2019-2020年九年级数学复习:函数
初三函数全部知识点总结
初三函数全部知识点总结一、函数的概念1. 函数的定义函数是一种对应关系,它把一个自变量的值对应到一个因变量的值上。
一般地,函数f(x)可以表示为y=f(x),其中x为自变量,y为因变量。
2. 自变量与因变量自变量是函数中独立变化的变量,通常用x表示;因变量是根据自变量的取值而定的变量,通常用y表示。
3. 定义域和值域定义域是自变量的所有可能取值的集合;值域是因变量的所有可能取值的集合。
4. 函数的图像函数的图像是函数在平面直角坐标系中的点的集合。
二、函数的表示方法1. 用一个通项公式表示函数函数f(x)有时可以用一个表达式y=f(x)表示。
2. 用函数的图像表示函数函数的图像是函数在平面直角坐标系中的点的集合。
三、常见函数及其性质1. 线性函数线性函数是具有形式y=kx的函数,其中k为常数。
2. 幂函数幂函数是具有形式y=ax^n的函数,其中a和n为常数。
3. 指数函数指数函数是具有形式y=a^x的函数,其中a为正数且不等于1。
4. 对数函数对数函数是指数函数的逆运算。
5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等。
四、函数的性质1. 奇偶性如果对于函数f(x),有f(-x)=f(x),则称f(x)为偶函数;如果对于函数f(x),有f(-x)=-f(x),则称f(x)为奇函数。
2. 增减性如果函数f(x)在区间(a,b)上有f'(x)>0,那么f(x)在区间(a,b)上是增函数;如果函数f(x)在区间(a,b)上有f'(x)<0,那么f(x)在区间(a,b)上是减函数。
3. 最值和零点函数在定义域内可能有最大值、最小值和零点。
4. 对称性有关函数的图像可能有关于y轴对称、关于x轴对称、或者关于原点对称的性质。
五、函数的运算1. 基本函数的运算加减乘除四则运算和复合运算。
2. 复合函数复合函数是一个函数作为另一个函数的自变量而得到的函数。
3. 函数的反函数函数的反函数是满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数。
数学九年级上册函数
数学九年级上册函数数学九年级上册函数主要学习了函数的概念、性质、图像和应用等内容。
函数的概念函数是数学中的一个重要的概念,它可以用来描述事物的变化规律。
函数的定义是:给定一个集合X,如果对于X中的每一个元素x,都存在唯一的一个元素y,使得y满足某个条件,那么就说y是x的函数。
在数学上,函数通常用函数的符号f(x)表示,其中f是函数的名称,x是函数的变量。
函数的性质函数具有以下几个重要的性质:1.单值性:函数的值对应于函数的变量是一个唯一的值。
2.可逆性:如果函数f(x)的值对应于函数的变量x是一个唯一的值,那么函数f(x)是可逆的,并且f(f(x))=x。
3.连续性:函数的图像在某个区间上是连续的,那么函数在该区间上是连续的。
函数的图像函数的图像是函数的变量和函数的值在直角坐标系上的点的集合。
函数的图像可以用来直观地表示函数的性质。
函数的应用函数在数学和自然科学中有着广泛的应用。
例如,在数学中,函数可以用来表示数量的变化规律,在自然科学中,函数可以用来表示物理量的变化规律。
九年级上册函数的重点内容九年级上册函数的重点内容包括:●函数的概念和性质●函数的图像●函数的应用在学习函数时,要注意以下几点:●要理解函数的概念和性质,并能够运用这些性质解决实际问题。
●要学会画函数的图像,并能够根据函数的图像分析函数的性质。
●要学会应用函数解决实际问题。
以下是一些学习函数的建议:●多做练习,巩固知识。
●注意联系实际,提高应用能力。
●利用多种学习方法,提高学习效率。
2019-2020年中考数学:反比例函数与一次函数综合题(含答案)
2019-2020年中考数学:反比例函数与一次函数综合题(含答案) 针对演练1. 如图,一次函数y =kx +1(k ≠0)与反比例函数y =mx (m ≠0)的图象有公共点A (1,2),直线l ⊥x 轴于点N (3,0),与一次函数和反比例函数的图象分别相交于点B ,C ,连接AC . (1)求k 和m 的值; (2)求点B 的坐标; (3)求△ABC 的面积.第1题图2. 已知正比例函数y =2x 的图象与反比例函数y =kx (k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1.(1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小?若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图3. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第3题图4. (2016巴中10分)已知,如图,一次函数y =kx +b (k 、b 为常数, k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D .若OB =2OA =3OD =6.(1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标; (3)直接写出不等式:kx +b ≤nx 的解集.第4题图5. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第5题图6. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=mx (x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC .(1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第6题图7. 如图,直线y =x +b 与x 轴交于点C(4,0),与y 轴交于点B ,并与双曲线y =mx (x <0)交于点A (-1,n ). (1)求直线与双曲线的解析式; (2)连接OA ,求∠OAB 的正弦值;(3)若点D 在x 轴的正半轴上,是否存在以点D 、C 、B 构成的三角形△OAB 相似?若存在求出D 点的坐标,若不存在,请说明理由.第7题图8. (2016金华8分)如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第8题图9. 如图,已知双曲线y =kx 经过点D (6,1),点C 是双曲线第三象限上的动点,过点C 作CA ⊥x 轴,过点D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.第9题图10. 如图,点B 为双曲线y =kx (x >0)上一点,直线AB 平行于y 轴,交直线y =x 于点A ,交x 轴于点D ,双曲线y =kx 与直线y =x 交于点C ,若OB 2-AB 2=4. (1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD ?若存在,求出点P 的坐标;若不存在,请说明理由.第10题图【答案】1.解:(1)∵点A (1,2)是一次函数y =kx +1与反比例函数y =mx 的公共点,∴k +1=2,1m=2,∴k =1,m =2;(2)∵直线l ⊥x 轴于点N (3,0),且与一次函数的图象交于点B , ∴点B 的横坐标为3,将x =3代入y =x +1,得y =3+1=4, ∴点B 的坐标为(3,4);(3)如解图,过点A 作AD ⊥直线l ,垂足为点D , 由题意得,点C 的横坐标为3, ∵点C 在反比例函数图象上,∴y =2x=23, ∴C 点坐标为(3,23),∴BC =BN -CN =4-23=103, 又∵AD =3-1=2,∴S △ABC =12BC ·AD =12×103×2=103.第1题解图2.解:(1)设A 点的坐标为(x ,y ),则OP =x ,P A =y , ∵△OAP 的面积为1, ∴12xy =1, ∴xy =2,即k =2, ∴反比例函数的解析式为2y x=; (2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2, ∴点B 的纵坐标为y =22=1, 即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点, ∴22x x=, 解得x 1=1,x 2=-1(舍去). ∴y =2,∴点A 的坐标为(1,2),∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0), 即点M 的坐标为(53,0).第2题解图3.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1; (2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1, ∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m ,∴m =-1,∴点P 的坐标为(-1,-2). 4.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0). 将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10). 将点C (-2,10)代入y =nx ,得10=2n-,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分)(2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分) 将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x <0或x ≥5. …………………………………… (10分) 【解法提示】不等式kx +b ≤n x 的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.5.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-, ∴n =1, ∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n , 1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53, 令y =0,得x =-5, 则C 点坐标为(-5,0),∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第5题解图6.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与 y 轴交于点C , ∴A (-4,0),C (0,1), 又∵AC =BC ,CO ⊥AB ,∴O 为AB 的中点,即OA =OB =4,且BP =2OC =2,∴点P 的坐标为(4,2),将点P (4,2)代入y 2=mx ,得m =8,∴反比例函数的解析式为y 2=8x;(2)x >4;【解法提示】由图象可知,当y 1>y 2时,即是直线位于双曲线上方的部分,所对应的自变量x 的取值范围是x >4.(3)存在.假设存在这样的D 点,使四边形BCPD 为菱形,如解图,连接DC 与PB 交于点E ,∵四边形BCPD 为菱形, ∴CE =DE =4, ∴CD =8,∴D 点的坐标为(8,1),将D (8,1)代入反比例函数8y x,D 点坐标满足函数关系式,即反比例函数图象上存在点D ,使四边形BCPD 为菱形,此时 D 点坐标为(8,1).第6题解图7.解:(1)∵直线y =x +b 与x 轴交于点C (4,0), ∴把点C (4,0)代入y =x +b ,得b =-4,∴直线的解析式为y =x -4, ∵直线也过A 点,∴把点A (-1,n )代入y =x -4,得n =-5, ∴A (-1,-5),将A (-1,-5)代入y =mx (x <0),得m =5, ∴双曲线的解析式为5y x; (2)如解图,过点O 作OM ⊥AC 于点M , ∵点B 是直线y =x -4与y 轴的交点, ∴令x =0,得y =-4,∴点B (0,-4),∴OC =OB =4, ∴△OCB 是等腰直角三角形, ∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OM OB =4OM ,∴OM =22,∵AO =12+52=26,∴在△AOM 中,sin ∠OAB =OM OA =2226=21313;第7题解图(3)存在.如解图,过点A 作AN ⊥y 轴于点N ,则AN =1,BN =1, ∴AB =12+12=2, ∵OB =OC =4, ∴BC =42+42=42, 又∵∠OBC =∠OCB =45°, ∴∠OBA =∠BCD =135°,∴△OBA ∽△BCD 或△OBA ∽△DCB , ∴OB BC =BA CD 或OB DC =BA BC ,即442=CD 或4DC =242, ∴CD =2或CD =16, ∵点C (4,0),∴点D 的坐标是(6,0)或(20,0).8.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F . 设AE =AC =t , 点E 的坐标是(3,t ). 在Rt △AOB 中, tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t , ∴点C 的坐标是(3+32t ,12t ). ∵点C 、E 在y =kx 的图象上, ∴(3+32t )×12t =3t , 解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分) ②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23), 设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第8题解图9.解:(1)∵双曲线y =k x 经过点D (6,1), ∴6k =1,解得k =6; (2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1, ∴点C 的纵坐标为1-4=-3, ∴6x=-3,解得x =-2, ∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得, ∴直线CD 的解析式为y =12x -2;(3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c), ∴点A 、B 的坐标分别为A (c ,0),B (0,1),设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得, ∴直线AB 的解析式为y =-1x c+1, 设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c+, ∵AB 、CD 的解析式中k 都等于1c-, ∴AB 与CD 的位置关系是AB ∥CD .10.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x (x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a ),∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a )2+a 2,∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a )2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M , ,2y x y x =⎧⎪⎨=⎪⎩联立 2222x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩解得或(舍去), ∴C 点坐标为(2,2),∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12), ∴AB =4-12=72,CM =4-2, ∴S △ABC =12CM ·AB =12×(4-2)×72=7-724;第10题解图(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP , 设P 点坐标为(a ,2a),则A 点坐标为(a ,a ), ∴AP =|a -2a|, ∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|, ∴(a -2)2=14×222(2)a a-,即(a -2)2=14×222((a a a +⨯-, ∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去), ∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。
初三数学函数知识点归纳
初三数学函数知识点归纳一、函数的概念1. 定义在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。
2. 函数的表示方法解析法:用数学式子表示两个变量之间的函数关系,如。
列表法:通过列出自变量与函数的对应值来表示函数关系,例如,在研究正方形面积与边长的关系时,可列出时,;时,等表格。
图象法:用图象来表示函数关系,如一次函数的图象是一条直线。
二、一次函数1. 定义形如是常数,的函数叫做一次函数。
当时,叫做正比例函数,正比例函数是特殊的一次函数。
2. 一次函数的图象与性质图象:一次函数的图象是一条直线,叫做直线在轴上的截距。
当,时,图象经过一、二、三象限;当,时,图象经过一、三、四象限;当,时,图象经过一、二、四象限;当,时,图象经过二、三、四象限。
性质当时,随的增大而增大;当时,随的增大而减小。
3. 一次函数的解析式的确定通常采用待定系数法,设出函数解析式,根据已知条件列出关于、的方程组,解方程组求出、的值,从而确定函数解析式。
三、反比例函数1. 定义形如为常数,的函数叫做反比例函数。
2. 反比例函数的图象与性质图象:反比例函数的图象是双曲线。
当时,双曲线的两支分别位于第一、三象限,在每一象限内随的增大而减小;当时,双曲线的两支分别位于第二、四象限,在每一象限内随的增大而增大。
反比例函数图象关于原点对称,它的对称轴是直线和。
3. 反比例函数解析式的确定同样采用待定系数法,设,把已知点的坐标代入求出的值即可确定解析式。
四、二次函数1. 定义形如是常数,的函数叫做二次函数。
2. 二次函数的图象与性质图象:二次函数的图象是一条抛物线。
顶点坐标:。
对称轴:直线。
性质当时,抛物线开口向上,在对称轴左侧随的增大而减小,在对称轴右侧随的增大而增大,函数有最小值;当时,抛物线开口向下,在对称轴左侧随的增大而增大,在对称轴右侧随的增大而减小,函数有最大值。
九年级数学函数知识点归纳
九年级数学函数知识点归纳数学函数是九年级数学学习的一个重要内容,它是研究数与数的对应关系的一种数学工具。
掌握函数的基本概念和特性对于理解和解决数学问题具有重要意义。
下面将对九年级数学函数的知识点进行归纳,帮助学生更好地理解和掌握相关概念。
一、函数的定义和符号表示函数是一种特殊的对应关系。
给定一个集合A和B,如果对集合A中的每个元素a,都有唯一地对应集合B中的一个元素b,则称此对应关系为函数,记作f:A→B。
在函数表示中,常用的符号包括:1. f(x)表示函数;其中f为函数名,x表示自变量;2. x表示自变量,它的取值范围是定义域;3. f(x)表示函数值,即自变量x经过函数f计算得到的值;4. 定义域表示自变量的所有可能取值;5. 值域表示函数值的所有可能取值。
二、一次函数一次函数也称线性函数,它的通式为f(x) = kx + b。
其中k和b 为常数,k表示斜率,b表示截距。
关于一次函数,需要掌握以下几个知识点:1. 斜率k的含义和计算方法:斜率表示函数曲线的倾斜程度,可以通过任意两点之间的纵向差值与横向差值的比值来表示。
2. 截距b的含义和计算方法:截距表示函数曲线与y轴的交点的纵坐标值。
三、二次函数二次函数是九年级数学中较为复杂的一类函数,它的通式为f(x) = ax² + bx + c。
其中a、b、c为常数,且a ≠ 0。
了解二次函数需要了解以下几个知识点:1. 抛物线的开口方向:二次函数的开口方向由二次项系数a的正负决定。
若a > 0,则抛物线开口向上;若a < 0,则抛物线开口向下。
2. 零点和解析式:二次函数与x轴交点的横坐标叫做零点。
解析式则是二次函数的解析表达形式,通常使用因式分解、配方法、求根公式等方法进行求解。
3. 顶点坐标:二次函数的顶点坐标给出了抛物线的最高或最低点的坐标。
四、指数函数指数函数是形如f(x) = a^x的函数,其中a为常数,且a > 0且a ≠ 1。
九年级所有函数知识点归纳
九年级所有函数知识点归纳在初中数学课程中,函数是一个非常重要的概念。
它作为数学中的基础概念之一,在解决实际问题时起着重要的作用。
接下来,我们将对九年级的所有函数知识点进行归纳和总结。
一、函数的定义函数是一种数学关系,它将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)。
用数学符号表示为f(x) = y。
在函数的定义中,要求每一个自变量只对应唯一的因变量。
二、函数的表示方式函数可以通过多种方式来表示。
最常见的方式是函数的显式表达式,如y = 2x + 1。
还有函数的隐式表达式,如x² + y² = 1。
另外,函数还可以通过函数图像、函数表和函数关系式等方式来表示。
三、函数的性质1. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
2. 单调性:函数的单调性可以分为增函数和减函数。
增函数是指在定义域内,随着自变量的增大,函数值也增大;减函数则相反。
3. 奇偶性:奇函数和偶函数是函数的一种特殊性质。
奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
4. 周期性:周期函数是指在一定范围内具有重复的规律性。
例如正弦函数和余弦函数就是周期函数,它们的周期是2π。
5. 对称性:函数的对称性包括轴对称和中心对称两种。
轴对称是指以某一条直线为对称轴,对称图像重合;中心对称则是指以某一点为中心,对称图像重合。
四、函数的基本类型1. 一次函数:一次函数是函数的一种特殊类型,其表达式为y= kx + b,其中k和b为常数。
2. 二次函数:二次函数是函数的另一种特殊类型,其表达式为y = ax² + bx + c,其中a、b和c为常数。
3. 绝对值函数:绝对值函数的表达式为y = |x|,其中x为实数。
4. 幂函数:幂函数是指函数的自变量为底数,指数为常数的函数。
例如y = x²、y = √x等。
5. 指数函数:指数函数是函数的自变量为指数,底数为常数的函数。
九年级数学--初中各种函数知识点总结
初中各种函数知识点陈述总结知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注重:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y,0>>点P(x,y)在第二象限0⇔yx<,0>点P(x,y)在第三象限0⇔yx,0<<点P(x,y)在第四象限0x⇔y,0<>2、坐标轴上的点的特征点P(x,y)在x轴上0⇔y,x为任意实数=点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y 轴的直线上的各点的横坐标相同。
5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离 点P (x ,y )到坐标轴及原点的距离: (1)点P (x ,y )到x 轴的距离等于y (2)点P (x ,y )到y 轴的距离等于x(3)点P (x ,y )到原点的距离等于22y x +知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
九年级各种函数知识点归纳
九年级各种函数知识点归纳函数是数学中一个非常重要的概念,也是数学与现实生活相结合的桥梁。
在九年级数学学习中,我们需要掌握各种函数的知识点,了解它们的性质和应用。
本文将对九年级常见的函数进行归纳和总结。
一、一次函数一次函数是最基本的函数之一,也是我们最熟悉的函数之一。
它的表达式是y = kx + b,其中k和b是常数。
1. 函数的图像:一次函数的图像是一条直线,具有斜率k和截距b。
当k>0时,函数图像是向上倾斜的直线;当k<0时,函数图像是向下倾斜的直线。
2. 函数的性质:一次函数的性质有很多,比如斜率表示了函数的变化速度和方向;截距表示了函数与y轴的交点等。
3. 函数的应用:一次函数在实际生活中有很多应用,比如速度与时间的关系、成本与产量的关系等。
二、二次函数二次函数是一个抛物线,在九年级数学中,我们需要了解它的性质和应用。
1. 函数的表达式:二次函数的表达式是y = ax^2 + bx + c,其中a、b和c是常数,且a ≠ 0。
2. 函数的图像:二次函数的图像是一个抛物线,开口方向由系数a的正负决定。
3. 函数的顶点:二次函数的顶点是抛物线的最高点或最低点,其横坐标为-x轴对称的点,纵坐标为y轴坐标。
4. 函数的性质:二次函数的性质有很多,比如顶点表示了函数的极值;判别式Δ=b^2 - 4ac可以判断函数的图像和根的性质等。
5. 函数的应用:二次函数在物理学、经济学等领域有广泛的应用,比如抛物线的轨迹、物体的抛射运动等。
三、指数函数和对数函数指数函数和对数函数是在函数中又一个重要的类别,它们具有独特的性质和应用。
1. 指数函数:指数函数的表达式是y = a^x,其中a是常数,且a > 0且a ≠ 1。
- 函数的图像:指数函数的图像是一个逐渐上升(a > 1)或下降(0 < a < 1)的曲线。
- 函数的性质:指数函数具有指数增长的特点,a > 1时,函数值随着自变量的增大而迅速增大;0 < a < 1时,函数值随着自变量的增大而迅速减小。
2019—2020学年九年级数学上册课件 22.1.3 第2课时 二次函数y=a(x-h)2的图象和性质
12.已知y=2x2的图象是抛物线,若抛物线不动,把y轴向右平移3个单位,那么
在新坐标系下抛物线的解析式为( C )
A.y=2(x-3)2
B.y=2x2-3
C.y=2(x+3)2
D.y=2x2+3
13.(2018·潍坊)如图,已知二次函数y=-(x-h)2(h为常数),当自变量x的值 满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( B ) A.3或6 B.1或6 C.1或3 D.4或6
B.y=-1x2-5 3
C.y=-1(x+5)2 3
D.y=1(x+5)2 3
10.(8 分)在同一平面直角坐标系中,画出函数 y=-1x2,y=-1(x+2)2 和 y=-1(x-
3
3
3
2)2 的图象.
解:略
一、选择题(每小题4分,共12分) 11.在同一直角坐标系中,一次函数y=ax+c和二次函数y=a(x+c)2的图象大致 为( B )
2
(1)求这条抛物线的解析式;
(2)求将(1)中的抛物线向左平移5个单位后得到的抛物线的解析式;
(3)将(2)中所求抛物线绕顶点旋转180°,求旋转后的抛物线的解析式.
解:(1)y=-8(x+3)2 (2)y=-8(x+13)2 (3)y=8(x+13)2
2
2
2
【综合运用】 18.(12分)如图,在Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA =AB=1个单位长度,把Rt△OAB沿x轴正方向平移1个单位长度后得到△AA1B1. (1)求以A为顶点,且经过点B1的抛物线的解析式; (2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点D,C的坐标.
解:(1)由题意,得 A(1,0),A1(2,0),B1(2,1).设抛物线解析式为 y=a(x-1)2.∵抛 物线经过点 B1(2,1),∴1=(2-1)2a,解得 a=1.∴抛物线的解析式为 y=(x-1)2
2019-2020年中考数学专题训练二次函数与反比例函数1
2019-2020年中考数学专题训练二次函数与反比例函数1一、选择题1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)2.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.43.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧4.二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣25.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣16.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<07.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(﹣3,0)D.(0,﹣4)8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数 C.反比例函数D.二次函数9.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小10.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)211.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<012.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.13.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()A .B .C .D .14.数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x 2+1与y=的交点的横坐标x 0的取值范围是( )A .0<x 0<1B .1<x 0<2C .2<x 0<3D .﹣1<x 0<015.已知二次函数y=a (x ﹣1)2﹣c 的图象如图所示,则一次函数y=ax+c 的大致图象可能是( )A .B .C .D .16.下列三个函数:①y=x+1;②;③y=x 2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数有( )A .0B .1C .2D .3 17.在同一直角坐标系中,函数y=mx+m 和y=﹣mx 2+2x+2(m 是常数,且m ≠0)的图象可能是( )A .B .C .D .18.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0二、填空题19.抛物线y=x2+2x+3的顶点坐标是.20.已知二次函数y=(x﹣2)2+3,当x 时,y随x的增大而减小.21.二次函数y=x2+2x的顶点坐标为,对称轴是直线.22.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.23.函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而(填写“增大”或“减小”).24.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.25.下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx (x<0)中,y的值随x的值增大而增大的函数有个.26.二次函数y=x2﹣2x+3图象的顶点坐标为.27.二次函数y=x2﹣4x﹣3的顶点坐标是(,).三、解答题28.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.29.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.30.已知点A(﹣2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P(x ﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.2019-2020年中考数学专题训练二次函数与反比例函数21.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.2.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?3.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.4.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B 点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.5.如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.6.如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.7.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连接AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.8.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P 的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.9.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.10.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.11.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.12.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.13.如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E (0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?15.如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y 轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB 于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.16.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.17.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.18.如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.19.如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P 为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.20.如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C 为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线AC的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E 点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求出P点的坐标,若不存在,请说明理由.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.22.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?。
九年级函数重点知识点提纲
九年级函数重点知识点提纲函数简介:函数的定义、函数的符号表示、自变量与函数值、函数的定义域与值域、函数的图象与图线的基本概念。
一、一次函数:1.1 一次函数的定义及一般形式;1.2 一次函数的图象与特点;1.3 一次函数的性质和应用。
二、二次函数:2.1 二次函数的定义及一般形式;2.2 二次函数的图象与特点;2.3 二次函数的顶点、轴和对称性;2.4 二次函数与一次函数的关系;2.5 二次函数的性质和应用。
三、指数函数与对数函数:3.1 指数函数的定义及一般形式;3.2 指数函数的图象与特点;3.3 指数函数的性质和应用;3.4 对数函数的定义及一般形式;3.5 对数函数的图象与特点;3.6 对数函数的性质和应用。
四、幂函数与反比例函数:4.1 幂函数的定义及一般形式;4.2 幂函数的图象与特点;4.3 幂函数的性质和应用;4.4 反比例函数的定义及一般形式;4.5 反比例函数的图象与特点;4.6 反比例函数的性质和应用。
五、复合函数与函数的逆运算:5.1 复合函数的定义及计算方法;5.2 复合函数的性质和应用;5.3 函数的逆运算的概念及计算方法;5.4 函数的逆运算的性质和应用。
六、函数的应用场景:6.1 函数在经济学中的应用;6.2 函数在物理学中的应用;6.3 函数在生物学中的应用。
结语:通过学习九年级函数的重点知识点,我们对函数的定义、图象和特点、性质和应用等方面有了更深入的理解。
掌握这些知识,不仅能解决常见的函数问题,还能将函数应用到不同领域的实际问题中。
希望同学们能够扎实掌握函数的知识,提高数学思维和解题能力。
九年级函数重点知识点归纳
九年级函数重点知识点归纳函数是数学中非常重要的概念,它在各个学科中都有广泛的应用。
在九年级的数学学习中,函数也是一个重要的内容。
本文将对九年级函数的重点知识进行归纳和总结。
1. 函数的概念函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。
通常用符号“y=f(x)”表示,其中x为自变量,y为因变量,f(x)表示函数的表达式。
2. 函数的图像函数的图像是函数在直角坐标系中的表示,它能够直观地展示函数的特性。
函数的图像是指所有使得y=f(x)成立的点的集合。
可以通过绘制函数的图像来研究函数的性质。
3. 函数的性质(1) 定义域和值域:函数的定义域是自变量的取值范围,值域是函数输出的所有可能值的集合。
(2) 单调性:函数可以是递增的(当自变量增大时,函数值也增大)或递减的(当自变量增大时,函数值减小)。
(3) 奇偶性:函数可以是奇函数(对任意x,有f(-x)=-f(x))或偶函数(对任意x,有f(-x)=f(x))。
(4) 反函数:如果一个函数f的图像关于直线y=x对称,那么它的逆函数存在。
4. 函数的表示与运算(1) 方程形式:函数可以用方程来表示,例如线性函数y=kx+b,二次函数y=ax^2+bx+c等。
(2) 函数的运算:函数之间可以进行加减乘除的运算。
例如,两个函数的和为f(x)+g(x),积为f(x)g(x),商为f(x)/g(x)。
5. 函数的特殊类型(1) 线性函数:线性函数是一次多项式函数,其图像为一条直线。
一般表达式为y=kx+b,其中k为斜率,b为截距。
(2) 二次函数:二次函数是二次多项式函数,其图像为一个开口朝上或朝下的抛物线。
(3) 绝对值函数:绝对值函数表示为y=|x|,其图像为以原点为中心的V字形。
(4) 反比例函数:反比例函数表示为y=k/x,其中k为常数。
其图像为一个不经过原点的双曲线。
6. 函数的应用(1) 函数在几何中的应用:通过函数,我们可以描述和研究直线、曲线以及各种图形的性质。
数学九年级函数知识点
数学九年级函数知识点一、函数的概念及表示方法函数是一种关系,它把一个集合中每个元素与另一个集合中唯一确定的元素相对应。
函数通常以字母来表示,常用的表示方法有函数公式和函数图像。
1. 函数公式函数公式是用代数表达式表示函数的规律。
通常用变量x表示自变量,用变量y表示因变量。
函数公式的一般形式为y = f(x),其中f表示函数。
例如:y = 2x + 3,表示函数y是x的两倍再加上3。
2. 函数图像函数图像是用二维坐标系中的点表示函数的规律。
自变量所在的轴称为横坐标轴,因变量所在的轴称为纵坐标轴。
函数的图像一般是一条曲线或者一段线段。
二、函数的性质函数具有许多重要的性质,下面介绍几个常见的性质。
1. 定义域和值域函数的定义域是指自变量可取的值的集合,值域是指因变量可取的值的集合。
例如:对于函数y = 2x + 3,定义域是所有实数集合R,值域也是所有实数集合R。
2. 单调性函数的单调性描述了函数在整个定义域上的变化趋势。
可以分为递增和递减两种情况。
若对于任意两个自变量的值x1和x2,若x1 < x2,则有f(x1) < f(x2),则函数是递增的;若对于任意两个自变量的值x1和x2,若x1 < x2,则有f(x1) > f(x2),则函数是递减的。
3. 奇偶性函数的奇偶性描述了函数的图像关于y轴和原点的对称性。
若对于任意自变量的值x,有f(-x) = -f(x),则函数是奇函数;若对于任意自变量的值x,有f(-x) = f(x),则函数是偶函数。
4. 零点和极值点函数的零点是指使得函数值等于零的自变量的值。
函数的极值点是指函数在某一区间内取得最大值或最小值的点。
三、常见的函数类型在函数的学习过程中,有几种常见的函数类型需要掌握。
1. 一次函数一次函数是指函数的最高次数为1的函数。
它的函数公式为y = kx + b,其中k和b为常数。
2. 二次函数二次函数是指函数的最高次数为2的函数。
九年级数学上册第1章二次函数专题训练(二)二次函数图象与a,b,c,b2-4ac等符号问题试题浙教版【2019-2020
4.[答案]C
5.[解析]B由公共点的横坐标为1,且在反比例函数y= 的图象上,当x=1时,y=b,即公共点的坐标为(1,b).又点(1,b)在抛物线上,得a+b+c=b,即a+c=0.由a≠0知ac<0,一次函数y=bx+ac的图象与y轴的交点在负半轴上,而反比例函数y= 的图象的一支在第一象限,故b>0,一次函数的图象满足y随x的增大而增大,选项B符合条件.故选B.
6.[解析]C①抛物线的开口向上,所以a>0.抛物线的对称轴为直线x=- =1,所以b<0,所以ab<0.所以①正确;
②抛物线与x轴有两个交点,所以b2-4ac>0,所以b2>4ac.所以②正确;
③由图象知,当x=1时,y=a+b+c<0.又抛物线与y轴交于负半轴,所以c<0,所以a+b+2c<0.所以③正确;
∵点 , , 是该抛物线上的点,
∴将它们描在图象上可得
由图象可知:y1<y3<y2,故⑤错误.
综上所述,正确的有3个.故选B.
9.[答案] -1<a<0
[解析] ∵抛物线开口向下,∴a<0.
∵函数图象过点(0,1),∴c=1.
∵函数图象过点(1,0),∴a+b+c=0,
∴b=-(a+c)=-(a+1).
11.[答案] ①④
[解析] 由抛物线的开口向上可知,a>0,且抛物线经过点A(-1,0),B(0,-2),对称轴在y轴的右侧可得 即a-b=2,b<0,故a=2+b<2.综合可知0<a<2;由a-b=2可得a=b+2,将其代入0<a<2中,得0<b+2<2,即-2<b<0;
当|a|=|b|时,因为a>0,b<0,故有a=-b.又a-b=2,可得a=1,b=-1.
当AB=AC=4时,∵AO=1,△AOC为直角三角形,OC的长为|c|,∴c2=16-1=15.
九年级数学函数知识点归纳总结
九年级数学函数知识点归纳总结函数概念和性质是数学九年级的重要知识点之一。
在学习数学函数的过程中,我们需要了解函数的定义、函数的性质、函数的分类以及函数的应用等方面。
本文将对九年级数学中的函数知识点进行归纳总结,希望能够帮助大家对函数有更全面的认识。
一、函数的定义函数是一种数学关系,它将一个集合的元素映射到另一个集合中的元素。
在数学上,我们通常用 f(x) 表示函数,其中 x 是自变量,f(x) 是因变量。
一个函数的定义包括定义域、值域和对应关系这三个方面。
二、函数的性质1. 定义域和值域:一个函数的定义域是自变量的集合,值域是因变量的集合。
要确定一个函数的定义域和值域,我们需要考虑函数的具体情况,比如分式函数、根式函数等。
2. 奇偶性:一个函数的奇偶性可以通过函数的公式来确定。
如果对于任意 x,有 f(-x) = f(x),那么该函数是偶函数;如果对于任意 x,有 f(-x) = -f(x),那么该函数是奇函数。
3. 单调性:一个函数的单调性可以通过函数的导数和增减性来判断。
如果函数的导数恒大于零,那么该函数在定义域上是递增的;如果函数的导数恒小于零,那么该函数在定义域上是递减的。
4. 周期性:周期函数是一种特殊的函数,它在一定的周期内重复自身。
正弦函数和余弦函数就是周期函数的典型例子。
三、函数的分类1. 一次函数:一次函数是形如 y = kx + b 的函数,其中 k 和 b是常数。
一次函数的图像是一条直线,通过两个点就可以确定一条直线。
2. 二次函数:二次函数是形如 y = ax^2 + bx + c 的函数,其中 a、b 和c 是常数且a ≠ 0。
二次函数的图像是一条抛物线。
3. 分式函数:分式函数是形如 y = f(x)/g(x) 的函数,其中 f(x)和 g(x) 是多项式函数。
分式函数的图像通常是一条曲线,在定义域上可能有不连续点。
四、函数的应用函数在实际生活中有很广泛的应用。
比如,我们可以用函数来表示时间和距离之间的关系,从而计算出速度;我们也可以用函数来描述物体的运动轨迹,从而得到物体的加速度;此外,函数还可以用来解决各种问题,比如最值问题、方程求解等。
九年级数学函数知识点总结
九年级数学函数知识点总结函数是数学中非常重要的概念,它在实际问题的建模和解决中起着重要的作用。
以下是九年级数学中关于函数的知识点总结:一、函数的定义和表示方法1. 函数的定义:函数是一种特殊的关系,它将一个集合的每个元素对应到另一个集合的唯一元素上。
2. 函数的表示方法:可以用方程、图像或者映射的方式来表示函数。
二、函数的图像与性质1. 函数的图像:函数的图像是函数在直角坐标系中的表示,横坐标表示自变量,纵坐标表示函数值。
2. 定义域和值域:函数的定义域是自变量的取值范围,值域是函数值的取值范围。
3. 增减性与奇偶性:增减性描述了函数在定义域上的单调性,奇偶性描述了函数图像的对称性。
三、函数的类型1. 一次函数:一次函数是最简单的函数类型,它的表达式为y= kx + b,其中k和b为常数。
2. 二次函数:二次函数的表达式为y = ax^2 + bx + c,其中a、b、c为常数,且a≠0。
3. 反比例函数:反比例函数的表达式为y = k/x,其中k为常数,且x≠0。
4. 根式函数:根式函数的表达式为y = √x,其中x为非负实数。
5. 绝对值函数:绝对值函数的表达式为y = |x|,其中x可以是任意实数。
四、函数的运算1. 函数的加、减、乘、除:函数可以进行加减乘除的运算,运算结果仍然是一个函数。
2. 复合函数:两个函数进行复合运算,即将一个函数的输出作为另一个函数的输入。
五、函数的应用1. 函数的模型:函数可以用来描述实际问题中的关系,比如速度与时间的关系、温度与时间的关系等。
2. 最值与极值:在一段区间上,函数的最大值和最小值被称为最值,函数的极大值和极小值被称为极值。
3. 数量关系:函数可以用来描述数量之间的关系,比如数列和等差数列等。
六、函数图像的平移与伸缩1. 平移:给定函数y = f(x),函数y = f(x) + c的图像相对于原来的图像沿y轴平移c个单位。
2. 伸缩:给定函数y = f(x),函数y = a·f(bx)的图像相对于原来的图像进行水平和垂直方向上的伸缩。
九年级各种函数知识点
九年级各种函数知识点一、一次函数一次函数也称为线性函数,是数学中最简单的一种函数。
它的图像为一条直线,表达式通常为y = kx + b,其中k和b都是常数。
1. 定义一次函数的定义可以表述为:对于任意实数x,函数f(x)的取值等于k乘以x再加上常数b,即f(x) = kx + b。
2. 斜率一次函数的斜率k表示了直线的倾斜程度。
当k为正数时,直线上升;当k为负数时,直线下降;当k为零时,直线为水平线。
3. 截距一次函数的截距b表示了直线与y轴的交点在y轴上的纵坐标。
当x为0时,f(x)的值为b。
4. 图像性质一次函数的图像是一条直线,具有以下特点:- 当斜率k为正数时,直线向右上方倾斜;- 当斜率k为负数时,直线向右下方倾斜;- 当斜率k为零时,直线为水平线;- 直线的截距决定了直线与y轴的交点位置;- 不同的斜率和截距会使得直线的位置和角度不同。
二、二次函数二次函数是一种具有抛物线图像的函数,形式为y = ax² + bx + c,其中a、b、c都是常数,a不等于零。
1. 定义二次函数的定义可以表述为:对于任意实数x,函数f(x)的取值等于a乘以x的平方再加上b乘以x再加上常数c,即f(x) = ax²+ bx + c。
2. 抛物线二次函数的图像为抛物线,具有以下特点:- 当a大于零时,抛物线开口向上;- 当a小于零时,抛物线开口向下;- 抛物线的顶点是最高点(或最低点),在坐标系中为(x₀, y₀);- 抛物线在顶点处对称分布,左右两侧的形状相同。
3. 判别式二次函数的判别式Δ(delta)用于判断抛物线与x轴的交点情况。
当Δ大于零时,抛物线与x轴有两个交点;当Δ等于零时,抛物线与x轴有一个交点;当Δ小于零时,抛物线与x轴没有交点。
三、指数函数指数函数是以一个正常数为底的自然指数幂函数,形式为y =aⁿ,其中a为底数,n为指数。
1. 定义指数函数的定义可以表述为:对于任意正实数x,函数f(x)的取值等于以底数a为底、指数为x的次幂,即f(x) = aⁿ。
初三数学函数知识归纳总结
初三数学函数知识归纳总结函数是数学中非常重要的一个概念,是数理统计、物理学、经济学等多个学科的基础。
在初三的数学课程中,函数是一个重要的内容,学好函数对于日后的学习及解题能力的提升至关重要。
下面对初三数学函数知识进行归纳总结。
一、函数的概念与表示函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数通常用符号表示,常见的表示方式有函数图像、解析式以及函数关系式等。
1.1 函数的基本定义函数是自变量与因变量之间的一种特殊关系,其中自变量的值确定时,因变量的值也随之确定。
1.2 函数的表示方式函数可以通过以下方式表示:- 函数图像:图像可以将自变量和因变量的关系以图像的形式展现出来,有助于直观了解函数特性。
- 解析式:使用数学表达式来表示函数,通常形如 f(x) = 表达式。
- 函数关系式:使用自变量和因变量之间的关系式来表示函数,如 y = 2x + 3。
二、函数的性质函数作为数学中的一个重要概念,具有一些常见的性质,了解这些性质有助于更好地理解和使用函数。
2.1 定义域与值域- 定义域:函数中自变量的所有取值范围构成的集合。
- 值域:函数中因变量的所有可能取值组成的集合。
2.2 奇偶性- 奇函数:当函数满足 f(-x) = -f(x),即函数关于原点对称时,称该函数为奇函数。
- 偶函数:当函数满足 f(-x) = f(x),即函数关于y轴对称时,称该函数为偶函数。
2.3 单调性- 单调递增:当函数中的任意两个不同的自变量取值时,对应的因变量值满足递增关系。
- 单调递减:当函数中的任意两个不同的自变量取值时,对应的因变量值满足递减关系。
2.4 对称性- 函数关于y轴对称:当函数满足 f(-x) = f(x),即函数关于y轴对称时,称函数具有关于y轴的对称性。
- 函数关于x轴对称:当函数满足 f(x) = -f(x),即函数关于x轴对称时,称函数具有关于x轴的对称性。
三、常见函数类型初三数学课程中,我们遇到了很多常见的函数类型,每种类型的函数都有其特定的特性和应用。
2020年中考数学 考前大专题复习:函数(解析版)
2020中考数学考前大专题复习:函数(含答案)一、选择题(本大题共6道小题)1. 二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大2. 正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,则一次函数y=x+k的图象大致是 ()3. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,-1)D.(2020,0)4. 如图,☉O的半径为2,双曲线的解析式分别为y=1x和y=-1x,则阴影部分的面积为()A.4πB.3πC.2πD.π5. 如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且ACCB=13,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.52,52C.83,83D.(3,3)6. 如图,函数y={1x(x>0),-1x(x<0)的图象所在坐标系的原点是()A.点MB.点NC.点PD.点Q二、填空题(本大题共6道小题)7. 元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之”,如图K11-3是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.图K11-38. 如图,已知直线y=kx+b过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x的解集为.9. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a-b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是(填写序号).10. 如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y=kx(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为.11. 如图,平行于x轴的直线与函数y=k1x(k1>0,x>0),y=k2x(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.12. 如图,抛物线y=-14x2+12x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.三、解答题(本大题共5道小题)13. 已知二次函数y=2x2+bx+1的图象过点(2,3).(1)求该二次函数的表达式;(2)若点P(m,m2+1)也在该二次函数的图象上,求点P的坐标.14. 某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表: 售价x(元/件) 50 60 80周销售量y(件) 100 80 40周销售利润w(元)1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.15. 如图①,在平面直角坐标系xOy中,已知抛物线y=ax2-2ax-8a与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点C(0,-4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q,使得以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.①16. 如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知B点的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y 轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.17. 如图,在直角坐标系中,抛物线经过点A(0,4)、B(1,0)、C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2020中考数学考前大专题复习:函数-答案一、选择题(本大题共6道小题)1. 【答案】C[解析]选项A,由对称轴为直线x=2可得--a2=2,∴a=4,正确;选项B,∵a=4,b=-4,∴代入解析式可得,y=x2-4x-4,当x=2时,y=-8,∴顶点的坐标为(2,-8),正确;选项C,由图象可知,x=-1时,y<0,即1+4+b<0,∴b<-5,∴错误;选项D,由图象可以看出当x>3时,在对称轴的右侧,y随x的增大而增大,正确,故选C.2. 【答案】A[解析]因为正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,所以k<0,所以一次函数y=x+k的函数值y随着x增大而增大,图象与y轴交于负半轴,故选A.3. 【答案】C[解析]点P运动一个半圆用时为2π2÷π2=2(秒).∵2019=1009×2+1,∴2019秒时,P在第1010个半圆的中点处,∴此时点P坐标为(2019,-1).故选C.4. 【答案】C[解析]根据反比例函数y=1x,y=-1x及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.∴S阴影=12π×22=2π.故选C.5. 【答案】C[解析]由题可知:A(4,4),D(2,0),C(4,3),点D关于AO的对称点D'坐标为(0,2),设l D'C:y=kx+b,将D'(0,2),C(4,3)代入,可得y=14x+2,解方程组{y=14x+2,y=x,得{x=83,y=83.∴P83,83.故选C.6. 【答案】A[解析]∵函数y=1x(x>0)与y=-1x(x<0)的图象关于y轴对称,∴直线MP是y轴所在直线,∵两支曲线分别位于一、二象限,∴直线MN是x轴所在直线,∴坐标原点为M.二、填空题(本大题共6道小题)7. 【答案】(32,4800)[解析]根据题意,得{s=240(t-12),s=150t,解得{t=32,s=4800.故答案为(32,4800).8. 【答案】-2≤x≤-1[解析]如图,直线OA的解析式为y=-2x,当-2≤x≤-1时,0≤kx+b≤-2x.9. 【答案】①③④[解析]根据图象可得:a<0,c>0,对称轴:直线x=-b2a=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax 2+bx +c ,得y=a -b +c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a -b +c=0,故②错误;当x=1时,y=a +b +c>0.∵b=-2a ,∴-b2+b +c>0,即b +2c>0,故③正确; 由图象可以直接看出④正确.故答案为:①③④.10. 【答案】4[解析]过点D 作DH ⊥x 轴于H 点,交OE 于M ,∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴S △ODH =S △ODA =S △OEC =k2,∴S △ODH -S △OMH =S △OEC -S △OMH ,即S △OMD =S 四边形EMHC , ∴S △ODE =S 梯形DHCE =3,设D (m ,n ),∵D 为AB 的中点,∴B (2m ,n ).∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴E 2m ,n2,∴S 梯形DHCE =12n 2+nm=3, ∴k=mn=4.11. 【答案】8[解析]过点B 作BE ⊥x 轴,垂足为点E ,过点A 作AF ⊥x 轴,垂足为点F ,直线AB 交y 轴于点D ,因为△ABC 与△ABE 同底等高, 所以S △ABE =S △ABC =4, 因为四边形ABEF 为矩形, 所以S 矩形ABEF =2S △ABE =8, 因为k 1=S 矩形OF AD ,k 2=S 矩形OEBD , 所以k 1-k 2=S 矩形OF AD -S 矩形OEBD =S 矩形ABEF =8.12. 【答案】2√5 [解析]当y=0时,-14x 2+12x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-14x 2+12x +2=2,∴点C 的坐标为(0,2). 当y=2时,-14x 2+12x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0), 将A (-2,0),D (2,2)代入y=kx +b ,得{-2k +b =0,2k +b =2,解得{k =12,b =1,∴直线AD 的解析式为y=12x +1.当x=0时,y=12x +1=1,∴点E 的坐标为(0,1). 当y=1时,-14x 2+12x +2=1,解得x 1=1-√5,x 2=1+√5, ∴点P 的坐标为(1-√5,1),点Q 的坐标为(1+√5,1), ∴PQ=1+√5-(1-√5)=2√5.三、解答题(本大题共5道小题)13. 【答案】解:(1)∵二次函数y=2x 2+bx +1的图象过点(2,3), ∴3=8+2b +1,∴b=-3,∴该二次函数的表达式为y=2x 2-3x +1. (2)∵点P (m ,m 2+1)在该二次函数的图象上, ∴m 2+1=2m 2-3m +1,解得m 1=0,m 2=3, ∴点P 的坐标为(0,1)或(3,10).14. 【答案】解:(1)①设y 与x 的函数关系式为y=kx +b ,依题意,有{50k +b =100,60k +b =80,解得{k =-2,b =200,∴y 与x 的函数关系式是y=-2x +200..②设进价为t 元/件,由题意,1000=100×(50-t ),解得t=40,∴进价为40元/件; 周销售利润w=(x -40)y=(x -40)(-2x +200)=-2(x -70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元.故答案为40,70,1800.(2)依题意有,w=(-2x +200)(x -40-m )=-2x 2+(2m +280)x -8000-200m=-2x -m+14022+12m 2-60m +1800.∵m>0,∴对称轴x=m+1402>70,∵-2<0,∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x=65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m=5.15. 【答案】[解析](1)令y=0求得点A ,B 坐标,再由点C 坐标求得抛物线的解析式及线段AC 的长;(2)过点C 作x 轴的平行线交抛物线于点P ,通过分类讨论确定点Q 坐标. 解:(1)点A 的坐标为(-2,0),点B 的坐标为(4,0); 线段AC 的长为2√5, 抛物线的解析式为:y=12x 2-x -4. (2)过点C 作x 轴的平行线交抛物线于点P .∵点C (0,-4),∴-4=12x 2-x -4,解得x 1=2,x 2=0,∴P (2,-4).∴PC=2,若四边形BCPQ 为平行四边形,则 BQ=CP=2,∴OQ=OB +BQ=6,∴Q (6,0).若四边形BPCQ 为平行四边形,则BQ=CP=2, ∴OQ=OB -BQ=2,∴Q (2,0).故以点B ,C ,P ,Q 为顶点的四边形是平行四边形时,Q 点的坐标为(6,0),(2,0).16. 【答案】(1)根据题意得,ab 2 =3,即b =-6a ,则抛物线的解析式为y =ax 2-6ax +4,将B (8,0)代入得,0=64a -48a +4,解得a =-14,b =32,∴抛物线的解析式为y =-14x 2+32x +4;(2)设直线BC 的解析式为y =kx +d ,由抛物线解析式可知:当x =0时,y =4,即点C (0,4),将B (8,0),C (0,4)代入得:804k d d +=⎧⎨=⎩,解得⎩⎪⎨⎪⎧k =-12d =4,∴直线BC 的解析式为y =-12x +4,设点M 的横坐标为x (0<x <8),则点M 的纵坐标为-14x 2+32x +4,点N 的纵坐标为-12x +4,∵点M 在抛物线上,点N 在线段BC 上,MN ∥y 轴,∴MN =-14x 2+32x +4-(-12x +4)=-14x 2+32x +4+12x -4=-14x 2+2x=-14(x -4)2+4,∴当x =4时,MN 的值最大,最大值为4;(3)存在.理由如下:令-14x 2+32x +4=0,解得x 1=-2,x 2=8,∴A (-2,0),又∵C (0,4),由勾股定理得,AC =22+42=25,如解图,过点C 作CD ⊥对称轴于点D ,连接AC .解图∵抛物线对称轴为直线x =3,则CD =3,D (3,4).①当AC =CQ 时,DQ =CQ 2-CD 2=(25)2-32=11,当点Q 在点D 的上方时,点Q 到x 轴的距离为4+11,此时,点Q 1(3,4+11),当点Q 在点D 的下方时,点Q 到x 轴的距离为4-11,此时点Q 2(3,4-11);②当AQ =CQ 时,点Q 为对称轴与x 轴的交点,AQ =5,CQ =32+42=5, 此时,点Q 3(3,0);③当AC =AQ 时,∵AC =25,点A 到对称轴的距离为5,25<5,∴不可能在对称轴上存在Q 点使AC =AQ ,综上所述,当点Q 的坐标为(3,4+11)或(3,4-11)或(3,0)时,△ACQ 为等腰三角形.17. 【答案】(1)设抛物线的解析式为y =a (x -1)(x -5)(a ≠0),把点A (0,4)代入上式,解得a =45,∴y =45(x -1)(x -5)=45x 2-245x +4=45(x -3)2-165,∴抛物线的对称轴是直线x =3;(2)存在,P 点坐标为(3,85).理由如下:如解图①,连接AC 交对称轴于点P ,连接BP ,BA ,解图①∵点B 与点C 关于对称轴对称,∴PB =PC ,∴C △P AB =AB +AP +PB =AB +AP +PC =AB +AC ,∴此时△P AB 的周长最小,设直线AC 的解析式为y =kx +b (k ≠0),把A (0,4),C (5,0)代入y =kx +b 中,得⎩⎨⎧=+=054b k b ,解得,454⎪⎩⎪⎨⎧=-=b k ∴直线AC 的解析式为y =-45x +4,∵点P 的横坐标为3,∴y =-45×3+4=85,∴P 点坐标为(3,85);(3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.如解图②,设N 点的横坐标为t ,此时点N (t ,45t 2-245t +4)(0<t <5). 过点N 作y 轴的平行线,分别交x 轴、AC 于点F 、G ,过点A 作AD ⊥NG ,垂足为点D .解图②由(2)可知直线AC 的解析式为y =-45x +4,把x =t 代入y =-45x +4得y =-45t +4,则G (t ,-45t +4).此时NG =-45t +4-(45t 2-245t +4)=-45t 2+4t ,∵AD +CF =OC =5,∴S △NAC =S △ANG +S △CNG=12NG ·AD +12NG ·CF=12NG ·OC=12×(-45t 2+4t )×5=-2t 2+10t=-2(t -52)2+252,∴当t =52时,△NAC 的面积最大,最大值为252,由t =52,得y =45t 2-245t +4=-3,∴N 点坐标为(52,-3).。
初三函数知识点总结
初三函数知识点总结一一、平面直角坐标系1.各象限内点的坐标的特点2.坐标轴上点的坐标的特点3.关于坐标轴、原点对称的点的坐标的特点4.坐标平面内点与有序实数对的对应关系二、函数1.表示方法:⑴解析法;⑵列表法;⑶图象法。
2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有意义。
3.画函数图象:⑴列表;⑵描点;⑶连线。
三、几种特殊函数(定义→图象→性质)1. 正比例函数⑴定义:y=kx(k≠0) 或y/x=k。
⑵图象:直线(过原点)⑶性质:①k>0,…②k<0,…2. 一次函数⑴定义:y=kx+b(k≠0)⑵图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。
⑶性质:①k>0,…②k<0,…⑷图象的四种情况:3. 二次函数⑴定义:特殊地,都是二次函数。
⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。
用配方法变为,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。
⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,在对称轴左侧…,右侧…。
4.反比例函数⑴定义:或xy=k(k≠0)。
⑵图象:双曲线(两支)—用描点法画出。
⑶性质:①k>0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。
四、重要解题方法1. 用待定系数法求解析式(列方程[组]求解)。
对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。
如下图:2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。
初三函数知识点总结二轴对称二次函数图像是轴对称图形。
对称轴为直线对称轴与二次函数图象唯一的交点为二次函数图象的顶点P。
特别地,当b=0时,二次函数图象的对称轴是y轴(即直线x=0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、解答题1.如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象与x 轴交于点A (3-,0),与y 轴交于点B ,且与正比例函数43y x =的图象的交点为C ((1) 求一次函数y kx b =+的解析式;(2) 若点D 在第二象限,△DAB 是以AB 为直角边的 等腰直角三角形,直接写出点D 的坐标.2.如图,在平面直角坐标系xOy 中,反比例函数xky =的图象与一次函数2+=x y 的图象的一个交点为)1(-,m A .(1)求反比例函数的解析式;(2)设一次函数2+=x y 的图象与y 轴交于点B ,若P 是y 轴上一点, 且满足PAB △的面积是3,直接写出点P 的坐标.3. 如图,一次函数1y x =--的图象与x 轴交于点A , 与y 轴交于点B ,与反比例函数ky x=图象的一个交点为M (﹣2,m ).(1)求反比例函数的解析式; (2)若点P 是反比例函数ky x=图象上一点, 且2BOP AOB S S =△△,求点P 的坐标.4.如图,在平面直角坐标系xOy 中,一次函数y kx =-2的图象与x 、y 轴分别交于点A 、B ,与反比例函数32y x =-(x <0)的图象交于点3()2M n -,. (1)求A 、B 两点的坐标;(2)设点P 是一次函数y kx =-2图象上的一点,且满足△APO 的面积是△ABO 的面积的2倍,直接写出点P 的坐标.5.如图,直线AB过点A,且与y轴交于点B.(1)求直线AB的解析式;(2)若P是直线AB上一点,且⊙P的半径为1,请直接写出⊙P与坐标轴相切时点P的坐标;6.如图,在平面直角坐标系xOy中,一次函数y=3x的图象与反比例函数kyx=的图象的一个交点为A(1, m).(1)求反比例函数kyx=的解析式;(2)若点P在直线OA上,且满足PA=2OA,直接写出点P的坐标.7. 如图,直线y =kx -2与x 轴、y 轴分别交与B 、C 两点,tan ∠OCB =21. (1)求B 点的坐标和k 的值;(2)若点A 是直线y =kx -2上的一点.连结OA ,若△AOB 的面积是2,请直接写出A 点坐标.8.已知:如图,一次函数3y kx =+的图象与反比例函数my x=(x >0)的图象交于点P , PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且S △DBP =27,12OC CA =.求一次函数与反比例函数的表达式.9.如图,在平面直角坐标系反比例函数m y x =(1(2)求直线AB 与x10.已知:如图,一次函数y x b =+的图象与反比例函数(0)ky k x=<的图象交于A 、B 两点,A 点坐标为(1,)m ,连接OB ,过点B 作BC x ⊥轴,垂足为点C ,且△BOC 的面积为32. (1)求k 的值;(2)求这个一次函数的解析式.O11.甲、乙两位同学进行长跑训练,两人距出发点的路程y (米)与跑步时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答问题:(1)他们在进行 米的长跑训练;(2)在3(3)当x12∠EFB =120°, AF 平分∠EFB ,EF =2. 求AB 长(结果精确到0.1). (参考数据:3≈1.73, 2≈1.41,sin 74°≈0.6,cos 74°≈0.28,tan 74°≈3.49, sin 76°≈0.97,cos 76°≈0.24)))13.已知:如图,一次函数3y x m =+与反比例函数y x=的图象在第一象限的交点为(1)A n ,.(1)求m 与n 的值;(2)设一次函数的图象与x 轴交于点B ,求ABO ∠的度数.14.若反比例函数xky =1过面积为9的正方形AMON 的顶点A , 且过点A 的直线n mx y -=2的图象与反比例函数的另一交点为 B (a ,1-).(1)求出反比例函数与一次函数的解析式; (2)求∆AOB 的面积.15. 如图,在平面直角坐标系xOy 中,一次函数22y x =-+的图象与x 轴相交于点B ,与y 轴相交于点C ,与反比例函数图象相交于点A ,且2AB BC =. (1) 求反比例函数的解析式;(2)若点P 在x 轴上,且APC ∆的面积等于12,直 接写出点P 的坐标.2019-2020年九年级数学复习:函数 参考答案1.解:(1)∵点C (m ,4)在直线43y x =上,∴443m =,解得3m =. ……………… 1分∵点A (3-,0)与C (3,4)在直线(0)y kx b k =+≠∴03,43.k b k b =-+⎧⎨=+⎩……………… 2分 解得2,32.k b ⎧=⎪⎨⎪=⎩ ∴一次函数的解析式为223y x =+. ……………………………………… 3分(2) 点D 的坐标为(2-,5)或(5-,).2.解:(1)∵ 点)1(-,m A 在一次函数2+=x y 的图象上,∴ 3m =-. ---------------1分 ∴ A 点的坐标为(3,1)--. ∵ 点A (3,1)--在反比例函数xky =的图象上, ∴ 3k =. -------------------------2分∴ 反比例函数的解析式为3y x=.--------3分 (2)点P 的坐标为(0,0)或(0,4).3.解: (1) ∵M (﹣2,m )在一次函数1y x =--的图象上,∴ 211m =-=.∴ M (﹣2,1).又M (﹣2,1)在反比例函数ky x=图象上, ∴2k =-. ∴2y x-=. ……........................3分(2)由一次函数1y x =--可求(10)A -,,(0,1)B -.∴11122112AOB S OB OA ∆=⨯⨯⨯=⨯=. ∴21=BOP AOB S ∆∆=.设BOP ∆边OB 上的高位h ,则=2h . 则P 点的横坐标为2±. 把P 点的横坐标为2±代入2y x-=可得P 点的纵坐标为1. (2,1)P ∴-或(2,1)P -.∵一次函数y kx =-2的图象经过点3()2M -,1, ∴3122k =--. ∴2k =-.∴一次函数的解析式为22y x =--. ∴A (1,0),B (0,2) . (3)分 (2)P 1(3,4),P 2(1,4) .5.解:(1)由图可知:A (-3,-3),B (0,3) -----1分设直线AB 的解析式为y =kx +b (k ≠0) 则333k b b -+=-⎧⎨=⎩,解得23k b =⎧⎨=⎩.∴直线AB 的解析式为y =2x +3. -----------2分 (2)P 1(-2,-1),P 2(-1,1),P 3(1,5).6.解:(1)∵ 点A (1, m )在一次函数y =3x 的图象上, ∴m =3. …………………………… 1分 ∴ 点A 的坐标为(1, 3). ∵ 点A (1, 3)在反比例函数ky x=的图象上, ∴ 3k =. ………………………………2分 ∴反比例函数的解析式为3y x=. …………………………………………3分 (2)点P 的坐标为P (3, 9) 或P (-1, -3) .7. 解:(1)∵y = kx -2与y 轴相交于点C ,∴OC =2 ∵tan ∠OCB =OCOB=21 ……………………… 1分 ∴OB =1∴B 点坐标为:()10,…………………………… 2分 把B 点坐标()10,代入y = kx -2解得 k =2……………………………………… 3分(2)A 点坐标为(3,4)或(-1,-4)………………………………………………5分 8.解:设P (a ,b ),则OA =a.∵12OC CA =, ∴ OC =13a .∴ C (13a ,0)∵ 点C 在直线y =kx +3上,∴ 1303ka +=,即ka = -9 .∴ DB = 3-b = 3-(ka +3) = -ka = 9, ∵ BP = a ∴1192722DBP S DB BP a ∆===. ∴ a = 6 ,∴ 32k =-,b =-6,m =-36 . …………………………3分 ∴ 一次函数的表达式为332y x =-+,反比例函数的表达式为36y x =-. …………………5分9.解:(1)∵点(1,2)B -在函数my x=的图象上,∴2m =-.∴反比例函数的解析式为2y x=-.-- 1分点(2,)A n -在函数2y x=-的图象上,∴1n =.∴(2,1)A -.y kx b =+经过(2,1)A -、(1,2)B -,∴21,2.k b k b -+=⎧⎨+=-⎩解得:1,1.k b =-⎧⎨=-⎩∴一次函数的解析式为1y x =--. ---- 3分(2)C 是直线AB 与x 轴的交点,∴当0y =时,1x =-.∴点(1,0)C -.---------4分1OC ∴=.AOB ACO BCO S S S ∴=+△△△11111222=⨯⨯+⨯⨯32= ---------5分 x10. 解:(1)设B 点的坐标为00(,)x y ,则有00ky x =,即: 00y x k =……1分 ∵△BOC 的面积为32,∴2321210000=-=y x y x , ……………2分 ∴00y x k ==-3. …………………………………………………3分 (2)∵3k =-,∴3y x=-,当1x =时,3y =-, ∴A 点坐标为(1,3)-,……………………………………………………4分把A 点坐标代入y x b =+得4b =-,这个一次函数的解析式为4y x =-. …5分 11.解:(1)1000米; ……..………..……..…..……………………..1分(2)甲 ………………..……..……...……..…………..2分 (3)设l 乙:x k y 11=,过(4,1000),故x y 2501= ……………..3分 在0<x ≤3的时段内,设l 甲:x k y 22=,过(3,600),故x y 2002=…..4分 当3=x 时,150,600,7502121=-==y y y y .答:当3=x 时,两人相距最远,此时两人距离是150米 ..……..……..5分 12. 解:由∠EFB =120°,AF 平分∠EFB ,∴∠EFO =60°,∠EOF =90°………………………………………………..1分 ∴FE =FB ………………………………………………..2分 Rt △EOF 中, ∴OE 3EFcos30=︒=…………………………………………………..3分Rt △EOA 中, ∴AE 2.776cos 3cos ≈︒=∠=AEO OE ……………………………..4分在△AEF 和△ABF 中⎪⎩⎪⎨⎧=∠=∠=AF AF BFA EFA BF EF ∴△AEF ≌△ABF∴AB =AE 2.7=13.解:(1)∵点(1,)A n在双曲线y =上,∴n =……………………………………………1分又∵A在直线y x m =+上, ∴m =. …………………………………………2分 (2)过点A 作AM ⊥x 轴于点M .∵ 直线33233+=x y 与x 轴交于点B , ∴ 点B 的坐标为-20(,). ∴ 2=OB .…………………………………………3分 ∵点A的坐标为, ∴1,3==OM AM .∴ 3.BM = ………………………………………………… 4分 在Rt △BAM 中,∠90AMB =°, ∵tan∠AM ABM BM =, ∴∠30ABM =°. ………………………………………1415.(1)由已知可得点(1,0)B ,点(0,2)C …1分∴1,2OB CO ==过点A 作AD x ⊥轴于点D∴ BOC ∆∽BDA ∆ ………2分 ∴12CO OB BC AD DB AB === ∴ 24,22AD CO DB OB ==== ∴ 点(3,4)A - …………………3分 设反比例函数解析式为(0)ky k x=≠,点(3,4)A -在图象上, ∴ 12k =-∴ 反比例函数的解析式为12y x=-……………………4分 (2) 点(5,0)P 或(3,0)P - …………………。