铸件结构设计
第五章 铸件的结构设计
三,铸件结构的剖分与组合
1.铸件的剖分设计 铸件的剖分设计 (1)将大铸件或 形状复杂的铸件设计 成几个较小的铸件, 经机械加工后,现利 用焊接或螺钉连接等 方法将其组合成整体.
图5-19 -
机械连接的组合床身铸件
(2)因成形工艺的局限性无法整铸的结构需采用剖 分结构.
2.铸件的组合设计 铸件的组合设计 利用熔模及气化模铸造工艺具有无需起模,能制造复 杂铸件的特点,可将原需加工装配的组合件,改为整铸件.
6.避免尺寸较大的水平面 避免尺寸较大的水平面
第二节 铸件结构设计应考虑的其它方面
一,铸件结构应考虑铸造合金的某些使用性能
二,铸件结构应考虑不同铸造工艺的特殊性
1.熔模铸件的设计 熔模铸件的设计
(a)
工艺孔
(b)
工艺肋
图5-16 -
熔模铸件平面上的工艺孔和工艺肋
2.压铸件的设计 压铸件的设计 压铸件的设计 应尽量避免凹坑和深腔,在无法避免 时,至少应便于抽芯,以便压铸件能从模中顺利取出.
A- A
B- B
图 5- 3 悬臂托架的两种结构
如图所示为圆盖铸件的两种内腔设计.对于一般盖类 铸件而言,其内腔设计的目的是为了减轻重量或使铸件的 壁厚均匀.图5-4a)的内腔设计因出口处直径小,需采用 型芯;而图b)因内腔直径D大于其高度H,故可利用模样 上挖孔,在起模后直接形成自带型芯.
5- 4 圆盖铸件的两种内腔设计
H
2,铸件的内腔设计应有利于型芯的固定,排气和简化 ,铸件的内腔设计应有利于型芯的固定, 铸件清理 图5-5所示的为 高炉风口铸件,材 质为青铜.图5-5(a) 所示的为最初的设 计,其中心孔为热 风通道,热风通道 周围是循环水的水 套夹层空间,其顶 部有两个直径较小 的孔,作为循环水 的进水与出水孔.
铸件的结构设计
(a)直角连接 (b)圆角连接 图6-35 转角处的热节
(a)直角连接 (b)圆角连接 图6-36 金属结晶的方向性
2.避免锐角连接
如图6-37(a)所示,锐角连接会由于 内角散热条件差而增大热节,容易产生缩 孔、缩松等铸造缺陷。若两壁间的夹角小 于90°,则应采取过渡形式,如图6-37(b) 所示。
(b)改进后
图6-31 内腔的两种结构
2.便于砂芯固定、排气和铸件清理
如图6-32(a)所示,轴承架铸件的内腔需要采用两个砂芯,其中较 大的砂芯呈悬臂状,需用型芯撑支撑固定;如图6-32(b)所示,将轴承 架铸件的内腔改为整体砂芯,则砂芯的稳定性大大提高,并有利于排气。
(a)改进前
(b)改进后
图6-32 轴承架铸件
铸件中垂直于分型面的不 加工表面最好有结构斜度,以 便于起模或者便于用砂垛代替 砂芯。如图6-34(a)所示的铸 件结构设计不合理,对铸件的 结构斜度进行改进后的合理设 计如图6-34(b)所示。
(a)改进前
(b)改进后
图6-34 结构斜度的设计
二、合金铸造性能对铸件结构的要求
(一)铸件壁厚设计合理
工程材料及成形工艺
铸件的结构设计
一、铸造工艺对铸件结构的要求
铸件的结构设计不应只考虑对其结构性能的影响,还应有利于提高 铸件的工艺水平。所以铸件结构应尽可能使制模、造型、造芯、合箱和 清理过程简单化,防止产生废品,并为实现机械化生产创造条件。铸件 外形力求简单,铸件内腔设计合理是铸造工艺对铸件结构的主要要求。
为保证金属液充满铸型,避免浇不足、冷隔等缺陷的产生,铸件应当有合理 的壁厚。每种铸造合金都有其适宜的壁厚,选择得当,既能保证铸件力学性能, 又能防止铸造缺陷的产生。几种常用铸件在砂型铸造时的最小壁厚如表6-7所示。
1.4 铸件结构设计
机械制造工艺基础----铸造工艺
机械制造工艺基础----铸造工艺
机械制造工艺基础----铸造工艺
3、铸件的结构斜度: 在垂直于分型面的非加工面上设 计结构斜度以便于起模。 结构斜度与起模斜度的区别。
机械制造工艺基础----铸造工艺
二、铸件的内腔设计:
1、减少型芯数量,避免不必要的型芯。 采用自带型芯。尽量采用堆砂。
机械制造工艺基础----铸造工艺
1.4 铸件结构设计
铸件的结构工艺性: 铸件结构主要指铸件的外形、内 腔、壁厚及壁间的连接形式等。
结构工艺性指铸件结构须满足铸
造工艺及合金铸造性能的要求。
机械制造工艺基础----铸造工艺
1.4.1 铸造工艺对铸件结构的要求
一、铸件的外形设计: 1、铸件的形状应尽可能由规则的几何 形体所组成。 2、铸件的外形应方便起模。 铸件外形上的凸台、耳、筋、外圆角等 结构设计常直接影响铸件起模的难易程度。 改进阻碍起模的凸台、凸缘和筋板的结构。 铸件外表尽可能不要有侧凹,减少砂芯数 量。
机械制造工艺基础----铸造工艺
2、铸件的内腔形状设计应有利于型芯的固 定、排气及铸件清理。
机械制造工艺基础----铸造工艺
3、铸件要有结构斜度
机械制造工艺基础----铸造工艺
1.4.2 合金铸造性能对铸件结构的要求
1、铸件的壁厚应均匀,不应过厚或过薄。 壁厚过厚,易产生缩孔、缩松和晶粒粗大; 壁厚过薄,易产生白口、浇不足和冷隔。 铸件尺寸愈大、壁厚可愈厚。但在满足浇注的情 况下,尽可能用筋来减少壁厚。 (1)采用挖空、设筋等减薄铸件壁厚。
机械制造工艺基础----铸造工艺
(2)合理设计铸件 壁厚: • 确定最小允许壁 厚。 • 推荐铸件最大壁 厚约等于三倍的 最小壁厚。 • 铸件的外壁、内 壁与筋的厚度比 约为1:0.8:0.6。
铸件的结构设计
避免大水平壁的结构
6、铸件结构应避免冷却收缩受阻和有利于减小变形
铸件在结构设计时,应尽量使其能自由收缩,以减小应力, 避免裂纹。如图所示的弯曲轮辐和奇数轮辐的设计,可使铸件 能较好地自由收缩。
拔模斜度在铸造工艺图上或 模型图上标出。它是对零件图 上没有结构斜度的立壁(垂直 于分型面的非加工面上),给 予的一个较小角度。
(二)铸件内腔的设计 1、 有利于砂芯的固定和排气
型芯的固定主要依靠芯头来保证,若采用图a的结构,则需要 两个型芯,而且其中大的型芯呈悬臂状态,装配时必须采用芯撑 作辅助支撑,若改成图b所示的形状,采用一个整体型芯来形成 铸件的空腔,则既可增加型芯的稳固性,又改善了型芯排气和清 理条件,显然后者的设计是合理的。
1、铸件应有合理的壁厚(铸件壁厚介于临界壁厚和最小壁
厚之间)
最小壁厚:在各种工艺条下,铸造合金能充满型腔的最小厚度。 主要取决于合金的种类、铸件的大小及形状等因素。 临界壁厚:各种铸造合金都存在一个临界壁厚,在砂型铸造条 件下,各种铸造合金临界壁厚约等于其最小壁厚的3倍。
缺陷:如果所设计铸件的壁厚小于允许的 “最小壁厚”,铸件就 易产生浇不足、冷隔等缺陷。在铸造厚壁铸件时,容易产生缩孔、 缩松、结晶组织粗大等缺陷,从而使铸件的力学性能下降。
铸件壁联结应尽量避免金属积聚
3)铸件壁与壁的连接 • 设计结构圆角(减小热节、内应力)
转角处形 成分界面,集 中许多杂质, 为铸件的薄弱 环节。
4、防止产生变形
某些壁厚均匀的细长铸件,较大面积的平板铸件,以及壁 厚不均匀的长形箱体都会由于应力而产生翘曲变形,应采用合 理的结构设计予以解决。
第4章 压铸件结构设计及压铸工艺
(一)从简化模具结构、延长模具使用寿命考虑
• 铸件的分型面上应尽量避免圆角; 如果将结构改为如图4-1b所示的结构,则分型面平整, 加工简便,避免了上述缺点。
(一)从简化模具结构、延长模具使用寿命考虑
• 避免模具局部过薄; 如下图a所示的压铸件,因孔边离凸缘距离过小,易使模 具镶块在a处断裂。若将压铸件改为如下图b所示的 a≥3mm的结构,则使镶快具有足够的强度,延长了模具 的使用寿命。
• 两壁连接时的圆角---交叉连接
β=90°,R=s; β=45°,R1=0.7s,R2=1.5s; β=30°,R1=0.5s,R2=2.5s
3.脱模斜度(铸造斜度) 作用: • 减少铸件与模型的摩擦,容易取出铸件; • 保证铸件表面不被拉伤; • 延长模型使用寿命。 压铸件上各部分所需要的斜度值是不相同的,应按金属收缩 的方向来确定。当金属的收缩受到的阻力大时,斜度应大些, 反之则取小些。
避免压铸件上互相交叉的不通孔
• 3)将型芯B分为两部分,从两侧抽出(见下图c)。
(一)从简化模具结构、延长模具使用寿命考虑
• 避免内侧凹 针对要求采取的措施有: 1)外形不加大,内部形状凸出至底部(见下图a)。
2)局部加厚,内形加至底部,外形加至分型面处,从而消 除侧凹(见下图b) 。
3)原凸台形状不改变,在零件底部开出通孔,模型成型镶 件可以从通孔处插入形成台阶(见下图c)。
三、压铸件的精度、表面粗糙度及加工余量
(一) 压铸件的精度、表面粗糙度及加工余量
◇压铸件的尺寸精度
压铸件的尺寸精度较高,基本上由压铸模的制造精度而定。
1.长度尺寸
压铸件线性尺寸公差及选用见表4-5。 尺寸公差带的位置如下: 1、不加工的配合尺寸,孔取正(+), 轴取负(-)。
《铸件结构设计》课件
实例二:机床床身铸件结构设计
总结词
机床床身铸件结构设计需要满足高精度、高稳定性和高刚度的要求,以确保机 床加工的精度和稳定性。
详细描述
机床床身铸件结构设计是保证机床加工精度和稳定性的关键。设计时需要充分 考虑床身的受力情况,保证其具有足够的刚度和稳定性。同时,床身的结构形 式和材料选择也需要考虑到散热性能和热变形等因素。
目的
确保铸件具有良好的铸造性能、 机械性能、使用性能和经济效益 ,满足生产和使用要求。
铸件结构设计的重要性
01
02
03
提高产品质量
合理的铸件结构设计可以 有效减少铸造缺陷,提高 铸件质量,从而保证产品 的可靠性。
降低生产成本
合理的铸件结构设计可以 减少材料浪费,降低生产 成本,提高企业的经济效 益。
环保和可持续发展
铸件结构设计应考虑环保和可 持续发展要求,采用环保材料
和工艺,降低能耗和排放。
02
铸件结构设计的工艺性
铸造工艺对铸件结构设计的要求
1 2 3
铸件结构应便于制造
铸造工艺需要将金属液体倒入模具中,因此铸件 结构应尽量简单,易于制造和组装。
铸件结构应有利于充型和补缩
铸造过程中,金属液体需要充满模具并形成完整 的铸件,因此铸件结构应有利于金属液体的流动 和补缩。
。
国际化合作
加强国际合作与交流,引进先进 技术和经验,提升我国铸件结构
设计水化的铸件结构
设计人才。
THANKS
感谢观看
提升生产效率
合理的铸件结构设计可以 简化生产流程,提高生产 效率,降低生产周期。
铸件结构设计的基本原则
满足使用要求
铸件结构设计应满足产品使用 要求,确保其具有足够的强度
压铸件结构设计
h2≥0.8mm
a≤3°
压铸件加强筋的运用
3,作为散热加强;
4,作为装饰作用。
2,引导料流流向;
1,加强结构强度;
压铸件结构工艺性分析一
不好的案例
好的案例
说明
于型模中加工凹入文字较之加工凸出文字为困难﹒且模具寿命难以保证,使用后续刻加工﹐则与此相反。
1.5
0.014~0.020
6
0.056~0.084
2
0.018~0.026
7
0.066~0.100
2.5
0.022~0.032
8
0.076~0.116
3
0.028~0.040
9
0.088~0.138
3.5
0.034~0.050
10
0.100~0.160
4
0.040~0.060
合金浇注温度高时,填充时间可选长些。 模具温度高时,填充时间可选长些。 铸件厚壁部分离内浇口远时,填充时间可选长些。 熔化潜热和比热高的合金,填充时间可选长些。
好的案例
说明
陈学民
2021
2023
内容大纲
O1
产品的壁厚(模具成型的基础)
O2
产品的拔模(模具脱模的保障)
O3
产品的圆角(模具寿命的关键)
O4
加强筋的设计(结构优化的手段)
压铸件壁厚的设计
3.5
2.5
3.5
2.5
2.5
2.0
>500
3.0
1.8
3.0
1.8
2.2
1.5
>100~500
2.5
压铸件结构设计和压铸工艺
压铸件结构设计和压铸工艺压铸是一种将熔融金属注入到铸型中,通过冷却凝固形成所需形状的金属成型工艺。
压铸件结构设计和压铸工艺是压铸过程中至关重要的两个环节,对于保证产品质量和提高生产效率具有重要意义。
下面将从压铸件结构设计和压铸工艺两个方面进行详细介绍。
一、压铸件结构设计1.几何形状:要考虑产品的形状是否适合压铸工艺,避免出现厚壁或复杂形状等难以生产的结构。
2.壁厚设计:在保证产品强度和刚性的前提下,尽量减少壁厚。
过厚的壁厚会导致液态金属充填困难,同时也会增加材料消耗和生产成本。
3.避免内部缺陷:合理设置内部结构,避免产生气孔、缩松等内部缺陷,影响产品质量。
4.轮廓设计:尽量简化复杂的轮廓,减少加工和后处理工序,提高生产效率。
5.集成功能:在设计阶段就考虑到产品的功能需求,尽量将不同功能集成到一个构件中,减少组装工序。
二、压铸工艺压铸工艺是将压铸件结构设计转换为实际产品的过程,主要包括模具设计、熔化与注射、冷却凝固、脱模、后处理等阶段。
1.模具设计:根据产品的形状和尺寸要求,设计出相应的模具。
模具设计要遵循易于加工和维修的原则,并考虑到产品的收缩率,以保证最终产品符合设计要求。
2.熔化与注射:将所需的金属材料加热至液态,然后通过注射机将熔融金属注入到模具中。
注射过程需要控制注射速度和压力,保证金属充填完整且无气泡。
3.冷却凝固:在模具中进行冷却凝固,使注入的金属逐渐凝固。
冷却过程需要控制温度和时间,以保证产品的结晶组织均匀性和性能稳定性。
4.脱模:凝固后的产品从模具中取出,包括冷却水冲洗和振动脱模等工序。
脱模过程需要注意避免产品的变形和损坏。
5.后处理:包括修磨、去毛刺、清洗、表面处理等工序。
后处理旨在提高产品表面质量和机械性能,并满足特定的外观要求。
总结:压铸件结构设计和压铸工艺是相互关联的,一个合理的结构设计可以提高生产效率和产品质量,而一个良好的压铸工艺可以保证结构设计的实施效果。
因此,在进行压铸件结构设计和压铸工艺选择时,需要综合考虑产品的功能要求、材料特性、生产成本等因素,以达到最佳的工艺效果。
第5章铸件结构设计
③一些合金的结晶过程中,将形成垂直于铸件表面的柱状晶。若采用直 角联接,则因结晶的方向性,在转角的分角线上形成整齐的分界面(图 2-54a),在此分界面上集中了许多杂质,使转角处成为铸件的薄弱环节。
铸 造 铸件尺寸 方 (mm) 法
砂 <200×200 型 200×20~ 铸 500×500 造 >500×500
合金种类
铸钢 灰口铸铁 球墨铸铁 可锻铸铁 铝合金
8
5~6
6
5
3
10~12 6~10128 Nhomakorabea4
15~20
15第 ~52章0铸件结构15设~计20 10~12
6
铜合金 3~5 6~8 10~12
b>2a
R≥(1/6~1/3)(a+b)/2;R1≥R+(a+b)/2 C≈3(b-a)1/2,h≥(4~5)C
第5章铸件结构设计
22
4.减缓筋、辐收缩的阻碍
缺陷分析:铸件各部分冷却速度不同而收缩不一致,形成较大的 内应力。当此应力超过合金的强度极限时,铸件会产生裂纹。
• 实例分析:轮缘、轮辐、轮毂间若比例不当,
第5章铸件结构设计
3
第一节 铸件设计 的内容
一、铸件外形的设计
1 .避免外部侧凹、凸起; 2 .分型面应尽量为平直面; 3 .凸台、筋条的设计应便于起模。
下
中
中
下
上
上
第5章铸件结构设计
4
避免铸件的外形有侧凹。
第5章铸件结构设计
5
第5章铸件结构设计
6
结构斜度
铸件结构设计
铸件结构设计
铸件壁厚 力求均匀, 避免局部 过厚形成
避免铸造缺陷的合理结构
回到主页
热节的结
构 不合理 合理
成形工艺基础-铸件结构 设计
23
回到主页
铸件结构设计
铸件壁厚 力求均匀, 避免局部 过厚形成
避免铸造缺陷的合理结构
热节的结
构
不合理
合理
成形工艺基础-铸件结构 设计
24
铸件结构设计
避免铸造缺陷的合理结构
避免铸件产生 翘曲变形和大
的水平平面结
构
不合理
成形工艺基础-铸件结构 设计
合理
29
回到主页
铸件结构设计
避免铸造缺陷的合理结构
避免铸件产 生翘曲变形
和大的水平
平面结构 不合理 合理
成形工艺基础-铸件结构 设计
30
回到主页
铸件结构设计
避免铸造缺陷的合理结构
避免铸件产生 翘曲变形和大
的水平平面结
构 不合理
成形工艺基础-铸件结构 设计
40
回到主页
铸件结构设计
简化工艺过程的合理结构
不 合 理
铸件结构应有 利于型芯的固 定、排气和清 理
合 理
成形工艺基础-铸件结构 设计
41
铸件结构设计
结合铸造方法的合理结构 熔模铸造成形件的结构
回到主页
设计熔模铸造时应考虑 的问题:
•便于从压型中取出蜡模 和型芯 •孔、槽不宜过小或过深 •壁厚均匀、同时凝固、 避免分散的热节
合 理
成形工艺基础-铸件结构 设计
33
铸件结构设计
简化工艺过程的合理结构
不 合 理碍拔模的 局部凹陷结构
压铸件结构设计及压铸工艺
压铸件结构设计及压铸工艺压铸件结构设计是指在满足产品功能和使用要求的前提下,通过合理地设计压铸件的结构,使得其具有较好的可靠性、经济性和工艺性。
压铸工艺是将熔化的金属经过高压注入模具中,经冷却固化后得到所需形状和尺寸的工艺过程。
1.功能需求:首先需要明确产品的功能需求,包括产品所需的力学性能、流体性能、电气性能等。
根据功能需求来确定结构形状和尺寸。
2.材料选择:根据产品使用环境和功能需求,选择合适的材料。
材料的选择会影响到压铸件的结构设计。
3.结构强度:压铸件在使用过程中需要承受一定的载荷,因此要考虑结构的强度和刚度问题。
通过合理的布局和加强设计,保证产品在正常使用情况下不会发生失效。
4.成本控制:在结构设计中要考虑到成本因素,通过优化设计和合理选择材料等方式,尽量降低制造成本。
5.工艺性:结构设计需要考虑到压铸工艺的要求。
例如,制造过程中是否需要加工孔、缝隙等,模具是否能够顺利铸造等。
要尽量避免设计上的复杂性,方便生产制造。
压铸工艺是将熔化的金属通过高压注入模具中,并在固化后得到所需形状和尺寸的工艺过程。
压铸工艺一般包括以下几个步骤:1.模具设计:根据压铸件的结构和尺寸要求,设计合适的模具。
模具需要具备良好的冷却性能和顺畅的金属流动性。
2.材料准备:根据产品要求选择合适的金属材料,并进行熔化和调质处理。
熔化后的金属要满足一定的温度和流动性要求。
3.注入模具:将熔化的金属注入到模具中,通过高压力使金属充填模具腔体,保证细节部位的填充。
4.冷却固化:金属在模具中冷却并固化,使其具备一定的力学性能和稳定性。
5.取出铸件:打开模具,将固化好的压铸件取出,并清理剩余的模具材料。
6.补充工艺:根据产品需求,可能需要进行后续的加工和处理工艺,比如热处理、表面处理、组装等。
压铸工艺的选择和优化对产品的质量和成本具有重要影响。
在工艺中需要考虑的因素有:1.注射参数:包括注射速度、注射压力、注射温度等。
这些参数会影响到铸件的成形和凝固过程。
压铸件结构设计规范
压铸件结构设计规范压铸件是一种常见的金属制品,它具有成本低、生产效率高以及复杂形状和良好的表面质量等优点。
在压铸件的结构设计中,需要遵循一定的规范和要求,以确保产品的质量和性能。
以下是压铸件结构设计的一些常见规范:1.材料选择:在压铸件结构设计中,需要选择适合的材料,以确保产品的强度和耐用性。
常用的铸造材料包括铝合金、镁合金和锌合金等。
在选择材料时,需要考虑产品的功能要求、工作环境和制造工艺等因素。
2.壁厚设计:在压铸件的结构设计中,需要合理确定壁厚。
过薄的壁厚容易导致产品变形和脆性,而过厚的壁厚会增加产品的重量和生产成本。
一般来说,压铸件的壁厚应根据材料的强度、铸造工艺和表面质量要求等因素进行合理计算和选择。
3.强化设计:在压铸件结构设计中,需要考虑强化结构,以增加产品的刚性和耐用性。
常用的强化结构包括加强肋、加强筋和加强板等。
强化结构可以提高产品的抗拉强度和抗扭强度,减少变形和裂纹的产生。
4.浇注系统设计:在压铸件的结构设计中,需要合理设计浇注系统,以确保熔融金属能够均匀地充满模腔,并排除气体和杂质。
浇注系统设计包括喷嘴和浇口的位置、大小和形状等因素。
合理的浇注系统设计可以提高产品的充型性能和表面质量。
5.模具设计:在压铸件结构设计中,需要合理设计模具,以确保产品的精度和一致性。
模具设计包括型腔结构、型芯结构和冷却系统等。
合理的模具设计可以减少缺陷和变形的产生,提高产品的尺寸精度和表面质量。
综上所述,压铸件的结构设计需要遵循一定的规范和要求,以确保产品的质量和性能。
这些规范包括材料选择、壁厚设计、强化设计、浇注系统设计和模具设计等。
通过合理设计和优化,可以提高产品的制造效率、降低成本,并满足不同应用领域的需求。
压铸模设计压铸件结构设计及压铸工艺
压铸模设计、压铸件结构设计及压铸工艺引言压铸是一种常用的金属零件制造方法,其通过将熔化的金属注入到预先加工好的模具中,通过压力将金属冷却固化成型。
在压铸过程中,压铸模具的设计、压铸件结构的设计以及压铸工艺的选择都是至关重要的。
本文将分别介绍压铸模设计的相关要点、压铸件结构设计的原则以及压铸工艺的选择。
压铸模设计要点压铸模具是进行压铸加工的关键工具,其设计的合理与否直接影响到产品质量和生产效率。
下面是一些压铸模设计的要点:1.模具材料选择:常见的模具材料有钢、铝合金等,根据压铸件的要求和使用场景选择合适的模具材料,以确保模具具有足够的强度和耐磨性。
2.结构设计:模具的结构要合理,与压铸件的形状相匹配,避免出现脱模困难、变形等问题。
同时,要考虑到模具的拆卸和维护,方便进行清理和更换模具零部件。
3.冷却系统设计:在模具中设置合适的冷却系统,以提高压铸件的凝固速度并避免产生缺陷。
冷却系统的设计要考虑到冷却介质的流动性、冷却效果以及与压铸件形状的匹配等因素。
4.压铸模表面处理:对模具表面进行适当的处理,如喷涂涂层、表面硬化等,以延长模具的使用寿命和提高模具的抗腐蚀性能。
压铸件结构设计原则压铸件结构设计的目标是在满足产品功能和外观要求的前提下,尽量减少结构复杂性和提高生产效率。
以下是一些常用的压铸件结构设计原则:1.壁厚均匀:保持压铸件的壁厚均匀,避免厚度过大或过薄导致不均匀收缩和应力集中。
2.避免尖角和过度薄壁结构:减少压铸件中的尖角和过度薄壁结构,因为这些部分容易引起变形和缺陷。
3.引导放料设计:在压铸件结构中设置合适的引导放料设计,以确保熔融金属能够充分填充整个模腔,并避免产生气孔和冷却不均。
4.滑动方向和出料设计:考虑到模具的拆卸和压铸件的出料,结构中应合理设置滑动方向和出料设计,以方便模具的安装和压铸件的脱模。
压铸工艺选择在确定了压铸模具设计和压铸件结构设计后,还需要选择适合的压铸工艺。
以下是一些常用的压铸工艺选择要点:1.压铸机选择:根据压铸件的尺寸和形状,选择合适的压铸机型号和规格。
压铸件结构设计规范方案
压铸件结构设计规范方案压铸件是一种常见的金属制品,广泛应用于汽车、电子、航空航天、军工等领域。
在压铸件的结构设计中,需要考虑安全性、可靠性、质量控制和经济性等多个方面的要求。
下面是一些压铸件结构设计的规范方案:1.结构设计原则:设计师应遵循结构设计的基本原则,包括坚固性、合理性和安全性。
压铸件在使用过程中需经受各种力的作用,因此结构需要具有足够的强度和刚度,同时保持合理的重量和尺寸,以确保产品的性能和可靠性。
2.材料选择:压铸件一般使用铝合金、镁合金和锌合金制造,根据具体使用条件和要求选择适合的材料。
在材料选择过程中,需要考虑材料的特性、成本、可塑性以及耐磨性等因素。
3.壁厚设计:压铸件的壁厚对于产品的强度和质量至关重要。
过厚的壁厚会增加材料的用量和制造成本,同时也会降低产品的制造精度和性能;而过薄的壁厚会导致产品强度不足,容易发生变形和破裂。
因此,壁厚的设计需要综合考虑产品的用途和要求,确保最佳的壁厚。
4.结构设计和冷却系统设计:压铸件在制造过程中需要通过冷却系统进行冷却,以确保产品的质量和性能。
合理的结构设计和冷却系统设计可以提高产品的制造精度和表面质量,减少材料的收缩和变形,同时也可以确保冷却介质的循环流动,提高冷却效果。
5.模具设计:压铸件的形状和尺寸需要通过模具来实现。
模具设计需要考虑产品的尺寸、形状、结构和材料特性等多个因素,确保产品可以准确复制并保持良好的质量。
同时,模具设计也需要考虑到产品的成本和制造工艺的可行性。
6.表面处理和热处理:压铸件在制造完成后需要进行表面处理,以提高产品的表面质量和耐腐蚀性。
表面处理可以选择镀铬、喷涂、阳极氧化等方式,根据产品的具体要求进行选择。
另外,部分压铸件还需要进行热处理,以改善材料的性能和强度。
7.质量控制:压铸件的质量控制是确保产品质量和性能的重要环节。
在生产过程中,需要对原材料、模具和工艺进行严格的检验和控制,以确保产品的符合设计要求。
同时,还需要建立完善的质量管理体系和检验机制,对成品进行检验和测试,以确保产品的质量和可靠性。