最新【真题】武汉市初中毕业生考试数学试卷及答案
武汉市中考数学试卷有答案(Word版)
武汉市初中毕业生考试数学试卷考试时间:6月20日14:30~16:30一、选择题(共10小题,每小题3分,共30分)1.温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃2.若分式21+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2 B .x <-2 C .x =-2 D .x ≠-23.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )A .2、40B .42、38C .40、42D .42、405.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +66.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .41B .21C .43D .65 9A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( ) A .32B .23C .235D .265 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算3)23(-+的结果是___________123213.计算22111m m m ---的结果是___________ 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________ 15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量扇形图b(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数)(1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB(1) 求证:PB 是⊙O 的切线(2) 若∠APC =3∠BPC ,求CE PE 的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C① 若t =1,直接写出点C 的坐标② 若双曲线x y 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线x y 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52=AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B(1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标。
2024年湖北武汉中考数学试卷试题解读及答案解析
2024年中考数学真题完全解读(武汉卷)审视2024年武汉市中考数学试卷,我们可以明显感受到与去年相比,题型与知识点的考查方式保持了一贯的稳定,整体难度适宜,而且考察手法愈发巧妙多变,要求学生对知识点有深入的理解和灵活的运用。
在历经三次模拟考试的磨砺后,24年的中考数学试卷不仅维持了知识点的连贯性,还在持续的创新与变化中,丰富了知识点的维度和命题的广度。
试卷的四大模块一一数与式、函数、几何图形、统计概率,分别占据了20分、34分、52分和14分的分值。
与23年相比,数与式部分稍有减少,具体体现在无理数的举例开放题上少了3分,而几何部分则增加了3分,主要涉及平行线和角的计算。
试卷的基础题、中档题和压轴题的分布与往年保持一致,基础题占据了约81分,即67.5%的比例,中档题和压轴题则分别占据了27分和12分,占比分别为22.5%和10%o然而,任何一份试卷都会给不同水平的学生带来不同程度的挑战。
例如,选择题第10题就需要学生巧妙运用函数对称性和数形结合的方法进行解答,而其他9题则较为常规。
填空第15题的几何小综合,无疑是今年考试的一个难点,涉及到面积的转化和相似的构造,这对于许多学生来说都是一大考验。
在解答题中,17〜22题延续了以往的考查方式,但21题对格点作图提出了更高的要求,需要学生对常规方法有更深入的理解和掌握;23题的几何大综合虽然整体考查方式未变,但第二问和第三问需要学生综合运用八九年级的几何知识点,进行巧妙的构造和推理;24题的二次函数大综合虽然思路清晰,但由于计算量巨大,对学生的计算能力提出了极大的挑战。
因此,学生在后期的备考中,需要巩固基础知识,立足课本,提高解题的熟练度和计算能力,这样才能在中考中应对自如,冲刺高分!姓题型新变化选择题、填空题、解答题的题量与分值相较于往年没有发生变化;罗列部分试题新思路第6题的一次函数应用题转变为了实际问题的函数图象;第10题是新载体,需考生结合函数对称性和数形结合的方法解题;第13题的分式计算演变成了分式方程;第15题是几何计算题,原为第16题的位置,被普遍认为是今年中考难度最高的一道题。
初中数学湖北省武汉市初中毕业生考试数学考试题有答案(Word版)
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________一、xx题(每空xx 分,共xx分)试题1:在△ABC中,P为边AB上一点(1) 如图,若∠ACP=∠B,求证:AC2=AP·AB(2) 若M为CP的中点,AC=2①如图2,若∠PBM=∠ACP,AB=3,求BP的长②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长试题2:某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:其中a为常数,且3≤a≤5(1) 若产销甲乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式(2) 分别求出产销两种产品的最大年利润(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由试题3:如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E(1) 求证:AC平分∠DAB(2) 连接BE交AC于点F,若cos∠CAD=,求的值试题4:已知反比例函数(1) 若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值(2) 如图,反比例函数(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积试题5:某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图请你根据以上的信息,回答下列问题:(1) 本次共调查了__________名学生,其中最喜爱戏曲的有__________人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是__________(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数试题6:如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE试题7:解方程:5x+2=3(x+2)试题8:如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=,则BD的长为___________试题9:将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为___________试题10:如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为___________试题11:一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为___________试题12:某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为___________试题13:计算5+(-3)的结果为___________试题14:平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6C.7D.8试题15:如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A. B.πC. D.2试题16:某车间20名工人日加工零件数如下表所示:日加工零件 4 5 6 7 8数人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6试题17:如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()试题18:.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=-5,b=1 C.a=5,b=-1 D.a=-5,b=-1试题19:运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2-6x+9 C.x2+6x+9 D.x2+3x+9试题20:不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球 B .摸出的是3个黑球C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球试题21:下列计算中正确的是()试题22:若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=3试题23:实数的值在()A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间试题1答案:试题2答案:试题3答案:试题4答案:试题5答案:试题6答案:试题7答案:试题8答案:试题9答案:36试题11答案: 1/3试题12答案: 6.3*104试题13答案: 2试题14答案: A试题15答案: B试题16答案: D试题17答案: A试题18答案: D试题19答案: C试题20答案: A试题21答案: BC试题23答案: B。
2021年湖北省武汉市初中毕业生统一考试(中考)数学试卷及解析
2021年湖北省武汉市初中毕业生统一考试(中考)数学试卷及解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)实数3的相反数是( ) A .3B .3-C .13D .13-2.(3分)下列事件中是必然事件的是( ) A .抛掷一枚质地均匀的硬币,正面朝上 B .随意翻到一本书的某页,这一页的页码是偶数 C .打开电视机,正在播放广告D .从两个班级中任选三名学生,至少有两名学生来自同一个班级3.(3分)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.(3分)计算23()a -的结果是( ) A .6a -B .6aC .5a -D .5a5.(3分)如图是由4个相同的小正方体组成的几何体,它的主视图是( )A .B .C .D .6.(3分)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是()A.B.C.D.7.(3分)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是()A.8(3)7(4)x x-=+B.8374x x+=-C.3487y y-+=D.3487y y+-=8.(3分)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:)km与慢车行驶时间t(单位:)h的函数关系如图,则两车先后两次相遇的间隔时间是()A.53h B.32h C.75h D.43h9.(3分)如图,AB是⊙O的直径,BC是⊙O的弦,先将沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是()A.21.9°<α<22.3°B.22.3°<α<22.7°C.22.7°<α<23.1°D.23.1°<α<23.5°10.(3分)已知a ,b 是方程2350x x --=的两根,则代数式3222671a a b b -+++的值是( ) A .25-B .24-C .35D .36二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(3分)计算2(5)-的结果是 .12.(3分)我国是一个人口资源大国.第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是 . 城市 北京 上海 广州 重庆 成都 常住人口数万2189248718683205209413.(3分)已知点1(,)A a y ,2(1,)B a y +在反比例函数21(m y m x+=是常数)的图象上,且12y y <,则a 的取值范围是 .14.(3分)如图,海中有一个小岛A .一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12nmile 到达C 点,这时测得小岛A 在北偏东30︒方向上.小岛A 到航线BC 的距离是(3 1.73nmile ≈,结果用四舍五入法精确到0.1).15.(3分)已知抛物线y =ax 2+bx +c (a ,b ,c 是常数),a +b +c =0.下列四个结论: ①若抛物线经过点(﹣3,0),则b =2a ; ②若b =c ,则方程cx 2+bx +a =0一定有根x =﹣2; ③抛物线与x 轴一定有两个不同的公共点;④点A (x 1,y 1),B (x 2,y 2)在抛物线上,若0<a <c ,则当x 1<x 2<1时,y 1>y 2. 其中正确的是 (填写序号).16.(3分)如图(1),在ABC ∆中,AB AC =,90BAC ∠=︒,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x AD =,y AE CD =+,y 关于x 的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是 .三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解不等式组21,4101x x x x -⎧⎨+>+⋅⎩①②请按下列步骤完成解答.(1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 .18.(8分)如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F ,求证:DEF F ∠=∠.19.(8分)为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t (单位:)h ,按劳动时间分为四组:A 组“5t <”, B 组“57t <”, C 组“79t <”, D 组“9t ”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是 ,C 组所在扇形的圆心角的大小是 ; (2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h 的学生人数.20.(8分)如图是由小正方形组成的57⨯网格,每个小正方形的顶点叫做格点,矩形ABCD 的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB 上画点E ,使2AE BE =,再过点E 画直线EF ,使EF 平分矩形ABCD 的面积;(2)在图(2)中,先画BCD ∆的高CG ,再在边AB 上画点H ,使BH D H =.21.(8分)如图,AB 是O 的直径,C ,D 是O 上两点,C 是BD 的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F . (1)求证:CE 是O 的切线; (2)若6DCDF=,求cos ABD ∠的值.22.(10分)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品.A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100kg .生产该产品每盒需要A 原料2kg 和B 原料4kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.23.(10分)问题提出如图(1),在ABC ∆和DEC ∆中,90ACB DCE ∠=∠=︒,BC AC =,EC DC =,点E 在ABC ∆内部,直线AD 与BE 于点F .线段AF ,BF ,CF 之间存在怎样的数量关系? 问题探究(1)先将问题特殊化如图(2),当点D ,F 重合时,直接写出一个等式,表示AF ,BF ,CF 之间的数量关系;(2)再探究一般情形如图(1),当点D ,F 不重合时,证明(1)中的结论仍然成立. 问题拓展如图(3),在ABC ∆和DEC ∆中,90ACB DCE ∠=∠=︒,BC kAC =,(EC kDC k =是常数),点E 在ABC ∆内部,直线AD 与BE 交于点F .直接写出一个等式,表示线段AF ,BF ,CF 之间的数量关系.24.(12分)抛物线21y x =-交x 轴于A ,B 两点(A 在B 的左边). (1)ACDE 的顶点C 在y 轴的正半轴上,顶点E 在y 轴右侧的抛物线上; ①如图(1),若点C 的坐标是(0,3),点E 的横坐标是32,直接写出点A ,D 的坐标. ②如图(2),若点D 在抛物线上,且ACDE 的面积是12,求点E 的坐标.(2)如图(3),F 是原点O 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段AF ,BF (不含端点)于G ,H 两点.若直线l 与抛物线只有一个公共点,求证:FG FH +的值是定值.2021年湖北省武汉市初中毕业生统一考试(中考)数学参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)实数3的相反数是()A.3B.3-C.13D.13-【分析】直接利用相反数的定义分析得出答案.【解答】解:实数3的相反数是:3-.故选:B.2.(3分)下列事件中是必然事件的是()A.抛掷一枚质地均匀的硬币,正面朝上B.随意翻到一本书的某页,这一页的页码是偶数C.打开电视机,正在播放广告D.从两个班级中任选三名学生,至少有两名学生来自同一个班级【分析】根据事件发生的可能性大小判断即可.【解答】解:A、抛掷一枚质地均匀的硬币,正面朝上,是随机事件;B、随意翻到一本书的某页,这一页的页码是偶数,是随机事件;C、打开电视机,正在播放广告,是随机事件;D、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件;故选:D.3.(3分)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A.既是轴对称图形又是中心对称图形,故此选项符合题意;B .不是轴对称图形,是中心对称图形,故此选项不合题意;C .不是轴对称图形,是中心对称图形,故此选项不合题意;D .是轴对称图形,不是中心对称图形,故此选项不合题意; 故选:A .4.(3分)计算23()a -的结果是( ) A .6a -B .6aC .5a -D .5a【分析】根据幂的乘方的运算法则计算可得. 【解答】解:236()a a -=-, 故选:A .5.(3分)如图是由4个相同的小正方体组成的几何体,它的主视图是( )A .B .C .D .【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【解答】解:从正面看易得有两层,底层三个正方形,上层中间是一个正方形. 故选:C .6.(3分)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是( ) A .B .C .D .【分析】画树状图,共有12种等可能的结果,抽取的两人恰好是一男一女的结果有8种,再由概率公式求解即可.【解答】解:画树状图如图:共有12种等可能的结果,抽取的两人恰好是一男一女的结果有8种, ∴两人恰好是一男一女的概率为=,故选:C .7.(3分)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( ) A .8(3)7(4)x x -=+ B .8374x x +=- C .3487y y -+=D .3487y y +-=【分析】根据人数=总钱数÷每人所出钱数,得出等式即可. 【解答】解:设物价是y 钱,根据题意可得: 3487y y +-=. 故选:D .8.(3分)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y (单位:)km 与慢车行驶时间t (单位:)h 的函数关系如图,则两车先后两次相遇的间隔时间是( )A .53hB .32hC .75hD .43h【分析】根据图象得出,慢车的速度为/6a km h ,快车的速度为/2akm h .从而得出快车和慢车对应的y 与t 的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.【解答】解:根据图象可知,慢车的速度为/6akm h . 对于快车,由于往返速度大小不变,总共行驶时间是4 h , 因此单程所花时间为2 h ,故其速度为/2akm h . 所以对于慢车,y 与t 的函数表达式为(06)6ay t t =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅①.对于快车,y 与t 的函数表达式为()()2(24),2646),2at t y a t t ⎧-<⋅⋅⋅⋅⋅⋅⋅⎪⎪=⎨⎪--⋅⋅⋅⋅⋅⋅⋅⎪⎩②③联立①②,可解得交点横坐标为3t =, 联立①③,可解得交点横坐标为 4.5t =, 因此,两车先后两次相遇的间隔时间是1.5, 故选:B .9.(3分)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,先将沿BC 翻折交AB 于点D ,再将沿AB 翻折交BC 于点E .若=,设∠ABC =α,则α所在的范围是( )A .21.9°<α<22.3°B .22.3°<α<22.7°C .22.7°<α<23.1°D .23.1°<α<23.5°【分析】如图,连接AC ,CD ,DE .证明∠CAB =3α,利用三角形内角和定理求出α,可得结论. 【解答】解:如图,连接AC ,CD ,DE .∵=,∴ED =EB ,∴∠EDB =∠EBD =α, ∵==,∴AC =CD =DE ,∴∠DCE =∠DEC =∠EDB +∠EBD =2α, ∴∠CAD =∠CDA =∠DCE +∠EBD =3α, ∵AB 是直径, ∴∠ACB =90°, ∴∠CAB +∠ABC =90°, ∴4α=90°, ∴α=22.5°, 故选:B .10.(3分)已知a ,b 是方程2350x x --=的两根,则代数式3222671a a b b -+++的值是( ) A .25-B .24-C .35D .36【分析】根据一元二次方程解的定义得到2350a a --=,2350b b --=,即235a a =+,235b b =+,根据根与系数的关系得到3a b +=,然后整体代入变形后的代数式即可求得. 【解答】解:a ,b 是方程2350x x --=的两根, 2350a a ∴--=,2350b b --=,3a b +=, 235a a ∴-=,235b b =+, 3222671a a b b ∴-+++22(3)3571a a a b b =-++++10()6a b =++1036=⨯+36=.故选:D .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(35 . 【分析】根据二次根式的性质解答.|5|5-=.12.(3分)我国是一个人口资源大国.第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是 2189 .【分析】将这组数据从小到大重新排列,再根据中位数的定义求解即可. 【解答】解:将这组数据重新排列为1868,2094,2189,2487,3205, 所以这组数据的中位数为2189, 故答案为:2189.13.(3分)已知点1(,)A a y ,2(1,)B a y +在反比例函数21(m y m x+=是常数)的图象上,且12y y <,则a 的取值范围是 10a -<< .【分析】根据反比例函数的性质分两种情况进行讨论,①当点1(,)A a y ,2(1,)B a y +在同一象限时,②当点1(,)A a y ,2(1,)B a y +在不同象限时.【解答】解:210k m =+>,∴反比例函数21(m y m x+=是常数)的图象在一、三象限,在每个象限,y 随x 的增大而减小, ①当1(,)A a y ,2(1,)B a y +在同一象限, 12y y <,此不等式无解;②当点1(,)A a y 、2(1,)B a y +在不同象限, 12y y <,0a ∴<,10a +>,解得:10a -<<, 故答案为10a -<<.14.(3分)如图,海中有一个小岛A .一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12nmile 到达C 点,这时测得小岛A 在北偏东30︒方向上.小岛A 到航线BC 的距离是 10.4(3 1.73nmile ≈,结果用四舍五入法精确到0.1).【分析】过点A 作AE BD ⊥交BD 的延长线于点E ,根据三角形的外角性质得到BAD ABD ∠=∠,根据等腰三角形的判定定理得到AD AB =,根据正弦的定义求出AE 即可. 【解答】解:过点A 作AE BD ⊥交BD 的延长线于点E , 由题意得,60CBA ∠=︒,30EAD ∠=︒,30ABD ∴∠=︒,60ADE ∠=︒, 30BAD ADE ABD ∴∠=∠-∠=︒,BAD ABD ∴∠=∠,12AD AB nmile ∴==,在Rt ADE ∆中,sin AEADE AD∠=, sin 6310.4()AE AD ADE nmile ∴=⋅∠=, 故小岛A 到航线BC 的距离是10.4nmile , 故答案为10.4.15.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(﹣3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=﹣2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是①②④(填写序号).【分析】①由题意可得,抛物线的对称轴为直线x=﹣==﹣1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=﹣=﹣,则=﹣,解得m=﹣2,即方程cx2+bx+a=0一定有根x=﹣2;故②正确;③△=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2≥0,则当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且>1,则当x<1时,y随x的增大而减小,则当x1<x2<1时,y1>y2.故④正确.【解答】解:∵抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0,∴(1,0)是抛物线与x轴的一个交点.①∵抛物线经过点(﹣3,0),∴抛物线的对称轴为直线x==﹣1,∴﹣=﹣1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=﹣=﹣,且二次函数y=cx2+bx+a过点(1,0),∴=﹣,解得m=﹣2,∴y=cx2+bx+a与x轴的另一个交点为(﹣2,0),即方程cx2+bx+a=0一定有根x=﹣2;故②正确;③△=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2≥0,∴抛物线与x轴一定有两个公共点,且当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且>1,∴(1,0)在对称轴的左侧,∴当x<1时,y随x的增大而减小,∴当x1<x2<1时,y1>y2.故④正确.故答案为:①②④.16.(3分)如图(1),在ABC∠=︒,边AB上的点D从顶点A出发,向顶点B运BAC∆中,AB AC=,90动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x AD=,y AE CD=+,y关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是21-.【分析】观察函数图象,根据图象经过点(0,2)即可推出AB和AC的长,构造NBE CAD∆≅∆,当A、E、N三点共线时,y取得最小值,利用三角形相似求出此时的x值即可.【解答】解:图象过点(0,2),即当0x AD==时,点D与A重合,点E与B重合,此时2=+=+=,y AE CD AB AC∆为等腰直角三角形,ABC∴==,AB AC1过点A作AF BC=,如图所示:⊥于点F,过点B作NB BC⊥,并使得BN ACAD BE =,NBE CAD ∠=∠,()NBE CAD SAS ∴∆≅∆,NE CD ∴=,又y AE CD =+,y AE CD AE NE ∴=+=+,当A 、E 、N 三点共线时,y 取得最小值,如图所示,此时:AD BE x ==,1AC BN ==,2sin 45AF AC ∴=⋅︒=\又BEN FEA ∠=∠,NBE AFE ∠=∠NBE AFE ∴∆∆∽∴NB BEAF FE =22x=- 解得:21x =,∴21.21.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解不等式组21,4101x x x x -⎧⎨+>+⋅⎩①②请按下列步骤完成解答.(1)解不等式①,得 1x - ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 .【分析】先解出两个不等式,然后在数轴上表示出它们的解集,即可写出不等式组的解集. 【解答】解:21,4101x x x x -⎧⎨+>+⋅⎩①②(1)解不等式①,得1x -; (2)解不等式②,得3x >-;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是1x -. 故答案为:1x -;3x >-;1x -.18.(8分)如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F ,求证:DEF F ∠=∠.【分析】由平行线的性质得到DCF B ∠=∠,进而推出DCF D ∠=∠,根据平行线的判定得到//AD BC ,根据平行线的性质即可得到结论. 【解答】证明://AB CD ,DCF B ∴∠=∠,B D ∠=∠,DCF D ∴∠=∠, //AD BC ∴,DEF F ∴∠=∠.19.(8分)为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t (单位:)h ,按劳动时间分为四组:A 组“5t <”, B 组“57t <”, C 组“79t <”, D 组“9t ”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是100,C组所在扇形的圆心角的大小是;(2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h的学生人数.【分析】(1)用D组的人数÷所占百分比计算即可,计算C组的百分比,用C组的百分数乘以360︒即可得出C组所在扇形的圆心角的大小;(2)求出B组人数,画出条形图即可;(3)用C,D两组的百分数之和乘以1500即可.【解答】解:(1)这次抽样调查的样本容量是1010%100÷=,C组所在扇形的圆心角的大小是30360108100︒⨯=︒,故答案为:100,108︒;(2)B组的人数10015301045=---=(名),条形统计图如图所示,(3)30101500600100+⨯=(名).答:估计该校平均每周劳动时间不少于7h的学生人数为600.20.(8分)如图是由小正方形组成的57⨯网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使2AE BE=,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画BCD∆的高CG,再在边AB上画点H,使BH D H=.【分析】(1)如图取格点T,连接DT交AB于点E,连接BD,取BD的中点F,作直线EF即可.(2)取格点E,F,连接EF交格线于P,连接CP交BD于点G,线段CG即为所求.取格点M,N,T,K,连接MN,TK交于点J,取BD的中点O,作直线OJ交AB于H,连接DH,点H即为所求.【解答】解:(1)如图,直线EF即为所求.(2)如图,线段CG,点H即为所求.21.(8分)如图,AB 是O 的直径,C ,D 是O 上两点,C 是BD 的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是O 的切线;(2)若6DC DF=,求cos ABD ∠的值.【分析】(1)连接OC 交BD 于点G ,可证明四边形EDGC 是矩形,可求得90ECG ∠=︒,进而可求CE 是O 的切线;(2)连接BC ,设FG x =,OB r =,利用6DC DF=,设DF t =,6DC t =,利用Rt BCG Rt BFC ∆∆∽的性质求出CG ,OG ,利用勾股定理求出半径,进而求解. 【解答】(1)证明:连接OC 交BD 于点G ,点C 是BD 的中点,∴由圆的对称性得OC 垂直平分BD , 90DGC ∴∠=︒,AB 是O 的直径,90ADB ∴∠=︒,90EDB ∴∠=︒,CE AE ⊥,90E∴∠=︒,∴四边形EDGC是矩形,90ECG∴∠=︒,CE OC∴⊥,CE∴是O的切线;(2)解:连接BC,设FG x=,OB r=,DCDF=设DF t=,DC=,由(1)得,BC CD=,BG GD x t==+, AB是O的直径,90ACB∴∠=︒,90BCG FCG∴∠+∠=︒,90DGC∠=︒,90CFB FCG∴∠+∠=︒,BCG CFB∴∠=∠,Rt BCG Rt BFC∴∆∆∽,2BC BG BF∴=⋅,2)()(2)x t x t∴=++解得1x t=,252x t=-(不符合题意,舍去),CG∴,OG r∴=,在Rt OBG∆中,由勾股定理得222OG BG OB+=,222()(2)r r r∴+=,解得r=,cosBGABDOB∴∠===.22.(10分)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.【分析】(1)根据题意列方程先求出两种原料的单价,再根据成本=原料费+其他成本计算每盒产品的成本即可;(2)根据利润等于售价减去成本列出函数关系式即可;(3)根据(2)中的函数关系式,利用函数的性质求最值即可.【解答】解:(1)设B原料单价为m元,则A原料单价为1.5m元,根据题意,得﹣=100,解得m=3,经检验m=3是方程的解,∴1.5m=4.5,∴每盒产品的成本是:4.5×2+4×3+9=30(元),答:每盒产品的成本为30元;(2)根据题意,得w=(x﹣30)[500﹣10(x﹣60)]=﹣10x2+1400x﹣33000,∴w关于x的函数解析式为:w=﹣10x2+1400x﹣33000;(3)由(2)知w=﹣10x2+1400x﹣33000=﹣10(x﹣70)2+16000,∴当a≥70时,每天最大利润为16000元,当60<a <70时,每天的最大利润为(﹣10a 2+1400a ﹣33000)元.23.(10分)问题提出如图(1),在ABC ∆和DEC ∆中,90ACB DCE ∠=∠=︒,BC AC =,EC DC =,点E 在ABC ∆内部,直线AD 与BE 于点F .线段AF ,BF ,CF 之间存在怎样的数量关系?问题探究(1)先将问题特殊化如图(2),当点D ,F 重合时,直接写出一个等式,表示AF ,BF ,CF 之间的数量关系;(2)再探究一般情形如图(1),当点D ,F 不重合时,证明(1)中的结论仍然成立. 问题拓展如图(3),在ABC ∆和DEC ∆中,90ACB DCE ∠=∠=︒,BC kAC =,(EC kDC k =是常数),点E 在ABC ∆内部,直线AD 与BE 交于点F .直接写出一个等式,表示线段AF ,BF ,CF 之间的数量关系.【分析】(1)证明()ACD BCE SAS ∆≅∆,则CDE ∆为等腰直角三角形,故2DE EF CF ==,进而求解;(2)由(1)知,()ACD BCE SAS ∆≅∆,再证明()BCG ACF AAS ∆≅∆,得到GCF ∆为等腰直角三角形,则2GF CF ,即可求解;(3)证明BCE CAD ∆∆∽和BGC AFC ∆∆∽,得到BG BC GC k AF AC CF===,则BG kAF =,GC kFC =,进而求解. 【解答】解:(1)如图(2),90ACD ACE ∠+∠=︒,90ACE BCE ∠+∠=︒,BCE ACD ∴∠=∠,BC AC =,EC DC =,()ACD BCE SAS ∴∆≅∆,BE AD AF ∴==,EBC CAD ∠=∠,故CDE ∆为等腰直角三角形,故2DE EF CF==,则2BF BD BE ED AF CF==+=+;即2BF AF CF-=;(2)如图(1),由(1)知,()ACD BCE SAS∆≅∆,CAF CBE∴∠=∠,BE AF=,过点C作CG CF⊥交BF于点G,90FCE ECG∠+∠=︒,90ECG GCB∠+∠=︒,ACF GCB∴∠=∠,CAF CBE∠=∠,BC AC=,()BCG ACF AAS∴∆≅∆,GC FC∴=,BG AF=,故GCF∆为等腰直角三角形,则2GF CF,则2BF BG GF AF CF=+=,即2BF AF CF-=;(3)由(2)知,BCE ACD∠=∠,而BC kAC=,EC kDC=,即BC ECk AC CD==,BCE CAD∴∆∆∽,CAD CBE∴∠=∠,过点C作CG CF⊥交BF于点G,由(2)知,BCG ACF ∠=∠,BGC AFC ∴∆∆∽, ∴BG BC GC k AF AC CF ===, 则BG kAF =,GC kFC =,在Rt CGF ∆中,22222()1GF GC FC kFC FC k FC =+=+=+⋅, 则21BF BG GF kAF k FC =+=++⋅,即21BF kAF k FC -=+⋅.24.(12分)抛物线21y x =-交x 轴于A ,B 两点(A 在B 的左边).(1)ACDE 的顶点C 在y 轴的正半轴上,顶点E 在y 轴右侧的抛物线上; ①如图(1),若点C 的坐标是(0,3),点E 的横坐标是32,直接写出点A ,D 的坐标. ②如图(2),若点D 在抛物线上,且ACDE 的面积是12,求点E 的坐标.(2)如图(3),F 是原点O 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段AF ,BF (不含端点)于G ,H 两点.若直线l 与抛物线只有一个公共点,求证:FG FH +的值是定值.【分析】(1)①点A 向右平移1个单位向上平移3个单位得到点C ,而四边形ACDE 为平行四边形,故点E 向右平移1个单位向上平移3个单位得到点D ,即可求解; ②利用6ACE CEN AEM CNMA S S S S ∆∆∆=--=梯形,求出5m =-(舍去)或2,即可求解;(2)由225()5()5sin sin 44G H H G x x t t FG FH x x αα-+-+=+=-=-=,即可求解. 【解答】解:(1)对于21y x =-,令210y x =-=,解得1x =±,令0x =,则1y =-, 故点A 、B 的坐标分别为(1,0)-、(1,0),顶点坐标为(0,1)-, ①当32x =时,2514y x =-=, 由点A 、C 的坐标知,点A 向右平移1个单位向上平移3个单位得到点C , 四边形ACDE 为平行四边形,故点E 向右平移1个单位向上平移3个单位得到点D , 则35122+=,517344+=, 故点D 的坐标为5(2,17)4;②设点(0,)C n ,点E 的坐标为2(,1)m m -,同理可得,点D 的坐标为2(1,1)m m n +-+,将点D 的坐标代入抛物线表达式得:221(1)1m n m -+=+-, 解得21n m =+,故点C 的坐标为(0,21)m +;连接CE ,过点E 作y 轴的平行线交x 轴于点M ,交过点C 与x 轴的平行线与点N ,则()()()()()2111112111212162222ACE CEN AEM ACED CNMA S S S S m m m m m m m m S ∆∆∆=--=+++-⨯+--+--==⎡⎤⎣⎦梯形,解得5m =-(舍去)或2, 故点E 的坐标为(2,3);(2)F 是原点O 关于抛物线顶点的对称点,故点F 的坐标为(0,2)-, 由点B 、F 的坐标得,直线BF 的表达式为22y x =-①, 同理可得,直线AF 的表达式为22y x =--②, 设直线l 的表达式为y tx n =+, 联立y tx n =+和21y x =-并整理得:210x tx n ---=, 直线l 与抛物线只有一个公共点,故△2()4(1)0t n =----=,解得2114n t =--, 故直线l 的表达式为2114y tx t =--③, 联立①③并解得24H t x +=, 同理可得,24G t x -=, 射线FA 、FB 关于y 轴对称,则AFO BFO ∠=∠,设AFO BFO α∠=∠=, 则sin sin OB AFO BFO BF α∠=∠====,则22)5()sin sin 44G H H G x x t t FG FH x x αα-+-+=+=-=-=。
2020年湖北省武汉市中考数学试题及参考答案(word解析版)
2020年武汉市初中毕业生学业考试数学试卷(满分120分,考试用时120分钟)第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案。
1.实数﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.式子在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≤2 C.x≥﹣2 D.x≥23.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1 B.两个小球的标号之和等于6C.两个小球的标号之和大于1 D.两个小球的标号之和大于64.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1 B.﹣1<a<1 C.a>1 D.a<﹣1或a>18.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32 B.34 C.36 D.389.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160 B.128 C.80 D.48第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解题过程,请将结果直接填写在题中的横线上。
2020年湖北省武汉市中考数学试卷(附解析)(可打印)
2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数﹣2的相反数是()A.2B.﹣2C.D.﹣2.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥23.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于64.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>18.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min 内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.389.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48二、填空题(共6小题,每小题3分,共18分)11.计算的结果是.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.计算﹣的结果是.14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是.15.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE 与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y (万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x =20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.2020年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.实数﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】由相反数的定义可知:﹣2的相反数是2.2.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥2【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于6【分析】分别利用随机事件、必然事件、不可能事件的定义分别分析得出答案.4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.5.如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.【分析】根据题意画出树状图得出所有等可能情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.7.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1【分析】根据反比例函数的性质分两种情况进行讨论,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上时,②当点(a﹣1,y1)、(a+1,y2)在图象的两支上时.8.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min 内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.38【分析】根据图象可知进水的速度为5(L/min),再根据第16分钟时容器内水量为35L 可得出水的速度,进而得出第24分钟时的水量,从而得出a的值.9.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC=DF,从而求得BC=DF=2,利用勾股定理即可求得AC.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【分析】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.二、填空题(共6小题,每小题3分,共18分)11.计算的结果是3.【分析】根据二次根式的性质解答.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是 4.5h.【分析】根据中位数的定义求解可得.13.计算﹣的结果是.【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是26°.【分析】根据平行四边形的性质得到∠ABC=∠D=102°,AD=BC,根据等腰三角形的性质得到∠EAB=∠EBA,∠BEC=∠ECB,根据三角形外角的性质得到∠ACB=2∠CAB,由三角形的内角和定理即可得到结论.15.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是①③(填写序号).【分析】根据题目中的二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.【分析】连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,由勾股定理得出(2﹣x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.【分析】原式中括号中利用同底数幂的乘法,积的乘方与幂的乘方运算法则计算,合并后利用单项式除以单项式法则计算即可求出值.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.【分析】根据平行线的性质以及角平分线的定义,即可得到∠FEB=∠EFC,进而得出AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了60名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是18°;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?【分析】(1)由C类别的人数及其所占百分比可得被调查的总人数,用360°乘以样本中D类别人数占被调查人数的比例即可得出答案;(2)根据A、B、C、D四个类别人数之和等于被调查的总人数求出A的人数,从而补全图形;(3)用总人数乘以样本中B类别人数所占比例可得答案.20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.【分析】(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出CD=BC,以BD为对角线作矩形MBND,连接MN交BD于G,延长CG交AB于E,则点E即为所求;(3)利用网格特点,作出E点关于直线AC的对称点F即可.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE 与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.【分析】(1)连接OD,如图,根据切线的性质得到OD⊥DE,则可判断OD∥AE,从而得到∠1=∠ODA,然后利用∠2=∠ODA得到∠1=∠2;(2)连接BD,如图,利用圆周角定理得到∠ADB=90°,再证明∠2=∠3,利用三角函数的定义得到sin∠1=,sin∠3=,则AD=BC,设CD=x,BC=AD=y,证明△CDB∽△CBA,利用相似比得到x:y=y:(x+y),然后求出x、y的关系可得到sin∠BAC的值.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y (万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x =20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).【分析】(1)利用待定系数法即可求出a,b的值;(2)先根据(1)的结论得出y与x之间的函数关系,从而可得出A,B两城生产这批产品的总成本的和,再根据二次函数的性质即可得出答案;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,从而可得关于n的不等式组,解得n的范围,然后根据运费信息可得P关于n的一次函数,最后根据一次函数的性质可得答案.23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.【分析】问题背景由题意得出,∠BAC=∠DAE,则∠BAD=∠CAE,可证得结论;尝试应用连接EC,证明△ABC∽△ADE,由(1)知△ABD∽△ACE,由相似三角形的性质得出,∠ACE=∠ABD=∠ADE,可证明△ADF∽△ECF,得出=3,则可求出答案.拓展创新过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,证明△BDC ∽△MDA,由相似三角形的性质得出,证明△BDM∽△CDA,得出,求出BM=6,由勾股定理求出AM,最后由直角三角形的性质可求出AD的长.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.【分析】(1)根据平移规律:上加下减,左加右减,直接写出平移后的解析式;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,再证明△ABD≌△OAC,由全等三角形的性质得a的方程求得a便可得A的坐标;(3)由两直线解析式分别与抛物线的解析式联立方程组,求出M、N点的坐标,进而求得MN的解析式,再根据解析式的特征得出MN经过一个定点.。
2022年湖北省武汉市中考数学试卷(word版含答案)
武汉市2022年初中毕业生学业考试数 学 试 卷亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成.全卷共6页,三大题,25小题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卷”和“答题卡”上,并将准考证号、考试科目用2B 铅笔涂在“答题卡”上. 3.答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,不得答在试题卷上.4.第Ⅱ卷用钢笔或黑色水性笔直接答在“答题卷”上,答在试题卷上无效......... 预祝你取得优异成绩!第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分) 下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数12的相反数是( ) A .12- B .12C .D .2.函数y =中自变量的取值范围是( )A .12x -≥ B .12x ≥ C .12x -≤D .12x ≤3.不等式2x ≥的解集在数轴上表示为( )4) A .B .或C .D .5.已知是一元二次方程220x mx ++=的一个解,则的值是( )A .B .C .0D .0或6.今年某市约有102000名应届初中毕业生参加中考.102000用科学记数法表示为( )A .B .C .D .A .60.10210⨯B .51.0210⨯C .410.210⨯D .310210⨯7.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,,,这五天的最低温度的平均值是( ) A .1 B .2 C .0 D .8.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )9.如图,已知是四边形ABCD 内一点,OA OB OC ==,70ABC ADC ∠=∠=°,则DAO DCO ∠+∠的大小是( )A .70°B .110°C .140°D .150°10.如图,已知的半径为1,锐角ABC △内接于, BD AC ⊥于点,OM AB ⊥于点,则sin CBD ∠的值等于( )A .的长B .2OM 的长C .的长D .的长11.近几年来,国民经济和社会发展取得了新的成就,农村经济快速发展,农民收入不断提高.下图统计的是某地区2022年—2022年农村居民人均年纯收入.根据图中信息,下列判断:①与上一年相比,2022年的人均年纯收入增加的数量高于2022年人均年纯收入增加的数量;②与上一年相比,2022年人均年纯收入的增长率为35873255100%3255-⨯;③若按2022年人均年纯收入的增长率计算,2022年人均年纯收入将达到41403587414013587-⎛⎫⨯+⎪⎝⎭元.其中正确的是( )A .只有①②B .只有②③C .只有①③D .①②③正面A .B .C .D . B CO A D O CB A D M4500 4000 3500 3000 2500 200015001000500 02022年 2022年 2022年 2022年 2022年 年份 人均年纯收入/元 2622 293632553587 414012.在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为边上一点,15BCE ∠=°,且AE AD =.连接交对角线于,连接.下列结论: ①ACD ACE △≌△;②CDE △为等边三角形;③2EHBE=; ④EDC EHC S AH S CH =△△. 其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分)下列各题不需要写出解答过程,请将结论直接填写在答题卷指定的位置.13.在科学课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示: 种子数(个) 100 200 300 400 发芽种子数(个)94187282376由此估计这种作物种子发芽率约为 (精确到).14.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.15.如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .16.如图,直线43y x =与双曲线k y x =()交于点.将直线43y x =向右平移92个单位后,与双曲线ky x =()交于点,与轴交于点,若2AOBC=,则 .DCBE AH第1个图形 第2个图形 第3个图形 第4个图形… yO A BOy ABC三、解答题(共9小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.(本题满分6分) 解方程:2310x x --=. 18.(本题满分6分)先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中.19.(本题满分6分)如图,已知点E C ,在线段上,BE CF AB DE ACB F =∠=∠,∥,. 求证:ABC DEF △≌△.20.(本题满分7分)小明准备今年暑假到北京参加夏令营活动,但只需要一名家长陪同前往,爸爸、妈妈都很愿意陪同,于是决定用抛掷硬币的方法决定由谁陪同.每次掷一枚硬币,连掷三次. (1)用树状图列举三次抛掷硬币的所有结果; (2)若规定:有两次或两次以上.......正面向上,由爸爸陪同前往北京;有两次或两次以上.......反面向上,则由妈妈陪同前往北京.分别求由爸爸陪同小明前往北京和由妈妈陪同小明前往北京的概率;(3)若将“每次掷一枚硬币,连掷三次,有两次或两次以上正面向上时,由爸爸陪同小明前往北京”改为“同时掷三枚硬币,掷一次,有两枚或两枚以上.......正面向上时,由爸爸陪同小明前往北京”.求:在这种规定下,由爸爸陪同小明前往北京的概率. 21.(本题满分7分)如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,. (1)请直接写出点关于轴对称的点的坐标;(2)将ABC △绕坐标原点逆时针旋转90°.画出图形,直接写出点的对应点的坐标;C E B FD A(3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点的坐标. 22.(本题满分8分)如图,ABC △中,90ABC ∠=°,以为直径作交边于点,是边的中点,连接. (1)求证:直线是的切线;(2)连接交于点,若OF CF =,求tan ACO ∠的值.23.(本题满分10分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元? 24.(本题满分10分)C EBA O FD如图1,在ABC △中,90BAC ∠=°,AD BC ⊥于点,点是边上一点,连接交于,OE OB ⊥交边于点.(1)求证:ABF COE △∽△;(2)当为边中点,2AC AB =时,如图2,求OFOE 的值; (3)当为边中点,AC n AB =时,请直接写出OFOE的值.25.(本题满分12分)如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与轴交于另一点. (1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点关于直线对称的点的坐标; (3)在(2)的条件下,连接,点为抛物线上一点,且45DBP ∠=°,求点的坐标.武汉市2022年初中毕业生学业考试数学试卷参考答案BBAACO E DDECOF图1图2F13. 14.46 15.12x -<< 16.12 三、解答题17.解:131a b c ==-=-,,,224(3)41(1)13b ac ∴-=--⨯⨯-=,123322x x -∴==. 18.解:原式21212(1)(1)1x x x x x x +-+==+-+-当时,原式.19.证明:AB DE B DEF ∴∠=∠∥,. BE CF BC EF =∴=,. ACB F ABC DEF ∠=∠∴,△≌△. 20.解:(1)(2)(由爸爸陪同前往)12=;(由妈妈陪同前往)12=; (3)由(1)的树形图知,(由爸爸陪同前往)12=.21.解:(1)(2,3); (2)图形略.(0,); (3)()或(53)--,或.22.证明:(1)连接OD OE BD 、、.AB是的直径,90CDB ADB ∴∠=∠=°, 点是的中点,DE CE BE ∴==. OD OB OE OE ODE OBE ==∴,,△≌△. 90ODE OBE ∴∠=∠=∴°,直线是的切线. (2)作OH AC ⊥于点,由(1)知,BD AC ⊥,EC EB =.OA OB OE AC =∴,∥,且12OE AC =. CDF OEF ∴∠=∠,DCF EOF ∠=∠.正 反正 反正 反 正 正 反正 反正 反 反第一次 第二次 第三次CEBAOF D HCF OF =,DCF EOF ∴△≌△,DC OE AD ∴==. 45BA BC A ∴=∴∠=,°. OH AD OH AH DH ∴==⊥,.13tan 3OH CH OH ACO CH ∴=∴∠==,.23.解:(1)2(21010)(5040)101102100y x x x x =-+-=-++(015x <≤且为整数); (2)210( 5.5)2402.5y x =--+.100a =-<,当 5.5x =时,有最大值. 015x <≤,且为整数,当时,5055x +=,2400y =(元),当时,5056x +=,2400y =(元) 当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:12110x x ==,. 当时,5051x +=,当10x =时,5060x +=.当售价定为每件51或60元,每个月的利润为2200元. 当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元). 24.解:(1)AD BC ⊥,90DAC C ∴∠+∠=°. 90BAC BAF C ∠=∴∠=∠°,. 90OE OB BOA COE ∴∠+∠=⊥,°,90BOA ABF ∠+∠=°,ABF COE ∴∠=∠.ABF COE ∴△∽△;(2)解法一:作OG AC ⊥,交的延长线于. 2AC AB =,是边的中点,AB OC OA ∴==. 由(1)有ABF COE △∽△,ABF COE ∴△≌△, BF OE ∴=.90BAD DAC ∠+∠=°,90DAB ABD DAC ABD ∠+∠=∴∠=∠°,, 又90BAC AOG ∠=∠=°,AB OA =. ABC OAG ∴△≌△,2OG AC AB ∴==. OG OA ⊥,AB OG ∴∥,ABF GOF ∴△∽△,OF OG BF AB ∴=,2OF OF OGOE BF AB ===.解法二:902BAC AC AB AD BC ∠==°,,⊥于,Rt Rt BAD BCA ∴△∽△.2AD ACBD AB ∴==. 设1AB =,则2AC BC BO ===,,12AD BD AD ∴===90BDF BOE BDF BOE ∠=∠=∴°,△∽△,BA D E COFG BADE COFBD BODF OE∴=. 由(1)知BF OE =,设OE BF x ==,5DF x=,x ∴=. 在DFB △中2211510x x =+,3x ∴=.OF OB BF ∴=-==322OF OE ∴==.(3)OF n OE=.25.解:(1)抛物线24y ax bx a =+-经过(10)A -,,(04)C ,两点,404 4.a b a a --=⎧∴⎨-=⎩,解得13.a b =-⎧⎨=⎩,抛物线的解析式为234y x x =-++.(2)点(1)D m m +,在抛物线上,2134m m m ∴+=-++,即2230m m --=,1m ∴=-或3m =. 点在第一象限,点的坐标为. 由(1)知45OA OB CBA =∴∠=,°. 设点关于直线的对称点为点.(04)C ,,CD AB ∴∥,且3CD =,45ECB DCB ∴∠=∠=°, 点在轴上,且3CE CD ==.1OE ∴=,(01)E ∴,. 即点关于直线对称的点的坐标为(0,1).(3)方法一:作PF AB ⊥于,DE BC ⊥于. 由(1)有:445OB OC OBC ==∴∠=,°, 45DBP CBD PBA ∠=∴∠=∠°,.(04)(34)C D ,,,,CD OB ∴∥且3CD =.45DCE CBO ∴∠=∠=°,2DE CE ∴==. 4OB OC ==,BC ∴=2BE BC CE ∴=-=, 3tan tan 5DE PBF CBD BE ∴∠=∠==. 设3PF t =,则5BF t =,54OF t ∴=-,(543)P t t ∴-+,.点在抛物线上,23(54)3(54)4t t t =--++-++,0t ∴=(舍去)或2225t =,266525P ⎛⎫∴- ⎪⎝⎭,. 方法二:过点作的垂线交直线于点,过点作DH x ⊥轴于.过点作QG DH ⊥于.45PBD QD DB ∠=∴=°,. QDG BDH ∴∠+∠90=°,又90DQG QDG ∠+∠=°,DQG BDH ∴∠=∠.QDG DBH ∴△≌△,4QG DH ∴==,1DG BH ==.由(2)知(34)D ,,(13)Q ∴-,.(40)B ,,直线的解析式为31255y x =-+.解方程组23431255y x x y x ⎧=-++⎪⎨=-+⎪⎩,,得1140x y =⎧⎨=⎩,;222566.25x y ⎧=-⎪⎪⎨⎪=⎪⎩, 点的坐标为266525⎛⎫- ⎪⎝⎭,.。
2020年湖北省武汉中考数学试卷(附答案与解析
绝密★启用前2020年湖北省武汉市初中毕业生学业考试数 学亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本试卷由第I 卷(选择题)和第II 卷(非选择题)两部分组成.全卷共8页,三大题,满分120分.考试用时120分钟. 2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答第I 卷(选择题)时,选出每小题答案后,用2B 铅笔把“答题卡”上相应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答在“试卷”上无效.......... 4.答第II 卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上,答在“试卷”上无效.......... 5.认真阅读答题卡上的注意事项. 预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑. 1.2-的相反数是( )A .2-B .2C .12D .12-2.x 的取值范围是( )A .0x ≥B .2x -≥C .2x ≤D .2x ≥3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是( ) A .两个小球的标号之和等于1B .两个小球的标号之和等于6C .两个小球的标号之和大于1D .两个小球的标号之和大于64.现实世界中,对称现象无处不在,中国的方块字中有些也只有对称性,下列汉字是轴对称图形的是( )AB CD 5.下图是由4个相同的正方体组成的立体图形,它的左视图是( )ABCD6.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是( ) A .13 B .14C .16D .187.若点()11,A a y -,()21,B a y +在反比例函数()0ky k x=<的图象上,且12y y >,则a 的取值范围是( )A .1a -<B .11a -<<C .1a >D .1a -<或1a >8.一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4 min 内只进水不出水,从第4 min 到第24 m in 内既进水又出水,从第24 m in 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( )(第8题)A .32B .34C .36D .389.如图,在半径为3的O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是( )(第9题)AB. C. D.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32⨯方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66⨯方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A .160B .128C .80D .48第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)下面各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置. 11.________.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h ),分别为:4,3,3,5,5,6.这组数据的中位数是________. 13.计算2223m nm n m n --+-的结果是________. 14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC 是平行四边形ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D ∠=︒,则BAC ∠的大小是________.(第14题)15.抛物线2y ax bx c =++(a ,b ,c 为常数,0a <)经过()2,0A ,()4,0B -两点,下列四个结论: ①一元二次方程20ax bx c ++=的根为12x =,24x =-; ②若点()15,C y -,()2,D y π在该抛物线上,则12y y <; ③对于任意实数t ,总有2at bt a b +-≤;④对于a 的每一个确定值,若一元二次方程2ax bx c p ++=(p 为常数,0p >)的根为整数,则p 的值只有两个. 其中正确的结论是________(填写序号).16.如图,折叠矩形纸片ABCD ,使点D 落在AB 边的点M 处,EF 为折痕,1AB =,2AD =.设AM 的长为t ,用含有t 的式子表示四边形CDEF 的面积是________.(第16题)三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形. 17.(本小题满分8分)计算:()235423a a a a ⎡⎤⋅+÷⎢⎥⎣⎦. 18.(本小题满分8分)如图,直线EF 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,且EM FN ∥.求证:AB CD ∥.(第18题)19.(本小题满分8分)为改善民生;提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:A 表示“非常支持”,B 表示“支持”,C 表示“不关心”,D 表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了________名居民进行调查统计,扇形统计图中,D 类所对应的扇形圆心角的大小是________; (2)将条形统计图补充完整;(3)该社区共有2 000名居民,估计该社区表示“支持”的B 类居民大约有多少人? 20.(本小题满分8分)在85⨯的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为()0,0O ,()3,4A ,()8,4B ,()5,0C .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段CD ; (2)在线段AB 上画点E ,使45BCE ∠=︒(保留画图过程的痕迹); (3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.(第20题)21.(本小题满分8分)如图,在Rt ABC △中,90ABC ∠=︒,以AB 为直径的O 交AC 于点D ,AE 与过点D 的切线互相垂直,垂足为E . (1)求证:AD 平分BAE ∠; (2)若CD DE =,求sin BAC ∠的值.(第21题)22.(本小题满分10分)某公司分别在A ,B 两城生产同种产品,共100件.A 城生产品的总成本y (万元)与产品数量x (件)之间具有函数关系2y ax bx c =++,当10x =时,400y =;当20x时,1000y =.B 城生产产品的每件成本为70万元.(1)求a ,b 的值;(2)当A ,B 两城生产这批产品的总成本的和最少时,求A ,B 两城各生产多少件?(3)从A 城把该产品运往C ,D 两地的费用分别为m 万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件,C 地需要90件,D 地需要10件,在(2)的条件下,直接写出A ,B 两城总运费的和的最小值(用含有m 的式子表示). 23.(本小题满分10分)问题背景 如图(1),已知A ABC DE ∽△△,求证:ABD ACE △∽△;尝试应用 如图(2),在ABC △和ADE △中,90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒,AC 与DE 相交于点F .点D 在BC边上,AD BD =DFCF的值; 拓展创新 如图(3),D 是ABC △内一点,30BAD CBD ∠=∠=︒,90BDC ∠=︒,4AB =,AC =,直接写出AD 的长.(第23题)24.(本小题满分12分)将抛物线()2:2C y x =-向下平移6个单位长度得到抛物线1C ,再将抛物线1C 向左平移2个单位长度得到抛物线2C . (1)直接写出抛物线1C ,2C 的解析式;(2)如图(1),点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,OAB △是以OB 为斜边的等腰直角三角形,求点A 的坐标; (3)如图(2),直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,M 为线段EF 的中点;直线4y x k=-与抛物线2C 交于G ,H 两点,N 为线段GH 的中点.求证:直线MN 经过一个定点.(第24题)。
武汉市初中中考数学试卷试题有答案解析Word版本
2019 年武汉市初中毕业生学业考试数学试卷一、选择题(共 10 小题,每题 3 分,共 30 分)1.在实数- 3、 0、 5、 3 中,最小的实数是( )A .- 3B . 0C . 5D . 3 2.若代数式x 2 在实数范围内存心义,则x 的取值范为是( )A . x ≥- 2B . x >- 2C . x ≥ 2D . x ≤23.把 a 2- 2a 分解因式,正确的选项是()A . a(a - 2)B . a(a + 2)C . a(a 2- 2)D . a(2 - a)4.一组数据 3、 8、 12、 17、 40 的中位数为( )A . 3B . 8C . 12D . 175.以下计算正确的选项是( )A . 2x 2 - 4x 2=- 2B . 3x + x = 3x 2C . 3x · x = 3x 2D . 4x 6÷ 2x 2= 2x 36.如图,在直角坐标系中,有两点A(6, 3) 、 B(6 , 0).以原点 O 为位似中心,相像比为1,在3第一象限内把线段 AB 减小后获得线段 CD ,则点 C 的坐标为()A . (2 , 1)B . (2, 0)C . (3 , 3)D . (3 , 1)7.如图,是由一个圆柱体和一个长方体构成的几何体,其主视图是( ) 8.下边的折线图描绘了某地某日的气温变化状况,依据图中信息,以下说法错误的选项是() A . 4:00 气温最低 B . 6:00 气温为 24℃C . 14:00 气温最高 D .气温是 30 ℃的为 16:00 9.在反比率函数 y1 3m图象上有两点 A(x 1,y 1)、B(x 2,y 2),x 1< 0<y 1,y 1< y 2 ,则 m 的取值x范围是( )A . m >1B . m <1C . m ≥1D . m ≤1333310.如图,△ABC、△EFG均是边长为 2 的等边三角形,点 D 是边BC、 EF 的中点,直线AG 、FC 订交于点 M .当△ EFG 绕点 D 旋转时,线段 BM 长的最小值是()A . 2 3B . 3 1C. 2D. 3 1二、填空题(共 6 小题,每题 3 分,共18 分)11.计算:-10+(+6)=_________12.中国的领水面积约为370 000 km2,将数370 000用科学记数法表示为_________13.一组数据2、3、6、8、11的均匀数是_________14.以下图,购置一种苹果,所付款金额y(元)与购置量x(千克)之间的函数图象由线段OA 和射线 AB 构成,则一次购置 3 千克这类苹果比分三次每次购置 1 千克这类苹果可节俭__元15.定义运算“*”,规定x* y=ax2+by,此中a、b为常数,且1*2=5,2*1=6,则2*3=_________ 16.如图,∠AOB=30°,点M、N分别在边OA、 OB 上,且OM = 1, ON= 3,点 P、 Q 分别在边OB、 OA 上,则 MP+ PQ + QN 的最小值是 _________三、解答题(共8 小题,共72 分)17.(此题8分)已知一次函数y= kx+ 3 的图象经过点(1 ,4)求这个一次函数的分析式求对于 x 的不等式kx+ 3≤ 6 的解集18.(此题8分)如图,点B、 C、 E、 F 在同向来线上,BC= EF, AC ⊥ BC 于点 C,DF ⊥ EF 于点F, AC = DF求证: (1) △ ABC≌ △ DEF(2) AB∥ DE19.(此题8分)一个不透明的口袋中有四个完整同样的小球,它们分别标号为1, 2, 3, 4 (1) 随机摸取一个小球,直接写出“摸出的小球标号是3”的概率(2) 随机摸取一个小球而后放回,再随机摸出一个小球,直接写出以下结果: ①两次拿出的小球一个标号是1,另一个标号是 2 的概率 ②第一次拿出标号是 1 的小球且第二次拿出标号是2 的小球的概率20.(此题8分),如图,已知点A(- 4, 2)、 B(- 1,- 2) ,□ABCD 的对角线交于坐标原点O (1) 请直接写出点 C 、 D 的坐标(2) 写出从线段 AB 到线段 CD 的变换过程 (3) 直接写出□ ABCD 的面积21.(此题8分)如图,AB 是⊙ O 的直径,∠ ABT = 45 °, AT = AB (1) 求证: AT 是⊙ O 的切线(2) 连结 OT 交⊙ O 于点 C ,连结 AC ,求 tan ∠ TAC 的值22.(此题 8 分)已知锐角 △ ABC 中,边 BC 长为 12,高 AD 长为 8 (1) 如图,矩形 EFGH 的边 GH 在 BC 边上,其余两个极点 E 、 F 分别在 AB 、AC 边上, EF 交AD 于点 K ① 求EF的值AK② 设 EH = x ,矩形 EFGH 的面积为 S ,求 S 与 x 的函数关系式,并求 S 的最大值(2) 若 AB=AC ,正方形 PQMN 的两个极点在 △ ABC 一边上,另两个极点分别在△ ABC 的另两边上,直接写出正方形 PQMN 的边长23.(此题10分)如图,△ABC 中,点E 、P 在边AB 上,且AE =BP ,过点E 、P 作BC 的平行线,分别交 AC 于点 F 、 Q .记 △ AEF 的面积为 S 1,四边形 EFQP 的面积为 S 2,四边形 PQCB 的面积为 S 3(1) 求证: EF + PQ = BC (2) 若 S 1+ S 3= S 2,求PE的值AE(3) 若 S 3- S 1= S 2,直接写出PE的值AE24.(此题12分)已知抛物线y = x 2+ c 与 x 轴交于 A(- 1, 0) , B 两点,交 y 轴于点 C (1) 求抛物线的分析式(2) 点 E(m ,n)是第二象限内一点,过点 E 作 EF ⊥ x 轴交抛物线于点F ,过点 F 作 G ,连结 CE 、 CF ,若∠ CEF =∠ CFG ,求 n 的值并直接写出 m 的取值范围(利用图FG ⊥ y 轴于点 1 达成你的研究)(3) 如图 2,点 P 是线段OB 上一动点(不包含点O 、 B ), PM ⊥ x 轴交抛物线于点M ,∠ OBQ =∠OMP , BQ 交直线 PM 于点 Q ,设点 P 的横坐标为 t ,求△ PBQ 的周长2019 武汉市数学中考试题一、选择题1.A 【分析 】有理数中,负数小于0,零小于正数,所以最小的是-3.备考指导: 有理数大小比较的一般方法:①正数都大于0,负数都小于0,正数大于全部负数,两个负数绝对值大的反而小;②在数轴上表示的数,右侧的总比左侧的大 .2.C 【分析】 二次根式存心义,被开方数是非负数,故x-2 ≥ 0, x 大于等于2.备考指导: 代数式存心义的条件,一般从三个方面考虑:( 1)当表达式是整式时,可取全体实数;( 2)当表达式是分式时,考虑分式的分母不可以为0; ( 3)当表达式是二次根式时,被开方数非负.3.A 【分析】 考察提取公因式法分解因式.原式=a(a-2).备考指导: 因式分解的一般步骤: 如有公因式, 先提公因式;而后再考虑用公式法或其余方法分解;直到每个因式都不可以再分解为止.4.C 【分析】 此题共 5 个数据,已经从小到大摆列好,第3 个数据 12 就是这组数据的中位数.备考指导: 找中位数要把数据按从小到大的次序摆列, 位于最中间的一个数 (或两个数的平均数)为中位数,当数据个数为奇数时,即为中间的一个,当数据个数为偶数时,中位数就是中间两个数的均匀数 .5.C 【分析】 此题考察整式的基本运算,对选项进行逐项剖析 选项 逐项剖析 正误 A 2x 2-4x 2=-2x 2≠ -2 × B 3x+x=4x ≠ 3 x 2 × C3x · x=3 x 2√D 4x 6÷ 2x 2=2x 4≠ 2x 3×备考指导: 整式加减,实质是归并同类项,只把系数相加减,字母及字母的指数不变;整式乘法,系数相乘作为积的系数,同样的字母依据同底数幂的乘法法例相乘,独自的字母 (式)作为积的一个因式; 整式相除, 系数相除作为商的系数, 同样的字母依据同底数幂的除法法则相除,被除式中独自的字母(式)作为积的一个因式.6.A 【分析】 ∵线段 CD 和线段 AB 对于原点位似,∴△ ODC ∽△ OBA ,∴ ODCD1 , 即 ODCD1,∴ CD=1, OD=2,∴ C ( 2,1 ) .OB AB363 3一题多解—最优解: 设 C ( x,y ), ∵线段 CD 和线段 AB 对于原点位似, ∴xy 1, ∴ x=2,63 3y=1,∴ C (2,1 ) .备考指导: 每对对应点的连线所在的直线都订交于一点的相像图形叫做位似图形. 位似图形对应点到位似中心的距离比等于位似比(相像比);在平面直角坐标系中,假如位似图形是以原点为位似中心,那么位似图形对应点的坐标比等于相像比.7.B 【分析】 圆柱的主视图是长方形,长方体的主视图是长方形,所以这个几何体的主视 图是两个长方形构成 ,下边长方形的长大于上边长方形的长,且上边长方形位于下边长方形 的中间,所以选择 B.备考指导: 确立简单组合体的三视图, 第一确立每一个构成部分的三视图, 再依据几何体组合方式确立各个构成部分的排放地点.8.D 【分析】从图像能够看出最低点对应点时间是4:00 时 , 即 4:00 时温度最低, 故 A 正确; 6:00 对应的温度为 24℃,故 B 正确;图形最高点对应14:00 时,即 14:00 时温度最高,故 C 正确;气温是 30℃时对应两个时间 12: 00 时和 16 时,故 D 错误 .备考指导: 解决此类问题的时,要注意联合函数图像和题意弄清横轴、纵轴的实质意义, 以及图像上特别点的实质意义.此类问题一般的解答方式是依据一个坐标找到对应图像上的 点,再确立这个点的另一个坐标;图像的最高(低)点对应函数最大(小)值.9.D 【分析】 x 1< 0< x 2 时, y 1< y 2, 说明反比率函数图像位于一三象限,故 1-3m >0,所以 m≤ 1.3易错警告:对于 x1<0< x2时, y1< y2 , 部分同学简单误以为y 随 x 增大而增大,故错误得出1-3m< 0. 考虑反比率函数增减性要在同一个分支上,x1< 0< x2说明点 A、B 不在同一个分支上,故不可以利用增减性来解答.备考指导:① 反比率函数yk (k 为常数,且k 0)的图像是双曲线,当k > 0时,双曲线x的两支分别位于第一、第三象限,在每个象限内y 值随 x 值的增大而减小;当k < 0 时,双曲线的两支分别位于第二、第四象限,在每个象限内若在双曲线同一分支上,则两点纵坐标符号同样,一分支上,则两点纵坐标符号相反,横坐标符号相反y 值随 x 值的增大而增大 . ②两个点横坐标符号同样,两个点若不在双曲线同.10.D 【分析】先考虑让△ EFG和△ BCA重合,而后把△ EFG绕点 D 顺时针旋转,连结 AG、DG,依据旋转角相等,旋转前后的对应线段相等,简单发现∠ ADG=∠FDC,DA=DG,DF=DC,故∠ DFC=∠DCF=∠DAG=∠DGA又.依据等腰三角形的“三线合一”可知∠ FDG=90°,所以∠ DFG+∠DGF=90°,即∠ DFC+∠CFG+∠DGF=90°. 所以∠ AMC=∠MGF+∠CFG=∠ AGD+∠ DGF+∠ CFG=∠ DFC +∠DGF+∠CFG =90°. 故点M 一直在以 AC为直径的圆上,作出该圆,设圆心为 O,连结 BO与⊙ O订交于点 P,线段 BP的长即为线段 BM长的最小值 .BP=AO-OP= 3 -1 ,应选 D.【难点打破】此题发现点 M一直在以 AC为直径的圆上是解题的重要打破口 . 考虑让△ EFG和△ BCA重合,而后把△ EFG绕点 D顺时针旋转,借助旋转的性质找出解题思路是剖析相关旋转问题的重要方法 .二、填空题11.-4【分析】-10+(+6)=-(10-6)=-4.备考指导:有理数加法法例:同号两数相加,取同样的符号,并把绝对值相加;异号两数相加,绝对值相等时其和为零,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值 .5【分析】∵ 370 000 的整数数位有 6 位,∴ a=3.7, n=6- 1=5 ,即 370 000=3.7 × 10×105.备考指导:用科学记数法表示一个数,就是把一个数写成a×10 n的形式(此中 1≤a< 10,n 为整数),其方法是( 1)确立 a,a 是只有一位整数的数;( 2)确立 n,当原数的绝对值≥ 10 时, n 等于原数的整数位数减 1;当原数的绝对值< 1 时, n 为负整数, n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).13.62 3 6 8 11【分析】56 .考指 : 均匀数 算公式 算 均匀数:x 1, x 2⋯ x n 的均匀数 x =1( x 1+ x 2+ x 3⋯ x n ).n14.2【分析】 当每次 苹果少于 2 千克 ,每千克 20÷2=10 元 / 千克,故 3 千克分三次且每 次1 千克 需10× 3=30元; AB 表达式y=kx+b, 把( 2,20 )、( 36,4 )代入上式20 2k b 所以 y=8x+4, 当 x=3 , y=28,故可 省30-28=2 元 .36 4k ,解得 k=8,b=4, b考指 : 分段函数要注意自 量合用范 ,要确立好函数 象的“拐点”,确立函数 一定要分清需要依据哪一段函数 象来解答 . 依据 象供给已知点的坐 确立每段 像的表达式是解答此 目的前提 .15. 10【分析】由 意知,a 2b 5 ,所以 a 1 ,所以 x ※ y=x 2+2y, 所以 2※ 3=22+24a b 6 b 2× 3=10.新定 翻 :新定 的 是解二元一次方程 ,进而确立常数 ,最后 化 求代数式的.本 以新定 的形式出 ,使 新 化,能很好的考 同学 的 理解能力.16.111 1分 交 OA 、10 【分析】作 M 对于 ON 称点 M ,点 N 对于 OA 的 称点N , 接 MNON 于 Q ,P ,此MP+PQ+NQ 的 最小 . 由 称性 知, 111 1MP=MP ,N Q=NQ ,所以 MP+PQ+NQ= N .接1111 1 111ON 、 OM , ∠ MOP=∠ POM=∠ N OM=30°,所以∠ N OM=90°. 又 ON=ON=3, OM =OM=1, 所以 MN = OM 1 ON 1 = 10 .1 1【指点迷津】 段和的最小 , 一般都是将几条 段 化 同一条 段 度,依据两点 之 段最短来 明. 一般是通 做 称点 化到同一条 段上,依据勾股定理 算最小 . 三、解答17.【思路剖析】( 1)把( 1,4 )代入 y=kx+3 可确立表达式; ( 2)移 、归并同 、系数化 1,可确立不等式解集 .解:( 1)把( 1,4 )代入 y=kx+3 得,4=k+3 K=1∴一次函数分析式为y=x+3; (2) kx + 3≤ 6X+3 ≤ 6 ∴ x ≤ 3.备考指导:( 1)确立函数分析式,用待定系数法,将已知点坐标代入表达式解出常数即可; (2)解不等式的基本步骤是:①去分母;②去括号;③移项;④归并同类项;⑤系数化为 1,注意在不等式两边同乘或同除一个不为的0 的数,需考虑正负对不等号方向的影响.18. 【思路剖析】由 AC ⊥BC ,DF ⊥ EF ,知∠ ACB= ∠ DFE ,联合 AC = DF , BC = EF 可说明△ ABC ≌ △ DEF ;(2)△ ABC ≌ △ DEF ,故∠ ACB= ∠ DFE ,所以 AB ∥DE. 证明:(1)∵ AC ⊥ BC , DF ⊥ EF , ∴∠ ACB= ∠DFE , ∵ A C =DF , BC = EF , ∴△ ABC ≌ △ DEF ;(2)∵△ ABC ≌ △ DEF , ∴∠ ACB= ∠ DFE , ∴AB ∥DE.备考指导:( 1)当题目中已知两边“ SS ”时,依据三角形全等的判断条件,可选择“SAS ”, 或“ SSS ”进一步研究推理的思路;若已知一边一角“ SA ”时,可依据题意再补上一角或另一边,应用“ SAS ”,或“ ASA ”,或“ AAS ”进行说理;若已知两角“ AA ”时,则应补上一边,利用“ AAS ”,或“ ASA ”进行推理.总之,应依据详细条件灵巧选择适合的判断方 法;( 2)证明两直线平行, 就要说明这两条直线形成的内错角相等或同为角相等或同旁内角互补.19. 【思路剖析】 (1) 全部等可能结果有四种,“摸出的小球标号是 3”的结果有一种,故“摸出的小球标号是3”的概率为1;4( 2)第一找到全部的等可能状况数和知足条件的状况数,而后依据概率的公式进行计算即可.解:( 1)P 摸出的小球标号是3=14( 2)列表以下:1 2 34 1 (1, 1) (1, 2) (1, 3) (1, 4) 2 (2, 1) (2, 2) (2, 3) (2, 4) 3 (3, 1) (3, 2) (3, 3) (3, 4) 4(4, 1)(4, 2)(4, 3)(4, 4)①由列表可知: 共有 16 种等可能的结果, 此中 一个标号是 1,另一个标号是 2 结果共有 2 种,∴P(一个标号是 1,另一个标号是 2)=2 1 ;16 8②共有 16 种等可能的结果,此中第一次拿出标号是 1 的小球且第二次拿出标号是 2 的结果共有 1 种,∴P(第一次拿出标号是 1 的小球且第二次拿出标号是2)=1.16备考指导:求概率的方法:(1)直接公式法:P( A )mm 为事件 A 发生的总次数;,此中 n 为全部事件的总和,n(2)列举(列表或画树状图)法:当一次试验波及多个要素(对象)时,因为不可以直观的获得事件A 发生的次数m 及总事件发生的结果数n,所以需要借助于列表或画树状图的方法来清楚的列举出来,再依据公式进行计算.一般步骤为:①判断使用列表法仍是画树状图法:列表法一般合用于两步计算概率;画树状图法适合于两步以上求概率;②不重不漏的列举出全部事件出现的可能结果,并判断每种事件发生的可能性是否相等;③确立全部可能出现的结果数n 及所求事件 A 出现的结果m;④用公式mP( A)n求事件 A 发生的概率 .20.【思路剖析】 (1)平行四边形是中心对对称图形,对称中心是原点,所以能够依据点对于原点的对称规律写出C、D 坐标:(2)能够从中心对称、平移或旋转的角度来说明;( 3)点B、 C 的纵坐标同样,故 BC∥ x 轴,同理 AD ∥ x 轴 .BC 长度可由点 B 、 C 的很坐标来计算, BC 上的高是 A 、 B 两点纵坐标的差 .解:( 1) C( 4,-2)、D ( 1,2);(2)AB绕点O 旋转180°获得线段CD ,或作AB 对于原点O 的中心对称图形获得线段CD;(3)BC=5 , BC上的高为4,所以平行四边形ABCD 的面积为5×4=20.备考指导:在平面直角坐标系内,对于x 轴对称的两点 ,横坐标不变 ,纵坐标互为相反数;关于y 轴对称的两点 ,横坐标互为相反数 ,纵坐标不变;对于原点对称的两点 , 横纵坐标都互为相反数 .21.【思路剖析】(1)由AB=AT ,知∠ATB= ∠B=45 °,故∠BAT=90 °,AT是⊙O的切线;(2)设⊙ O 半径为 r ,延伸 TO 交⊙ O 于 D ,连结 AD ,则∠ CAD =∠BAT=90°,∠TAC=∠OAD=∠D. 经过△ TAC ∽△ TDA ,说明 TA 2=TC · TD ,即 4r2= TC(TC+2r), 能够用 r 表示 TC, tan∠AC TCTAC= tan ∠ D= .AD AT证明:( 1)∵ AB=AT ,∴∠ ATB= ∠ B=45 °,∴∠ BAT=90 °,∴A T 是⊙ O 的切线;( 2)设⊙O半径为r,延伸TO交⊙O于D,连结AD.∵CD 是直径,∴∠ CAD= ∠BAT=90°,∴∠ TAC= ∠ OAD= ∠ D. 又∠ ATC= ∠ DTA , ∴△ TAC ∽△ TDA , ∴TA TC ,TDAT22∴ T A =TC · TD ,即即 4r = TC(TC+2r), 解得 TA=(5 - 1) r , ∴tan ∠TAC= tan ∠D=ACTC = ( 5 - 1)r = 5 - 1 . AD AT 2r 2备考指导: (1) 圆的切线的判断方法有三种:①和圆只有一个公共点的直线是圆的切线;这种方法不常用. ②若圆心到直线的距离等于圆的半径, 则这条直线是圆的切线; 这类证明方法往常是在直线和圆没有公共点时, 经过“作垂直, 证半径” 的方法来证明直线是圆的切线. ③经过半径外端而且垂直于这条半径的直线是圆的切线. 这类证明方法往常是在直线和圆有公共点,经过“连半径,证垂直”的方法来证明直线是圆的切线.(2) 波及角的三角函数时,应当把这个角放在直角三角形中来考虑,假如这个角不在直角三 角形中, 能够在其余直角三角形顶用它的等角来替代,最后把三角函数关系转变为直角三角 形边的比值来解答.EF AK 22. 【思路剖析】 ( 1)依据△ AEF ∽△ ABC ,对应高的比等于相像比可得,即EF AD - DK,代入数值可确立BC ADEF的值;BCADAK( 2)联合EF的值,用 x 表示 EF,进而能够把矩形 EFGH 的面积为 S 写成 x 的二次函数,依据AK二次函数可确立矩形的最大面积.(3) 分两种可能:①两极点 M 、 N 在底边 BC 上,依据( PQ 3 1)知和 AK=8-PQ 求解 ;AK2②两极点 M 、N 在腰 AB 上时,作 AB 上的高,转变为( 1)形式求解 .解:( 1)∵ EF ∥ BC , ∴△ AEF ∽△ ABC ,∴ ∴ EF AK EF AK BC AD ,即812EF 3;AK2( 2)由题意知 EH=KD=x , AK=8-x. ∵EF 3 ,AK 2∴ EF 3 ,8 - x 2∴EF=3(8 x) ,233(82∴S=EF × EH= x) x= - (x - 4) 24 ,22∴ S 的最大值是 24;(3)①两极点在底边BC 上时,由( 1)知PQ 3,∵PQMN 是正方形,AK2∴ AK=AD-DK=AD-PQ=8-PQ , ∴ PQ3 , 8 - PQ 2∴ P Q=4.8 ;②正方形两极点 M 、 N 在腰 AB 上时如图时 ,作 CH ⊥ AB 于 H ,交 PQ 于 G ,则 CG=CH-HG=CH-PQ=9.6-PQ , 如图:∵AB=AC , AD ⊥BC , ∴ B D=6 又 AD=8 ,∴AB=10 , ∴AB × CH=BC ×AD ,∴CH=9.6. 由( 1)知PQAB 25 ,即 PQ 25 ,CGCH249.6 - PQ 24∴PQ=240,494.8 或240综上, 正方形 PQMN 的边长为 .49备考指导: (1) 相像三角形对应高的比等于对应边的比;( 2)最值问题,最后转变为二次函 数最值问题来解答. 依据相像列比率式、勾股定理、三角函数都表示线段长度的方法;( 3)对于“神同形异” 、层层递进式的几何证明计算题,后边的结论一般都需要前面结论来证明,注意前后结论之间的“继承性”.23.(此题 线,分别交10 分)如图,△ ABC 中,点 E 、 P 在边 AB 上,且 AE = BP ,过点AC 于点 F 、 Q .记 △ AEF 的面积为 S 1,四边形 EFQP 的面积为 E 、 P 作 S 2,四边形 BC 的平行 PQCB 的面积为 S 3(1) 求证: EF + PQ = BC(2) 若 S 1+ S 3= S 2,求PE的值AE(3) 若 S 3- S 1= S 2,直接写出PE的值AE【思路剖析】( 1)作 QN ∥ AB ,交 BC 于 N ,经过证明△ AEF ≌△ QNC 能够证明EF +PQ =BC ;(2)△ AEF ∽△ APQ ,依据面积比等于相像比的平方,用PE 、AE 、S 1表示S 2,再由△ AEF∽△ ABC ,用 PE 、AE 、S 1表示S 2,两种表示方法列等式可求解; ( 3)依据△ AEF ∽△ ABC ,用 PE 、AE 、S 1表示S 3,依据S 3-S 1=S 2列等式可求解 .证明:( 1)作 QN ∥ AB ,交 BC 于 N ,则∠ NQP= ∠A ,∠ QNC= ∠ B. ∵ E F ∥BC ,∴∠ AEF= ∠ B ,∴∠AEF= ∠ QNC. ∵PQ ∥BC ,∴四边形 PQNB 是平行四边形, ∴BN=PQ , QN=PB=AE , ∴△ AEF ≌△ QNC ,∴EE=NC , ∴ B C=BN+NC= EF +PQ ; (2)∵ EF ∥ PQ ∥BC ,∴△ AEF ∽△ APQ ∽△ ABC ∴S 1AE 2AE 22(2S 1 S 2APAE PE )2AE PE PE 2整理得 S 2=AE 2S 1①;同理S 1AE 2AE 2AE 2,S 1 S 2 S 3 AB 2( AE PE PB2= 2) (2AE PE )∵ S 1+ S 3= S 2, ∴S 1S 1 AE 22,2S 2 (2AES 1 S 2 S 3PE )(2AE2PE ) S 1 ②,整理得 S 2=2AE 22(2AE 2①=②即2AE PE PEPE ) S 1AE 2S 1 = 2AE 2整理得 PE 2=4AE 2, PE=2AE , ∴PE=2;AE(3) ∵△ AEF ∽△ ABC ,∴ S 1 AE 2 AE 2=AE 2 2 ,S 1 S 2 S 3 AB 2AE PE PB2 2AE PE( ())∵ S 3- S 1= S 2, ∴S 1 S 1 AE 2,S 1 S 2 S 32S 3 (2AE 2PE )(2AE2PE )整理得 S 3=S 1 ,2AE 2(2AE22AE PE 2PE )S 1 -S 1=PE∴AES 12AE 22整理得 PE 2=2AE 2,∴ P E= 2 AE , PE=2 .AE备考指导: (1)证明两条线段的和等于一条线段一般是把长线段分为两段,证明这两段分别 与已知的两段相等; ( 2)当题目中波及多个量时,依据他们的数目关系用此中一个量表示出 其余量,再列式求解,相像、三角函数等都是数目之间相互转变的工具.23. 【思路剖析】( 1)因为 A 点在抛物线上,把 A 点坐标代入抛物线即可求出 c 的值,进而求出抛物线的分析式 .(2)先在第二象限内取一适合的点E ,作出切合题目条件的图形,如答题图,因为题目所求与点 E 的坐标相关, 故想到要结构直角三角形, 使其长度能用含 m ,n 的代数式表示 . 过点C 作 CH ⊥ EF 于点 H ,FG ⊥ y 轴于点 G 后,很简单发现△ EHC ∽△ FGC ,进而利用相像三角形的 对应边成比率求n 的值,把 y=n 代入抛物线的分析式,确立出m 的取值范围 .(3)第一用含 t 的代数式表示出 PB 的长度,而后需要表示 PQ 和 QB 的长度 . 依据图形易发 现△ OPM ∽△ QPB ,利用相像三角形的对应边成比率可表示出PQ 的长度,再利用勾股定理求 出 QB 的长度,即可求出△PBQ 的周长 . 解:( 1)把( 1,0)代入 y=1x 2c ,得c=-1,所以抛物线分析式为y= 1x 21;222( 2)作 CH ⊥EF 于点 H ,则,△ EHC ∽△ FGC. ∵E ( m,n ) , ∴F ( m,1m 21),22又 C ( 0, - 1),2∴ E H=n+1,CH=-m,FG=-m,CG=1m 2,22∵△ EHC ∽△ FGC ,1EH FG n- m∴ 2,CH ,即- m1CG2m2∴ n + 1=2,2∴n= 3(-2 < m < 0) ;2(3)由题意知点P(t,0)的横坐标为,M(t,1t2 1 ),△ OPM ∽△ QPB ,2 2∴ OP PQ ,PM PB 此中, OP=t,PM= 1-1t2 ,PB=1-t,PQ= 2t ,BQ= PB2 PQ2 = t 2 1 , 2 2 1 t 1 t2t t 2 1∴PQ+BQ+PB= + +1-t=2.1 t 1 t难点打破:此题中的第( 2)小题研究题,作出切合题目条件的图形是打破口,题目波及点的坐标时,过点作 x 轴或 y 轴的垂线,结构出直角三角形,利用相像三角形来解答是解答此类题目一般思路 .备考指导:中考压轴题,基本都是二次函数和几何图形的综合考察,解答方法万变不离其宗:用坐标表示线段,列方程求解.在这两个过程中,相像、三角函数、勾股定理是最常用的运算工具,是连结数形之间的桥梁.。
2022年湖北省武汉市初中毕业生学业考试数学真题
2022年武汉市初中毕业生学业考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数2022的相反数是()A.-2022B.-12022C.12022D.20222.彩民李大叔购买1张彩票,中奖.这个事件是()A.必然事件B.确定性事件C.不可能事件D.随机事件3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()劳动光荣A.B.C.D.4.计算(2a4)3的结果是()A.2a12B.8a12C.6a7D.8a75.如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.6.已知点A(x1,y1),B(x2,y2)在反比例函数y=6x的图象上,且x1<0<x2,则下列结论一定正确的是()A.y1+y2<0B.y1+y2>0C.y1<y2D.y1>y27.匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A.B.C.D.8.班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是()A.14B.13C.12D.239.如图,在四边形材料ABCD中,AD∥BC,∠A=90°,AD=9cm,AB=20cm,BC=24cm.现用此材料截出一个面积最大的圆形模板,则此圆的半径是()A.11013cm B.8cm C.2D.10cm10.武汉数字中幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12二、填空题(共6小题,每小题3分,共18分) 11.计算2(2)-的结果是____________.12.某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.尺码/cm 24 24.5 25 25.5 26销售量/双13104213.计算22139x x x ---的结果是_________. 14.如图,沿AB 方向架桥修路,为加快施工进度,在直线AB 上湖的另一边的D 处同时施工.取∠ABC=150°,BC =1600 m ,∠BCD =105°,则C ,D 两点的距离是_________m .15.已知抛物线y =ax 2+bx +c (a ,b ,c是常数)开口向下,过A (-1,0),B (m ,0)两点,且1<m<2.下列四个结论: ①b >0;②若m =32,则3a +2c <0;③若点M (x 1,y 1),N (x 2,y 2)在抛物线上,x 1<x 2,且x 1+x 2>1,则y 1>y 2; ④当a ≤-1时,关于x 的一元二次方程ax 2+bx +c =1必有两个不相等的实数根. 其中正确的是____________(填写序号).16.如图,在Rt △ABC 中,∠ACB =90°,AC >BC ,分别以△ABC 的三边为边向外作三个正方形ABHL ,ACDE ,BCFG ,连接DF .过点C 作AB 的垂线CJ ,垂足为J ,分别交DF ,LH 于点I ,K .若CI =5,CJ =4,则四边形AJKL 的面积是_________.三、解答题(共8小题,共72分) 17.(本小题满分8分)解不等式组253 2.x x x -≥-⎧⎨≤+⎩,①②请按下列步骤完成解答.(1)解不等式①,得________________; (2)解不等式②,得________________;(3)把不等式①和②的解集在数轴上表示出来; (4)原不等式组的解集是____________.18.(本小题满分8分)如图,在四边形ABCD 中,AD ∥BC ,∠B =80°. (1)求∠BAD 的度数;(2)AE 平分∠BAD 交BC 于点E ,∠BCD =50°.求证:AE ∥DC .为庆祝中国共青团成立100周年,武汉数学公众号某校开展四项活动:A项参观学习,B项团史宣讲,C项经典诵读,D项文学创作,要求每名学生在规定时间内必须且只能参加其中一项活动.该校从全体学生中随机抽取部分学生,调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图.(1)本次调查的样本容量是_________,B项活动所在扇形的圆心角的大小是_________,条形统计图中C项活动的人数是_________;(2)若该校约有2000名学生,请估计其中意向参加“参观学习”活动的人数.20.(本小题满分8分)如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE的延长线交⊙O于点D,连接BD.(1)判断△BDE的形状,并证明你的结论;(2)若AB=10,BE=10BC的长.21.(本小题满分8分)如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG∥BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm 处.武汉数学小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s运动时间t/s01234运动速度v/cm/s109.598.58运动距离y/cm09.751927.7536t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围);(2)当黑球减速后运动距离为64cm时,求它此时的运动速度:(3)若白球一直以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.23.(本小题满分10分)问题提出如图(1),在△ABC中,AB=AC,D是AC的中点,延长BC至点E,使DE=DB,延长ED交AB于点F,探究AFAB的值.(公众号:武汉数学)问题探究(1)先将问题特殊化.如图(2),当∠BAC=60°时,直接写出AFAB的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC中,AB=AC,D是AC的中点,G是边BC上一点,1CGBC n=(n<2),延长BC至点E,使DE=DG,延长ED交AB于点F.直接写出AFAB的值(用含n的式子表示).抛物线y=x2-2x-3交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线AC交y轴于点P.(公众号:武汉数学)(1)直接写出A,B两点的坐标:(2)如图(1),当OP=OA时,在抛物线上存在点D(异于点B),使B,D两点到AC的距离相等,求出所有满足条件的点D的横坐标;(3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求FP OP的值(用含m的式子表示).。
2023年湖北省武汉市中考数学试卷(含答案及解析)
2023年武汉市初中毕业生学业考试数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑。
1.实数3的相反数是()A.3B.13C.-13D.-32.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.3.掷两枚质地均匀的骰子,下列事件是随机事件的是()A.点数的和为1B.点数的和为6C.点数的和大于12D.点数的和小于134.计算2a23的结果是()A.2a5B.6a5C.8a5D.8a65.如图是由4个相同的小正方体组成的几何体,它的左视图是()A. B. C. D.6.关于反比例函数y=3x,下列结论正确的是()A.图像位于第二、四象限B.图像与坐标轴有公共点C.图像所在的每一个象限内,y随x的增大而减小D.图像经过点a,a+2,则a=17.某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.1128.已知x 2-x -1=0,计算2x +1-1x ÷x 2-xx 2+2x +1的值是()A.1 B.-1 C.2D.-29.如图,在四边形ABCD 中,AB ∥CD ,AD ⊥AB ,以D 为圆心,AD 为半径的弧恰好与BC 相切,切点为E .若ABCD =13,则sinC 的值是()A.23 B.53C.34D.7410.皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积S =N+12L -1,其中N ,L 分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知A 0,30 ,B 20,10 ,O 0,0 ,则△ABO 内部的格点个数是()A.266B.270C.271D.285二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。
2021年武汉市初中毕业生学业考试数学试卷(含答案)
2021年武汉市初中毕业生学业考试数学试卷(含答案)第I 卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)1. (20-21-武汉-中考-T1)实数3的相反数是( ).A. 3B. 3−C. 13D. 13−2. (20-21-武汉-中考-T2)下列事件中时必然事件的是( ). A. 抛掷一枚质地均匀的硬币,正面朝上B. 随意翻到一本书的某页,这一页的页码是偶数C. 打开电视机,正在播放广告D. 从两个班级中任选三名学生,至少有两名学生来自同一个班级3. (20-21-武汉-中考-T3)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是( ).A B C D4. (20-21-武汉-中考-T4)计算()32a −的结果是( ).A. 6a −B. 6aC. 5a −D. 5a5. (20-21-武汉-中考-T5)如图是由4个相同的小正方体组成的几何体,它的主视图是( ).A B C D 6. (20-21-武汉-中考-T6)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是( ).A. 13B. 12C. 23D. 347. (20-21-武汉-中考-T7)我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四. 问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱. 问人数、物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( ).A. ()()8374x x −=+B. 8374x x +=−C. 3487y y −+=D. 3487y y +−=8. (20-21-武汉-中考-T8)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变. 两车离甲地的距离y (单位:km )与慢车行驶时间t (单位:h )的函数关系如图,则两车先后两次相遇的时间间隔是( ).A. 53h B. 32h C. 75h D. 43h9. (20-21-武汉-中考-T9)如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D ,再将BD 沿AB 翻折交BC 于点E . 若BE DE =,设ABC α∠=,则α所在的范围是( ). A. 21.922.3α︒<<︒ B. 22.322.7α︒<<︒ C. 22.723.1α︒<<︒ D. 23.123.5α︒<<︒10. (20-21-武汉-中考-T10)已知a 、b 是方程2350x x −−=的两根,则代数式3222671a a b b −+++的值是( ). A. 25− B. 24− C. 35 D. 36第II 卷(非选择题,共90分)二、填空题(共6分,每小题3分,共18分) 11. (20-21-武汉-中考-T11的结果是 .12. (20-21-武汉-中考-T12)我国是一个人口资源大国. 第七次全国人口普查结果显示,北京等五大城市13. (20-21-武汉-中考-T13)已知点()1,A a y 、()21,B a y+在反比例函数21m y x+=(m 是常数)的图象上,且12y y <,则a 的取值范围是 .14. (20-21-武汉-中考-T14)如图,海中有一个小岛A . 一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12n mile 达到C 点,这时测得小岛A 在北偏东30︒ .小岛A 到航线BC 的距离是n mile 1.732≈,结果用四舍五入法精确到0.1).第8题图 第9题图 第14题图CAB BA15. (20-21-武汉-中考-T15)已知抛物线2y ax bx c =++(a 、b 、c 是常数),0a b c ++=. 下列四个结论:①若抛物线经过点()3,0−,则2b a =;②若b c =,则方程20cx bx a ++=一定有根2x =−; ③抛物线与x 轴一定有两个不同的公共点;④点()11,A x y 、()22,B x y 在抛物线上,若0a c <<,则当121x x <<时,12y y >.其中正确的是 . (填写序号)16. (20-21-武汉-中考-T16)如图1,在ABC △中,AB AC =,90BAC ∠=︒. 边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D 、E 两点运动速度的大小相等. 设x AD =,y AE CD =+,y 关于x 的函数图象如图2,图象经过()0,2,则图象最低点的横坐标是 .图1 图2三、解答题(共8小题,共72分) 17. (20-21-武汉-中考-T17)(本小题满分8分)解不等式组214101x x x x ≥−⎧⎨+>+⎩①②,请按下列步骤完成解答.(1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来; (4)原不等式组的解集是 .18. (20-21-武汉-中考-T18)(本小题满分8分)如图,AB ∥CD ,B D ∠=∠,直线EF 与AD 、BC 的延长线分别交于E 、F . 求证:DEF F ∠=∠.C BA F E D C BA为了落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t (单位:h ),按劳动时间分为四组:A 组“5t <” ,B 组“57t ≤<”,C 组“79t ≤<”,D 组“9t ≥”. 将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是 ,C 组所在扇形的圆心角的大小是 ; (2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h 的学生人数.20. (20-21-武汉-中考-T20)(本小题满分8分) 如图是由小正方形组成的57⨯网格,每个小正方形的顶点叫做格点. 矩形ABCD 的四个顶点都是格点. 仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示. (1)在图1中,先在边AB 上画点E ,使2AE BE =,再过点E 画直线EF ,使EF 平分矩形ABCD 的面积; (2)在图2中,先画BCD △的高CG ,再在边AB 上画点H ,使BH DH =;图1 图210%B 组C 组D 组A组平均每周劳动时间条形统计图A B C D D C B A如图,AB 是O 的直径,C 、D 是O 上两点,C 是BD 的中点. 过点C 作AD 的垂线,垂足是E ,连接AC 交BD 于点F .(1)求证:CE 是O 的切线;(2)若DCDF=cos ABD ∠的值.22. (20-21-武汉-中考-T22)(本小题满分10分)在“乡村振兴”行动中,某村办企业以A 、B 两种农作物为原料开发了一种有机产品.A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100kg. 生产该产品每盒需要A 原料2kg 和B 原料4kg ,每盒还需要其他成本9元. 市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本); (2)若每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.B A问题提出 如图1,在ABC △和DEC △中,90ACB DCE ∠=∠=︒,BC AC =,EC DC =,点E 在ABC △内部,直线AD 与直线BE 交于点F . 线段AF 、BF 、CF 之间存在怎样的数量关系?问题探究 (1)先将问题特殊化. 如图2,当点D 、F 重合时,直接写出一个等式,表示AF 、BF 、CF 之间的数量关系; (2)再探究一般情形,如图1,当点D 、F 不重合时,证明(1)中的结论仍然成立. 问题拓展 如图3,在ABC △和DEC △中,90ACB DCE ∠=∠=︒,BC kAC =,EC kDC =(k 是常数),点E 在ABC △内部,直线AD 与直线BE 交于点F ,直接写出一个等式,表示线段AF 、BF 、CF 之间的数量关系.图1 图2 图3B ACD FE B AC D(F)E EF DC A B抛物线21y x =−交x 轴于A 、B 两点(A 在B 的左边).(1)ACDE Y 的顶点C 在y 轴的正半轴上,顶点E 在y 轴右侧的抛物线上.①如图1,若点C 的坐标是()0,3,点E 的横坐标是32,直接写出点A 、D 的坐标;②如图2,若点D 在抛物线上,且ACDE Y 的面积是12,求点E 的坐标. (2)如图3,F 是原点O 关于抛物线顶点的对称点,不平行于y 的直线l 分别交线段AF 、BF (不含端点)于G 、H 两点. 若直线l 与抛物线只有一个公共点,求证:FG FH +的值是定值.图1 图2 图311。
武汉市初中毕业生考试数学试卷及答案
2018年武汉市初中毕业生考试数学试卷及答案考试时间:2018年6月20日14:30~16:30 、 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2 B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 2 4.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .65 9 1 2 3 4 56789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26272829303132 ……平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( ) A .32B .23C .235 D .265二、填空题(本大题共6个小题,每小题3分,共18分)11.计算3)23(-+的结果是___________ 12移植总数n 400 1500 3500 7000 9000 14000 成活数m3251336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111mm m---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图 阅读量/本学生人数1 152 a3 b 45(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且PA =PB (1) 求证:PB 是⊙O 的切线(2) 若∠APC =3∠BPC ,求CEPE的值 22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线x y 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系 23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN (2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52=AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B (1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标 2018年武汉中考数学参考答案与解析 一、选择题 1 2 3 4 5 6 7 8 9 10 ADBDBACCDB提示:9.设中间的数为x ,则这三个数分别为x-1,x ,x+1∴这三个数的和为3x ,所以和是3和倍数,又2019÷3=671,673除以8的余数为1,∴2019在第1列(舍去);2016÷3=672,672除以8的余数为0,∴2016在第8列(舍去);2013÷3-671,671除以8的余数为7,∴2013在第7列,所以这三数的和是是2013, 故选答案D.10.连AC 、DC 、OD ,过C 作CE ⊥AB 于E ,过O 作OF ⊥CE 于F ,∵沿BC 折叠,∴∠CDB=∠H ,∵∠H+∠A=180°,∴∠CDA+∠CDB=180°,∴∠A=∠CDA ,∴CA=CD ,∵CE ⊥AD ,∴AE=ED=1,∵,AD=2,∴OD=1,∵OD ⊥AB ,∴OFED 为正方形,∴OF=1,,∴CF=2,CE=3,∴. 法一图 法二图法二 第10题 作D 关于BC 的对称点E ,连AC 、CE ,∵AB=4,,∴BE=2,由对称性知,∠ABC=∠CBE=45°,∴AC=CE ,延长BA 至F ,使FA=BE ,连FC ,易证△FCA ≌△BCE ,∴∠FCB=90°,∴. 二、填空题11. 12.0.9 13. 14.30°或150°15.24 16.揭示:第15题当t=20时,滑行到最大距离600m时停止;当t=16时,y=576,所以最后4s滑行24m.第16题延长BC至点F,使CF=AC,∵DE平分△ABC的周长,AD=BC,∴AC+CE=BE,∴BE=CF+CE=EF,∴DE∥AF,DE=AF,又∵∠ACF=120°,AC=CF,∴,∴.第16题法一答图第16题法二答图法二第16题解析作BC的中点F,连接DF,过点F作FG⊥DE于G,设CE=x,则BE=1+x,∴BE=1+x,∴BC=1+2x,∴,∴,而,且∠C=60°,∴∠DFE=120°,∴∠FEG=30°,∴,∴,∴.三、解答题17、解析:原方程组的解为18.证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE (SASA),∴∠DEC=∠AFB,∴GE=GF.19.解析(1)m=50,a=10,b=20(2)(本)答:该年级全体学生在这次活动中课外阅读书箱的总量大约是1150本.20.解析(1)设A型钢板x块,则B型钢板有(100-x)块.,解得.X=20或21或22或23或24或25,购买方案共有6种.(2)设总利润为W元,则X=20时,元.获利最大的方案为购买A型20块,B型80块.21.(1)证明:如图①,连接OB,OP,在△OAP和△OBP中,,∴△OAP≌△OBP(SSS),∴∠OBP=∠OAP,∵PA是⊙O的切线,∴∠OBP=∠OAP=90°,∴PB是⊙O的切线.⑵如图②,连接BC,AB与OP交于点H∵∠APC=3∠BPC,设∠BPC=x,则∠APC=3x,∠APB=x+3x=4x由⑴知∠APO=∠BPO=2x,∴∠OPC=∠CPB=x∵AC是⊙O的直径,∴∠ABC=90°∵易证OP⊥AB,∴∠AHO=∠ABC=90°,即OP∥BC∴∠OPC=∠PCB=∠CPB=x,∴CB=BP易证△OAH∽△CAB,∴==,设OH=a,∴CB=BP=2a易证△HPB∽△BPO,∴=,∴设HP=ya,∴=解得(舍)或∵OP∥CB,易证△HPE∽△BCE,∴===22、解:⑴将xA=-2代入y=中得:yA==-4∴A(-2,-4),B(-2,0)①∵t=1∴P(1,0),BP=1-(-2)=3∵将点B绕点P顺时针旋转90°至点C∴xC=xP=t PC=BP=3∴C(1,3)②∵B(-2,0),P(t,0)第一种情况:当B在P的右边时,BP=-2-t∴xC=xP=t PC1=BP=-2-t∴C1(t,t+2)第二种情况:当B在P的左边时,BP=2+t∴xC=xP=t PC2=BP=2+t∴C2(t,t+2)综上:C的坐标为(t,t+2)∵C在y=上∴t(t+2)=8解得t=2或-4⑵作DE⊥y轴交y轴于点E,将yA=m代入y=得:xA=,∴A(,m) ∴AO2=OB2+AB2=+m2,将yD=n代入y=得:xD=,∴D(-,n) ∴DO2=DE2+OE2=+n2,∴+m2=+n2,-=n2-m2,=n2-m2,(64-m2n2)(n2-m2)=0①当n2-m2=0时,n2=m2,∵m<0,n>0∴m+n=0②当64-m2n2=0时,m2n2=64,∵m<0,n>0∴mn=-8综合得:m+n=0,或mn=-823、证明:⑴∵∠ABC=90°∴∠3+∠2=180°-∠ABC=180°-90°=90°又∵AM⊥MN,CN⊥MN∴∠M=∠N=90°,∠1+∠3=90°∴∠1=∠2∴△ABM∽△BCN⑵方法一:过P点作PN⊥AP交AC于N点,过N作NM⊥BC于M点∵∠BAP+∠APB=90°,∠APB+∠NPC=90°∴∠BAP=∠NPC,△BAP∽△MPN又∵设,,则,又∵,∴,∴,又△∽△,,∴,,解得:,∴方法二:过点作的延长线交于点,过作交于点∵,,∴∵,∴设,则由勾股定理得:,∵,∴∴∵,∴∴方法三:作的垂直平分线交于点,连设,,∴∵,令,由勾股定理得:∴(3)过作交于,过作交的延长线于∵∴,易知△∽△,设,∵△∽△,∴,∴∴,∴24.解析:(1)(2)∵直线,则∴直线过定点(1,4)联立,得∴,∴∵∴∴∵∴(3)设为:∴且(0,),(2,),(1,0),设(0,)①△∽△时,∴,∴,∴,此时必有一点满足条件②△∽△时,∴,∴,∴∵符合条件的点恰有两个,∴第一种情况:有两个相等的实数根,∴∵∴,∴将代入得:∴(0,)将代入得:∴(0,)第二种情况:有两个不相等的实数根,且其中一根为的解∴,将代入得:∴∵∴,∴,将代入得:,∴(0,1);,∴(0,2)综上所述:当时,(0,)或(0,),当时,(0,1)或(0,2)。
武汉市初中毕业生考试数学试卷及答案
2018年武汉市初中毕业生考试数学试卷及答案考试时间:2018年6月20日14:30~16:30 、 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2 B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .65 9 1 2 3 4 56789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( ) A .32 B .23C .235D .265二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12移植总数n 400 1500 3500 7000 9000 14000 成活数m325 1336 3203 6335 8073 12628 成活的频率(精确到)由此估计这种幼树在此条件下移植成活的概率约是___________(精确到) 13.计算22111mm m---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图 阅读量/本学生人数1 152 a3 b 45(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB (1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B (1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标2018年武汉中考数学参考答案与解析一、选择题1 2 3 4 5 6 7 8 9 10A DB D B AC CD B提示:9.设中间的数为x,则这三个数分别为x-1,x,x+1∴这三个数的和为3x,所以和是3和倍数,又2019÷3=671,673除以8的余数为1,∴2019在第1列(舍去);2016÷3=672,672除以8的余数为0,∴2016在第8列(舍去);2013÷3-671,671除以8的余数为7,∴2013在第7列,所以这三数的和是是2013,故选答案D.10.连AC、DC、OD,过C作CE⊥AB于E,过O作OF⊥CE于F,∵沿BC折叠,∴∠CDB=∠H,∵∠H+∠A=180°,∴∠CDA+∠CDB=180°,∴∠A=∠CDA,∴CA=CD,∵CE⊥AD,∴AE=ED=1,∵,AD=2,∴OD=1,∵OD⊥AB,∴OFED为正方形,∴OF=1,,∴CF=2,CE=3,∴.法一图法二图法二第10题作D关于BC的对称点E,连AC、CE,∵AB=4,,∴BE=2,由对称性知,∠ABC=∠CBE=45°,∴AC=CE,延长BA至F,使FA=BE,连FC,易证△FCA≌△BCE,∴∠FCB=90°,∴.二、填空题11. 13. °或150°16.揭示:第15题当t=20时,滑行到最大距离600m时停止;当t=16时,y=576,所以最后4s滑行24m.第16题延长BC至点F,使CF=AC,∵DE平分△ABC的周长,AD=BC,∴AC+CE=BE,∴BE=CF+CE=EF,∴DE∥AF,DE=AF,又∵∠ACF=120°,AC=CF,∴,∴.第16题法一答图第16题法二答图法二第16题解析作BC的中点F,连接DF,过点F作FG⊥DE于G,设CE=x,则BE=1+x,∴BE=1+x,∴BC=1+2x,∴,∴,而,且∠C=60°,∴∠DFE=120°,∴∠FEG=30°,∴,∴,∴.三、解答题17、解析:原方程组的解为18.证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SASA),∴∠DEC=∠AFB,∴GE=GF.19.解析(1)m=50,a=10,b=20(2)(本)答:该年级全体学生在这次活动中课外阅读书箱的总量大约是1150本.20.解析(1)设A型钢板x块,则B型钢板有(100-x)块.,解得.X=20或21或22或23或24或25,购买方案共有6种.(2)设总利润为W元,则X=20时,元.获利最大的方案为购买A型20块,B型80块.21.(1)证明:如图①,连接OB,OP,在△OAP和△OBP中,,∴△OAP≌△OBP(SSS),∴∠OBP=∠OAP,∵PA是⊙O的切线,∴∠OBP=∠OAP=90°,∴PB是⊙O的切线.⑵如图②,连接BC,AB与OP交于点H∵∠APC=3∠BPC,设∠BPC=x,则∠APC=3x,∠APB=x+3x=4x由⑴知∠APO=∠BPO=2x,∴∠OPC=∠CPB=x∵AC是⊙O的直径,∴∠ABC=90°∵易证OP⊥AB,∴∠AHO=∠ABC=90°,即OP∥BC∴∠OPC=∠PCB=∠CPB=x,∴CB=BP易证△OAH∽△CAB,∴==,设OH=a,∴CB=BP=2a易证△HPB∽△BPO,∴=,∴设HP=ya,∴=解得(舍)或∵OP∥CB,易证△HPE∽△BCE,∴===22、解:⑴将xA=-2代入y=中得:yA==-4∴A(-2,-4),B(-2,0)①∵t=1∴P(1,0),BP=1-(-2)=3∵将点B绕点P顺时针旋转90°至点C∴xC=xP=t PC=BP=3∴C(1,3)②∵B(-2,0),P(t,0)第一种情况:当B在P的右边时,BP=-2-t∴xC=xP=t PC1=BP=-2-t∴C1(t,t+2)第二种情况:当B在P的左边时,BP=2+t∴xC=xP=t PC2=BP=2+t∴C2(t,t+2)综上:C的坐标为(t,t+2)∵C在y=上∴t(t+2)=8解得t=2或-4⑵作DE⊥y轴交y轴于点E,将yA=m代入y=得:xA=,∴A(,m) ∴AO2=OB2+AB2=+m2,将yD=n代入y=得:xD=,∴D(-,n) ∴DO2=DE2+OE2=+n2,∴+m2=+n2,-=n2-m2,=n2-m2,(64-m2n2)(n2-m2)=0①当n2-m2=0时,n2=m2,∵m<0,n>0∴m+n=0②当64-m2n2=0时,m2n2=64,∵m<0,n>0∴mn=-8综合得:m+n=0,或mn=-823、证明:⑴∵∠ABC=90°∴∠3+∠2=180°-∠ABC=180°-90°=90°又∵AM⊥MN,CN⊥MN∴∠M=∠N=90°,∠1+∠3=90°∴∠1=∠2∴△ABM∽△BCN⑵方法一:过P点作PN⊥AP交AC于N点,过N作NM⊥BC于M点∵∠BAP+∠APB=90°,∠APB+∠NPC=90°∴∠BAP=∠NPC,△BAP∽△MPN又∵设,,则,又∵,∴,∴,又△∽△,,∴,,解得:,∴方法二:过点作的延长线交于点,过作交于点∵,,∴∵,∴设,则由勾股定理得:,∵,∴∴∵,∴∴方法三:作的垂直平分线交于点,连设,,∴∵,令,由勾股定理得:∴(3)过作交于,过作交的延长线于∵∴,易知△∽△,设,∵△∽△,∴,∴∴,∴24.解析:(1)(2)∵直线,则∴直线过定点(1,4)联立,得∴,∴∵∴∴∵∴(3)设为:∴且(0,),(2,),(1,0),设(0,)①△∽△时,∴,∴,∴,此时必有一点满足条件②△∽△时,∴,∴,∴∵符合条件的点恰有两个,∴第一种情况:有两个相等的实数根,∴∵∴,∴将代入得:∴(0,)将代入得:∴(0,)第二种情况:有两个不相等的实数根,且其中一根为的解∴,将代入得:∴∵∴,∴,将代入得:,∴(0,1);,∴(0,2)综上所述:当时,(0,)或(0,),当时,(0,1)或(0,2)。
2021年武汉市初中毕业生学业考试数学试卷(word版)
2021年武汉市初中毕业生学业考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数3的相反数是()A.3B.-3C.13D.-132.下列事件中是必然事件的是()A.抛掷一枚质地均匀的硬币,正面朝上B.随意翻到一本书的某页,这一页的页码是偶数C.打开电视机,正在播放广告D.从两个班级中任选三名学生,至少有两名学生来自同一个班级3.下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.计算(-a2)3的结果是()A.-a6B.a6C.-a5D.a55.如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.6.学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是()A.13B.12C.23D.347,我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是()A.8(x-3)=7(x+4)B.8x+3=7x-4C.38y-=47y+D.38y+=47y-8.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返同,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图(公众号:武汉数学),则两车先后两次相遇的间隔时间是()A.53h B.32h C.75h D.43h9.如图,AB是⊙O的直径,BC是⊙O的弦,先将BC沿BC翻折交AB于点D.再将BD沿AB翻折交BC于点E.着BE=DE,设∠ABC=α,则α所在的范围是()A.21.9°<α<22.3°B.22.3°<α<22.7°C.22.7°<α<23.1°D.23.1°<α<23.5°10.已知a,b是方程x2-3x-5=0的两根,则代数式2a3-6a2+b2+7b+1的值是()A.-25B.-24C.35D.36二、填空题(共6小题,每小题3分,共18分)11的结果是__________.12.我国是一个人口资源大国,第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是__________.13.已知点A(a,y1),B(a+1,y2)在反比例函数y=1mx+(m是常数)的图象上,且y1<y2,则a的取值范围是__________.14.如图,海中有一个小岛A,一艘轮船由西向东航行,在B点测得小岛A在北偏东60°方向上;航行12n mile到达C点,这时测得小岛A在北偏东30°方向上.小岛A到航线BC的距离是__________n mile≈1.73,结果用四舍五入法精确到0.1).15.己知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0,下列四个结论:①若抛物线经过点(-3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=-2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是__________(填写序号).16.如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是__________.三、解答题(共8小题,共72分)17.(本小题满分8分)解不等式组214101x xx x≥-⎧⎨+>+⎩①②请按下列步骤完成解答.(1)解不等式①,得_____________;(2)解不等式②,得_____________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是_____________.18.(本小题满分8分)如图,AB∥CD,∠B=∠D,直线EF与AD,BC的延长线分别交于点E,F.求证:∠DEF=∠F.19.(本小题满分8分)为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:h),按劳动时间分为四组:A组“t<5”,B组“5≤t<7”,C组“7≤t<9”,D组“t≥9”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是________,C组所在扇形的圆心角的大小是__________;(2)将条形统计图补充完整;(3)该校共有1 500名学生,请你估计该校平均每周劳动时间不少于7 h的学生人数.如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点,矩形ABCD 的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB 上画点E ,使AE =2BE ,再过点E 画直线EF ,使EF 平分矩形ABCD 的面积;(2)在图(2)中,先画△BCD 的高CG ,再在边AB 上画点H ,使BH =DH .21.(本小题满分8分)如图,AB 是⊙O 的直径,CD 是⊙O 上两点,C 是BD 的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证,CE 是⊙O 的切线:(2)若DCDF,求cos ∠ABD 的值.22.(本小题满分10分)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品,A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100 kg .生产该产品每盒需要A 原料2 kg 和B 原料4 kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费十其他成本); (2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.问题提出如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E在△ABC内部,直线AD与BE交于点F,线段AF,BF,CF之间存在怎样的数量关系?问题探究(1)先将问题特殊化.如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF 之间的数量关系;(2)再探究一般情形.如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常数),点E在△ABC内部,直线AD与BE交于点F,直接写出一个等式,表示线段AF,BF,CF之间的数量关系.24.(本小题满分12分)抛物线y=x2-1交x轴于A,B两点(A在B的左边).(1)□ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上.①如图(1),若点C的坐标是(0,3),点E的模坐标是32,直接写出点A,D的坐标;②如图(2),若点D在抛物线上,且□ACDE的面积是12,求点E的坐标;(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点,若直线l与抛物线只有一个公共点,求证FG+FH的值是定值.鄂州市2021年初中毕业生学业考试数学试题学校:_______________ 考生姓名:_______________ 准考证号: 注意事项:1.本试题卷共6页,满分120分,考试时间120分钟。
2022年湖北武汉中考数学试题(完整版)
2022年湖北武汉中考数学试题(完整版)2022年湖北武汉中考数学试题(完整版)对于数学成绩不好的同学们,小编为你精心准备了2022年湖北武汉中考数学试题,一起来看看吧,试试自己的水平吧,希望能够帮助到你考试!2022年湖北武汉中考数学试题中考数学压轴题解题技巧1、基本知识不丢一分在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。
“首先要梳理知识网络,思路清晰知己知彼。
其次要掌握数学考纲,对考试心中有谱。
掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的解题技巧,根据考纲和自己的实际情况来侧重复习。
2、运用数形结合思想中考数学压轴题解题技巧之一就是数形结合思想,是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法,或利用数量关系来研究几何图形的性质,解决几何问题的一种数学思想。
纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察。
有些数学问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考数学压轴题分类讨论思想解题已成为新的热点。
4、分题得分中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
5、分段得分一道中考数学压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。
2020年湖北省武汉市初中毕业生学业考试初中数学
2020年湖北省武汉市初中毕业生学业考试初中数学数学试卷友爱的同学,在你答题前,请认真阅读下面的本卷须知:1 •本试卷由第一卷〔选择题〕和第二卷〔非选择题〕两部分组成。
全卷共6页,三大题,25小题,总分值120分。
考试用时120分钟。
2 •答题前,请将你的姓名、准考证号填写在”答题卷〃和”答题卡〃上,并将准考证号、考试科目用2B 铅笔涂在”答题卡〃上。
3 •答第一卷时,选出每题答案后,用2B 铅笔把”答题卡〃上对应题目的答案标号涂黑.如需改动,用橡皮擦洁净后,再选涂其他答案,不得答在试题卷上。
4 •第二卷用钢笔或黑色水性笔直截了当答在”答题卷〃上,答在试题卷上无效。
第一卷〔选择题,共 36分〕C .3 •不等式X > 2的解集在数轴上表示为〔、选择题〔共12小题,每题3分,共36分〕 以下各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑。
11 .有理数一的相反数是〔2 1 2C .2•函数 y 2x 1中自变量x 的取值范畴是-10123 -101234•二次根式C ・D.(3)2的值是〔元二次方程 X 2mx 2 0的一个解,那么m 的值是〔6 •今年某市约有102000名应届初中毕业生参加中考。
102000用科学记数法表示为〔7 •小明记录了今年元月份某五天的最低温度〔单位:C 〕 最低温度的平均值是〔〕C . 0D •1&如下图,一个斜插吸管的盒装饮料从正面看的图形是〔〕_£ /| IA呼□.口 1彭in 松 B.9 •如图,O 是四边形ABCD 内一点,OA OB OC, ABC10•如图,O O 的半径为1,锐角△ ABC 内接于O O , BD 丄AC 于点D , OM 丄AB 于 点M ,那么sin CBD 的值等于〔〕11 •近几年来,国民经济和社会进展取得了新的成就,农村经济快速进展,农民收入不断提高。
以下图统计的是某地区 2004年一2018年农村居民人均年纯收入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年武汉市初中毕业生考试数学试卷考试时间:2018年6月20日14:30~16:30 一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2 B .x <-2C .x =-2D .x ≠-2 3.计算3x 2-x 2的结果是( )A .2B .2x 2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40 B .42、38C .40、42D .42、40 5.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +6 6.点A (2,-5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( )A .3B .4C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .65 9.将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( )A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( )A .32B .23C .235D .265二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000 成活数m3251336 3203 6335 8073 12628 成活的频率(精确到0.01) 0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111m m m---的结果是___________ 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图阅读量/本学生人数1 152 a3 b 45(1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数) (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且P A =PB (1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A (a ,m )在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B (1) 如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D (d ,n )处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠P AC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B (1) 直接写出抛物线L 的解析式(2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值(3) 如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标2018年武汉中考数学参考答案与解析一、选择题1 2 3 4 5 6 7 8 9 10 ADBDBACCDB提示:9.设中间的数为x ,则这三个数分别为x -1,x ,x +1∴这三个数的和为3x ,所以和是3和倍数,又2019÷3=671,673除以8的余数为1,∴2019在第1列(舍去);2016÷3=672,672除以8的余数为0,∴2016在第8列(舍去);2013÷3-671,671除以8的余数为7,∴2013在第7列,所以这三数的和是是2013, 故选答案D .10.连AC 、DC 、OD ,过C 作CE ⊥AB 于E ,过O 作OF ⊥CE 于F ,∵BC 沿BC 折叠,∴∠CDB =∠H ,∵∠H +∠A =180°,∴∠CDA +∠CDB =180°,∴∠A =∠CDA ,∴CA =CD ,∵CE ⊥AD ,∴AE =ED =1,∵5OA =,AD =2,∴OD =1,∵OD ⊥AB ,∴OFED 为正方形,∴OF =1,5OC =,∴CF =2,CE =3,∴32CB =.OHFEDCBAOFEDCBA法一图 法二图法二 第10题 作D 关于BC 的对称点E ,连AC 、CE ,∵AB =4,225AE AO ==,∴BE =2,由对称性知,∠ABC =∠CBE =45°,∴AC =CE ,延长BA 至F ,使F A =BE ,连FC ,易证△FCA ≌△BCE ,∴∠FCB =90°,∴()223222BC FB AB BE ==+=.二、填空题11.2 12.0.9 13.11m - 14.30°或150° 15.24 16.32揭示:第15题 ()23206002y t =--+ 当t =20时,滑行到最大距离600m 时停止;当t =16时,y =576,所以最后4s 滑行24m . 第16题 延长BC 至点F ,使CF =AC ,∵DE 平分△ABC 的周长,AD =BC ,∴AC +CE =BE ,∴BE =CF +CE =EF ,∴DE ∥AF ,DE =12AF ,又∵∠ACF =120°,AC =CF ,∴33AF AC ==,∴32DE =. FEDCB AGABCDEF第16题法一答图 第16题法二答图法二 第16题 解析 作BC 的中点F ,连接DF ,过点F 作FG ⊥DE 于G ,设CE =x ,则BE =1+x ,∴BE =1+x ,∴BC =1+2x ,∴12C F x =+,∴12E F C F C E =-=,而1122DF AC ==,且∠C =60°,∴∠DFE =120°,∴∠FEG =30°,∴1124GF EF ==,∴34EG =,∴322DE EG ==. 三、解答题17、解析:原方程组的解为64x y =⎧⎨=⎩18.证明:∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE ,在△ABF 和△DCE 中AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DCE (SASA ),∴∠DEC =∠AFB ,∴GE =GF .19.解析 (1)m =50,a =10,b =20 (2)11521032045500115050⨯+⨯+⨯+⨯⨯=(本)答:该年级全体学生在这次活动中课外阅读书箱的总量大约是1150本. 20.解析(1)设A 型钢板x 块,则B 型钢板有(100-x )块. ()21001203100250x x x x +-≥⎧⎪⎨+-≥⎪⎩,解得2025x ≤≤.X =20或21或22或23或24或25,购买方案共有6种. (2)设总利润为W 元,则()()1002100120310014046000w x x x x x =+-++-=-+⎡⎤⎣⎦X =20时,max 140204600043200W =-⨯+=元. 获利最大的方案为购买A 型20块,B 型80块.21.(1)证明:如图①,连接OB ,OP ,在△OAP 和△OBP 中,OA OBOP OP AP BP =⎧⎪=⎨⎪=⎩,∴△OAP ≌△OBP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,∴∠OBP =∠OAP =90°,∴PB 是⊙O 的切线.H 图②图①ECBECBOOA PAP⑵如图②,连接BC ,AB 与OP 交于点H∵∠APC =3∠BPC ,设∠BPC =x ,则∠APC =3x ,∠APB =x +3x =4x 由⑴知 ∠APO =∠BPO =2x ,∴∠OPC =∠CPB =x∵AC 是⊙O 的直径,∴∠ABC =90°∵易证OP ⊥AB ,∴∠AHO =∠ABC =90°,即OP ∥BC ∴∠OPC =∠PCB =∠CPB =x ,∴CB =BP易证△OAH ∽△CAB ,∴OH CB =OA AC =12,设OH =a ,∴CB =BP =2a易证△HPB ∽△BPO ,∴HP BP =BP OP ,∴设HP =ya ,∴2yaa =2a a ya +解得 11172y --=(舍)或21172y -+=∵OP ∥CB ,易证△HPE ∽△BCE ,∴PE CE =HP CB =2ya a=1174-+22、解:⑴将x A =-2代入y =8x 中得:y A =82-=-4 ∴A(-2,-4),B(-2,0) ①∵t =1 ∴P(1,0),BP =1-(-2)=3∵将点B 绕点P 顺时针旋转90°至点C ∴x C =x P =t PC =BP =3 ∴C(1,3)②∵B(-2,0),P(t ,0)第一种情况:当B 在P 的右边时,BP =-2-t∴x C =x P =t PC 1=BP =-2-t ∴C 1(t ,t +2) 第二种情况:当B 在P 的左边时,BP =2+t∴x C =x P =t PC 2=BP =2+t ∴C 2(t ,t +2) 综上:C 的坐标为(t ,t +2)∵C 在y =8x上 ∴t(t +2)=8 解得 t =2或-4 xyxyxyD 2D 1E 1E 2P BOCPBAOCBAOA⑵作DE ⊥y 轴交y 轴于点E ,将y A =m 代入y =8x 得:x A =8m ,∴A(8m,m) ∴AO 2=OB 2+AB 2=228m +m 2,321CM NA B MCNBA P将y D =n 代入y =8x 得:x D =8n ,∴D(-8n ,n) ∴DO 2=DE 2+OE 2=28n ⎛⎫- ⎪⎝⎭+n 2,∴228m +m 2=28n ⎛⎫- ⎪⎝⎭+n 2,228m -228n =n 2-m 2,222264()n m m n -=n 2-m 2, (64-m 2n 2)(n 2-m 2)=0①当n 2-m 2=0时,n 2=m 2,∵m <0,n >0 ∴m +n =0 ②当64-m 2n 2=0时,m 2n 2=64,∵m <0,n >0 ∴mn =-8 综合得:m +n =0,或 mn =-823、证明:⑴∵∠ABC =90° ∴∠3+∠2=180°-∠ABC =180°-90°=90°又∵AM ⊥MN ,CN ⊥MN∴∠M =∠N =90°,∠1+∠3=90°∴∠1=∠2∴△ABM ∽△BCN⑵方法一:过P 点作PN ⊥AP 交AC 于N 点,过N 作NM ⊥BC 于M 点 ∵∠BAP +∠APB =90°,∠APB +∠NPC =90° ∴∠BAP =∠NPC ,△BAP ∽△MPNAP BA BPPN MP MN==又∵25tan 5PN PAC PA ∠== 设25MN a =,25PM b =,则5BP a =,5AB b =又∵BAP BCA ∠=∠,∴NPC BCA ∠=∠,∴NP NC =,245PC PM b == 又△BAP ∽△BCA ,BA BC BP BA=,∴2BA BP BC =⋅, ()()255545b a a b =⋅+,解得:55a b =, ∴255tan 525MN a a C MC b b ∠====方法二:过点C 作CE AP ⊥的延长线交于E 点,过P 作PF AC ⊥交AC 于点F∵90ABC CEP ∠=∠=︒,BPA EPC ∠=∠,∴BAP ECP ACB ∠=∠=∠ ∵25tan 5PAC ∠=,∴设25CE m =,则5AE m = 由勾股定理得:35AC m =,∵ACP ECP ∠=∠,∴PF PE = ∴32APC CPE S AC AP S CE PE ∆∆=== ∵5AE m =,∴2PE m = ∴25tan tan 525PE ECP ACB EC ∠=∠===方法三:作AP 的垂直平分线交AB 于D 点,连DP设C BAP x ∠=∠=,PAC y ∠=,∴290x y +=︒2BDP BAP DPA x ∠=∠+∠=902DPB x y PAC ∠=︒-==∠∵25tan 5PAC ∠=,令2BD a =,5BP a = 由勾股定理得:3DP a AD == ∴5tan tan 5BP C BAP AB ∠=∠== (3)过A 作AH EB ⊥交EB 于H ,过C 作CK EB ⊥交EB 的延长线于K ∵AE AB = ∴EH HB =,易知△AHB ∽△BKC ,25EH DA HK AC == 设3CK x =,∵△AHB ∽△BKC ,∴AB HBBC CK=,∴4HB EH x == ∴5201022EH x HK x ===,∴3tan 14CK CEB EK ∠==24. 解析:(1)221y x x =-++(2)∵直线()40y kx k k =-+<,则()14y k x =-+∴直线MN 过定点P (1,4)联立2421y kx k y x x =-+⎧⎨=-++⎩, 得()2230x k x k +--+=∴2M N x x k +=-,3M N x x k ⋅=-∴BMN EBN EBM S S S ∆∆∆=-()()()1111121222N M N M EB x EB x x x =---=⨯-= ∵()()()22242438N M M N M N x x x x x x k k k -=+-=---=- ∴281k -= ∴3k =±∵0k < ∴3k =-(3)设1L 为:22y x x t =-++ ∴1m t =-且C (0,t ),D (2,t ),F (1,0),设P (0,a ) ①△PCD ∽△POF 时, ∴CD CP OF OP =, ∴21t a a -=, ∴3t a =,此时必有一点P 满足条件 ②△DCP ∽△POF 时, ∴CD CP OP OF =, ∴21t a a -=, ∴220a at -+= ∵符合条件的点P 恰有两个,∴第一种情况:220a at -+=有两个相等的实数根 0∆=,∴22t =± ∵0t > ∴22t =, ∴1221m =- 将22t =代入3t a =得:1223a = ∴1P (0,223) 将22t =代入220a at -+=得:22a = ∴2P (0,2)第二种情况:220a at -+=有两个不相等的实数根,且其中一根为3t a =的解 ∴0∆>, 将3t a =代入220a at -+=得:22320a a -+= ∴1a =± ∵0a > ∴1a =, ∴3t =, 22m =将3t =代入220a at -+=得:31a =, ∴3P (0,1); 42a =, ∴4P (0,2) 综上所述: 当1221m =-时,P (0,223)或P (0,2), 当22m =时,P (0,1)或P (0,2)。