2.5.2等比数列前n项求和2(新)

合集下载

最新人教版高中数学必修五 等比数列前n项和公式的推导与应用优质教案

最新人教版高中数学必修五 等比数列前n项和公式的推导与应用优质教案

2.5 等比数列的前n2.5.1 等比数列前n 项和公式的推导与应用从容说课师生将共同分析探究等比数列的前n 项和公式.公式的推导以教材中的“错位相减法”为最基本的方法,“错位相减法”也是一种算法,其设计的思路是“消除差别”,从而达到化简的目的等比数列前n 项和公式的推导还有许多方法,可启发、引导学生进行探索.例如,根据等比数列的定义可得q a aa a a a a a n n n n =====---1223211...再由分式性质,得q a S a S n n n =--1,整理得)1(11≠--=q qqa a S n n教学中应充分利用信息和多媒体技术,还应给予学生充分的探索空间教学重点 1.等比数列前n 项和公式的推导2.等比数列前n 项和公式的应用教学难点 等比数列前n 项和公式的推导教具准备 多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解现实生活中存在着大量的等比数列求和的计算问题;2.探索并掌握等比数列前n 项和公式;3.用方程的思想认识等比数列前n 项和公式,利用公式知三求一;4.体会公式推导过程中的分类讨论和转化化归的思想二、过程与方法1.采用观察、思考、类比、归纳、探究得出结论的方法进行教学;2.发挥学生的主体作用,作好探究性活动三、情感态度与价值观1.通过生活中有趣的实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.在探究活动中学会思考,学会解决问题的方法;3.通过对有关实际问题的解决,体现数学与实际生活的密切联系,激发学生学习的兴趣.教学过程导入新课师国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者.这个故事大家听说过吗?生知道一些,踊跃发言师“请在第一个格子里放上1颗麦粒,第二个格子里放上2颗麦粒,第三个格子里放上4颗麦粒,以此类推.每一个格子里放的麦粒都是前一个格子里放的麦粒的2倍.直到第64个格子.请给我足够的麦粒以实现上述要求.”这就是国际象棋发明者向国王提出的要求师假定千粒麦子的质量为40 g,按目前世界小麦年度产量约60亿吨计.你认为国王能不能满足他的要求?生各持己见.动笔,列式,计算生能列出式子:麦粒的总数为1+2+22+…+263师这是一个什么样的问题?你们计算出结果了吗?让我们一起来分析一下.课件展示:1+2+22+…+2 63=?师我们将各格所放的麦粒数看成是一个数列,那么我们得到的就是一个等比数列.它的首项是1,公比是2,求第1个格子到第64个格子所放的麦粒数总和,就是求这个等比数列的前64项的和现在我们来思考一下这个式子的计算方法:记S=1+2+22+23+…+2 63,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.课件展示:S=1+2+22+23+…+2 63,①2S=2+22+23+…+263+264,②②-①得2S-S=2 64-264-1这个数很大,超过了1.84×10 19,假定千粒麦子的质量为40 g,那么麦粒的总质量超过了7 000亿吨.而目前世界年度小麦产量约60亿吨,因此,国王不能实现他的诺言.师国王不假思索地给国际象棋发明者一个承诺,导致了一个很不幸的后果的发生,这都是他不具备基本的数学知识所造成的.而避免这个不幸的后果发生的知识,正是我们这节课所要探究的知识推进新课[合作探究]师在对一般形式推导之前,我们先思考一个特殊的简单情形:1+q+q2+…+q n=?师这个式子更突出表现了等比数列的特征,请同学们注意观察生观察、独立思考、合作交流、自主探究师若将上式左边的每一项乘以公比q,就出现了什么样的结果呢?生q+q2+…+q n+q n+1生每一项就成了它后面相邻的一项师对上面的问题的解决有什么帮助吗?师生共同探索:如果记S n=1+q+q2+…+q n那么qS n =q+q 2+…+q n +q n +1要想得到S n ,只要将两式相减,就立即有(1-q)S n =1-q n师 提问学生如何处理,适时提醒学生注意q 的取值生 如果q≠1,则有qq S n--=11师 当然,我们还要考虑一下如果q =1问题是什么样的结果生 如果q =1,那么S n =n师 上面我们先思考了一个特殊的简单情形,那么,对于等比数列的一般情形我们怎样思考?课件展示: a 1+a 2+a 3+…+a n =?[教师精讲]师 在上面的特殊简单情形解决过程中,蕴含着一个特殊而且重要的处理问题的方法,那就是“错位相减,消除差别”的方法.我们将这种方法简称为“错位相减法师 在解决等比数列的一般情形时,我们还可以使用“错位相减法如果记S n =a 1+a 2+a 3+…+a n 那么qS n =a 1q+a 2q+a 3q+…+a n要想得到S n ,只要将两式相减,就立即有(1-q)S n =a 1-a n师 再次提醒学生注意q 的取值如果q≠1,则有qq a a S n n --=11师 上述过程如果我们略加变化一下,还可以得到如下的过程:如果记S n =a 1+a 1q+a 1q 2+…+a 1q n -1 那么qS n =a 1q+a 1q 2+…+a 1q n -1+a 1q n要想得到S n ,只要将两式相减,就立即有(1-q)S n =a 1-a 1q n如果q≠1,则有qq a S n n --=1)1(1师 上述推导过程,只是形式上的不同,其本质没有什么差别,都是用的“错位相减法”.形式上,前一个出现的是等比数列的五个基本量:a 1,q,a n ,S n ,n 中a 1,q,a n ,S n 四个;后者出现的是a 1,q,S n ,n 四个,这将为我们今后运用公式求等比数列的前n 项的和提供了选择的余地.值得重视的是:上述结论都是在“如果q≠1”的前提下得到的.言下之意,就是只有当等比数列的公比q≠1时,我们才能用上述公式师 现在请同学们想一想,对于等比数列的一般情形,如果q =1问题是什么样的结果呢? 生 独立思考、合作交流生 如果q =1,S n =na 1 师 完全正确如果q =1,那么S n =na n .正确吗?怎么解释?生 正确.q =1时,等比数列的各项相等,它的前n 项的和等于它的任一项的n 倍师 对了,这就是认清了问题的本质师 等比数列的前n 项和公式的推导还有其他的方法,下面我们一起再来探讨一下:[合作探究]思路一:根据等比数列的定义,我们有:q a a a a a a a a n n =====-1342312...再由合比定理,则得qa a a a a a a a n n=++++++++-1321432......即qa S a S nn n =--1从而就有(1-q)S n =a 1-a n(以下从略思路二:由S n =a 1+a 2+a 3+…+a n 得S n =a 1+a 1q+a 2q+…+a n -1q=a 1+q(a 1+a 2+…+a n -1)=a 1+q(S n -a n从而得(1-q)S n =a 1-an(以下从略师 探究中我们们应该发现,S n -S n -=a n 是一个非常有用的关系,应该引起大家足够的重视.在这个关系式中,n的取值应该满足什么条件? 生 n >师 对的,请同学们今后多多关注这个关系式:S n -S n -1=a n ,n >师 综合上面的探究过程,我们得出:⎪⎩⎪⎨⎧≠--==1,1)1(,1,11q q q a q na S n n 或者1,1,1,11≠⎪⎩⎪⎨⎧--=q q q a a q na n[例题剖析]【例题1】 求下列等比数列的前8项的和:(1)21,41,81,…; (2)a 1=27,a 9=2431,q <[合作探究] 师生共同分析:由(1)所给条件,可得211=a ,21=q ,求n =8时的和,直接用公式即可 由(2)所给条件,需要从24319=a 中获取求和的条件,才能进一步求n =8时的和.而a 9=a 1q 8,所以由条件可得q 8=19a a =272431⨯,再由q <0,可得31-=q ,将所得的值代入公式就可以了生 写出解答:(1)因为211=a ,21=q ,所以当n =8时,256255211)21(1[2188=--=S(2)由a 1=27,24319=a ,可得272431198⨯==a a q ,又由q <0,可得31-=q 于是当n =8时,811640)31(1)2724311(2718=--⨯-=S【例题2】 某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30 000台(结果保留到个位)?师 根据题意,从中发现等比关系,从中抽象出等比数列,并明确这是一个已知S n =30 000求n 的问题生 理解题意,从中发现等比关系,并找出等比数列中的基本量,列式,计算解:根据题意,每年的销售量比上一年增加的百分率相同,所以,从今年起,每年销售量组成一个等比数列{a n },其中a 1=5 000,q=1+10%=1.1,S n于是得到300001.11)1.11(5000=--n整理得1.1n两边取对数,得n用计算器算得1.1lg 6.1lg =n ≈041.02.0≈5(年答:大约5年可以使总销售量达到30 000台练习:教材第66页,练习第1、2、3题课堂小结本节学习了如下内容:1.等比数列前n 项和公式的推导;特别是在推导过程中,学到了“错位相减法2.等比数列前n 项和公式的应用.因为公式涉及到等比数列的基本量中的4个量,一般需要知道其中的3个,才能求出另外一个量.另外应该注意的是,由于公式有两个形式,在应用中应该根据题意所给的条件,适当选择运用哪一个公式在使用等比数列求和公式时,注意q的取值是至关重要的一个环节,需要放在第一位来思考.布置作业课本第69页习题2.5 A组第1、2、3题板书设计等比数列前n项和公式的推导与应用等比数列的前n项和公式情境问题的推导一般情形的推导例1练习:(学生板演) 例2练习:(学生板演)。

2.5.2等比数列前n项和公式(2)

2.5.2等比数列前n项和公式(2)

求该数列前2m项的和。
7
例4. 已知等差数列{an}为等差数列且d≠0, {an }的部分项组成数列 {bn},其中 bn akn 若 k1

1, k2 5, k3 17,
(1)求 kn
(2)若a1=2,求{an. kn}前n项和Sn
8
例5.设数列
an 满足: S
n
2an 1,
2.5.2等比数列前n项和(2)
1
一.复习回顾
1.等比数列前n项公式
当q=1时, S n na1
a1 a n q 当 q 1 时,S n 1 q
① ②
2
a1 (1 q ) 或 Sn 1 q
n
2.分段和的性质
①当q=-1且k为偶数时,
S k , S 2k S k , S 3k S 2k 不是等比数列.
(1)若 a1 a2 a10 2, a11 a12 a30 12
(2)若q 2, S99 77,则a3 a6 a9 ..... a99
(3)若q 2, a1a2a3......a99 2 ,则a3a6a9 .....a99
二.例题讲解
例1.等比数列 an 中:
(1)若Sn 2 q,求q的值
n
(2)若前 n项和与积分别为S和T,
1 数列 的前 n 项和为 an
S
'
S 求证: T ' S
2
n
5
例2.等比数列 an 中:
求 a31 a32 a60 的值。
②当q≠-1或kห้องสมุดไป่ตู้奇数时,
王新敞
奎屯

2.5.2等比数列前n项和的性质及应用

2.5.2等比数列前n项和的性质及应用
展示分享
[例1]等比数列{an}中, 则 为______
[例2]等比数列{an}共有2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=________.
[例3]在等比数列{an}中,公比q=2,前99项的和S99=56,
求a3+a6+a9+…+a99的值.
[例4]已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,
(1)若数列{an}是公比为q的等比数列,则Sn,S2n-Sn,S3n-S2n成数列.
(2)在等比数列中,若项数为2n(n∈N*),则=.
讨论领悟
1.若一个数列是等比数列,它的前n项和写成Sn=Aqn+B(q≠1),则A与B有何关系?
2.前n项和的性质:“Sn,S2n-Sn,S3n-S2n成等比数列”,有什么条件吗?
年级
高一
学科
数学
课题
编制人
谭金国
审定人
高一数学备课组
知识目标
教学活动
基础知识—重点知
识—重难点知识
自学质疑—讨论领悟—展示分享—检测巩固—评价提升
1.理解等比数列前n项和的性质,会运用性质解题.2.能等比数列的知识解决一些综合性问题.
自学质疑
1.等比数列前n项和公式
2.等比数列前n项和公式的函数观点
且2,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)若bn=,Tn为数列{bn}的前n项和,证明:Tn<2.
检测巩固
1设等比数列{an}的前n项和为Sn,若=3,则等于()
A.2 B.C.D.3
2一个等比数列的首项为1,项数是偶数,其奇数项的和为85,偶数项的和为170,求此数列的公比和项数.
(1)当公比q=1时,因为a1≠0,所以Sn=是n的正比例函数,数列{Sn}对应的点(n,Sn)是正比例函数图象上的一些离散的点.

等比数列的前n项和(2)最新版

等比数列的前n项和(2)最新版

1
1


1
8
S8
2 2 1 1


255 256
2
练习
已知等比 an中 数 , 列
1 a 1 2 , S 3 1 . 则 q 4 2或-3
a 3

8或18
2 a 1 1 , a 4 2 则 q 1 -6 , S 4 6 185
sn=a1+a2+a3+ ······+an-1+an
Sn = a1 + a1q + a1q2 +……+a1qn-2 + a1qn-1 (*)
q n a s 1 q a 1 q 2 a 1 q 3 a n 1 q a 1 q n (*
两式相减有 ( 1 – q )Sn = a1 – a1 q n
欢迎光临指导
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方

(最新修订)新课标初中数学教学课件 2.5.2 等比数列前n项和的性质 _1-5

(最新修订)新课标初中数学教学课件  2.5.2 等比数列前n项和的性质 _1-5
2.5.2 等比数列前 n 项和的性质
掌握等比数列{an}前 n 项和公式的一些基本性质.
好文档分创建
1
1.数列{an}是等比数列,Sn是其前n 项和,则Sn,S2n-Sn, S3n-S2n也成_等__比__数__列___.
练习1:在等比数列{an}中,a1+a2=20,a3+a4=40,则 S6=___1_4_0__.
即S3n=70.
好文档分创建
5

小狐狸狗长得俊俏,又聪明伶俐,和小狐狸、小狗们处得可融洽了,小狐狸们有义务劳动的时候,他去参加。”
蜜蜂循声音望去,果真是热闹非凡,大大小小的苍蝇乱轰轰地飞舞着,蟑螂在爬行,蛆虫在蠕动;地面上乌七糟八的东西更是应有尽有,脏土废纸菜根烂叶,还有不少鱼骨肉渣— —原来是一个兼收并蓄的大垃圾场,这就是苍蝇吹崇备至的居处。”
4
题型1 等比数列前 n 项和性质的应用
例1:已知等比数列前 n 项和为 10,前 2n 项和为 30.求前
3n 项的和.
自主解答:解法一:设数列为{an},
依题意,可得Sn=10,S2n=30.
又∵在等比数列{an}中,Sn,S2n-Sn,S3n-S2n成等比数列,
∴(S2n-Sn)2=Sn·(S3n-S2n),(30-10)2=10·(S3n-30),
“玻璃粉屑?”老鹰迟疑了一会。 上海松江注册公司
地主”
那人问:“你怎么了?为什么浑身发抖?” 小老鼠“吱吱”尖叫着说:“我遇见一只猫,吓得要死。最近4年来,我才明白一个人生来不能光为自己,还要为别人服务。, 他家花园里种了一丛樖鳎人们就给他起了个绰号,叫做“樖鞯刂鳌薄 他知道了这个绰号,认为这是对他的嘲弄,便把整个樖鞔匀部砍掉,以为这样一来就不会再有这样一个讨厌的绰号了?可是,树丛砍掉了,还有树桩呢!人们又开始称他为“树桩

2.5等比数列的前n项和

2.5等比数列的前n项和

预习测评
1.等比数列1,a,a2,a3,…的前n项和为(
a1-an-1 A.1+ 1-a an+1-1 C. a-1 1-an B. 1-a D.以上皆错
)
解析:要考虑到公比为1的情况,此时Sn=n. 答案:D
2.数列{2n-1}的前99项和为 A.2100-1 B.1-2100 C.299-1 D.1-299
15 = .所以 a1=1. 8
答案:1
要点阐释
1.等比数列前n项和公式的推导 设等比数列a1,a2,a3,…,an,…它的前n项和 是Sn=a1+a2+…+an. 由等比数列的通项公式可将Sn写成 Sn=a1+a1q+a1q2+…+a1qn-1. ① ①式两边同乘以q得, qSn=a1q+a1q2+a1q3+…+a1qn. ② ①-②,得(1-q)Sn=a1-a1qn,由此得q≠1时,
1.若本例(1)中的条件不变,如何求{an}的通项 公式?
解:∵S2=30,S3=155,∴a3=S3-S2=125, 125 即 a1· =125.∴a1= 2 . q q
2
又∵a1+a1q=30, 125 125 ∴ 2 + q =30,即 6q2-25q-25=0. q
a1=5 解得: q=5
∴数列{an}的通项公式为an=(a2-1)a2n-2(n∈N*). 即数列{an}是首项为a2-1,公比为a2的等比数列. 方法点评:将已知条件Sn=a2n-1与an=Sn-Sn-1 结合起来 ,得到n≥2时的通项公式an=(a2-1)a2n-2, 特别注意的是,n=1时即a1=a2-1能否统一到an=(a2- 1)·2n-2中去,如果能统一起来,则数列{an}为等比数列, a 否则数列{an}不是等比数列.
典例剖析

高中数学第二章数列25等比数列的前n项和第1课时等比数列前n项和的求解课件新人教A版必修

高中数学第二章数列25等比数列的前n项和第1课时等比数列前n项和的求解课件新人教A版必修
解:一方面,借款 10 000 元,将此借款以相同的条 件存储 6 个月,则它的本利和为 S1=104(1+0.01)6=104 ×1.016(元).
另一方面,设每个月还贷 a 元,分 6 个月还清,到贷 款还清时,其本利和为
S2=a(1+0.01)5+a(1+0.01)4+…+a=
a[(1+1.001.0-1)1 6-1]=a(1.016-1)×102(元). 由 S1=S2,得 a=11.0.0116×6-1102. 因为 1.016≈1.061,所以 a=11.0.06611×-1102≈1 739. 故每月应支付 1 739 元.
=12+121-1-1212n-1-22nn-+11 =32-22nn++13, 所以 Sn=3-2n2+n 3. 答案:3-2n2+n 3
类型 1 等比数列求和公式的基本运算 [典例 1] 在等比数列{an}中: (1)S2=30,S3=155,求 Sn; (2)a1+a3=10,a4+a6=54,求 S5; (3)a1+an=66,a2an-1=128,Sn=126,求 q. 解:(1)由题意知aa11((11++qq)+=q2)30=,155,
[变式训练] 在等比数列{an}中:
(1)若 a1= 2,an=16 2,Sn=11 2,求 n 和 q; (2)已知 S4=1,S8=17,求 an.
解:(1)由 Sn=a11--aqnq得 112=Βιβλιοθήκη 2-16 1-q2q,
所以 q=-2,
又由 an=a1qn-1 得 16 2= 2(-2)n-1, 所以 n=5.
又 Sn=a11--aqnq=126, 所以 q 为 2 或12. 归纳升华 1.在等比数列{an}的五个量 a1,q,an,n,Sn 中, 已知其中的三个量,就能求出另两个量,这是方程思想 与整体思想在数列中的具体应用. 2.在解决与前 n 项和有关的问题时,首先要判断公 比 q 是否等于 1,若两种情况都有可能,则要分类讨论.

2.5.2等比数列的前n项和

2.5.2等比数列的前n项和

2.5.2等比数列的前n 项和学习目的:1.会用等比数列的通项公式和前n 项和公式解决有关等比数列的q n a a S n n ,,,,1中知道三个数求另外两个数的一些简单问题2.提高分析、解决问题能力.学习重点:进一步熟练掌握等比数列的通项公式和前n 项和公式. 学习难点:灵活使用公式解决问题 课堂过程:一、复习引入:首先回忆一下前几节课所学主要内容:1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1-n n a a =q (q ≠0)2.等比数列的通项公式:)0(111≠⋅⋅=-q a qa a n n , )0(11≠⋅⋅=-q a qa a m m n3.{n a }成等比数列⇔nn a a 1+=q (+∈N n ,q ≠0)“n a ≠0”是数列{n a }成等比数列的必要非充分条件4.既是等差又是等比数列的数列:非零常数列. 5.等比中项:G 为a 与b 的等比中项. 即G =±ab (a ,b 同号).6.性质:若m+n=p+q ,q p n m a a a a ⋅=⋅7.判断等比数列的方法:定义法,中项法,通项公式法8.等比数列的增减性:当q>1, 1a >0或0<q<1, 1a <0时, {n a }是递增数列;当q>1, 1a <0,或0<q<1, 1a >0时, {n a }是递减数列;当q=1时, {n a }是常数列;当q<0时, {n a }是摆动数列;9.等比数列的前n 项和公式: ∴当1≠q 时,qq a S nn --=1)1(1 ① 或qq a a S n n --=11 ②当q=1时,1na S n =当已知1a , q, n 时用公式①;当已知1a , q, n a 时,用公式②. 10.n S 是等比数列{}n a 的前n 项和,①当q =-1且k 为偶数时,k k k k k S S S S S 232,,--不是等比数列. ②当q ≠-1或k 为奇数时,k k k k k S S S S S 232,,-- 仍成等比数列二、例题讲解例1 已知等差数列{n a }的第二项为8,前十项的和为185,从数列{n a }中,依次取出第2项、第4项、第8项、……、第n 2项按原来的顺序排成一个新数列{n b },求数列{n b }的通项公式和前项和公式n S解:∵ ⎩⎨⎧=+=+1854510811d a d a , 解得1a =5, d =3,∴ n a =3n +2, n b =na 2=3×n 2+2,n S =(3×2+2)+ (3×22+2)+ (3×32+2)+……+(3×n 2+2)=3·12)12(2--n+2n =7·n 2-6.(分组求和法)例2 设数列{}n a 为 1324,3,2,1-n nx x x x ()0≠x 求此数列前n 项的和解:(用错项相消法)1324321-+++++=n n nxx x x S ①()nn n nx x n x x x xS +-++++=-132132 ②①-②()nn n nx xx x S x -++++=--1211 , 当1≠x 时, ()nnn nxxxS x ---=-111xnxnxx n nn -+--=+111()xnxx n n n-++-=+1111()()21111x nxx n S n nn -++-=+当1=x 时,()214321n n n S n +=++++=例3等比数列{}n a 前n 项和与积分别为S 和T ,数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和为'S ,求证:nS S T⎪⎭⎫ ⎝⎛='2证:当1=q 时,1na S =,na T 1=,1'a n S =,∴221111T a a n na S S nnn ==⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛,(成立) 当1≠q 时,∵()()()()1111,,1111111'12111--=--==--=-----q qa q qq a S qa Tqq a S n nn nn n,∴()()221211121'T q a q a S S n n n nn n=⎥⎦⎤⎢⎣⎡==⎪⎭⎫⎝⎛--,(成立) 综上所述:命题成立例4设首项为正数的等比数列,它的前n 项之和为80,前n 2项之和为6560,且前n 项中数值最大的项为54,求此数列解:由题意 ()()()()81821265601118011211=⇒⎪⎪⎩⎪⎪⎨⎧=+⇒=--=--nnnnqqq q a qq a代入(1), ()()q qa n-=-18011,得:011>-=q a,从而1>q ,∴{}n a 递增,∴前n 项中数值最大的项应为第n 项∴=-11n qa ()=-=---111n n n qq qq ,54811=--n q∴3,27548111===-=--n nn qq q q,∴21311=-=-=q a ,∴此数列为 162,54,18,6,2例5求和:(x +)1()1()122nnyxyx y+++++ (其中x ≠0,x ≠1,y ≠1)分析:上面各个括号内的式子均由两项组成,其中各括号内的前一项与后一项分别组成等比数列,分别求出这两个等比数列的和,就能得到所求式子的和.解:当x ≠0,x ≠1,y ≠1时, (x +)1()1()122nnyxyx y+++++)111()(22nnyyyx x x +++++++=yy yxx x nn11)11(11)1(--+--=nn nn yyy xxx --+--=++1111三、练习:设数列{}n a 前n 项之和为n S ,若2,121==S S 且()202311≥=+--+n S S S n n n ,问:数列{}n a 成等比数列吗? 解:∵02311=+--+n n n S S S ,∴()()0211=----+n n n n S S S S ,即021=-+n n a a即:21=+nn a a ()2≥n ,∴{}n a 成等比数列()2≥n又:2,1,11212211≠=-===a a S S a S a ,∴{}n a 不成等比数列,但当()2≥n 时成()2≥n ,即:()()⎩⎨⎧≥==-22111n n a n n四、小结 本节课学习了以下内容:等比数列前n 项和的性质1.mn m n mS S qS -=+⋅{}2. 2, :.n S a n q S =偶奇若等比数列有项则{}3.,0.n n n a n S S ≠若等比数列的前和为且232,,,,.kk k k k k S S S q -- 则:成等比数列且公比为熟练求和公式的应用五、课后作业:课本第68页B 组1—3。

高二数学《2.5等比数列的求和公式2》课件 新人教A版必修5

高二数学《2.5等比数列的求和公式2》课件 新人教A版必修5
2.5.2等比数列前nn a1 a2 a3 an1 an
错位相减法
n 2 n1
Sn a1 a1q a1q a1q
2
2 3
a1q

n
qSn a1q a1q a1q a1q
n1
a1q ②
n
①—② ,得
(1 q)Sn a1 0 0 a1q
(1 q)Sn a1 a1q
n
注意:
na1 (q 1) n S n a1 a1q (q 1) 1 q n a1 an q a1 a1q q 1时 : S n 1 q 1 q
2
……
5000 1.1 台
2
n1

n 1
5 5 1.1 5 1.1 5 1.1
例1.等比数列 an 的前n项和为 Sn,已知 S1 , S3 , S2 成等差数列, (1)求an 的公比 q ,2)若 a1 a3 3 求 Sn
解:由题意得 2S3 S1 S2 ,即:
1.使用公式求和时,需注意对 q 的情况加以讨论;
1和 q 1
2.推导公式的方法:错位相减法。
例3.某商场今年销售计算机5000台,如果平均每年 的销售量比上一年的销售量增加10%,那么从今 起,大约几年可使总销售量达到30000台(结果保 留到个位)? 分析:第1年产量为 5000台 第2年产量为 5000×(1+10%)=5000×1.1台 第3年产量为 5000×(1+10%) ×(1+10%) 第n年产量为 50001.1 则n年内的总产量为:
3 2
例1.等比数列 an 的前n项和为 Sn,已知 S1 , S3 , S2 成等差数列,

2.5.2等比数列前n项和

2.5.2等比数列前n项和
等比数列前n项和的性质
1 .S n S m q
m
S nm
推导过程:
1 当 q
1时 , S m m a1 , S n m ( n m ) a1 .
S n n a1 ,
此 时 ,S n S m S nm成 立 .
2 当 q
1时 , a1 1 q 1 q
1 a1 2 a1
3, q 3, n 6; 8, q 1 2 , an 1 2 ,
S6 1092
Sn
11 2
.
2 .求 等 比 数 列 1, 2, 4, L 从 第 5 项 到 第 1 0 项 的 和 .
S10 S 4 1 0 0 8 .
新课
推导过程:
1 当 q
2 当 q
1时 , S n n a 1 ,
S k k a1 , S 2 k S k k a1 , S 3 k S 2 k k a1 , L
1时 ,
m
由 性 质 1:S n S m q S nm , S 2k S k q S k , S 3k S 2k q S k ,L
8
练习
1 .已 知 等 比 数 列 的 公 比 为 q 1 2 , 且 a1 + a 3 + a 5 + L + a 9 9 6 0 ,
90 则 S100 _ _ _ _ _ _ _ _ .
2 .若 某 等 比 数 列 中 前 7 项 的 和 为 4 8, 前 1 4 项 的 和 为 6 0 , 则 前 2 1 项 的 和 为 _ _63. _ ___
3 .一 个 等 比 数 列 , 它 的 项 数 为 偶 数 , 全 部 各 项 和 是 偶 数 项 和 的 4倍 ,前 3项 之 积 为 64. 求 公 比 q及 通 项 公 式 .

等比数列前N项和的性质知识讲解

等比数列前N项和的性质知识讲解

例题讲解
4、若等 {an}的 比公 数 1 3, 比 列 a1且 为 a3a99 6,0
则 {an}的1前 0 项 0 和 80 为 。
解: 令 S 奇 a 1 a 3 a 9 9 60
S 偶 a 2a 4 a 100
由则 等 S100比 S奇 数 nS项 偶列 和前 性S质 偶知 q1:
化简S到 n1 3: 3n2a
1 3
2a
0
a 1 6
探究二:
我们知道,等差数列有这样的性质:
如 a n 果 为等 , 则 差 S k,S 2 数 kSk,S 列 3 kS 2 k也成等
新的等差数列 Sk, 首 公项 差k为 为 2d。
那么,在等比数列中,也有类似的性质吗? 怎么证 明?
等比数列前n项和的性质二:



根据题意S10,S20-S10,S30-S20成等比数列 → S10=10,S20=30 → S30
例题讲解
【解】 法一:设公比为 q,则
a111--qq10=10 a111--qq20=30 ② ② ①得 1+q10=3,∴q10=2,

a1 10 1 q
例题讲解
∴S30=a111--qq30=70. 法二:∵S10,S20-S10,S30-S20 仍成等比数列, 又 S10=10,S20=30, ∴S30-S20=S30-30=30-10102, 即 S30=70.
课后作业
书上第62页,习题2.5 B组,第2题、第5题。
5 、在{a 等 n} 中 a 比 1 , a n 数 6, 6 a 2列 a n 1 1, 2 前 n 项 S n 和 1, 2n 6 及 求 q 公 。比
解: a1ana2an 1128

高中数学《等比数列前n项和公式》课件

高中数学《等比数列前n项和公式》课件

反思与感悟 解决此类问题的关键是建立等比数列模型及弄清数列 的项数,所谓复利计息,即把上期的本利和作为下一期本金,在计 算时每一期本金的数额是不同的,复利的计算公式为S=P(1+r)n, 其中P代表本金,n代表存期,r代表利率,S代表本利和.
跟踪训练3 一个热气球在第一分钟上升了25 m的高度,在以后的每一 分钟里,它上升的高度都是它在前一分钟里上升高度的80%,这个热 气球上升的高度能超过125 m吗?
跟踪训练2 在等比数列{an}中,S2=30,S3=155,求Sn.
方法二 若q=1,则S3∶S2=3∶2,
而事实上,S3∶S2=31∶6,故q≠1.
a111--qq2=30,

所以a111--qq3=155,

两式作比,得1+1+q+q q2=361,
解得aq1==55,
a1=180, 或q=-65,
达标检测
1.等比数列1,x,x2,x3,…的前n项和Sn等于
1-xn A. 1-x
1-xn-1 B. 1-x
1-xn

C.
1-x
,x≠1,
n,x=1
解析 当x=1时,Sn=n; 1-xn
当 x≠1 时,Sn= 1-x .
D.1-1-xnx-1,x≠1, n,x=1
1234
2.设等比数列{an}的公比 q=2,前 n 项和为 Sn,则Sa42等于
A.2 解析
B.4
√C.125
17 D. 2
方法一 由等比数列的定义,S4=a1+a2+a3+a4=aq2+a2+a2q+
a2q2,得Sa42=1q+1+q+q2=125. 方法二 ∵S4=a111--qq4,a2=a1q,∴Sa42=11--qq4q=125.

2.5.2 等比数列的前n项和(2)

2.5.2 等比数列的前n项和(2)

an 3 2(an1 3) (n 2) 即
an 3 2 (n 2)
an1 3
∴数列{an-3}是公比为2的等比数列.
an 3 (a1 3)2n1 (3 3)2n1 3 2n an 3(2n 1).
Q an 3(2n 1) 3 2n 3 ,
Sn a1 a2 a3 L an
,
求:(I)a2,a3,a4的值及数列{an}的通项公式;
(II)a2 a4 a6 L a2n 的值.
解:
(I)由a1=1,an1
1 3
Sn
,

a2
1 3
S1
1 3 a1
1 3
,
a3
1 3
S2
1 3 (a1
a2 )
4 9
,
11
16
a4 3 S3 3 (a1 a2 a3 ) 27 ,
(II)a2 a4 a6 L a2n 的值.
解:(II)由(I)可知 a2 , a4 ,L
, a2n
是首项为
1 3

公比为( 4)2 , 项数为n的等比数列,
3
a2
a4
a6
L
a2n
1
1
( 4)2n 3
3 1 (4)2
3 [( 4 )2n 1]. 73
3
例5 设数列{an}的前n项和为Sn,若对任意的n∈N*

n 1 2. Sn
故 { Sn } 是以2为公比的等比数列. n
n
例3 数列{an}的前n项和记为Sn,已知
a1
1, an1
n
n
2
Sn(n
1,2,3
).
(1)数列
{ Sn n

人教A版2019高中数学必修5练习:第二章_数列2.5.2等比数列前n项和的性质及应用_含答案

人教A版2019高中数学必修5练习:第二章_数列2.5.2等比数列前n项和的性质及应用_含答案

第2课时等比数列前n项和的性质及应用课后篇巩固探究A组1.在各项都为正数的等比数列{a n}中,首项a1=3,前3项和为21,则a3+a4+a5等于()A.33B.72C.84D.189S3=a1(1+q+q2)=21,且a1=3,得q+q2-6=0.因为q>0,所以q=2.故a3+a4+a5=q2(a1+a2+a3)=22·S3=84.2.已知数列{a n}的前n项和S n=a n-1(a是不为零且不等于1的常数),则数列{a n}()A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不是等差数列,也不是等比数列S n=a n-1符合S n=-Aq n+A的形式,且a≠0,a≠1,所以数列{a n}一定是等比数列.3已知{a n}是等比数列,a1=1,a4=,则a1a2+a2a3+…+a n a n+1等于()A.2(1-4-n)B.2(1-2-n)C. (1-4-n)D. (1-2-n)q,∵=q3=,∴q=.∵a1=1,∴a n a n+1=1××1×=21-2n.故a1a2+a2a3+a3a4+…+a n a n+1=2-1+2-3+2-5+…+21-2n== (1-4-n).4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:一座七层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.2盏B.3盏C.5盏D.6盏a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得=381,解得a=3,故顶层有3盏灯.5.已知一个等比数列共有3m项,若前2m项之和为15,后2m项之和为60,则这个等比数列的所有项的和为()A.63B.72C.75D.87已知S2m=15,S3m-S m=60,又(S2m-S m)2=S m(S3m-S2m)=S m(S m+60-S2m),解得S m=3,所以603=63.3m6.在各项均为正数的等比数列{a n}中,a1=2,a2,a4+2,a5成等差数列,S n是数列{a n}的前n项和,则S10-S4=.题意有2(a4+2)=a2+a5,设公比为q,则有2(2q3+2)=2q+2q4,解得q=2.于是S10-S4==2 016.7.已知数列{a n}满足a1=1,a n+1·a n=2n(n∈N*),则S2 018=.a n+1·a n=2n(n∈N*),a1=1,∴a2=2,a3=2.又a n+2·a n+1=2n+1,∴=2,∴数列{a n}的奇数项与偶数项分别成等比数列,公比为2,首项分别为1,2.∴S2 018=(a1+a3+…+a2 017)+(a2+a4+…+a2 018)==3·21 009-3.1 009-38.已知一件家用电器的现价是2 000元,如果实行分期付款,一年后还清,购买后一个月第一次付款,以后每月付款一次,每次付款数相同,共付12次,月利率为0.7%,并按复利计算,那么每期应付款元.(参考数据:1.00711≈1.080,1.00712≈1.087,1.0711≈2.105,1.0712≈2.252)x元,第n期付款后欠款A n元,则A1=2 000(1+0.007)-x=2 000×1.007-x,A2=(2 000×1.007-x)×1.007-x=2 000×1.0072-1.007x-x,……A12=2 000×1.00712-(1.00711+1.00710+…+1)x,因为A12=0,所以2 000×1.00712-(1.00711+1.00710+…+1)x=0,解得x=≈175,即每期应付款175元.9.在等差数列{a n}中,a2+a7=-23,a3+a8=-29.(1)求数列{a n}的通项公式;(2)设数列{a n+b n}是首项为1,公比为|a2|的等比数列,求{b n}的前n项和S n.设等差数列{a n}的公差为d,依题意得a3+a8-(a2+a7)=2d=-6,从而d=-3.所以a2+a7=2a1+7d=-23,解得a1=-1.所以数列{a n}的通项公式为a n=-3n+2.(2)由(1)得a2=-4,所以|a2|=4.而数列{a n+b n}是首项为1,公比为4的等比数列.所以a n+b n=4n-1,即-3n+2+b n=4n-1,所以b n=3n-2+4n-1,于是S n=[1+4+7+…+(3n-2)]+(1+4+42+…+4n-1)=.10.导学号04994050已知数列{a n}的前n项和为S n,且a1=1,a n+1=S n,n∈N*,求:(1)a2,a3,a4的值及数列{a n}的通项公式;(2)a2+a4+a6+…+a2n的值.由a1=1,a n+1=S n,n=1,2,3,…,得21=a1=,a3=S2= (a1+a2)=,a4=S3= (a1+a2+a3)=.由a n+1-a n=(S n-S n-1)= a n(n≥2),得a n+1=a n(n≥2),∵a2=,∴a n=(n≥2).∴数列{a n}的通项公式为a n=(2)由(1)可知,a2,a4,…,a2n是首项为,公比为,项数为n的等比数列,∴a2+a4+a6+…+a2n=.B组1.在等比数列{a n}中,a1+a2+a3+a4+a5=3,=15,则a1-a2+a3-a4+a5的值是A.3B.C.-D.5题意可知等比数列{a n}的公比q≠1,则a1+a2+…+a5==3,+…+=15,∴=5,∴a1-a2+a3-a4+a5==5.2.已知某公司今年获利5 000万元,如果以后每年的利润都比上一年增加10%,那么总利润达3亿元大约还需要()(参考数据:lg 1.01≈0.004,lg 1.06≈0.025,lg 1.1≈0.041,lg 1.6≈0.204)A.4年B.7年C.12年D.50年据题意知每年的利润构成一个等比数列{a n},其中首项a1=5 000,公比110%=1.1,S n=30 000.于是得到=30 000,整理得1.1n=1.6,两边取对数,得n lg 1.1=lg 1.6,解得n=≈5,故还需要4年.3.已知等比数列{a n}的公比为q,其前n项和为S n,前n项之积为T n,且满足a1>1,a2 016a2017>1,<0,则下列结论正确的是()A.q<0B.a2 016a2 018-1>0C.T2 016是数列{T n}中的最大数D.S2 016>S2 017,得a2 016>1,a2 017<1,所以前2 016项均大于1,0<q<1,S2 016<S2 017,T2 016是数列{T n}中的最大数,a2 016a2 018与1的大小关系无法确定.故选C.4已知等比数列{a n},其前n项和为S n,若S30=13S10,S10+S30=140,则S20等于.q≠1 (否则S30=3S10),由所以q20+q10-12=0,所以q10=3(负值舍去),故S20==S10×(1+q10)=10×(1+3)=40.5.已知等比数列{a n}的前n项和为S n,且S n=b n+1-2(b>0,b≠1),则a4=.n≥2时,a n=S n-S n-1=(b-1)·b n.因为a1=S1=b2-2,所以(b-1)b=b2-2,解得b=2,因此S n=2-2,于是a4=S4-S3=16.6.导学号04994051如图,作边长为3的正三角形的内切圆,在这个圆内作内接正三角形,然后作新三角形的内切圆,……如此下去,则前n个内切圆的面积和为.×3=,面积为π,第二个内切圆的半径为,面积为π,……这些内切圆的面积组成一个等比数列,首项为π,公比为,故前n个内切圆的面积之和为π.π7.已知正项等差数列{a n}的公差不为0,a2,a5,a14恰好是等比数列{b n}的前三项,a2=3.(1)求数列{a n},{b n}的通项公式;(2)记数列{b n}的前n项和为T n,若对任意的n∈N*,k≥3n-6恒成立,求实数k的取值范围.设公差为d,根据题意知d≠0,a2=a1+d,a5=a1+4d,a14=a1+13d.∵(a1+4d)2=(a1+d)(a1+13d),a1+d=3,∴3d2-6d=0,∴d=2(d=0舍去).又a2=3,d=2,∴a1=1,a n=2n-1.∵b1=a2=3,b2=a5=9,b3=a14=27,∴b n=3n.(2)由(1)知b1=3,q=3.∵T n=,∴k≥3n-6对n∈N*恒成立.∴k≥对n∈N*恒成立.令c n=,c n-c n-1=,当n≤3时,c n>c n-1,当n≥4时,c n<c n-1,∴(c n)max=c3=,故k≥.8.导学号04994052已知等差数列{a n}的前n项和为S n,且a2=8,S4=40.数列{b n}的前n项和为T n,且T n-2b n+3=0,n∈N*.(1)求数列{a n},{b n}的通项公式;(2)设c n=求数列{c n}的前2n+1项和P2n+1.由题意知,解得∴a n=4n.∵T n-2b n+3=0,∴当n=1时,b1=3,当n≥2时,T n-1-2b n-1+3=0,两式相减,得b n=2b n-1(n≥2),故数列{b n}为等比数列,且b n=3·2n-1.(2)由(1)知c n=∴P2n+1=(a1+a3+…+a2n+1)+(b2+b4+…+b2n)==22n+1+4n2+8n+2.。

等比数列的前n项和(二)

等比数列的前n项和(二)

等比数列的前n 项和(二)[学习目标] 1.熟练应用等比数列前n 项和公式的有关性质解题.2.应用方程的思想方法解决与等比数列前n 项和有关的问题.知识点一 等比数列的前n 项和的变式1.等比数列{a n }的前n 项和为S n ,当公比q ≠1时,S n =a 1(1-q n )1-q =a 1(q n -1)q -1=a 1-a n q 1-q =a 1q nq -1-a 1q -1; 当q =1时,S n =na 1.2.当公比q ≠1时,等比数列的前n 项和公式是S n =a 1(1-q n )1-q ,它可以变形为S n =-a 11-q ·qn+a 11-q ,设A =a 11-q,上式可写成S n =-Aq n +A .由此可见,非常数列的等比数列的前n 项和S n 是由关于n 的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数. 当公比q =1时,因为a 1≠0,所以S n =na 1是n 的正比例函数(常数项为0的一次函数). 思考 在数列{a n }中,a n +1=ca n (c 为非零常数)且前n 项和S n =3n -1+k ,则实数k 等于________.答案 -13解析 由题{a n }是等比数列, ∴3n 的系数与常数项互为相反数, 而3n 的系数为13,∴k =-13.知识点二 等比数列前n 项和的性质1.连续m 项的和(如S m 、S 2m -S m 、S 3m -S 2m )仍构成等比数列.(注意:q ≠-1或m 为奇数) 2.S m +n =S m +q m S n (q 为数列{a n }的公比).3.若{a n }是项数为偶数、公比为q 的等比数列,则S 偶S 奇=q .思考 在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则S 6等于( ) A .140 B .120 C .210 D .520答案 A解析 S 2=20,S 4-S 2=40,∴S 6-S 4=80, ∴S 6=S 4+80=S 2+40+80=140.题型一 等比数列前n 项和的性质例1 (1)等比数列{a n }中,S 2=7,S 6=91,则S 4=______.(2)等比数列{a n }共有2n 项,其和为-240,且(a 1+a 3+…+a 2n -1)-(a 2+a 4+…+a 2n )=80,则公比q =____. 答案 (1)28 (2)2解析 (1)∵数列{a n }是等比数列, ∴S 2,S 4-S 2,S 6-S 4也是等比数列, 即7,S 4-7,91-S 4也是等比数列, ∴(S 4-7)2=7(91-S 4), 解得S 4=28或S 4=-21.又∵S 4=a 1+a 2+a 3+a 4=a 1+a 2+a 1q 2+a 2q 2 =(a 1+a 2)(1+q 2)=S 2·(1+q 2)>0, ∴S 4=28.(2)由题S 奇+S 偶=-240,S 奇-S 偶=80, ∴S 奇=-80,S 偶=-160, ∴q =S 偶S 奇=2.跟踪训练1 (1)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6等于( )A .2 B.73 C.83 D .3答案 B解析 方法一 因为数列{a n }是等比数列,所以S 6=S 3+q 3S 3,S 9=S 6+q 6S 3=S 3+q 3S 3+q 6S 3,于是S 6S 3=(1+q 3)S 3S 3=3,即1+q 3=3,所以q 3=2.于是S 9S 6=1+q 3+q 61+q 3=1+2+41+2=73.方法二 由S 6S 3=3,得S 6=3S 3.因为数列{a n }是等比数列,且由题意知q ≠-1,所以S 3,S 6-S 3,S 9-S 6也成等比数列,所以(S 6-S 3)2=S 3(S 9-S 6),解得S 9=7S 3,所以S 9S 6=73.(2)一个项数为偶数的等比数列,各项之和为偶数项之和的4倍,前3项之积为64,求通项公式.解 设数列{a n }的首项为a 1,公比为q ,全部奇数项、偶数项之和分别记为S 奇、S 偶,由题意知S 奇+S 偶=4S 偶,即S 奇=3S 偶. ∵数列{a n }的项数为偶数,∴q =S 偶S 奇=13.又a 1·a 1q ·a 1q 2=64,∴a 31·q 3=64,即a 1=12. 故所求通项公式为a n =12·⎝⎛⎭⎫13n -1. 题型二 等比数列前n 项和的实际应用例2 小华准备购买一台售价为5 000元的电脑,采用分期付款方式,并在一年内将款全部付清.商场提出的付款方式为:购买2个月后第1次付款,再过2个月后第2次付款,…,购买12个月后第6次付款,每次付款金额相同,约定月利率为0.8%,每月利息按复利计算,求小华每期付款金额是多少.解 方法一 设小华每期付款x 元,第k 个月末付款后的欠款本利为A k 元,则: A 2=5 000×(1+0.008)2-x =5 000×1.0082-x , A 4=A 2(1+0.008)2-x =5 000×1.0084-1.0082x -x , …A 12=5 000×1.00812-(1.00810+1.0088+…+1.0082+1)x =0, 解得x = 5 000×1.008121+1.0082+1.0084+…+1.00810=5 000×1.008121-(1.0082)61-1.0082≈880.8.故小华每期付款金额约为880.8元.方法二 设小华每期付款x 元,到第k 个月时已付款及利息为A k 元,则: A 2=x ;A 4=A 2(1+0.008)2+x =x (1+1.0082); A 6=A 4(1+0.008)2+x =x (1+1.0082+1.0084); …A 12=x (1+1.0082+1.0084+1.0086+1.0088+1.00810). ∵年底付清欠款,∴A 12=5 000×1.00812,即5 000×1.00812=x (1+1.0082+1.0084+…+1.00810), ∴x = 5 000×1.008121+1.0082+1.0084+…+1.00810≈880.8.故小华每期付款金额约为880.8元.跟踪训练2 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增长14.设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n的表达式.解 第1年投入800万元,第2年投入800×⎝⎛⎭⎫1-15万元,…,第n 年投入800×⎝⎛⎭⎫1-15n -1万元,所以总投入a n =800+800×⎝⎛⎭⎫1-15+…+800× ⎝⎛⎭⎫1-15n -1=4 000×⎣⎡⎦⎤1-⎝⎛⎭⎫45n (万元).同理,第1年收入400万元,第2年收入400×⎝⎛⎭⎫1+14万元,…,第n 年收入400×⎝⎛⎭⎫1+14n -1万元.所以总收入b n =400+400×⎝⎛⎭⎫1+14+…+400× ⎝⎛⎭⎫1+14n -1=1 600×⎣⎡⎦⎤⎝⎛⎭⎫54n -1.综上,a n =4 000×⎣⎡⎦⎤1-⎝⎛⎭⎫45n ,b n =1 600×⎣⎡⎦⎤⎝⎛⎭⎫54n -1. 题型三 新情境问题例3 定义:若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方数列”.已知数列{a n }中,a 1=2,点(a n ,a n +1)在函数f (x )=2x 2+2x 的图象上,其中n 为正整数. (1)证明:数列{2a n +1}是“平方数列”,且数列{lg(2a n +1)}为等比数列;(2)设(1)中“平方数列”的前n 项之积为T n ,则T n =(2a 1+1)(2a 2+1)·…·(2a n +1),求数列{a n }的通项及T n 关于n 的表达式;(3)对于(2)中的T n ,记b n =log 2a n +1T n ,求数列{b n }的前n 项和S n ,并求使S n >4 024的n 的最小值.(1)证明 由条件得a n +1=2a 2n +2a n ,2a n +1+1=4a 2n +4a n +1=(2a n +1)2.∴数列{2a n +1}是“平方数列”.∵lg(2a n +1+1)=lg(2a n +1)2=2lg(2a n +1), 且lg(2a 1+1)=lg 5≠0, ∴lg (2a n +1+1)lg (2a n +1)=2,∴{lg(2a n +1)}是首项为lg 5,公比为2的等比数列. (2)解 ∵lg(2a 1+1)=lg 5,∴lg(2a n +1)=2n -1lg 5.∴2a n +1=125n -,∴a n =12(125n --1).∵lg T n =lg(2a 1+1)+lg(2a 2+1)+…+lg(2a n +1) =lg 5(1-2n )1-2=(2n -1)lg 5, ∴T n =25n-1.(3)解 ∵b n =log 12n a +T n =lg T nlg (2a n +1)=(2n-1)lg 52n -1lg 5=2n -12n -1=2-⎝⎛⎭⎫12n -1, ∴S n =2n -⎣⎡⎦⎤1+12+⎝⎛⎫122+…+⎝⎛⎫12n -1 =2n -1-⎝⎛⎭⎫12n1-12=2n -2+2⎝⎛⎭⎫12n.由S n >4 024,得2n -2+2⎝⎛⎭⎫12n >4 024, 即n +⎝⎛⎭⎫12n >2 013.当n ≤2 012时,n +⎝⎛⎭⎫12n <2 013; 当n ≥2 013时,n +⎝⎛⎭⎫12n >2 013. ∴n 的最小值为2 013.跟踪训练3 把一个边长为1正方形等分成九个相等的小正方形,将中间的一个正方形挖掉(如图(1));再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个正方形挖掉(如图(2));如此继续下去,则:(1)图(3)共挖掉了________个正方形;(2)第n 个图形共挖掉了________个正方形,这些正方形的面积和是________. 答案 (1)73 (2)8n -17 1-⎝⎛⎭⎫89n解析 (1)8×9+1=73.(2)设第n 个图形共挖掉a n 个正方形,则a 1=1,a 2-a 1=8,a 3-a 2=82,…,a n -a n -1=8n -1(n ≥2),所以a n =1+8+82+…+8n -1=8n -17(n ≥2).当n =1时,a 1=1也满足上式,所以a n =8n -17.原正方形的边长为1,则这些被挖掉的正方形的面积和为1×⎝⎛⎭⎫132+8×⎝⎛⎭⎫134+82×⎝⎛⎭⎫136+…+8n -1×⎝⎛⎭⎫132n =19[1-⎝⎛⎭⎫89n ]1-89=1-⎝⎛⎭⎫89n .1.等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n 等于( ) A .2n-1 B.4n -13C.1-(-4)n 5D.1-(-2)n 32.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于( ) A .3 B .4 C .5 D .63.等比数列{a n }的前m 项和为4,前2m 项和为12,则它的前3m 项和是( ) A .28 B .48 C .36 D .524.已知数列{a n }是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列.求证:2S 3,S 6,S 12-S 6成等比数列.一、选择题1.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .162.等比数列{a n }的首项为1,公比为q ,前n 项的和为S ,由原数列各项的倒数组成一个新数列⎩⎨⎧⎭⎬⎫1a n ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项的和是( )A.1S B .Sq n -1 C .Sq 1-n D.q n S3.已知等比数列{a n }的前3项和为1,前6项和为9,则它的公比q 等于( ) A.12B .1C .2D .4 4.已知数列{a n }的前n 项和S n =a n -1(a 是不为零的常数且a ≠1),则数列{a n }( ) A .一定是等差数列 B .一定是等比数列C .或者是等差数列,或者是等比数列D .既非等差数列,也非等比数列5.设数列{x n }满足log 2x n +1=1+log 2x n (n ∈N *),且x 1+x 2+…+x 10=10,记{x n }的前n 项和为S n ,则S 20等于( ) A .1 025 B .1 024 C .10 250D .20 2406.已知等比数列{a n }的首项为8,S n 是其前n 项的和,某同学经计算得S 1=8,S 2=20,S 3=36,S 4=65,后来该同学发现其中一个数算错了,则该数为( ) A .S 1 B .S 2 C .S 3 D .S 47.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a n +1a n -1B.S 5S 3C.S 5a 3D.S n +1S n二、填空题8.在数列{a n }中,已知对任意正整数n ,有a 1+a 2+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n =________.9.等比数列{a n }中,前n 项和为S n ,S 3=2,S 6=6,则a 10+a 11+a 12=________.10.设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0,则公比q =________.11.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x ,y ,都有f (x )·f (y )=f (x +y ).若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n =________.三、解答题12.数列{a n }的前n 项和记为S n ,a 1=t ,点(S n ,a n +1)在直线y =2x +1上,其中n ∈N *. (1)若数列{a n }是等比数列,求实数t 的值;(2)设各项均不为0的数列{c n }中,所有满足c i ·c i +1<0的整数i 的个数称为这个数列{c n }的“积异号数”,令c n =na n -4na n (n ∈N *),在(1)的条件下,求数列{c n }的“积异号数”.13.某市为控制大气PM2.5的浓度,环境部门规定:该市每年的大气主要污染物排放总量不能超过55万吨,否则将采取紧急限排措施.已知该市2013年的大气主要污染物排放总量为40万吨,通过技术改造和倡导绿色低碳生活等措施,此后每年的原大气主要污染物排放量比上一年的排放总量减少10%.同时,因为经济发展和人口增加等因素,每年又新增加大气主要污染物排放量m(m>0)万吨.(1)从2014年起,该市每年大气主要污染物排放总量(万吨)依次构成数列{a n},求相邻两年主要污染物排放总量的关系式;(2)证明:数列{a n-10m}是等比数列;(3)若该市始终不需要采取紧急限排措施,求m的取值范围.当堂检测答案1.答案 B解析 由a 1a 2a 3=1得a 32=1, ∴a 2=1, 又∵a 4=4, ∴a 4a 2=4. ∴数列a 2,a 4,a 6,…,a 2n 是首项为1, 公比为4的等比数列.∴a 2+a 4+a 6+…+a 2n =1-4n 1-4=4n -13.2.答案 D解析 设每天植树棵数为{a n },则{a n }是等比数列, ∴a n =2n (n ∈N *,n 为天数). 由题意得2+22+23+…+2n ≥100, ∴2n -1≥50, ∴2n ≥51, ∴n ≥6.∴需要的最少天数n =6. 3.答案 A解析 易知S m =4,S 2m -S m =8, ∴S 3m -S 2m =16, ∴S 3m =12+16=28.4.证明 设等比数列{a n }的公比为q ,由题意得2a 7=a 1+a 4, 即2a 1·q 6=a 1+a 1·q 3, ∴2q 6-q 3-1=0.令q 3=t ,则2t 2-t -1=0, ∴t =-12或t =1,即q 3=-12或q 3=1.当q 3=1时,2S 3=6a 1,S 6=6a 1,S 12-S 6=6a 1, ∴S 26=2S 3·(S 12-S 6), ∴2S 3,S 6,S 12-S 6成等比数列.当q 3=-12时,2S 3=2×a 1(1-q 3)1-q =2a 1×321-q =3a 11-q,S 6=a 1(1-q 6)1-q =3a 141-q , S 12-S 6=a 7(1-q 6)1-q =a 1·q 6(1-q 6)1-q =a 14×341-q , ∴S 26=2S 3·(S 12-S 6), ∴2S 3,S 6,S 12-S 6成等比数列.综上可知,2S 3,S 6,S 12-S 6成等比数列.课时精练答案一、选择题1.答案 C解析 由题意得4a 2=4a 1+a 3,∴4(a 1q )=4a 1+a 1·q 2,∴q =2,∴S 4=1·(1-24)1-2=15. 2.答案 C解析 易知数列⎩⎨⎧⎭⎬⎫1a n 也是等比数列,首项为1,公比为1q ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为1-(1q )n 1-1q=q (1-q n )(1-q )q n =1-q n 1-q ·1q n -1=S qn -1=S ·q 1-n . 3.答案 C解析 S 3=1,S 6=9,∴S 6-S 3=8=a 4+a 5+a 6=q 3(S 3)=q 3,∴q 3=8,∴q =2.4.答案 B解析 当n ≥2时,a n =S n -S n -1=(a -1)·a n -1; 当n =1时,a 1=S 1=a -1,也满足上式.∴a n =(a -1)·a n -1,n ∈N *. ∴a n +1a n=a ,为常数.∴数列{a n }一定是等比数列.5.答案 C解析 ∵log 2x n +1=1+log 2x n =log 2(2x n ),∴x n +1=2x n ,且x n >0,∴{x n }为等比数列,且公比q =2,∴S 20=S 10+q 10S 10=10+210×10=10 250,故选C.6.答案 C解析 由题S 1正确.若S 4错误,则S 2、S 3正确,于是a 1=8,a 2=S 2-S 1=12,a 3=S 3-S 2=16,与{a n }为等比数列矛盾,故S 4=65.若S 3错误,则S 2正确,此时,a 1=8,a 2=12.∴q =32,∴S 4=a 1(1-q 4)1-q =8⎣⎡⎦⎤1-(32)41-32=65,符合题意. 7.答案 D解析 由8a 2+a 5=0,得8a 2+a 2q 3=0,∵a 2≠0,∴q 3=-8,∴q =-2,∵a n +1a n -1=q 2=4, S 5S 3=a 1(1-q 5)1-q a 1(1-q 3)1-q=1-q 51-q 3=113, S 5a 3=a 1(1-q 5)1-q a 1q 2=1-q 5q 2(1-q )=114, 而D 中S n +1S n =1-q n +11-q n 与n 有关,故不确定. 二、填空题8.答案 12(9n -1) 解析 {a n }的首项为2,公比为3,∴{a 2n }也为等比数列,首项为4,公比为9,∴{a 2n }的前n 项和为4(1-q n )1-q=12(9n -1) 9.答案 16解析 方法一 ∵S 3,S 6-S 3,S 9-S 6,S 12-S 9成等比数列, ∴(S 6-S 3)2=S 3·(S 9-S 6).又∵S 3=2,S 6=6,∴S 9=14.再由S 6-S 3,S 9-S 6,S 12-S 9成等比数列,即(S 9-S 6)2=(S 6-S 3)·(S 12-S 9),求出S 12-S 9=16,即a 10+a 11+a 12=16.方法二 由S 3,S 6-S 3,S 9-S 6,S 12-S 9成等比数列,此数列首项为S 3=2,公比q ′=S 6-S 3S 3=6-22=2,得S 12-S 9=2×23=16. 10.答案 12解析 由210S 30-(210+1)S 20+S 10=0,得210(S 30-S 20)=S 20-S 10.又S 10,S 20-S 10,S 30-S 20成等比数列,∴S 30-S 20S 20-S 10=q 10=(12)10. 又{a n }为正项等比数列,∴q =12. 11.答案 1-12n 解析 令x =n ,y =1,则f (n )·f (1)=f (n +1),又a n =f (n ),∴a n +1a n =f (n +1)f (n )=f (1)=a 1=12, ∴数列{a n }是以12为首项,12为公比的等比数列, ∴S n =12(1-12n )1-12=1-12n . 三、解答题12.解 (1)由题意,当n ≥2时,有⎩⎪⎨⎪⎧a n +1=2S n +1a n =2S n -1+1, 两式相减,得a n +1-a n =2a n ,即a n +1=3a n (n ≥2),所以,当n ≥2时{a n }是等比数列,要使n ≥1时{a n }是等比数列,则只需a 2a 1=2t +1t=3,从而得出t =1.(2)由(1)得,等比数列{a n }的首项为a 1=1,公比q =3,∴a n =3n -1, ∴c n =na n -4na n =n ·3n -1-4n ·3n 1=1-4n ·3n 1, ∵c 1=1-41=-3,c 2=1-42×3=13, ∴c 1c 2=-1<0,∵c n +1-c n =4n ·3n -1-4(n +1)·3n =4(2n +3)n (n +1)·3n>0, ∴数列{c n }递增.由c 2=13>0得,当n ≥2时,c n >0. ∴数列{c n }的“积异号数”为1.13.(1)解 由已知得,a 1=40×0.9+m ,a n +1=0.9a n +m (n ≥1).(2)证明 由(1)得:a n +1-10m =0.9a n -9m =0.9(a n -10m ), 所以数列{a n -10m }是以a 1-10m =36-9m 为首项,0.9为公比的等比数列.(3)解 由(2)得a n -10m =(36-9m )·0.9n -1, 即a n =(36-9m )·0.9n -1+10m . 由(36-9m )·0.9n -1+10m ≤55,得 m ≤55-36×0.9n -110-9×0.9n -1=5.5-4×0.9n 1-0.9n = 1.51-0.9n +4 恒成立(n ∈N *),解得m ≤5.5,又m >0,综上可得m ∈(0,5.5].。

等比数列前N项和的性质

等比数列前N项和的性质

法三:∵{an}为等比数列,
∴S2,S4-S2,S6-S4也为等比数列. 即7,S4-7,91-S4成等比数列, ∴(S4-7)2=7(91-S4). 解得S4=28或-21.
∵S4=a1+a2+a3+a4=a1+a2+a1q2+a2q2
=(a1+a2)(1+q2)=7(1+q2)>0, ∴S4=28.
q
S偶 S奇
170 2 85
ห้องสมุดไป่ตู้
Sn S偶 S奇 170 85 255
由等比数列前 n项和公式得:
1 2 255 1-2
n
n8
等差数列前n项和的性质: ① 数列 {an }是等比数列

S n Aq - A( A 0)
n
② an 为等比数列 S k , S 2k S k , S3k S 2k 也成等比数列。
[解 ]
法一:∵S2=7,S6=91,易知q≠1,
a11+q=7, ∴a11-q6 =91. 1 - q a11+q1-q1+q2+q4 ∴ =91. 1- q ∴q4+q2-12=0.∴q2=3. a11-q4 ∴S4= =a1(1+q)(1+q2)=7×(1+3)=28. 1- q ∴S4=28.
前20项和S20=30,求S30.
【 思 路 点 拨 】 法 二 法 一 : 设公比为q :
→ 根据条件列方程组 → 解出q → 代入求S30 根据题意S10,S20-S10,S30-S20成等比数列 → S10=10,S20=30 → S30
【解】
法一:设公比为 q,则 ① ②
a11-q10 =10 1-q 20 a 1 - q 1 1-q =30
这个形式和等比 数列等价吗? 相反 数

高中数学同步教学 等比数列前n项和的性质及应用

高中数学同步教学 等比数列前n项和的性质及应用

3 达标检测
PART THREE
1.已知等比数列{an}的公比为2,且其前5项和为1,那么{an}的前10项和等于
A.31
√B.33
C.35
D.37
解析 设{an}的公比为q,由题意,q=2,a1+a2+a3+a4+a5=1, 则a6+a7+a8+a9+a10=q5(a1+a2+a3+a4+a5)=q5=25=32, ∴S10=1+32=33.
12345
4.设等比数列{an}的前n项和为Sn,若q=2,S100=36,则a1+a3+…+a99等于
A.24
√B.12
C.18
D.22
解析 设a1+a3+…+a99=S, 则a2+a4+…+a100=2S. ∵S100=36,∴3S=36,∴S=12, ∴a1+a3+a5+…+a99=12.
12345
12345
2.已知等比数列{an}的前n项和为Sn=x·3n-1-
1 6
,则x的值为
1 A.3
B.-13
√1 C.2
D.-21
解析 方法一 ∵Sn=x·3n-1-16=3x·3n-16, 由 Sn=A(qn-1),得3x=16,∴x=21. 方法二 当 n=1 时,a1=S1=x-16; 当n≥2时,an=Sn-Sn-1=2x·3n-2,
(2)函数思想:等比数列的通项 an=a1qn-1=aq1·qn(q>0 且 q≠1)常和指数函数相
联系;等比数列前
n
项和
Sn=q-a1 1(qn-1)(q≠1).设
A= a1 ,则 q-1
Sn=A(qn-1)
与指数函数相联系. (3)整体思想:应用等比数列前n项和公式时,常把qn, 数项、偶数项、连续若干项之和等整体处理.

2.5.2 等比数列前n项和的性质

2.5.2 等比数列前n项和的性质
数为 n.
∵等比数列的项数为偶数,Sn=S 奇+S 偶, 则 S 奇=a1+a3+a5+…+an-1, S

= a2 + a4 + a6 +…+ an = a1q + a3q + a5q +…+ an - 1q =
q(a1+a3+a5+…+an-1)=q· S 奇,∴85q=170,∴q=2, a11-qn 又∵Sn=85+170=255,∴ =255. 1-q 1-2n ∴ =255,∴2n=256, 1-2 ∴n=8,故公比 q=2,项数 n=8.
S偶 等比数列的公比,即 =q. S奇 (3)若一个非常数列{an}的前n项和Sn=-Aqn+A(A≠0, q≠0,n∈N*),则数列{an}为等比数列,即Sn=-Aqn+ A⇔数列{an}为等比数列.
课前探究学习
课堂讲练互动
【例1】 (1)在等比数列{an}中,若S10=10,S20=30,求S30. (2)一个等比数列的首项为1,项数是偶数, 其奇数项的和为85,偶数项和为170, 求出数列的公比和项数.
nqn+1-n+1qn+1 于是 Sn= . q-12
课前探究学习 课堂讲练互动
nn+1 ②若 q=1,则 Sn=1+2+3+…+n= . 2
n+1 n nq - n + 1 q +1 ,q≠1, q-12 所以,Sn= nn+1 ,q=1. 2
2.5.2 等比数列前n项和的性质
课前探究学习
课堂讲练互动
等比数列的前n项和公式
课前探究学习
课堂讲练互动
等比数列前n项和性质 (1)在等比数列{an}中,连续相同项数和也成等比数列, 即:Sk,S2k-Sk,S3k-S2k,…仍成等比数列. (2)当 n 为偶数时, 偶数项之和与奇数项之和的比等于

等比数列前n项和二

等比数列前n项和二
2 1 n 2 2 2 an+1=bn⋅bn+1. ②
∵an>0, bn>0, ∴由②式得 an+1=bn⋅bn+1.
2 从而当 代入① 从而当 n≥2 时, an=bn-1⋅bn, 代入①得 2bn=bn-1⋅bn+bn⋅bn+1. ∴2bn=bn-1+bn+1(n≥2). ∴{bn} 是等差数列 是等差数列. (2)解: 由 a1=1, b1= 2 及①②两式易得 a2=3, b2= 3 2. ①②两式易得 解 2 2 从而 bn=b1+(n-1)d = 2 (n+1). 故 an+1= 1 (n+1)(n+2). 2 ∴ an= 1 n(n+1)(n≥2). 2 亦适合上式, 而 a1=1 亦适合上式 ∴ an= 1 n(n+1)(n∈N*). ∈ 2 1 + 1 - 1 +…+ 1 - 1 ) = 2n . ∴ Sn=…=2(1- 2 2 3 … n n+1 n+1 … -
性质应用: 性质应用:
2.设等比数列 {a n }的前 n项和为 S n , 若 S 8 = 3 S 4 , S12 的值。 求 的值。 S4
最值问题: 最值问题:
3.设正项等比数列 {a n }的前 n项和为 S n = 80 , 前 2 n 项和 S 2 n = 6560 , 在前 n项中数值最大项为 54, 求通项 a n。
最值问题: 最值问题:
是等比数列, 4.若{a n }是等比数列, a1 = 8,设bn = log 2 ( n ∈ N * )
an
如果数列{bn }的前7项和S 7是它的前 n项和组成的 中最大值, 数列{ S n }中最大值,且 S 7 ≠ S 8,求{a n }的公比q的 取值范围。 取值范围。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a 中, a 2 : 等比数列

3: 等 比 数 列 an 中 , 连 续 四 项 之 积 16 为, 中 间 两 项 之 和 为 5, 求公比 q 4:等比数列 an 中, a3 3s2 2, a4 3s3 2 求公比

an 是 等 比 数 列 5: 数 列 , bn 是 等 差 数 列 , b1 0, 数 列cn 满 足cn
an bn ; 它 的 前 4项 依 次 为 1, a ,2a ,2求 数 列 的 前 n项 的 和 sn
6:等比数列各项均为正 数,前 n项之和为 80,其中 最大项为 54, 后n项之和为 6480 , 求此数列的项数
n是 奇 数 6n 5 7 : 数 列a n 的通项公式 an n 求其前 n项 之 和 n是 偶 数 4
2 2 2 2 a3 a7 ( a4 a6 ) a3 ( 1 q8 q2 q6 ) 2

a3 [ 1 q2 q6 ( 1 q2 )]
2
a3 ( 1 q2 )(1 q6 )
2
a3 ( 1 q ) ( 1 q q ) 0

已知数列{an}是等差数列, 结论:sk,s2k-sk,s3k-s2k成等差数列 已知数列{an}是等比数列, 结论:sk,s2k-sk,s3k-s2k成等比数列?
一课三练87例2
思考:设kN*, Sk 0 , Sk,S2K-SK,S3K-S2K成等 比数列吗?
例 2、
1 1 1 1 求和: (1) 1 3 5 2n 1 n 2 4 8 2
bn 的前 4项为 0,d ,2d ,3d
qd a q2 q 2 2d 2 2 qd q 2d 2a d 2
cn 2n1 ( 2 )( n 1 )
sn 2n n2 n 1
n是 奇 数 6n 5 7 : 数 列a n 的通项公式 an n 求其前 n项 之 和 n是 偶 数 4b4 s40 s30 b1m
3
b1 ( 1 m m2 ) s30 70 m 2, m 3( 舍 )
b2 20, b3 40, b4 80 s40 150
2 2 2 2 2 : 等比数列an 中, an 0, 公比q 1比较a3 a7 与a4 a6 的大小
(2)(a 1) (a 2) (a 3) (a n)
2 3 n
一课三练87例3
例3 : 求数列 1,3a,5a ,7a ,, (2n 1)a
2 3
n 1
的前n项的和 .
1 3 5 2n 1 练: n 2 4 8 2
小结:
1、用错位相减法求数列的和。
n 若n是 偶 数 , an 中 有 奇 数 项 共 项 : 1,13,25 2 n n
n 2 ( 2 1) 3n2 5n 其和是 s 12 2 2 2 2 n an 中 有 偶 数 项 共 项 : 16,256,4096 2 n 16( 1 162 ) 16( 4 n 1 ) 其和是 s0 1 16 15 3n 2 5n 16( 4 n 1 ) 得s n 2 2 15
2、等比数列前n项的求和公式。
作业:
Sn
na1 (q=1)
a1 (1 q n ) 1 q (q≠1)
习题2.5 P61 —2、3、4、5
作业
1 : 等比数列an 中, s10 10, s30 70, 求s40
n n 2 2 2 2 0, 公比q 1比较a3 a7 与a4 a6 的大小
所以sn
3n 2 n 16( 4 n1 1 ) 1 ; n是 奇 数 2 2 15
3n 2 5n 16( 4 n 1 ) ; n是 偶 数 2 2 15
2 2 2 4
2
3:等比数列 an 中,连续四项之积为 16, 中间两项之和为 5 ,求公比 q
a1a2a3 a4 ( a2a3 ) 16; a2a3 4
2

1 5 41 33 5 41 33 41 q ,4 , , 4 5 41 8 8
5 41 故a2 , a3是 方 程 x 5 x 4 0的 根, 得x 4 ,1, 2
2
an 是 等 比 数 列 5: 数 列 , bn 是 等 差 数 列 , b1 0, 数 列cn 满 足cn
an bn ; 它 的 前 4项 依 次 为 1, a ,2a ,2求 数 列 的 前 n项 的 和 sn
b1 a1 1 a 1;an 的前4项为 1,q , q 2 , q 3
1,16 ,13 ,256 ,25 ,4096 ,
an 中的前 若n是奇数, n 1项是前偶数项 ,其和是
得sn1 3( n 1 )2 5( n 1 ) 16( 4n1 1 ) 2 2 15 3( n 1 )2 5( n 1 ) 16( 4n1 1 ) 故sn sn1 an 6n 5 2 2 15 3n 2 n 16( 4 n1 1 ) 得sn 1 2 2 15
1 : 等比数列an 中, s10 10, s30 70, 求s40

令b1 s10
b2 s20 s10 a11 a12 a20 a1q10 a2q10 a10q10
q10 ( a1a2 a10 ) b1m( m q10 0 )
复习回顾:等比数列的前n项求和
Sn
na1
a1 (1 q ) 1 q
n
(q=1) (q≠1)
练习1:已知数列 a n 为等比数列,且 n Sn 3 t 则 t =
练习2:等比数列各项均为正 数, 前n项之和为 80,其中最大项为 54, 前2n项之和为 6560 , 求此数列的公比
相关文档
最新文档