弹性力学及有限元法:第5章 杆单元和梁单元
杆单元和梁单元
(3)形函数矩阵的推导 由单元的节点条件, 两个节点坐标为x1、x2,两个节点位移 u 为u( x) |x x u1, ( x) |xx u2 ,代入上式插值模式公式得: a1 a2 x1 u1
1
2
a1 a2 x2 u2
求解得到
a1 u1 x1 (u1 u2 ) /( x1 x2 ) a2 (u1 u2 ) /( x1 x2 )
u dN ( x) u1 1 ( x) e x dx u2 l u1 1 u1 B e l u2 u2
(4.6)
(4.7)
(5)应力 由弹性力学的物理方程知:
Ee ( x) E e B ( x) δ e S ( x) δ e e l E e u1 e u2 l
δ (1)
u1 u2
K
(1)
E (1) A(1) (1) l
1 1 1 1
P
(1)
R1 R2
4.1 杆件系统的有限2)
u2 u3
(1) (2)
K
(2)
E (2) A(2) l (2)
u 2 , u3
(9)建立系统弹性方程
u2
u3
E (1) A(1) E (2) A(2) l (1) l (2) R2 = F3 E (2) A(2) (2) l
E (2) A(2) (2) u2 l (2) (2) E A u3 l (2)
u1
1 单元1 2
E2 , A2 , l2
u2
单元2 3
弹性力学基础及有限单元法
第一章1、弹性力学的任务是什么弹性力学的任务是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。
2、弹性力学的基本假设是什么?为什么要采用这些假设?(1) 假设物体是连续的——物体内部由连续介质组成,物体中没有空隙,因此物体中的应力、应变、位移等量是连续的•可以用坐标的连续函数表示。
实际上,所有的物体均由分子构成,但分子的大小及分子间的距离与物体的尺寸相比是很微小的,故可以不考虑物体内的分个构造。
根据这个假设所得的结果与实验结果是符合的。
(2) 假设物体是匀质的和各向同性的一一物体内部各点与各方向上的介质相同,因此,物体各部分的物理性质是相同的。
这样,物体的弹性常数(弹性模量、泊松比)不随位置坐标和方向而变化。
钢材由微小结晶体组成,晶体本身是各向异性的、但由于晶体很微小而排列又不规则,按其材料的平均性质,可以认为钢材是各向同性的。
木材不是各向同性的。
(3) 假设物体是完全弹性的一一物体在外加因家(裁荷、温度变化等)的作用下发生变形,在外加固素去除后,物体完全恢复其原来形状而没有任何剩余变形。
同时还假定材料服从胡克定律,即应力与形变成正比。
(4) 假设物体的变形是很小的——在载荷或温度变化等的作用下,物体变形而产生的位移,与物体的尺寸相比,是很微小的。
在研究物体受力后的平衡状态时,可以不考虑物体尺寸的改变。
在研究物体的应变时,可以赂去应变的乘积,因此,在微小形变的情况下弹性理论中的微分方程将是线性的。
(5) 假设物体内无初应力一一认为物体是处于自然状态,即在载荷或温度变化等作用之前,物体内部没合应力。
也就是说,出弹性理论所求得的应力仅仅是由于载荷或温度变化等所产生的。
物体中初应力的性质及数值与物体形成的历史有关。
若物体中有韧应力存在,则由弹性理论所求得的应力加上初应力才是物体中的实际应力。
上面基本假设中•假设(4)是属于几何假设,其他假设是属于物理假设。
弹性力学与有限元完整版
• 第一章 弹性力学基本方程
1.1 绪论 1.2 弹性力学的基本假定 1.3 几个基本概念 1.4 弹性力学基本方程
• 第二章 弹性力学平面问题
2.1 平面应力问题 2.2 平面应变问题 2.3 平面问题的基本方程
• 第三章 弹性力学问题求解方法简述
• 第一章 弹性力学基本方程
1.1 绪论 1.2 弹性力学的基本假定 1.3 几个基本概念 1.4 弹性力学基本方程
3、平面应力问题应力、应变
• 应力分量
x、 y、 xy
• 应变分量
z 0 yz = zx 0 x、 y、 xy
x
{} y
xy
x
y
xy
2.2 平面应变问题
1 平面应变问题的概念
– 弹性体是具有很长的纵向轴的柱形物体,横截面大 小和形状沿轴线长度不变;作用外力与纵向轴垂直, 并且沿长度不变;柱体的两端受固定约束。
应力分量——6个
x、 y、 z、 xy、 yz、 zx
应变分量——6个
x、 y、 z、 xy、yz、 zx
位移分量——3个
u、v、w
合计 15
• 第二章 弹性力学平面问题
2.1 平面应力问题 2.2 平面应变问题 2.3 平面问题的基本方程
2.1 平面应力问题
1、平面应力问题的概念
平面应力问题讨论的弹性 体为薄板。薄壁厚度远小于 结构另外两个方向的尺度。 薄板的中面为平面,其所受 外力,包括体力均平行于中 面O-xy面内,并沿厚度方向 z不变。而且薄板的两个表 面不受外力作用。
2、平面应变问题的位移
• 沿纵向轴的位移恒等于零; • 由于无限长,所以任一个横截面都是一样的,与z
轴无关。
弹性力学5PPT课件
叠加原理的适用范围
适用于线弹性范围内的小变形问题,对于非线性问题或大变形问题,叠加原理不再适用。
叠加原理的应用举例
利用叠加原理求解复杂载荷下的梁的弯曲问题,可以将复杂载荷分解为几个简单载荷, 分别求出每个简单载荷下的弯曲变形,然后叠加得到最终结果。
03
平面问题求解方法
平面应力问题与平面应变问题
平面应力问题
分析薄板在面内荷载作用 下的应力、变形和稳定性。
平面应变问题
研究长柱体或深埋在地下 的结构物,在垂直于轴线 或地面的荷载作用下,其 横截面内的应力和变形。
两者区别
平面应力问题中,垂直于 板面的应力分量可忽略不 计;而平面应变问题中, 该应力分量不可忽略。
功的互等定理与卡氏定理的应用举例
利用功的互等定理可以求解某些复杂结构的位移和应力问题;利用卡氏 定理可以求解某些特殊载荷作用下的应力问题。
虚功原理与最小势能原理
虚功原理的基本内容
在弹性力学中,外力在虚位移上所做的功等于内力在虚应变上所做的功。这里的虚位移和虚应变是指满足几何约束和平衡 条件的任意微小的位移和应变。
复变函数的引入
利用复变函数的性质,可将平面 弹性力学问题中的偏微分方程转 化为复变函数的解析函数问题。
保角变换
通过保角变换,可将复杂形状的 平面区域映射为简单形状的区域, 从而简化问题的求解。
边界条件的处理
在复变函数法中,边界条件的处 理是关键步骤之一,需要根据具 体问题选择合适的处理方法。
差分法和有限元法在平面问题中的应用
边界条件处理
阐述有限元法中边界条件的处理方法, 如固定边界、自由边界、对称边界等。
第5章 杆单元和梁单元
1 u2 E (2) A(2) (2) 2 u3 l
1 1 u2 1 1 1 u 2 R2 3
u1 在这里,把表达成整体位移矢量 u 2 的函数,如下: u 3
5.1 杆件系统的有限元分析方法
(1) (1) (1)
F3 10N
,进行相应的单元应力计算。得到的结果如下:
0 u1 4 u2 2.5 10 m u 7.5 10 4 m 3
(2) ( x) 5 103 (1) 0.05MPa (2) = 0.1MPa
第五章 杆单元和梁单元
第5章 杆单元和梁单元
本章主要介绍利用杆单元及梁单元进行结构静力学的有限 元分析原理。首先介绍了杆单元的分析方法,详细给出了采用 杆单元进行有限元分析的整个过程;紧接着介绍了平面梁单元 ,以一个平面悬臂梁力学模型为分析实例,分别采用材料力学 、弹性力学解析计算以及有限元法进行了分析与求解,以加深 读者对有限元法的理解。
E (2) A(2) (2) u2 1 u2 l 0 F3 (2) (2) E A u3 2 u3 l (2)
5.1.1 一维杆单元
u2 由最小势能原理,势能函数对未知位移 求变分,满足 u3 的条件是 ,得如下方程式 0, 0
P 1 , u1
E e , Ae , l e
1
图 5-2 杆单元
P2 , u2
2
对于两个节点的杆单元,存在如下节点力和节点位移的关 系式 u P 1 e 1 (5.1) k
P2
u2
其中, k e 称为单元刚度矩阵
5.1.1 一维杆单元
有限元基本理论
2、虚应力原理
第1章 预备知识
1.4.4 线弹性力学的变分原理
1、最小位能原理
第1章 预备知识
设:
第1章 预备知识
2、最小余能原理
第1章 预备知识
第1章 预备知识
第2章 弹性力学有限元
2.1 平面问题3结点三角形单元
第2章 弹性力学有限元
2.1.1 单元位移模式及插值函数
第2章 弹性力学有限元
取:
则:
2.3.3 3结点环状单元的等效结点荷载
第2章 弹性力学有限元
例:计算3结点环状单元自重荷载
由面积坐标
第2章 弹性力学有限元
积分
则:
2.4 空间问题有限元
2.4.1 4结点四面体单元
第2章 弹性力学有限元
1、位移函数
第2章 弹性力学有限元
其中:
代入结点坐标得:
有限元基本理论
目 录
第1章 预备知识 第2章 弹性力学有限元 第3章 单元插值函数的构造 第4章 杆件结构力学问题 第5章 平板弯曲问题 第6章 应用中的若干问题 第7章 材料非线性问题
第1章 预备知识
1.1 引言
数值分析方法
有限差分法
微分方程近似解法
有限单元法
几何形状规则
几何形状规则
则两项近似解为:
力矩法
一项近似解,取W1=1(0≤x≤1)
则一项近似解为:
由
第1章 预备知识
两项近似解,取W1=1,W2=x
由
则两项近似解为:
伽辽金法
第1章 预备知识
一项近似解,取W1= N1 = x(1-x)
由
则一项近似解为:
两项近似解,取W1= N1= x(1-x) ,W2= N2 = x2(1-x)
弹性力学及有限元
热传导案例
总结词
热传导是有限元分析中用于模拟物体内部热量传递规律的应用之一。
详细描述
在电子、机械、化工和材料等领域,热传导分析用于研究材料的热性能、热应力和热变形等。通过有 限元方法,可以模拟物体内部的热量传递过程,预测温度分布和热应力分布,优化材料和系统的热设 计。
06
结论展望
结论
01
02
有限元分析
有限元分析是一种数值分析方法,通过将复杂的物体或系统离散 化为有限个小的单元(或称为元素),并分析这些单元的应力、 应变和位移,从而对整个物体或系统的行为进行预测和分析。
主题的重要性
工程应用
弹性力学和有限元分析在工程领域中具有广泛的应用,如结 构分析、机械设计、航空航天、土木工程等。通过这些方法 ,工程师可以更准确地预测和分析结构的性能,优化设计, 提高安全性。
03
04
研究意义
弹性力学及有限元分析在工程 领域具有广泛应用,为复杂结 构的分析提供了有效方法。
主要成果
本文系统地介绍了弹性力学的 基本原理和有限元分析的方法 ,并通过实例验证了其有效性 。
研究限制
由于时间和资源的限制,本研 究未能涵盖所有相关领域,未 来研究可进一步拓展。
对实践的指导意义
本文为实际工程中的结构分析 提供了理论依据和实践指导, 有助于提高结构的安全性和稳 定性。
优势
有限元方法具有广泛的适用性,可以用于求解各种复杂的物理问题;能够处理 复杂的几何形状和边界条件;可以通过增加单元数目来提高解的精度;可以方 便地处理非线性问题和材料非均质性问题等。
局限性
有限元方法需要较大的计算资源和时间,尤其对于大规模问题;对于某些特殊 问题(如高速冲击、爆炸等),需要采用特殊处理方法;对于多物理场耦合问 题,需要采用多场耦合有限元方法等。
《杆单元和梁单元》课件
当前研究的主要成果
经过多年的研究,杆单元和梁单元在理论建模、数值计算和实验验证等方面取得了许多重 要成果,为工程实际提供了有力支持。
面临的主要挑战
尽管杆单元和梁单元的研究已经取得了很大进展,但仍存在一些挑战,如提高计算精度、 处理复杂边界条件和适应大规模计算等。
动力响应
研究杆件在受到瞬态或周期性动力作用下的响应,如地震、风载等 自然灾害作用下的结构动力响应。
杆单元的稳定性分析
失稳判据
根据不同的失稳形式,如弯曲失 稳、剪切失稳等,采用相应的失 稳判据进行稳定性分析。
临界荷载
求解使杆件达到临界状态的荷载 ,即临界荷载,用于评估结构的 稳定性。
稳定性设计
根据稳定性分析结果,采取相应 的设计措施,如增加支撑、改变 截面形状等,以提高结构的稳定 性。
平衡方程
根据力的平衡原理,建立梁单元的平衡方程。
弯曲变形
考虑梁的弯曲变形,根据挠曲线近似法或能量法求解弯曲变形。
剪切变形
考虑梁的剪切变形,根据剪切力与剪切位移的关系求解剪切变形。
梁单元的动力分析
运动方程
根据牛顿第二定律和动力学基本原理,建立梁单元的 运动方程。
振动分析
分析梁的自由振动和受迫振动,求解振幅、频率和阻 尼等参数。
杆单元在桥梁工程中的应用
总结词
桥梁工程中广泛应用
详细描述
在桥梁工程中,杆单元被广泛应用于构建桥梁的支撑体系,如钢拱桥的拱肋、 斜拉桥的拉索等。杆单元能够承受拉压、弯曲等多种载荷,提供稳定的支撑作 用,确保桥梁的安全性和稳定性。
梁单元在建筑结构中的应用
总结词
第5章 杆、梁结构有限元分析
Q1l 2 M 1l 转角: i 0 2EI EI 6EI M i 2 a21 l M j Qi l M i a41
即求得了单元刚度矩阵[K]中第一列的四个元素:(分别等于上述四个结点力)
12EI a11 3 l
6EI a21 2 l
12EI a31 3 l
5.2 平面梁单元
5.2.4 铰结点的处理
在杆件系统中会遇到一些杆件通过铰结点和其它杆件相联结。 如图的框架结构,4根杆件汇交于结点4,杆件②与结点4铰接,其它杆则为 在这种结点(结点4)上应该注意到: 刚接。 (1) 结点4上各杆具有相同的线位移, 但截面转动不相同。
刚接于结点上的各杆具有相同的截面转动, 而与之铰接的杆件却具有另外的截面转动。 例如在图示结构中,在受载后,在结点4,杆 件③,④,⑥将具有相同的截面转动,而杆 件②则具有与其它杆件不同的截面转动。
(2) 结点上具有铰接的杆端不承受弯矩,因此在结点上只有刚接的各 杆杆端弯矩参与结点的力矩平衡。
杆件②在铰接端的杆端弯矩为零,只有杆件③,④,⑥在结点4上与外弯矩保 持平衡。
单元②的铰接端,只有位移自由度参加总体集成,而转动自由度是不参加集 成的。 对于单元②来说,此自由度属于内部自由度性质,为算法的方便起见,在总 体集成前,应在单元层次上将此自由度凝聚掉。具体方法 (参见王勖成的有 限单元法基本原理),略。 对于一端为铰接的单元:
e e {a } [T ]{a}
同理:
e e {P } [T]{P}
e
K
[T ] K [T ]
T e
5.1 平面杆单元
5.1.4 任意取向的平面杆单元
{a}e [T ]{a}e {P}e [T]{P}e
弹性力学第五章:弹性力学解法
2(1 ) E 2(1 ) E 2(1 ) E
E
xy yz zx
y
z
或用张量缩写表示为
ij kk
(b). 用应变表示应力的关系式
x 2G x y 2G y z 2G z
x l xy m xz n p x yx zx
或:
l y m yz n p y l zy m z n p z
S 上)
pi ij n j (在
(b).位移边条件:
1. 位移法: 以位移分量 u , v, w 作为基本未知量。
由位移表示的平衡方程式及边界条件
先求出位移分量 几何方程 应变分量
物理方程
应力分量
在结构力学和 有限元中常用
2. 应力法:
在弹性力学中该方法广泛使用
以应力分量作为基本未知量, 平衡方程及边界条件
ij
物理方程
ij
几何方程
u , v, w
2
yz
xz
应力协调方程
应力协调方程
x
2
1 1 1 1 1 1 1 1 1 1 1 1
y
2
z
2
xy
2
yz
2
zx
2
f x 2 1 x y z x x 2 f y f y f x f z ( )2 2 1 x y z y y 2 f y f x f z f z ( )2 2 1 x y z z z 2 f y f x ( ) xy x y 2 f y f z ( ) yz y z 2 f x f z ( ) xz z x
弹性力学及有限元
2
3
第一章 绪 论
§1–1 弹性力学的研究对象
§1–2 弹性力学中的几个基本概念
§1–3 弹性力学中的基本假设 §1–4 有限元分析的基本思想
4
在未知领域 我们努力探索 在已知领域 我们重新发现
5
初中物理-力学
高中物理-力学
大学物理-力学
的形式和尺寸并选择适宜的材料提供必
要的理论基础和计算方法。
9
结构力学的研究对象、内容和任务
对象——杆件系统(结构)
梁、刚架、桁架、组合结构和拱
内容——结构的组成规律、特性和外来因素作用
下的内力、位移及其分布规律。 任务——校核结构是否具有所需的强度、刚度和
稳定性,并寻求和改进它们的计算方法 以实现安全和经济的最优化。 三部分——静力学、动力学和稳定学。
c
p y l xy m y n zy pz l xz m yz n zy
b
P
y
25
x
a
正负号规定:
正面:外法向方向和坐标轴正向一致的面 负面:外法向方向和坐标轴正向反向的面
正面上应力沿坐标轴正向为正 负面上应力沿坐标轴负向为正
i j
+ + + + -
+
力学,包括固体力学和流体力学中的许多学科,弹
性力学仅是其中的一个分支。
35
2) 线性完全弹性:引起物体变形的外力除去后物体能
恢复原状(完全弹性),应变与引
起该应变的应力分量之间的关系服
从胡克定律(线性),弹性常数与
应力、应变大小无关,无需考虑应
力历史。 完全弹性:弹性极限以下 线性弹性:比例极限以下 该假定使本构关系(物理方程)成线性方程。 线性关系的Hooke定律是弹性力学特有的规律,是弹性力 36 学区别于连续介质力学其它分支的标识。
第五章弹性力学平面问题的有限单元法解析
(1) 平面应变问题: 如图柱形管道和长柱形坝体,具有如下特点:a纵向尺寸远大 于横向尺寸,且各横截面尺寸都相同;b 载荷和约束沿纵向不变, 因此可以认为,沿纵向的位移分量 等于零。
一悬臂梁的力学模型简化和单元划分如图: 在确立了力学模型的基础上,再把原来连续的弹性体离散化, 分为有限个单元,这些单元可以是三结点三角形、四结点任意四边 形、八结点曲边四边形等等。单元之间只在结点处相联结。平面问 题的结点为铰结点。完成单元划分以后,需要对所有单元按次序编 号,就得到了有限元的计算模型。
A
S
U
(
A
*
xx
*
yy
xy
* xy
)
t
dx
dy
上面三个积分的意义为:
W 中的第一个积分表示全部体积力作的虚功;第二个积分表示
自由边界S 上的表面力作的虚功。U 中的积分为
dU
(
x
* x
y
* y
xy
* xy
)
t
dx
dy
它表示单面体四个侧面上的应力在虚应变上作的虚功。
1 力学模型的简化 用有限元法研究实际工程结构的强度与刚度问题,首先要从工 程实际问题中抽象出力学模型,即要对实际问题的边界条件,约束 条件和外载荷进行简化,这种简化应尽可能反映实际情况,使简化 后的弹性力学问题的解答与实际相近,但也不要带来运算上的过分 复杂。 在力学模型简化过程中,必须明确以下几点 ①判断实际结构的问题类型,是 二维问题还是三维 问题;对于 平面问题,是平面应变 问题还是平面应力 问题。 ②结构是否对称 。如果是对称的,要充分利用对称条件,以简 化计算。 ③简化的力学模型必是静定 的或超静定的。
弹性力学-第5章 有限元法
(a)从上到下建模 从生成体(或面)开始,并结合其它方
法生成最终的形状。
加
用于产生最终形状的合并称为布尔运算
提示: 当生成二维体素时,ANSYS定义一个面及其它所包含 的线和关键点。当生成三维体素时,ANSYS定义一个 体及其所包含的面、线及关键点。 如果低阶的图元连在高阶图元上,则低阶图元不能删除.
§5-2 建模
一. 有限元模型的建立
a.建模的方法 b.坐标系统与工作平面 c.实体建模
1.建模方法
有限元模型的建立方法可分为: (1)直接法
直接根据机械结构的几何外型建立节点和单元,因此直接 法只适应于简单的机械结构系统。
(2)间接法(Solid Modeling)
适用于节点及单元数目较多的复杂几何外型机械结构系 统。该方法通过点、线、面、体积,先建立实体模型, 再进行网格划分,以完成有限元模型的建立。
第五章 有限元法解平面问题
§5-1有限元法简介 一. 有限元法的基本思想
1.将连续的问题域离散为有限数目的单元; 2.单元之间通过节点相连; 3.每一个单元都有精确的方程来描述它如何对一定载 荷去响应; 4.单元内部的待求量可由单元节点量通过选定的函数 关系插值得到; 5.模型中所有单元的响应之和给出设计的总响应。
由于单元形状简单,易于建立节点量的平衡关系和能量关 系方程式,然后将各单元方程集组成总体代数方程组,计 入边界条件后可对方程求解。
二. 有限元法的位移解法 1.有限元法的单元和节点
1.有限元法的单元和节点 2.有限元的基本未知量(DOFs) 3.单元形函数
节点自由度是随 单元类型 变化的。
J 三维杆单元 (铰接) UX, UY, UZ
梁单元有限元分析
梁单元-有限元分析一、有限元法介绍有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。
由于单元的数目是有限的,节点的数目也是有限的,所以称为有限元法(FEM,Finite Element Method)。
是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
有限元法是最重要的工程分析技术之一。
它广泛应用于弹塑性力学、断裂力学、流体力学、热传导等领域。
有限元法是60年代以来发展起来的新的数值计算方法,是计算机时代的产物。
虽然有限元的概念早在40年代就有人提出,但由于当时计算机尚未出现,它并未受到人们的重视。
随着计算机技术的发展,有限元法在各个工程领域中不断得到深入应用,现已遍及宇航工业、核工业、机电、化工、建筑、海洋等工业,是机械产品动、静、热特性分析的重要手段。
早在70年代初期就有人给出结论:有限元法在产品结构设计中的应用,使机电产品设计产生革命性的变化,理论设计代替了经验类比设计。
目前,有限元法仍在不断发展,理论上不断完善,各种有限元分析程序包的功能越来越强大,使用越来越方便。
二.梁单元的分类所谓梁杆结构是指其长度比横截面尺寸大很多的梁和杆件、以及由它们组成的系统,这一类结构的应力、应变和位移都是一个坐标的函数,所以属于一维单元问题。
1.平面桁架特点:杆件位于一个平面内,杆件间用铰节点连接,作用力也在该平面内。
单元特性:只承受拉力或压力。
单元划分:常采用自然单元划分。
即以两个铰接点之间的杆件作为一个单元。
为使桁架杆件只产生轴力,桁架的计算常作以下假定:①桁架中每根杆件的两端由理想铰联结;②每根杆件的轴线必须是直线;③所有杆件的轴线都只交于所联理想铰的几何中心。
④荷载均只作用于理想铰的几何中心。
在此条件下所算得的各种应力称为主应力。
实际上各种桁架结构不可能完全满足上述各假定,因而杆件将产生弯曲,由这种弯曲而在杆件中所引起的轴向应力称为次应力。
弹性力学及有限元考试复习简答题
弹性力学及有限元考试复习简答题1、简述有限单元法常分析的问题。
答:有限单元法是一种用于连续场分析的数值模拟技术,他不仅可以对机械、建筑结构的位移场和应力场进行分析,还可以对电磁学中的电磁场、传热学中的温度场、流体力学中的流体场进行分析。
2、在有限单元法中,位移模式应满足哪些基本条件。
答:1位移函数在单元节点的值应等于节点位移(即单元内部是连续的)2所选位移函数必须保证有限元的解收敛于真实解3、简述有限单元法结构刚度矩阵的特点。
答:对称矩阵奇异矩阵稀疏矩阵具有相对独立性4、简述有限单元法中单元刚度矩阵的性质。
答:1.单元刚度矩阵是对阵矩阵2.单元刚度矩阵的主对角线元素恒为正值3.单元刚度矩阵是奇异矩阵4.单元刚度矩阵仅与本身有关5、简述有限元法中选取单元位移函数(多项式)的一般原则。
答:必须假定一个函数,所假定的位移函数必须满足两个条件:其一,它在单元节点上的值应等于节点位移;其二,由该函数出发得到的有限元解收敛于真实解。
6、要保证有限单元法计算结果的收敛性,位移函数必须满足那些条件?答:1、完备性条件:要求单元的位移函数必须能够满足刚性位移和常量应变状态2、协调性条件:要求单元的位移函数在单元内部必须是连续函数,且必须保证相邻单元间位移协调9、用有限元法分析实际工程问题有哪些基本步骤?需要注意什么问题?1)建立实际工程问题的计算模型2)选择适当的分析工具侧重考虑以下几个方面1)前处理(Preproceing)2)求解(Solution)3)后处理(Potproceing10、在弹性力学中根据什么分别推导出平衡微分方程、几何方程、物理方程,这三个方程分别表示什么关系?答:根据静力学、几何学和物理学三方面条件,分别推导出平衡方程、几何方程和物理方程;三组方程分别表示:应力与载荷关系、应变与位移关系、应力与应变关系。
11、什么是平面应力问题?什么是平面应变问题?分别写出平面应力问题和平面应变问题的物理方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1 x2
1
uu12
(5.3)
(5.4) (5.5)
5.1.1 一维杆单元
因此,用形函数矩阵表达的单元内任一点的位移函数是
u(x) N (x)δe
(5.6)
(4)应变
由弹性力学的几何方程知1维杆单元满足
(x)
u x
dN (x) dx
uu12
1 le
1 le
uu12
B
uu12
(7)把所有单元按结构形状进行组集(assembly of discrete elements)
对于图5.1所示结构 第一个单元:
δ(1)
uu12
K (1)
E(1) A(1) l (1)
1 1
1
1
P (1)
RR12
5.1.1 一维杆单元
第二个单元:
δ(2)
uu23
K (2)
E(2) A(2) l (2)
移插值模式(interpolation model).
u(x) a1 a2x
(5.2)
(3)形函数矩阵的推导 由单元的节点条件, 两个节点坐标为x1、x2,两个节点位移 为u(x) |xx1 u1,u(x) |xx2 u2 ,代入上式插值模式公式得:
a1 a2 x1 u1
a1 a2 x2 u2
5.1.1 一维杆单元
要建立两种坐标系:单元坐标系(局部坐标系)、整体坐标
系。根据自然离散, 坐标系建立成一维, 单元划分为两个, 给出
相应的节点1、2、3以及相应的坐标值(见图5-1)。在局部
坐标系中,取杆单元的左端点为坐标原点,图5-2为任取的一
个杆单元。
P1, u1 Ee , Ae , le
1 2
e
d
1 2
P1
P2
uu12
1 2
le 0
Sδe
(Bδe )Aedx 1 2
P1
P2
uu12
1 δeT le BT E e BAedxδe 1 P eT δe
2
0
2
上式记作如下矩阵形式:
e 1 δeT K eδe 1 PeT δe
2
2
根据最小势能原理, e 0
统方程:
E (1) A(1)
可以得到,
keδe Pe
(5.9) (5.10)
5.1.1 一维杆单元
其中,单元刚度矩阵(element stiffness matrix),或称单元特 性矩阵(element characteristic matrix)
K e
le 0
BT
E e BAedx
Ee Ae le
1 1
1
1
(5.11)
x]
aa12
1
x
1 1
x1 x2
1
uu12
=
N
(
x)
uu12
得到形函数矩阵(shape function matrix)
N (x) 1
x
1 1
x1 x2
1
(1
x2
x
x1
)
x
x2
x1
记节点位移矢量 (nodal displacement vector)是
δe
uu12
1 1
1
1
P (2)
FR32
整体结构的总势能是所有单元的势能的和,即
(1)
(2)
1 2
uu12
T
E (1) A(1) 1 l(1) 1
1
1
uu12
1 2
R1
R2
uu12
1 2
uu23
T
E (2) A(2) 1 l(2) 1
1
1
uu23
1 2
R2
F3
uu23
0
E (2) A(2) l(2)
E (2) A(2)
uu12
u3
1 2
R1 0
T
F3
uu12
u3
l(2)
可记作
1 δT Kδ 1 PT δ
(5小势能原理,由各单元
刚度矩阵求出的整体刚度矩阵。下式是由整体刚度矩阵表达的系
第五章 杆单元和梁单元
第5章 杆单元和梁单元
本章主要介绍利用杆单元及梁单元进行结构静力学的有限 元分析原理。首先介绍了杆单元的分析方法,详细给出了采用 杆单元进行有限元分析的整个过程;紧接着介绍了平面梁单元 ,以一个平面悬臂梁力学模型为分析实例,分别采用材料力学 、弹性力学解析计算以及有限元法进行了分析与求解,以加深 读者对有限元法的理解。
求解得到
a1 u1 x1(u1 u2 ) /(x1 x2 ) a2 (u1 u2 ) /(x1 x2 )
5.1.1 一维杆单元
这样, u(x) a可1 以a写2x 成如下矩阵形式
u(x) [1
x]
aa12
uu12
1 1
x1 x2
aa12
aa12
1 1
导出
u(x) [1
如图5-1所示的杆件结构,左端铰支,右端作用一个集中力, 相关参数如图。具体求解过程如下:
E(1) , A(1) , l (1)
u1
单元1
E(2) , A(2) , l (2)
u2
单元2
1
2
3
x
图 5-1 杆件结构 –待求解的问题
F3 10N
(1)确定坐标系、单元离散,确定位移变量, 外载荷及边界 条件。
在这里,把表达成整体位移矢量 uu12的函数,如下: u3
5.1 杆件系统的有限元分析方法
E (1) A(1)
1 2
uu12
T
u3
l (1) E (1) A(1)
l (1)
0
E (1) A(1) l (1)
E (1) A(1) E (2) A(2)
l (1)
l(2)
E (2) A(2) l (2)
(5.7)
B为应变矩阵(常应变)。
(5)应力
由弹性力学的物理方程知:
(x) DB(x)δe EeB(x)δe S为应力矩阵(常应力)。
S(x)δe
Ee le
Ee le
uu12
(5.8)
(6)利用最小势能原理导出单元刚度矩阵
单元的势能表达式:
5.1.1 一维杆单元
e U e W e
P2 , u2
1
2
图 5-2 杆单元
对于两个节点的杆单元,存在如下节点力和节点位移的关系
式
P1 P2
k
e
u1 u2
(5.1)
其中, k称e 为单元刚度矩阵
5.1.1 一维杆单元
(2)确定位移模式
假设单元位移场: u(x) a1 a2 x a3x2
取其线性部分,系数 a1、a2可由节点位移 u1、u2确定,称为位
杆单元-桁架结构 梁单元-轴系,转子动力学
5.1 杆件系统的有限元分析方法
5.1.1. 一维杆单元 ——材料力学可轻易求解 一般情况下,认为杆件只承受轴向力,只有一个方向的受力
和相应的变形。本节将采用有限元法来分析杆件系统,以下给出 规范的有限元法中关于杆单元的推导过程,以及整个杆系的求解 过程。