高考数学模拟复习试卷试题模拟卷202332
2023年全国新高考仿真模拟卷(二)数学试题(2)
一、单选题二、多选题1. 若为非零向量,则“”是“共线”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2. 随着社会的发展,越来越多的共享资源陆续出现,它们也不可避免地与我们每个人产生密切的关联,逐渐改变着每个人的生活.已知某种型号的共享充电宝循环充电超过500次的概率为,超过1000次的概率为,现有一个该型号的充电宝已经循环充电超过500次,则其能够循环充电超过1000次的概率是( )A.B.C.D.3.已知曲线,把上各点横坐标伸长为原来的2倍,纵坐标不变,得到函数的图象,关于有下述四个结论:(1)函数在上是减函数;(2)方程在内有2个根;(3)函数(其中)的最小值为;(4)当,且时,,则.其中正确结论的个数为( )A .1B .2C .3D .44. 点均在抛物线上,若直线分别经过两定点,则经过定点,直线分别交轴于,为原点,记,则的最小值为( )A.B.C.D.5. 已知函数图象相邻两个对称中心之间的距离为,将函数的图象所左平移个单位后,得到的图象关于轴对称,那么函数的图象( )A .关于点对称B .关于点对称C .关于直线对称D .关于直线对称6. 抛物线的焦点为,其准线与双曲线相交于,两点,若为等边三角形,则( )A .2B.C .6D.7. 已知函数,则为( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数8.已知实数满足,则( )A.B.C.D.9. 已知函数,则下列结论正确的是( )A.函数的最小正周期是B.函数的最大值为1,最小值为C.函数的图像在区间上单调递减D.函数的图像关于对称10. 如图所示的六面体中,,,两两垂直,连线经过三角形的重心,且,则( )2023年全国新高考仿真模拟卷(二)数学试题(2)2023年全国新高考仿真模拟卷(二)数学试题(2)三、填空题四、解答题A .若,则平面B.若,则平面C.若五点均在同一球面上,则D .若点恰为三棱锥外接球的球心,则11. 在公比不为1的等比数列中,若,则的值可能为( )A .5B .6C .8D .912. 在的展开式中,则( )A .二项式系数最大的项为第3项和第4项B .所有项的系数和为0C.常数项为D .所有项的二项式系数和为6413.非负实数满足,则的最小值为___________.14. 是虚数单位,复数_______________.15.已知平面单位向量满足,设,向量的夹角为,则的最小值为____________.16.如图,在直三棱柱中,,,,为棱的中点.(1)求证:平面;(2)求二面角的正弦值.17. 已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.(1)求函数的最小正周期;(2)求函数在区间上的值域.18. 已知是抛物线的焦点,过点的直线交抛物线于两点,当平行于轴时,.(1)求抛物线的方程;(2)若为坐标原点,过点作轴的垂线交直线于点,过点作直线的垂线与抛物线的另一交点为的中点为,证明:三点共线.19.如图,在三棱柱中,侧棱平面,,点D是的中点.(1)求证:;(2)求证:平面;(3)求三棱锥的体积.20. 某商场在周年庆活动期间为回馈新老顾客,采用抽奖的形式领取购物卡.该商场在一个纸箱里放15个小球(除颜色外其余均相同):3个红球、5个黄球和7个白球,每个顾客不放回地从中拿3次,每次拿1个球,每拿到一个红球获得一张类购物卡,每拿到一个黄球获得一张类购物卡,每拿到一个白球获得一张类购物卡.(1)已知某顾客在3次中只有1次抽到白球的条件下,求至多有1次抽到红球的概率;(2)设拿到红球的次数为,求的分布列和数学期望.21. 设椭圆:的右焦点恰好是抛物线的焦点,椭圆的离心率和双曲线的离心率互为倒数.(1)求椭圆E的标准方程;(2)设椭圆E的左、右顶点分别为A,B,过定点的直线与椭圆E交于C,D两点(与点A,B不重合).证明:直线AC,BD的交点的横坐标为定值.。
2023年全国新高考数学仿真模拟卷(一)数学试题
一、单选题二、多选题1. 已知函数在上单调递减,则实数a 的取值范围是( )A.B.C.D.2. 设,,则“”是“”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.已知集合,则A.B.C.D.4. 已知i是虚数单位,若,则( )A .1B.C .2D .45.设为坐标原点,为抛物线:的焦点,为上一点,若,则的面积为( )A .2B.C.D .46.已知实数满足,则的最大值为A .1B .2C .3D .47. 随着北京冬奥会的开幕,吉祥物“冰墩墩”火遍国内外,现有甲、乙、丙、丁4名运动员要与1个“冰墩墩”站成一排拍照留恋,已知“冰墩墩”在最中间,甲、乙、丙、丁4名运动员随机站于两侧,则甲、乙2名运动员站“冰墩墩”同一侧的概率为( )A.B.C.D.8. 已知 ,对任意的,都存在,使得成立,则下列选项中,θ可能的值为( )A.B.C.D.9.如图,已知长方形中,,,,则下列结论正确的是()A .当时,B.当时,C .对任意,不成立D.的最小值为410. 设定义在R 上的函数与的导数分别为与,已知,,且的图象关于直线对称,则下列结论一定成立的是( )A.函数的图象关于点对称B.函数的图象关于直线对称C.函数的一个周期为8D .函数为奇函数2023年全国新高考数学仿真模拟卷(一)数学试题2023年全国新高考数学仿真模拟卷(一)数学试题三、填空题四、解答题11.已知点在直线上移动,圆,直线,是圆的切线,切点为,.设,则( )A .存在点,使得B .存在点,使得C.当的坐标为时,的方程为D .点的轨迹长度是12. 已知的顶点在圆上,顶点在圆上.若,则( )A.的面积的最大值为B.直线被圆截得的弦长的最小值为C .有且仅有一个点,使得为等边三角形D.有且仅有一个点,使得直线,都是圆的切线13. 的展开式中,常数项为________.14. 如图,在中,,,,为内的一点,且,,则________.15. 的展开式中的系数为__________.(用数字作答)16. 已知为单调递增的等差数列,设其前项和为,,且,成等比数列.(1)求数列的通项公式;(2)求的最小值及取得最小值时的值.17. 已知,,函数的最小值为1.(1)求的值;(2)若恒成立,求实数的取值范围.18. 已知函数.(1)若有3个零点,求a 的取值范围;(2)若,,求a 的取值范围.19. 今年上海疫情牵动人心,大量医务人员驰援上海.现从这些医务人员中随机选取了年龄(单位:岁)在内的男、女医务人员各100人,以他们的年龄作为样本,得出女医务人员的年龄频率分布直方图和男医务人员的年龄频数分布表如下:年龄(单位:岁)频数2020301515(1)求频率分布直方图中a的值;(2)在上述样本中用分层抽样的方法从年龄在内的女医务人员中抽取4人,从年龄在内的男医务人员中抽取2人,再从这6人中随机抽取2人,求这2人中至少有1人的年龄在内的概率.20. 已知函数.(1)若,求在定义域上的极值;(2)若,求的单调区间.21. 已知中,角,,所对的边分别为,,,满足.(1)求的大小;(2)如图,,在直线的右侧取点,使得,求为何值时,四边形面积的最大,并求出该最大值.。
2023年高中数学高考模拟试题3(附答案)
2023年高中数学高考模拟试题(附答案)姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间90分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)评卷人得分一、单选题(每题5分,共50分)1.(本题5分)()A.B.C.D.2.(本题5分)已知集合,,则()A.B.C.D.3.(本题5分)函数的零点个数是()A.0B.1C.2D.34.(本题5分)已知数列为递减的等比数列,,且,,则公比为()A.B. C.D.25.(本题5分)在中,已知,D为BC中点,则()A.2B.C.D.6.(本题5分)函数的单调递增区间为()A.B.C.D.7.(本题5分)已知函数,则在上()A.单调递增B.单调递减C.先增后减D.先减后增8.(本题5分)如图,在长方体中,已知,,E为的中点,则异面直线BD与CE所成角的余弦值为()A.B.C.D.9.(本题5分)在中,,且,则()A.2B.3C.D.10.(本题5分)已知函数的最小正周期为,将函数的图象向左平移个单位长度,得到图象,则()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二、填空题(共25分)11.(本题5分)定义在R上的奇函数,当x≥0时,(k为常数),则______.12.(本题5分)等差数列的前n项和为,若,则当取到最大值时n__________.13.(本题5分)已知不等式组表示的平面区域不包含点,则实数的取值范围是__________.14.(本题5分)已知双曲线的左右焦点分别是,直线与双曲线交于p,且,则双曲线C的离心率为______.15.(本题5分)设A是椭圆(φ为参数)的左焦点.p是椭圆上对应于的点,那么线段AP的长是________.如图,在斜三棱柱中,底面的正三角形,,侧棱过点的直线交曲线的垂线,垂足分别为、,判,使得四边形的对角线交于一定点18.(本题15分)已知等差数列的n前项和为,,,数列满足.(1)求数列和的通项公式;(2)若数列满足,求数列的n前项和.19.(本题15分)已知在中,,,为内角A,B,C所对的边,,且.(1)求A与C;(2)若,过A作BC边的垂线,并延长至点D,若A,B,C,D四点共圆,求的CD长.20.(本题15分)已知函数.(1)当m>0时,求函数f(x)的极值点的个数;(2)当a,b,c∈(0,+∞)时,恒成立,求m的取值范围.参考答案一、单选题第1题第2题第3题第4题第4题A A C A D第6题第7题第8题第9题第10题C D C B B二、填空题第11题:-4;第12题:6;第13题:(-∞,3]第14题:√2;第15题:5。
2023年全国新高考仿真模拟卷(二)数学试题(高频考点版)
一、单选题二、多选题三、填空题1.已知点是抛物线的焦点,若点在抛物线上,且,斜率为的直线经过点,且与抛物线交于,(异于)两点,则直线与直线的斜率之积为( )A .2B .-2C.D.2.已知为坐标原点,抛物线上一点到焦点的距离为,若点为抛物线准线上的动点,给出以下命题: ①当为正三角形时,的值为;②存在点,使得;③若,则等于;④的最小值为,则等于或.其中正确的是( )A .①③④B .②③C .①③D .②③④3.如图,为的中点,以为基底,,则实数组等于( )A.B.C.D.4. 已知的通项公式为恒成立,则实数的最小值为( )A .1B.C.D.5. 椭圆与(0<k <9)的关系为( )A .有相等的长、短轴B .有相等的焦距C .有相同的焦点D .有相等的离心率6. 已知方程+=1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m <-1或1<m <B .1<m <2C .m <-1或1<m <2D .m <27. 下列关于x 的不等式有实数解的有( ).A.B.C.D.8. 已知是定义在上的函数,且对于任意实数恒有.当时,.则( )A .为奇函数B .在上的解析式为C .的值域为D.2023年全国新高考仿真模拟卷(二)数学试题(高频考点版)2023年全国新高考仿真模拟卷(二)数学试题(高频考点版)四、解答题9. 若复数z =为纯虚数(),则|z |=_____.10.已知集合,集合,则_______.11. 已知焦点在x 轴上的椭圆离心率为,则实数m 等于 _____.12.四面体的三条棱两两垂直,,,为四面体外一点,给出下列命题:①不存在点,使四面体三个面是直角三角形;②存在点,使四面体是正三棱锥;③存在无数个点,使点在四面体的外接球面上;④存在点,使与垂直且相等,且.其中真命题的序号是___________.13. 已知函数.再从条件①、条件②、条件③这三个条件中选择两个,使得函数的解析式唯一确定(1)求的解析式及最小值;(2)若函数在区间上有且仅有2个零点,求t 的取值范围.条件①:函数图象的相邻两条对称轴之间的距离为;条件②:函数的图象经过点;条件③:函数的最大值与最小值的和为1.14.已知凸五边形内接于半径为1的圆,且,,,,,求证:.15. 若,解不等式.16.若,求的最大值.。
2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(二)
一、单选题二、多选题1. 某学校实行导师制,该制度规定每位学生必须选一位导师,每位导师至少要选一位学生,若A ,B ,C 三位学生要从甲,乙中选择一人做导师,则A 选中甲同时B 选中乙做导师的概率为( )A.B.C.D.2. 下列椭圆中最扁的一个是A.B.C.D.3. 已知是虚数单位,,,则“”是“”的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知,且,则( )A.B.C.D.5. 已知关于的方程的三个实根分别为一个椭圆,一个抛物线,一个双曲线的离心率,则的取值范围( )A.B.C.D.6.已知函数,若函数的一个零点为.其图像的一条对称轴为直线,且在上单调,则的最大值为( )A .2B .6C .10D .147. 已知集合,,则( )A.B.C.D.8. 设是复数且,则的最小值为( )A .1B.C.D.9. 已知椭圆,,分别为椭圆的左右顶点,为椭圆的上顶点.设是椭圆上一点,且不与顶点重合,若直线与直线交于点,直线与直线交于点,则( )A .若直线与的斜率分别为,,则B.直线与轴垂直C.D.10. 在正六棱锥中,已知底面边长为1,侧棱长为2,则( )A.B .共有4条棱所在的直线与AB 是异面直线C.该正六棱锥的内切球的半径为D.该正六棱锥的外接球的表面积为11. 已知,,为正实数,则( )A .若,则2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(二)2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(二)三、填空题四、解答题B.若,则的最小值为1C .若,则D .若,则的最小值为312.已知正方体的棱长为2,是底面的中心,是棱上一点(不与端点重合),则( )A .平面截正方体所得截面一定是梯形B.存在点,使得三棱锥的体积为C .存在点,使得与相交D .当是棱的中点时,平面截正方体外接球所得截面圆的面积13.已知集合,则__________.14. 已知正数x ,y满足,若恒成立,则实数a 的取值范围是______.15.已知向量,若和共线,则实数 ___________.16. 已知是等比数列,;是等差数列,,.(1)求数列的通项公式及前n 项和的公式;(2)求数列的通项公式;(3)设,其中,求的值.17. 某校100名学生期末考试化学成绩的频率分布直方图如图所示,其中成绩分组区间是:.(1)求图中的值;(2)根据频率分布直方图,估计这100名学生化学成绩的平均分;(3)若这100名学生化学成绩某些分数段的人数()与物理成绩相应分数段的人数()之比如下表所示,求物理成绩在之外的人数.分数段18. 如图,在四棱锥中,平面ABCD ,,过CD 的平面分别与PA ,PB 交于点E ,F.(1)求证:平面PAC;(2)求证:.19. 某种质地均匀的正四面体玩具的4个面上分别标有数字0,1,2,3,将这个玩具抛掷次,记第次抛掷后玩具与桌面接触的面上所标的数字为,数列的前和为.记是3的倍数的概率为.(1)求,;(2)求.20. 若有穷数列(是正整数),满足(,且,就称该数列为“数列”.(1)已知数列是项数为7的数列,且成等比数列,,试写出的每一项;(2)已知是项数为的数列,且构成首项为100,公差为的等差数列,数列的前项和为,则当为何值时,取到最大值?最大值为多少?(3)对于给定的正整数,试写出所有项数不超过的数列,使得成为数列中的连续项;当时,试求这些数列的前2024项和.21. 已知椭圆:的离心率为,且过点.(Ⅰ)求椭圆的标准方程;(Ⅱ)垂直于坐标轴的直线与椭圆相交于、两点,若以为直径的圆经过坐标原点.证明:圆的半径为定值.。
2023年高考数学模拟试题及参考答案
2023年高考数学模拟试题及参考答案一、选择题(本大题共15小题,每小题6分,共90分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1.如果a>b>0,c>d>0,则下列不等式中不.正确的是( )A.a-d>b-c B.ad>bcC.a+d>b+c D.ac>bd【答案】C【解析】可利用不等式的基本性质一一验证.由已知及不等式的性质可得a+c>b+d,即a-d>b-c,所以A正确;由c>d>0,得1d>1c>0,又a>b>0,所以ad>bc,即B正确;显然D正确.2.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=( )A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}【答案】C【解析】借助数轴可得{x|2<x<3}.3.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sin x中,奇函数的个数是( )A.4 B.3 C.2 D.1【答案】C【解析】函数y=x3,y=2sin x为奇函数,y=2x为非奇非偶函数,y=x2+1为偶函数,故奇函数的个数是2,故选C.4.已知三个数a=60.7,b=0.70.8,c=0.80.7,则三个数的大小关系是( )A.a>b>c B.b>c>aC.c>b>a D.a>c>b【答案】D【解析】a=60.7>60=1,c=0.80.7>0.70.7>0.70.8=b,且c=0.80.7<0.80=1,所以a>c>b.5.若等差数列{a n}的前n项和S n满足S4=4,S6=12,则S2=( )A.-1 B.0 C.1 D.3【答案】B【解析】等差数列中,设S2=a1+a2=x,则a3+a4=S4-S2=4-x,a 5+a 6=S 6-S 4=8,则S 2,S 4-S 2,S 6-S 4仍成等差数列,所以2(4-x )=x +8,解得x =0,即S 2=0故选B.6.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( )A. 2 B .2-2 C.2-1D.2+1【答案】C 【解析】由点到直线的距离公式知d =|a -2+3|2=|a +1|2=1, 得a =-1± 2.又∵a >0,∴a =2-1.7.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)【答案】B【解析】根据题意知(-9+2-a )·(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24. 8.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53 B .-59 C .59 D .53【答案】A【解析】利用同角三角函数的基本关系及二倍角公式求解.∵sin α+cos α=33,∴(sin α+cos α)2=13,∵2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sin α+cos α=33>0,∴2kα+α2<α<2kα+34α(k∈Z),∴4kα+α<2α<4kα+32α(k ∈Z),∴2α为第三象限角,∴cos 2α=-1-sin 22α=-53.9.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A.310 B.15 C.110D.112【答案】A【解析】随机取出2个小球得到的结果数有10种,取出的小球标注的数字之和为3或6的结果为{}1,2,{}1,5,{}2,4,共3种,故所求答案为A.10.若实数x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z =2y -2x +4的最小值为( )A .3B .4C .6D .8 【答案】B【解析】作出满足不等式⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域,如图所示,作直线l 1:2y -2x =t ,当l 1经过B (1,1)时,z min =2×1-2×1+4=4.故选B.11.已知向量a =(1,3),b =(cos θ,sin θ),若a ∥b ,则tan θ=( ) A .33 B . 3 C .-33D .-3 【答案】B【解析】∵a ∥b ,∴sin θ-3cos θ=0,即sin θ=3cos θ.故tan θ= 3.12.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .π4B .π-22C .π6 D .4-π4【答案】D【解析】如图所示,区域D 是正方形OABC ,且区域D 的面积S =4.又阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积S 阴=4-π,所以所求事件的概率P =4-π4.13.设函数y =2sin 2x -1的最小正周期为T ,最大值为M ,则( ) A .T =π,M =1 B .T =2π,M =1 C .T =π, M =2 D .T =2π,M =2【答案】A【解析】由于三角函数y =A sin(ωx +φ)+B (A >0,ω>0)的最小正周期T =2αω,最大值为A +B ;∴函数y =2sin2x -1的最小正周期T =2α2=α,最大值M =2-1=1.14.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( ) A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】C【解析】∵n ⊥β,且α,β交于直线l .l ⊂β,∴n ⊥l .15.已知一组数据x 1,x 2,…,x n 的平均值为2,方差为1,则2x 1+1,2x 2+1,…,2x n +1,平均值和方差分别为( )A .5,4B .5,3C .3,5D .4,5 【答案】A【解析】一组数据x 1,x 2,x 3…,x n 的平均值为2,所以数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的平均数是2×2+1=5;又数据x 1,x 2,x 3,…x n 的方差为1,所以数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的方差是22×1=4,故选A.二、填空题(本大题共4小题,每小题6分,共24分.将正确答案填在题中横线上)16.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为________.【答案】15【解析】由题意知,青年职工人数∶中年职工人数∶老年职工人数=350∶250∶150=7∶5∶3.由样本中青年职工为7人得样本容量为15.17.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是________米.【答案】1.76【解析】由小到大排列为1.69,1.72,1.75, 1.77,1.78, 1.80.中位数是1.75+1.772=1.76.18.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________.【答案】6766升【解析】设最上面一节的容积为a 1,公差为d ,则有⎩⎨⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4.即⎩⎨⎧4a 1+6d =3,3a 1+21d =4.解得⎩⎪⎨⎪⎧a 1=1322,d =766,则a 5=6766,故第5节的容积为6766升.19.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________. 【答案】4【解析】∵A ,B ,C 三点共线,∴a -35-4=5-36-4,∴a =4.三、解答题(本大题共3个题,共36分.解答时应写出必要的文字说明、证明过程及演算步骤) 20.(12分)已知函数f (x )=2sin ⎝⎛⎭⎫2x -π4+1. (1)求它的振幅、最小正周期、初相;(2)在如图所示坐标系中画出函数y =f (x )在⎣⎡⎦⎤-π2,π2上的图象.解:(1)f (x )=2sin ⎝⎛⎭⎫2x -α4+1的振幅为2,最小正周期T =2α2=α,初相为-α4. (2)列表并描点画出图象:故函数y =f (x )在区间⎣⎡⎦⎤-α2,α2上的图象是21.(12分)已知四棱锥PABCD中,PD⊥平面ABCD,四边形ABCD是正方形,E是P A的中点.求证:(1)PC∥平面EBD;(2)平面PBC⊥平面PCD.解:证明:(1)连接AC交BD与O,连接EO,∵E,O分别为P A,AC的中点,∴EO∥PC.∵PC⊄平面EBD,EO⊂平面EBD,∴PC∥平面EBD.(2)∵PD⊥平面ABCDBC⊂平面ABCD∴PD⊥BC∵ABCD为正方形∴BC⊥CD又∵PD∩CD=D∴BC⊥平面PCD∵BC⊂平面PBC∴平面PBC⊥平面PCD.22.(12分)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{1b n}的前n 项和.解:(1)设数列{a n }的公比为q .由a 23=9a 2a 6得a 23=9a 24,所以q 2=19.由条件可知q >0,故q =13.由2a 1+3a 2=1,得2a 1+3a 1q =1,得a 1=13. 故数列{a n }的通项公式为a n =13n . (2)b n =log 3a 1+log 3a 2+…+log 3a n = -(1+2+…+n )=-n (n +1)2.故1b n=-2n (n +1)=-2(1n -1n +1).1b 1+1b 2+…+1b n =-2[(1-12)+(12-13)+…+(1n -1n +1)]=-2n n +1. 所以数列{1b n}的前n 项和为-2n n +1.。
2023年全国新高考仿真模拟卷(二)数学试题
一、单选题二、多选题1. 某学校、两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两班数学兴趣小组成绩的平均值及方差①班数学兴趣小组的平均成绩高于班的平均成绩②班数学兴趣小组的平均成绩高于班的平均成绩③班数学兴趣小组成绩的标准差大于班成绩的标准差④班数学兴趣小组成绩的标准差大于班成绩的标准差其中正确结论的编号为( )A .①③B .①④C .②③D .②④2. 如图,在三棱锥中,,,,若该三棱锥的四个顶点均在同一球面上,则该球的体积为()A.B.C.D.3. 设和是两个集合,定义集合,且,如果,,那么A.B.C.D.4. 已知数列满足:,,,则( )A.B.C.D.5. 已知集合,,则( )A.B.C.D.6. 在复平面内,复数,对应的点分别是,,则复数的虚部为( )A .2iB .-2iC .2D .-27. 设椭圆的左、右焦点分别为,,过点的直线与交于A ,B 两点,若,且,则的离心率为( )A.B.C.D.8.将函数图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移个单位得到数学函数的图像,在图像的所有对称轴中,离原点最近的对称轴为A.B.C.D.2023年全国新高考仿真模拟卷(二)数学试题三、填空题四、解答题9. 已知为等差数列且满足,为等比数列且满足,,,则下列说法正确的是( )A.B .数列的公差为2C.D .数列的公比为10.已知函数,则下列结论正确的是( )A.的最大值为1B.的图象关于点对称C .在上单调递增D .存在,使得对任意的都成立11.已知等比数列的公比为且成等差数列,则的值可能为( )A.B .1C .2D .312.是定义在R 上的奇函数,对任意,均有,当时,,则下列结论正确的是( )A .4是函数的一个周期B.当时,C .当时,的最大值为D .函数在上有1012个零点13. 设复数z 满足(i 为虚数单位),则____________.14.已知函数,则_____.15. 如图,在中,,,点P 在线段CD 上(P 不与C ,D点重合),若的面积为,,则实数m =________,的最小值为________.16. 2020年10月16日,是第40个世界粮食日.中国工程院院士袁隆平海水稻团队迎来了海水稻的测产收割,通过推广种植海水稻,实现亿亩荒滩变粮仓,大大提高了当地居民收入.某企业引进一条先进食品生产线,以海水稻为原料进行深加工,发明了一种新产品,若该产品的质量指标值为,其质量指标等级划分如表:质量指标值质量指标等级良好优秀良好合格废品为了解该产品的经济效益并及时调整生产线,该企业先进行试生产,现从试生产的产品中随机抽取了1000件,将其质量指标值m 的数据作为样本,绘制如下频率分布直方图:(1)若将频率作为概率,从该产品中随机抽取3件产品,记“抽出的产品中至少有1件不是废品”为事件A,求事件A发生的概率;(2)若每件产品的质量指标值与利润(单位:元)的关系如表:质量指标值利润(元)试分析生产该产品能否盈利?若不能,请说明理由;若能,试确定为何值时,每件产品的平均利润达到最大(参考数值:).17. 在中,内角A,B,C的对边分别为a,b,c,且满足.(1)求角C;(2)若的面积为,点D为AB中点,且,求c边的长.18. 已知函数.(1)求的单调递增区间;(2)当时,求的值域.19. 如图所示,四棱锥中,菱形所在的平面,,点、分别是、的中点,是线段上的点.(1)求证:平面平面;(2)当时,是否存在点,使直线与平面所成角的正弦值为?若存在,请求出的值,若不存在,请说明理由.20. 如图,椭圆的右焦点与抛物线的焦点重合,过且于轴垂直的直线与椭圆交于,与抛物线交于两点,且(Ⅰ)求椭圆的标准方程;(Ⅱ)设为椭圆上一点,若过点的直线与椭圆相交于不同两点和,且满足(为坐标原点),求实数的取值范围.21. 在各项都为正数的等比数列中,已知,其前项的积为,且,是数列的前项和,且.(1)求数列,的通项公式;(2)求数列的前项和.。
2023年全国高考数学模拟试卷(附答案)
2023年全国高考数学模拟试卷一、单选题1.设全集U={1 2 3 4 5 6 7 8} 集合S={1 3 5} T={3 6} 则∁U (S∁T )等于( ) A .∁B .{2 4 7 8}C .{1 3 5 6}D .{2 4 6 8}2.在四边形ABCD 中= +则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形3.已知复数 z =(2+i)(a +2i 3) 在复平面对应的点在第四象限 则实数 a 的取值范围是( ) A .(−∞,−1)B .(4,+∞)C .(−1,4)D .[-1,4]4.在直三棱柱 ABC −A ′B ′C ′ 中 侧棱长为2 底面是边长为2的正三角形 则异面直线 AB ′ 与BC ′ 所成角的余弦值为( ) A .12B .√33C .14D .√555.一个袋子中有5个大小相同的球 其中有3个黑球与2个红球 如果从中任取两个球 则恰好取到两个同色球的概率是( ) A .15B .310C .25D .126.已知 f(x)=√3sin2020x +cos2020x 的最大值为A 若存在实数 x 1 x 2 使得对任意的实数x 总有 f(x 1)≤f(x)≤f(x 2) 成立 则 A|x 1−x 2| 的最小值为( )A .π2020B .π1010C .π505D .π40407.已知函数f(x)是定义在R 上的奇函数 其最小正周期为3 且x∁(-320)时 f(x)=log 2(-3x+1)则f(2011)=( ) A .4B .2C .-2D .log 278.已知函数f(x)={1−x ,0≤x ≤1lnx ,x >1 若f(a)=f(b) 且a ≠b 则bf(a)+af(b)的最大值为( ) A .0 B .(3−ln2)⋅ln2 C .1D .e二、多选题9.下列命题中正确的命题的是()A.已知随机变量服从二项分布B(n,p)若E(x)=30D(x)=20则p=23;B.将一组数据中的每个数据都加上同一个常数后方差恒不变;C.设随机变量ξ服从正态分布N(0,1)若P(ξ>1)=p则P(−1<ξ≤0)=12−P;D.某人在10次射击中击中目标的次数为X X~B(10,0.8)则当x=8时概率最大.10.已知抛物线C:x2=4y的焦点为F准线为l P是抛物线C上第一象限的点|PF|=5直线PF 与抛物线C的另一个交点为Q 则下列选项正确的是()A.点P的坐标为(4 4)B.|QF|=54C.S△OPQ=103D.过点M(x0,−1)作抛物线C的两条切线MA,MB其中A,B为切点则直线AB的方程为:x0x−2y+2=011.已知函数f(x)=e x g(x)=ln x2+12的图象与直线y=m分别交于A、B两点则()A.|AB|的最小值为2+ln2B.∃m使得曲线f(x)在A处的切线平行于曲线g(x)在B处的切线C.函数f(x)−g(x)+m至少存在一个零点D.∃m使得曲线f(x)在点A处的切线也是曲线g(x)的切线12.已知正n边形的边长为a 内切圆的半径为r 外接圆的半径为R 则()A.当n=4时R=√2a B.当n=6时r=√32aC.R=a2sinπ2n D.R+r=a2tanπ2n三、填空题13.某学校有教师300人男学生1500人女学生1200人现用分层抽样的方法从所有师生中抽取一个容量为150人的样本进行某项调查则应抽取的女学生人数为.14.在(2x2﹣√x)6的展开式中含x7的项的系数是.15.函数f(x)=|2x−1|−2lnx的最小值为.16.定义max{a,b}={a,a≥bb,a<b已知函数f(x)=max{(12)x,12x−34}则f(x)最小值为不等式f(x)<2的解集为.四、解答题17.记S n为数列{a n}的前n项和.已知a n>06S n=a n2+3a n−4.(1)求{a n}的通项公式;(2)设b n=a n2+a n+12a n a n+1求数列{b n}的前n项和T n.18.已知数列{a n}的前n项和为S n a1=2n(a n+1−2a n)=4a n−a n+1.(1)证明:{a nn+1}为等比数列;(2)求S n.19.记△ABC的内角A B C的对边分别为a b c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B求C;(2)证明:2a2=b2+c2.20.受突如其来的新冠疫情的影响全国各地学校都推迟2020年的春季开学某学校“停课不停学” 利用云课平台提供免费线上课程该学校为了解学生对线上课程的满意程度随机抽取了100名学生对该线上课程评分、其频率分布直方图如图.(1)求图中a的值;(2)求评分的中位数;(3)以频率当作概率若采用分层抽样的方法从样本评分在[60,70)和[90,100]内的学生中共抽取5人进行测试来检验他们的网课学习效果再从中选取2人进行跟踪分析求这2人中至少一人评分在[60,70)内的概率.21.已知椭圆与双曲线x 22−y2=1有相同的焦点坐标且点(√3,12)在椭圆上.(1)求椭圆的标准方程;(2)设A、B分别是椭圆的左、右顶点动点M满足MB⊥AB垂足为B连接AM交椭圆于点P(异于A)则是否存在定点T使得以线段MP为直径的圆恒过直线BP与MT的交点Q若存在求出点T的坐标;若不存在请说明理由.22.已知函数f(x)=e x(x−2),g(x)=x−lnx.(1)求函数y=f(x)+g(x)的最小值;(2)设函数ℎ(x)=f(x)−ag(x)(a≠0)讨论函数ℎ(x)的零点个数.答案解析部分1.【答案】B 2.【答案】D 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】D 9.【答案】B,C,D 10.【答案】A,B,D 11.【答案】A,B,D 12.【答案】B,D 13.【答案】60 14.【答案】240 15.【答案】116.【答案】14;(−1,112)17.【答案】(1)解:当 n =1 时 6S 1=a 12+3a 1−4 所以 a 1=4 或 −1 (不合 舍去). 因为 6S n =a n 2+3a n −4① 所以当 n ⩾2 时 6S n−1=a n−12+3a n−1−4② 由①-②得 6a n =a n 2+3a n −a n−12−3a n−1所以 (a n +a n−1)(a n −a n−1−3)=0 . 又 a n >0 所以 a n −a n−1=3 .因此 {a n } 是首项为4 公差为3的等差数列. 故 a n =4+3(n −1)=3n +1 .(2)解:由(1)得 b n =(3n+1)2+(3n+4)2(3n+1)(3n+4)=2+33n+1−33n+4所以 T n =2+34−37+2+37−310+⋯+2+33n+1−33n+4=2n +(34−37+37−310+⋯+33n +1−33n +4)=2n +9n4(3n +4)18.【答案】(1)证明:∵n(a n+1−2a n )=4a n −a n+1∴na n+1−2na n =4a n −a n+1 即(n +1)a n+1=2⋅a n (n +2)∴a n+1n+2=2⋅a nn+1 故{a nn+1}为等比数列. (2)解:由(1)知 a nn+1=1×2n−1⇒a n =(n +1)⋅2n−1 S n =2×20+3×2+4×22⋅⋅⋅+(n +1)⋅2n−1 2S n =2×21+3×22+4×23⋅⋅⋅+(n +1)⋅2n∴−S n =2+2+22+⋯+2n−1−(n +1)⋅2n=2+2−2n−1×21−2−(n +1)⋅2n=−n ⋅2n∴S n =n ⋅2n19.【答案】(1)解:∵sinCsin(A −B)=sinBsin(C −A)且 A =2B∴sinCsinB =sinBsin(C −A) ∵sinB >0∴sinC =sin(C −A)∴C=C-A (舍)或C+(C-A )=π 即:2C-A=π又∵A+B+C=π A=2B ∴C= 5π8(2)证明:由 sinCsin(A −B)=sinBsin(C −A) 可得sinC(sinAcosB −cosAsinB)=sinB(sinCcosA −cosCsinA) 再由正弦定理可得 accosB −bccosA =bccosA −abcosC 然后根据余弦定理可知12(a 2+c 2−b 2)−12(b 2+c 2−a 2)=12(b 2+c 2−a 2)−12(a 2+b 2−c 2) 化简得: 2a 2=b 2+c 2 故原等式成立.20.【答案】(1)解:由题意 (0.005+0.010+0.030+a +0.015)×10=1所以 a =0.040 ;(2)解:由频率分布直方图可得评分的中位数在 [80,90) 内 设评分的中位数为x则 (0.005+0.010+0.030)×10+0.040×(x −80)=0.5 解得 x =81.25 所以评分的中位数为81.25;(3)解:由题知评分在 [60,70) 和 [90,100] 内的频率分别为0.1和0.15 则抽取的5人中 评分在 [60,70) 内的为2人 评分在 [90,100] 的有3人记评分在 [90,100] 内的3位学生为a b c 评分在 [60,70) 内的2位学生为D E 则从5人中任选2人的所有可能结果为:(a,b) (a,c) (a,D) (a,E) (b,c) (b,D) (b,E) (c,D) (c,E) (D,E) 共10种;其中 这2人中至少一人评分在 [60,70) 内可能结果为:(a,D) (a,E) (b,D) (b,E) (c,D) (c,E) (D,E) 共7种;所以这2人中至少一人评分在 [60,70) 的概率 P =710.21.【答案】(1)解:因为双曲线 x 22−y 2=1 的焦点坐标为 (±√3,0)所以设所求的椭圆的方程为 x 2a 2+y 2b2=1 ( a >b >0 )则 {a 2=b 2+33a 2+14b 2=1 解得 a 2=4,b 2=1 所以椭圆的标准方程是 x 24+y 2=1(2)解:设直线AP 的方程是 y =k(x +2) ( k ≠0 )将其与 x 24+y 2=1 联立 消去y 得 (4k 2+1)x 2+16k 2x +16k 2−4=0 设 P(x 1,y 1)则 −2⋅x 1=16k 2−44k 2+1所以 x 1=2−8k 24k 2+1,y 1=4k 4k 2+1 所以 P(2−8k 24k 2+1,4k4k 2+1) 易知 M(2,4k)设存在点 T(x 0,y 0) 使得以MP 为直径的圆恒过直线BP 、MT 的交点Q ⇔MT ⊥BP ⇔4k−y 02−x 0⋅4k−16k2=−1 对于任意 k ≠0 成立 即 4k(1−x 0)+y 0=0 对于任意 k ≠0 成立 x 0=1,y 0=0 所以存在 T(1,0) 符合题意.22.【答案】(1)解:令 φ(x)=f(x)+g(x)φ′(x)=e x(x−1)+(1−1x)=(x−1)(e x+1x)令φ′(x)=0,x=1φ′(x)>0,x>1,φ′(x)<0,0<x<1所以φ(x)的单调递增区间是(1,+∞)单调递减区间是(0,1)所以x=1时φ(x)取得极小值也是最小值所以φ(x)min=φ(1)=1−e(2)解:g′(x)=1−1x=x−1x令g′(x)=0,x=1g′(x)<0,0<x<1,g′(x)>0,x>1 g(x)的递减区间是(0,1)递增区间是(1,+∞)所以g(x)的极小值为g(1)也是最小值g(x)≥g(1)=1>0.所以ℎ(x)=0⇔a=e x(x−2)x−lnx=s(x)因为s′(x)=e x(x−1)(x−lnx−1+2x)(x−lnx)2令k(x)=x−lnx−1+2x⇒k′(x)=(x+1)(x−2)x2令k′(x)=0,x=2k′(x)<0,0<x<2,k′(x)>0,x>2k(x)的递减区间是(0,2)递增区间是(2,+∞)所以k(x)的极小值为k(2)也是最小值所以k(x)≥k(2)=2−ln2>0所以s(x)的递减区间是(0,1)递增区间是(1,+∞)又因为x→0+,s(x)→0,x→+∞,s(x)→+∞且s(1)=−e 所以当a<−e时ℎ(x)有0个零点;当a=−e或a>0时ℎ(x)有1个零点;当−e<a<0时ℎ(x)有2个零点.。
2023年高考数学模拟试题(二)参考答案
面上,
球的半径为 R ,
则r=R ,
又球的表面积
正确;
两人 至 少 一 人 获 得 满 分 的 概 率 为 1-
以 △ABD 为 等 边 三 角 形。
BE ⊥AD ,且 AE =DE =1。
提示:
设直角圆锥 SO 的底面圆 的
P(
AB)
=P (
A)
P(
B )=
提 示:如 图 2,因
又 E 是 AD 的 中 点,所 以
的公比为q,
an }
8.
A
图3
2
2
2
=1,
PD = 2,即 PE + DE = PD ,所 以
PE ⊥DE 。又因为 PE ∩BE =E ,
PE ,
BE ⊂
平面 PBE ,所 以 DE ⊥ 平 面 PBE 。 又 DE∥
BC,则 BC ⊥ 平 面 PBE 。 又 BC ⊂ 平 面
所以平面 PBE ⊥ 平面 PBC,
2
所以椭圆 C 的方 程 为 +
a -c =4-1=3,
形,
设|NF2|=m ,则|PF2|
=3m ,|NF1 | = 2
a + m,
|PF1|= 2
a
+ 3m , 在
由勾股定理得
R
t△PNF1 中,
图4
2
2
2
(
2
a+m )+ (
4m ) = (
2
a+3m ),整 理 可 得
m =a,在 Rt△F2NF1 中,由 勾 股 定 理 得
2
2
2
2
2
(
3
a)+a = (
2023_届新高考数学模拟卷(二_)
2023届新高考数学模拟卷(二)李鸿昌(北京师范大学贵阳附属中学ꎬ贵州贵阳550081)中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)13-0074-05收稿日期:2023-02-05作者简介:李鸿昌(1991.10-)ꎬ男ꎬ贵州省凯里人ꎬ本科ꎬ中学二级教师ꎬ从事高中数学教学研究.㊀㊀一㊁选择题:本题共8小题ꎬ每小题5分ꎬ共40分.在每小题给出四个选项中ꎬ只有一项是符合题目要求的.1.已知集合A=xx2-4ɤ0{}ꎬB={x|log2x<1}ꎬ则AɘB=(㊀㊀).A.∅㊀B.[-2ꎬ2)㊀C.(0ꎬ2]㊀D.(0ꎬ2)2.若复数z满足z(1+i)=3-iꎬ则z-在复平面内对应的点所在的象限为(㊀).A.第一象限㊀㊀㊀B.第二象限C.第三象限D.第四象限3.已知向量aꎬb的夹角为π3ꎬ且a=2ꎬb=(1ꎬ1)ꎬ则a在b上的投影向量的坐标为(㊀㊀).A.12ꎬ12æèçöø÷㊀B.22ꎬ22æèçöø÷㊀C.(1ꎬ1)㊀D.2ꎬ2()4.函数f(x)=sinx-lgx的零点个数为(㊀㊀).A.5个㊀㊀B.6个㊀㊀C.7个㊀㊀D.8个5.从1至10这10个正整数中任取两个数ꎬ则这两个数之和能被3整除的概率是(㊀㊀).A.15㊀㊀㊀B.215㊀㊀㊀C.13㊀㊀㊀㊀D.496.已知sin3π2+αæèçöø÷=2cosα-π4æèçöø÷ꎬ则cos2α1+sin2α=(㊀㊀).A.-3㊀㊀B.3㊀㊀C.-13㊀㊀D.137.已知圆台上底面半径为1ꎬ下底面半径为3ꎬ球与圆台的两个底面和侧面均相切ꎬ则该圆台的侧面积与球的表面积之比为(㊀㊀).A.136㊀㊀B.433㊀㊀C.43㊀㊀D.13128.已知a=1012ꎬb=1111ꎬc=1210ꎬ则aꎬbꎬc的大小关系为(㊀㊀).A.a<c<b㊀B.c<a<b㊀C.b<c<a㊀D.c<b<a二㊁选择题:本题共4小题ꎬ每小题5分ꎬ共20分.在每小题给出的选项中ꎬ有多项符合题目要求.全部选对的得5分ꎬ部分选对的得2分ꎬ有选错的得0分.9.某地为响应 扶贫必扶智ꎬ扶智就是扶知识㊁扶技术㊁扶方法 的号召ꎬ建立了农业科技图书馆ꎬ供农民免费借阅ꎬ收集的自2017年至2021年共5年的年借阅数据见下表:年份20172018201920202021年份代码x12345年借阅量y(万册)2173693142㊀㊀根据上表ꎬ可得y关于x的二次回归方程为y^=6x2+aꎬ则下列说法正确的是(㊀㊀).A.a=4B.2ꎬ17ꎬ36ꎬ93ꎬ142的第三四分位数为93C.此回归模型第2020年的残差(实际值与预报值之差)为5D.估计2022年借阅数为22010.设正方体ABCD-A1B1C1D1的棱长为1ꎬP为线段A1D上的一个动点ꎬ下列结论正确的是(㊀㊀).A.BPʅBCB.BPʊ平面CB1D1C.BP与CD所成角的正切值的最小值为22D.点P到点A和点B1的距离之和的最小值为2+211.已知定义在R上的偶函数f(x)满足f(1-x)+f(1+x)=0ꎬ且对任意的xɪRꎬ导函数fᶄ(x)均存在ꎬ则(㊀㊀).A.f(x)的图象关于点(1ꎬ0)对称B.fᶄ(x)的图象关于原点对称C.f(2023)=0D.∀xɪRꎬfᶄ(x+2)=fᶄ(x)12.已知椭圆E:x2a2+y2b2=1(a>b>0)ꎬF1ꎬF2分别为E的左㊁右焦点ꎬB(0ꎬb)ꎬ弦AB过点F1ꎬ弦AC过点F2ꎬ且AB=AF2ꎬ则(㊀㊀).A.离心率e=33B.AF2=3F2CC.ABʅBCD.若AC=2714ꎬ则әABC的面积为9214三㊁填空题:本题共4小题ꎬ每小题5分ꎬ共20分.13.已知(1+x)(x-ay)5的二项展开式中x3y3的系数为80ꎬ则a=.14.已知非常数列an{}的前n项和为Snꎬ若an{}与Sn{}均为等差数列ꎬ请写出满足题意的一个an{}的通项公式ꎬan=.15.已知抛物线C:y=4x2ꎬ若圆M过C的顶点且在C内部ꎬ则圆M的半径的最大值为.16.设直线y=kx+b是曲线y=lnx+1的切线ꎬ也是曲线y=ln(x+2)的切线ꎬ则b=.四㊁解答题:本题共6小题ꎬ共70分.解答应写出文字说明㊁证明过程或演算步骤.17.已知数列an{}的前n项和为Sn=n2+1. (1)求an{}的通项公式ꎻ(2)令bn=4a2n-1ꎬ若对任意的nɪN∗ꎬ数列bn{}的前n项和Tn<m恒成立ꎬ求实数m的取值范围.18.记钝角әABC的内角AꎬBꎬC的对边分别为aꎬbꎬcꎬ已知cosA1-sinA=cosA+cosB1-sinA+sinB. (1)若C=2π3ꎬ求Aꎻ(2)求a2+c2b2的最小值.19.高尔顿板是英国生物统计学家高尔顿设计用来研究随机现象的模型ꎬ在一块木板上钉着若干排相互平行但相互错开的圆柱形小木块ꎬ小木块之间留有适当的空隙作为通道ꎬ前面挡有一块玻璃.将一个小球从高尔顿板上方的通道口放入ꎬ小球在下落的过程ꎬ每次碰到小木块后都等可能向左或向右滚下ꎬ最后掉入高尔顿板下方的某一球槽内.如图1所示的高尔顿板有7层小木块ꎬ小球从通道口落下ꎬ第一次与第2层中间的小木块碰撞ꎬ以12的概率向左或向右滚下ꎬ依次经过6次与小木块碰撞ꎬ最后掉入编号为1ꎬ2ꎬ ꎬ7的球槽内.图1(1)如图1进行一次高尔顿板试验ꎬ求小球落入5号球槽的概率.(2)五一期间ꎬ某商场门口利用如图1中的高尔顿板举行游戏活动ꎬ顾客只要花51元就能玩一次高尔顿板游戏.一次游戏中小球掉入X号球槽得到的奖金为ξ元ꎬ其中ξ=100-20X.(ⅰ)求X的分布列和期望E(X)ꎻ(ⅱ)高尔顿板游戏活动火爆进行ꎬ很多顾客参加了游戏活动ꎬ你觉得商家能盈利吗?20.如图2ꎬ菱形ABCD中ꎬøABC=120ʎꎬ动点EꎬF分别在边ADꎬAB上(不含端点)ꎬ且EFң=λDBң(0<λ<1)ꎬ沿EF将әAEF向上折起得到әPEFꎬ使得平面PEFʅ平面BCDEFꎬ如图3所示.图2㊀㊀㊀㊀㊀㊀㊀㊀㊀图3(1)当λ为何值时ꎬBFʅPDꎻ(2)若直线PC与平面BCDEF所成角的正切值为13ꎬ求平面PEF和平面PBD夹角的大小.21.已知双曲线C:x2a2-y2b2=1(a>0ꎬb>0)的离心率为2ꎬF为C的右焦点ꎬ且F到C的渐近线的距离为3.(1)求C的方程ꎻ(2)设P为C右支上的动点ꎬ在x轴负半轴上是否存在定点Mꎬ使得øPFM=2øPMF?若存在ꎬ求出点M的坐标ꎻ若不存在ꎬ请说明理由.22.已知函数f(x)=4lnx+12x2-2ax(aɪR)有两个极值点x1ꎬx2(x1<x2).(1)求实数a的取值范围ꎻ(2)证明:-x1-8x21<f(x2)<4ln2-6.参考答案1.D㊀2.A㊀3.B㊀4.B㊀5.C㊀6.A㊀7.C㊀8.D9.BC㊀10.BCD㊀11.ABC㊀12.ACD13.-2㊀14.2n-1(不唯一)㊀15.18㊀16.ln217.(1)当nȡ2时ꎬan=Sn-Sn-1=n2+1-(n-1)2-1=2n-1.当n=1时ꎬa1=S1=2.所以an=2ꎬn=1ꎬ2n-1ꎬnȡ2.{(2)当nȡ2时ꎬbn=4a2n-1=4(2n-1)2-1=1(n-1)n=1n-1-1nꎬ所以Tn=b1+b2+b3+ +bn=43+(1-12)+(12-13)+ +(1n-1-1n)=73-1n.当n=1时ꎬTn=b1=43ꎬ符合上式.故Tn=73-1n.因为Tn=73-1n<73ꎬ所以要使Tn<m恒成立ꎬ则mȡ73.故实数m的取值范围是73ꎬ+ɕ[öø÷.18.由已知ꎬ得cosA-cosAsinA+cosAsinB=cosA+cosB-cosAsinA-cosBsinA.即sinAcosB+cosAsinB=cosB.即sin(A+B)=cosB.即sinC=cosB.(1)若C=2π3ꎬ则cosB=sin2π3=32.故B=π6.从而A=π-B-C=π6.(2)由sinC=cosB得sinC=sin(π2-B).若C=π2-Bꎬ则B+C=π2ꎬ即A=π2ꎬ与әABC为钝角三角形矛盾.因此C+(π2-B)=πꎬ得C=π2+Bꎬ故A=π2-2B.所以a2+c2b2=sin2A+sin2Csin2B=sin2(π2-2B)+sin2(π2+B)sin2B=cos22B+cos2Bsin2B=(1-2sin2B)2+1-sin2Bsin2B=4sin4B-5sin2B+2sin2B=4sin2B+2sin2B-5ȡ42-5ꎬ当且仅当sin2B=22时ꎬa2+c2b2的最小值为42-5.19.(1)小球落入第5号球槽处需要6次碰撞ꎬ其中有2次向左4次向右ꎬ而无论是向左还是向右ꎬ都是12的概率ꎬ所以P=C26(12)4ˑ(12)2=1564.(2)(ⅰ)X=1ꎬ2ꎬ3ꎬ4ꎬ5ꎬ6ꎬ7ꎬ由意义知X~B(6ꎬ12)ꎬ所以P(X=1)=P(X=7)=(12)6=164ꎬP(X=2)=P(X=6)=C16(12)6=332ꎬP(X=3)=P(X=5)=C26(12)6=1564ꎬP(X=4)=C36(12)6=516.所以X的分布列为:X1234567P16433215645161564332164㊀㊀因此X的期望E(X)=6ˑ12=3. (ⅱ)ξ=100-20Xꎬ所以ξ=0ꎬ20ꎬ40ꎬ60ꎬ80ꎬ则P(ξ=0)=P(X=5)=1564ꎬP(ξ=20)=P(x=4)+P(x=6)=1332ꎬP(ξ=40)=P(X=3)+P(X=7)=14ꎬP(ξ=60)=P(X=2)=332ꎬP(ξ=80)=P(X=1)=164.所以E(ξ)=0ˑ1564+20ˑ1332+40ˑ14+60ˑ332+80ˑ164=80032=25<51.因此商家可以盈利.20.(1)因为菱形ABCD中ꎬøABC=120ʎꎬ故øA=60ʎꎬAB=AD.所以ΔABD是等边三角形.又EFң=λDBңꎬ所以EFʊBD.所以әPEF也是等边三角形.因为平面PEFʅ平面BCDEFꎬ如图4ꎬ取EF的中点Oꎬ则POʅEFꎬ且POʅ平面BCDEF.连接DOꎬ由BFʅPDꎬ而POʅBFꎬDPɘPO=Pꎬ所以BFʅ平面POD.所以BFʅOD.延长DO交AB于点Nꎬ则DNʅAB.又因为AOʅBDꎬ所以O为әABD的重心.又点O在EF上ꎬEFʊBDꎬ所以EFң=23DBң.即λ=23.图4(2)如图4ꎬ连接COꎬ设ΔABD边长为aꎬ则|PO|=32λaꎬ|CO|=32(2-λ)a.因为POʅ平面BCDEFꎬ所以直线PC与平面BCDEF所成角为øPCO.所以tanøPCO=|PO||CO|=λ2-λ=13ꎬ解得λ=12.所以EF是ΔABD的中位线.在棱锥P-BCDEF中ꎬ设OC与BD相交于点Mꎬ连接PMꎬ又设平面PEFɘ平面PBD于直线lꎬ则l过点P.因为EFʊBDꎬEF⊂平面PBDꎬ所以EFʊ平面PBD.又平面PEFɘ平面PBD于直线lꎬ所以EFʊlꎬ同理lʊBD.由上可知POʅEFꎬCOʅEF.所以EFʅ平面POM.所以lʅ平面POM.所以øOPM就是平面PEF和平面PBD所成二面角的平面角.又PO=OMꎬ且POʅOMꎬ所以øOPM=45ʎ.即平面PEF与平面PBD的夹角为45ʎ.21.(1)由双曲线的离心率为2ꎬ知c=2a.又c2=a2+b2ꎬ所以b=3a.因为F(cꎬ0)到C的渐近线bx-ay=0的距离为bc-aˑ0a2+b2=bcc=bꎬ所以b=3ꎬ故a=1.因此ꎬ双曲线C的方程为x2-y23=1.(2)假设点M存在ꎬ设M(tꎬ0).由(1)知双曲线的右焦点为F(2ꎬ0).设P(x0ꎬy0)(x0ȡ1)为双曲线C右支上一点.当x0ʂ2时ꎬtanøQFM=-kQF=-y0x0-2ꎬtanøQMF=kQM=y0x0-t.因为øQFM=2øQMFꎬ所以-y0x0-2=2y0/(x0-t)1-[y0/(x0-t)]2.将y20=3x20-3代入ꎬ并整理得-2x20+(4+2t)x0-4t=-2x20-2tx0+t2+3.于是4+2t=-2tꎬ-4t=t2+3ꎬ{解得t=-1.当x0=2时ꎬøPFM=90ʎꎬ而当t=-1时ꎬøPMF=45ʎꎬ符合øPFM=2øPMF.所以t=-1符合要求.满足条件的点M存在ꎬ其坐标为M(-1ꎬ0).22.(1)因为f(x)=4lnx+12x2-2axꎬ所以fᶄ(x)=4x+x-2a=x2-2ax+4x(x>0).根据f(x)有两个极值点x1ꎬx2ꎬ知方程x2-2ax+4=0有两个正根x1ꎬx2.所以x1+x2=2a>0ꎬΔ=4a2-16>0ꎬ{解得a>2.因此ꎬ实数a的取值范围是(2ꎬ+ɕ).(2)由(1)知x1x2=4ꎬ又x1<x2ꎬ所以0<x1<2<x2ꎬ又x1+x2=2aꎬ所以f(x2)=4lnx2+12x22-2ax2=4lnx2+12x22-(x1+x2)x2=4lnx2-12x22-4.①设g(x)=4lnx-12x2-4(x>2)ꎬ则gᶄ(x)=4x-x=4-x2x<0.所以g(x)在(2ꎬ+ɕ)单调递减.所以g(x)<g(2)=4ln2-6.即f(x2)<4ln2-6.②先证lnx>1-1x(x>1).设h(x)=lnx+1x-1(x>1)ꎬ则hᶄ(x)=1x-1x2=x-1x2>0.所以g(x)在(1ꎬ+ɕ)单调递增ꎬ故h(x)>h(1)=0ꎬ即lnx>1-1x(x>1).所以当x>2时lnx>1-1x.故f(x2)=4lnx2-12x22-4>41-1x2æèçöø÷-12x22-4=-4x2-12x22=-x1-8x21.综上ꎬ-x1-8x21<f(x2)<4ln2-6.[责任编辑:李㊀璟]。
2023年全国新高考仿真模拟卷(二)数学试题(含答案解析)
2023年全国新高考仿真模拟卷(二)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}2|log 1A x x =<,{}2|20B x x x =--<,则B A =ð()A .(﹣∞,2)B .(﹣1,0]C .(﹣1,2)D .(﹣1,0)2.已知复数11i z =+,22i z a =+,若12z z ⋅为纯虚数,则实数a 的值为()A .1-B .1C .2-D .23.函数()f x 为R 上的奇函数,当0x >时,()lg f x x x =-,则()100f -=()A .98B .98-C .90D .90-4.小陈和小李是某公司的两名员工,在每个工作日小陈和小李加班的概率分别为13和14,且两人同时加班的概率为16,则某个工作日,在小李加班的条件下,小陈也加班的概率为()A .112B .12C .23D .345.若22cos 1sin 26παα⎛⎫-=+ ⎪⎝⎭,则tan 2α的值为()A .B C .2D .2+6.如图所示,在ABC 中,2B A =,点D 在线段AB 上,且满足23AD BD =,ACD BCD ∠=∠,则cos A 等于()A .23B .34C .35D .457.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,398S =,且2n a S a ≤≤+,则实数a 的取值范围是()A .1,02⎡⎤-⎢⎥⎣⎦B .13,24⎡⎤-⎢⎥⎣⎦C .33,42⎡⎤⎢⎥⎣⎦D .30,2⎡⎤⎢⎥⎣⎦8.已知x ∈R ,符号[]x 表示不超过x 的最大整数,若函数()[]()0x f x a x x=-≠有且仅有2个零点,则实数a 的取值范围是()A .23,34⎛⎤ ⎥⎝⎦B .3,22⎡⎫⎪⎢⎣⎭C .2,23⎛⎫ ⎪⎝⎭D .233,2342⎛⎤⎡⎫ ⎪⎢⎝⎦⎣⎭二、多选题9.体育王老师记录了16名小学生某周课外体育运动的时长(单位:h ),记录如下表.运动时长456789运动人数122452则这16名小学生该周课外体育运动时长的()A .众数为8B .中位数为6.5C .平均数为7D .标准差为210.已知,αβ是空间两个不同的平面,,m n 是空间两条不同的直线,则给出的下列说法中正确的是()A .//m α,//n β,且//m n ,则//αβB .//m α,//n β,且m n ⊥,则αβ⊥C .m α⊥,n β⊥,且//m n ,则//αβD .m α⊥,n β⊥,且m n ⊥,则αβ⊥11.设1F ,2F 分别为椭圆221259x y+=的左、右焦点,P 为椭圆上第一象限内任意一点,1PF k ,2PF k 表示直线1PF ,2PF 的斜率,则下列说法正确的是()A .存在点P ,使得17PF =成立B .存在点P ,使得1290F PF ∠=︒成立C .存在点P ,使得217PF PF k k =成立D .存在点P ,使得127PF PF ⋅=成立12.设函数()sin 2sin cos xf x x x=+,则()A .()f x 的一个周期为πB .()f x 在ππ,44⎛⎫- ⎪⎝⎭上单调递增C .()f x 在π3π,44⎛⎫- ⎪⎝⎭D .()f x 图象的一条对称轴为直线π4x =三、填空题13.在平行四边形OACB 中,E 是AC 的中点,F 是BC 边上的点,且3BC BF =,若OC mOE nOF =+,其中m ,n ∈R ,则m n +的值为______.14.请写出与曲线()sin f x x =在()0,0处具有相同切线的另一个函数:______.15.Rt ABC △中,其边长分别为3,4,5,分别以它的边所在直线为旋转轴,旋转一周所形成的几何体的体积之和为______.16.已知1F ,2F 分别为双曲线22221x ya b-=(0a >,0b >)的左、右焦点,P 为双曲线右支上任意一点,若212PF PF 的最小值为2c,c ,则该双曲线的离心率是______.四、解答题17.设数列{}n a 的首项为1,前n 项和为n S ,且对*n ∀∈N ,kn n a S b n c +=⋅+恒成立,其中b ,k ,c 均为常数.(1)当0b =时,求数列{}n a 的通项公式;(2)当1k =时,若数列{}n a 为等差数列,求b ,c 的值.18.已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.19.某校团委针对“学生性别和喜欢课外阅读”是否有关做了一次不记名调查,其中被调查的全体学生中,女生人数占总人数的13.调查结果显示,男生中有16的人喜欢课外阅读,女生中有23的人喜欢课外阅读.(1)以频率视为概率,若从该校全体学生中随机抽取2名男生和2名女生,求其中恰有2人喜欢课外阅读的概率;(2)若有95%的把握认为喜欢课外阅读和性别有关,求被调查的男生至少有多少人?附:()20P k χ≥0.0500.0100k 3.8416.635()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.20.如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB 的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.21.已知点M 是抛物线()2:20C x py p =>的对称轴与准线的交点,过M 作抛物线的一条切线,切点为P ,且满足2PM =.(1)求抛物线C 的方程;(2)过()1,1A -作斜率为2的直线与抛物线C 相交于点B ,点()0,T t ()0t >,直线AT 与BT 分别交抛物线C 于点E ,F ,设直线EF 的斜率为k ,是否存在常数λ,使得t k λ=?若存在,求出λ值;若不存在,请说明理由.22.已知函数()()22ln xf x x a a x=--∈R .(1)求函数()f x 的极值;(2)当11a <时,若函数()f x 有两个零点()1212,x x x x >.①证明:12ln ln x x -<②证明:1201x x <<.参考答案:1.B【分析】解对数不等式化简集合A ,解一元二次不等式化简集合B ,根据补集运算可得结果.【详解】∵集合{}{}2|log 1|02A x x x x =<=<<,{}{}2|20|12B x x x x x =--<=-<<,∴{}|10B A x x =-<≤ð,故选:B.【点睛】本题主要考查了对数与二次不等式的求解以及集合的补集运算.属于基础题.2.D【分析】求出12z z ⋅的代数形式,然后根据其实部为零,虚部不为零列式计算即可.【详解】 复数11i z =+,22i z a =+,∴()()()121i 2i 22i z z a a a ⋅=++=-++,12z z ⋅为纯虚数,20a ∴-=且20a +≠,2a ∴=.故选:D.3.A【分析】直接利用函数奇偶性及0x >时的解析式计算即可.【详解】因为函数()f x 为R 上的奇函数,所以()()100100f f -=-,又当0x >时,()lg f x x x =-,所以()()()100100lg10010098f f -=-=--=.故选:A.4.C【分析】根据题意结合条件概率公式运算求解.【详解】记“小李加班”为事件A ,“小陈加班”为事件B ,则()()()111,,436P A P B P AB ===,故在小李加班的条件下,小陈也加班的概率为()()()2|3P AB P B A P A ==.故选:C.5.D【分析】先利用倍角公式降次,再利用两角和的公式展开后转化为用tan 2α表示的等式,然后解方程即可.【详解】22cos 1sin 26παα⎛⎫-=+ ⎪⎝⎭ 1cos 21sin 23παα⎛⎫∴+-=+ ⎪⎝⎭,1cos 22sin 222ααα∴+=,又cos 20α≠,则12tan 22αα=,解得tan 22α=.故选:D.6.B【分析】根据三角形的边角关系,结合角平分线定理、二倍角公式、正弦定理即可求得cos A 的值.【详解】在ABC 中,角,,A B C 对应的边分别为,,a b c ,又点D 在线段AB 上,且满足23AD BD =,所以332,555AD AB c BD c ===,又ACD BCD ∠=∠,由角平分线定理可得AC BC AD BD =,所以3255b ac c =,则32b a =,又2B A =,所以sin sin 22sin cos B A A A ==,则sin cos 2sin BA A=,由正弦定理得3sin 32cos 2sin 224aB b A A a a ====.故选:B.7.B【分析】设等比数列{}n a 的公比为q ,由1220a a +=,398S =,列方程求出1,a q ,进而可求出n S ,结合指数函数的性质求出n S 的最大、小值,列不等式组即可求出a 的取值范围【详解】解:设等比数列{}n a 的公比为q ,因为1220a a +=,398S =,所以121(12)09(1)8a q a q q +=⎧⎪⎨++=⎪⎩,解得131,22a q ==-,所以31111,2221112111,22nnn n nn S n ⎡⎤⎧⎛⎫⎛⎫--⎢⎥+ ⎪⎪ ⎪⎝⎭⎢⎥⎪⎝⎭⎛⎫⎣⎦==--=⎨ ⎪⎛⎫⎝⎭⎛⎫⎪-- ⎪- ⎪⎪⎝⎭⎝⎭⎩为奇数为偶数,当x 为正整数且奇数时,函数1()12xy =+单调递减,当x 为正整数且偶数时,函数1()12xy =-+单调递增,所以1n =时,n S 取得最大值32,当2n =时,n S 取得最小值34,所以34322a a ⎧≤⎪⎪⎨⎪+≥⎪⎩,解得1324a -≤≤.故选:B.8.D【分析】设()[]x g x x=,根据已知作出()g x 的草图,分析已知函数()[]()0x fx ax x=-≠有且仅有2个零点,则[]x a x=有且仅有2个解,即可得出答案.【详解】函数()[]()0x f x a x x=-≠有且仅有2个零点,则[]x a x=有且仅有2个解,设()[],1,00,01nx n x n n g x xxx ⎧≤<+≠⎪==⎨⎪≤<⎩,根据符号[]x 作出()g x的草图如下:则2334a <≤或322a ≤<,故选:D.9.AC【分析】根据表格数据计算得到众数,中位数,平均数和标准差即可判断结果【详解】由题意,这组运动时长数据中8出现了5次,其余数出现次数小于5次,故众数为8,A 正确;将16小学生的运动时长从小到大排列为:4,5,5,6,6,7,7,7,7,8,8,8,8,8,9,9,则中位数为7772+=,故B 错误;计算平均数为142526475829716⨯+⨯+⨯+⨯+⨯+⨯=,故C 正确;方差为()()()()()()2222222147257267477587297216s ⎡⎤=-+⨯-+⨯-+⨯-+⨯-+⨯-=⎣⎦,所以标准差为s ==D 错误.故选:AC 10.CD【分析】利用空间线面、面面平行、垂直的性质定理和判定定理分别分析四个命题,即可得到正确答案.【详解】A 选项,若//m α,//n β,且//m n ,则,αβ可能相交或平行,故A 错误;B 选项,若//m α,//n β,且m n ⊥,则,αβ可能相交,也可能平行,故B 错误;C 选项,若m α⊥,//m n ,则n α⊥,又n β⊥,则//αβ;即C 正确;D 选项,若m α⊥,m n ⊥,则//n α或n ⊂α;又n β⊥,根据面面垂直的判定定理可得:αβ⊥,即D 正确.故选:CD.11.ABD【分析】根据椭圆的性质逐项进行分析即可判断.【详解】由椭圆方程221259x y +=可得:5,3a b ==,4c ==,对于A ,由椭圆的性质可得:129a c PF a c =-≤≤+=,又因为点P 在第一象限内,所以159a PF a c =<<+=,所以存在点P ,使得17PF =成立,故选项A 正确;对于B ,设点00(,)P x y ,因为12(4,0),(4,0)F F -,所以100(4,)PF x y =--- ,200(4,)PF x y =--,则2222212000009161616972525PF PF x y x x x ⋅=-+=-+-=- ,因为005x <<,所以20025x ≤≤,所以2120167(7,9)25PF PF x ⋅=-∈- ,所以存在点P ,使得120PF PF ⋅=,则1290F PF ∠=︒成立,故选项B 正确;对于C ,因为1004PF y k x =+,2004PF y k x =-,若217PF PF k k =,则00(316)0x y +=,因为点00(,)P x y 在第一象限内,所以000,0y x >>,则00(316)0x y +=可化为:03160x +=,解得:01603x =-<不成立,所以不存在点P ,使得217PF PF k k =成立,故选项C 错误;对于D ,由选项B 的分析可知:2120167(7,9)25PF PF x ⋅=-∈- ,所以存在点P ,使得127PF PF ⋅=成立,故选项D 正确,故选:ABD.12.BD【分析】利用诱导公式化简可得()()πf x f x +=-,可判断选项A ;利用换元法和函数的单调性,可判断选项B 和C ;利用诱导公式化简可得()π2f x f x ⎛⎫-= ⎪⎝⎭,可判断选项D .【详解】对A :()()()()()()sin 2πsin 22πsin 2πsin πcos πsin cos sin cos x x xf x f x x x x xx x+++===-=-+++--+,故π不是()f x 的周期,A 错误;对B :令πsin cos 4t x x x ⎛⎫=+=+ ⎪⎝⎭,则2sin 22sin cos 1x x x t ==-,则211t y t t t-==-,∵ππ,44x ⎛⎫∈- ⎪⎝⎭,则()πππ0,,sin 0,1424x x ⎛⎫⎛⎫+∈+∈ ⎪ ⎪⎝⎭⎝⎭,∴π4t x ⎛⎫=+ ⎪⎝⎭在π0,2⎛⎫ ⎪⎝⎭上单调递增,且(π0,4t x ⎛⎫=+∈ ⎪⎝⎭,又∵1y t t =-在()0,∞+上单调递增,故()f x 在ππ,44⎛⎫- ⎪⎝⎭上单调递增,B 正确;对C :∵π3π,44⎛⎫- ⎪⎝⎭,则()π0,π4x +∈,∴(]πsin 0,14x ⎛⎫+∈ ⎪⎝⎭,则(π0,4t x ⎛⎫=+∈ ⎪⎝⎭,又∵1y tt =-在(上单调递增,且|2x y ,∴1y t t =-在(上最大值为2,即()f x 在π3π,44⎛⎫- ⎝⎭,C 错误;对D :()()πsin 2sin π2πsin 22ππ2cos sin sin cos sin cos 22x x x f x f x x x x xx x ⎛⎫- ⎪-⎛⎫⎝⎭-=== ⎪++⎛⎫⎛⎫⎝⎭-+- ⎪ ⎪⎝⎭⎝⎭,故()f x 图象的一条对称轴为直线π4x =,D 正确.故选:BD.【点睛】结论点睛:若()()f m x f n x +=-,则()f x 关于直线2m nx +=对称,特别地()()2f x f a x =-,则()f x 关于直线x a =对称;若()()2f m x f n x b ++-=,则()f x 关于点,2m n b +⎛⎫⎪⎝⎭对称,特别地()()20f x f a x +-=,则()f x 关于点(),0a 对称.13.75##1.4【分析】先以{},OA OB 为基底向量求,OE OF uu u r uuu r,联立求解可得6362,5555OA OE OB OF OE =-=-uu r uu u r uuu r uu u r uuu r uu u r ,再结合OC OA OB =+,代入运算即可得答案.【详解】由题意可得:11,23OE OA AE OA OB OF OB BF OB OA =+=+=+=+uu u r uu r uu u r uu r uu u r uuu r uu u r uu u r uu u r uu r,联立1213OE OA OB OF OB OA ⎧=+⎪⎪⎨⎪=+⎪⎩,解得63556255OA OE OB OF OE ⎧=-⎪⎪⎨⎪=-⎪⎩ ,∵636243555555OC OA OB OE OF OF OE OE OF ⎛⎫⎛⎫=+=-+-=+ ⎪ ⎪⎝⎭⎝⎭uuu r uu r uu u r uu u r uuu r uuu r uu u r uu u r uuu r ,则43,55m n ==,故75m n +=.故答案为:75.14.3y x x =+(答案不唯一)【分析】利用导数的几何意义可求得在()0,0处的切线斜率,由此可得切线方程;若两曲线在原点处具有相同切线,只需满足过点()0,0且在0x =处的导数值1y '=即可,由此可得曲线方程.【详解】sin y x = 的导函数为cos y x '=,又sin y x =过原点,sin y x ∴=在原点()0,0处的切线斜率cos 01k ==,sin y x ∴=在原点()0,0处的切线方程为y x =;所求曲线只需满足过点()0,0且在0x =处的导数值1y '=即可,如3y x x =+,231y x '=+ ,又3y x x =+过原点,3y x x ∴=+在原点处的切线斜率1k =,3y x x ∴=+在原点()0,0处的切线方程为y x =.故答案为:3y x x =+(答案不唯一).15.188π5【分析】分类讨论旋转轴所在的直线,结合锥体的体积公式运算求解.【详解】由题意不妨设:3,4,5AB AC BC ===,边BC 上的高为h ,则1122AB AC BC h ⨯=⨯,可得125AB AC h BC ⨯==,若以边AB 所在直线为旋转轴,则所形成的几何体为圆锥,其底面半径14r =,高为3AB =,故此时圆锥的体积为2113π416π3V =⨯⨯⨯=;若以边AC 所在直线为旋转轴,则所形成的几何体为圆锥,其底面半径23r =,高为4AC =,故此时圆锥的体积为2214π312π3V =⨯⨯⨯=;若以边BC 所在直线为旋转轴,则所形成的几何体为两个共底面的圆锥,其底面半径3125r h ==,高为12,h h ,且125h h BC +==,故所得几何体的体积为()22223132312311111248πππ5ππ333355V h r h r h h r ⎛⎫=⨯⨯+⨯⨯=+⨯⨯=⨯⨯⨯= ⎪⎝⎭;故体积之和为4818816π12πππ55++=.故答案为:188π5.16.22+【分析】设2PF m =,则m c a ≥-,根据双曲线的定义12PF m a =+,故221244PF a m a PF m=++,分2a c a ≥-与2a c a <-讨论,结合“对勾”函数的性质可求出离心率.【详解】设2PF m =,则m c a ≥-,由双曲线的定义知122PF PF a -=,∴12PF m a =+,()22212244PF m a a m a PF mm+==++,当2a c a ≥-,即13a c ≥时,221244PF a m a PF m =++84823a a c c ≥=>>,不符合题意;当2a c a <-,即3ce a=>时,244a y m a m=++在[),m c a ∈-+∞上单调递增,所以当m c a =-时212PF PF 取得最小值,故2442a c a a c c a-++=-,化简得2240c ac a --=,即2410e e --=,解得2e =(舍)或2e =3e >.综上所述,该双曲线的离心率是2故答案为:2.17.(1)1*1,2n n a n -⎛⎫=∈ ⎪⎝⎭N (2)1b =,1c =【分析】(1)根据1n n n a S S -=-,结合已知等式得出112n n a a -=,即可得出数列{}n a 是以首项为1,公比为12的等比数列,即可得出数列{}n a 的通项公式;(2)利用关系式得出1a 、2a 、3a ,再根据等差中项列式,即可得出答案.【详解】(1)令1n =,则11a S b c +=+,即12a b c =+,11a = ,0b =,2c ∴=,则2nn a S +=,即2n n S a =-,当2n ≥时,()1122n n n n n a S S a a --=-=---,化简得112n n a a -=,而11a =,则数列{}n a 是以首项为1,公比为12的等比数列,则数列{}n a 的通项公式1*1,2n n a n -⎛⎫=∈ ⎪⎝⎭N ,(2)当1k =时,n n a S nb c +=+,令1n =,则11a S b c +=+,则12a b c =+,11a = ,2b c ∴+=,令2n =,则222a S b c +=+,则2122a b c a =+-,2b c += ,11a =,221a b ∴=+,令3n =,则333a S b c +=+,则31223a b c a a =+--,2b c += ,11a =,212b a +=,33144b a ∴=+, 数列{}n a 为等差数列,2132a a a ∴=+,即311144b b +=++,解得1b =,则21c b =-=.18.(1)证明见解析(2)98【分析】(1)利用余弦定理及面积公式将条件变形得cos sin A B =,再利用诱导公式及三角函数的性质可证明结论;(2)利用(1)的结论及三角公式,将sin sin A C +转化为关于cos B 的二次函数,然后配方可以求最值.【详解】(1)由余弦定理222cos 2b c a A bc+-=得2222cos bc A b c a =+-,4412cos sin 2bS b bc A ac B a a ∴==⨯,cos sin A B ∴=,cos cos 2πA B ⎛⎫∴=- ⎪⎝⎭,B 为钝角,则,2πA B -均为锐角,2B A π∴-=,即2B A π=+;(2)2ππsin sin sin sin cos cos 22cos cos 122A C B B B B B B B ⎛⎫⎛⎫+=-++-=--=--+ ⎪ ⎪⎝⎭⎝⎭,令cos B t =,B 为钝角,则()1,0t ∈-,2219sin sin 21248A C t t t ⎛⎫∴+=--+=-++ ⎪⎝⎭,当14t =-,即1cos 4B =-时,sin sin A C +取最大值,且为98.19.(1)47108;(2)12.【分析】(1)由相互独立事件同时发生的概率,可得结论;(2)设出男生人数,列出22⨯列联表,根据2 3.841χ≥及,,236x x x均为整数即可求解.【详解】(1)从该校全体学生中随机抽取2名男生和2名女生,记其中恰有2人喜欢课外阅读为事件A ,则()222211221152151247C C 63636633108P A ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(2)设被调查的男生人数为x ,则被调查的女生人数为2x,则22⨯列联表为:喜欢课外阅读不喜欢课外阅读合计男生6x56x x 女生3x 6x 2x 合计2x x32x若有95%的把握认为喜欢课外阅读和性别有关,则2 3.841χ≥,即223526663 3.84122x x x x x x xx x χ⎛⎫⋅-⋅ ⎪⎝⎭≥≥⋅⋅⋅,则 3.841810.2433x ⨯≥≈,因为,,236x x x均为整数,所以被调查的男生至少有12人.20.(1)DE ∥平面ABC ,证明见解析;5【分析】(1)分别取,AC BC 的中点,O P ,连接,,DO EP OP ,EP DO ∥且EP DO =,再利用线面平行的判定定理,即可得到答案;(2)连接BO ,则易知BO ⊥平面ACD ,以O 为坐标原点,分别以,,OD OA OB 的方向为,,x y z 轴的正方向,建立如图所示的空间直角坐标系O xyz -,求出向量1,22DH ⎛= ⎝⎭uuu r 及平面ACE 的法向量()1,0,2m =-,代入夹角公式,即可得到答案;【详解】(1)DE ∥平面ABC ,理由如下:分别取,AC BC 的中点,O P ,连接,,DO EP OP ,因为AD CD =,所以DO AC ⊥,又平面ACD ⊥平面ABC ,平面ACD 平面ABC AC =,DO ⊂平面ACD ,所以DO ⊥平面ABC ,同理EP ⊥平面ABC ,所以EP DO ∥,又因为,ACD BCE 是全等的正三角形,所以EP DO =,所以四边形DOPE 是平行四边形,所以DE OP ∥,因为ED ⊄平面ABC ,OP ⊂平面ABC ,所以ED ∥平面ABC ;(2)连接BO ,则易知BO ⊥平面ACD ,以O 为坐标原点,分别以,,OD OA OB的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系O xyz -,令2AC =.则()()())110,0,0,0,1,0,0,1,0,,0,,0,22O A C D H P ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,1,2DE OP E ⎫=∴-⎪⎪⎭所以()310,2,0,,2222AC AE DH ⎫⎛⎫=-=-=⎪ ⎪⎪ ⎪⎭⎝⎭,设平面ACE 的法向量为(),,m x y z =,所以·0·0m AC m AE ⎧=⎪⎨=⎪⎩,所以203022y y -=⎧⎪-+=则0y =,取2z =,1x ∴=-,则()1,0,2m =-,所以cos ,DH m DH m DH m ===设直线DH 与平面ACE 所成的角为θ,则sin cos ,DH m θ==21.(1)2x y =(2)存在,32λ=【分析】(1)利用导数求得切线方程2002x x y x p p =-,根据切线方程过点0,2p M ⎛⎫-⎪⎝⎭求得220x p =,再结合两点间距离公式运算求解;(2)根据题意联立方程求点B 的坐标,再分别求直线,AT BT 的方程和,E F 的坐标,代入斜率公式运算求解即可.【详解】(1)∵抛物线()2:20C x py p =>,则20,,22p x M y p ⎛⎫-= ⎪⎝⎭,∴x y p'=,设20,2x P x p ⎛⎫ ⎪⎝⎭,则在点P 处的切线斜率0x k p =,故在点P 处的切线方程为()20002x x y x x p p -=-,即2002x x y x p p =-,∵切线过点0,2p M ⎛⎫- ⎪⎝⎭,则2022x p p -=-,解得220x p =,则2PM ===,解得12p =,故抛物线C 的方程为2x y =.(2)存在,32λ=,理由如下:由题意可得:直线AB 的方程为()121y x -=+,即23y x =+,联立方程223y x x y=+⎧⎨=⎩,解得11x y =-⎧⎨=⎩或39x y =⎧⎨=⎩,即直线AB 与抛物线的交点坐标为()()1,1,3,9A B -,∵直线AT 的斜率1k t =-,故其方程为()1y t x t =-+,联立方程()21y t x t x y⎧=-+⎨=⎩,解得11x y =-⎧⎨=⎩或2x ty t =⎧⎨=⎩,即点()2,E t t,又∵直线BT 的斜率93tk -=,故其方程为93t y x t -=+,联立方程293t y x t x y -⎧=+⎪⎨⎪=⎩,解得11x y =-⎧⎨=⎩或239t x t y ⎧=-⎪⎪⎨⎪=⎪⎩,即点2,39t t F ⎛⎫- ⎪⎝⎭,故直线EF 的斜率为222933t t k t t t λ-===+,则32λ=.【点睛】存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.22.(1)()f x 有极小值()11f a =-,无极大值(2)①证明见详解;②证明见详解【分析】(1)求导,利用导数判断原函数的单调性,进而可求极值;(2)对①:根据分析可得12ln ln x x -<12ln 0t t t-->,构建()12ln g x x x x =--,利用导数证明;对②:令11m x =,整理可得()112ln f m m m m m m ⎛⎫⎛⎫=+-- ⎪⎪⎝⎭⎝⎭,结合()g x 的单调性证明()0f m <,再结合()f x 的单调性即可证明.【详解】(1)由题意可得:()()()3222ln 121ln 2x x x f x x x x +='--=-,∵()3ln 1F x x x =+-在()0,∞+上单调递增,且()10F =,∴当01x <<时,()0F x <,当1x >时,()0F x >,即当01x <<时,()0f x '<,当1x >时,()0f x ¢>,故()f x 在()0,1上单调递减,在()1,+∞上单调递增,可得()f x 有极小值()11f a =-,无极大值.(2)若函数()f x 有两个零点()1212,x x x x >,则()110f a =-<,解得1a >,当111a <<时,则()()2422424e e 4e 0,e e 0ef a f a --=-+>=-->,结合()f x 的单调性可知:()f x 在()0,1,()1,+∞内均只有一个零点,则2101x x <<<,构建()12ln g x x x x =--,则()()22212110x g x x x x-'=-+=≥当0x >时恒成立,故()g x 在()0,∞+上单调递增,①令1t =>,则12ln ln x x -<1121ln x x x x -,等价于221ln t t t-<,等价于12ln 0t t t-->,∵()g x 在()1,+∞上单调递增,则()()10g t g >=,即12ln 0t t t-->,故12ln ln x x -<②若函数()f x 有两个零点()1212,x x x x >,令()110,1m x =∈,即11x m=,则()21212ln1112ln 01m f x f a a m m m m m m⎛⎫⎛⎫==--=-+= ⎪ ⎪⎝⎭⎝⎭,可得212ln a m m m =+,故()2222ln 12ln 112ln 2ln m mf m m a m m m m m m m m m m m ⎛⎫⎛⎫⎛⎫=--=--+=+-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,由()0,1m ∈,则10m m+>,∵()g x 在()0,1上单调递增,则()()10g m g <=,即12ln 0m m m--<,∴()112ln 0f m m m m m m ⎛⎫⎛⎫=+--< ⎪⎪⎝⎭⎝⎭当()0,1m ∈时恒成立,又∵()f x 在()0,1上单调递减,且()()20f m f x <=,∴2m x >,即211x x >,故1201x x <<.【点睛】方法点睛:利用导数证明不等式的基本步骤(1)作差或变形.(2)构造新的函数h (x ).(3)利用导数研究h (x )的单调性或最值.(4)根据单调性及最值,得到所证不等式.特别地:当作差或变形构造的新函数不能利用导数求解时,一般转化为分别求左、右两端两个函数的最值问题.。
2023年数学新高考二卷模拟卷
2023年数学新高考二卷模拟卷一、选择题(本题共12小题,每小题5分,共60分)1.已知集合A={x∣x2−3x+2<0},则=( )A.[1,2]B.(−∞,1)∪(2,+∞)C.(−∞,1]∪[2,+∞)D.(−∞,1)2.下列说法正确的是()A. “x>1”是“x>0”的充分不必要条件B. “x=1”是“x⩾1”的充要条件C. “x=−1”是“x<1”的既不充分也不必要条件D. 不等式∣x∣>1的解集为{x∣x>1}3.已知数列{an}的前n项和为Sn,点(n,Sn)在直线y=21x+211上,则数列{an}的通项公式为()A.an=3n−2B.an=2n−1C.an=3n−4D.an=2n−14.已知函数f(x)=x3+(a−5)x2+bx+c(a>0,b>0)与y=xx+1的图象有相同的对称中心,则g(x)=log a(x2+25)的值域为( )A.(2,+∞)B.[2,+∞)C.(−∞,2)D.[2,5)5.若函数f(x) = (x - a)/(e^x) 在区间(0, 2) 上有极值,则实数a 的取值范围为_______.6.已知抛物线C: y^2 = 2px (p > 0) 的焦点为F,经过点F 的直线与抛物线C 交于A, B 两点,若线段AB 的中点为M (3/2, m),则线段AB 的长为_______.7.若直线y = kx 与曲线y = sin(x + π/4) + cos(x - π/4) - π/4 在(0, m) 上有公共点,则m 的最大值为_______.8.若函数f(x) = (1/3)x^3 - x^2 + a 有三个不同的极值点,则实数a 的取值范围是_______.9.若函数f(x) = x^3 + ax^2 + bx + c 有两个极值点x₁, x₂且f(x ₁) + f(x₂) = 0,则下列结论中正确的是_______.①b = -3a;②f(0)*f(1) < 0;③f( - a)*f( - b/3) < 0;④f(x₁)*f(x₂) < 0;⑤|f(1)| ≤5/4.A.①②③B.①②④C.①③④D.①②③④⑤10.已知数列{an} 的前n 项和为Sn,点(n,Sn/n) 在直线y = (1/2)n + (11/2) 上.11.(1) 求数列{an} 的通项公式;(2) 若bn = (3/((2an - 11)(2an + 1 - 11)),求数列{bn} 的前n 项和为Tn,并求使不等式Tn > k/20 对一切n ∈N* 都成立的最大正整数k 的值.(3) 设数列{1/an} 的前n 项和为Sn',是否存在正整数m,使得对任意n ∈N*,都有Sn' ≥S'm - 1/2 成立?若存在,求出m 的值;若不存在,说明理由.1.已知函数f(x) = x^2 - ax + 3,若a ∈(0,1),记f(x) 在区间[2,3] 上的最小值为f(x)min,求f(x)min 的取值范围.2.已知函数f(x) = x^2 + ax + 2a .3.(1) 当a = -1 时,求不等式f(x) > 0 的解集;(2) 若不等式f(x) ≥(a - 1)^2 + a^2 对x ∈[-1,1] 恒成立,求a 的取值范围.二、填空题(本题共4小题,每小题5分,共20分)1.已知函数f(x) = x^3 + (a - 5)x^2 + bx + c 在x = 1 和x = - 2 时取极值,则f( - 1) = _______.2.若直线l 的极坐标方程为ρsinθ+ √3cosθ- 2 = 0,则l 的直角坐标方程为_______.3.已知数列{an} 中,a₁= 1且(1/an₊₁) = (1/an) + (1/3) (n ∈N*),则a₁₀= _______.4.在锐角三角形ABC中,内角A, B, C 的对边分别为a, b, c, 且满足a = √3, (ab)/(ac + bc) = 1/2, 则ABC 的最大值为_______.三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)1.(10分)在等差数列{an} 中,a₁= -23,d = 2,求an;(2) 在等比数列{bn} 中,b₁= -8,q = -2,求bn.1.(10分)在数列{an} 中,a₁= 1,且对于任意n ∈N*,都有an₊₁= an + n + 1.(1) 求数列{an} 的通项公式;(2) 求数列{an/n} 的前n 项和为Sn,求证:Sn < n - 9/2.1.(10分)设数列{an} 中,a₁= 8, a₄= 2, 点(n, an/n) 在直线y = (1/2)x + (11/2) 上.(1) 求数列{an} 的通项公式;(2) 求数列{na_(n)} 的前n 项和Sn 并求Sn 的最小值.1.(10分)已知数列{an} 满足a₁= 1,且an+1 = 3an + 2(n ∈N*).(1) 求数列{an} 的通项公式;(2) 设数列{an} 的前n 项和为Sn,求Sn.1.(10分)已知函数f(x) = (1/3)x^3 - x^2 + a 有三个不同的极值点.(1) 求实数a 的取值范围;(2) 若不等式f(x) > 0 在区间(0, m) 上有解,求m 的最大值.1.(10分)已知数列{an} 中,a₁= 1,且对于任意n ∈N*,都有an₊₁= an + n + 1.(1) 求数列{an} 的前n 项和为Sn;(2) 求证:Sn < n^2 - n.1.(10分)已知数列{an} 中,a₁= 1,且对于任意n ∈N*,都有an₊₁= an + n + 1.(1) 求数列{an} 的前n 项和为Sn;(2) 设数列{1/an} 的前n 项和为Tn,求证:Tn < 2 - (1/2^n)。
2023高考数学模拟试题(带答案解析)
2023高考数学模拟试题(带答案解析)第一部分:选择题1. 设$A$ 为向量组$\alpha_1,\alpha_2$ 与$\beta$ 的张成空间,则下列命题成立的是()A. 若 $\beta = \alpha_1 + \alpha_2$,则 $\beta \in A$B. 若 $\beta \in A$,则 $\beta$ 一定能表示成$\alpha_1,\alpha_2$ 的线性组合C. 若 $\alpha_1,\alpha_2$ 线性无关,则 $\beta \notin A$D. 若 $\beta = \lambda_1\alpha_1 + \lambda_2\alpha_2$,则$\beta \in A$答案:B解析:$\forall \beta \in A$,$\beta$ 一定是向量组$\alpha_1,\alpha_2$ 的线性组合,即 $\beta = \lambda_1\alpha_1 + \lambda_2\alpha_2$,故选 B。
2. 已知函数 $f(x)=\frac{2x^2-8x}{x-4}$,若 $f(a)=5$,则$a=$()A. 4B. 5C. 6D. 7答案:6解析:$f(x)=\frac{2x^2-8x}{x-4} = \frac{2x(x-4)}{x-4} = 2x$所以 $f(a)=5$ 即 $2a=5$,解得 $a=\frac{5}{2}$。
故选 C。
第二部分:填空题1. 若 $|a|=3,|b|=1$,则 $|\frac{1}{2}a-2b|=$()答案:$\frac{\sqrt{17}}{2}$解析:$|\frac{1}{2}a-2b| = \frac{1}{2}|3\alpha - 2\beta| =\frac{1}{2}\sqrt{9+4}= \frac{\sqrt{17}}{2}$。
2. 已知 $cos A = -\frac{1}{3}$,则 $tan \frac{A}{2}=$()答案:$-\frac{1}{2}$解析:由 $\cos A = -\frac{1}{3}$,得 $\sin A = \frac{\sqrt{8}}{3}$,且由 $\cos A = -\frac{1}{3}$ 得 $A\in (90^\circ,180^\circ)$。
2023年全国新高考数学仿真模拟卷(一)数学试题(高频考点版)
一、单选题二、多选题三、填空题1.设,则“关于的方程有实数根”是“”的( )A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件2. 已知双曲线的左焦点为,左、右顶点为、,为双曲线上任意一点,则分别以线段,为直径的两个圆的位置关系为( )A .外切或外离B .相交或内切C .内含或外离D .内切或外切3. 已知函数为奇函数,且当时,,则( )A.B.C.D.4. 已知抛物线:的焦点为F ,点M 在C 上,O 为坐标原点,,点Q 为线段MF 的中点,且,则( )A .1B.C .2D .35.抛物线的焦点坐标是( )A.B.C.D.6. 加油站的汽油单价会出现波动,一段时间内小明的爸爸准备去加油站加两次油,且两次汽油单价不同,现有两种加油方式:①每次所加的油量固定;②每次加油的付款额固定.若平均单价越低则该加油方式越划算,不考虑其他因素影响,则( )A .按方式①加油更划算B .按方式②加油更划算C .两种加油方式一样划算D .无法比较哪种加油方式更划算7.已知,函数,若满足关于的方程,则下列命题为真命题的有( )A .,B .,C .,D .,8. (多选)在数列中,若为常数,则称为等方差数列,下列对等方差数列的判断正确的有( )A .若是等方差数列,则是等差数列B .数列是等方差数列C .若数列既是等方差数列,又是等差数列,则数列一定是常数列D.若数列是等方差数列,则数列(,k 为常数)不是等方差数列9.已知函数,则=______.10. 已知数学期中考试时长为2小时,则考试期间分针旋转了弧度_____11.设椭圆的左、右焦点分别为,点P 在椭圆C上,若线段的中点在y 轴上,且为等腰三角形,则椭圆C 的离心率为___________.12.已知向量,则在上的投影向量的坐标为________.2023年全国新高考数学仿真模拟卷(一)数学试题(高频考点版)2023年全国新高考数学仿真模拟卷(一)数学试题(高频考点版)四、解答题13. 如果有穷数列,,,…,(为正整数)满足条件,,…,,即,我们称其为“对称数列”.例如,由组合数,,…,组成的数列就是“对称数列”.(1)设是项数为7的“对称数列”,其中,,,是等差数列,且,,依次写出的每一项;(2)设是项数为(正整数)的“对称数列”,其中,,…,是首项为50,公差为的等差数列.记各项的和为,当为何值时,取得最大值?并求出的最大值.14. 如图,平面四边形中,,对角线相交于.设,且,(1)用向量表示向量;(2)若,记,求的解析式.15. 某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”.(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均“成绩优秀”的概率;(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.0.4000.2500.1500.1000.0500.0250.708 1.323 2.072 2.706 3.841 5.024参考公式:16. 在中,内角,,的对边分别为,,,且.(1)求角的大小;(2)若,求的取值范围.。
2022-2023年高三高考模拟考试数学试卷含参考答案
本试卷共6页,22小题,满分150分,考试时间120分钟。
注意事项:1. 答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2. 做选择题时,必须用2B 铅笔将答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
3. 答非选择题时,必须用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上。
4. 所有题目必须在答题卡上作答,在试题卷上作答无效。
5. 考试结束后,将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,0,1-=A ,{}A m A m mB ∉-∈-=1,12,则集合B 中所有元素之和为A .0B .1C .-1D .2 2.已知i 为虚数单位,复数z 满足()i i z +=+11,则=zA .i 2222+ B .i 2222- C .i 2222+- D .i 2222-- 3.命题“2,50x Q x ∀∈-≠”的否定为A .2,50x Q x ∃∉-=B .2,50x Q x ∀∈-= C .2,50x Q x ∀∉-= D.2,50x Q x ∃∈-= 4.已知多项式1010221010)1()1()1()1(+++++++=-x a x a x a a x ,则7a =A .-960B .960C .-480D .4805.设非零向量m ,n 满足2m =,3n =,32m n +=,则m 在n 方向上的投影向量为 A .518n - B .518n C .58m - D .58m6.衣柜里有灰色,白色,黑色,蓝色四双不同颜色的袜子,从中随机选4只,已知取出两只是同一双,则取出另外两只不是同一双的概率为 A .52 B .54 C .158 D .98 7.已知等差数列{}n a ()n N +∈的前n 项和为n S ,公差0<d ,1910-<a a ,则使得0>n S 的最大整数n 为A .9B .10C .17D .188.我们知道按照一定顺序排列的数字可以构成数列,那么按照一定顺序排列的函数可以构成函数列.设无穷函数列(){}()n f x n N +∈的通项公式为()()()22211n n nx x f x n x n +++=++,()0,1x ∈,记n E 为()n f x 的值域,1n n E E +∞==为所有n E 的并集,则E 为二、选择题:本题共4小题,每小题5分,共20分。
2023年全国新高考仿真模拟卷(二)数学试题
一、单选题二、多选题1. 李明开发的小程序在发布时已有500名初始用户,经过天后,用户人数,其中为常数.已知小程序发布经过10天后有2000名用户,则用户超过50000名至少经过的天数为( )(本题取)A .31B .32C .33D .342. 已知函数,设方程的四个实根从小到大依次为,对于满足条件的任意一组实根,下列判断中正确的个数为( )(1)或;(2)且;(3)或;(4)且.A .3B .2C .1D .03.已知,则( )A.B.C.D.4. 经过双曲线右焦点的直线与的两条渐近线,分别交于,两点,若,且,则该双曲线的离心率等于( )A.B.C.D.5. 在正三棱柱中,,,以为球心,为半径的球面与侧面的交线长为( )A.B.C.D.6.已知集合,,则A.B.C.D.7. 函数的大致图象是( )A.B.C.D.8. 设集合,,则( )A.B.C.D.9.已知数列满足,则下列结论正确的是( )A.B.C.D.若,则10. 对于非零向量,,定义运算“”,.已知两两不共线的三个向量,,,则下列结论正确的是( )A .若,则B.2023年全国新高考仿真模拟卷(二)数学试题2023年全国新高考仿真模拟卷(二)数学试题三、填空题四、解答题C.D.11.已知正实数满足,则( )A.B.C.D.12. 已知椭圆()的左右焦点分别为,,过点的直线l 交椭圆于A ,B两点.若的最大值为5,则下列说法正确的是( )A.椭圆的短轴长为B.当取最大值时,C.离心率为D .的最小值为213. 定义在R 上的函数对任意两个不等的实数都满足,则称函数为“Z 函数”,以下函数中为“Z 函数”的序号为________.14.若一个圆柱的侧面积是,高为1,则这个圆柱的体积是_______.15. 某次体检测得6位同学的身高分别为172、178、175、180、169、177(单位:厘米),则他们身高的中位数是___________(厘米)16. 如图,平面平面,四边形是平行四边形,为直角梯形,,,且∥,.(1)求证:平面;(2)若,求该几何体的各个面的面积的平方和.17.如图,在三棱柱中,所有棱长均为2,且,,.(1)证明:平面平面.(2)求平面ACD与平面夹角的余弦值.18.如图,椭圆的 右焦点为,右顶点为,满足,其中为坐标原点,为椭圆的离心率.(1)求椭圆的标准方程;(2)设为椭圆上的动点(异于左右顶点),直线交椭圆于另一点,直线交直线于点,求证:直线过定点.19. 如图,在四棱锥P—ABCD中,已知PC⊥底面ABCD,AB⊥AD,AB∥CD,AB=2,AD=CD=1,E是PB上一点.(1)求证:平面EAC⊥平面PBC;(2)若E是PB的中点,且二面角P—AC—E的余弦值是,求直线PA与平面EAC所成角的正弦值.20. 已知函数.(Ⅰ)讨论函数的单调性;(Ⅱ)若,证明:函数在区间有且仅有一个零点.21. 某学校为弘扬中华优秀传统文化精神组织了中学生诗词大赛,大赛分两个环节完成,最后以总分决出胜负.其中高一、二两个年级分别派代表组成“星之队”“梦之队”参赛.第一环节为诗词接龙,接龙成功得1分,接龙不成功得0分.第二环节为“出类拔萃”,每队需回答主持人随机给出的2个问题,答对2个得5分,只答对1个得2分,2个均未答对得0分.假设“星之队”第一环节接龙成功的概率为,第二环节答对每个问题的概率为,且各环节各问题回答结果相互独立,“梦之队”第一环节接龙成功概率为.(1)求高一、二两个年级第一环节至少有1个代表队接龙成功的概率;(2)求“星之队”获得的总分X的分布列及数学期望.。
2023年高考数学模拟试题(十二)参考答案
2023年高考数学模拟试题(十二)参考答案 一㊁选择题1.D 2.C 3.C 4.B 5.A 6.A 7.C 8.D 提示:因为a =(1,0),b =(-1,3),c o s <a ,b >=a ㊃b |a ||b |=-12,所以<a ,b >=120ʎ,又<c ,a >=<c ,b >,所以<c ,a >=<c ,b >=60ʎ或<c ,a >=<c ,b >=120ʎ㊂对选项A ,若c =2a -b =(3,-3),则c o s <c ,a >=a ㊃c |a ||c |=323=32,所以<a ,b >=30ʎ,此时不成立;对选项B ,若c =a +b =(0,3),则c o s <c ,a >=a ㊃c|a ||c |=0,所以<c ,a >=90ʎ,此时不成立;对选项C ,若c =3a +b =(3-1,3),则c o s <c ,a >=a ㊃c |a ||c |ʂ12,且c o s <c ,a >=a ㊃c |a ||c |ʂ-12,此时不成立;对选项D ,若c =-2a -b =(-1,-3),则c o s <c ,a >=a ㊃c |a ||c |=-12,故<c ,a >=120ʎ,此时成立㊂9.D10.C 提示:把函数f (x )=c o s 2x +π3的图像向右平移π3个单位长度,得y =c o s 2x -π3 +π3=c o s 2x -π3 ,再把横坐标压缩到原来的12,纵坐标不变,得y =co s 4x -π3,即g (x )=c o s 4x -π3,则最小正周期为2π4=π2,故A 错误;因为gπ12=1,g -π12=-12,所以函数g (x )是非奇非偶函数,故B ㊁D 错误;g x +2π3=c o s 4x +2π3 -π3 =c o s 4x +7π3 =c o s 4x +π3 =c o s -4x -π3=g (-x ),故C 正确㊂图111.B 提示:如图1,连接A B ,P C ,交于点Q ,易得C P ʅA B ,|A Q |=|A B |2,在R tәA Q C 中,|C Q |=|C A |2-|A Q |2,可知当|A B |最小时,|C Q |最大㊂又C A ʅA P ,s i nøC A Q =s i nøA P C ,所以|C Q ||C A |=|C A ||C P |,即|C A |2=|C Q |㊃|C P |=3,当|C Q |最大时,|C P |最小,x 0最小㊂又|C Q |m a x =3-2=1,则|C P |m i n =3=4+x 20,故x 0的最小值为5㊂图212.C 提示:如图2,连接P Q ,Q A ,由P B =P C =A B =B C =A C =4,可知әA B C 和әP B C 是等边三角形㊂设三棱锥P A B C 的外接球的球心为O ,所以球心O 在平面A B C 和平面P B C内的射影是әA B C 和әP B C 的中心E ,F ㊂因为Q 为B C 的中点,所以P Q ʅB C ㊂又因为侧面P B C ʅ底面A B C ,侧面P B C ɘ底面A B C =B C ,所以P Q ʅ底面A B C ㊂而A Q ⊂底面A B C ,因此P Q ʅA Q ,所以四边形O F Q E 是矩形㊂又因为әA B C 和әP B C 是边长为4的等边三角形,所以两个三角形的高h =42-12ˑ42=23㊂在矩形O F Q E 中,O E =F Q =13h =233,A E =23h=433,连接O A ,所以O A =O E 2+A E 2=43+163=2153㊂设过点Q 的平面为α,当O Q ʅα时,所得截面的面积最小,该截面为圆形,O Q =O F 2+F Q2=13h 2+13h2=23h =23ˑ23=263,因此圆Q 的半径为O A 2-O Q 2=609-249=2,所以此时面积为π㊃22=4π㊂当点Q 在以O 为圆心的大圆上时,所得截面的面积最大,面积为π㊃21532=20π3㊂所以截面的面积范围为4π,20π3㊂二㊁填空题13.-614.10 提示:因为双曲线x 2a 2-y2b 2=1(a >0,b >0)的两条渐近线为y =ʃbax ,抛物线y 2=4x 的准线为x =-1,所以A -1,b a ,B -1,-b a,故S әA O B =12ˑ1ˑ2ba =3,即b =3a ,c =10a ,所以e =10㊂15.625提示:由题意可将A ㊁B 等五人分为3组,每组人数分别为2,2,1或3,1,1,则不同的安排方法种数为C 25C 23A 22+C 35A 33=150㊂若A ㊁B 安排在同一个项目,分以下两种情况讨论:①A ㊁B 所安排的项目只有2人参与,此时不同的安排方法种数为C 23A 33=18;②A ㊁B 所安排的项目有3人参与,此时不同的安排方法种数为C 13A 33=18㊂综上所述,A ㊁B 参加同一个项目的概率为P =18+18150=625㊂16.1e,+ɕ提示:e 2a x -2l n x -x 2+2a x ȡ0,即e 2a x+2a x ȡl n x 2+x 2=el n x+l n x 2,设f (x )=e x +x ,则f '(x )=e x+1>0恒成立,故f (x )单调递增㊂原不等式等价转化为f (2a x )ȡf (l n x 2),即2a x ȡl n x 2,即a ȡl n x x ㊂设g (x )=l n xx,则g '(x )=1-l n xx2㊂当x ɪ(0,e )时,g '(x )>0,函数g (x )单调递增;当x ɪ(e ,+ɕ)时,g'(x )<0,函数g (x )单调递减㊂故g (x )m a x =g (e )=1e ,故a ȡ1e㊂三㊁解答题17.(1)已知b c o s C =a -33c s i n B ,由正弦定理得s i n B c o s C =s i n A -33s i n C ㊃s i n B ㊂又A =π-(B +C ),所以s i n B c o s C=s i n (B +C )-33s i n C s i n B ,即s i n C c o s B=33s i n C s i n B ㊂因为0<C <π,所以s i n Cʂ0,故t a n B =3㊂又0<B <π,故B =π3㊂图3(2)如图3所示,S әA B C =S әA B D +S әC B D ,即12B A ˑBC ˑs i n B =12B A ˑB D ˑs i n B2+12B C ˑB D ˑs i n B2,化简整理得B A +B C =32B A ˑBC ㊂①由余弦定理得A C 2=B A 2+B C 2-2B A ˑB C ˑc o s B ,即(B A +B C )2-3B A ˑB C =9㊂②①②联立解得B A ˑB C =-2(舍去)或6,所以S әA B C =12B A ˑB C ˑs i n B =332㊂18.(1)由题表中的数据可得x =15(1+2+3+4+5)=3,y =15(45+56+64+68+72)=61,所以ð5i =1(x i -x )2=10,又ð5i =1(y i -y )2=460,ð5i =1(x i -x )(y i -y )=66,所以r =ð5i =1(x i-x )(y i -y )ð5i =1(x i-x )2ð5i =1(y i -y )2=661046ʈ0.97㊂显然|r |接近1,所以y 与x 有很好的拟合关系㊂(2)由题表中的数据可得^b =ð5i =1(x i-x )(y i -y )ð5i =1(x i-x )2=6610=6.6,则^a =y -^b x =61-6.6ˑ3=41.2,所以^y =6.6x +41.2㊂当x =6时,可得^y =6.6ˑ6+41.2=80.8(万辆),故可预测2023年该新能源汽车企业的销售量为80.8万辆㊂19.(1)连接D E ,P E ,因为әP A B 是边长为2的正三角形,且E 是A B 的中点,所以P E ʅA B ,P E =3㊂因为底面A B C D 是边长为2的菱形,øA B C =60ʎ,所以øB A D =120ʎ㊂在әA D E 中,由余弦定理得D E 2=A D 2+A E 2-2A D ㊃A E ㊃s i n øE A D =22+12-4c o s 120ʎ=7㊂又P D =10,所以P D2=P E 2+D E 2,即P E ʅD E ㊂又P E ʅA B ,D E ɘA B =E ,D E ,A B ⊂面A B CD ,所以P E ʅ面A B C D ㊂又A C ⊂面A B C D ,所以P E ʅA C ㊂图4(2)以E 为坐标原点,E B ,E C ,E P 所在直线分别为x 轴,y 轴,z 轴,建立如图4所示的空间直角坐标系E -x yz ,则E (0,0,0),B (1,0,0),P (0,03),C (0,3,0),D (-2,3,0)㊂设P M ң=λP D ң(0<λ<1),则P M ң=(-2,3λ,-3λ),所以E M ң=(-2λ,3λ,3-3λ),E C ң=(0,3,0)㊂设平面E M C 的一个法向量为n 1=(x ,y ,z ),则n 1㊃EM ң=-2λx +3λy +(3-3λ)z =0,n 1㊃EC ң=3y =0,令x =1,得n 1=1,0,2λ3-3λ㊂因为P E ʅ平面A B C D ,所以平面A B C D 的一个法向量为n 2=(0,0,1)㊂由题意|c o s n 1㊃n 2 |=|n 1㊃n 2||n 1||n 2|=2λ3-3λ1+2λ3-3λ2=12,解得λ=-1(舍),或λ=13,所以M 是线段P D 上靠近点P 的一个三等分点㊂20.(1)由题得c a =22,所以a 2=2c 2,所以a 2=2a 2-2b 2,所以a 2=2b 2㊂又12㊃2a ㊃2b =22,所以a b =2,解得a =2,b =1,故椭圆C 的标准方程为x 22+y 2=1㊂(2)设直线A B 的方程为x =m y +t ,A (m y 1+t ,y 1),B (m y 2+t ,y 2),联立x =m y +t ,x 2+2y 2=2,消去x 整理得(m 2+2)y 2+2m t y +t 2-2=0,Δ=8(m 2-t 2+2)>0,即m 2>t 2-2,由韦达定理得y 1+y 2=-2m tm 2+t㊂y 1y 2=t 2-2m 2+2㊂又因为øO P A =øO P B ,所以k A P +k B P=0,y 1m y 1+t -2+y 2m y 2+t -2=0,即2m y 1y 2+(t -2)(y 1+y 2)=0,即2m (t 2-2)-(t -2)㊃2m t =0,即m (t -1)=0,所以t =1,满足题意,所以直线A B 恒过点(1,0)㊂所以S әA B P=12|y 1-y 2|=22m 2+12(m 2+2)=2m 2+1m 2+2㊂令h =m 2+1,则h ȡ1,所以S әA B P =2h h 2+1=2h +1h ɤ22,所以әA B P 面积的最大值为22㊂21.(1)当a >0时,令f '(x )=0,得x =1a㊂若0<x <1a,则f '(x )<0,所以函数f (x )在0,1a上单调递减;若x >1a ,则f'(x )>0,所以函数f (x )在1a ,+ɕ上单调递增㊂①当0<a<1,即1a>1时,因为f(1)= 0,所以f1a<f(1)=0,f1a2=1a+2l n a -a,令g(a)=1a+2l n a-a(0<a<1),则g'(a)=-1a2+2a-1=-(a-1)2a2<0,所以g(a)在(0,1)上单调递减,所以g(a)>g(1) =0,所以f1a2=1a+2l n a-a>0,此时函数f(x)在1a,1a2上也有一个零点,所以当0<a<1时,函数f(x)有两个不同的零点㊂②当a=1时,f(x)ȡf(1)=0,此时函数f(x)仅有一个零点㊂③当a>1,即0<1a<1时,因为f(1)= 0,所以f1a<f(1)=0㊂令函数h(a)=e a-a,则h'(a)=e a-1,当a>0时,h'(a)>0,h(a)单调递增,所以当a>0时,h(a)>h(0)=1>0,所以e a> a>0,则1e a<1a㊂又f1e a=a e-a>0,所以函数f(x)在1e a,1a上也有一个零点,所以当a>1时,函数f(x)有两个不同零点㊂综上所述,aɪ(0,1)ɣ(1,+ɕ)㊂(2)由(1)知x-1>l n x(x>0,且xʂ0),令x=1+1n,nɪN*,则1+1n-1> l n1+1n,即1n>l n1+1n,即1>n㊃l n1+1n,所以1>l n1+1n n⇒1+1n n <e,令x=1-1n+1,nɪN*,则1-1n+1-1 >l n1-1n+1,即-1n+1>l n n n+1,即-1>(n+1)l n n n+1,故-1>l n n n+1n+1⇒e<n+1n n+1㊂综上可知,1+1n n<e<1+1n n+1㊂22.(1)由曲线C:x=t,y=t-1(t为参数),消去参数t可得y=x2-1,又tȡ0,所以曲线C的普通方程为y=x2-1(xȡ0)㊂已知3ρc o sθ-ρs i nθ-3=0,将x=ρc o sθ,y=ρs i nθ,代入得3x-y-3=0,故直线l的直角坐标方程为3x-y-3=0㊂(2)由(1)知直线l为3x-y-3=0,因为P(0,-3)在直线l上,所以直线l的参数方程可化为x=1010t,y=-3+31010t(t为参数),代入曲线C的普通方程并整理得t2-310t+ 20=0㊂设A,B对应的参数分别是t1,t2,则t1+t2=310>0,t1t2=20>0,且Δ>0,则t1>0,t2>0㊂故1|P A|+1|P B|=|t1|+|t2||t1t2|=t1+t2t1t2=31020㊂23.(1)因为x,y,z为正实数且满足x+ 2y+3z=4,所以(x+2y+3z)㊃1x+12y+13z=1+1+1+x2y+x3z+2yx+ 2y3z+3zx+3z2y=3+x2y+2yx+x3z+3zx+ 2y3z+3z2yȡ3+2x2y㊃2yx+2x3z㊃3zx+ 22y3z㊃3z2y=9,当且仅当x=2y=3z=43,即x=43,y=23,z=49时,等号成立,所以1x+12y+13zȡ94㊂(2)由柯西不等式知x2+y2+z2=114㊃(x2+y2+z2)(11+22+32)ȡ114(x+2y+ 3z)2=87,当且仅当x=27,y=47,z=67时,等号成立,所以x2+y2+z2的最小值为87㊂(责任编辑王福华)。
2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(二)
一、单选题二、多选题1. 设为复数,则下列命题中错误的是( )A.B .若,则的最大值为2C.D .若,则2. 已知双曲线与椭圆有相同的焦点,,且双曲线C 与椭圆E 在第一象限的交点为P ,若的面积为,则双曲线C 的离心率为( )A.B.C.D.3.设是等差数列的前项和,若,则( )A.B.C.D.4. 复数(i 为虚数单位),则z 等于( )A.B.C.D.5. 已知双曲线的两条渐近线与直线分别相交于A ,B 两点,且线段AB 的长等于它的一个焦点到一条渐近线的距离,则双曲线的渐近线方程为( )A.B.C.D.6. 已知定义在上的函数,其导函数为,若,且当时,,则不等式的解集为( )A.B.C.D.7. 如果一个几何体的三视图是如图所示(单位:cm)则此几何体的表面积是()A. cm 2B .22 cm 2C.cm 2D .cm 28. 已知椭圆经过点,当该椭圆的四个顶点构成的四边形的周长最小时,其标准方程为( )A.B.C.D.9. 设公比为q 的等比数列的前n 项积为,若,则( )A.B .当时,C.D.2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(二)2023年普通高等学校招生全国统一考试·新高考仿真模拟卷数学(二)三、填空题四、解答题10. 已知函数的定义域均为,且,,若的图象关于直线对称,则以下说法正确的是( )A .为奇函数B.C .,D .若的值域为,则11. 如图,四棱锥的底面为梯形,底面,,,为棱的中点,则()A .与平面所成的角的余弦值为B.C .平面D .三棱锥的体积为12.已知等比数列满足,公比,则( )A.数列是等比数列B .数列是递减数列C.数列是等差数列D .数列是等比数列13. 已知函数的部分图象如图所示,将函数的图象向右平移个单位长度,得到函数的图象,若集合,集合,则______.14. 二项式的展开式中常数项为___________.15. 如图是5号篮球在太阳光照射下的影子,已知篮球的直径为22cm ,现太阳光与地面的夹角为60°,则此椭圆形影子的离心率为____________.16.如图,四棱锥中,侧面为等边三角形且垂直于底面,,,为的中点.(1)证明:;(2)若面积为,求点到面的距离.17.已知椭圆的焦距为,四个顶点围成的四边形的面积为4,过右焦点且不与坐标轴垂直的直线与椭圆交于两点,且满足.(1)证明:(2)过点且与垂直的直线过点,若(点为坐标原点)的面积与的面积相等,求直线的方程.18. 在一次猜灯谜活动中,共有20道灯谜,两名同学独立竞猜,甲同学猜对了15个,乙同学猜对了8个.假设猜对每道灯谜都是等可能的,设事件为“任选一灯谜,甲猜对”,事件为“任选一灯谜,乙猜对”.(1)任选一道灯谜,记事件为“恰有一个人猜对”,求事件发生的概率;(2)任选一道灯谜,记事件为“甲、乙至少有一个人猜对”,求事件发生的概率.19. 某大学棋艺协会定期举办“以棋会友”的竞赛活动,分别包括“中国象棋”、“围棋”、“五子棋”、“国际象棋”四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选“中国象棋”,不选“国际象棋”,乙同学从四种比赛中任选两种参与.(1)求甲参加围棋比赛的概率;(2)求甲、乙两人参与的两种比赛都不同的概率.20. 已知梯形如图1所示,其中,,,四边形是边长为1的正方形,沿将四边形折起,使得平面平面,得到如图2所示的几何体.(1)求证:平面平面;(2)若点在线段上,且与平面所成角的正弦值为,求线段的长度.21. 如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M为PC上一点,PA=PD=2,BC=AD=1,CD=.(1)求证:平面PQB⊥平面PAD;(2)若二面角M-BQ-C为30°,设PM=MC,试确定的值.。
2023年全国新高考仿真模拟卷(二)数学试题(3)
一、单选题二、多选题1. 若函数|在区间上不是单调函数,则实数的取值范围是A.B.C.D.2.已知,则( )A.B.C.D.3. 设F 为抛物线C:的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为A.B.C.D.4. 在平面直角坐标系中,已知角α的终边经过点,则( )A.B.C.D.5.用关于的方程来拟合一组数据(,2,…,10)时为了求出其回归方程,设,得到关于的线性回归方程,则( )A .,B .,C .,D .,6. 已知复数满足(是虚数单位),则=( )A.B.C.D.7. 广东省第七次人口普查统计数据显示,湛江市九个管辖区常住人口数据如表所示,则这九个管辖区的数据的第70%分位数是( )管辖区常住人口赤坎区303824霞山区487093坡头区333239麻章区487712遂溪县886452徐闻县698474廉江市1443099雷州市1427664吴川市927275A .927275B .886452C .698474D .4877128. 函数的定义域为A.B.C.D.9. 若袋子中有2个白球,3个黑球,现从袋子中有放回地随机取球4次,每次取一个球,取到白球记1分,取到黑球记0分,记4次取球的总分数为X ,则( )2023年全国新高考仿真模拟卷(二)数学试题(3)2023年全国新高考仿真模拟卷(二)数学试题(3)三、填空题四、解答题A.B.C .X的期望D .X的方差10.已知数列都是等比数列,则下列数列中一定是等比数列的是( )A.B.C.D.11. 已知,,且,则下列结论正确的是( )A.B.的最小值为16C.的最小值为9D .的最小值为212. 为了解学生的身体状况,某校随机抽取了100名学生测量体重,经统计,这些学生的体重数据(单位:千克)全部介于45至70之间,将数据整理得到如图所示的频率分布直方图,则()A .频率分布直方图中的值为0.02B .这100名学生中体重低于60千克的人数为80C .估计这100名学生体重的众数为57.5D .据此可以估计该校学生体重的分位数约为13.函数的零点属于区间,则______14.已知椭圆的左、右焦点分别为,,P 是C上一点,且,H 是线段上靠近的三等分点,且,则C 的离心率为___________.15.已知圆柱的两个底面的圆周在表面积为的球O 的球面上,则该圆柱的侧面积的最大值为______.16. 如图,在四棱锥中,已知平面,为等边三角形,,,与平面所成角的正切值为.(Ⅰ)证明:平面;(Ⅱ)若是的中点,求二面角的余弦值.17. 已知双曲线的左焦点为,右顶点为,过点向双曲线的一条渐近线作垂线,垂足为,直线与双曲线的左支交于点.(1)设为坐标原点,求线段的长度;(2)求证:平分.18. 随着新课程新高考改革的推进,越来越多的普通高中认识到了生涯规划教育对学生发展的重要性,生涯规划知识大赛可以鼓励学生树立正确的学习观、生活观.某校高一年级1200名学生参加生涯规划知识大赛初赛,学校将初赛成绩分成6组:加以统计,得到如图所示的频率分布直方图,成绩大于等于80分评为“优秀”等级.(1)求a的值,并估计该年级生涯规划大赛初赛被评为“优秀”等级的学生人数;(2)在评为“优秀”等级的学生中采用分层抽样抽取6人,再从6人中随机抽取3人进行下一步的能力测试,求这3人中恰有1人成绩在的概率.19. 已知,是椭圆的左右焦点,(1)若是椭圆上一点,求的最小值;(2)直线与椭圆交于,两点,是坐标原点.椭圆上存在点满足,求的值.20.已知数列的通项公式为(1)若成等比数列,求的值;(2)当且时,成等差数列,求的值.21. 在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?。
2023年高考数学模拟试题(三)参考答案
2023年高考数学模拟试题(三)参考答案 一㊁选择题1.C 提示:因为1-iz =2+i ,所以z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=12+32i ,所以z =12-32i㊂2.D 提示:因为A =x |-2<x <5 ,B =1,3,5, ,所以A ɘB =1,3 ㊂3.D 提示:因为a =l o g 20.4<l o g 21=0,b =20.6>20=1,0<c =0.82<1,所以a <c <b ㊂4.B 提示:抛物线y 2=2p x p >0 的焦点为p 2,0,在双曲线x 2-y 2=p 中,c 2=2p ,c =2p ,焦点为(2p ,0),(-2p ,),所以p 2=2p ,解得p =0(舍)或p =8㊂5.C 提示:基本事件总数为C 24㊃A 33=36, 甲,乙没有被分配到同一个会议中心 的对立事件是 甲,乙被分配到同一个会议中心 ,因为 甲,乙被分配到同一个会议中心包含的基本事件数为C 22㊃A 33=6,所以 甲,乙没有被分配到同一个会议中心 的概率为1-636=56㊂6.B 提示:因为øA C B =120ʎ,A B =3,所以әA B C 的外接圆的半径r =32s i n 120ʎ=1,所以三棱锥O A B C 的高h =32-r 2=22㊂在әAB C 中,由余弦定理得A B 2=A C 2+B C 2-2A C ㊃B C c o s 120ʎ,即3=(A C +B C )2-A C ㊃B C ,所以A C ㊃B C=A C +B C2-3=1,所以S әA B C =12A C ㊃BC s i n 120ʎ=34,所以V 三棱锥O -A B C =13S әA B C ㊃h =66㊂7.B 提示:过滤第1次污染物的含量减少20%,则为1.2(1-0.2);过滤第2次污染物的含量减少20%,则为1.2(1-0.2)2;过滤第3次污染物的含量减少20%,则为1.2(1-0.2)3; ;过滤第n 次污染物的含量减少20%,则为1.2(1-0.2)n㊂要求废气中该污染物的含量不能超过0.2m g/c m 3,则1.2(1-0.2)nɤ0.2,即54nȡ6,所以l g 54 nȡl g 6,即n l g 108 ȡlg 2+l g 3,即n (1-3l g 2)ȡl g 3+l g 2,即n ȡl g 3+l g 21-3l g 2,因为l g 2ʈ0.3,l g 3ʈ0.477,所以n ȡ7.77,因为n ɪN *,所以过滤次数n 至少为8㊂8.B 提示:因为øC =90ʎ,A B =6,所以C A ң㊃C B ң=0,|C A ң+C B ң|=|C A ң-C B ң|=|B A ң|=6,所以P A ң㊃P B ң=P C ң+C Aң㊃P C ң+C Bң =P C ң2+P C ң(C A ң+C B ң)+C A ң㊃C B ң=4+P C ң(C A ң+C B ң),所以当P C ң与C A ң+C B ң的方向相同时,P C ң(C A ң+C B ң)取得最大值2ˑ6=12,所以P A ң㊃P B ң的最大值为16㊂9.C 提示:用收入减去支出,求得每月收益(万元),如表1所示:表1月份123456789101112收益203020103030604030305030所以7月收益最高,A 选项说法正确;4月收益最低,B 选项说法正确;后6个月收益比前6个月收益增长240-140=100(万元),C 选项说法错误;1~6月总收益140万元,7~12月总收益240万元,所以前6个月收益低于后6个月收益,D 选项说法正确㊂10.A 提示:已知函数f x=s i n x ㊃s i n x +π3-14=s i nx㊃12s i n x +32c o s x-14=12si n 2x -π6,因为x ɪm ,n ,所以2x -π6ɪ2m -π6,2n -π6,又因为值域为-12,14 ,即-12ɤ12s i n 2x -π6 ɤ14,所以-1ɤs i n 2x -π6 ɤ12㊂所以2n -π6-2m -π6 m a x=2n -2m m a x=π6--7π6 =4π3,所以n -m m a x=2π3;2n -π6-2m -π6 m i n=2n -2m m i n=π6--π2 =2π3,所以n -m m i n=π3㊂所以n -m ɪπ3,2π3 ,所以n -m 的值不可能为3π4㊁5π6和11π12㊂11.B 提示:由双曲线x 2a 2-y2b2=1(a >0,b >0)的右顶点A (a ,0),双曲线的渐近线方程为y =ʃb a x ,不妨取y =bax ,若存在过N (3a ,0)的直线与双曲线的渐近线交于一点M ,使得әA MN 是以M 为直角顶点的直角三角形,即以A N 为直径的圆与渐近线相交或相切,即b ㊃2aa 2+b2ɤa ,即a 2ȡ3b 2,即a 2ȡ3(c 2-a 2),解得1<e ɤ233,所以离心率存在最大值233㊂图112.D 提示:如图1,在正方体A B C D A 1B 1C 1D 1中,连接A 1B ,C D 1,因为N ,P 分别是C C 1,C 1D 1的中点,所以C D 1ʊP N ,又因为C D 1ʊA 1B ,所以A 1B ʊP N ,所以A 1,B ,N ,P 四点共面,即当Q 与A 1重合时,B ,N ,P ,Q 四点共面,故选项A 正确;连接P Q ,A 1C 1,当Q 是D 1A 1的中点时,P Q ʊA 1C 1,因为A 1C 1ʊMN ,所以P Q ʊMN ,因为P Q ⊄平面B MN ,MN ⊂平面B MN ,所以P Q ʊ平面M B N ,故选项B 正确;连接D 1M ,D 1N ,D 1B ,因为D 1M ʊB N ,所以V 三棱锥P M B N =V 三棱锥M P B N =V 三棱锥D P B N =V 三棱锥B D P N =13ˑ12ˑ1ˑ1ˑ2=13,故选项C 正确;分别取B B 1,D D 1的中点为E ,F ,构造长方体M A D F E B C N ,则经过C ,M ,B ,N 四点的球即为长方体M A D F E B C N 的外接球,设所求外接球的直径为2R ,则长方体M A D F E B C N 的体对角线即为所求球的直径,即2R2=A B 2+B C 2+C N 2=4+4+1=9所以经过C ,M ,B ,N 四点的球的表面积为4πR 2=9π,故选项D 错误㊂二、填空题13.45 提示:因为展开式中只有第6项的二项式系数最大,所以共有11项,则n =10,则x -1x2n 的通项公式为T r +1=C r10㊃x10-r-1x 2r=C r 10x10-r2-2r -1r㊂由10-r 2-2r =0,得r =2,即常数项为C 210ˑ(-1)2=45㊂14.8,+ɕ 提示:因为x +2y =2x+1y +7,所以x +2y -7=2x +1y,所以(x +2y -7)㊃(x +2y )=2x +1y㊃(x +2y )=4+4y x +x y ȡ4+24=8,当且仅当x =2y =4,即x =4,y =2时,等号成立,设t =x +2y ,则t (t -7)ȡ8,即t 2-7t -8ȡ0,解得t ȡ8,或t ɤ-1(舍),所以x +2y 的取值范围为8,+ɕ ㊂15.-79提示:由正弦定理得3c o s C ㊃(s i n A c o s C +s i n C c o s A )+s i n B =0,即3c o s C s i n (A +C )+s i n B =0,即3c o s C ㊃s i n B +s i n B =0,因为s i n B ʂ0,所以c o s C =-13,所以s i n π2-2C=c o s 2C =2c o s 2C -1=-79㊂16.e ,+ɕ 提示:令F x =f (x )+f (-x ),则F -x =F x ,所以F x 为偶函数㊂由题意可知,当x >0时,F (x )有两个零点㊂当x >0时,-x <0,f (-x )=e x-2k x +k ,F (x )=e x (x -1)+e x-2k x +k =x e x -2k x +k ㊂由F (x )=0得x e x =2k x -k ,即y =x e x与y =2k x -k 在(0,+ɕ)内有两个交点,直线y =2k x -k 恒过点12,0,函数y =x e x 的导数y '=(x +1)e x>0在(0,+ɕ)上恒成立,所以函数y =x e x在0,+ɕ 上单调递增,作出函数y =x e x与图2直线的大致图像,如图2所示,若y =xe x与直线y =2k x -k 相切,设切点为t ,e t,则切线斜率为t +1 e t ,切线方程为y -t e t=(t +1)e t(x -t ),因为切线过点12,0,所以-t e t=(t +1)e t12-t ,解得t =1,或t =-12(舍),故切线的斜率为2k =2e,即k =e ,所以当k >e 时,直线与曲线有两个交点㊂综上所述,实数k 的取值范围为(e ,+ɕ)㊂三、解答题17.(1)由题知b 1+b 2+b 3=7b 1,则1+q +q 2=7,因为q >0,所以q =2,因为等差数列a n的前三项和为12,所以3a 2=12,所以b 2=a 2=4,所以2b 1=4,则b 1=2,所以a 1=2,d =2,所以a n =2n ,b n =2n㊂(2)由题知c n的前20项和S 20=(a 1+a 3+ +a 19)+(b 2+b 4+ +b 20)=(2+6+ +38)+(2+4+ +210)=10(2+38)2+2(1-210)1-2=2246㊂18.(1)在әB A D 中,A B =2,A D =1,øB A D =60ʎ,由余弦定理得B D 2=A B 2+A D 2-2A B ㊃A D ㊃c o s øB A D =3,所以B D=3,所以A B 2=A D 2+B D 2,所以A D ʅB D ,所以B D ʅBC ㊂又B B 1ʅ面A B CD ,所以B B 1ʅB D ㊂因为B B 1ɘB C =B ,所以B Dʅ面B B 1C 1C ㊂又B E ⊂面B B 1C 1C ,所以B D ʅB 1E ㊂(2)因为D D 1ʅ面A B C D ,A D ʅB D ,所以以D 为坐标原点,D A ,D B ,D D 1所在直线分别为x 轴,y 轴,z 轴,建立如图3所示的图3空间直角坐标系D x y z ,则D (0,0,0),B 1(0,3,2),E (-1,3,1),F12,32,0,所以D B 1ң=(0,3,2),D E ң=(-1,3,1),D F ң=12,32,0㊂设平面B 1D E 的一个法向量为n 1=(x 1,y 1,z 1),则n 1㊃D B 1ң=3y 1+2z 1=0,n 1㊃D E ң=-x 1+3y 1+z 1=0,令z 1=3,得n 1=-3,-2,3㊂设平面F D E 的一个法向量为n 2=(x 2,y 2,z 2),则n 2㊃D F ң=12x 2+32y 2=0,n 2㊃D E ң=-x 2+3y 2+z 2=0,令y 2=1,得n 2=-3,1,-23㊂所以c o s <n 1,n 2>=n 1㊃n 2|n 1||n 2|=-5410=-108㊂所以二面角B 1-D E -F 的正弦值为1--1082=368㊂19.(1)由题意可得x =1+2+3+4+55=3,y=9+11+14+26+205=16,所以ðni =1(x i-x )(y i -y )=(-2)ˑ(-7)+(-1)ˑ(-5)+0ˑ(-2)+1ˑ10+2ˑ4=37,ðni =1(x i-x )2ðni =1(y i -y )2=[(-2)2+(-1)2+0+1+22]ˑ[(-7)2+(-5)2+(-2)2+102+42]=1940,所以r =371940ʈ0.84,故科技创新和市场开发后的收益y 与科技创新和市场开发的总投入x 具有较强的相关性㊂(2)由题中表格及参考公式可得K 2=10045ˑ20-25ˑ10255ˑ45ˑ70ˑ30ʈ8.129>6.635,故有99%的把握认为消费者满意程度与性别有关㊂(3)易知9人中满意的有5人,不满意的有4人,由题意可知,X 的所有可能取值为0,1,2,3,4㊂P (x =0)=C 44C 49=1126;P (x =1)=C 15C 34C 49=1063;P (x =2)=C 25C 24C 49=1021;P (x =3)=C 35C 14C 49=2063;P (x =4)=C 45C 49=5126㊂所以X 的分布列为表2:表2X 01234P11261063102120635126故E X =0ˑ1126+1ˑ1063+2ˑ1021+3ˑ2063+4ˑ5126=209㊂20.(1)由题意知c =2㊂设A x 1,y 1 ,B x 2,y 2,则x 21a 2+y 21b 2=1,x 22a2+y 22b 2=1,两式相减得x 21-x 22a 2+y 21-y22b2=0,即(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0,即(y 1+y 2)(y 1-y 2)(x 1+x 2)(x 1-x 2)=-b 2a 2,所以-b2a2=-13,即a 2=3b 2,而a 2-b 2=4,所以a 2=6,b 2=2㊂所以椭圆C 的方程为x 26+y22=1㊂(2)当直线m 的斜率存在时,设直线m :y =k (x +2),设M x 3,y 3 ,N x 4,y 4,联立y =k (x +2),x 26+y 22=1,消去y 整理得3k 2+1x 2+12k 2x +12k 2-6=0,则x 3+x 4=-12k 23k 2+1,x 3x 4=12k 2-63k 2+1㊂所以MN =1+k2x 3-x 4=1+k2(x 3+x 4)2-4x 3x 4=26(1+k 2)3k 2+1㊂点O 到直线m 的距离为d =2k1+k2㊂由O M ң㊃O N ң=463t a n øM O N,得|O M ң|㊃|O N ң|c o s øM O N =46c o s øM O N 3s i n øM O N㊂所以|O M ң|㊃|O N ң|s i n øM O N =463,所以S әM O N =263㊂因为S әM O N =12MN d =6(1+k 2)3k 2+1㊃2k1+k 2,所以6(1+k 2)3k 2+1㊃2k 1+k2=263,解得k =ʃ33,所以直线m :y =ʃ33(x +2)㊂当直线m 的斜率不存在时,直线m 的方程为x =-2,此时S әM O N =263,满足题意㊂综上可得,直线m 的方程为x ʃ3y +2=0,或x =-2㊂21.(1)由题知函数f x的定义域为0,+ɕ ,令f 'x =e -1x =0,得x =1e㊂当x ɪ0,1e时,f'x <0;当x ɪ1e ,+ɕ 时,f'x >0㊂所以f x 在0,1e 上单调递减,在1e,+ɕ 上单调递增㊂①当0<t <1e 时,显然t +1>1e,所以f (x )在t ,1e上单调递减,在1e ,t +1 上单调递增,此时f x m i n=f 1e =2;②当t ȡ1e时,f x 在t ,t +1 上单调递增,故f x m i n =f (t )=e t -l n t ㊂综上可得,当0<t <1e时,f x m i n =2;当t ȡ1e时,f x m i n =e t -l n t ㊂(2)先证当x >0时,e xȡe x ㊂令h x =e x -e x ,则h 'x=e x-e ,由h '(x )=0,得x =1㊂当x ɪ(0,1)时,h 'x <0;当x ɪ(1,+ɕ)时,h 'x >0㊂故h x 在(0,1)上单调递减,在1,+ɕ 上单调递增㊂所以h (x )m i n =h (1)=0,所以e xȡe x ㊂当x >0时,要证x f x <g (x ),即证e x 2-x l n x <x e x+1e,结合e x ȡe x ,若e x 2-x l n x ɤe x 2+1e成立,则原不等式成立㊂由e x 2-x l n x ɤe x 2+1e ⇒-x l n x ɤ1e⇒x l n x ȡ-1e㊂令m (x )=x l n x ,则m 'x =l n x +1,由m '(x )=0,得x =1e ㊂当x ɪ0,1e时,m 'x <0;当x ɪ1e ,+ɕ时,m 'x >0㊂故m x在0,1e上单调递减,在1e,+ɕ 上单调递增㊂所以m x m i n =m 1e =-1e ,即x l n x ȡ-1e㊂因为e xȡe x 与x l n x ȡ-1e取等号的条件不一致,故当x >0时,e x 2-x l n x <x e x+1e恒成立,即当x >0时,x f x <g (x )㊂22.(1)将曲线C 1,C 2的极坐标方程ρ=2s i n θ,ρc o s θ-π4=2化为直角坐标方程分别为x 2+y -1 2=1,x +y -2=0,得交点坐标为(0,2),(1,1),所以曲线C 1,C 2的交点的极坐标为2,π2 ,2,π4㊂(2)把直线l的参数方程x =-2+32t ,y =12t ,代入x 2+y -1 2=1,化简整理得t 2-(23+1)t +4=0,则t 1t 2=4,所以P A ㊃P B =4㊂23.(1)若a =1,则f x =x +1+x -1>2㊂当x ȡ1时,x +1+x -1>2,即x >1,可得x >1;当-1ɤx <1时,x +1+1-x >2,无解;当x <-1时,-x -1-x +1>2,即x <-1,可得x <-1㊂综上可得,不等式f (x )>2的解集为-ɕ,-1 ɣ1,+ɕ ㊂(2)对任意实数x ɪ2,3 ,都有f x ȡ2x -3成立,即a x +1+(x -1)ȡ2x -3成立,即a x +1ȡx -2成立,即a x +1ȡx -2,或a x +1ɤ2-x 成立,即a ȡ1-3x ,或a ɤ1x -1成立,所以a ȡ1-3xm a x,或a ɤ1x-1m i n㊂因为函数y =1-3x在2,3 上单调递增,y =1x-1在[2,3]上单调递减,所以y =1-3x 在2,3 上的最大值为0,y =1x-1在2,3 上的最小值为-23㊂故a ȡ0,或a ɤ-23,即实数a 的取值范围为-ɕ,-23ɣ0,+ɕ ㊂(责任编辑 王福华)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【高频考点解读】1.了解函数y =Asin(ωx +φ)的物理意义;能画出y =Asin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【热点题型】题型一 函数y =Asin(ωx +φ)的图象及变换【例1】 设函数f(x)=sin ωx +3cos ωx(ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到.【提分秘籍】作函数y =Asin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图法,用“五点法”作y =Asin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =Asin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【举一反三】设函数f(x)=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.题型二利用三角函数图象求其解析式例2、(1)已知函数f(x)=Acos(ωx +φ)的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f(0)=( )A .-23B .-12 C.23 D.12(2)函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为________.【提分秘籍】已知f(x)=Asin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【举一反三】(1)已知函数f(x)=Acos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f(1)的值为( )A .-32B .-62 C.3 D .- 3(2)函数f(x)=Asin(ω+φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如图所示,则f ⎝⎛⎭⎫π3的值为______.题型三函数y =Asin(ωx +φ)的性质应用【例3】已知向量a =(m ,cos 2x),b =(sin 2x ,n),函数f(x)=a·b ,且y =f(x)的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y =g(x)的图象,若y =g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y =g(x)的单调递增区间.【提分秘籍】解决三角函数图象与性质综合问题的方法:先将y =f(x)化为y =asin x +bcos x 的形式,然后用辅助角公式化为y =Asin(ωx +φ)+b 的形式,再借助y =Asin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【举一反三】已知函数f(x)=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值; (2)求函数y =f(x)+f⎝⎛⎭⎫x +π4的最大值及对应的x 的值. 【高考风向标】【高考山东,文4】要得到函数4y sin x =-(3π)的图象,只需要将函数4y sin x =的图象()(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【高考湖北,文18】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ35π6sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点最近的对称中心.5A =,32ππωϕ+=,5362ππωϕ+=,1.(·天津卷) 已知函数f(x)=3sin ωx +cos ωx(ω>0),x ∈R.在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π2.(·安徽卷) 若将函数f(x)=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π43.(·重庆卷) 将函数f(x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.4.(·北京卷) 函数f(x)=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f(x)的最小正周期及图中x0,y0的值; (2)求f(x)在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值..5.(·福建卷) 已知函数f(x)=2cos x(s in x +cos x).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f(x)的最小正周期及单调递增区间.6.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定7.(·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.8.(·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 9.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 10.(·全国新课标卷Ⅰ] 在函数①y =cos|2x|,②y =|cos x|,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③11.(·山东卷) 函数y =32sin 2x +cos2x 的最小正周期为________. sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .12.(·陕西卷) 函数f(x)=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π134.(·浙江卷) 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( ) A .向右平移π12个单位 B .向右平移π4个单位 C .向左平移π12个单位 D .向左平移π4个单位14.(·四川卷) 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度15.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值. 【高考押题】1.函数f(x)=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B .πC .2πD .4π2.将函数y =cos 2x +1的图象向右平移π4个单位,再向下平移1个单位后得到的函数图象对应的表达式为( )A .y =sin 2xB .y =sin 2x +2C .y =cos 2xD .y =cos ⎝⎛⎭⎫2x -π43.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象 ( ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.函数f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6 C .4,-π6D .4,π3解析 由图象知f(x)的周期T =2⎝⎛⎭⎫11π12-5π12=π,又T =2πω,ω>0,∴ω=2.由于f(x)=2sin(ωx +φ)(ω>0,-π2<φ<π2)的一个最高点为⎝⎛⎭⎫5π12,2,故有2×5π12+φ=2kπ+π2(k ∈Z),即φ=2kπ-π3,又-π2<φ<π2,∴φ=-π3,选A.答案 A5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f(x)的图象,则下列说法正确的是( ) A .y =f(x)是奇函数 B .y =f(x)的周期为πC .y =f(x)的图象关于直线x =π2对称 D .y =f(x)的图象关于点⎝⎛⎭⎫-π2,0对称 6.将函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=______.7.已知函数f(x)=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数解析式f(x)=________.8.设函数f(x)=Asin(ωx +φ)(A ,ω,φ是常数,A>0,ω>0).若f(x)在区间⎣⎡⎦⎤π6,π2上具有单调性,且f⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f(x)的最小正周期为________.9.已知函数f(x)=4cos x·sin ⎝⎛⎭⎫x +π6+a 的最大值为2.(1)求a 的值及f(x)的最小正周期; (2)在坐标系上作出f(x)在[0,π]上的图象.10.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会用二次函数的图象理解、分析、研究二次函数的性质.2.了解幂函数的概念.3.结合幂函数y =x ,y =x2,y =x3,y =x 12,y =1x 的图象,了解它们的变化情况. 【热点题型】题型一二次函数的图象与性质例1、(1)设函数f(x)=x2+x +a(a>0),已知f(m)<0,则() A .f(m +1)≥0B .f(m +1)≤0 C .f(m +1)>0D .f(m +1)<0(2)已知函数h(x)=4x 2-kx -8在[5,20]上是单调函数,则k 的取值范围是() A .(-∞,40]B .[160,+∞)C .(-∞,40]∪[160,+∞)D .∅【提分秘籍】二次函数的图象要结合开口方向、对称轴位置及与x 、y 轴交点等来研究,综合二次函数的特征解决问题.【举一反三】已知二次函数的图象如右图所示,那么此函数的解析式可能是()A .y =-x2+2x +1B .y =-x2-2x -1C .y =-x2-2x +1D .y =x2+2x +1题型二二次函数的综合应用例2、已知函数f(x)=|x2+3x|,x ∈R.若方程f(x)-a|x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.【提分秘籍】与其他图象的公共点问题.解决此类问题的关键是正确作出二次函数及题目所涉及的相应函数的图象,要注意其相对位置关系.【举一反三】对于实数a 和b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a2-ab ,a≤b ,b2-ab ,a>b.设f(x)=(2x -1)*(x -1),且关于x 的方程f(x)=m(m ∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是________.题型三幂函数的图象与性质例3、已知幂函数f(x)=xm2-2m -3(m ∈N*)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)-m 3<(3-2a)-m 3的a 的取值范围.【提分秘籍】(1)若已知幂函数图象上一个点的坐标用待定系数法求解析式;若给出性质时,可由图象和性质推断解析式.(2)解幂底含参数的不等式要结合对应幂函数的图象求解.【举一反三】如图是函数 (m ,n ∈N*,m ,n 互质)的图象,则()A .m ,n 是奇数且m n <1B .m 是偶数,n 是奇数且m n >1C .m 是偶数,n 是奇数且m n <1D .m 是奇数,n 是偶数且m n >1【高考风向标】【高考安徽,文11】=-+-1)21(2lg 225lg.1.(·江苏卷)已知函数f(x)=x2+mx -1,若对于任意x ∈[m ,m +1],都有f(x)<0成立,则实数m 的取值范围是________.2.(·全国卷)函数y =cos 2x +2sin x 的最大值为________.3.(·全国新课标卷Ⅰ)设函数f(x)=⎩⎪⎨⎪⎧ex -1,x <1,x 13,x≥1,则使得f(x)≤2成立的x 的取值范围是________.3.(·安徽卷)“a≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.(·湖南卷)函数f(x)=2ln x 的图像与函数g(x)=x2-4x +5的图像的交点个数为()A .3B .2C .1D .05.(·新课标全国卷Ⅱ] 已知函数f(x)=x3+ax2+bx +c ,下列结论中错误的是()A .x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f′(x0)=06.(·北京卷)函数f(x)的图像向右平移1个单位长度,所得图像与曲线y =ex 关于y 轴对称,则f(x )=()A .ex +1B .ex -1C .e -x +1D .e -x -1【高考押题】1.已知幂函数y =f(x)的图像经过点⎝⎛⎭⎫4,12,则f(2)=() A.14 B .4C.22D.22.若函数f(x)是幂函数,且满足f 4f2=3,则f(12)的值为() A .-3B .-13C .3D.133.已知函数f(x)=ex -1,g(x)=-x2+4x -3,若有f(a)=g(b),则b 的取值范围为().A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)4.已知函数f(x)=⎩⎪⎨⎪⎧2x ,x>0,x +1,x≤0,若f(a)+f(1)=0,则实数a 的值等于(). A .-3B .-1C .1D .35 .函数f(x)=ax2+bx +c(a≠0)的图象关于直线x =-b 2a 对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m[f(x)]2+nf(x)+p =0的解集都不可能是().A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}6.二次函数f(x)=ax2+bx +c ,a 为正整数,c≥1,a +b +c≥1,方程ax2+bx +c =0有两个小于1的不等正根,则a 的最小值是(). A .3B .4C .5D .67.对于函数y =x2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增;③它们的图像关于直线y =x 对称;④两个函数都是偶函数;⑤两个函数都经过点(0,0)、(1,1);⑥两个函数的图像都是抛物线型.其中正确的有________.8.若二次函数f(x)=ax2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________.9.方程x2-mx +1=0的两根为α、β,且α>0,1<β<2,则实数m 的取值范围是________.10.设f(x)是定义在R 上以2为最小正周期的周期函数.当-1≤x<1时,y =f(x)的表达式是幂函数,且经过点⎝⎛⎭⎫12,18.求函数在[2k -1,2k +1)(k ∈Z)上的表达式.11.已知函数f(x)=x2+2ax +3,x ∈[-4, 6].(1)当a =-2时,求f(x)的最值;(2)求实数a 的取值范围,使y =f(x)在区间[-4,6]上是单调函数;(3)[理]当a =1时,求f(|x|)的单调区间.12.设函数f(x)=ax2-2x +2,对于满足1<x<4的一切x 值都有f(x)>0,求实数a 的取值范围.13.已知函数f(x)=x -k2+k +2(k ∈Z)满足f(2)<f(3).(1)求k 的值并求出相应的f(x)的解析式;(2)对于(1)中得到的函数f(x),试判断是否存在q>0,使函数g(x)=1-qf(x)+(2q -1)x 在区间[-1,2]上的值域为⎣⎡⎦⎤-4,178?若存在,求出q ;若不存在,请说明理由.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。