解一元一次方程习题精选含答案解析讲课讲稿
初中数学 方程与不等式模块2-1 一元一次方程讲义(含答案解析)
一元一次方程 题型一:一元一次方程与它的解①一元一次方程的概念例1.1下列方程:①3x﹣y=2:②x+1x+2=0;③2x=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦21136xx.其中一元一次方程有( )A.5个B.4个C.3个D.2个 【详解】解:下列方程:①3x﹣y=2:②x+1x+2=0;③2x=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦21136xx.其中一元一次方程有③④⑦,共3个.故选:C.变式1.11. 若关于x的方程(2-m)x2+3mx-(5-2m)=0是一元一次方程,则m的值是()A. 2B. 0C. 1D. 5 2【答案】A【解析】【分析】根据一元一次方程的定义,最高次数是一,不能含有二次项,列式求出m 的值.【详解】解:因为方程是关于x的一元一次方程,则不可能含有x2项,所以2-m=0,所以m=2.故选:A.【点睛】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义. ②一元一次方程的解例1.2检验x=1是不是下列方程的解.(1)x 2-2x =-1; (2)x +2=2x +1.【详解】(1)把x =1代入方程,左边=12-2×1=-1,右边=-1,所以 左边=右边,所以x =1是方程x 2-2x =-1的解.(2)把x =1代入方程,左边=1+2=3,右边=2×1+1=3,所以 左边=右边,可得x =1是方程x +2=2x +1的解.变式1.22. 若x=﹣3是方程x+a=4的解,则a 的值是( )A. 7B. 1C. ﹣1D. ﹣7【答案】A【解析】【详解】解:∵x =﹣3是方程x +a =4的解,∴-3+a =4,移项得:a =4+3,a =7,故选A . 题型二:等式的性质例2. 下列运用等式性质正确的是( )A .如果a b ,那么a c b cB .如果23a a ,那么3aC .如果a b c c ,那么a bD .如果a b ,那么a b c c【详解】A :如果a =b ,那么当c =0时,a +c =b -c ;当c ≠0时,a +c ≠b -c ,故A 错误;B :如果23a a ,那么a =0或a =3,故B 错误;C :如果a b c c,那么a b ,故C 正确; D :没有说明c 不等于0,故D 错误;故答案选择C .变式3. 下列变形正确的有( )①由6x=5x-2,得x=2;②由1223x x,得x+1=x-2;③由-6x=6y,得x=y;④从等式ax=ab变形得到x=b,必须满足条件a≠0;⑤由12x2+14y2=1 4y2-12x2,得x2=0.A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】【分析】根据一元一次方程的运算法则进行计算,然后判断即可. 【详解】解:①由6x=5x-2,得x=-2,故①错误;②由1223x x,得3(x+1)=2(x-2),故②错误;③由-6x=6y,得-x=y,故③错误;④从等式ax=ab变形得到x=b,必须满足条件a≠0,④正确;⑤由12x2+14y2=14y2-12x2,得x2=0,⑤正确;故正确的是④⑤,故选:B.【点睛】本题考查了解一元一次方程,掌握运算法则是解题关键. 题型三:求解一元一次方程的基本步骤①移项例3.1解下列方程(1)5m -8m -m =3-11;(2)3x +3=2x +7【详解】(1)合并同类项,得 :﹣4m =﹣8,系数化为1,得: m =2,(2)移项,得:3x ﹣2x =7﹣3,合并同类项,得: x =4变式3.14. 解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x .【答案】(1)x=2;(2)x=2【解析】【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程移项合并,把x 系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. ②去括号例3.2解方程:122(1)(1)23x x x x . 【详解】22(1)(1)3x x x x , 222133x x x x ,解得:52 x变式3.25. 解下列方程:(1)2(x-1)=6;(2)4-x=3(2-x);(3)5(x+1)=3(3x+1)【答案】(1)x=4;(2)x=1;(3)x=1 2【解析】【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解; (2)方程去括号,移项合并,将未知数系数化为1,即可求出解;(3)方程去括号,移项合并,将未知数系数化为1,即可求出解;【详解】(1)去括号,得2x-2=6.移项,得2x=8.系数化为1,得x=4.(2)去括号,得4-x=6-3x.移项,得-x+3x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(3)去括号,得5x+5=9x+3.移项,得5x-9x=3-5.合并同类项,得-4x=-2.系数化为1,得x=1 2 .【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.③去分母例3.3解方程:(1)212143x x.(2)52210712210y y y . 【详解】(1)212143x x , 两边同乘以12去分母,得3(21)4(2)12x x ,去括号,得634812x x ,移项,得648123x x ,合并同类项,得21x ,系数化为1,得12x ; (2)52210712210y y y , 两边同乘以10去分母,得105(52)5(2)(107)y y y ,去括号,得102510510107y y y ,移项,得105710101025y y y ,合并同类项,得215y ,系数化为1,得152y . 变式3.36. 解方程:(1)321123x x ; (2)31322322105x x x . 【答案】(1)17x ;(2)716x. 【解析】【分析】(1)方程两边都乘以6,再去括号,移项,整理可得:17x ,从而可得答案;(2)方程两边都乘以10,再去括号,移项,整理可得:167x ,从而可得答案.【详解】解:(1)去分母,得3(3)2(21)6x x ,去括号,得39426x x ,合并同类项,得17x ,系数化为1,得17x ;(2)去分母,得5(31)20322(23)x x x ,去括号,得155203246x x x ,移项,得153426520x x x ,合并同类项,得167x ,系数化为1,得716x . 【点睛】本题考查的是一元一次方程的解法,掌握去分母,去括号,解一元一次方程是解题的关键.题型四:一元一次方程的实际应用①数字问题例4.1一个两位数,个位数字与十位数字的和为6,若调换位置则新数是原数的47,原来的两位数是( )A .24B .42C .15D .51【详解】 解:设这个两位数十位上的数字为x ,则个位上的数字为 6x ,根据题意得: 41061067x x x x,解得4x , ∴原数为42,故选:B .变式4.17. 有一个两位数,其数字之和是8,个位上的数字与十位上的数字互换后所得新数比原数小36,求原数.分析:设个位上和十位上的数字分别为x 、y ,则原数表示为________,新数表示为________;题目中的相等关系是:①________;②_______,故列方程组为_______.【答案】 ①. 10y x ②. 10x y ③. 8x y ④.101036x y x y ⑤. 8(10)(10)36x y x y x y【解析】【分析】设个位上和十位上的数字分别为x ,y ,则可分别表示原数和新数,再找出两个等量关系,列方程组;【详解】依题意,原数表示为10y x ,新数表示为10x y ,两个等量关系为:①个位上的数字+十位上的数字=8;②新数+36=原数;列方程组为8103610x y x y y x; 故答案为:10y x ;10x y ;8x y ; 101036x y x y ;8(10)(10)36x y x y x y. 【点睛】本题主要考查了由实际问题抽象出二元一次方程组,准确计算是解题的关键.②行程问题例4.2有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第三天走的路程为( )A .96里B .48里C .24里D .12里详解】解:设此人第三天走的路程为x 里,则其它五天走的路程分别为4x 里,2x 里,12x 里,14x 里,18x 里, 【依题意,得:4x+2x+x+12x+14x+18x=378,解得:x=48故选:B.变式4.28. 甲、乙两站的路程为360千米,一列慢车从甲站开出,每小时行驶48千米;一列快车从乙站开出,每小时行驶72千米.(1)两列火车同时开出,相向而行,经过_____小时相遇;(2)快车先开25分钟,两车相向而行,慢车行驶了______小时两车相遇; (3)若两车同时开出,同向而行,_______小时后,两相距720千米.【答案】①. 3②. 114③. 15或45【解析】【分析】(1)设x小时后,两车相遇,根据两车一共行驶了360千米列出方程,即可解题;(2)设x小时后,两车相遇,根据快车先走25分钟,即可计算快车行驶距离,根据共行驶了360千米列出方程,即可解题;(3)设x小时后,快车与慢车相距720千米,分慢车在快车的后面,快车在慢车的后面两种情况,列方程求解.【详解】解:(1)设x小时后,两车相遇,由题意得:72x+48x=360,解得x=3,∴经过3小时两车相遇,故答案为:3;(2)设慢车行驶了x小时,两车相遇,由题意得:72(x+2560)+48x=360,解得x=114,∴慢车行驶了114小时两车相遇,故答案为:114;(3)设x小时后,快车与慢车相距720千米,若慢车在快车的后面,72x-48x=720-360,解得x=15,若快车在慢车的后面,72x-48x=720+360,解得x=45,∴15小时或45小时后快车与慢车相距720千米,故答案为:15或45.【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系是解决问题的关键.③配套问题例4.3一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌的桌面50个或制作桌腿300条,现有5立方米木料,用________立方米木料做桌面,恰好都配成方桌( )A.1B.2C.3D.4【详解】设用x立方米木料做桌面,则可做50x个桌面,剩下的(5-x)立方米木料做桌腿,可做300(5-x)条桌腿.因为桌腿的数量是桌面数量的4倍,所以可列方程4×50x=300(5-x).解得x=3故选:C变式4.39. 某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底?(2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?【答案】(1)80个(2)15张(3)6张;9张 【解析】【分析】(1)列方程求解即可得到结果; (2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a 张做瓶身,取(15)a 张做瓶底可使配套做成的饮料瓶最多,代入值计算即可;【详解】解:(1)设一张这样的铝片可做x 个瓶底. 根据题意,得9001200(20)x x . 解得80x .2060x .答:一张这样的铝片可做80个瓶底. (2)12001580(张) 答:这些铝片一共有15张.(3)设从这15张铝片中取a 张做瓶身,取(15)a 张做瓶底可使配套做成的饮料瓶最多.根据题意,得26080(15)a a . 解得6a .则159a .答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多. 【点睛】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.④工程问题例4.4一项工程甲单独做需要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .1404050x x B .41404050xC .414050x D .41404050x x详解】解:设两人合作x 天完成这项工程,根据题意可列的方程:【41404050x x 故选:D .变式4.410. 两个工程队共同铺设一段长为1350 km 的天然气管道.甲工程队每天铺设5 km ,乙工程队每天铺设7 km ,甲工程队先施工30天后,乙工程队也开始施工,乙工程队施工多少天后能完成这项工程?【答案】乙工程队施工100天后能完成这项工程. 【解析】【分析】设乙工程队施工x 天后能完成这项工程,利用工作量的和等于1350km 列方程解答即可.【详解】设乙工程队施工x 天后能完成这项工程, 依题意,得30×5+(5+7)x =1350, 解得x =100.答:乙工程队施工100天后能完成这项工程.【点睛】此题考查一元一次方程的实际运用,掌握工作总量、工作时间、工作效率之间的关系是解决问题的关键.⑤比赛问题例4.5在世界杯足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是( )A .两胜一负B .一胜两平C .一胜一平一负D .一胜两负 【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y ,∵该球队小组赛共积5分, ∴y =5-3x , 又∵0≤y ≤3, ∴0≤5-3x ≤3, ∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场. 故选B .变式4.511. 为了促进全民健身运动的开展,某市组织了一次足球比赛,下表记录了比赛过程中部分代表队的积分情况.(1)本次比赛中,胜一场积______分;(2)参加此次比赛的F 代表队完成10场比赛后,只输了一场,积分是23分,请你求出F 代表队胜出的场数. 【答案】(1)3;(2)7 【解析】【分析】(1)根据B 代表队的积分情况可直接得出胜一场的积分情况(2)先根据A,B,C,D 代表队的积分情况分别算出胜一场,平一场,负一场各自的积分情况,再列一元一次方程求解即可.【详解】解:(1)根据B 代表队的积分情况可得胜一场的积分情况:1863 (分)(2)由A 代表队的积分情况得出平一场的积分情况:163511 ()(分) 由C 代表队的积分情况得出负一场的积分情况: 11332110 (分)设F 代表队胜出的场数为x ,则平场为(9-x )场,列方程得:3x+1 (9-x)=23解方程得:x=7答:F 代表队胜出的场数为7场.【点睛】本题是典型的比赛积分问题,清楚积分的组成部分及胜负积分的规则是解本题的关键.⑥销售问题例4.6一件衣服进价120元,按标价的八折出售仍能赚32元,则标价是__元.【详解】解:设标价为x元,x ,由题意可知:0.812032x ,解得:190故答案为:190变式4.612. 一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A. 120元B. 125元C. 135元D. 140元【答案】B【解析】【分析】设每件的成本价为x元,列方程求解即可.【详解】设每件的成本价为x元,,0.8(140%)15x x解得x=125,故选:B.【点睛】此题考查一元一次方程的实际应用—销售问题,正确理解题意是列方程解决问题的关键.⑦几何问题例4.7如图,长方形ABCD被分成六个大小不同的正方形,现在只知道中间一个最小的正方形的面积为1,求长方形ABCD的面积.【详解】设第四个大正方形的边长为x (如图所示).111 ,故最小的正方形的边长为1;21111x x 231x x4x长方形的长: 244113 长方形的宽:43411 长方形的面积:1311143 .变式4.713. 如图,每个圆纸片的面积都是30,圆纸片A 与B ,B 与C ,C 与A 的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为( )A. 54B. 56C. 58D. 69【答案】C 【解析】【分析】根据图形可知:三个圆纸片覆盖的总面积+A 与B 的重叠面积+B 与C 的重叠面积+C 与A 的重叠面积−A 、B 、C 共同重叠面积=每个圆纸片的面积×3,由此等量关系列方程求出A 、B 、C 共同重叠面积,从而求出图中阴影部分面积. 【详解】解:设三个圆纸片重叠部分的面积为x , 则73+6+8+5−x =30×3, 得x =2.所以三个圆纸片重叠部分的面积为2.图中阴影部分的面积为:73−(6+8+5−2×2)=58. 故选:C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出式子,再求解.⑧水电问题例4.8为了提倡节约用水,采用“阶梯水价”收费办法:每户用水不超过5方,每方水费x 元,超过5方,超过部分每方加收2元,小张家今年3月份用水11方共交水费56元,根据题意列出关于x 的方程,正确的是( )A .56(2)56x xB .56(2)56x xC .11(2)56xD .11(2)6256x 解:依题意,得:5(115)(2)56x x , 即56(2)56x x . 故选:B .变式4.814. 节约用水.市政府决定对居民用水实行三级阶梯水价:(1)若小明家去年1月份用水量是20立方米,他家应缴费______元(2)若小明家去年2月份用水量是26立方米,缴费64.4元,请求出用水在22~30立方米之间的收费标准a元/立方米?(3)在(2)的条件下,若小明家去年8月份用水量增大,共缴费87.4元,请求出他家8月份的月水量是多少立方米?【答案】(1)46;(2)3.45;(3)32【解析】【分析】(1)因为20立方米不超过22立方米,所以直接按2.3元计算即可; (2)因为26立方米超过22立方米且不超过30立方米,所以22×2.3+(26−22)×a=64.4,根据方程即可求出a的值;(3)先根据第(2)问中得出的结果计算30立方米的费用,从而确定属于第几个阶梯,再列方程解决.【详解】(1)∵20<22∴20立方米应缴费为20×2.3=46故答案为46.(2)∵22<26<30∴根据题意有22×2.3+(26−22)×a=64.4解得a=3.45故用水在22~30立方米之间的收费标准为3.45元/立方米.(3)若用水为30立方米,则收费为22×2.3+8×3.45=78.2<87.4∴小明家去年8月份用水量超过了30立方米.设小明家去年8月份用水量为x立方米,由题意可得22×2.3+8×3.45+(x−30)×4.6=87.4解得x=32答:小明家去年8月份用水量为32立方米.【点睛】本题考查的是一元一次方程的应用,理解三级阶梯水价收费标准是重点,根据等量关系列方程求解是关键.⑨方案问题例4.9李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为x m ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积; 方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x 时,通过计算说明哪种方案更优惠,优惠多少元. 【详解】解:(1)该户型商品房的面积为:2473(84)2(73)(842)(482)x x m按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x元; 按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x 元.(2)当2x 时,方案一总金额为2400005000250000x (元); 方案二总金额为2280009500247000x (元). 方案二比方案一优惠2500002470003000 (元). 所以方案二更优惠,优惠3000元.变式4.915. 一位商人来到一座新城市,想租一套房子,A 家房东的条件是先交2000元,每月租金1200元;B 家房东的条件是每月租金1400元. (1)这位商人想在这座城市住半年,则租哪家的房子划算? (2)如果这位商人想住一年,租哪家的房子划算? (3)这位商人住多长时间时,租两家的房子租金一样?【答案】(1)住半年时,租B 家的房子划算;(2)住一年时,租A 家的房子划算;(3)这位商人住10个月时,租两家的房子租金一样. 【解析】【分析】(1)分别根据A 、B 两家租金的缴费方式计算A 、B 两家半年的租金,然后比较即得答案;(2)分别根据A 、B 两家租金的缴费方式计算A 、B 两家一年的租金,然后比较即得答案;(3)根据A 家租金(2000+1200×租的月数)=B 家租金(1400×租的月数)设未知数列方程解答即可.【详解】解:(1)如果住半年,交给A 家的租金是1200620009200 (元), 交给B 家的租金是140068400 (元),因为9200>8400,所以住半年时,租B 家的房子划算.(2)如果住一年,交给A 家的租金是120012200016400 (元), 交给B 家的租金是14001216800 (元),因为16400<16800,所以住一年时,租A 家的房子划算. (3)设这位商人住x 个月时,租两家的房子租金一样, 根据题意,得120020001400x x . 解方程,得10x .答:这位商人住10个月时,租两家的房子租金一样.【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、明确A 、B 两家租金的缴费方式是解题的关键.⑩日历问题 例4.101.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由. 【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511 , ∴十字框中五个数的和是正中心数的5倍. (2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a ,1a ,7a ,7a .11775a a a a a a ,∴十字框中五个数的和是正中心数的5倍. (3)十字框中五个数的和不能等于180. ∵当5180a 时,解得36a ,36751 ,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020∵当52020a 时,解得404a ,4047575 ,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411变式4.1016. 如图,将连续的奇数1、3、5、7 …,排列成如下的数表,用十字框框出5个数.问:①十字框框出5个数字的和与框子正中间的数17有什么关系?②若将十字框上下左右平移,可框住另外5个数,若设中间的数为a ,用代数式表示十字框框住的5个数字之和;③十字框框住的5个数字之和能等于2000吗?若能,分别写出十字框框住的5个数;若不能,请说明理由.【答案】(1)十字框框出5个数字的和=数17的5倍;(2)5,a (3)十字框框住的5个数字之和能等于2000.理由见解析.【解析】【分析】(1)算出这5个数的和,和31进行比较;(2)由图易知同一竖列相邻的两个数相隔12,横行相邻的两个数相隔2.用中间的数表示出其他四个数,然后相加即可;(3)求出(2)中的代数式的和等于5a ,可列方程求出中间的数,然后根据方程的解的情况就可以作出判断.【详解】解:(1) 5+15+17+19+29=85=517,故十字框框出5个数字的和=数17的5倍;(2) a -12+a -2+a +a +2+a +12=5a ,故5个数字之和为5a ;(3)不能,5a =2000,解得a =400.而a 不能为偶数,∴十字框框住的5个数字之和能等于2000.实战练17. 下列方程中,解是3x 的方程是( )A. 684x xB. 527x xC. 3323x xD.211020.1x x 【答案】D【解析】【分析】使方程左右两边相等的未知数的值是方程的解.把x =3代入以上各个方程进行检验,可得到正确答案.【详解】解:对于A ,x =3代入方程,左边=18,右边=20,左边≠右边,故此选项不符合题意;对于B ,x =3代入方程,左边=5,右边=4,左边≠右边,故此选项不符合题意; 对于C ,x =3代入方程,左边=0,右边=3,左边≠右边,故此选项不符合题意; 对于D ,x =3代入方程,左边=50,右边=50,左边=右边,故此选项符合题意; 故选:D .【点睛】本题考查了一元一次方程的解,解题的关键是根据方程的解的定义.使方程左右两边的值相等的未知数的值是该方程的解.18. 下列说法中,正确的是( )A. 若ca=cb ,则a=bB. 若a b c c,则a=b C. 若a 2=b 2,则a=bD. 由4-532x x ,得到4352x x【答案】B【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】A. 因为c=0时式子不成立,所以A 错误;B. 根据等式性质2,两边都乘以c ,即可得到a=b ,所以B 正确;C. 若a 2=b 2,则a=b 或a=−b ,所以C 错误;D.根据等式的性质1,两边同时减去3x ,再加上5得4352x x ,所以D 错误.【点睛】本题主要考查了等式的性质.理解等式的基本性质即可直接利用等式的基本性质进而判断得出.19. 解方程21101136x x 时,去分母、去括号后,正确的结果是( ) A. 411011x x B. 421011x xC. 421016x xD. 421016x x 【答案】C【解析】【分析】对原方程按要求去分母,去括号得到变形后的方程,再和每个选项比较,选出正确选项. 【详解】21101136x x , 去分母,两边同时乘以6为: 2211016x x去括号为:421016x x .故选:C .【点睛】此题考查解一元一次方程的去分母和去括号,注意去分母是给方程两边都乘以分母的最小公倍数;去括号时,括号前是负号括在括号内的各项要变号.20. 下列去分母错误的是( ) A.232y y ,去分母,得2y =3(y +2) B. 235136x x =0,去分母,得2(2x +3)-5x -1=0 C. 23(y -8)=9,去分母,得2(y -8)=27 D. 151103237x x ,去分母,得21(1-5x )-14=6(10x +3) 【答案】B【解析】【分析】将各项方程去分母得到结果,即可做出判断.【详解】解:A、由232y y得2y=3(y+2),本选项正确;B、235136x x=0,得:2(2x+3)−(5x−1)=0,本选项错误;C、23(y-8)=9,得:2(y−8)=27,本选项正确;D、由151103237x x得21(1−5x)−14=6(10x+3),本选项正确;故选:B.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21. 某商店换季准备打折出售某商品,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的成本为( )A. 230元B. 250元C. 270元D. 300元【答案】B【解析】【分析】设该商品的售价为x元,根据按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,列方程求出售价,继而可求出成本.【详解】解:设该商品的售价为x元,由题意得,0.75x+25=0.9x-20,解得:x=300,则成本价为:300×0.75+25=250(元).故选:B.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.22. 某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.【答案】12【解析】【分析】找到关键描述语,进而找到所求的量的等量关系.得到不等式6x-2(15-x)>60,求解即可.【详解】设答对x 道.故6x-2(15-x )>60解得:x >908. 所以至少要答对12道题,成绩才能在60分以上.【点睛】考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.23. 一个两位数个位上的数是1,十位上的数是x ,把1与x 对调,若新两位数比原两位数小18,则x 的值为_____________【答案】3【解析】【分析】个位上的数是1,十位上的数是x ,则这个数为10x+1;把个位上的数与十位上的数对调得到的数为10+x ,根据新两位数比原两位数小18列出方程,解出即可.【详解】根据题意列方程得:10x+1-18=10+x解得:x=3故答案为:3【点睛】此题主要考查了一元一次方程的应用,此题的关键表示出这个数,据题意列出方程解决问题.24. 解下列方程:(1)36156x x(2)1.5 1.510.62x x 【答案】(1)1x ;(2)7=12x 【解析】 【分析】(1)根据解方程步骤,移项,合并同类项,把x 系数化为1,即可求出解; (1)根据解方程步骤,方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.【详解】解:(1)移项得:36156x x ,合并同类项得:99x ,解得:1x ;(2)去分母得:2?1.50.6(1.5) 1.2x x ,去括号得:30.90.6 1.2x x ,移项得:30.6 1.20.9x x ,合并同类项得:3.6 2.1x , 解得:7=12x . 【点睛】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.25. 解下列方程:(1)5(x +8)-5=6(2x -7)(2)2x -3(x -3)=12+(x -4).【答案】(1)x =11;(2)12x【解析】【分析】据去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可;【详解】(1)5(x +8)-5=6(2x -7),去括号,得5x +40-5=12x -42,移项,得5x -12x =-42-40+5,合并同类项,得-7x =-77,系数化为1,得x =11;(2)2x -3(x -3)=12+(x -4),去括号,得2x -3x +9=12+x -4,移项,得2x -3x -x =12-4-9,合并同类项,得-2x =-1,系数化为1,得x =12. 【点睛】本题主要考查了解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.26. 某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( )A. 182812x xB. 1828212x xC. 181412x xD. 2182812x x 【答案】B【解析】【分析】若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,由题意可得,18(28-x )=2×12x ,故选:B .【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.27. 一件工程,由甲、乙两个工程队共同合作完成,工期不得超过一个月,甲独做需要50天才能完成,乙独做需要45天才能完成,现甲乙合作20天后,甲队有任务调离,由乙队单独工作,问此工程是否能如期完工.(列方程计算)【答案】此工程能如期完成.【解析】【分析】等量关系为:合作20天的工作量+乙单独完成的剩余的工作量=1,据此列出方程求解.【详解】设剩余工程乙独做需要x 天完成,根据题意可得:11202014550x , 解得x=7,∵20+7<30∴此工程能如期完成.【点睛】本题考查了一元一次方程的应用,解题的关键是能够了解工作量、工作效。
初中数学同步 7年级上册 第10讲 解一元一次方程(教师版含解析)
第10讲 3.2-3.3 解一元一次方程1.掌握一元一次方程的解答步骤知识点01 解一元一次方程解一元一次方程的一般步骤:整理方程、去分母、去括号、移项、合并同类项、未知数的系数化为1;(检验方程的解)。
注意:去分母时不可漏乘不含分母的项。
分数线有括号的作用,去掉分母后,若分子是多项式,要加括号。
1.方程﹣1=1+2x的解是()A.﹣1B.0C.1D.2【解答】解:移项得:﹣2x=1+1,合并同类项得:﹣2x=2,系数化为1得:x=﹣1,故选:A.2.方程2x﹣6=x﹣1的解是()A.5B.﹣C.±5D.【解答】解:2x﹣6=x﹣1,2x﹣x=﹣1+6,x=5,故选:A.3.方程x﹣1=1﹣x的解是()A.x=﹣1B.x=1C.x=﹣2D.x=2【解答】解:移项,可得:x+x=1+1,合并同类项,可得:2x=2,系数化为1,可得:x=1.故选:B.4.方程移项,可以得到()A.B.C.D.2x﹣6=3x+2【解答】解:把方程移项,可以得到:x﹣x=1+3.故选:B.5.解方程2(2x+1)=x,以下去括号正确的是()A.4x+1=x B.4x+2=x C.2x+1=x D.4x﹣2=x 【解答】解:去括号得:4x+2=x.故选:B.6.方程去分母,正确的是()A.6x﹣3(x﹣1)=x+2B.6x﹣3(x﹣1)=2(x+2)C.x﹣3(x﹣1)=2(x+2)D.x﹣(x﹣1)=2(x+2)【解答】解:方程去分母,正确的是:6x﹣3(x﹣1)=2(x+2).故选:B.7.将方程去分母得到3y+2+4y﹣1=12,错在()A.分母的最小公倍数找错B.去分母时,漏乘了分母为1的项C.去分母时,分子部分没有加括号D.去分母时,各项所乘的数不同【解答】解:方程去分母,得,3(y+2)+2(2y﹣1)=12,去括号得,3y+6+4y﹣2=12,∴错在分子部分没有加括号,故选:C.8.给出下面四个方程及其变形,其中变形正确的是()①=6变形为=3;②5﹣3x=x+7变形为4x=﹣2;③﹣=5变形为﹣x+1=10;④4x=﹣2变形为x=﹣2.A.①②④B.①②③C.②③④D.①③④【解答】解:①=6变形为=3,变形正确;②5﹣3x=x+7变形为4x=﹣2,变形正确;③﹣=5变形为﹣x+1=10,变形正确;④4x=﹣2变形为x=﹣,变形错误.故选:B.9.关于x的方程﹣x=+1变形正确的是() A.﹣x=+1B.﹣x=+1C.﹣10x=+100D.﹣100x=+100【解答】解:﹣x=+1,=即,故选:B.10.下列方程变形中,正确的是()A.方程,未知数系数化为1,得x=﹣1B.方程3x+5=4x+1,移项,得3x﹣4x=﹣1+5C.方程3x﹣7(x﹣1)=3﹣2(x+3),去括号,得3x﹣7+7=3﹣2x﹣3D.,去分母得7(1﹣2x)=3(3x+1)﹣63【解答】解:A、方程,未知数系数化为1,得x=﹣,原变形不正确;B、方程3x+5=4x+1,移项,得3x﹣4x=1﹣5,原变形不正确;C、方程3x﹣7(x﹣1)=3﹣2(x+3),去括号,得3x﹣7x+7=3﹣2x﹣6,原变形不正确;D、,去分母得7(1﹣2x)=3(3x+1)﹣63,原变形正确.故选:D.11.方程,去分母得8x﹣3(1﹣2x)=24.【解答】解:方程两边都乘12得:8x﹣3(1﹣2x)=24,故答案为:8x﹣3(1﹣2x)=24.12.将15(x﹣1)=1﹣2(x﹣3)去括号后,方程转化为3x﹣15=1﹣2x+6.【解答】解:原方程去括号,得:3x﹣15=1﹣2x+6.故答案为:3x﹣15=1﹣2x+6.13.若式子3x+4与2﹣5x的值相等,则x的值为﹣0.25.【解答】解:根据题意得:3x+4=2﹣5x,移项得:3x+5x=2﹣4,合并得:8x=﹣2,解得:x=﹣0.25.故答案为:﹣0.25.14.已知3a﹣4与﹣5互为相反数,则a的值为3.【解答】解:∵3a﹣4与﹣5互为相反数,∴(3a﹣4)+(﹣5)=0,去括号,可得:3a﹣4﹣5=0,移项,可得:3a=4+5,合并同类项,可得:3a=9,系数化为1,可得:a=3.故答案为:3.15.关于x的方程:12﹣2x=﹣5x的解为x=﹣4.【解答】解:移项,得﹣2x+5x=﹣12,合并同类项,得3x=﹣12,系数化为1,得x=﹣4.16.如图的流程图是小明解方程3x+1=x﹣3的过程.其中③代表的运算步骤为系数化1,该步骤对方程进行变形的依据是等式两边都乘(或除以)同一个数(除数不能为0),所得的等式仍然成立.【解答】解:③代表的运算步骤为系数化1,该步骤对方程进行变形的依据是等式两边都乘(或除以)同一个数(除数不能为0),所得的等式仍然成立.故答案为:等式两边都乘(或除以)同一个数(除数不能为0),所得的等式仍然成立.17.解方程:(1)x﹣5=4;(2)3x+7=2﹣2x.【解答】解:(1)x﹣5=4,移项,合并同类项得:x=9,把x的系数化为1得:x=27.(2)3x+7=2﹣2x,移项,合并同类项得:5x=﹣5,把x的系数化为1得:x=﹣1.18.解方程:(1)7x+6=8﹣3x;(2).【解答】解:(1)7x+6=8﹣3x,7x+3x=8﹣6,10x=2,;(2),5(2x+1)=15﹣3(x﹣1),10x+5=15﹣3x+3,10x+3x=18﹣5,13x=13,x=1.19.解下列方程:(1);(2).【解答】解:(1),方程两边同乘2,得2x﹣6=3x+2.移项,得2x﹣3x=2+6.合并同类项,得﹣x=8.x的系数化为1,得x=﹣8.∴这个方程的解为x=﹣8.(2),方程两边同乘3,得x﹣4=9﹣2(x﹣4).去括号,得x﹣4=9﹣2x+8.移项,得x+2x=9+8+4.合并同类项,得3x=21.x的系数化为1,得x=7.∴这个方程的解为x=7.20.解方程(1)1﹣3(8﹣x)=﹣2(15﹣2x);(2)1=﹣x.【解答】解:(1)1﹣3(8﹣x)=﹣2(15﹣2x),去括号,得1﹣24+3x=﹣30+4x,移项,得3x﹣4x=24﹣30﹣1,合并同类项,得﹣x=﹣7,解得x=7;(2)1=﹣x,去分母,得12﹣4(2x﹣1)=3(x+1)﹣12x,去括号,得12﹣8x+4=3x+3﹣12x,移项,得12x﹣3x﹣8x=3﹣4﹣12,合并同类项,得x=﹣13.一.选择题(共10小题)1.方程3x+2=0的解是()A.x=B.x=﹣C.x=D.x=﹣【解答】解:方程3x+2=0,移项得:3x=﹣2,解得:x=﹣.故选:D.2.方程移项,可以得到()A.B.C.D.2x﹣6=3x+2【解答】解:把方程移项,可以得到:x﹣x=1+3.故选:B.3.下列方程的变形中,正确的是()A.由2x+1=x得2x﹣x=1B.由3x=2得x=C.由得x=D.由﹣得﹣x+1=6【解答】解:A.移项得2x﹣x=﹣1,故该选项错误,不符合题意;B.系数化为1得x=,故该选项错误,不符合题意;C.系数化为1得x=÷,即x=,故该选项正确,符合题意;D.去分母得:﹣(x+1)=6,故该选项错误,不符合题意.故选:C.4.下列解方程过程正确的是()A.2x=1系数化为1,得x=2B.x﹣2=0解得x=2C.3x﹣2=2x﹣3移项得3x﹣2x=﹣3﹣2D.x﹣(3﹣2x)=2(x+1)去括号得x﹣3﹣2x=2x+1【解答】解:A、2x=1系数化为1,得,故本选项不合题意;B、x﹣2=0解得x=2,正确,故本选项符合题意;C、3x﹣2=2x﹣3移项得3x﹣2x=﹣3+2,故本选项不合题意;D、x﹣(3﹣2x)=2(x+1)去括号得x﹣3+2x=2x+2,故本选项不合题意;故选:B.5.解方程2(3x﹣1)﹣(x﹣4)=1时,去括号正确的是()A.6x﹣1﹣x﹣4=1B.6x﹣1﹣x+4=1C.6x﹣2﹣x﹣4=1D.6x﹣2﹣x+4=1【解答】解:去括号得:6x﹣2﹣x+4=1,故选:D.6.解一元一次方程(x﹣1)=2﹣x时,去分母正确的是()A.2(x﹣1)=2﹣5x B.2(x﹣1)=20﹣5xC.5(x﹣1)=2﹣2x D.5(x﹣1)=20﹣2x【解答】解:解一元一次方程(x﹣1)=2﹣x时,去分母正确的是5(x﹣1)=20﹣2x.故选:D.7.若代数式和的值相同,则x的值是()A.9B.﹣C.D.【解答】解:根据题意得:=x﹣3,去分母得到:6x﹣9=10x﹣45,移项合并得:﹣4x=﹣36,解得:x=9.故选:A.8.解一元一次方程,去分母正确的是()A.5(3x+1)﹣2=(3x﹣2)﹣2(2x+3)B.5(3x+1)﹣20=(3x﹣2)﹣2(2x+3)C.5(3x+1)﹣20=(3x﹣2)﹣(2x+3)D.5(3x+1)﹣20=3x﹣2﹣4x+6【解答】解:方程两边都乘以10,得:5(3x+1)﹣20=(3x﹣2)﹣2(2x+3).故选:B.9.解方程﹣=的步骤如下,错误的是()①2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x﹣6=16﹣4x;③3x+4x=16+10;④x=.A.①B.②C.③D.④【解答】解:①去分母,得:2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x+6=16﹣4x,③6x﹣3x+4x=16+4﹣6,④x=2,错误的步骤是第②步,故选:B.10.把方程+=16的分母化为整数,结果应为() A.+=16B.+=16 C.﹣=160D.+=160【解答】解:把方程+=16的分母化为整数,结果应为:+=16.故选:B.二.填空题(共6小题)11.方程2(x﹣3)=6的解是x=6.【解答】解:方程两边同除以2得x﹣3=3,移项,合并同类项得x=6,故答案为:x=6.12.若2x﹣3和1﹣4x互为相反数,则x的值是﹣1.【解答】解:∵2x﹣3和1﹣4x互为相反数,∴2x﹣3+1﹣4x=0,解得:x=﹣1.故答案为:﹣1.13.若含x的式子与x﹣3互为相反数,则x=2.【解答】解:∵含x的式子与x﹣3互为相反数,∴+x﹣3=0,∴x=2,故答案为:2.14.小莉用下面的框图表示解方程=的流程:其中步骤①③⑤的变形依据相同,这三步的变形依据是等式的性质.【解答】解:骤①③⑤的变形依据相同,这三步的变形依据是等式的性质,故答案为:等式的性质.15.把方程中的小数化为整数得﹣1.【解答】解:方程,化为整系数得:﹣1.故答案为:﹣1.16.解关于x的方程,有如下变形过程:①由23x=﹣16,得x=﹣;②由3x﹣4=2,得3x=2﹣4;③由+1.5,得x+3=6x﹣60+45;④由=2,得3x﹣5x=2.以上变形过程正确的有无.(只填序号)【解答】解:①由23x=﹣16,得x=﹣;②由3x﹣4=2,得3x=2+4;③由+1=+1.5,得x+3=6x﹣60+4.5;④由﹣=2,得3x﹣5x=30.则以上变形过程正确的有无,故答案为:无三.解答题(共4小题)17.解方程:(1)3x+7=32﹣2x;(2)4x﹣3(20﹣x)+4=0;(3);(4)=2﹣.【解答】解:(1)3x+7=32﹣2x,3x+2x=32﹣7,5x=25,x=5;(2)4x﹣3(20﹣x)+4=0,4x﹣60+3x+4=0,4x+3x=60﹣4,7x=56,x=8;(3)去分母得:3(3x+5)=2(2x﹣1),9x+15=4x﹣2,9x﹣4x=﹣2﹣15,5x=﹣17,x=﹣3.4;(4)去分母得:4(5y+4)+3(y﹣1)=24﹣(5y﹣3),20y+16+3y﹣3=24﹣5y+3,20y+3y+5y=24+3﹣16+3,28y=14,y=.18.解下列一元一次方程:(1)1+2(x+3)=4﹣x;(2)﹣=1.【解答】解:(1)去括号得:1+2x+6=4﹣x,移项得:2x+x=4﹣6﹣1,合并得:3x=﹣3,解得:x=﹣1;(2)去分母得:2(x+1)﹣3(2x﹣3)=6,去括号得:2x+2﹣6x+9=6,移项合并得:﹣4x=﹣5,解得:x=1.25.19.解下列方程:(1)4﹣(x+3)=2(x﹣1);(2).【解答】解:(1)4﹣(x+3)=2(x﹣1),去括号得:4﹣x﹣3=2x﹣2,移项得:﹣x﹣2x=﹣2﹣4+3,合并同类项:﹣3x=﹣3,把系数化为1:x=1.(2)去分母得:3(2x﹣1)+12=2(x+3),去括号得:6x﹣3+12=2x+6,移项得:6x﹣2x=6﹣12+3,合并同类项得:4x=﹣3,把系数化为1:x=﹣.20.解方程:(1)6(1﹣x)﹣5(x﹣2)=2(2x+3);(2)﹣=3.【解答】(1)解:去括号得:6﹣6x﹣5x+10=4x+6,移项,合并同类项得:﹣15x=﹣10,系数化为1得:x=.(2)解:方程整理得:,去分母得:5x﹣10﹣2x﹣2=3,移项合并得:3x=15,系数化为1得:x=5.。
一元一次方程应用题精选ppt课件
方程设立及未知数选择
设立方程
根据问题中的数量关系和已知条件,设立一元一次方程。
选择未知数
根据问题的实际情况和需要求解的未知量,选择合适的未知 数。
实际问题转化为数学问题
转化思想
将实际问题中的数量关系和已知条件 转化为数学表达式和方程。
列方程
根据已知条件和未知量 之间的关系,列出包含 未知数的等式,即方程 。
解方程
运用一元一次方程的解 法,求解方程,得到未 知数的值。
提高解题速度和准确性策略
掌握基本题型和解题方法
熟练掌握一元一次方程应用题的基本题型和解题方法,能够快速准确地识别问题并求解。
加强练习和反思
通过大量练习,提高解题速度和准确性;同时,及时反思和总结解题过程中的问题和不足 ,不断完善自己的解题思路和方法。
思路拓展
通过变换思考角度、引入新变量等方式,拓展解题思路。
创新方法应用
将拓展的思路和方法应用到具体问题的求解中,提高解题效率。
05
方程应用题常见错误及纠 正方法
设立方程时常见错误
错误设立未知数
在设立方程时,未能正确识别问题中的未知数,导致方程设立错 误。
忽视问题中的限制条件
在设立方程时,未考虑问题中的限制条件,导致方程解不符合实际 情况。
一元一次方程
只含有一个未知数,并且 未知数的次数是1的方程 叫做一元一次方程。
一般形式
ax + b = 0(a、b为常数 ,a ≠ 0)。
方程解与根的概念
方程的解
使方程左右两边相等的未 知数的值叫做方程的解。
方程的根
方程的解也叫做方程的根 。
(完整word)七年级数学一元一次方程(教师讲义带答案)
第三章 一元一次方程(韩老师)本章知识网络结构图3.1一元一次方程的概念和性质【本讲主要内容】1. 等式与方程表示相等关系的式子叫做等式。
含有未知数的等式叫做方程。
可见方程必须具备两个条件:一是必须含有未知数,二是必须是一个等式。
2. 等式的性质等式的性质1:等式两边加(减)同一个数(式子)。
结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
应用等式的性质对等式进行变形时,必须注意“同”字。
要对等式进行变形,就要保证等式两边始终相等,也就是说,运用等式的性质时,等式两边必须同时进行变形。
3. 一元一次方程的概念我们把含有一个未知数,并且未知数的指数都是1的方程叫做一元一次方程。
一元一次方程的最简形式是b ax =(≠a 0)。
方程中的未知数叫做“元”,一个方程中有几个未知数,就称这个方程为几元方程。
方程中含未知数的项的最高次数叫做方程的次数,这一点和多项式的次数有类似的地方。
例如27x 3-=-是一元一次方程,4y 4y 2y 2-=+是一元二次方程,0y x 3=-是二元一次方程,6y 4x 32-=+是二元二次方程。
4. 方程的解与解方程方程是一个有待研究的等式,即研究这个等式中的未知数取什么值时等式才成立。
解方程就是确定使方程中等号左右两边相等的未知数的值,我们把这样的未知数的值叫做方程的解。
这样的值可能有一个或多个,也可能没有,所以方程可能有一个解、多个解,也可能无解。
如方程3x-5=4x+3只有一个解x=-8。
方程2x-7=5x-(3x+7)有无数个解,而方程2x-3=2x+2无解。
求方程的解或判定方程无解的过程叫做解方程。
利用等式的性质,对方程进行一系列的变形,就可以求出方程的解。
5. 思想方法(本单元常用到的数学思想方法小结)⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a 的形式. 体现了化“未知”为“已知”的化归思想.⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.【典型例题】例1. 已知方程2x m -3+3x=5是一元一次方程,则m= .解析:由一元一次方程的定义可知m -3=1,解得m=4.或m -3=0,解得m=3所以m=4或m=3警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里一定要注意x 的指数是(m -3).例2. 已知2x =-是方程ax 2-(2a -3)x+5=0的解,求a 的值.解析:∵x=-2是方程ax 2-(2a -3)x+5=0的解∴将x=-2代入方程,得 a·(-2)2-(2a -3)·(-2)+5=0化简,得 4a+4a -6+5=0∴ a=81 点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=-2代入方程,然后再解关于a 的一元一次方程就可以例3.已知a 、b 为定值,无论k 为何值,关于x 的一元一次方程26bk x 3a kx 3=--+的解总是1,试求a 、b 的值。
部编数学七年级上册专题08一元一次方程(知识大串讲)(解析版)含答案
专题08 一元一次方程(知识大串讲)【知识点梳理】考点1 一元一次方程1.概念:只含一个未知数(元)且未知数的次数都是1的方程;标准式:ax+b=0(x是未知数,a、b是已知数,且a≠0);2.方程的解:使方程等号左右两边相等的未知数的值考点2 等式的性质等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等;如果a=b,那么ac=bc;如果a=b,c0,那么;考点3含参一元一次方程1、次数含参:主要考察一元一次方程定义2、常数项含参:求解一个常数项含参的一元一次方程,依然采用常规的五步法解题3、解已知或可求:将解代入参数方程,求出参数考点4一元一次方程的解使一元一次方程等号左右两边相等的未知数的值。
考点5 解一元一次方程解一元一次方程的步骤:1.去分母两边同乘最简公分母2.去括号(1)先去小括号,再去中括号,最后去大括号(2)乘法分配律应满足分配到每一项 注意 :特别是去掉括号,符合变化3.移项(1)定义: 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边; (2)注意: ①移项要变符号 ; ②一般把含有未知数的项移到左边 ,其余项移到右边 . 4. 合并同类项(1)定义: 把方程中的同类项分别合并,化成“ ax = b ”的形式( a ≠ 0 ); (2)注意:合并同类项时,把同类项的系数相加,字母不变. 5. 系数化为 1(1)定义: 方程两边同除以未知数的系数 a ,得 abx =; (2)注意:分子、分母不能颠倒【典例分析】【考点1 一元一次方程定义】【典例1】(2021秋•雅安期末)下列四个方程中,是一元一次方程的是( )A .x 2﹣1=0B .x ﹣1=0C .x +y =1D .﹣1=0【答案】B【解答】解:A .根据一元一次方程的定义,x 2﹣1=0中x 的次数是2,那么x 2﹣1=0不是一元一次方程,故A 不符合题意.B .根据一元一次方程的定义,x ﹣1=0是一元一次方程,那么B 符合题意.C .根据一元一次方程的定义,x +y =1中含有两个未知数,那么x +y =1不是一元一次方程,故B 不符合题意.D .根据一元一次方程的定义,不是整式方程,而是分式方程,那么不是一元一次方程,故D 不符合题意.故选:B .【变式1】(2022春•沙坪坝区期末)下列方程是一元一次方程的是( )A .2x 2﹣1=0B .y =x +1C .=1D .x ﹣2=1【答案】D【解答】解:A、未知数的最高次数是2,不是一元一次方程,故本选项不符合题意;B、含有两个未知数,不是一元一次方程,故本选项不符合题意;C、方程左边是分式,不是一元一次方程,故本选项不符合题意;D、符合一元一次方程的定义,故本选项符合题意.故选:D【考点2 等式性质】【典例2】(2022春•龙凤区期末)下列各式运用等式的性质变形,正确的是( )A.由a=b,得=B.由﹣3x=﹣3y,得x=﹣yC.由=1,得x=D.若(m2+1)a=(m2+1)b,则a=b【答案】D【解答】解:A.由a=b,得=,故A选项不符合题意;B.由﹣3x=﹣3y,得x=y,故B选项不符合题意;C.由=1,得x=4,故C选项不符合题意;D.若(m2+1)a=(m2+1)b,则a=b,故D选项符合题意;故选:D.【变式2-1】(2021秋•渭城区期末)根据等式的性质,下列变形错误的是( )A.若a=b,则2a=2b B.若2a=3b,则2a﹣2=3b﹣2C.若ac=bc,则a=b D.若=,则2a=2b【答案】C【解答】解:A.根据等式的基本性质,若a=b,则2a=2b,故A正确,那么A不符合题意;B.根据等式的基本性质,若2a=3b,得2a﹣2=3b﹣2,故B正确,那么B不符合题意;C.根据等式的基本性质,由ac=bc,当c≠0,得a=b,故C错误,那么C符合题意;D.根据等式的基本性质,若=,则2a=2b,故D正确,那么D不符合题意.故选:C.【变式2-2】(2021秋•庄河市期末)已知等式2a﹣3b=9,则下列等式不成立的是( )A.2a=9+3b B.2a﹣4=9+3b C.D.3b=2a﹣9【答案】B【解答】解:A、因为2a﹣3b=9,所以2a=9+3b,故A不符合题意;B、因为2a﹣3b=9,所以2a﹣4=9+3b﹣4,故B符合题意;C、因为2a﹣3b=9,所以a﹣b=,故C不符合题意;D、因为2a﹣3b=9,所以3b=2a﹣9,故D不符合题意;故选:B.【考点3含参一元一次方程】【典例3】(2021秋•禹州市期末)已知(a﹣3)x|a﹣2|﹣5=8是关于x的一元一次方程,则a=( )A.3或1B.1C.3D.0【答案】B【解答】解:根据题意得:|a﹣2|=1,解得a=3或a=1,因为a﹣3≠0,所以a≠3,综上可知:a=1.故选:B.【变式3-1】(2021秋•巩义市期末)若使方程(m+2)x=1是关于x的一元一次方程,则m 的值是( )A.m≠﹣2B.m≠0C.m≠2D.m>﹣2【答案】A【解答】解:由题意可知:m+2≠0,解得m≠﹣2.故选:A.【变式3-2】(2022春•漳州期末)若关于x的方程2x m﹣1+3=0是一元一次方程,则m的值为( )A.﹣1B.0C.1D.2【解答】解:根据题意得:m﹣1=1,解得:m=2.故选:D.【典例4】(2022春•漳州期末)若x=2是方程2x+a﹣5=0的解,则a的值是( )A.1B.﹣1C.9D.﹣9【答案】A【解答】解:把x=2代入方程得:4+a﹣5=0,解得:a=1.故选:A.【变式4-1】(2021秋•许昌期末)已知x=2是关于x的方程2x﹣a+6=0的解,则常数a 的值是( )A.8B.10C.﹣8D.﹣10【答案】B【解答】解:把x=2代入方程2x﹣a+6=0得:4﹣a+6=0,解得:a=10,故选:B.【变式4-2】(2021秋•东莞市期末)若x=2是方程4x+2m﹣14=0的解,则m的值为( )A.10B.4C.﹣3D.3【答案】D【解答】解:把x=2代入方程得:4×2+2m﹣14=0,解得:m=3,故选:D.【典例5】(2021秋•山西期末)若x=2是关于x的一元一次方程ax﹣b=3的解,则4a﹣2b+1的值是( )A.7B.8C.﹣7D.﹣8【答案】A【解答】解:∵x=2是方程ax﹣b=3的解,∴4a﹣2b=6,∴4a﹣2b+1=7,故选:A.【变式5】(2022•江津区一模)若x=3是方程a﹣bx=4的解,则﹣6b+2a+2021值为( )A.2017B.2027C.2045D.2029【答案】D【解答】解:把x=3代入方程a﹣bx=4得:a﹣3b=4,所以﹣6b+2a+2021=2(a﹣3b)+2021=2×4+2021=8+2021=2029,故选:D.【考点4 解一元一次方程】【典例6】(2021秋•潼南区期末)方程5x﹣2(x﹣1)=8去括号变形正确的是( )A.5x﹣2x+1=8B.5x﹣2x﹣1=8C.5x﹣2x+2=8D.5x﹣2x﹣2=8【答案】C【解答】解:方程5x﹣2(x﹣1)=8去括号变形得:5x﹣2x+2=8.故选:C.【变式6-1】(2021秋•天桥区期末)解方程3﹣(x﹣6)=5(x﹣1)时,去括号正确的是( )A.3﹣x+6=5x+5B.3﹣x﹣6=5x+1C.3﹣x+6=5x﹣5D.3﹣x﹣6=5x﹣1【答案】C【解答】解:方程3﹣(x﹣6)=5(x﹣1),去括号得:3﹣x+6=5x﹣5.故选:C.【典例7】(2022春•沙坪坝区期末)解方程﹣3时,去分母正确的是( )A.3(2x﹣3)=5×2x﹣3B.3(2x﹣3)=5×2x﹣3×5C.5(2x﹣3)=3×2x﹣3×15D.3(2x﹣3)=5×2x﹣3×15【答案】D【解答】解:解方程﹣3时,去分母得:3(2x﹣3)=5×2x﹣3×15.故选:D.【变式7-1】(2022春•交城县校级期末)解方程,以下去分母正确的是( )A.3(x+1)﹣2x﹣3=1B.3(x+1)﹣2(x﹣3)=1C.3(x+1)﹣2(x﹣3)=6D.3(x+1)﹣2x+3=6【答案】C【解答】解:,去分母,得3(x+1)﹣2(x﹣3)=6.故选:C.【变式7-2】(2021秋•铁西区期末)解一元一次方程(x+1)=﹣x时,去分母正确的是( )A.3(x+1)=2x B.3(x+1)=x C.x+1=2x D.3(x+1)=﹣2x 【答案】D【解答】解:解一元一次方程(x+1)=﹣x时,去分母得:3(x+1)=﹣2x.故选:D.【典例8】(2021秋•三原县期末)代数式3x+1与互为相反数,则x的值为( )A.B.﹣C.﹣D.【答案】A【解答】解:根据题意得:3x+1+=0,去分母得:2(3x+1)+(x﹣3)=0,去括号得:6x+2+x﹣3=0,移项合并得:7x=1,解得:x=.故选:A.【变式8-1】(2021秋•福田区校级期末)如果单项式﹣xy b与是同类项,那么关于x 的方程ax+b=0的解为( )A.x=1B.x=﹣1C.x=3D.x=﹣3【答案】D【解答】解:∵单项式﹣xy b与x a y3是同类项,∴a=1,b=3,代入方程得:x+3=0,解得:x=﹣3.故选:D.【变式8-2】(2021秋•海淀区校级期末)如果3(x﹣2)与2(3﹣x)互为相反数,那么x 的值是( )A.0B.1C.2D.3【答案】A【解答】解:根据题意得:3(x﹣2)+2(3﹣x)=0,去括号得:3x﹣6+6﹣2x=0,移项得:3x﹣2x=6﹣6,合并得:x=0.故选:A.【典例9】(2021秋•秀英区校级期末)解下列方程:(1)4﹣(x+3)=2(x﹣1);(2).【解答】解:(1)4﹣(x+3)=2(x﹣1),4﹣x﹣3=2x﹣2,﹣x﹣2x=﹣2﹣4+3,﹣3x=﹣3,x=1;(2),21﹣7(2x+5)=3(4﹣3x),21﹣14x﹣35=12﹣9x,﹣14x+9x=12﹣21+35,﹣5x=26,x=﹣.【变式9-1】(2022春•二道区期末)解方程:3(x﹣2)=x﹣(8﹣3x).【解答】解:去括号,可得:3x﹣6=x﹣8+3x,移项,可得:3x﹣x﹣3x=﹣8+6,合并同类项,可得:﹣x=﹣2,系数化为1,可得:x=2.【变式9-2】(2022春•常宁市期末)解方程:.【解答】解:2(2x﹣1)﹣3(x+1)=6(x﹣1),4x﹣2﹣3x﹣3=6x﹣6,4x﹣3x﹣6x=﹣6+2+3,﹣5x=﹣1,x=.【变式9-3】(2021秋•邹平市校级期末)解方程(1)x﹣=+1;(2)=1;【解答】解:(1)去分母,可得:15x﹣3(x﹣2)=5(2x﹣5)+15,去括号,可得:15x﹣3x+6=10x﹣25+15,移项,可得:15x﹣3x﹣10x=﹣25+15﹣6,合并同类项,可得:2x=﹣16,系数化为1,可得:x=﹣8.(2)原方程可化为:﹣=1,去分母,可得:30x﹣7(17﹣20x)=21,去括号,可得:30x﹣119+140x=21,移项,可得:30x+140x=21+119,合并同类项,可得:170x=140,系数化为1,可得:x=.。
七年级上册一元一次方程优质讲义(含答案解析)第二部分
1x3x基础训练内容提要考法.利用特殊解求字母的值2. 解下列方程:(1)2(x﹣2)﹣3(4x﹣1)=9(1﹣x); (2)2.3.解下列方程:(1)1 (2)31.[单选题] 解方程3时,去分母正确的是( )A.2(2x﹣1)﹣10x﹣1=3 B.2(2x﹣1)﹣10x+1=3 C.2(2x﹣1)﹣10x﹣1=12 D.2(2x﹣1)﹣10x+1=122.[单选题]把方程0.5的分母化为整数,正确的是( )A . 0.5 B . 0.5 C . 0.5 D .0.53.解方程:(1)7x+2(3x﹣3)=29 (2)(3)例题基础训练1.若方程3(x+1)=2+x的解与关于x的方程2(x+3)的解互为倒数,求k的值.2.小明在解方程1,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.3. 已知:方程(m+2)x﹣m=0①是关于x的一元一次方程.(1)求m的值;(2)若上述方程①的解与关于x的方程x3x②的解互为相反数,求a的值.|m|﹣11.(2020·越秀区)已知关于x的方程2(x﹣1)﹣6=0与的解互为相反数,则a=.2.小明解方程1时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为x=﹣1,试求a的值,并正确地求出原方程的解.内容提要考法.方程的解的讨论例题3.小明的练习册上有一道方程题,其中一个数字被墨汁污染了,成为1,他翻看了书后的答案,知道了这个方程的解是4,于是他把被污染了的数字求出来了,请你把小明的计算过程写出来.1.[单选题]有下列结论:①若a+b+c =0,则abc≠0;②若a (x ﹣1)=b (x ﹣1)有唯一的解,则a≠b ;③若b =2a ,则关于x 的方程ax+b =0(a≠0)的解为x;④若a+b+c =1,且a≠0,则x =1一定是方程ax+b+c =1的解;其中结论正确的个数有( )A .4个 B .3个 C .2个 D .1个2.[单选题]若关于x 的方程有无数解,则3m+n 的值为( )A .﹣1 B .1 C .2 D .以上答案都不对3. 解关于x 的方程:a (x ﹣1)=2(x+2)基础训练内容提要考法.新定义运算例题基础训练1.[单选题]如果关于x 的方程(a﹣3)x=2019有解那么实数a的取值范围是()A.a<3B.a=3C.a>3D.a≠32.[单选题] 已知关于x的方程•a(x﹣6)无解,则a的值是( )A.1 B.﹣1 C.±1 D.a≠13.[单选题]已知方程2x+k=6的解为正整数,则k所能取的正整数值为( )A.1 B.2 或 3 C.3 D.2 或 41.[单选题]对任意四个有理数a,b,c,d定义新运算:,已知18,则x=( )A.﹣1 B.2 C.3 D.42. 用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab﹣2ab+b.如:2☆(﹣3)=2×(﹣3)﹣2×2×(﹣3)+(﹣3)=27(1)求(﹣4)☆7的值;(2)若(1﹣3x)☆(﹣4)=32,求x的值.221. 用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab﹣2ab+a.如:1☆3=1×3﹣2×1×3+1=4.(1)求(﹣2)☆5的值;22模块二含绝对值的一元一次方程内容提要最简绝对值方程(2)若☆3=8,求a 的值;(3)若m =4☆x ,n =(1﹣2x )☆3(其中x 为有理数),试比较大小m n (用不等号填空).2. 设x 、y 是任意两个有理数,规定x 与y 之间的一种运算“⊕”为:若对任意有理数x 、y ,运算“⊕”满足x ⊕y =y ⊕x ,则称此运算具有交换律.x ⊕y (1)试求1⊕(﹣1)的值;(2)试判断该运算“⊕”是否具有交换律,说明你的理由;(3)若2⊕x =0,求x 的值.3. 我们规定,若关于x 的一元一次方程ax =b 的解为x =b ﹣a ,则称该方程为“奇异方程”.例如:2x =4的解为x =2=4﹣2,则该方程2x =4是“奇异方程”.请根据上述规定解答下列问题:(Ⅰ)判断方程5x =﹣8 (回答“是”或“不是”)“奇异方程”;(Ⅱ)若a =3,有符合要求的“奇异方程”吗?若有,求b 的值;若没有,请说明理由.(Ⅲ)若关于x 的一元一次方程2x =mn+m 和﹣2x =mn+n 都是“奇异方程”,求代数式﹣2(m+11)+4n+3[(mn+m )﹣m] 的值.2例题基础训练1.(1)解方程:|3x+1|﹣5=0.(2)若方程|x﹣1|=m﹣1有解,则m应满足的条件是 .2.解方程: |x﹣2|=|﹣3|.3.解方程:|3x﹣2|=x 4.解方程:3+|2x﹣1|=x1.[单选题] 方程|2x+1|=5的解是( )A.2 B.﹣3 C.±2 D.2或﹣3 内容提要考法.含多个绝对值的方程例题2.[单选题]若关于x的方程a﹣|x|=0有两个解,b﹣|x|=0只有一个解,c﹣|x|=0无解,则a、b、c的关系是( )A.a<b<c B.a<c<b C.b<c<a D.c<b<a 3.方程|5x+6|=6x﹣5的解是 . 4.解方程:(1)|3x﹣2|﹣4=0.(2)当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解. 1.解方程:|x﹣2|+|x﹣1|=5.2.解方程|x﹣4|+|x+3|=7.基础训练3.解方程:|2x+1|=|x ﹣3| 4.解绝对值方程:|x ﹣1|﹣|x ﹣2|=x ﹣3. 1.(1)解方程:|2x+3|=8.(2)解方程:|2x+3|﹣|x ﹣1|=1.2.解方程:|x ﹣2|+|x+3|=6 3.解方程:|x ﹣3|﹣3|x+2|=x ﹣9.内容提要考法.含多重绝对值的方程例题4.解方程:|2x ﹣3|=|1﹣3x| 5.解方程:3|x ﹣1|﹣|x+1|=2|x ﹣2|.1. 解方程:||x|﹣4|=52.求方程|x ﹣|2x+1||=3的不同的解的个数.3.设a ,b 为有理数,且|a|>0,方程||x ﹣a|﹣b|=5,恰好有两个不相等的根,求b 的取值范围.基础训练模块三含参数的一元一次方程内容提要考法1.解含字母系数的方程例题1. 解方程:|x ﹣|3x+1||=4. 2.求关于x 的方程||x ﹣2|﹣1|﹣a =0(0<a <1)的所有解的和. 3.设a 、b 为实数,且a≠0,方程||x+a|+2b|=4,恰有三个不相等的解,求b 的值.4.已知关于x 的方程||x ﹣200|﹣250|=a 有三个解,求a 的值.1.解关于x 的方程:2(x ﹣1)=3m ﹣1. 2.已知关于x 的方程5m+3x =1+x 的解比关于x 的方程2x+m =3m 的解大2,求7m ﹣1的值.2基础训练内容提要考法2.方程的整数解3.已知关于x的方程m4的解是关于x 的方程的解的2倍,求m的值.1.解关于x的方程:5m+12x2.[单选题] 若关于x的方程2x+a=3与x+2a=7的解相同,则a的值为( )A . B . C . D.3.若关于x的方程x+m﹣3=0和2m=2x﹣1的解的和为4,求m的值. 4.当k为何值时,关于x的方程3(2x﹣1)=k+2x的解与关于x的方程8﹣k=2(x+1)的解互为相反数.例题基础训练1.[单选题] 已知关于x 的方程x﹣a=3x﹣14,若a为正整数时,方程的解也为正整数,则a的最大值是( )A.12 B.13 C.14 D.152.[单选题]已知关于x方程x1的解是非正整数,则符合条件的所有整数a的和是( )A.﹣4 B.﹣3 C.2 D.33.[单选题]若关于x的方程(k﹣2020)x﹣2019=7﹣2020(x+1)的解是整数,则整数k的取值个数是( )A.6 B.8 C.9 D.101. 已知关于x的方程kx=9﹣x的解为自然数,求整数k的值.2.已知k位非负整数,且关于x的方程3(x﹣3)=kx的解为正整数,求k的所有可能取值.3.若关于x的方程mx=2﹣x的解为整数,且m为负整数,求代数式5m﹣[m﹣(6m﹣5m)﹣2(m﹣3m)]的值. 2222内容提要考法3.含参数的一元一次方程的讨论例题基础训练4.已知a 为整数,关于x 的一元一次方程的解也为整数,求所有满足条件的数a 的和.1. 已知kx ﹣m =(2k ﹣1)x+4是关于x 的一元一次方程,当k ,m 为何值时:(1)方程只有一个解;(2)方程无解;(3)方程有无数个解.2.已知关于x 的方程m (x ﹣1)=5x ﹣2有唯一解,求m 的值. 1.已知关于x 的方程2kx+m =x+4.当k 、m 为何值时:(1)方程有唯一解;模块四自定义新一元一次方程内容提要自定义新一元一次方程例题(2)方程有无数个解;(3)方程无解.2. 当a取何值时,关于x的方程6(ax﹣2)﹣(x+1)=4(x)(1)有唯一解;(2)没有解. 3.已知方程(x+1)+1ax有无数个解,求a、b的值. 4.已知关于x的方程a(3x﹣2)+b(2x﹣3)=8x﹣7.(1)若b=1,a≠2时,求方程的解;(2)当a,b满足什么条件时,方程有无数个解?5.若关于x的一元一次方程(5a+3b)x+ax+b=0有唯一解,则x= .21. 定义:对于一个有理数x,我们把[x]称作x的对称数.若x≥0,则[x]=x﹣2;若x<0,则[x]=x+2.例:[1]=1﹣2=﹣1,[﹣2]=﹣2+2=0.(1)求[],[﹣1]的值;(2)已知有理数a>0,b<0,且满足[a]=[b],试求代数式(b﹣a)﹣2a+2b的值;(3)解方程:[2x]+[x+1]=1.32.我们称使方程成立的一对数x ,y 为“相伴数对”,记为(x .y ).(1)若(4,y )是“相伴数对”,求y 的值;(2)若(a ,b )是“相伴数对”,请用含b 的代数式表示a ;(3)若(m ,n )是“相伴数对”,求代数式m n ﹣[4m ﹣2(3n ﹣1)]的值.3.已知f (x )是关于字母x 的多项式f (x )=a x +a x +……+a x +a x+c (其中a ,a ,…,a 是各项的系数,c 是常数项);我们规定f (x )的伴随多项式是g (x ),且g (x )=na x +(n ﹣1)a x +……+2a x+a .如f (x )=4x ﹣3x +5x ﹣8,则它的伴随多项式g (x )=3×4x ﹣2×3x+1×5=12x ﹣6x+5请根据上面的材料,完成下列问题:(1)已知f (x )=x ,则它的伴随多项式g (x )= ;(2)已知f (x )=3x ﹣2(7x ﹣1),则它的伴随多项式g (x )= ;若g (x )=10,求x 的值.(3)已知二次多项式f (x )=(a ﹣3)x ﹣8x+7,并且它的伴随多项式是g (x ),若关于x 的方程g (x )=﹣2x 有正整数解,求a 的整数值.1n 2n ﹣1n ﹣12n 12n 1n ﹣12n ﹣2n ﹣1n 32222224.若x 是关于x 的方程ax+b =0(a≠0)的解,y 是关于y 的方程cy+d =0(c≠0)的解,且x ,y 是满足|x ﹣y |≤1,则称方程ax+b =0(a≠0)与方程cy+d =0(c≠0)的解接近.例如:方程4x+2x ﹣6=0的解是x =1,方程3y ﹣y =3的解是y =1.5,因为x ﹣y =0.5<1,方程4x+2x ﹣6=0与方程3y ﹣y =3的解接近.(1)请直接判断方程3x ﹣3+4(x ﹣1)=0与方程﹣2y ﹣y =3的解是否接近;(2)若关于x 的方程3x ﹣3+4(x ﹣1)=0与关于y 的方程y =2k+1的解接近,请你求出k 的最大值和0000000000自主评价自主探究自主探究题目最小值;(3)请判断关于x的方程x﹣m=2x﹣5与关于y的方程y+7×2018﹣1=4036y+2018m的解是否接近,并说明理由. 1.[单选题]若方程2x+1=﹣2与关于x的方程1﹣2(x﹣a)=2的解相同,则a的值是()A.1B.﹣1C.﹣2D.2.[单选题]关于x的方程﹣4+ax=3x+b有无数个解,则a、b的值分别是( )A.﹣3;4 B.0;0 C.3;﹣4 D.3;43.[单选题]当a取什么范围时,关于x的方程|x﹣4|+2|x﹣2|+|x﹣1|+|x|=a总有解( )A.a≥4.5 B.a≥5 C.a≥5.5 D .a≥64.解方程:(1)4x﹣3=12﹣x;(2)+1=.5.已知方程5x﹣3=2x与方程4x=6的解互为相反数,求(1k)的值.56.已知关于x的方程ax+6=5x﹣b有无数个解,试求a+b的值.27.(2019·花都区)已知两个方程3x+2=﹣4与3y﹣3=2m﹣1的解x、y互为相反数,求m的值.8. 解关于x的方程:a(x﹣5)=x+19. 一般的,数a的绝对值|a|表示数a对应的点与原点的距离.同理,绝对值|a﹣b|表示数轴上数a对应的点与数b对应的点的距离.例如:|3﹣0|指在数轴上表示数3的点与原点的距离,所以3的绝对值是3,即|3﹣0|=|3|=3.|6﹣2|指数轴上表示6的点和表示2的点的距离,所以数轴上表示6的点和表示2的点的距离是4,即|6﹣2|=4.结合数轴与绝对值的知识,求含绝对值的方程的整数解.10.已知关于x的方程的解是正整数,求正整数a的值.参考答案模块一解一元一次方程例题1.解:(1)移项得:x﹣4x=27+9,合并同类项得:﹣3x=36,系数化为1得:x=﹣12,(2)方程两边同时乘以2得:2﹣3x=6x+5,移项得:﹣3x﹣6x=5﹣2,合并同类项得:﹣9x=3,系数化为1得:x,解析:2.解:(1)去括号得:2x﹣4﹣12x+3=9﹣9x,移项得:2x﹣12x+9x=9+4﹣3,合并同类项得:﹣x=10,系数化为1得:x=﹣10,(2)去分母得:2(2x﹣1)﹣(5x+2)=3(1﹣2x)﹣12,去括号得:4x﹣2﹣5x﹣2=3﹣6x﹣12,移项得:4x﹣5x+6x=3﹣12+2+2,合并同类项得:5x=﹣5,系数化为1得:x=﹣1.解析:3.解:(1)方程整理得: 1,去分母得:50x﹣10﹣37x﹣100=20,移项合并得:13x=130,解得:x=10.(2)方程整理得: 3,即5y﹣10﹣2y﹣2=3,移项合并得:3y=15,解得:y=5.解析:基础训练基础训练题目1.C解析:2.C解析:3.解:(1)去括号得:7x+6x﹣6=29,移项合并得:13x=35,解得:x ;(2)去分母得:3(x ﹣2)﹣2(2x ﹣1)=12,去括号得:3x ﹣6﹣4x+2=12,解得:x =﹣16;(3)方程整理得: 1,去分母得:30x ﹣7(17﹣20x )=21,去括号得:30x ﹣119+140x =21,移项合并得:170x =140,解得:x.解析:例题1.解:解3(x+1)=2+x ,得x,∵两方程的解互为倒数,∴将x =﹣2代入2(x+3)得2,解得k =0.解析:2.解:根据题意,x =3是方程4(2x ﹣1)=3(x+m )﹣1的解,将x =3代入得4×(2×3﹣1)=3(3+m )﹣1,解得m =4,所以原方程为1,解方程得x.解析:3.解:(1)∵方程(m+2)x ﹣m =0①是关于x 的一元一次方程,∴|m|﹣1=1,且m+2≠0,解得m =2.(2)当m =2时,原方程变形为4x ﹣2=0,解得x,∵方程①的解与关于x 的方程x3x ②的解互为相反数,∴方程②的解为x.方程x 3x 去分母得:6x+2(6x ﹣a )=a ﹣18x 去括号得:6x+12x ﹣2a =a ﹣18x ,移项、合并同类项得:3a =36x ,∴a =12x =12×()=﹣6.解析:基础训练基础训练题目|m|﹣11.﹣.解析:解:解方程2(x﹣1)﹣6=0得:x=4,解方程得:x=3a﹣3,∵两个方程的解互为相反数,∴4+(3a﹣3)=0,解得:a=﹣,故答案为:﹣.2.解:按方程左边的1没有乘以10,去分母得:2(2x﹣6)+1=5(x+a),把x=﹣1代入得:2×(﹣8)+1=﹣5+5a,解得:a=﹣2,把a=﹣2代入原方程,得1,去分母得:2(2x﹣6)+10=5(x﹣2),去括号得:4x﹣12+10=5x﹣10,移项合并得:﹣x=﹣8,解得:x=8,答:a的值是﹣2,原方程的解为x=8.解析:3.解:设被墨汁污染的数字为y,原方程可整理得:1,把x=4代入得:1,解得:y=﹣12,即被污染了的数字为﹣12.解析:例题1.C解析:解:①错误,当a=0,b=1,c=﹣1时,a+b+c=0+1﹣1=0,但是abc=0;②正确,方程整理得:(a﹣b)x=a﹣b,由方程有唯一解,得到a﹣b≠0,即a≠b,此时解为x=1;③错误,由a≠0,b=2a,方程解得:x2;④正确,把x=1,a+b+c=1代入方程左边得:a+b+c=1,右边=1,故若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解,故选:C.2.A解析:解:mx x,移项得:mx+x,合并同类项得:(m+1)x,∵该方程有无数解,∴,解得:,把m=﹣1,n=2代入3m+n得:原式=﹣3+2=﹣1,故选:A.3.解:a(x﹣1)=2(x+2),ax﹣a=2x+4,ax﹣2x=4+a,(a﹣2)x=4+a,当a﹣2≠0时,x,当a﹣2=0时,方程无解.解析:基础训练基础训练题目1.D解析:解:∵关于x的方程(a﹣3)x=2019有解,∴a﹣3≠0,即a≠3,故选:D.2.A解析:解:去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6移项,合并得,x,因为无解;所以a﹣1=0,即a=1.故选:A.3.D解析:解:2x+k=6,移项得:2x=6﹣k,系数化为1得:x,∵方程2x+k=6的解为正整数,∴6﹣k为2的正整数倍,6﹣k=2,6﹣k=4,6﹣k=6,6﹣k=8…,解得:k=4,k=2,k=0,k=﹣2…,故选:D.例题1.C解析:解:∵,∴2x+4x=18,即:x=3,故选:C.2.解:(1)根据题意得:(﹣4)☆7=(﹣4)×7﹣2×(﹣4)×7+7=﹣133,(2)根据题意得:(1﹣3x)☆(﹣4)=(1﹣3x)×(﹣4)﹣2×(1﹣3x)×(﹣4)+(﹣4)=32,整理得:16(1﹣3x)+8(1﹣3x)﹣4=32,解得:x.解析:基础训练基础训练题目1.解:(1)(﹣2)☆5=(﹣2)×5﹣2×(﹣2)×5+(﹣2)=﹣50+20﹣2=﹣32;(2)☆3=8,3﹣238,9(a+1)﹣6(a+1)+a+1=16,9a+9﹣6a﹣6+a+1=16,4a=12,a=3;(3)∵m=4☆x=4•x﹣2×4x+4=4x﹣8x+4,n=(1﹣2x)☆3=(1﹣2x)•3﹣2(1﹣2x)•3+1﹣2x=﹣8x+4,2222222m ﹣n =4x ≥0,∴m≥n ,故答案为:≥.解析:2.解:(1)1⊕(﹣1)=2×1+3×(﹣1)﹣7=2﹣3﹣7=﹣8答:1⊕(﹣1)的值为﹣8.(2)该运算具有交换律理由:分三种情况当x >y 时,x ⊕y =2x+3y ﹣7,y ⊕x =3y+2x ﹣7,此时x ⊕y =y ⊕x当x =y 时,x ⊕y =2x+3y ﹣7,y ⊕x =2y+3x ﹣7,此时x ⊕y =y ⊕x当x <y 时,x ⊕y =3x+2y ﹣7,y ⊕x =2y+3x ﹣7,此时x ⊕y =y ⊕x所以该运算“⊕”具有交换律(3)当x≤2时,2⊕x =0,2×2+3x ﹣7=0解得x =1当x >2时,2⊕x =03×2+2x ﹣7=0解得x (舍去)答:x 的值为1.解析:3.解:(Ⅰ):∵5x =﹣8,∴x ,∵﹣8﹣5=﹣13,,∴5x =﹣8不是奇异方程;故答案为:不是;(Ⅱ)∵a =3,∴x =b ﹣3,∴,∴,即b 时有符合要求的“奇异方程”;(Ⅲ)且由题可知:mn+m =4,mn+n,两式相减得,m ﹣n ,∴﹣2(m+11)+4n+3[(mn+m )﹣m] 22=﹣5(m ﹣n )﹣22+3(mn+m)(mn+n ),,.解析:模块二含绝对值的一元一次方程例题1.解:(1)原方程化为|3x+1|=5,当3x+1≥0时,方程可化为3x+1=5,解得:x ,当3x+1≤0时,方程可化为3x+1=﹣5,解得:x =﹣2,所以原方程的解是x 或x =﹣2,(2)∵方程|x ﹣1|=m ﹣1有解,∴m ﹣1≥0,解得:m≥1,解析:2.解:∵|x ﹣2|=3,∴x ﹣2=3或x ﹣2=﹣3,∴x =10或x =﹣2.解析:3.解:(1)|3x ﹣2|=x ,∴3x ﹣2=x 或3x ﹣2=﹣x ,∴x =1或x;解析:4.解:当x时,原方程等价于3+1﹣2x =x ,解得x (不符合题意要舍去),当x 时,原方程等价于3+2x ﹣1=x ,解得x =﹣2(不符合题意要舍去)综上所述,原方程无解.解析:基础训练基础训练题目1.D解析:解:根据题意,原方程可化为:2x+1=5或2x+1=﹣5,解得x =2或x =﹣3,故选:D .2.D22解析:解:∵关于x的方程a﹣|x|=0有两个解,∴a>0,∵b﹣|x|=0只有一个解,∴b=0,∵c﹣|x|=0无解,∴c<0,则a、b、c的关系是c<b<a.故选:D.3.x=11解析:解:∵|5x+6|=6x﹣5,∴5x+6=±(6x﹣5),解得,x=11或(舍去).故答案为:x=11.4.解:①当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x.所以原方程的解是x=2或x;②∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解解析:例题1.|x﹣2|+|x﹣1|=5,①当x﹣2≥0,即x≥2时,原方程可化为x﹣2+x﹣1=5,它的解是x=4;②当x﹣1≤0,即x≤1时,原方程可化为2﹣x+1﹣x=5,它的解是x=﹣1;③当1<x<2时,原方程可化为2﹣x+x﹣1=5,此时方程无解;∴原方程的解为x=4和﹣1.解析:2.解:(1)当x<﹣3时,原方程可化为:﹣(x﹣4)﹣(x+3)=7解得:x=﹣3,与题意不符,故舍去.(2)当﹣3≤x≤4时,原方程可化为:﹣(x﹣4)+x+3=7即7=7所以﹣3≤x≤4(3)当x>4时,原方程可化为x﹣4+x+3=7,x=4与题意不符,故舍去.故原方程的解是﹣3≤x≤4.解析:3.解:当x时,原方程等价于﹣1﹣2x=3﹣x,解得x=﹣4;当x<3时,原方程等价于1+2x=3﹣x,解得x;当x≥3时,原方程等价于1+2x=x﹣3,解得x=﹣4(不符合题意要舍去),综上所述:x=﹣4或x;解析:4.解:当x<1时,原方程等价于1﹣x﹣(2﹣x)=x﹣3.解得x=2(不符合范围,舍);当1≤x<2时,原方程等价于x﹣1﹣(2﹣x)=x﹣3.解得x=0(不符合范围,舍);当x≥2时,原方程等价于x﹣1﹣(x﹣2)=x﹣3.解得x=4,综上所述:x=4.解析:基础训练基础训练题目1.解:(1)当x时,原方程等价于2x+3=﹣8,解得x;当x时,原方程等价于2x+3=8,解得x;综上所述,方程|2x+3|=8的解为x或x.(2)当x时,原方程等价于﹣x﹣4=1,解得x=﹣5;当x<1时,原方程等价于3x+2=1,解得x;当x≥1时,原方程等价于x+4=1,解得x=﹣3,(不符合题意,舍);综上所述,方程:|2x+3|﹣|x﹣1|=1的解为x=﹣5或x.解析:2.当x≥2时,|x﹣2|+|x+3|=2x+1=6,∴x=2.5;当﹣3<x<2时,|x﹣2|+|x+3|=2﹣x+x+3=5,不成立;当x≤﹣3时,|x﹣2|+|x+3|=﹣2x﹣1=6,∴x=﹣3.5;综上所述,|x﹣2|+|x+3|=6的解有两个:x=2.5或-3.5解析:3.解:①当x<﹣2时,原方程等价于3﹣x+3(x+2)=x﹣9,解得x=﹣18,符合x<﹣2,②当﹣2≤x<3,时,原方程等价于价于3﹣x﹣3(x+2)=x﹣9,解得x,符合﹣2≤x<3,③当x≥3时,原方程等价于x﹣3﹣3(x+2)=x﹣9,解得x=0,不符合x≥3,∴原方程的解为:x=﹣18,x.解析:4.解:根据题意得:2x﹣3=1﹣3x或2x﹣3=3x﹣1,解得:x或x=﹣2,即原方程的解为:x,x=﹣2,解析:5.解:当x<﹣1时,得:﹣3(x﹣1)+(x+1)=﹣2(x﹣2)解得:恒成立,∴x<﹣1当﹣1≤x≤1时得:﹣3(x﹣1)﹣(x+1)=﹣2(x﹣2)解得x=﹣1当1<x≤2时得:3(x﹣1)﹣(x+1)=﹣2(x﹣2)解得x=2当x>2时得:3(x﹣1)﹣(x+1)=2(x﹣2)解得:恒成立,则x>2.综上所述:x≤﹣1或x≥2.解析:例题1.解:||x|﹣4|=5,∴|x|﹣4=5或|x|﹣4=﹣5,∴|x|=9或|x|=﹣1(舍去),∴x=9或x=﹣9;解析:2.解:|x﹣|2x+1||=3,当x时,原方程化为|x|=3,无解;当x时,原方程化为:|1+x|=3,解得:x=2或x=﹣4(舍去).当x时,原方程可化为:|x+(2x+1)|=3,12即|3x+1|=3,∴3x+1=±3,解得:x(舍去)或x.综上可得方程的解只有x=2或x两个解.解析:3.解:∵方程||x﹣a|﹣b|=5有两个不相等的解,∴方程|x﹣a|﹣b=±5,即|x﹣a|=b±5,(1)当b=﹣5时,即|x﹣a|=0或|x﹣a|=﹣10①|x﹣a|=0时,方程有一个解;②|x﹣a|=﹣10,此时方程无解.所以当b=﹣5时,方程只有一个解;(2)当﹣5<b<5时,即b+5>0,b﹣5<0①b+5>0时,方程有两个不相等解,②b﹣5<0时,方程无解.所以当﹣5<b<5时,方程有两个不相等解;(3)当b=5时,即|x﹣a|=0或|x﹣a|=10①|x﹣a|=0时,方程有一个解;②|x﹣a|=10,此时方程有两个不相等解.所以当b=5时,方程有三个解;(4)当b>5时,即b±5>0①b+5>0时,方程有两个不相等解,②b﹣5>0时,方程有两个不相等解.所以当b>5时,方程有四个不相等解.故答案为:﹣5<b<5.解析:基础训练基础训练题目1.解:原方程式化为x﹣|3x+1|=4或x﹣|3x+1|=﹣4(1)当3x+1>0时,即x,由x﹣|3x+1|=4得x﹣3x﹣1=4∴x与x不相符,故舍去由x﹣|3x+1|=﹣4得x﹣3x﹣1=﹣4∴x(2)当3x+1<0时,即x,由x ﹣|3x+1|=4得x+3x+1=4∴x 与x 不相符,故舍去由x ﹣|3x+1|=﹣4得x+3x+1=﹣4∴x 故原方程的解是x 或x 解析:2.解:由原方程得||x ﹣2|﹣1|=a ,∴|x ﹣2|﹣1=±a ,∵0<a <1,∴|x ﹣2|=1±a ,即x ﹣2=±(1±a ),∴x =2±(1±a ),从而x =3+a ,x =3﹣a ,x =1+a ,x =1﹣a ,∴x +x +x +x =8,即原方程所有解的和为8.解析:3.解:∵方程||x+a|+2b|=4,∴|x+a|=4﹣2b 或﹣4﹣2b ,∵有三个不相等的解,∴4﹣2b 与﹣4﹣2b ,其中一个为0,则得3个解,如果都不是零,则得4个解,故b =2或﹣2.经检验,b =2不合题意舍弃,∴b =﹣2故答案为﹣2.解析:4.解:根据题意得:a≥0,|x ﹣200|﹣250=±a ,|x ﹣200|=250±a ,x ﹣200=±(250±a ),x =200±(250±a ),所以x =450+a ,x =﹣50﹣a ,x =450﹣a ,x =﹣50+a ,则有两个相等,12341234显然450+a=﹣50+a,﹣50﹣a=450﹣a不成立,若450+a=﹣50﹣a,解得:a=﹣250,(舍去),若450+a=450﹣a,解得:a=0,x=450,x=﹣50,(舍去),若﹣50+a=﹣50﹣a,解得:a=0,x=450,x=﹣50,(舍去),若450﹣a=﹣50+a,解得:a=250,x=700,x=﹣300,x=200,(符合题意),故答案为:a=250.解析:模块三含参数的一元一次方程例题1.解:2x﹣2=3m﹣1 2x=3m+1解析:2.解:解方程5m+3x=1+x得x,解方程2x+m=3m得x=m,由题意知m=2,解得:m,则7m﹣1=7×()﹣1=711.解析:3.解:解方程m4得:x=12﹣3m ,解方程1得:x=6﹣m,根据题意得:222(6﹣m)=12﹣3m,解得:m=0.解析:基础训练基础训练题目1.解:去分母:10m+24x=2x+1 22x=1-10m解析:2.B解析:3.解:方程x+m﹣3=0的解为x=3﹣m,方程2m=2x﹣1解为:x(2m+1),根据题意得:3﹣m(2m+1)=4,去分母得:9﹣3m+4m+2=12,移项合并得:m=1解析:4.解:方程3(2x﹣1)=k+2x,解得:x,方程8﹣k=2(x+1),解得:x,根据题意得: 0,解得:k=15.解析:例题1.B解析:解:方程移项合并得: x=a﹣14,去分母得:﹣x=2a﹣28,解得:x=28﹣2a,∵方程的解x是正整数,∴28﹣2a>0,∴a<14则a的最大值为13,故选:B.2.A解析:解:x1,6x﹣(4﹣ax)=2(x+a)﹣66x﹣4+ax=2x+2a﹣66x+ax﹣2x=2a﹣6+4(a+4)x=2a﹣2x,∵方程的解是非正整数,∴0,解得:﹣4<a≤1,当a=﹣3时,x=﹣8;当a=﹣2时,x=﹣3;当a=﹣1时,x(舍去);当a=0时,x(舍去);当a=1时,x=0;则符合条件的所有整数a的和是﹣3﹣2+1=﹣4.故选:A.3.B解析:解:方程整理得:kx﹣2020x﹣2019=7﹣2020x﹣2020,移项合并得:kx=6,解得:x,由x为整数,得到k=±1,±2,±3,±6,共8个,故选:B.基础训练基础训练题目1.解:移项,得kx+x=9,合并,得(k+1)x=9,当k+1≠0时,x∵关于x的方程的解为自然数,∴9能被k+1整除.∴k+1=1、3、9,即k=0、2、8时,关于x的方程的解为自然数.解析:2.解:方程去括号得:3x﹣9=kx,移项合并得:(3﹣k)x=9,解得:x ,由x 为正整数,得到k =2,0解析:3.解:解方程mx =2﹣x 得:x ,∵关于x 的方程mx =2﹣x 的解为整数,且m 为负整数,∴1+m =±2或±1,解得:m =1或﹣3或0或﹣2,其中m =1和m =0舍去(不是负整数),即m =﹣3或﹣2;5m ﹣[m ﹣(6m ﹣5m )﹣2(m ﹣3m )]=5m ﹣[m ﹣6m+5m ﹣2m +6m]=5m ﹣m +6m ﹣5m +2m ﹣6m=m ,当m =﹣2时,原式=(﹣2)=4;当m =﹣3时,原式=(﹣3)=9,所以代数式5m ﹣[m ﹣(6m ﹣5m )﹣2(m ﹣3m )]的值是4或9.解析:4.解:∵,∴(6﹣a )x =6,∵关于x的一元一次方程的解为整数,∴x 为整数,∴6﹣a =±1或±2或±3或±6,又∵a 为整数,∴a =5或7或4或8或3或9或0或12,∴所有满足条件的数a 的和为:5+7+4+8+3+9+0+12=48.解析:例题1.解:化简kx ﹣m =(2k ﹣1)x+4得(k ﹣1)x =﹣m ﹣4,(1)当k≠1时方程只有一个解,即x.(2)当k =1,m≠﹣4时方程无解.(3)当k =1,m =﹣4时方程有无数个解.解析:2.解:方程去括号得:mx ﹣m =5x ﹣2,移项合并得:(m ﹣5)x =m ﹣2,由方程有唯一解,得到m ﹣5≠0,解得:m≠5.2222222222222222222解析:基础训练基础训练题目1.解:方程移项合并得:(2k﹣1)x=4﹣m,(1)由方程有唯一解,得到2k﹣1≠0,即k;(2)由方程有无数个解,得到2k﹣1=0,4﹣m=0,解得:k,m=4;(3)由方程无解,得到2k﹣1=0,4﹣m≠0,解得:k,m≠4.解析:2.解:6(ax﹣2)﹣(x+1)=4(x),去括号得6ax﹣12﹣x﹣1=2+4x,移项、合并同类项得(6a﹣5)x=15.(1)当6a﹣5≠0,即a时,方程有唯一解.(2)当6a﹣5=0,即a时,方程没有解.解析:3.解:原方程即x1ax,移项,得: x ax1,合并同类项,得:()x,当0,且0时,方程有无数个解.则b=﹣2,a.解析:4.解:(1)b=1,代入原式得:a(3x﹣2)+2x﹣3=8x﹣7,去括号得:3ax﹣2a+2x﹣3=8x﹣7,移项合并同类项得:(3a﹣6)x=2a﹣4,(a≠2)化系数为1得:x.(2)a(3x﹣2)+b(2x﹣3)=8x﹣7,去括号得:3ax﹣2a+2bx﹣3b=8x﹣7,移项合并同类项得:(3a+2b﹣8)x=2a+3b﹣7,∴当3a+2b﹣8=0,2a+3b﹣7=0时,x有无数个解,解得:b=1,a=2.故a=2,b=1时,方程有无数个解.解析:5.解析:解:∵(5a+3b )x +ax+b =0是一元一次方程,∴5a+3b =0,∵方程(5a+3b )x +ax+b =0有唯一解,∴a≠0,x,∴ba ,∴x .故答案是:.模块四自定义新一元一次方程例题1.解:(1)[] 2,[﹣1]=﹣1+2=1;(2)a >0,b <0,[a]=[b],即a ﹣2=b+2,解得:a ﹣b =4,故(b ﹣a )﹣2a+2b =(b ﹣a )﹣2(a ﹣b )=(﹣4)﹣8=﹣72;(3)当x≥0时,方程为:2x ﹣2+x+1﹣2=1,解得:x ;当﹣1<x<0时,方程为:2x+2+x+1﹣2=1,解得:x =0(舍弃);当x≤﹣1时,方程为:2x+2+x+1+2=1,解得:x;故方程的解为:x.解析:2.解:(1)∵(4,y )是“相伴数对”,∴解得y =﹣9;(2)∵(a ,b )是“相伴数对”,∴解得a b ;(3)∵(m ,n )是“相伴数对”,∴由(2)得,mn ,∴原式=﹣3mn ﹣2=﹣3×(n )n ﹣2=﹣2.解析:3.解:(1)由题意得:g (x )=2x ;故答案为:2x ;(2)由题意得:g (x )=6x ﹣14,22333由g(x)=10,得6x﹣14=10,解得:x=4;故答案为:6x﹣14;(3)由题意得:g(x)=2(a﹣3)x﹣8=(2a﹣6)x﹣8,由g(x)=﹣2x,得(2a﹣6)x﹣8=﹣2x,化简整理得:(a﹣2)x=4,∵方程有正整数解,∴a﹣2≠0,可得x,∵a为整数,∴a﹣2=1或2或4,∴a=3或4或6,又∵f(x)是二次多项式,∴a﹣3≠0,可得a≠3,综上可知,a=4或6.解析:4.解:(1)解方程3x﹣3+4(x﹣1)=0得,x=1,解方程﹣2y﹣y=3得,y=﹣1,∵1﹣(﹣1)=2>1,∴方程3x﹣3+4(x﹣1)=0与方程﹣2y﹣y=3的解不接近;(2)关于x的方程3x﹣3+4(x﹣1)=0的解为x=1,关于y的方程y=2k+1的解为y=3k+2,∵关于x的方程3x﹣3+4(x﹣1)=0与关于y的方程y=2k+1的解接近,∴|1﹣(3k+2)|≤1,解得k≤0或k,即k≤0,∴k的最大值是0,最小值;(3)解方程x﹣m=2x﹣5得,x解方程y+7×2018﹣1=4036y+2018m得,y∵1∴方程x﹣m=2x﹣5与方程y+7×2018﹣1=4036y+2018m的解接近.解析:自主探究自主探究题目1.B解析:解:解2x+1=﹣2,得x.把x代入1﹣2(x﹣a)=2,得1﹣2(a)=2.解得a=﹣1,故选:B.2.C解析:解:方程移项合并得:(a﹣3)x=b+4,由方程有无数个解,得到a﹣3=0,b+4=0,解得:a=3,b=﹣4,故选:C.3.B解析:解:令y=|x﹣4|+2|x﹣2|+|x﹣1|+|x|,当x≥4时,y=5x﹣9≥11,当2<x<4时,y=3x﹣1,∴5<y<11;当1≤x≤2时,y=﹣x+7,∴5≤y≤6;当0<x<1时,y=﹣3x+9,∴6<y<9;当x≤0时,y=﹣5x+9,∴y≥9;综上所述,y≥5,∴a≥5时等式恒有解.故选:B.4.(1) x=3;(2) x=1.解析:解:(1)移项得:4x+x=12+3,合并得:5x=15,解得:x=3;(2)去分母得:3(1﹣x)+12=4(2x+1),去括号得:3﹣3x+12=8x+4,移项得:﹣3x﹣8x=4﹣3﹣12,合并得:﹣11x=﹣11,解得:x=1.5.解:解方程5x﹣3=2x,可得:x=1,∵5x﹣3=2x与方程4x=6的解互为相反数,∴方程4x=6的解是x=﹣1,∴,解得k,∴(1k)=(1)=﹣1.解析:556.解:由方程ax+6=5x﹣b有无数个解,得到a=5,b=﹣6,则原式=25﹣6=19.解析:7.解:方程3x+2=﹣4,解得:x=﹣2,因为x、y互为相反数,所以y=2,把y=2代入第二个方程得:6﹣3=2m﹣1,解得:m=2.解析:8.解:去括号得:ax﹣5a=x+1,移项得:ax﹣x=1+5a,合并得:(a﹣1)x=1+5a,当a﹣1≠0时,x,当a﹣1=0时,方程无实数解,∴当a≠1时,方程的根是x;当a=1时,方程没有实数根.解析:9.解:方程的解是数轴上到与到的所有点的集合,∴x,则该方程的整数解为x=﹣1或x=0;解析:10.解:去分母,得:ax+10=7x﹣3,移项、合并同类项,得:(a﹣7)x=﹣13,系数化成1得:x,∵x是正整数,∴a﹣7=﹣1或﹣13,∴a=6或﹣6.又∵a是正整数.∴a=6.解析:。
专题03 一元一次方程(专题详解)(解析版)
专题03 一元一次方程专题详解专题03 一元一次方程专题详解 (1)3.1从算式到方程 (3)知识框架 (3)一、基础知识点 (3)知识点1 方程和一元一次方程的概念 (3)知识点2 方程的解与解方程 (4)知识点3 等式的性质 (4)二、典型题型 (6)题型1 依题意列方程 (6)题型2 运用等式的性质解方程 (6)三、难点题型 (8)题型1 利用定义求待定字母的值 (8)3.2解一元一次方程-合并同类项和移项 (9)知识框架 (9)一、基础知识点 (9)知识点1 合并同类项解一元一次方程 (9)知识点2 移项解一元一次方程 (10)二、典型题型 (12)题型1 一元一次方程的简单应用 (12)3.3解一元一次方程-去括号与去分母 (13)知识框架 (13)一、基础知识点 (13)知识点1 去括号 (13)知识点2 去分母 (14)二、典型题型 (16)题型1 去括号技巧 (16)题型2 转化变形解方程 (17)题型3 解分子分母中含有小数系数的方程 (19)三、难点题型 (21)题型1 待定系数法 (21)题型2 同解问题 (21)题型3 含参数的一元一次方程 (22)题型4 利用解的情况求参数的值 (23)题型5 整体考虑 (24)3.4实际问题与一元一次方程 (25)一、基础知识点 (25)知识点1 列方程解应用题的合理性 (25)知识点2 建立书写模型常见的数量关系 (25)知识点3 分析数量关系的常用方法 (26)二、典型例题 (28)3.1从算式到方程知识框架一、基础知识点知识点1 方程和一元一次方程的概念1) 方程:含有未知数的等式。
例:3x=5y+2;100x=200;3x 2+2y=3等2)一元一次方程:只含有一个未知数(元,隐含未知数系数不为0),未知数的次数是1(次),等号两边都是整式(整式:未知数的积,而非商)的方程。
如何判断一元一次方程:①整式方程;②只含有一个未知数,且未知数 的系数不为0;③未知数的次数为1. 例:3112=+x ;3112=+x ;3m-2n=5;3m=5;6x 2-12=0 例1.下列各式中,那些是等式?那些是方程?①3x-6;②3-5=-2;③x+2y=8;④x+2≠3;⑤x-x1=2; ⑥y=10;⑦3y 2+2y=0;⑧3a<-5a ;⑨3x 2+2x-1=0;⑩213m m y =-+ 【答案】是方程的有:③、⑤、⑥、⑦、⑨、⑩方程需满足2个条件:1)含有未知数;2)是等式。
解一元一次方程(讲义)(含答案)
解一元一次方程➢ 课前预习1. 含有_______的_______叫做方程.2. 等式的基本性质性质1:等式两边同时加上(或减去)_________,所得结果仍是等式.性质2:等式两边同时乘___________(或_____________________),所得结果仍是等式.3. 已知a ,b ,x ,y 都是未知数,给出下列式子:①21x +;②325+=;③231x +≠;④321a +=;⑤531a b +=;⑥23x y =;⑦251x x =+.其中是方程的有_________________.(填序号)4. 解下列方程:(1)192x -=; (2)36248a +=.➢ 知识点睛1. 一元一次方程的定义:只含有__________ ,______________,等号两边都是_______的方程叫做一元一次方程.2. 使方程中等号左右两边________的___________叫做方程的解.3. 等式的基本性质:①等式两边加(或减)同一个__________结果仍___________;②等式两边乘同一个数,或除以同一个_________的数,结果仍___________.4. 解方程的五个步骤:①______________;②______________;③_____________;④______________;⑤_______________.➢ 精讲精练1. 下列各式中,是一元一次方程的为_________(填序号).①210x +=;②3x -5y =1;③21x x +=;④3+7=10.2. 若(1)6aa x -=-是关于x 的一元一次方程,则a =______.3. 如果x =2是方程5ax =的解,那么a =__________.4. 解下列方程:(1)1036x x +=-;解:移项,得合并同类项,得系数化为1,得(2)3653x x x --=+;(3)2(10)52(1)x x x x -+=+-;解:去括号,得移项,得合并同类项,得系数化为1,得(4)37(1)32(3)x x x --=-+;(5)15233 442x x+=-;解:去分母,得移项,得合并同类项,得系数化为1,得(6)111 3312x x+=-;(7)11051 2442x xx x+--=+;解:去分母,得去括号,得移项,得合并同类项,得系数化为1,得(8)1511 36x x+--=;(9)1337y y --=;(10)14126110312--=+--x x x ;(11)4 1.5 1.250830.50.12x x x ----=+; 解:原方程可化为 去分母,得去括号,得移项,得合并同类项,得系数化为1,得(12)0.89 1.33511.20.20.3x x x --+-=.5. m 为何值时,代数式3152--m m 的值与代数式27m -的值的和等于5?【参考答案】➢ 课前预习1. 未知数 等式2. 同一个数 同一个数 除以同一个不为0的数3. ④⑤⑥⑦4. (1)21x = (2)6a =➢ 知识点睛1. 一个未知数 未知数的次数都是1 整式2. 相等 未知数的值3. 数(或式子),相等不为0,相等4. 去分母 去括号 移项 合并同类项 系数化为1 ➢ 精讲精练1. ①2. -13. 2.54. (1)8x =;(2)3x =-; (3)43x =-; (4)5x =; (5)8x =;(6)58x =; (7)43x =-; (8)1x =-; (9)47y =;(10)12x =; (11)2x =-;(12)1x =-. 5. 7m =-。
一元一次方程及解法专题讲义
一元一次方程的概念及解法一、知识梳理:知识点1、一元一次方程的概念:(1)、方程:含有未知数的等式叫方程,能够使方程左右两边的值相等的未知数的值叫方程的解,求方程的解的过程叫解方程。
(2)、一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0的一类方程叫做一元一次方程。
一元一次方程的标准形式0ax b +=(其中x 是未知数,a b 、是已知数,并且0a ≠)知识点2、等式及其基本性质(1)定义:用等号“=”表示相等关系的式子叫等式。
(2)等式的基本性质:①等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。
②等式两边都乘以或除以同一个不为0的数,所得结果仍是等式。
三、解一元一次方程的一般步骤: (1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住:移项要变号);(4)合并同类项:把方程化为()0ax b a =≠的形式;(5)系数化为1:在方程两边都除以未知数的系数a ,得到方程的解b x a=。
解一元一次方程时,可以根据方程的形式灵活地安排解题步骤,不必机械地生搬硬套。
二、典例精讲:考点一、概念的考查例1、(2011、鄂州训练题)下列各式是方程的是 ,其中是一元一次方程的是 。
(1)327x -=;(2)4812+=;(3)3x -;(4)230m n -=;(5)23210xx --=;(6)23x +≠;(7)251x =+ 变式训练:1、判断下列各式中哪些是等式?哪些是代数式?哪些是方程?哪些是一元一次方程?(1)253-+=;(2)317x -=;(3)0m =;(4)3x >;(5)8x y +=; (6)22510xx ++=;(7)2a b + 2、方程()110m m x ++=是关于x 的一元一次方程,则m =考点二、方程的解 例2、(2011、宜昌模拟)若关于x 的方程332x a x -=+的解是4x =,求2a a - 的值。
第09讲-用一元一次方程解决问题(12种题型)(解析版)精选全文
第09讲用一元一次方程解决问题(12种题型)一、配套问题配套问题在考试中十分常见,比如合理安排工人生产、按比例选取工程材料、调剂人数或货物等。
解决配套问题的关键是要认识清楚部分量、总量以及两者之间的关系。
每套所需各零件的比与生产各零件总数量成反比.二、工程问题工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:①工作量=工作效率×工作时间;②工作时间=,③工作效率=。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。
还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。
三. 销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打6折出售,即按原标价的60%出售.四、比赛积分问题①.获取信息(找出胜、平、负的场数和积分,胜、平、负1场的积分,该队的总积分)②.能用字母表示数(常设胜/平/负的场数为x)③.寻找等量关系胜场数×胜1场的积分+平局场数×平1场的积分+负场数×负1场的积分=这个队的总积分五、方案选择问题1.借助方程先求出相等的情况。
2.再考虑什么情况下一种方案比另一种方案好,从而进行决策。
六、数字问题1、多位数的表示方法:①若一个两位数的个位上的数字为a,十位上的数字为b,则这个两位数是10b+a②若一个三位数的个位上的数字为a,十位上的数字为b,百位上的数字为c,则这个三位数是100c+10b+a③四、五…位数依此类推。
2、连续数的表示方法:①三个连续整数为:n-1,n,n+1(n为整数)②三个连续偶数为:n-2,n,n+2(n为偶数)或2n-2,2n,2n+2(n为整数)③三个连续奇数为:n-2,n,n+2(n为奇数)或2n-1,2n+1,2n+3(n为整数)七、几何问题1.将几何图形赋予了代数元素,便产生了一类新问题,2.解决这类问题时,通常要用到图形的性质以及几何量之间的关系.八、和差倍分问题1.和、差关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2.倍、分关系:通过关键词语“是几倍、增加几倍、增加到几倍、增加百分之几、增长率……”来体现.3.比例问题:全部数量=各种成分的数量之和.此类题目通常把一份设为x.解题的关键是弄清“倍、分”关系及“和、差”关系.九、分段计费问题分段计费问题解题思路1.明确分段区间2.明确不同区间的计费标准3.分区间讨论计算十. 行程问题1.行程问题中有三个基本量:路程、时间、速度。
一元一次方程应用题全部解法整理课件
依题意得:x+ (1+20%)x +(1+20%)(1+25%)x=7400 x=2000
(1+20%) (1+25%)x=3000 答:该食堂九月份节约煤3000公斤.
例2、春节前某商场搞促销活 动,降价销售,把原定价为 3860的彩电以9折优惠出售, 但仍可获利25%的利润,那 么这种彩电的进价是多少元 ?
工作总量 ———————————
完成工作总量的时间
2)工作总量=工作效率×工作时间 工作总量
3)工作时间= ————— 工作效率
4)各队合作工作效率=各队工作效率之和
5)全部工作量之和=各队工作量之和
例1 修筑一条公路,甲工程队单独承包要80天完成,乙工程队单独 承包要120天完成
1)现在由两个工程队合作承包,几天可以完成? 2)如果甲、乙两工程队合作了30天后,因甲工作队另有任务,
例3、某商店在销售商品时 ,先按进价的150%标价后 ,为了吸引消费者,再按8
折销售,此时每件仍可获 利120元,那么商品的进价 为多少元?
例4、某商品把一个书包按进价提 高50%标价,然后再按8折出售
,这样商场每卖出一个书包就可 盈利8元,这种书包的进价是多 少元?若按6折出售,商场还盈 利吗?为什么?
等量关系:60套时总利润=72套时总利润 依题意得: 60(100 - x)= 72(100 – 3 – x)
x = 82 答:每套课桌椅的成本是82元。
练习3、某商店经销一种商品,由于进货价 降低了5%,售出价 不变,使得利润率有原 来的m%提高到(m + 6)%, 求m的值。
分析: 等量关系是售出价不变,两种不同利润率下的售 价各如何表示?成本我们可以设为“1”
(完整word版)初一数学一元一次方程应用题专项讲解
一元一次方程解应用题专项讲义一、和、差问题1. 2004年与1988年奥运会我国共获91枚奖牌,其中2004年比1988年的2倍多7枚,问:1988年我国获得几枚奖牌?2.一台拖拉机耕一块地,第一天耕了这块地的四分之一,第二天耕了这块地的五分之一,第三天耕了10亩,第四天耕了这块地的三分之一,这时还剩下3亩没耕完,求这块地共有多少亩?3.为了把2008年的北京奥运办成一届绿色奥运 ,五中和十中的同学积极参加绿化工程劳动,两校共绿化了290亩的土地,十中绿化的面积比五中绿化面积的2倍少10亩,这两所中学分别绿化了多少面积?二、调配问题(一)人数调配1.某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?(二)物品调配1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?2、甲仓库储粮35吨 ,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?3、甲、乙两个仓库共有20吨货物,从甲仓库调出101到乙仓库后,甲仓库中的货物比乙仓库中的货物多16吨.问甲、乙两仓库中原来各有多少吨货物?三、分配问题:1.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
2.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?3.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。
四、配套问题:1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
七年级上册一元一次方程优质讲义(含答案解析)第三部分
例题基础训练1.现有120台大小两种型号的挖掘机同时工作,大型挖掘机每小时可挖掘土方360立方米,小型挖掘机每小时可挖掘土方200立方米,20小时共挖掘土方704000立方米,求大小型号的挖掘机各多少台?2.列一元一次方程解应用题:元旦晚会是南开中学“辞旧岁,迎新年”的传统活动.晚会当天,小明组织班上的同学出去买气球来布置教室.已知买气球的男生有23人,女生有16人,且每个女生平均买的气球数比每个男生平均买的气球数多1个.回到学校后他们发现,男生买的气球总数比女生气球总数的还少1个,请问每个女生平均买几个气球? 3.明理中学举行科技作品大奖赛,共收到科技作品120件,经过全体学生投票,评选出一、二、三等奖.(1)填表:(2)获奖作品占收到的作品的几分之几?(3)学校为鼓励更多同学参与科技创新,决定对参与本次大赛的同学进行奖励,并增设了参与奖.若参与奖奖品的单价是三等奖奖品单价的,二等奖奖品的单价与三等奖奖品的单价的比为3:2,参与奖奖品的总费用比一等奖奖品的总费用少,已知购买本次大赛奖品一共花费了1800元,求一等奖奖品的单价.1.甲、乙、丙三人共同出资做生意,甲投资了24万元,乙投资了20万元,丙投资了28万元,年终时,共赚得利润27万元,甲、乙、丙三人按比例进行分配,各可以分得多少利润?2.列方程解应用题:现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新造校舍的面积是拆除旧校舍面积的3倍还多1000平方米.这样,计划完成后的校舍总面积可比现有校舍面积增加20%.(1)改造多少平方米旧校舍;(2)已知拆除旧校舍每平方米费用80元,建造新校舍每平方米需费用700元,问完成该计划需多少费用.3. 国庆期间,微利超市为了提高各种糖果的销量,将奶糖、水果糖和巧克力糖混合成甲乙两种礼盒销售,其中甲盒糖果重2千克,甲盒奶糖的重量占甲盒糖果重量的.(1)甲盒糖果中奶糖重多少千克?(2)若乙盒糖果重量比甲盒糖果重量多,且乙盒糖果中水果糖占,奶糖比巧克力糖多,求乙盒糖果中巧克力糖重多少千克?(3)在(2)的条件下,已知水果糖进价为每千克10元,是奶糖进价的,比巧克力糖进价少,甲种礼盒糖果定价40元,乙种礼盒糖果定价60元,当甲种糖果礼盒销量比乙种糖果礼盒销量多时,两种礼盒获利相同,则甲种礼盒中巧克力糖重多少千克?内容提要年龄问题例题基础训练模块二一元一次方程的应用内容提要工程问题例题1.派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄约4倍还大1岁,则派派今年的年龄为 .2. 父亲和女儿的年龄之和是54,当父亲的年龄是女儿现在年龄的3倍时,女儿的年龄正好是父亲现在年龄的,则女儿现在的年龄是 .1.今年小李的年龄是他爷爷年龄的五分之一,小李发现:12年之后,他的年龄变成爷爷的年龄三分之一.求小李爷爷今年的年龄.2.甲、乙两年龄不等,已知当甲是乙现在的年龄时,乙6岁;当乙与甲现在的年龄相同时,甲21岁,今年甲的年龄有 岁.基础训练1.整理一批图书,由甲单独完成需要15小时,由乙单独完成需要20小时.现在先让甲整理1小时,之后甲乙两人合作整理完这批图书,那么乙工作了几个小时?2.某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?3.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?1.[单选题] 某工厂生产某种零件,原计划每天生产500个,则刚好能在规定时间完成任务,但实际每天比原计划多生产60个零件,结果在规定时间还剩3天时完成了任务,并多生产了1200个零件,设该工厂的任务是共生产x 个零件,则可列方程( )A . B . C . D. 2.[单选题] 一项工程由甲工程队单独完成需要12天,由乙工程队单独完成需要16天,甲工程队单独施工5天后,为加快工程进度,又抽调乙工程队加入该工程施工,问还需多少天可以完成该工程?如果设还需要x 天可以完成该工程,则下列方程正确的为( )A .B .C .12(5+x )+16x =1 D .12(5+x )=16x3.[单选题] 一项工程,甲单独完成需10天,乙单独完成需15天,现在两人合作完成后厂家共付给450元,如果按完成工作量的多少分配,则甲、乙两人各分得( )A .250元,200元 B .260元,190元 C .265元,185元 D .270元,180元模块三实际问题与一元一次方程内容提要利润问题例题基础训练4.某检测站要做规定的时间内检测一批产品,原计划每天检测30件产品,则在规定的时间内只能检测完总数的,现在每天实际检测50件,结果不仅比原计划提前来1天完成任务,还可以多检测25件,(1)求规定时间是多少天?(2)求这批产品共有多少件?1.[单选题]校门口一文具店把一个足球按进价提高80%为标价,然后再按7折出售,这样每卖出一个足球可盈利6.5元.设一个足球进价为x元,根据题可以列一元一次方程,正确的是( )A.(1+80%)x﹣70%x=6.5 B.(1+80%)x×70%﹣x=6.5 C.80%x×70%﹣x=6.5 D.(1+80%)x﹣(1﹣70%)x=6.52.[单选题]某商店以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,那么商店卖出这两件衣服总的是( )A.亏损10元 B.不赢不亏 C.亏损16元 D.盈利10元3.某商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元,设每件服装的标价是x元,则可列方程为 .1.[单选题]一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则设销售员出售此商品最低可打x折,由题意列方程,得( )A.3000x=2000(1﹣5%) B.内容提要费用问题例题基础训练C.D.2.[单选题] 某商场销售甲、乙两种服装,已知乙服装每件的成本比甲服装贵50元,甲、乙服装均按成本价提高40%作为标价出售.一段时间后,甲服装卖出了350件,乙服装卖出了200件,销售金额为129500元,若用方程350×1.4x+200×1.4×(x+50)=129500表示其中的数量关系,则式子中x所表示的量是( )A.甲服装的标价 B.乙服装的标价 C.甲服装的成本价 D.乙服装的成本价3.[单选题]商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( )A.九折 B.八五折 C.八折 D.七五折1.单价、数量、总价的关系式:__________________________.答案:总价=单价×数量1. 生态公园计划在园内的坡地上种植一片有A、B两种树的混合林,需要购买这两种树苗共100棵.假设这批树苗种植后成活95棵,种植A、B两种树苗的相关信息如下表:(1)设购买A种树苗x棵,则购买B种树苗 棵,根据题意可列方程为 ,解得x= .(2)求种植这片混合林的总费用需多少元?1.[单选题] 为减少雾霾天气对身体的伤害,班主任王老师在某网站为班上的每一位学生购买防雾霾口罩,每个防霾口罩的价格是15元,在结算时卖家说:“如果您再多买一个口罩就可以打九折,价钱会比现模块四一元一次方程的应用——行程问题内容提要相遇问题例题基础训练在便宜45元”,王老师说:“那好吧,我就再给自己买一个,谢谢.”根据两人的对话,判断王老师的班级学生人数应为( )A .38 B .39 C .40 D .411. A 、B 两站相距300千米,一列快车从A 站开出,行驶速度是每小时60千米,一列慢车从B 站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)2. 已知某铁路桥长1000米,现有一列火车匀速从桥上通过,火车从车头上桥到车尾离桥共用了1分钟,整列火车完全在桥上的时间为40秒,求火车的长度及其行驶速度.1.[单选题] 甲、乙二人从相距21千米的两地同时出发,相向而行,120分钟相遇.甲每小时比乙多走500米,设乙的速度为x 千米/小时,下面所列方程正确的是( )A .2(x+500)+2x =21 B .2(x+0.5)+2x =21 C .120(x ﹣500)+120x =21 D .120(x ﹣0.5)+120x =212.[单选题] A 、B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,2h 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发x 小时后追上甲车,根据题意可列方程为( )内容提要追及问题例题A.60(x+2)=100x B.60x=100(x﹣2) C.60x+100(x﹣2)=600 D.60(x+2)+100x=6003.[单选题] A、B两地相距720km,甲车从A地出发行驶120km后,乙车从B地驶往A地,3h后两车相遇,若乙车速度是甲车速度的倍,设甲车的速度为xkm/h,则下列方程正确的是( )A.720+3x=3 x+120 B.720+120=3(x x) C.3(x x)+120=720 D.3x+3 x+120=7201.如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?2.一天早晨,乐乐以80米/分的速度上学,5分钟后乐乐的爸爸发现他忘了带数学书,爸爸立即骑自行车以280米/分的速度去追乐乐,并且在途中追上了他,请解决以下问题:(1)爸爸追上乐乐用了多长时间?(2)爸爸追上乐乐后,乐乐搭爸爸的自行车回到学校,结果提前了10分钟到校,若爸爸搭上乐乐后的骑行速度为240米/分,求乐乐家离学校有多远.基础训练内容提要航行问题例题1.[单选题] 甲、乙两人从同一个地点出发,沿着同一条线路进行赛跑练习,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米,设x秒后甲可以追上乙,则下面列出的方程不正确的是( )A.7x=6.5x+5 B.7x+5=6.5x C.7x﹣6.5x=5 D.6.5x=7x﹣52. 甲、乙两人骑自行车分别从相距36km的两地匀速同向而行,如果甲比乙先出发半小时,那么他们在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么他们在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?3.列方程解应用题:为了参加2019年广州马拉松比赛,爸爸与小明在足球场进行耐力训练,他们在400米的环形跑道上同一起点沿同一方向同时出发进行绕圈跑,爸爸跑完一圈时,小明才跑完半圈,4分钟时爸爸第一次追上小明,请问:(1)小明与爸爸的速度各是多少?(2)再过多少分钟后,爸爸在第二次追上小明前两人相距50米?1. 一艘轮船在A、B两地之间航行,顺水航行需要3小时,逆水航行需要5小时.已知该轮船在静水中的速度是12千米每小时,求A、B两地之间的距离.解:设水流速度为x千米每小时,可列方程为: .基础训练模块五一元一次方程的应用内容提要积分问题例题2. 沿河两地相距100千米,船在静水中的速度为a千米/时,水流速度为b千米/时,此船一次往返所需时间为5小时,根据题意请列出方程 .3. 某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)1. 一架飞机在两城之间飞行,顺风需5小时30分,逆风需6小时.已知风速为24千米/小时,求飞机在无风时的速度.设飞机飞行无风时的速度为x千米/小时.则列方程为 .2.[单选题] 一艘轮船沿长江从A港顺流行驶到B港,然后从B港逆流返回A港,结果返回时多用了3小时.若船速为40千米/时,水速为5千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )A.B.C.D. 31.[单选题] 在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为( )A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74 C.3x+(26﹣x)=74 D.x+3 (26﹣x)=742.[单选题] 学校组织知识竞赛,共设20道选择题,各题分值相同.下表记录了3名参赛学生的得分情况,若参赛学生小亮只答对了16道选择题,则小亮的得分是( ) 基础训练模块六一元一次方程的应用内容提要盈亏问题例题A.80 B.76 C.75 D.701.[单选题] 某次足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分.某支足球队共打了14场比赛,负5场,共得19分,那么在这次比赛中这支足球队胜了( )A .6场 B.5场 C.4场 D.3场2. 某篮球运动员去年共参加40场比赛,其中3分球命中的可能性为,平均每场有12次3分球未投中,该运动员去年的比赛中共投中3分球的个数可能是 .1.[单选题] 某班42名同学去公园乘电动船或脚踏船游玩,每只电动船坐6人,每只脚踏船坐4人,一共乘坐了8只船(全部坐满).若设电动船x只,则可列方程( )A.4x+6(8﹣x)=42 B.6x+4(8﹣x)=42 C. D.2.[单选题]用一根绳子环绕一棵大树,若环绕大树3周绳子还多4米,若环绕4周又少了3米,则环绕大树一周需要绳子长( )A.5米 B.6米 C.7米 D.8米3.某校安排学生住宿,若每室住7人,则有10人无法安排;若每室住8人,则恰好空出2个房间,这个学校的住宿生有多少人?基础训练模块七一元一次方程的应用内容提要方案选择问题例题1.[单选题]某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是( )A .90元 B .72元 C .120元 D .80元2.[单选题] 某班同学春季植树,若每人种4棵树,则还剩12棵树;若每人种5棵树,则还少18棵树.若设共植x 棵,则可列方程( )A .B.C .D .3.[单选题]我国明代数学读本《算法统宗》一书中有这样一道题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托”,如果1托为5尺,那么索和竿子各为几尺?设竿子为x 尺,可列方程为( )A .x+5 x =5 B .x (x+5)=1 C .x x+5=5 D .x (x+5)=51. 延庆区某中学七年级(1)(2)两个班共104人,要去延庆地质博物馆进行社会大课堂活动,老师指派小明到网上查阅票价信息,小明查得票价如图:其中(1)班不足50人,经估算,如果两个班都以班为单位购票,一共应付1240元.(1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可以省多少钱?(3)如果七年级(1)班单独组织去博物馆参观,你认为如何购票最省钱?2. 松雷中学刚完成一批校舍的修建,有一些相同的办公室需要粉刷墙面.一天3名一级技工去粉刷7个办公室,结果其中有90m 墙面未来得及粉刷;同样时间内4名二级技工粉刷了7个办公室之外,还多粉刷了另外的70m 墙面.每名一级技工比二级技工一天多粉刷40m 墙面.222基础训练(1)求每个办公室需要粉刷的墙面面积.(2)已知每名一级技工每天需要支付费用100元,每名二级技工每天需要支付费用90元.松雷中学有40个办公室的墙面和720m 的展览墙需要粉刷,现有3名一级技工的甲工程队,4名二级技工的乙工程队,要来粉刷墙面.松雷中学有两个选择方案,方案一:全部由甲工程队粉刷;方案二:全部由乙工程队粉刷;若使得总费用最少,松雷中学应如何选择方案,请通过计算说明.21. 某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?2.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?模块八一元一次方程的应用内容提要考法1.配套问题例题基础训练1.[单选题] 一套仪器由一个A部件和三个B部件构成,用1m钢材可做40个A部件或240个B部件,现要用6m钢材制作这种仪器,设应用xm钢材做B部件,其他钢材做A部件,恰好配套,则可列方程为( )A.3×40x=240(6﹣x) B.3×240x=40(6﹣x) C.40x=3×240(6﹣x) D.240x=3×40(6﹣x)3332.[单选题] 宜宾某机械厂加工车间有34名工人,平均每名工人每天加工大齿轮20个或小齿轮15个.已知3个大齿轮和2个小齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能刚好配套?若设加工大齿轮的工人有x名,则可列方程为( )A.20x=15(34﹣x) B.2×20x=3×15(34﹣x) C.3×20x=2×15(34﹣x) D.3×20(34﹣x)=2×15x3. 某车间100个工人,每人平均每天可加工甲零件18个或乙零件24个,要使每天加工的甲、乙零件配套(4个甲零件配3个乙零件),应如何分配工人加工甲零件和乙零件?1. 某糕点厂中秋节前要制作一批盒装月饼,每盒中2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,制作1块小月饼要用0.02kg面粉,若现共有面粉540kg,设可以生产x盒盒装月饼,则可列方程为 .2. 制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用1m木材可制作15个桌面或300个桌腿,公司现有18m的木材.33内容提要考法2.调配问题例题基础训练(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)家具公司欲将制作餐桌全部出售,为尽快回收资金,决定以标价的八折出售,一张餐桌仍可获利28%,这样全部出售后总获利31500元.求每张餐桌的标价是多少?1.[单选题] 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍.设调往甲处植树x 人,则可列方程( )A.23﹣x=2(17+20﹣x) B.23﹣x=2(17+20+x) C.23+x=2(17+20﹣x) D.23+x=2(17+20+x)2.[单选题] 我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得( )A. 3(100﹣x)=100 B. 3(100﹣x)=100 C.3x 100 D.3x 1001.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为 .2.[单选题]甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队?如果设应从乙队调x人到甲队,列出的方程正确的是( )A.96+x (72﹣x) B.(96+x)=72﹣x C.(96﹣x)=72﹣x D. 96+x=72﹣x模块九一元一次方程的应用内容提要分段计费问题例题3.抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?1.为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如表:已知小智家上半年的用电情况如表(以200度为标准,超出200度记为正、低于200度记为负)根据上述数据,解答下列问题(1)小智家用电量最多的是 月份,该月份应交纳电费 元;(2)若小智家七月份应交纳的电费200.6元,则他家七月份的用电量是多少?基础训练2. 东莞市出租车收费标准如下表所示,根据此收费标准,解决下列问题:(1)若行驶路程为5km ,则打车费用为 元;(2)若行驶路程为xkm (x >2),则打车费用为 元(用含x 的代数式表示);(3)某同学周末放学回家,已知打车费用为34元,则他家离学校多少千米?1.[单选题] 某市出租车收费标准是:起步价8元(即行驶距离不超过3km ,付8元车费),超过3km ,每增加1km 收1.6元(不足1km 按1km 计),小梅从家到图书馆的路程为xkm ,出租车车费为24元,那么x 的值可能是( )A .10 B .13 C .16 D .18 2.[单选题]某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,设4月份该用户应交煤气x 立方米,则根据题意列出方程正确的是( )A .60×1.2+0.8(x ﹣60)=0.88x B .60×0.8+1.2(x ﹣60)=0.88x C .60×0.8+0.88(x ﹣60)=1.2 D .1.2(x ﹣60)=0.88x+60×0.8 3. 为提高公民社会责任感,保证每个纳税人公平纳税,调节不同阶层贫富差距,营造“纳税光荣”社会氛围,2019年我国实行新的《个人收入所得税征收办法》,将个人收入所得税的起征点提高至5000元(即全月个人收入所得不超过5000元的,免征个人收入所得税);个人收入超过5000元的,其超出部分称为“应纳税所得额”,国家对纳税人的“应纳税所得额”实行“七级超额累进个人所得税制度”该制度的前两级纳税标准如下:①全月应纳税所得额不超过3000元的,按3%的税率计税.②全月应纳税所得额超过3000元但不超过12000元的部分,按10%的税率计税.按照新的《个人收入所得税征收办法》,在2019年某月,如果纳税人甲缴纳个人收入所得税75元,纳税人乙当月收入为9500元,纳税人丙缴纳个人收入所得税110元.(1)甲当月个人收入所得是多少?(2)乙当月应缴纳多少个人收入所得税?(3)丙当月个人收入所得是多少?自主评价自主探究自主探究题目4.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税.(1)王叔叔十月份税后的工资是多少元?(2)王叔叔将该月税后工资的一半存入银行,然后用余额购买一部定价为3000元的某品牌手机,恰好遇到手机店开展活动,该款手机打八折,则买完手机后还剩下多少元?(3)某家超市正在开展促销活动,促销方案如下:若王叔叔在此次促销活动中付款980元,问他购买的商品原价是多少元?1.[单选题] 阳光中学七(2)班篮球队参加比赛,胜一场得2分,负一场得1分,该队共赛了12场,共得20分,该队胜了多少场?解:设该队胜了x 场,依题意得,下列方程正确的是( )A .2(12﹣x )+x =20 B .2(12+x )+x =20 C .2x+(12﹣x )=20 D .2x+(12+x )=202.[单选题] 某车间有20名工人,每人每天可以生产300张桌子面或800根桌子腿,已知1张桌子面需要配4根桌子腿,为使每天生产的桌子面和桌子腿刚好配套.设安排x 名工人生产桌子面,则以下所列方程正确的是( )A .4×800(20﹣x )=300x B .800(20﹣x )=4×300x C .4×800(x ﹣20)=300x D .800(x ﹣20)=4×300x3.[单选题] 某工程甲独做需10天完成,乙独做需8天完成.现由甲先做3天,再由甲乙合作完成.若设完成此项工程共需x天,则下列方程正确的是( )A. 1 B. C. D.4.[单选题]《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程( )A. 9 B. 2 C. 2 D. 95. 有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排住4人,将会空出5间宿舍:如果每间宿舍安排住3人,就有100人没床位.如果设学校宿舍有x间,则根据题意,可列出的方程为 . 6. 某人从甲地到乙地,全程的乘车,全程的乘船,最后又步行了4km到达乙地,设甲、乙两地的路程为xkm,则根据题意可列方程 .7. 某省公布的居民用电阶梯电价听证方案如下:(1)如果按此方案计算,小华家8月用电量为400度,则需交电费多少元?(2)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量.8.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?。
人教版初中数学同步讲义七年级上册第02讲 解一元一次方程(解析版)
1. 具体步骤: ①去括号:用括号前的数(包含符号)乘以括号内的 每一项 。当括号前是负数时,一定要改变
每一项的 符号 。 ②移项:把含有未知数的项移到等号的左边,常数项移到等号的右边。注意移动过的项一定要改变符
号。 ③合并:按照合并同类项的方法进行合并。 ④系数化为 1:方程的左右两边同时除以系数或乘上系数的倒数。 题型考点:①步骤的熟悉。 ②利用步骤解方程。
【即学即练 1】
7.解方程 2x﹣(x+10)=5x+2(x﹣1),步骤如下:
去括号,得 2x﹣x﹣10=5x+2x﹣2 第一步
移项,得 2x﹣x﹣5x+2x=﹣2+10 第二步
合并同类项,得﹣2x=8 第三步
系数化为 1,得 x=﹣4 第四步
以上解方程步骤中,开始出现错误的是( )
A.第一步
B.第二步
B.4x=8
C.8x=8
【解答】解:方程 8x+6x﹣10x=8,
合并同类项得:4x=8,
故选:B.
【即学即练 3】
3.判断下列方程的求解过程是否正确,说明原因:
(1)﹣6x+3x=﹣1﹣8.
解:合并同类项,得﹣9x=﹣9.系数化为 1,得 x=1.
(2)5x+4x=18.
解:合并同类项,得 9x=18.
系数化 1,得:x= …………………………第⑥步
C.第三步
【解答】解:解方程 2x﹣(x+10)=5x+2(x﹣1),步骤如下:
去括号,得 2x﹣x﹣10=5x+2x﹣2 第一步
移项,得 2x﹣x﹣5x﹣2x=﹣2+10 第二步
24【基础】一元一次方程的解法(基础课程讲义例题练习含答案)
一元一次方程的解法(基础)知识讲解【学习目标】1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据;2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3. 进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】要点一、解一元一次方程的一般步骤 变形名称 具体做法 注意事项去分母 在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号 (1)不要漏乘括号里的项(2)不要弄错符号 移项 把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)(1)移项要变号(2)不要丢项合并同类项把方程化成ax =b(a ≠0)的形式 字母及其指数不变系数化成1在方程两边都除以未知数的系数a ,得到方程的解b x a=. 不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论: (1)当a ≠0时,b x a=;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解. 【典型例题】类型一、解较简单的一元一次方程1.(•广州)解方程:5x=3(x ﹣4) 【答案与解析】解:方程去括号得:5x=3x ﹣12, 移项合并得:2x=﹣12, 解得:x=﹣6.【总结升华】方法规律:解较简单的一元一次方程的一般步骤:(1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边.(2)合并:即通过合并将方程化为ax =b(a ≠0)的形式.(3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a ,即得方程的解b x a=. 举一反三:【变式】下列方程变形正确的是( ). A .由2x-3=-x-4,得2x+x =-4-3 B .由x+3=2-4x ,得5x =5 C .由2332x -=,得x =-1 D .由3=x-2,得-x =-2-3【答案】D类型二、去括号解一元一次方程2.解方程:【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程. 【答案与解析】(1)去括号得:42107x x +=+ 移项合并得:65x -= 解得:56x =-(2)去括号得:32226x x --=- 移项合并得:47x -=-解得:74x =【总结升华】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号. 举一反三:【变式】解方程: 5(x-5)+2x =-4. 【答案】解: 去括号得:5x-25+2x =-4. 移项合并得: 7x =21.解得: x =3. 类型三、解含分母的一元一次方程()()1221107x x +=+()()()232123x x -+=-3.(春•新乡期末)解方程﹣2=.【思路点拨】方程按照去分母,去括号,移项合并同类项,把x系数化为1的步骤,即可求出解.【答案与解析】解:去分母得:2(2x﹣1)﹣12=3(3x+2),去括号得:4x﹣2﹣12=9x+6,移项合并得:5x=﹣20,解得:x=﹣4.【总结升华】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.举一反三:【变式】(•岳池县模拟)解方程:x+=﹣.【答案】解:去分母得:12x+30=24x﹣8﹣3x+24,移项合并得:﹣9x=﹣14,解得:x=.类型四、解较复杂的一元一次方程4.解方程:0.170.21 0.70.03x x--=【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.【答案与解析】原方程可以化成:1017201 73x x--=.去分母,得:30x-7(17-20x)=21.去括号、移项、合并同类项,得:170x=140.系数化成1,得:1417x=.【总结升华】解此题的第一步是利用分数基本性质把分母、分子同时扩大相同的倍数,以使分母化整,与去分母方程两边都乘以分母的最小公倍数要区分开.5. 解方程:112 [(1)](1) 223x x x--=-【答案与解析】解法1:先去小括号得:11122()22233x x x-+=-再去中括号得:1112224433x x x-+=-移项,合并得:5111212x-=-系数化为1,得:115 x=解法2:两边均乘以2,去中括号得:14(1)(1)23x x x--=-去小括号,并移项合并得:51166x-=-,解得:115x=解法3:原方程可化为:112 [(1)1(1)](1) 223x x x-+--=-去中括号,得1112 (1)(1)(1) 2243x x x-+--=-移项、合并,得51(1)122x--=-解得115 x=【总结升华】解含有括号的一元一次方程时,一般方法是由里到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.举一反三:【变式】32[(1)2]2 234xx---=【答案】解:去中括号得:3(1)22 42xx--⨯-=去小括号,移项合并得:364x-=,解得x=-8类型五、解含绝对值的方程6.解方程|x|-2=0【答案与解析】解:原方程可化为:2x=当x≥0时,得x=2,当x<0时,得-x=2,即,x=-2.所以原方程的解是x=2或x=-2.【总结升华】此类问题一般先把方程化为ax b=的形式,再根据ax的正负分类讨论,注意不要漏解.【巩固练习】 一、选择题 1.(春•唐河县期末)方程|2x ﹣1|=2的解是( )A. x=B. x=﹣C. x=或x=﹣D. x=﹣2.下列解方程的过程中,移项错误的是( ). A .方程2x+6=-3变形为2x =-3+6 B .方程2x-6=-3变形为2x =-3+6 C .方程3x =4-x 变形为3x+x =4 D .方程4-x =3x 变形为x+3x =43. 方程1143x =的解是 ( ). A .12x = B .112x = C .43x = D .34x =4.对方程2(2x-1)-(x-3)=1,去括号正确的是( ).A .4x-1-x-3=1B .4x-1-x+3=1C .4x-2-x-3=1D .4x-2-x+3=1 5.方程1302x --=可变形为( ). A .3-x-1=0 B .6-x-1=0 C .6-x+1=0 D .6-x+1=2 6.3x-12的值与13-互为倒数,则x 的值为( ). A .3 B .-3 C .5 D .-5 7.(•株洲)在解方程时,方程两边同时乘以6,去分母后,正确的是( )A .2x ﹣1+6x=3(3x+1)B .2(x ﹣1)+6x=3(3x+1)C .2(x ﹣1)+x=3(3x+1)D .(x ﹣1)+x=3(x+1)8.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ). A .54盏 B .55盏 C .56盏 D .57盏二、填空题9.(1)方程2x+3=3x-2,利用________可变形为2x-3x =-2-3,这种变形叫________. (2)方程-3x =5,利用________,把方程两边都_______,把x 的系数化为1,得x =________.10.方程2x-kx+1=5x-2的解是x =-1,k 的值是_______. 11.(秋•铜陵期末)如果|a+3|=1,那么a= . 12.(春•南江县校级月考)在解方程﹣=2时,去分母得 .13.在有理数范围内定义一种运算“※”,其规则为a ※b =a-b .根据这个规则,求方程(x-2)※1=0的解为________.14.一列长为150m 的火车,以15m/s 的速度通过600m 的隧道,则这列火车完全通过此隧道所需时间是________s . 三、解答题15.解下列方程:(1)4(2x-1)-3(5x+2)=3(2-x);(2)12323x x x ---=-; (3)0.10.2130.020.5x x -+-= .16.(春•宜阳县期中)当k 取何值时,关于x 的方程2(2x ﹣3)=1﹣2x 和8﹣k=2(x+)的解相同?17.小明的练习册上有一道方程题,其中一个数字被墨汁污染了,成为31155x x ++•=-,他翻看了书后的答案,知道了这个方程的解是14,于是他把被污染了的数字求出来了,请你把小明的计算过程写出来.【答案与解析】一、选择题1.【答案】C.【解析】由题意,2x ﹣1=2,或2x ﹣1=﹣2,解这两个方程得:x=,或x=﹣2. 【答案】A【解析】A 中移项未改变符号. 3. 【答案】C【解析】系数化为1,两边同乘以4即可. 4. 【答案】D【解析】A 中,去掉第1个括号时第二项漏乘,去掉第2个括号时,-3没变号;B 中,去掉第1个括号时第二项漏乘;C 中,去掉第2个括号时,-3没变号. 5.【答案】C【解析】A 中,去分母时3没有乘以2,-1没变号;B 中,去分母时-1没变号;D 中,等号右边0乘以2应是0,而不应是2. 6.【答案】A 【解析】-3x-12与13-互为倒数,所以3x-12=-3,x =3. 7. 【答案】B【解析】解:方程两边同时乘以6得:2(x ﹣1)+6x=3(3x+1),故选B . 8. 【答案】B【解析】设有x 盏,则有(1)x -个灯距,由题意可得:36(1061)70(1)x -=-,解得:55x =.二、填空题9.【答案】(1)等式性质1,移项; (2)等式性质2,除以-3,53- 10.【答案】k =-6【解析】将1x =-代入得:2152k -++=--,解得:6k =-. 11.【答案】﹣2或﹣4.【解析】∵|a+3|=1,∴a+3=1或a+3=﹣1,∴a=﹣2或﹣4. 12.【答案】3(x+1)﹣2(2x ﹣3)=24.【解析】解:方程两边都乘以12,去分母得,3(x+1)﹣2(2x ﹣3)=24.故答案为:3(x+1)﹣2(2x ﹣3)=24.13.【答案】x =3【解析】根据规则得:x-2-1=0,x =3. 14.【答案】50 【解析】6001505015+=(秒) .三、解答题 15.【解析】解:(1)8x-4-15x-6=6-3x 8x-15x+3x =6+4+6 -4x =16x =-4 (2)12323x x x ---=-6x-3(1-x)=18-2(x-2)11x =25 2511x =(3)原方程可化为:10201010325x x -+-=,约分得:5x-10-(2x+2)=3,去括号得5x-10-2x-2=3,移项及合并,得3x =15,系数化为1,得x =5.16.【解析】解2(2x ﹣3)=1﹣2x ,得 x=,把x=代入8﹣k=2(x+),得 8﹣k=2(+), 解得k=4,当k=4时,关于x 的方程2(2x ﹣3)=1﹣2x 和8﹣k=2(x+)的解相同. 17.【解析】解:将14x =代入,得: 113144155⨯++•=-. 解得:3•=.所以被污染的数字为3.。
专题06 一元一次方程(归纳与讲解)(解析版)
专题06 一元一次方程【专题目录】技巧1:巧用一元一次方程求字母系数的值技巧2:特殊一元一次方程的解法技巧【题型】一、一元一次方程概念【题型】二、一元一次方程的解法【题型】三、一元一次方程应用之配套问题和工程问题【题型】四、一元一次方程应用之销售盈亏问题【题型】五、一元一次方程应用之比赛积分问题【考纲要求】1、了解等式、方程、一元一次方程的概念,掌握等式的基本性质.2、掌握一元一次方程的标准形式,熟练掌握一元一次方程的解法.3、会列方程(组)解决实际问题.【考点总结】一、一元一次方程【注意】一元一次方程的特征1.只含有一个未知数x2.未知数x的次数都是13.等式两边都是整式,分母中不含未知数。
2.解一元一次方程的一般步骤:(1)去分母;(2)去括号; (3)移项; (4)合并同类项; (5)未知数的系数化为1. 【技巧归纳】技巧1:巧用一元一次方程求字母系数的值【类型】一、利用一元一次方程的定义求字母系数的值1.已知方程(m -2)x |m|-1+16=0是关于x 的一元一次方程,求m 的值及方程的解. 2.已知方程(3a +2b)x 2+ax +b =0是关于x 的一元一次方程,求方程的解.3.已知(m 2-1)x 2-(m +1)x +8=0是关于x 的一元一次方程,求式子199(m +x)(x -2m)+9m +17的值.【类型】一、利用方程的解求字母系数的值 题型1:利用方程的解的定义求字母系数的值4.关于x 的方程a(x -a)+b(x +b)=0有无穷多个解,则( )A .a +b =0B .a -b =0C .ab =0D .ab =05.关于x 的方程(2a +b)x -1=0无解,则ab 是( )A .正数B .非正数C .负数D .非负数6.已知关于x 的方程9x -3=kx +14有整数解,那么满足条件的整数k =__________. 7.已知x =12是方程6(2x +m)=3m +2的解,求关于y 的方程my +2=m(1-2y)的解.8.当m 取什么整数时,关于x 的方程12mx -53=12⎝⎛⎭⎫x -43的解是正整数? 题型2:利用两个方程同解或解具有已知倍数关系确定字母系数的值9.如果方程x -43-8=-x +22的解与关于x 的方程2ax -(3a +5)=5x +12a +20的解相同,确定字母a 的值.题型3:利用方程的错解确定字母系数的值10.小马虎解方程2x -13=x +a2-1,去分母时,方程右边的-1忘记乘6,其他步骤都正确,这时方程的解为x =2,试求a 的值,并正确解方程. 参考答案1.解:由题意,得⎩⎪⎨⎪⎧|m|-1=1,m -2≠0,所以m =-2.将m =-2代入原方程,得-4x +16=0,解得x =4.2.解:由题意,得⎩⎪⎨⎪⎧3a +2b =0,a≠0,所以3a =-2b ,即a =-23b.当3a +2b =0时,原方程可化为ax +b =0,则x =-ba .将a =-23b 代入方程的解中,得x =-b a =32.3.解:由题意,得⎩⎪⎨⎪⎧m 2-1=0,m +1≠0,所以m =1.当m =1时,原方程可化为-2x +8=0,解得x =4.当m =1,x =4时,199(m +x)(x -2m)+9m +17=199×5×2+9×1+17=2 016. 4.A 5.B 6.8,-8,10或267.解:将x =12代入方程6(2x +m)=3m +2,得6⎝⎛⎭⎫2×12+m =3m +2,解得m =-43. 将m =-43代入方程my +2=m(1-2y),得-43y +2=-43(1-2y),解得y =56.点拨:已知一元一次方程的解,确定关于某一个未知数的方程中另外一个字母的值,只需把未知数的值(方程的解)代入原方程,即可得出含另一个字母的方程,通过求解确定另一个字母的值,从而进行关于其他字母的计算.8.解:原方程可化为12mx -53=12x -23,所以12(m -1)x =1,所以(m -1)x =2.因为x 必须为正整数且m 为整数,故m -1=1或2.当m -1=1,即m =2时,x =2; 当m -1=2,即m =3时,x =1.所以当m =2或3时,方程的解为正整数. 9.解:x -43-8=-x +22,去分母,得2(x -4)-48=-3(x +2).去括号、移项、合并同类项,得5x =50.系数化为1,得x =10.把x =10代入方程2ax -(3a +5)=5x +12a +20, 得2a×10-(3a +5)=5×10+12a +20, 去括号、移项,得20a -3a -12a =5+50+20. 合并同类项,得5a =75,系数化为1,得a =15. 10.解:由题意得4x -2=3x +3a -1,移项、合并同类项,得x =3a +1. 因为x =2,所以2=3a +1,则a =13.当a =13时,原方程为2x -13=x +132-1,解得x =-3.技巧2:特殊一元一次方程的解法技巧【类型】一、分子、分母含小数的一元一次方程 题型1:巧化分母为11.解方程:4x -1.60.5-3x -5.40.2=1.8-x0.1.2.解方程:2x +10.25-x -20.5=-10.题型2:巧化同分母3.解方程:x 0.6-0.16-0.5x0.06=1.题型3:巧约分去分母4.解方程:4-6x 0.01-6.5=0.02-2x0.02-7.5.【类型】二、分子、分母为整数的一元一次方程 题型1:巧用拆分法5.解方程:x -12-2x -36=6-x3.6.解方程:x 2+x 6+x 12+x20=1.题型2:巧用对消法7.解方程:x 3+x -25=337-6-3x15.题型3:巧通分8.解方程:x +37-x +25=x +16-x +44.【类型】三、含括号的一元一次方程 题型1:利用倒数关系去括号9.解方程:32⎣⎡⎦⎤23⎝⎛⎭⎫x 4-1-2-x =2. 题型2:整体合并去括号10.解方程:x -13⎣⎡⎦⎤x -13(x -9)=19(x -9). 题型3:整体合并去分母11.解方程:13(x -5)=3-23(x -5).题型4:不去括号反而添括号12.解方程:12⎣⎡⎦⎤x -12(x -1)=23(x -1). 题型5:由外向内去括号13.解方程:13⎣⎡⎦⎤14⎝⎛⎭⎫13x -1-6+2=0. 题型6:由内向外去括号14.解方程:2⎣⎡⎦⎤43x -⎝⎛⎭⎫23x -12=34x. 参考答案1.解:去分母,得2(4x -1.6)-5(3x -5.4)=10(1.8-x).去括号、移项、合并同类项,得3x =-5.8. 系数化为1,得x =-2915.点拨:本题将各分数分母化为整数1,从而巧妙地去掉了分母,给解题带来了方便 . 2.解:去分母、去括号,得8x +4-2x +4=-10.移项、合并同类项,得6x =-18. 系数化为1,得x =-3.点拨:由0.25×4=1,0.5×2=1,可巧妙地将分母化为整数1. 3.解:化为同分母,得0.1x 0.06-0.16-0.5x 0.06=0.060.06.去分母,得0.1x -0.16+0.5x =0.06. 解得x =1130.4.解:原方程可化为4-6x 0.01+1=0.01-x0.01.去分母,得4-6x +0.01=0.01-x. 解得x =45.点拨:本题将第二个分数通过约分处理后,使两个分数的分母相同,便于去分母.5.解:拆项,得x 2-12-x 3+12=2-x3.移项、合并同类项,得x2=2.系数化为1,得x =4.点拨:方程通过拆项处理后,便于合并同类项,使复杂方程简单化. 6.解:拆项,得⎝⎛⎭⎫x -x 2+⎝⎛⎭⎫x 2-x 3+⎝⎛⎭⎫x 3-x 4+⎝⎛⎭⎫x 4-x5=1. 整理得x -x 5=1.解得x =54.点拨:因为x 2=x -x 2,x 6=x 2-x 3,x 12=x 3-x 4,x 20=x 4-x5,所以把方程的左边每一项拆项分解后再合并就很简便 .7.解:原方程可化为x 3+x -25=247+x -25,即x 3=247.所以x =727. 点拨:此题不要急于去分母,通过观察发现-6-3x 15=x -25,两边消去这一项可避免去分母运算.8.解:方程两边分别通分后相加,得5(x +3)-7(x +2)35=2(x +1)-3(x +4)12.化简,得-2x +135=-x -1012.解得x =-36211.点拨:本题若直接去分母,则两边应同乘各分母的最小公倍数420,运算量大容易出错,但是把方程左右两边分别通分后再去分母,会给解方程带来方便. 9.解:去括号,得x4-1-3-x =2.移项、合并同类项,得-34x =6.系数化为1,得x =-8.点拨:观察方程特点,由于32与23互为倒数,因此让32乘以括号内的每一项,则可先去中括号,同时又去小括号,非常简便.10.解:原方程可化为x -13x +19(x -9)-19(x -9)=0.合并同类项,得23x =0.系数化为1,得x =0.11.解:移项,得13(x -5)+23(x -5)=3.合并同类项,得x -5=3.解得x =8.点拨:本题将x -5看成一个整体,通过移项、合并同类项进行解答,这样避免了去分母,给解题带来简便.12.解:原方程可化为12[(x -1)+1-12(x -1)]=23(x -1).去中括号,得12(x -1)+12-14(x -1)=23(x -1).移项、合并同类项,得-512(x -1)=-12.解得x =115.13.解:去中括号,得112⎝⎛⎭⎫13x -1-2+2=0.[来源:学科网] 去小括号,得136x -112=0.移项,得136x =112.系数化为1,得x =3.14.解:去小括号,得2[43x -23x +12]=34x.去中括号,得43x +1=34x.移项,合并同类项,得712x =-1.系数化为1,得x =-127.【题型讲解】【题型】一、一元一次方程概念例1、关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8C .5D .4【详解】解:因为关于x 的一元一次方程2x a -2+m=4的解为x=1, 可得:a -2=1,2+m=4, 解得:a=3,m=2, 所以a+m=3+2=5, 故选:C .【题型】二、一元一次方程的解法例2、解一元一次方程11(1)123x x +=-时,去分母正确的是( )A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-【答案】D【分析】根据等式的基本性质将方程两边都乘以6可得答案. 【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D . 例3、解方程:221123x x x ---=-【答案】27x =【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解. 【详解】解:221123x x x ---=-()()6326221x x x --=--636642x x x -+=-+ 634662x x x -+=-+ 72x =27x =【题型】三、一元一次方程应用之配套问题和工程问题例4、某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使生产的螺钉和螺母刚好配套,若设x 名工人生产螺钉,依题意列方程为( ) A .1200x =2000(22﹣x ) B .1200x =2×2000(22﹣x ) C .1200(22﹣x )=2000x D .2×1200x =2000(22﹣x )【答案】D【分析】首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母①可知螺母的个数是螺钉个数的2倍①从而得出等量关系,就可以列出方程. 【详解】解:设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000①22-x ),即2×1200x=2000①22-x①①故选D① 【题型】四、一元一次方程应用之销售盈亏问题例5、随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.( )A .180B .170C .160D .150【答案】A【分析】设该超市该品牌粽子的标价为x 元,则售价为80%x 元,根据等量关系:利润=售价﹣进价列出方程,解出即可.【详解】解:设该超市该品牌粽子的标价为x 元,则售价为80%x 元, 由题意得:80%x ﹣120=20%×120, 解得:x =180.即该超市该品牌粽子的标价为180元. 故选:A .【题型】五、一元一次方程应用之比赛积分问题例6、一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是( ) A .17道 B .18道C .19道D .20道【答案】C【分析】设作对了x 道,则错了(25-x )道,根据题意列出方程进行求解. 【详解】设作对了x 道,则错了(25-x )道,依题意得4x -(25-x)=70,解得x=19 故选C.一元一次方程(达标训练)一、单选题1.(2020·浙江·模拟预测)下列各式:①253-+=;①235=3x x x -+;①211x +=;①21=x;①23x +;①4x =.其中是一元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】B【分析】根据一元一次方程的定义逐个判断即可 【详解】解:①不含未知数,故错 ①未知数的最高次数为2,故错①含一个未知数,次数为1,是等式且两边均为整式,故对 ①左边不是整式,故错 ①不是等式,故错①含一个未知数,次数为1,是等式且两边均为整式,故对故选:B【点睛】本题考查了一元一次方程的定义,熟练掌握并理解一元一次方程的定义是解本题的关键2.(2022·浙江温州·三模)解方程2233522x x x x x --+=--,以下去分母正确的是( )A .22335x x x ---=B .22335x x x --+=C .()223352x x x x ---=-D .()223352x x x x --+=-【答案】D【分析】利用等式的性质在分式方程两边分别乘()2x - 即可.【详解】A ,()223352,x x x x +--=-故此选项不符合题意. B ,()223352,x x x x +--=-故此选项不符合题意. C ,()223352,x x x x +--=-故此选项不符合题意. D ,()223352,x x x x +--=-故此选项符合题意.故选:D .【点睛】本题主要考查了解分式方程去分母,根据等式的性质在分式方程两边分别乘以分母的最简公分母,熟练掌握等式的性质是解此题的关键.3.(2022·重庆沙坪坝·一模)若关于x 的方程25x a +=的解是2x =,则a 的值为( ) A .9- B .9 C .1- D .1【答案】D【分析】把2x =代入方程计算即可求出a 的值. 【详解】解:把2x =代入方程得:45a +=, 解得1a =. 故选:D .【点睛】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 4.(2022·河北石家庄·二模)1x =是下列哪个方程的解( ) A .65x =- B .2233+=+x xC .21133x x x x -=-- D .2x x =【答案】D【分析】把x =1代入各选项进行验算即可得解. 【详解】解:A 、5−1=4≠6,故本选项错误; B 、2124⨯+=,3136⨯+=,4≠6,故本选项错误; C 、当x =1时,x -1=0即分式的分母为0,故本选项错误;D 、211=,故本选项正确. 故选:D .【点睛】本题考查了方程的解的概念,使方程的左右两边相等的未知数的值是方程的解. 5.(2022·广东·佛山市南海外国语学校三模)我国古代的《洛书》中记载了最早的三阶幻方—九宫图.在如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等,则m 的值是( )A .5B .3C .1-D .2-【答案】A【分析】根据幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等列出方程,即可求解. 【详解】解:设幻方正中间的数字为a , 依题意得:124a m a ++=++, 解得:5m =. 故选A .【点睛】此题考查了一元一次方程的应用,正确理解题意是解题的关键.二、填空题6.(2022·四川达州·二模)方程2x -3=5的解为________. 【答案】x =4【分析】根据解一元一次方程的解法求解即可得. 【详解】解:2x -3=5, 移项得2x =8, 系数化为1得:x =4, 故答案为:x =4.【点睛】题目主要考查解一元一次方程,熟练掌握方法是解题关键.7.(2022·四川广元·二模)已知:A ,B 在数轴上对应的数分别用a ,b 表示,且2(4)|12|0a b ++-=.若点C 点在数轴上且满足3AC BC =,则C 点对应的数为________. 【答案】8或20##20或8【分析】先根据非负数的性质求出a ,b 的值,分C 点在线段AB 上和线段AB 的延长线上两种情况讨论,即可求解.【详解】解:①2(4)|12|0a b ++-= ①a +4=0,b −12=0 解得:a =−4,b =12①A 表示的数是−4,B 表示的数是12 设数轴上点C 表示的数为c ①AC =3BC ①|c +4|=3|c −12| 当点C 在线段AB 上时 则c +4=3(12−c ) 解得:c =8当点C 在AB 的延长线上时 则c +4=3(c −12) 解得:c =20综上可知:C 对应的数为8或20.【点睛】本题考查了非负数的性质,方程的解法,数轴两点之间的距离,运用分类讨论思想方程思想和数形结合思想是解本题的关键.三、解答题8.(2022·四川广元·一模)解方程:2(1)13x x x --=-. 【答案】12x =-【分析】先去括号,再移项,合并同类项,最后把未知数的系数化“1”,从而可得答案. 【详解】解:去括号,得2213x x x -+=-. 移项及合并同类项,得21x =-. 系数化为1,得12x =-.【点睛】本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤”是解本题的关键. 9.(2022·湖南·长沙市长郡双语实验中学二模)“小口罩,大温暖”,为有效防控疫情,缓解基层防疫物资短缺问题,2020年2月10日,福山区首批4万只口罩免费派发.烟台市政府紧急调拨的这批民用口罩包括A ,B 两种不同款型,其中A 型口罩单价100元,B 型口罩单价80元.(1)先进行试点发放,某社区环卫工人共收到A ,B 两种款型的口罩100盒,总价值共计9200元,求免费发放给该社区环卫工人的A 型口罩和B 型口罩各多少盒?(2)我区某街道办事处决定将此项公益活动在其整个街道社区全面铺开,按照试点发放中A,B两种款型的数量比共发放2000盒.若该社区人口平均每500人发放A型口罩m盒,B型口罩(328m-)盒.求该街道社区人口总数.【答案】(1)免费发放给该社区环卫工人的A型口罩60盒,B型口罩40盒(2)该街道社区人口总数为50000人【分析】(1)设免费发放给该社区环卫工人的A型口罩x盒,B型口罩y盒,根据题意,列出方程,即可求解;(2)根据题意可得3286040m m-=,从而得到m=12,即可求解.(1)解:设免费发放给该社区环卫工人的A型口罩x盒,B型口罩y盒,依题意得:100100809200x yx y+=⎧⎨+=⎩,解得:6040xy=⎧⎨=⎩.答:免费发放给该社区环卫工人的A型口罩60盒,B型口罩40盒.(2)解:依题意得:328 6040m m-=,解得:m=12,①m+3m−28=20.①该街道社区人口总数=200020×500=50000(人).答:该街道社区人口总数为50000人.【点睛】本题主要考查了一元一次方程的应用,二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.一元一次方程(提升测评)一、单选题1.(2022·湖北十堰·一模)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数,羊价各是多少?如果我们设合伙人数为x ,则可列方程( ) A .54573x x +=+ B .54573x x -=-C .45357x x +=+D .45357x x-=+【答案】A【分析】根据每人出5钱,还差45钱;若每人出7钱,还差3钱,可以列出相应的一元一次方程,本题得以解决.【详解】解:设合伙人数为x ,则可列方程为 54573x x +=+;故选:A【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程. 2.(2022·浙江温州·二模)若代数式()()2132x x +++的值为8,则代数式()()2231x x -+-的值为( ) A .0 B .11 C .7- D .15-【答案】C【分析】由()()2132x x +++的值为8,求得x =0,再将x =0代入计算可得. 【详解】解:①()()2132x x +++的值为8, ①2x +2+3x +6=8, ①x =0,当x =0时,()()2231x x -+-=2×(-2)+3×(-1)=-7. 故选:C .【点睛】本题考查了解一元一次方程,代数式的求值,掌握解一元一次方程的解法是解题的关键. 3.(2022·河北·石家庄市第四十一中学模拟预测)已知m n =,下列等式不成立的是( ) A .2m n m += B .0-=m n C .22m x n x -=- D .235m n n -=【答案】D【分析】根据等式的性质和合并同类项即可判断. 【详解】由m n =,得2m n m m m +=+=,故A 成立; 0m n m m -=-=,故B 成立;根据等式的性质,等式两边同加或减一个等式,左右两边仍相等,22m x n x -=-,故C 成立;2323m n n n n -=-=-,故D 不成立;故选D .【点睛】本题考查了等式的性质和合并同类项,熟记运算法则是解题的关键.4.(2022·河北保定·一模)已知分式:341()()32a a a a -+---■的某一项被污染,但化简的结果等于2a +,被污染的项应为( ) A .0 B .1 C .23a a -- D .32a a -- 【答案】B【分析】设被污染的部分为p ,然后根据等式的性质解关于p 的方程,求出p 的表达式即可. 【详解】解:设被污染的部分为p , 则341()()232a a p a a a -+-=+--, ①241()232a p a a a --=+--, ①()()()132222a p a a a a --=+⨯--+, ①3122a p a a -=+--, ①22a p a -=-, ①1p =. 故选:B .【点睛】本题主要考查了分式的混合运算和利用等式的性质解一元一次方程,解题的关键是根据等式的性质解方程和掌握分式混合运算顺序和运算法则. 5.(2022·重庆·三模)下列四种说法中正确的有( ) ①关于x 、y 的方程24107x y +=存在整数解.①若两个不等实数a 、b 满足()()244222a b a b +=+,则a 、b 互为相反数.①若2()4()()0a c a b b c ---=-,则2b a c =+. ①若222x yz y xz z xy ---==,则x y z ==. A .①① B .①① C .①①① D .①①①【答案】B【分析】将24x y +提公因式2得2(2)x y +,由x 、y 为整数,则2(3)x y +为偶数,因为107为奇数,即原等式不成立,即可判断①;将442222()()a b a b +=+,整理得222()0a b -=,即得出22a b =,由于实数a 、b 不相等,即得出a 、b 互为相反数,故可判断①;2()4()()0a c a b b c ---=-整理得2(2)0a c b +-=,即得20a c b +-=,即2a c b +=,故可判断①;由222x yz y xz z xy ---==,得出2222x xz y yz y xy z xz ⎧+=+⎨+=+⎩,即可变形为222211()()2211()()22x z y z y x z x ⎧+=+⎪⎪⎨⎪+=+⎪⎩,可以得出x y z ==或0x y z ++=,故可判断①. 【详解】解:①262(3)x y x y +=+, ①如果x 、y 为整数,那么2(3)x y +为偶数, ①107为奇数,①24107x y +=不存在整数解,故①错误; 442222()()a b a b +=+444422222a b a b a b +++=442220a b a b +-=222()0a b -=①22a b =,①实数a 、b 不相等,①a 、b 互为相反数,故①正确; 2()4()()0a c a b b c ---=-222244440a ac c ab ac b bc -+-++-=()()22440a c b a c b +-++=2(2)0a c b +-=①20a c b +-=,即2a c b +=,故①正确; ①222x yz y xz z xy ---==①2222x xz y yzy xy z xz ⎧+=+⎨+=+⎩, ①2222222211441144x xz z y yz z y xy x z xz x ⎧++=++⎪⎪⎨⎪++=++⎪⎩,即222211()()2211()()22x z y z y x z x ⎧+=+⎪⎪⎨⎪+=+⎪⎩,①11()2211()22x z y z y x z x ⎧+=±+⎪⎪⎨⎪+=±+⎪⎩,①x y z ==或0x y z ++=,故①不一定正确. 综上可知正确的有①①.故选B.【点睛】本题考查因式分解,整式的混合运算.熟练掌握完全平方公式是解题关键.二、填空题6.(2022·山东临沂·一模)如图,用一块长7.5cm、宽3cm的长方形纸板,和一块长6cm、宽1.5cm 的长方形纸板,与一块小正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形,则小正方形的边长是______cm,拼成的大正方形的面积是______cm2.【答案】 4.581【分析】设小正方形的边长为x cm,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.【详解】解:设小正方形的边长为x cm,则大正方形的边长为(6+7.5-x)cm或(x+3+1.5)cm,根据题意得:6+7.5-x=x+3+1.5,解得:x=4.5,则大正方形的边长为6+7.5-x=6+7.5-4.5=9(cm),大正方形的面积为92=81(cm2),故答案为:4.5;81.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,设出小正方形的边长并表示出大正方形的边长.7.(2022·上海静安·1=的解是________.【答案】x=1【分析】首先方程两边同时平方,把无理方程化为有理方程,再解方程即可求得【详解】解:方程两边同时平方,得3x-2=1,解得x=1,经检验,x=1是原方程的解,所以,原方程的解为x=1.故答案为:x=1.【点睛】本题考查了无理方程的解法,熟练掌握和运用无理方程的解法是解决本题的关键,注意要检验.三、解答题8.(2022·河北·育华中学三模)如图,数轴上a 、b 、c 三个数所对应的点分别为A 、B 、C ,已知b是最小的正整数,且a 、c 满足2(6)20c a -++=.(1)①直接写出数a 、c 的值 , ; ①求代数式222a c ac +-的值;(2)若将数轴折叠,使得点A 与点C 重合,求与点B 重合的点表示的数; (3)请在数轴上确定一点D ,使得AD =2BD ,则D 表示的数是 . 【答案】(1)①-2,6;①64 (2)3 (3)4或0【分析】(1)①根据平方和绝对值的非负性即可求出a 和c ,①把a 和c 的值代入222a c ac +-求值即可;(2)根据题意,求出b 的值,然后求出线段AC 的中点,即可求出结论;(3)设点D 表示的数为x ,然后根据点D 的位置分类讨论,分别根据2AD BD =列出方程即可分别求出结论. (1) 解:①①()2620c a -++=, ①20a +=,60c -=, 解得2a =-,6c =. 故答案为:-2,6.①把2a =-,6c =代入222a c ac +-,2224362464a c ac +-=++=;(2)解:①b 是最小的正整数,①1b =,①线段AC 的中点为()2622-+÷=,设与点B 重合的点表示的数为n ,则(1+n )÷2=2, 解得:n =3.①与点B 重合的点表示的数是3. 故答案为:3. (3)解:因为a =-2,b =1,c =6,设点D 表示的数为x ,若2AD BD =,分三种情况讨论: ①若点D 在点A 的左侧,则x <-2且()221x x --=-, 解得4x =(不符合题意,舍去);①若点D 在点A 、B 之间,则-2<x <1且()()221x x --=-, 解得0x =;①若点D 在点B 右侧,则x >1且x -(-2)=2(x -1), 解得:x =4.综上所述,点D 表示的数是0或4. 故答案为:0或4.【点睛】此题考查了非负性的应用、数轴上两点之间的距离、中点公式和一元一次方程的应用,解题的关键是掌握平方、绝对值的非负性、数轴上两点之间的距离公式、中点公式和等量关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、解方程:(1)=x ﹣.(3).(5).(7)4(x﹣1)﹣3(20﹣x )=5(x﹣2);(9)(11).(13).(2)(x﹣1)=2﹣(x+2).(4)(6)[3(x﹣)+]=5x﹣1 (8)(10)(12)(14)(17)(19)x﹣﹣3(21).(23).20.解方程(1).(2).(I8)12y﹣2.5y=7.5y+5(20).(22).二、计算:(1)(2)÷(4)﹣42×+|﹣2|3×(﹣)3(5)当k为什么数时,式子比的值少3.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1 合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).点:专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x 移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.点评:17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。