生活中的函数2

合集下载

生活中的二次函数例子5个

生活中的二次函数例子5个

生活中的二次函数例子5个1.某种小商品的销量Y件与售价X元成一次函数关系。

某商场以每件4元的单价进了一批这种商品第一天以每件8元试销,结果售出60件,第二天以每件10元试销,结果售出50件。

(1)求销量Y与售价X的函数关系式。

(2)每件商品的售价定位多少元时,才能每天获得最大利润?每天的最大利润是多少元?2.某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?3.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件调查表明:这种衬衣售价每上涨1元其销售量将减少10件.(1)写出月销售利润y(元)与售价x(元/件)之间的函数关系式;(2)当销售价定为45元时计算月销售量和销售利润;(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10 000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.4.一家电子计算器专卖店每只进价13元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20﹣10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出该专卖店当一次销售x(时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?5. 为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,设矩形的边长AB=y米,BC=x 米.(注:取π=3.14)(1)试用含x的代数式表示y;(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428 元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;(3)设该工程的总造价为W元,求W关于x的函数关系式;(4)若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由?。

函数在日常生活中的应用

函数在日常生活中的应用

函数在日常生活中的应用函数不仅在我们的学习中应用广泛,日常生活中也有充分的应用。

在此举出一些例子并作适当分析。

当人们在社会生活中从事买卖活动或其他生产时,其中常涉及到变量的线性依存关系,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。

总之,函数渗透在我们生活中的各个方面,我们也经常遇到此类函数问题,这时我们应三思而后行,深入发掘自己头脑中的数学知识,用函数解决。

如:1.一次函数的应用:购物时总价与数量间的关系,是最基本的一次函数的应用,由函数解析式可以清楚地了解到其中的正比例关系,在单价一定的条件下,数量越大,总价越大。

此类问题非常基本,却也运用最为广泛。

2.二次函数的应用:当某一变量在因变量变化均匀时变化越来越快,常考虑用二次函数解决。

如细胞的分裂数量随时间的变化而变化、利润随销售时间的增加而增多、自由落体时速度随时间的推移而增大、计算弹道轨迹等。

二次函数的解析式及其图像可简明扼要地阐述出我们需要的一系列信息。

如增加的速度、增加的起点等。

3.反比例函数的应用:反比例函数在生活中应用广泛,其核心为一个恒定不变的量。

如木料的使用,当木料一定时长与宽的分别设置即满足相应关系。

还有总量一定的分配问题,可应用在公司、学校等地方。

所分配的数量及分配的单位即形成了这样的关系。

4.三角函数的应用:实际生活中,我们常常可以遇到三角形,而三角函数又蕴含其中。

如建筑施工时某物体高度的测量,确定航海行程问题,确定光照及房屋建造合理性以及河宽的测量都可以利用三角函数方便地测出。

在日常生活中,我们往往需要将各种函数结合起来灵活运用,以解决复杂的问题。

要时刻将函数的解析式与其图形联系起来,以得到最简单的解决办法。

生活中的二次函数(篮球问题)

生活中的二次函数(篮球问题)
答:此抛物线的关系式为
解:如图,建立平面 直角坐标系
因为抛物线的顶点为(4,4) , 因此可设此抛物线的关系式为
y ax 4 4
2
1 2 y x 4 4 9
y
20 9
(4,4)
3米 2.解法二:∵抛物线的关 系式为: 1 2
y
9
x 4
4
8 2.解法一:∵抛物线的关系 式为:
-2
x
• 4.在出手角度、力度及高度都不变的情况下,则他朝 着篮球架再向前平移多少米后跳起投篮也能将篮球投 入篮圈? 6 y
(4,4) (5,4)
4
A (7,3)
20 0, 9
2

B(8,3)
0
1
2
3
4
5 5
6
7
8
9
10
-2
X 答:向前平移1米后跳起投篮也能 将篮球投入篮圈
用抛物线的知识解决运动场上或者生活中 的一些实际问题的一般步骤:
1.(建)恰当建立直角坐标系 2.(找)将已知条件转化为点的坐标 3.(设)合理设出所求函数关系式 4.(求)代入点的坐标,求出关系式 5.(解)利用关系式求解实际问题
课本p31页
如图,一位篮球运动员在离篮 圈水平距离4米处跳起投篮, 球沿一条抛物线运行,当球运 行的水平距离为2.5米时,达 A 到最大高度3.5米,然后准确 落入篮框内。已知篮圈中心离 地面高度为3.05米。 (1)建立图中所示的直角坐标系, 求抛物线所对应的函数关系式。
0
4
x
所以:当y 3时 1 2 3 x 4 4 9 解得:x 7或1
∵篮圈在8米处∴不能投中
1 2 y x 4 4 9

二次函数在生活中的实际应用

二次函数在生活中的实际应用

二次函数在生活中的实际运用
在暑假,我参加了中考体育训练,其中有一个项目是投实心球,可是我发现不管我如何用力就是投不远,对此我感到十分头疼。

这时,我的体育老师走了过来,我赶忙上前去问到底如何投才是最远的。

他告诉我要往30度角投,我半信半疑不太相信按一定角度投会远一些,于是我朝30度角投了试试,发现好像真的比刚才要远一些。

回到家,我思索起了这个问题并动手验证,一个球在相同力度的情况下,球飞行的路线是一条抛物线,设顶点到地面的距离为1m。

当角度为30度时,根据直角三角
形中30度所对的角:60度所对的角:
90度所对的角=1:√3:2。

求得OB=√3m,
则OC=2OB=2√3m。

当角度为45度时,根据等腰三角形
中45度所对的角:45度角所对的角:90
度所对的角=1:1:√2。

求得OB=1m,
则OC=2OB=2m。

当角度为60度时,根据根据直角三角
形中30度所对的角:60度所对的角:90
度所对的角=1:√3:2。

求得OB=1̸3√3m,
则OC=2OB=2̸3√3m。

因为2√3m>2m>2̸3√3m,所以物体以30度角抛出去时最远。

通过自身的运算,让我牢记这个道理。

著名数学家华罗庚曾说:任何一个人,都必须养成自学的习惯,即使是今天在校的学生,也要养成自学的习惯,因为迟早要离开学校的!行路,还是要靠行路人自己。

天马学校九(四)班胡一帆
指导老师:宣淑嫒。

生活中的数学(十一)—生活中的二次函数

生活中的数学(十一)—生活中的二次函数

生活中的数学(十一)—生活中的二次函数二次函数在中学数学中占据重要的地位,同时也是进行数学研究的一个重要的工具,它贯穿整个中学数学的数与学。

从最浅显的直观的利用图象解方程、解不等式、求最值,到利用数形结合的思想研究一元二次方程中根的分布问题,再进而用二次函数来解决现实生活中的实际问题,无不体现二次函数的重要性和它独特的魅力。

在中考中,二次函数的实际应用同样是一个考察的重难点,而很多学生在考试中暴露出一个问题:用数学解决实际问题的能力不足。

所以,我们需要进一步研究二次函数在实际生活中的应用和对实际生活的影响,从而培养学生解决实际问题的能力。

1.在桥梁建筑方面的应用抛物线在桥梁建筑方面有着广泛的应用。

在实际生活中,由于各种不同的需要,大多数的桥梁建筑都运用了二次函数的性质,将其形状设计为抛物线的形式。

所以,我们在现实生活中能够找到很多具有抛物线特征的建筑物,如下图所示:图1-1 图1-2同时,在现实生活中也存在许多与建筑、设计有关的二次函数的数学问题。

下面,我们用以下几个例子来进行说明。

例1.一座单行隧道的截面由抛物线和长方形构成,长方形的长为m 8,宽为m 2,隧道最高点P 位于AB 的中央且距地面m 6,建立如图1-3所示的坐标系。

(1)求抛物线的解析式;(2)一辆货车高m 4,宽m 2,能否从该隧道内通过,为什么?(3)如果隧道内设双行道如图1-4所示,那么这辆货车是否可以顺利通过,为什么?图1-3 图1-4解 (1)由题意可知抛物线经过点)(2,0A ,()6,4P ,()2,8B 。

设抛物线的方程为c ax ++=bx y 2,将A 、P 、D 三点的坐标代入抛物线方程。

解得抛物线方程为:2241y 2++-=x x . (2)令4=y ,则有422x 41-2=++x , 解得224x 224x 21-=+=,,而224x 12>=-x ,所以货车可以通过。

(3)由(2)可知222x 2112>=-x ,所以货车可以通过。

二次函数在生活中的运用

二次函数在生活中的运用

二次函数在生活中的运用
二次函数是一种常见的数学函数,在生活中有很多实际应用。

它的形式为 y = ax + bx + c,其中 a、b、c 是常数,而 x 和 y 分别表示自变量和因变量。

以下是二次函数在生活中的几个实际应用:
1. 物体的运动轨迹
当物体受到恒定的重力作用时,它的运动轨迹通常是一个二次函数。

这个函数的自变量可以是物体的时间或者位置,而因变量则是物体的高度或者速度。

通过分析这个函数,人们可以预测物体的落地时间和落点位置,为实际生活中的运动问题提供了重要的帮助。

2. 投资收益的计算
在投资领域,人们通常使用复利计算来估算投资收益。

而复利计算的公式可以转化为一个二次函数,其中自变量是投资时间,因变量是投资收益。

通过这个函数,人们可以预测不同投资方案的收益情况,为投资决策提供了参考依据。

3. 地址编码的设计
在物流配送领域,地址编码是非常重要的一环。

通过设计合适的地址编码,可以提高配送效率,减少误送和漏送的问题。

而地址编码通常采用的是二进制编码,其中每个位都是一个二次函数。

通过对这些二次函数的分析,人们可以设计出高效而准确的地址编码方案。

综上所述,二次函数在生活中有着广泛的应用。

人们可以通过学习和掌握二次函数的相关知识,更好地理解和应用这个数学概念,为
实际生活中的问题提供更加精准和科学的解决方案。

生活中的二次函数

生活中的二次函数

1、如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30o,O、A两点相距83米.(1)求出点A的坐标及直线OA的解析式;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点.2、如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)以拱桥的最高点为原点建立如图的坐标系,求抛物线的解析式;(2)若洪水到来时,水位以每小时2.0m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶.DO xyB CA(图3、某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图所示,如图建立直角坐标系,水流喷出的高度与水平距离之间的关系式是.请回答下列问题:1.柱子OA的高度为多少米?2.喷出的水流距水平面的最大高度是多少米?3.若不计其它因素,水池的半径至少要多少米,才能喷出的水流不至于落在池外?4、某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由5.如图,一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线的函数关系式;(2)该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问:球出手时,他跳离地面的高度是多少?答案: 1、(本题满分10分) 解:(1)在Rt △AOC 中,∵∠AOC=30o,OA =83,∴AC=OA ·sin30o=83×21=34, OC=OA ·cos30o =83×23=12.∴点A 的坐标为(12,34). …………………………………2分 设OA 的解析式为y=kx ,把点A (12,34)的坐标代入得: 34=12k ,∴k =33, ∴OA 的解析式为y =33x ; …………………… ……………………4分 (2) ∵顶点B 的坐标是(9,12), 点O 的坐标是(0,0)∴设抛物线的解析式为y=a (x-9)2+12,…………………………………6分 把点O 的坐标代入得: 0=a (0-9)2+12,解得a =274- , ∴抛物线的解析式为y =274- (x -9)2+12 及y =274-x 2+ 38x ; …………………………………………………8分 (3) ∵当x =12时,y =332≠34,∴小明这一杆不能把高尔夫球从O 点直接打入球洞A 点. 2、解:(1)由已知可设抛物线为)0(2<=a ax y ,又设警戒线到拱顶的距离为m ,则C 的坐标为(-5,-m ),A 的坐标为(-10,-m -3)。

二次函数在生活中的应用

二次函数在生活中的应用

二次函数在生活中的应用
二次函数是一种常见的数学函数,它在我们的生活和工作中有许多应用。

以下是二次函数在生活中的几个应用:
1. 抛物线运动
当一个物体以一定的初速度开始运动,并且受到重力的影响而向下运动时,它的运动轨迹就是一条抛物线。

这个运动过程可以用二次函数来描述。

例如,当你抛出一颗球时,它的高度会随着时间的推移而不断降低,形成一条抛物线。

2. 建筑设计
在建筑设计中,二次函数可以用来描述建筑物的结构和形状。

例如,在建造一座拱形桥时,设计师需要使用二次函数来确定桥的最高点和曲线的形状。

3. 经济学
在经济学中,二次函数可以用来描述成本和收益之间的关系。

例如,当一家企业决定生产某种产品时,它需要考虑生产成本和销售收益之间的平衡点,这个平衡点可以用二次函数来计算。

4. 电子技术
在电子技术中,二次函数可以用来描述电路中的电压和电流之间的关系。

例如,在设计一条放大电路时,工程师需要使用二次函数来确定电路的增益和频率响应。

总之,二次函数在我们的生活和工作中有许多应用,这些应用涉及到不同的领域,包括物理学、工程学、经济学和电子技术等。

熟练
掌握二次函数的概念和应用可以帮助我们更好地理解和解决实际问题。

从实际生活中提炼二次函数关系式

从实际生活中提炼二次函数关系式

从实际生活中提炼二次函数关系式同学们从生活中认识了二次函数,那么然后从生活中提炼出二次函数关系式呢?我们还是先看几个生活中的实际例子吧!不妨你也从中写出关系式来!一、直接提炼某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x (角),零售店每天销售这种面包所获得的利润为y (角).根据以上条件,你能从中找出y 与x 之间的函数关系式吗?剖析:由题意,我们可以算出每个面包的利润为(x -5)角,卖出的面包个数为(300-20x )(或[160-20(x -7)]).于是我们就得到:150040020)5)(20300(2-+-=--=x x x x y ,即1500400202-+-=x x y . 这就是我们所要的二次函数关系式二、借助一次函数提炼我们再看一个例子:小明的妈妈开了间海产品干货店,今年她从沿海地区进了一批大量的墨鱼干,她将每市斤的单价定为40元,大家一致认为该墨鱼干质量好,价格又便宜,结果顾客云集,加上该店地处旅游风景区的黄金地段,连续几天门庭若市,一时间销售了不少.看到这种红火的销售场面,她决定用调高单价来增加利润.于是她将单价调到每市斤50元,结果销售量虽然减少了,但每天的利润却有所增加;她干脆再把单价调高到每市斤70元,此时过往游客大多数嫌贵,销售量明显再次下降,连利润也呈下降趋势.面对如此情况,她想到了这么一个问题:单价究竟定为多少才能使每天的利润最大?根据以上分析,你能写出每天的销售额设为w (元)与每天的单价x (元)之间的关系吗?请你试一试吧!剖析:通过观察,小明发现原来每天的销售量与单价成一次函数关系,他将每天的销售量设为y (市斤),则y =kx +b ,由x =40,y =40,得:40=40k +b ;(1)由x =50,y =35,得:35=50k +b .(2)联立(1)、(2),解得k =-12,b =60. 所以y =-12x +60;所以,每天的销售额设为w (元),则w =xy =x (-12x +60), 即w =21602x x -+,这样就借助一次函数关系式写出了最简单的二次函数关系式,写出关系式后单价究竟定为多少才能使每天的利润最大的问题,如何决策这个问题,等到下节同学们用新知识去分解吧!。

二次函数在生活中的应用

二次函数在生活中的应用

二次函数在生活中的应用二次函数在生活中的应用二次函数是高中数学中的一大重点,是研究量与量之间的关系的一种数学工具。

在生活中,二次函数的应用非常广泛,与我们的日常生活息息相关。

本文将从多个方面介绍二次函数在生活中的应用。

1. 物理学中的应用在物理学中,二次函数是研究运动的重要工具。

当物体处于自由落体状态,其下落距离随时间的变化关系就可以用二次函数来表示,这个函数就是常见的自由落体公式:y = -1/2 g t² + v₀t + y₀其中,y 表示下落距离,g 表示重力加速度,t 表示时间,v₀表示物体的初速度,y₀表示物体的初始高度。

二次函数还可以用来描述物体的抛物线运动。

例如,一个抛出的物体的高度与水平距离之间的关系就是一个二次函数。

这个函数被称为抛物线,可以用以下形式表示:y = ax² + bx + c其中,a 表示抛物线的形状,b 表示抛物线的位置,c 表示抛物线的高度。

2. 经济学中的应用在经济学中,二次函数也被广泛应用。

例如,一家公司的成本与生产量之间的关系可以用一个二次函数来表示。

成本由固定成本和可变成本组成,其中固定成本不随生产量变化,可变成本与生产量成二次函数关系。

其函数关系式为:C = a + bx + cx²其中,C 表示总成本,x 表示生产量,a 表示固定成本,b 和 c 是常数。

二次函数还可以应用在市场调研中。

例如,研究一个新产品的销售量与价格之间的关系,就可以用一个二次函数来表示:y = -ax² + bx + c其中,y 表示销售量,x 表示价格,a、b、c 为常数。

这个函数就是常见的需求函数,有助于制定合理的价格策略。

3. 工程中的应用在工程中,二次函数也有很多应用。

例如,一个建筑物的荷载与塔高之间的关系就可以用二次函数来表示,这个函数被称为荷载曲线。

荷载曲线可以用以下形式表示:y = ax² + bx + c其中,y 表示荷载,x 表示塔高,a 表示荷载的变化率,b 和 c 是常数。

生活中二次函数(篮球问题)PPT课件

生活中二次函数(篮球问题)PPT课件

未来展望与研究方向
跨学科研究
未来可以将数学与其他学科结合 起来,如物理学、生物学等,从 更广泛的视角研究体育运动的规
律和技巧。
高科技应用
随着科技的发展,未来可以利用更 多的传感器和数据分析技术来研究 体育运动的细节和技巧,进一步提 高运动水平。
普及教育和推广
加强数学和体育的普及教育,让更 多的人了解和掌握数学在体育运动 中的应用,促进体育事业的发展。
数学与体育的紧密联系
运动规律描述
数学中的函数和方程可以 用来描述各种运动规律, 如篮球运动中的轨迹、速 度和加速度等。
数据分析和预测
通过数学方法对体育比赛 数据进行处理和分析,可 以预测比赛结果和球员表 现,为决策提供依据。
技术创新和发展
数学在体育技术创新和发 展中发挥了重要作用,如 运动装备的优化、训练方 法的改进等。
球员更好地实现个人和团队的目标。
04 篮球运动中的其他数学问 题
角度与弧度的应用
总结词
在篮球运动中,角度和弧度的概念非常重要,它们涉及到投篮、传球、防守等 各个环节。
详细描述
角度在篮球中主要用于描述投篮的角度、传球的角度等,弧度则用于描述球的 轨迹和旋转程度。通过数学模型和公式,可以计算出最佳的投篮角度和弧度, 从而提高投篮的准确性和效率。
05 结论
二次函数在篮球运动中的重要性
01
02
03
投篮轨迹分析
通过二次函数,可以描述 篮球的投篮轨迹,帮助球 员和教练更好地理解和预 测球的落点。
最佳出手点
利用二次函数的极值性质, 可以找到最佳的投篮出手 点,提高投篮命中率。
训练和比赛策略
基于二次函数的分析,可 以制定更加科学的训练和 比赛策略,提高球队的整 体水平。

生活中的函数关系举例

生活中的函数关系举例

生活中的函数关系举例
1. 路程与时间之间的函数关系,速度 = 路程÷ 时间,这里速度是因变量,路程和
时间是自变量;
2. 体重与身高之间的函数关系,BMI = 体重(kg)÷ 身高(m)²,这里BMI是因变量,体重和身高是自变量;
4. 气压与海拔之间的函数关系,气压随着海拔的增高而下降,这里气压是因变量,
海拔是自变量;
6. 饮食与健康之间的函数关系,饮食的健康指数与健康状况息息相关,这里饮食健
康指数是因变量,饮食量和饮食品质是自变量;
7. 薪资与工作经验之间的函数关系,通常来说,随着工作经验的增加,薪资会上升,这里薪资是因变量,工作经验是自变量;
8. 交通工具的速度与时间之间的函数关系,不同交通工具的速度不同,而到达目的
地需要的时间也会不同,这里速度和时间都是自变量,到达目的地所需要的时间是因变
量;
9. 个人收支与时间之间的函数关系,收入和支出随着时间的变化而变化,这里收入
和支出都是自变量,个人净收益是因变量;
10. 兴趣爱好与开销之间的函数关系,不同的兴趣爱好需要的开销也不同,例如旅游、美食、购物等等,这里兴趣爱好是自变量,开销是因变量。

总之,函数关系在日常生活中无处不在,我们需要用数学方法来描述和分析这些关系,以更好地理解我们所处的世界。

日常生活中的二次函数应用

日常生活中的二次函数应用

日常生活中的二次函数应用日常生活中,我们处处都能看到二次函数的应用。

无论是建筑、经济、物理,还是人们的日常活动,都离不开二次函数。

本文将从不同的角度介绍二次函数在日常生活中的应用,展示二次函数的重要性和广泛性。

一、建筑中的二次函数应用建筑领域是二次函数应用最为广泛的领域之一。

首先,建筑中的拱门常常采用二次函数的形状。

通过调整二次函数的参数,可以得到不同形状的拱门,满足不同建筑需求。

其次,建筑结构中的抛物线也是二次函数的典型应用。

比如,大型体育馆的屋顶通常采用抛物线形状,以便更好地分散荷载。

此外,二次函数还被广泛应用于建筑的设计过程中,比如地基的折线设计以及楼梯的设计等。

二、经济中的二次函数应用经济学中,二次函数被广泛用于描述成本、收益、销量等与价格、产量相关的指标。

例如,企业的成本函数通常是一个二次函数,可以帮助企业预测生产成本与产量之间的关系,从而作出合理的经营决策。

此外,二次函数还可以描述市场需求和供给的关系,帮助经济学家和企业家预测市场的变化趋势,制定相应的市场策略。

三、物理中的二次函数应用在物理学中,二次函数被广泛用于描述各种运动过程。

例如,自由落体运动的位移与时间之间的关系可以用二次函数表示。

当物体受到重力加速度的作用时,其高度与时间的关系可以用二次函数方程描述。

此外,抛体运动中的轨迹也是二次函数的典型应用。

通过分析二次函数的参数,可以预测抛体的飞行轨迹和最高点等相关信息。

四、日常生活中的其他二次函数应用除了建筑、经济和物理以外,日常生活中还有许多其他领域也离不开二次函数的应用。

比如,音乐中的音高与音量之间的关系可以用二次函数描述,帮助音乐家调整音乐的表现力。

此外,二次函数还可以被应用于旅行路径的优化,比如飞机、汽车等交通工具的飞行/行驶路径规划,帮助人们更快、更省时地到达目的地。

结语总之,二次函数在日常生活中具有广泛的应用。

不论是建筑、经济、物理还是日常活动,都离不开二次函数的帮助。

生活中的函数例子10个

生活中的函数例子10个

生活中的函数例子10个标题:生活中的函数例子:探索万物运行规律之美导语:函数作为数学中的重要概念,在生活中也有着广泛的应用。

本文将从不同领域的案例出发,介绍生活中的函数例子,展示函数的重要性和多样性。

一、经济学与函数1. 基尼系数:用来衡量国民收入分配不均程度的指标,可以通过一元函数来展现收入分配曲线。

2. 需求曲线:描述商品需求数量与价格之间的关系,反映了消费者购买行为背后的逻辑变化。

二、生态学与函数1. 生物多样性:生物多样性与物种数目之间存在着一定的关系,可以通过二元函数来描述物种的变化规律。

2. 能量流动:能量在生态系统中的流动也可以通过函数表示,描述生物之间的相互关系。

三、医学与函数1. 药物代谢:药物在人体内的代谢过程可以通过指数函数和对数函数进行建模,帮助医生合理用药。

2. 健康评估:医学中的各种身体指标,如身高、体重、血压等,具有一定的函数关系,提供健康状况的评估依据。

四、地理学与函数1. 地势变化:地势对于地理环境起着重要作用,可以通过函数的方式来呈现不同地形的变化规律。

2. 地震研究:地震的震级与震源深度之间存在着函数关系,可以通过统计学方法和函数来预测地震的危险程度。

五、物理学与函数1. 运动学:描述物体运动的速度、加速度等指标,可以通过函数的方程式来表示物体在不同时间的位置和速度。

2. 电路分析:电路中的电流和电压呈现一定的函数关系,帮助工程师分析电路的性能和优化设计。

六、社会学与函数1. 社会心理:人类的心理过程在不同条件下会有不同的表现,可以通过心理学的函数模型来研究和解释人类行为。

2. 人口增长:人口数量的增长也可以用函数来描述,帮助政府进行人口规划和社会发展的预测。

结语:生活中的函数例子随处可见,这些例子揭示了万物运行规律的奥秘。

明白函数的作用和应用,可以帮助我们更好地理解和应对生活中的各种问题,提高我们的决策和创新能力。

二次函数在实际生活中的应用与实际问题分类整理

二次函数在实际生活中的应用与实际问题分类整理

二次函数在实际生活中的应用【经典母题】某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加0.5元,日均销量减少40瓶;当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷0.5]=1 360-80x,y=(x-9)(1 360-80x)=-80x2+2 080x-12 240(10≤x≤14).-b2a=-2 0802×(-80)=13,∵10≤13≤14,∴当x=13时,y取最大值,y最大=-80×132+2 080×13-12 240=1 280(元).答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元.【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论.【中考变形】1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示.(1)图中点P所表示的实际意义是__当售价定为35元/件时,销售量为300件__;销售单价每提高1元时,销售量相应减少__20__件;(2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1+1_000__;自变量x 的取值范围为__30≤x ≤50__;(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少? 解:(1)图中点P 所表示的实际意义是:当售价定为35元/件时,销售量为300件;第一个月的该商品的售价为20×(1+50%)=30(元),销售单价每提高1元时,销售量相应减少数量为(400-300)÷(35-30)=20(件).(2)设y 与x 之间的函数表达式为y =kx +b ,将点(30,400),(35,300)代入,得⎩⎨⎧400=30k +b ,300=35k +b ,解得⎩⎨⎧k =-20,b =1 000,∴y 与x 之间的函数表达式为y =-20x +1 000. 当y =0时,x =50,∴自变量x 的取值范围为30≤x ≤50. (3)设第二个月的利润为W 元,由已知得W =(x -20)y =(x -20)(-20x +1 000)=-20x 2+1 400x -20 000 =-20(x -35)2+4 500,∵-20<0,∴当x =35时,W 取最大值4 500.答:第二个月的销售单价定为35元时,可获得最大利润,最大利润是4 500元.2.[2016·宁波一模]大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a 元,市场调查发现日销售量y (件)与销售价x (元/件)之间存在一次函数关系,如下表所示:若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(即支出=商品成本+员工工资+应支付的其他费用).已知员工的工资为每人每天100元,每天还应支付其他费用200元(不包括集资款). (1)求日销售量y (件)与销售价x (元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大(毛利润=销售收入-商品成本-员工工资-应支付的其他费用);(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?解:(1)由表可知,y 是关于x 的一次函数,设y =kx +b , 将x =110,y =50;x =115,y =45分别代入, 得⎩⎨⎧110k +b =50,115k +b =45,解得⎩⎨⎧k =-1,b =160, ∴y =-x +160(0<x ≤160);(2)由已知可得50×110=50a +3×100+200, 解得a =100.设每天的毛利润为W 元, 则W =(x -100)(-x +160)-2×100-200 =-x 2+260x -16 400 =-(x -130)2+500,∴当x =130时,W 取最大值500.答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大毛利润为500元;(3)设需t 天才能还清集资款, 则500t ≥50 000+0.000 2×50 000t , 解得t ≥102249.∵t 为整数,∴t 的最小值为103天. 答:该店最少需要103天才能还清集资款.3.[2017·青岛]青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨1.下表是去年该酒店豪华间某两天的相关记录:(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变,经市场调查发现,如果豪华间仍旧实行去年旺季的价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?(注:上涨价格需为25的倍数)解:(1)设淡季每间的价格为x 元,依题意得 40 000x ⎝ ⎛⎭⎪⎫1+13=24 000x +10,解得x =600, ∴酒店豪华间有40 000x ⎝ ⎛⎭⎪⎫1+13=40 000600×⎝ ⎛⎭⎪⎫1+13=50(间), 旺季每间价格为x +13x =600+13×600=800(元). 答:该酒店豪华间有50间,旺季每间价格为800元; (2)设该酒店豪华间的价格上涨x 元,日总收入为y 元, y =(800+x )⎝ ⎛⎭⎪⎫50-x 25=-125(x -225)2+42 025, ∴当x =225时,y 取最大值42 025.答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42 025元.4.某公司经营杨梅业务,以3万元/t 的价格向农户收购杨梅后,分拣成A ,B 两类,A 类杨梅包装后直接销售,B 类杨梅深加工再销售.A 类杨梅的包装成本为1万元/t ,根据市场调查,它的平均销售价格y (万元/t)与销售数量x (x ≥2)(t)之间的函数关系式如图Z8-2,B 类杨梅深加工总费用s (单位:万元)与加工数量t (单位:t)之间的函数关系是s =12+3t ,平均销售价格为9万元/t.图Z8-2(1)直接写出A 类杨梅平均销售价格y 与销售量x 之间的函数关系式; (2)第一次该公司收购了20 t 杨梅,其中A 类杨梅x t ,经营这批杨梅所获得的毛利润为W 万元(毛利润=销售总收入-经营总成本). ①求W 关于x 的函数关系式;②若该公司获得了30万元毛利润,问:用于直接销售的A 类杨梅有多少吨? (3)第二次该公司准备投人132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润. 解:(1)y =⎩⎨⎧-x +14(2≤x <8),6(x ≥8);(2)∵销售A 类杨梅x t ,则销售B 类杨梅(20-x )t. ①当2≤x <8时,W =x (-x +14)+9(20-x )-3×20-x -[12+3(20-x )]=-x 2+7x +48, 当x ≥8时,W =6x +9(20-x )-3×20-x -[12+3(20-x )]=-x +48,∴函数表达式为W =⎩⎨⎧-x 2+7x +48(2≤x <8),-x +48(x ≥8);②当2≤x <8时,-x 2+7x +48=30,解得x 1=9,x 2=-2,均不合题意, 当x ≥8时,-x +48=30,解得x =18.答:当毛利润达到30万元时,直接销售的A 类杨梅有18 t ; (3)设该公司用132万元共购买m t 杨梅,其中A 类 杨梅为x t ,B 类杨梅为(m -x )t ,购买费用为3m 万元. 由题意,得3m +x +[12+3(m -x )]=132, 化简,得3m =x +60.①当2≤x <8时,W =x (-x +14)+9(m -x )-132,把3m =x +60代入,得 W =-(x -4)2+64,当x =4时,有最大毛利润64万元. 此时,m =643,m -x =523;②当x ≥8时,W =6x +9(m -x )-132,由3m =x +60,得W =48,当x ≥8时,毛利润总为48万元.答:综上所述,购买杨梅共643 t ,且其中直销A 类杨梅4 t ,B 类杨梅523 t ,公司能获得最大毛利润64万元.【中考预测】某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(元)与售价x(元/件)之间的函数关系式;(2)当销售价定为45元时,计算月销售量和销售利润;(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10 000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.解:(1)由题意可得月销售利润y与售价之间的函数关系式为y=(x-30)[600-10(x-40)]=-10x2+1 300x-30 000;(2)当x=45时,600-10(x-40)=550(件),y=-10×452+1 300×45-30 000=8 250(元);(3)令y=10 000,代入(1)中函数关系式,得10 000=-10x2+1 300x-30 000,解得x1=50,x2=80.当x=80时,600-10(80-40)=200<300(不合题意,舍去),故销售价应定为50元;(4)y=-10x2+1 300x-30 000=-10(x-65)2+12 250,∴x=65时,y取最大值12 250.答:当销售价定为65元时会获得最大利润,最大利润为12 250元.二次函数与实际问题分类整理1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(拱桥问题,求最值、最大利润、最大面积等)类型一:最大面积问题例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值?变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式?当x为多长时,花园面积最大?类型二:利润问题例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?设销售单价为x元,(0<x≤13.5)元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)所获利润可以表示为__________________;(4)当销售单价是________元时,可以获得最大利润,最大利润是__________变式训练2.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?变式训练3:某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售时间x(月)之间的关系(即前x个月的利润之和y与x之间的关系).(1)根据图上信息,求累积利润y(万元)与销售时间x(月)的函数关系式;(2)求截止到几月末公司累积利润可达到30万元?(3)求第8个月公司所获利润是多少万元?变式训练4.某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).y (件)(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额 总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?类型三:实际抛物线问题例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图10所示。

二次函数在生活中的运用

二次函数在生活中的运用

二次函数在生活中的运用二次函数是一个具有形式为y=ax^2+bx+c的二次多项式函数,其中a、b、c是实数且a≠0。

它是数学中一个重要的函数类型,其在现实生活中有许多广泛的应用。

下面将介绍一些二次函数在生活中的运用。

1.物体的自由落体运动:当物体从静止的位置开始自由下落时,其高度与时间的关系可以用二次函数来描述。

根据物体下落的加速度和初速度,我们可以建立二次函数模型来预测物体的高度随时间的变化。

2.弹性力的计算:弹性力是恢复力的一种,其大小与物体偏离平衡位置的距离成正比。

当物体被施加一个力使其偏离平衡位置时,恢复力的大小可以用二次函数描述。

3.抛物线的建模:抛物线是二次函数的图像,它在很多领域中都有应用。

例如,在建筑设计中,抛物线形状的屋顶可以提供更好的排水系统。

在桥梁设计中,抛物线形状的拱桥可以提供更好的结构稳定性。

4.投射物体的路径预测:当一个物体以一定的初速度和角度被抛出时,它的轨迹可以用二次函数模型来预测。

例如,在棒球运动中,球员可以通过分析投球的初速度和角度来预测球的落点。

5.音乐乐器的调音:乐器的音高可以通过改变乐器弦的张力来调节。

根据弦的拉紧程度,可以建立一个二次函数模型来描述音高与弦长的关系。

这使得乐器演奏者能够根据需要调整乐器的音高。

6.经济中的成本与产出关系:在经济学中,成本与产出的关系经常可以用二次函数来描述。

例如,生产一定数量的商品所需的成本与产出之间可能存在一个最优点,通过求二次函数的极值,可以确定最大化利润的产量。

7.变量与值的关系:二次函数可以用来描述两个变量之间的关系。

例如,员工的工资与工作经验之间可能存在一个二次函数模型,随着工作经验的增加,工资可能会呈现先上升后下降的趋势。

8.交通流量的模拟:交通流量的变化可以用二次函数来建模。

例如,小时交通流量随时间的变化可能呈现一个钟形曲线,交通高峰期的交通流量较大,而其他时间段的交通流量相对较小。

以上仅列举了二次函数在生活中的一些应用,其中还有许多其他的应用。

二次函数在生活中的应用案例

二次函数在生活中的应用案例

二次函数在生活中的应用案例1. 游艺项目中的过山车设计过山车是一个经典的游艺项目,其设计中应用了二次函数的概念。

在过山车的设计中,设计师需要考虑到乘客的体验和安全。

二次函数可以描述过山车的轨道曲线,使乘客在高速行驶和兴奋的同时,保持相对平稳和安全的感觉。

通过调整二次函数的参数,如抛物线的开口方向、高度、曲率等,设计师可以创造出令人惊险刺激又相对安全的过山车体验。

2. 投掷运动中的球的抛物线轨迹在投掷运动中,例如投掷物体或运动员抛投物体,物体在空中的轨迹可以被二次函数描述。

球类运动如篮球、足球、棒球等的投掷和弹射过程,都可以用二次函数模型来描述球的运动轨迹。

运动员和教练可以利用二次函数模型来预测球的飞行轨迹和最佳投掷角度,从而提高命中率和战术效果。

3. 桥梁和建筑物设计在桥梁和建筑物的设计过程中,对于拱形和弧形结构的设计,也是利用了二次函数的概念。

二次函数可以描述建筑物和桥梁的曲线形状,使得结构既具有美观性,又具备一定的坚固和稳定性。

例如,拱桥和拱门的设计中,二次函数模型可以帮助工程师确定合适的拱形曲线,以及正确的弧度和支撑结构,从而确保桥梁的结构稳定和承载能力。

4. 金融领域的货币供给和通货膨胀模型二次函数在金融领域中也有广泛的应用。

例如,货币供给和通货膨胀模型可以使用二次函数来描述。

在经济学中,通过调整二次函数的参数,如货币供应量和通货膨胀率之间的关系,可以预测未来经济的走势和市场表现。

政府和央行可以据此采取相应的货币政策,以维持经济的稳定和平衡。

5. 自然界中的抛物线曲线在自然界中,许多自然现象的运动轨迹也可以用二次函数来描述。

例如,抛物线轨迹可以在大多数情况下模拟自然界中物体的运动。

比如,自由落体下的物体、喷泉中水的喷射、炮弹的轨迹等都可以使用二次函数模型来描述其运动状态。

通过利用二次函数,我们可以更好地理解和解释自然界中的规律和现象。

总结:二次函数在生活中的应用案例非常广泛。

从游艺项目的过山车设计到金融领域的经济模型,从投掷运动的球的抛物线轨迹到桥梁和建筑物的设计,二次函数都发挥着重要的作用。

二次函数现实生活题目

二次函数现实生活题目

二次函数现实生活题目
以下是一些与二次函数相关的现实生活问题:
1. 抛物线型拱桥问题:当一个抛物线形状的拱桥满载时,如何计算通过它的车辆的最大数量?这涉及到二次函数在特定条件下的最大值或最小值的计算。

2. 篮球运动轨迹分析:篮球运动员投篮时,篮球的运动轨迹可以近似为二次函数。

通过分析这个二次函数,可以预测篮球的落点,从而帮助运动员提高投篮的准确率。

3. 房屋贷款和利息:房屋贷款通常涉及到一个二次函数,用于计算每个月需要还款的金额。

这是一个典型的利用二次函数解决实际问题的情况。

4. 药物剂量和疗效:在医学中,药物的剂量和疗效之间的关系可以用二次函数来描述。

通过调整剂量,可以找到最佳的治疗效果。

5. 火箭发射和重力:火箭发射时,重力是影响火箭高度的关键因素之一。

火箭的高度和时间的关系可以用二次函数来描述。

6. 音乐和声学:音乐中的和声学涉及到频率和音量的关系,这也可以用二次函数来描述。

例如,一个乐器的音高可以通过调整其振动频率来改变,而频率和振幅之间的关系可以用二次函数来描述。

7. 经济学和供需关系:在经济学中,供需关系可以用二次函数来描述。

例如,供应量和价格之间的关系可能是一个二次函数,通过分析这个函数,可以预测市场的价格变动。

希望这些问题能够给你一些启示,也鼓励你发现和提出更多与二次函数相关的现实生活问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6能否再举一个类似的生活实际应用例子..
解决过程:
学生1:写出优惠方式一的付款总额的函数表达式:设顾客买的套数为X(X为正整数),则付款总额为Y1=60*0.9*X=54X
学生2:写出优惠方式二的付款总额的函数表达式Y2=(X-2)*60.
共同比较:(1)当两种方式付款总额相等时:54X=(X-2)*60,得出X=20
解决方案:
在教学过程中,根据学生在前面பைடு நூலகம்经学习了函数的定义,函数的表示方法,及函数的性质等知识后,学生可以根据以上知识,解决一次函数的应用问题.我采用”自组织教学法”提出以下几个问题:
1分别写出付款总额的函数的表达式
2比较两种付款总额的大小
3通过分析数据得出结论
4归纳本题的函数模型
5进一步探讨,有没有更简洁明了的分析方法.
上海市顾路中学拓展型、探究型课程实施教案
2014学年度第__1___学期
课程名称
生活中的函数2
课时
1
课程类别
执教教师
周晶
适用年级
初二
课程内容
学习生活中的函数
课程目标
1、学会发现生活了解生活,数学源于生活;
2、会自己找出生活中函数的运用;
3、通过拓展的学习能够培养积极学习,努力思考的态度。
课程实施
冬季快到了,大润发商场的保暖内衣开始搞促销活动了.每套保暖内衣原价是60元,优惠方式1:每套内衣打九折。优惠方式2:当购买套数多于10套,购买总价减去两套的价钱.采用哪种优惠方式可以达到省钱的目的?
1审题:弄清题意,分清条件和结论,理顺数量关系。
2建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型。
3解模:求解数学模型,得出数学结论。
4还原:将用数学知识和方法得出的结论,还原为实际问题的意义。
(二)在解决实际问题时应注意自变量的取值范围。
(三)讨论问题时结合图像比较直观,不会掉解漏解。
当X>20时,小圆点都在大圆点之下。
同时学生注意了几个关键点:X=10和X=20
学生3举例:今年暑假,他们一家(父亲,母亲,孩子)要出去旅游,有两个旅行社同时发出邀请,并且各自有各自的优惠政策.旅行社甲承诺:父亲买一张全票,则其他家庭成员均可享受半价;旅行社乙承诺:家庭旅行算团体票,按原价的三分之二计算,这两家旅行社的原价是一样的,若家庭孩子数不同,请分别列出在两家旅行社的优惠政策下,以孩子个数为变量的收费表达式.
师生共同画出函数图像如下:其中小圆点表示第一种优惠方式的总价Y1.
其中大圆点表示第二种优惠方式的总价Y2
通过函数图象,学生也可以直观地看出结果:
当X=10,YI=540元,Y2=600元,
当X=20,Y1=Y2=1080元.
当0<X<10,表示第一种优惠方式的小圆点都在大圆点之下,
当10<X<20时,大圆点都在小圆点之下,
(3)当时10<X<20时,第二种方式省钱.
(4)学生发出感慨:1生活处处有学问,一不留神,爱你不商量。
2团购可以使顾客利益最大化,并且团购还有一个合理性问题。
归纳总结:求解数学应用问题的思路和方法,我们可以用示意图来表示:
教师提示:在函数的几种表示方法中,那种方法能够直观的表示出当自变量变化时相应函数值的变化趋势?
(2)Y1>Y2,X<20,学生答第二种方法省钱.
(3) Y1<Y2,X>20,学生答第一种方法省钱。
我提示看第二种优惠方法的条件:购买的套数必须多于10套.
学生恍然大悟:当购买套数在10<X<20时,第二种方式省钱.
结论:(1)当购买套数在0<X<10或X>20时,第一种优惠方式省钱.
(2)当X=20时,两种方法都可以。
学生4举例:一人从A地到B地乘坐出租车,有两种计费方案。方案1:租用起步价10元,每公里价为1.2元的汽车;方案2:租用起步价为8元,每公里价为1.4元的汽车,按出租车管理条例,在起步价内不同型号形式的里程数都是3公里,请问此人从A地到B地选择哪种方案比较省钱?
五问题反思:(一)解决应用题的一般程序是:
相关文档
最新文档