即时练习:下列函数中,哪些是二次函数? (1)2x y = (2)252132+-=x x y(4)1132--=)(x y (5)cax y -=2(6)12+=x s三、挖掘教材6.对二次函数定义的深刻理解及运用 例2 若函数1232++=+-kx x y k k是二次函数,求k 的值。

二次函数全章导学案(史上最全!)

二次函数全章导学案(史上最全!)

导学案【2 】26.1.1二次函数(第一课时)一.预习检测案一般地,形如____________________________的函数,叫做二次函数.个中x是________,a是__________,b是___________,c是_____________.二.合作探讨案:问题1: 正方体的六个面是全等的正方形,假如正方形的棱长为x,表面积为y,写出y与x的关系. 问题2: n边形的对角线数d与边数n之间有如何的关系?提醒:多边形有n条边,则有几个极点?从一个极点动身,可以连几条对角线?问题3: 某工场一种产品如今的年产量是20件,筹划往后两年增长产量.假如每年都比上一年的产量增长x倍,那么两年后这种产品的数目y将随筹划所定的x的值而定,y与x之间的关系如何表示?问题4:不雅察以上三个问题所写出来的三个函数关系式有什么特色?小组交换.评论辩论得出结论:经化简后都具有的情势.问题5:什么是二次函数?形如.问题6:函数y=ax²+bx+c,当a.b.c知足什么前提时,(1)它是二次函数? (2)它是一次函数?(3)它是正比例函数?例1: 关于x的函数mmxmy-+=2)1(是二次函数, 求m的值.留意:二次函数的二次项系数必须是的数.三.达标测评案:1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x2+2;(3)y=3x3+2x2;(4)y=2x2-2x+1; (5)y=x2-x(1+x);(6)y=x-2+x.2.若函数y=(a-1)x2+2x+a2-1是二次函数,则( )A.a=1B.a=±1C.a≠1D.a≠-13.必定前提下,若物体活动的路段s(米)与时光t(秒)之间的关系为s=5t2+2t,则当t=4秒时,该物体所经由的旅程为A.28米B.48米C.68米D.88米4.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.5.一个圆柱的高级于底面半径,写出它的表面积S与半径R之间的关系式.6.n支球队参加竞赛,每两支之间进行一场竞赛.写出竞赛的场数m与球队数n之间的关系式.7.已知二次函数y=x²+px+q,当x=1时,函数值为4,当x=2时,函数值为- 5, 求这个二次函数的解析式.26.1.2 二次函数y =ax 2的图象与性质(第二课时)一.预习检测案:画二次函数y =x 2的图象.【提醒:绘图象的一般步骤:①列表;②描点;③连线(用腻滑曲线).】由图象可得二次函数y =x 2的性质: 1.二次函数y =x 2是一条曲线,把这条曲线叫做______________.2.二次函数y =x 2中,二次函数a =_______,抛物线y =x 2的图象启齿__________. 3.自变量x 的取值规模是____________.4.不雅察图象,当两点的横坐标互为相反数时,函数y 值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y =x 2与它的对称轴的交点( , )叫做抛物线y =x 2的_________. 是以,抛物线与对称轴的交点叫做抛物线的_____________. 6.抛物线y =x 2有____________点(填“最高”或“最低”) .二.合作探讨案:例1 在统一向角坐标系中,画出函数y =12x 2,y =x 2,y =2x 2的图象.y =x 2的图象刚画过,再把它画出来.归纳:抛物线y =12x 2,y =x 2,y =2x 2的二次项系数a_______0;极点都是__________;对称轴是_________;极点是抛物线的最_________点(填“高”或“低”) .x … -3 -2 -1 0 1 2 3 … y =x 2……x … -4 -3 -2 -1 0 1 2 3 4 … y =12x 2 ……x … -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 … y =2x 2……例2 请在统一向角坐标系中画出函数y =-x 2,y =-12x 2, y =-2x 2的图象.归纳:抛物线y =-x 2,y =-12x 2, y =-2x 2的二次项系数a______0,极点都是________, 对称轴是___________,极点是抛物线的最________点(填“高”或“低”) . 总结:抛物线y =ax 2的性质1.抛物线y =x 2与y =-x 2关于________对称,是以,抛物线y =ax 2与y =-ax 2关于_______ 对称,启齿大小_______________.2.当a >0时,a 越大,抛物线的启齿越___________; 当a <0时,|a | 越大,抛物线的启齿越_________;是以,|a | 越大,抛物线的启齿越________,反之,|a | 越小,抛物线的启齿越________.三.达标测评案:1.填表:2.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1)x 2的图象启齿向下,则m____________. 4.如图,① y =ax 2② y =bx 2 ③ y =cx 2 ④ y =dx 2比较a.b.c.d 的大小,用“>”衔接. ___________________________________x … -4 -3 -2 -1 0 1 2 3 4 … y =-x 2… … y=-12x 2… … y =-2x 2 ……图象(草图) 启齿偏向 极点 对称轴 有最高或最低点 最值a >0当x =____时,y 有最___值,是______. a <0当x =____时,y 有最____值,是______.启齿偏向极点 对称轴 有最高或低点 最值y =23x 2当x =____时,y 有最_____值,是______. y =-8x 25.函数y =37x 2的图象启齿向_______,极点是__________,对称轴是________,当x =___________时,有最_________值是_________. 6.二次函数y =mx22 m 有最低点,则m =___________.7.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 规模为___________.8.写出一个过点(1,2)的函数表达式_________________.26.1.3二次函数y =ax 2+k 的图象与性质(第三课时)一.预习检测案:在统一向角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象. 解:先列表描点并绘图1.不雅察图像得:2.可以发明,把抛物线y =x 2向______平移______个单位,就得到抛物线y =x 2+1;把抛物线y =x 2向_______平移______个单位,就得到抛物线y =x 2-1. 3.抛物线y =x 2,y =x 2-1与y =x 2+1的外形_____________.二.合作探讨案:1. y =ax 2y =ax 2+k启齿偏向 极点 对称轴有最高(低)点最值a >0时,当x =______时,y 有最____值为________; a <0时,当x =______时,y 有最____值为________.增减性2.抛物线y =2x 2向上平移x … -3 -2 -1 0 1 2 3 … y =x 2+1 … … y =x 2-1……启齿偏向极点 对称轴 有最高(低)点 最值3个单位,就得到抛物线__________________;抛物线y =2x 2向下平移4个单位,就得到抛物线__________________.是以,把抛物线y =ax 2向上平移k(k >0)个单位,就得到抛物线_______________; 把抛物线y =ax 2向下平移m(m >0)个单位,就得到抛物线_______________. 3.抛物线y =-3x 2与y =-3x 2+1是经由过程平移得到的,从而它们的外形__________, 由此可得二次函数y =ax 2与y =ax 2+k 的外形__________________. 三.达标测评案:1.填表函数 草图 启齿偏向 极点对称轴 最值 对称轴右侧的增减性y =3x 2y =-3x 2+1 y =-4x 2-52.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________. 3.写出一个极点坐标为(0,-3),启齿偏向与抛物线y =-x 2偏向相反,外形雷同的抛物线解析式____. 4.抛物线y =-13x 2-2可由抛物线y =-13x 2+3向___________平移_________个单位得到的.5.抛物线y =4x 2-1与y 轴的交点坐标为_____________,与x 轴的交点坐标为_________.26.1.3二次函数y =a(x-h)2的图象与性质(第四课时)教授教养目的:会画二次函数y =a(x-h)2的图象,控制二次函数y =a(x-h)2的性质,并要会灵巧运用.一.预习检测案:画出二次函数y =-12(x +1)2,y -12(x -1)2的图象,并斟酌它们的启齿偏向.对称轴.极点以及最值.增减性.x … -4 -3 -2 -1 0 1 2 3 4 … y =-12(x +1)2… … y =-12(x -1)2……先列表:描点并绘图. 请在图上把抛物线y =-12x 2也画上去(草图).①抛物线y =-12(x +1)2 ,y =-12x 2,y =-12(x -1)2的外形大小____________.②把抛物线y =-12x 2向左平移_______个单位,就得到抛物线y =-12(x +1)2 ;把抛物线y =-12x 2向右平移_______个单位,就得到抛物线y =-12(x +1)2 .总结常识点:函数启齿偏向极点对称轴 最值增减性y =-12(x +1)2y =-12(x -1)21. y=ax2y=ax2+k y=a (x-h)2启齿偏向极点对称轴最值增减性(对称轴左侧)3.对于二次函数的图象,只要|a|相等,则它们的外形_________,只是_________不同.三.达标测评案:1.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.2.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.3.将抛物线y=-13(x-1)2向右平移2个单位后,得到的抛物线解析式为____________.4.抛物线y=2 (x+3)2的启齿___________;极点坐标为____________;对称轴是_________; 当x>-3时,y______________;当x=-3时,y有_______值是_________.26.1.3二次函数y=a(x-h)2+k的图象与性质(第五课时)一.预习检测案:画出函数y=-12(x+1)2-1的图象,指出它的启齿偏向.对称轴及极点.最值.增减性.列表二.合作探讨案2.把抛物线y=-12x2向____平移_____个单位,再向____平移_______个单位,就得到抛物线y=-12(x+1)2-1.总结常识点: 1.填表(a>0)函数关系式图象(草图) 启齿偏向极点对称轴最值对称轴右侧的增减性y=1 2 x2y=-5 (x+3)2 y=3 (x-3)2x …-4 -3 -2 -1 0 1 2 …y=-12(x+1)2-1 ……函数启齿偏向极点对称轴最值增减性y=-12(x+1)2-12.用配办法求抛物线y=ax2+bx+c(a≠0)的极点与对称轴.二.教室探讨案:(a>0)y=ax2y=ax2+k y=a(x-h)2y=a(x-h)2+k y=ax2+bx+c 启齿偏向极点对称轴最值增减性(对称轴左侧)三.常识点运用例1 求y=x2-2x-3与x轴交点坐标.例2 求抛物线y=x2-2x-3与y轴交点坐标.3.a.b.c以及△=b2-4ac对图象的影响.(1)a决议:启齿偏向.外形 (2)c决议与y轴的交点为(0,c) (3)a与-b2a配合决议b的正负性 (4)△=b2-4ac⎪⎩⎪⎨⎧<=>轴没有交点与轴有一个交点与轴有两个交点与xxx例3 如图,由图可得:a_______0,b_______0,c_______0,△______0例4 已知二次函数y=x2+kx+9.①当k为何值时,对称轴为y轴;②当k为何值时,抛物线与x轴有两个交点;③当k为何值时,抛物线与x轴只有一个交点.四.达标测评案:1. 用极点坐标公式和配办法求二次函数y=12x2-2-1的极点坐标.2.二次函数y=2x2+bx+c的极点坐标是(1,-2),则b=________,c=_________.3.已知二次函数y=-2x2-8x-6,当________时,y随x的增大而增大;当x=________时,y 有______值是_____.4.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.5.求抛物线y=2x2-7x-15与x轴交点坐标__________,与y轴的交点坐标为_______.6.抛物线y=4x2-2x+m的极点在x轴上,则m=__________.26.1.5 用待定系数法求二次函数的解析式(第七课时)3.已知抛物线与x轴有两个交点(或已知抛物线与x轴交点的横坐标),设两根式:y=a(x-x1)(x-x2) .(个中x1.x2是抛物线与x轴交点的横坐标)现实问题中求二次函数解析式:例4 要建筑一个圆形喷水池,在池中间竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中间的程度距离为1m处达到最高,高度为3m,水柱落地处离池中间3m,水管应多长?三.达标检测案:1.已知二次函数的图象过(0,1).(2,4).(3,10)三点,求这个二次函数的关系式.2.已知二次函数的图象的极点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.3.已知二次函数y=ax2+bx+c的图像与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),求二次函数的极点坐标.4.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开端沿边AB向B以2mm/s 的速度移动,动点Q从点B开端沿边BC向C以4mm/s的速度移动,假如P.Q分离从A.B同时动身,那么△PBQ的面积S随动身时光t若何变化?写出函数关系式及t的取值规模.26.2 用函数的不雅点看一元二次方程(第八课时)教授教养目的:1.知道二次函数与一元二次方程的关系.2.会用一元二次方程ax 2+bx +c =0根的判别式△=b 2-4ac 断定二次函数y =ax 2+bx +c 与x 轴的公共点的个数. 一.预习检测案:1.问题:如图,以40m/s 的速度将小球沿与地面成30°角的偏向击出时,球的飞翔路线将是一条抛物线.假如不斟酌空气阻力,球的飞翔高度h(单位:m)与飞翔时光t(单位:s)之间具有关系h =20t -5t 2.斟酌以下问题:(1)球的飞翔高度可否达到15m ?如能,须要若干飞翔时光? (2)球的飞翔高度可否达到20m ?如能,须要若干飞翔时光? (3)球的飞翔高度可否达到20.5m ?为什么? (4)球从飞出到落地要用若干时光?2.不雅察图象:(1)二次函数y =x 2+x -2的图象与x 轴有____个交点,则一元二次方程x 2+x -2=0的根的判别式△=_______0;(2)二次函数y =x 2-6x +9的图像与x 轴有_ __个交点,则一元二次方程x 2-6x +9=0的根的判别式△=_____0;(3)二次函数y =x 2-x +1的图象与x 轴________公共点,则一元二次方程x 2-x +1=0的根的判别式△_______0.二.合作探讨案:1.已知二次函数y =-x 2+4x 的函数值为3,求自变量x 的值,可以看作解一元二次方程__________________.反之,解一元二次方程-x 2+4x =3又可以看作已知二次函数__________________的函数值为3的自变量x 的值.一般地:已知二次函数y =ax 2+bx +c 的函数值为m,求自变量x 的值,可以看作解一元二次方程 ax 2+bx +c =m.反之,解一元二次方程ax 2+bx +c =m 又可以看作已知二次函数y =ax 2+bx +c 的值为m 的自变量x 的值.2.二次函数y =ax 2+bx +c 与x 轴的地位关系:一元二次方程ax 2+bx +c =0的根的判别式△=b 2-4ac.(1)当△=b 2-4ac >0时 抛物线y =ax 2+bx +c 与x 轴有两个交点; (2)当△=b 2-4ac =0时 抛物线y =ax 2+bx +c 与x 轴只有一个交点; (3)当△=b 2-4ac <0时 抛物线y =ax 2+bx +c 与x 轴没有公共点.QPCBA用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化,当l 是若干4.一块三角形废料如图所示,∠A =30°,∠C =90°,AB =12.用这块废料剪出一个长方形何订价才能使利润最大?剖析:调剂价钱包括涨价和降价两种情形,用如何的等量关系呢?解:(1)设每件涨价x元,则每礼拜少卖_________件,现实卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每礼拜多卖_________件,现实卖出__________件.四.达标测评案:1.某种商品每件的进价为30元,在某段时光内若以每件x元出售,可卖出(100-x)件,应若何订价才能使利润最大?2.蔬菜基地栽种某种蔬菜,由市场行情剖析知,1月份至6月份这种蔬菜的上市时光x(月份)与市场售价P(元/千克)的关系如下表:上市时光x/(月份)1 2 3 4 5 6市场售价P(元/千克)10.5 9 7.5 6 4.5 3这种蔬菜每千克的栽种成本y(元/千克)与上市时光x(月份)知足一个函数关系,这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时光x(月份)的一次函数关系式;(2)若图中抛物线过A.B.C三点,写出抛物线对应的函数关系式;(3)由以上信息剖析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为若干?(收益=市场售价-栽种成本)3. 某宾馆客房部有60个房间供旅客栖身,当每个房间的订价为天天200元时,房间可以住满.当每个房间天天的订价每增长10元时,就会有一个房间空间.对有旅客入住的房间,宾馆需对每个房间天天支出20元的各类费用.设每个房间天天的订价增长x元,求:(1)房间天天入住量y(间)关于x(元)的函数关系式;(2)该宾馆天天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部天天的利润w(元)关于x(元)的函数关系式,当每个房间的订价为若干元时,w有最大值?最大值是若干?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数》复习导学案
一、二次函数的概念
练习1:下面哪些函数是二次函数( )
18
.1
8.18.8.22+=
+=-==
x
y D x y C x y B x
y A
二、二次函数的图象及性质
练习2:(2013上海)抛物线
的顶点坐标是 (2012济宁)将二次函数
化为 的形式,则._____________=y
32--=x x y 22
++-=x x y )0()(2
≠+-=a k h x a y
(2012株洲)已知抛物线与x 轴的一个交点)0,1(A ,对称轴是1-=x ,则该抛
物线与x 轴的另一个交点坐标是( )
三、二次函数)0(2
≠++=a c bx ax y 的系数c b a 、、与抛物线的关系
练习3:
(2013上海)二次函数)0(2≠++=a c bx ax y 的图象如图所示,则c
b a 、、的符号为( )
x
,0,00,0,00
,0,00,0,0<<<><<<><>><c b a D c b a C c b a B c b a A 、、、、
例1:已知抛物线22
3212--=x x y
若该抛物线与x 轴的两个交点分别为B A 、,且它与y 轴的交点为P ,求
A B P
∆的面积.
1.在同一直角坐标系中,一次函数c ax y +=和二次函数c ax y +=2的图象大致为( )
2.抛物线232
+-=x x y 与y 轴的交点坐标是____________,与x 轴的交
点坐标是____________;
3、抛物线3522-+-=x x y 与y 轴的交点坐标是____________,与x 轴的交点坐标是____________.
4.已知抛物线)0(2≠++=a c bx ax y 的对称轴为2=x 以及点)8,4(-A 下面哪点一定在此抛物线上( )
)、()
()
,、()
,、(4,8-8,4-8-08-8D C B A
5.已知点(-2.0)(4. 0)在抛物线)0(2≠++=a c bx ax y 上,则此抛物线的对称轴是( )
1130-====x D x C x B x A 、、、、
6、已知二次函数的图象的顶点坐标为),(3-2-且图象过点),(2-3-.
(1)求此二次函数的解析式;
(2)设此二次函数的图象与x 轴交于B A 、两点,O 为坐标原点,求线段
OB OA 、的长度之和.。

相关文档
最新文档