2015届高三数学复习第一轮《解析几何》
高三数学复习专题之一解析几何
高三数学复习专题之一----解析几何高考题目的分析解析几何是历届高考的热点和重点,它的基本特点是数形结合,是代数、三角、几何知识的综合应用.一般以四个小题、一个大题的结构出现,且大题往往是压轴题.纵观近几年高考试题有如下特征:(1)考查直线的基本概念,求在不同条件下的直线方程,判定直线的位置关系等题目,多以选择题、填空题形式出现;(2)中心对称与轴对称、充要条件多为基本题目;(3)考查圆锥曲线的基本知识和基本方法也多以选择题、填空题形式出现;(4)有关直线与圆锥曲线等综合性试题,通常作为解答题形式出现,有一定难度.一般情况是:给出几何条件,求曲线(动点的轨迹)方程;或利用曲线方程来研究诸如几何量的计算、直线与曲线的位置关系、最近(或最远)问题.但近几年的高考解析几何试题类型比较分散,每年都有不同.解题过程中的运算量有逐年降低的趋势,而解题过程中的思维量在增加.但万变不离其宗,常用的解题规律与技巧不变. 例①求圆锥曲线的有关轨迹方程时,要注意运用平面几何的基本知识特别是圆的知识,便于简化运算和求解;②在直线与圆锥曲线的有关问题中,要注意韦达定理和判别式的运用;③要注意圆锥曲线定义的活用.另外,解析几何的解答题也常在知识网络的交汇处出题,它具有一定的综合性,重点考察数形结合、等价转换、分类讨论、逻辑推理等能力.解析几何常与函数、不等式等建立联系.., ),0,1()3 ,)2 )1 , ,)0,(1:.12222222中点的轨迹方程求、为轴的端点为左准线的椭圆,其短为左焦点,以经过点设双曲线的方程;求双曲线截得的弦长为被直线若双曲线的值;的离心率求双曲线为等边,且右焦点两点、与两条渐近线交于右准线的离心率为设双曲线例BF F B l F C C ae b b ax y C e C PQF F Q P l e b a by a x C +=∆∆>=-. ),3 , 2(21的轨迹方程顶点求:当椭圆移动时其下为离心率,且过点轴为准线,以练习:设椭圆恰以P A x .)2( )1( 41)0,4( 02010.2222的方程求双曲线的渐近线方程;求双曲线上,又满足在线段点,且点轴交于两点,和、交于和双曲线,使的直线做斜率为过点相切,近线与圆的中心在原点,它的渐双曲线例G G PCPB PA AB P C y B A G l l P x y x G =⋅-=+-+最大值为多少?,多少时矩形的面积最大,当矩形的长与宽各是若矩形内接于曲线的方程求抛物线顶点轨迹轴为准线且以已知抛物线经过例 )2( ;)1( ),4,3(.3l l y A .)2( )1( )0,6( 8)0(2.42面积的最大值求求抛物线方程的垂直平分线通过定点又线段为焦点,且,、上有两动点设抛物线例AQB Q AB BF AF F B A p px y ∆=+>=。
2015年高考数学理科试题解析汇编【解析几何题】
b2 4 3 截得的线段长为 c, | FM | 。 4 3
c a 2 b2 3 解: (I)∵ e a a 3
∴ a2
(2 c )2 4 2 1 2 a 3b
由(I)可知, a 2 3c 2 , b2 2c 2 代入上式化简整理得 c 2 2c 3 0 解得:c=1 或-3(舍去)
2
tan OQM
2
OM OQ tan ONQ OQ ON
∵椭圆的离心率是
2 2
即 OQ OM ON 设点 Q 的坐标为(0,yQ) ,则有
c a 2 b2 2 ∴e a a 2
∴ a 2b 2
2 2
yQ
2
m m m2 1 n 1 n 1 n2
m ) 3
∵直线 l 不过原点 O 且不平行于坐标轴 ∴k>0,且 k≠3 比较(I)可得: n
m (3 k ) 3
则 xM
m(k 2 3k ) 3(9 k 2 )
9 x k
【难度系数】★★★
由(I)的结论知, 直线 OM 的方程为 y
2105 年全国高考数学理科试题分类解析汇编——解析几何题
∵点 A(m,n)在椭圆 C 上
x2 ∴椭圆 C 的方程为 y2 1 2
由点 P、A 坐标可得,直线 PA 的方程为:
m2 m2 2 ∴ n 1 ,即 1 n2 2 2
∴ yQ 2 2 ,得 yQ 2 故,存在满足题述条件的点 Q,点 Q 的坐标为 (0, 2 )或(0, 2 )
(m≠0)都在椭圆 C 上,直线 PA 交 x 轴于点 M. (Ⅰ)求椭圆 C 的方程,并求点 M 的坐标(用 m,n 表示) ; (Ⅱ)设 O 为原点,点 B 与点 A 关于 x 轴对称,直线 PB 交 x 轴于点 N.问:y 轴上是否存在点 Q,使得 OQMONQ?若存在,求点 Q 的坐标;若不存在,说明理由。 解: (I)∵点 P(0,1)在椭圆 C 上 ∴b 1
2015届高考数学一轮总复习 阶段性测试题8(平面解析几何)
阶段性测试题八(平面解析几何)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014·山东省博兴二中质检)“m =-1”是“直线mx +(2m -1)y +2=0与直线3x +my +3=0垂直”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 若两直线垂直,则3m +m (2m -1)=0,∴m =0或-1,故选A.2.(文)(2014·三峡名校联盟联考)直线x -y +1=0与圆(x -1)2+y 2=2的位置关系是( ) A .相离 B .相切C .相交且过圆心D .相交但不过圆心[答案] B[解析] 圆心C (1,0)到直线的距离d =|1-0+1|2=2,∴选B.(理)(2014·天津市六校联考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)[答案] C[解析] 由条件知,|a -0+1|2≤2,∴-3≤a ≤1,故选C.3.(2014·韶关市曲江一中月考)已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于( )A.31414B.324C.32D.43[答案] C[解析] 由条件知,a 2+5=9,∴a 2=4,∴e =c a =32.4.(2014·山西曲沃中学期中)对于常数m 、n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[答案] B[解析] 若方程mx 2+ny 2=1的曲线是椭圆,则m >0,n >0,从而mn >0,但当mn >0时,可能有m =n >0,也可能有m <0,n <0,这时方程mx 2+ny 2=1不表示椭圆,故选B.5.(文)(2014·云南景洪市一中期末)点P (2,-1)为圆(x -1)2+y 2=25内一条弦AB 的中点,则直线AB 的方程为( )A .x +y -1=0B .2x +y -3=0C .x -y -3=0D .2x -y -5=0 [答案] C[解析] 圆心C (1,0),由条件知PC ⊥AB ,∴k AB =-1k PC=1,∴直线AB 的方程为y -(-1)=1×(x-2),即x -y -3=0.(理)(2014·银川九中一模)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2 [答案] B[解析] 设圆心C (x 0,-x 0),则 |x 0-(-x 0)|2=|x 0-(-x 0)-4|2, ∴x 0=1,∴圆心C (1,-1),半径r =2, 方程为(x -1)2+(y +1)2=2.6.(2014·广东执信中学期中)已知椭圆的对称轴是坐标轴,离心率为13,长轴长为12,则椭圆方程为( )A.x 2144+y 2128=1或x 2128+y 2144=1 B.x 26+y 24=1 C.x 236+y 232=1或x 232+y 236=1 D.x 24+y 26=1或x 26+y 24=1 [答案] C[解析] 由条件知a =6,e =c a =13,∴c =2,∴b 2=a 2-c 2=32,故选C.7.(2014·云南景洪市一中期末)从抛物线y 2=4x 图象上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线焦点为F ,则△MPF 的面积为( )A .10B .8C .6D .4[答案] A[解析] 设P (x 0,y 0),∵|PM |=5,∴x 0=4,∴y 0=±4, ∴S △MPF =12|PM |·|y 0|=10.8.(文)(2014·河南淇县一中模拟)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1、F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14B.55C.12D.5-2[答案] B[解析] 由条件知,|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c , 由条件知,(2c )2=(a -c )·(a +c ),∴a 2=5c 2,∴e =55. (理)(2014·抚顺二中期中)在△ABC 中,AB =BC ,cos B =-718.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e =( )A.34B.37C.38D.318[答案] C[解析] 设|AB |=x >0,则|BC |=x , AC 2=AB 2+BC 2-2AB ·BC ·cos B=x 2+x 2-2x 2·(-718)=259x 2,∴|AC |=53x ,由条件知,|CA |+|CB |=2a ,AB =2c , ∴53x +x =2a ,x =2c ,∴c =c a =2c 2a =x 83x =38. 9.(2014·威海期中)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥1,x +y ≥1,2x -y ≤4,则z =yx的最大值为( )A.32 B.23 C.52 D.25 [答案] B[解析] 不等式组⎩⎪⎨⎪⎧x -y ≥1,x +y ≥1,2x -y ≤4表示的平面区域为图中阴影部分,z =yx表示平面区域内的点P (x ,y )与原点连线的斜率,∴k OA ≤yx≤k OB ,∵k OA =-2353=-25,k OB =23,故-25≤y x ≤23,选B.10.(文)(2014·山东省博兴二中质检)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的斜率为2,且右焦点与抛物线y 2=43x 的焦点重合,则该双曲线的离心率等于( )A. 2B. 3 C .2 D .2 3[答案] B[解析] ∵抛物线y 2=43x 的焦点(3,0)为双曲线的右焦点,∴c =3, 又ba=2,结合a 2-b 2=c 2,得e =3,故选B. (理)(2014·浙北名校联盟联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)上任意一点P ,作与实轴平行的直线,交两渐近线于M 、N 两点,若PM →·PN →=2b 2,则该双曲线的离心率为( )A.63 B. 3 C.62D. 2 [答案] C[解析] 由条件知,双曲线两渐近线方程为y =±b a x ,设P (x 0,y 0),则x 20a 2-y 20b 2=1,∴x 20-a 2y 20b2=a 2,由y =y 0与y =±b a x 得M (-ay 0b ,y 0),N (ay 0b ,y 0),∵PM →·PN →=(-ay 0b -x 0,0)·(ay 0b -x 0,0)=x 20-a 2y 20b2=a 2=2b 2,又b 2=c 2-a 2,∴3a 2=2c 2,∴e =c a =62.11.(2014·山西曲沃中学期中)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2 D.17 [答案] A[解析] ⊙C 1的圆心C 1(2,3),半径r =1,⊙C 2的圆心C 2(3,4),半径R =3,设E 为x 轴上任一点,EC 1交⊙C 1于A ,EC 2交⊙C 2于B ,则|EA |+|EB |=|EC 1|+|EC 2|-4为E 到⊙C 1与⊙C 2上的点的距离之和的最小值,而|EC 1|+|EC 2|的最小值为|C 1′C 2|(其中C 1′为C 1关于x 轴的对称点),∴当P 为直线C 1′C 2:7x -y -17=0与x 轴的交点(177,0)时,|PM |+|PN |取到最小值,|PC 1|+|PC 2|-4=(177-2)2+9+(177-3)2+16-4=1527+2027-4=52-4,故选A. 12.(2014·海南省文昌市检测)设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .4 2B .8 3C .24D .48[答案] C[解析] 由3|PF 1|=4|PF 2|知|PF 1|>|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=8,|PF 2|=6,又c 2=a 2+b 2=1+24=25,∴c =5,∴|F 1F 2|=10,∴△PF 1F 2为直角三角形,S △PF1F 2=12|PF 1||PF 2|=24. 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(2014·西安市长安中学期中)已知椭圆x 2+ky 2=3k (k >0)的一个焦点与抛物线y 2=12x 的焦点重合,则该椭圆的离心率是________.[答案]32[解析] 抛物线的焦点为F (3,0),椭圆的方程为:x 23k +y 23=1,∴3k -3=9,∴k =4,∴离心率e=323=32. 14.(2014·浙北名校联盟联考)已知直线l 与圆O :x 2+y 2=1在第一象限内相切于点C ,并且分别与x ,y 轴相交于A 、B 两点,则|AB |的最小值为________.[答案] 2[解析] 设A (a,0),B (0,b ),则a >0,b >0,l :x a +yb =1,即bx +ay -ab =0, ∵l 与⊙O 相切,∴ab a 2+b2=1,∴a 2+b 2=a 2b 2, ∵a 2+b 2≥2ab ,∴(a 2+b 2)2≥4a 2b 2=4(a 2+b 2), ∴a 2+b 2≥4,∴a 2+b 2≥2,即|AB |的最小值为2.15.(文)(2013·泗阳县模拟)两个正数a ,b 的等差中项是92,等比中项是25,且a >b ,则双曲线x 2a 2-y 2b2=1的离心率为________. [答案]415[解析] ∵两个正数a ,b 的等差中项是92,等比中项是25,且a >b ,∴⎩⎪⎨⎪⎧a +b 2=92,ab =25,a >b ,解得a =5,b =4,∴双曲线方程为x 225-y 216=1,∴c =25+16=41,∴双曲线x 2a 2-y 2b 2=1的离心率e =c a =415.(理)(2014·抚顺市六校联合体期中)已知点F 1、F 2分别是双曲线x 2a 2-y 2b 2=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是________.[答案] (1,1+2)[解析] ∵双曲线关于x 轴对称,∴A 、B 两点关于x 轴对称,∴|F 2A |=|F 2B |,△ABF 2为锐角三角形⇔∠AF 2B 为锐角⇔∠AF 2F 1<45°⇔|AF 1|<|F 1F 2|,∵F 1(-c,0),∴A (-c ,b 2a ),即|AF 1|=b 2a ,又|F 1F 2|=2c ,∴b 2a <2c ,∴c 2-2ac -a 2<0,∴e 2-2e -1<0, ∴1-2<e <1+2, ∵e >1,∴1<e <1+ 2.16.(2014·山西曲沃中学期中)在平面直角坐标系中,动点P (x ,y )到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W .(1)给出下列三个结论: ①曲线W 关于原点对称;②曲线W 关于直线y =x 对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12;其中,所有正确结论的序号是________;(2)曲线W 上的点到原点距离的最小值为________. [答案] (1)②③ (2)2- 2[解析] 由条件知:|x |+|y |=(x -1)2+(y -1)2, 两边平方得,|xy |=-x -y +1,当xy ≥0时,xy =-x -y +1,∴y =1-x 1+x =21+x -1,当xy <0时,-xy =-x -y +1,∴(x -1)(y -1)=0,∴x =1(y <0)或y =1(x <0), ∴曲线W 如图所示.由图易知:W 的图象关于直线y =x 对称,关于原点不对称,W 与x 轴、y 轴非负半轴围成图形的面积S <12×1×1=12,由⎩⎪⎨⎪⎧y =x ,y =1-x1+x ,x >0,得x =y =2-1,∴A (2-1,2-1)到原点距离d =(2-1)2+(2-1)2为W 上点到原点距离的最小值.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(2014·广东执信中学期中)已知两点M (-1,0)、N (1,0),点P 为坐标平面内的动点,满足|MN →|·|NP →|=MN →·MP →.(1)求动点P 的轨迹方程;(2)若点A (t,4)是动点P 的轨迹上的一点,K (m,0)是x 轴上的一动点,试讨论直线AK 与圆x 2+(y -2)2=4的位置关系.[解析] (1)设P (x ,y ),则MN →=(2,0),NP →=(x -1,y ),MP →=(x +1,y ).∵|MN →|·|NP →|=MN →·MP →,∴2(x -1)2+y 2=2(x +1),化简得y 2=4x . 所以动点P 的轨迹方程为y 2=4x .(2)由A (t,4)在轨迹y 2=4x 上,则42=4t ,解得t =4,即A (4,4).当m =4时,直线AK 的方程为x =4,此时直线AK 与圆x 2+(y -2)2=4相离.当m ≠4时,直线AK 的方程为y =44-m(x -m ),即4x +(m -4)y -4m =0.圆x 2+(y -2)2=4的圆心(0,2)到直线AK 的距离d =|2m +8|16+(m -4)2,令d =|2m +8|16+(m -4)2<2,解得m <1;令d =|2m +8|16+(m -4)2=2,解得m =1;令d =|2m +8|16+(m -4)2>2,解得m >1.综上所述,当m <1时,直线AK 与圆x 2+(y -2)2=4相交; 当m =1时,直线AK 与圆x 2+(y -2)2=4相切; 当m >1时,直线AK 与圆x 2+(y -2)2=4相离.18.(本小题满分12分)(文)(2014·山东省博兴二中质检)在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线x -y +a =0交于A ,B 两点,且OA ⊥OB ,求a 的值.[解析] (1)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设圆C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为3.∴圆C 的方程为(x -3)2+(y -1)2=9.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组:⎩⎪⎨⎪⎧x -y +a =0,(x -3)2+(y -1)2=9. 消去y ,得到方程2x 2+(2a -8)x +a 2-2a +1=0. 由已知可得,判别式Δ=56-16a -4a 2>0. 从而x 1+x 2=4-a ,x 1x 2=a 2-2a +12.①由于OA ⊥OB ,可得x 1x 2+y 1y 2=0, 又y 1=x 1+a ,y 2=x 2+a , 所以2x 1x 2+a (x 1+x 2)+a 2=0.②由①②得a =-1,满足Δ>0,故a =-1.(理)(2014·北京西城区期末)已知A ,B 是抛物线W :y =x 2上的两个点,点A 的坐标为(1,1),直线AB 的斜率为k ,O 为坐标原点.(1)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(2)设C 为W 上一点,且AB ⊥AC ,过B ,C 两点分别作W 的切线,记两切线的交点为D ,求|OD |的最小值.[解析] (1)抛物线y =x 2的焦点为(0,14).由题意得直线AB 的方程为y -1=k (x -1),令x =0,得y =1-k ,即直线AB 与y 轴相交于点(0,1-k ). 因为抛物线W 的焦点在直线AB 的下方, 所以1-k >14,解得k <34.(2)由题意,设B (x 1,x 21),C (x 2,x 22),D (x 3,y 3),联立方程⎩⎪⎨⎪⎧y -1=k (x -1),y =x 2,消去y 得x 2-kx +k -1=0,由韦达定理得1+x 1=k ,所以x 1=k -1.同理,得AC 的方程为y -1=-1k (x -1),x 2=-1k -1.对函数y =x 2求导,得y ′=2x ,所以抛物线y =x 2在点B 处的切线斜率为2x 1,所以切线BD 的方程为y -x 21=2x 1(x -x 1),即y=2x 1x -x 21.同理,抛物线y =x 2在点C 处的切线CD 的方程为y =2x 2x -x 22.联立两条切线的方程⎩⎪⎨⎪⎧y =2x 1x -x 21,y =2x 2x -x 22,解得x 3=x 1+x 22=12(k -1k -2),y 3=x 1x 2=1k -k , 所以点D 的坐标为(12(k -1k -2),1k -k ).因此点D 在定直线2x +y +2=0上.因为点O 到直线2x +y +2=0的距离d =|2×0+0+2|22+12=255,所以|OD |≥255,当且仅当点D (-45,-25)时等号成立.由y 3=1k -k =-25,得k =1±265,验证知符合题意.所以当k =1±265时,|OD |有最小值255.19.(本小题满分12分)(文)(2014·韶关市曲江一中月考)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.[解析] (1)将点(0,4)代入椭圆C 的方程,得16b 2=1,∴b =4,又e =c a =35,则a 2-b 2a 2=925,∴1-16a 2=925,∴a =5,∴椭圆C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入椭圆方程得x 225+(x -3)225=1,即x 2-3x -8=0,由韦达定理得x 1+x 2=3,所以线段AB 中点的横坐标为x 1+x 22=32,纵坐标为45(32-3)=-65,即所截线段的中点坐标为(32,-65). (理)(2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为12.(1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程. [解析] (1)设椭圆方程为x 2a 2+y 2b 2=1,(a >0,b >0),∵c =1,c a =12,∴a =2,b =3,∴所求椭圆方程为x 24+y 23=1.(2)由题意得直线l 的斜率存在,设直线l 方程为y =kx +1,则由⎩⎪⎨⎪⎧y =kx +1,x 24+y 23=1.消去y 得(3+4k 2)x 2+8kx -8=0,且Δ>0.设A (x 1,y 1),B (x 2,y 2),∴⎩⎪⎨⎪⎧x 1+x 2=-8k3+4k2,x 1·x 2=-83+4k2,由AM →=2MB →得x 1=-2x 2,∴⎩⎪⎨⎪⎧-x 2=-8k3+4k 2,-2x 22=-83+4k2,消去x 2得(8k 3+4k 2)2=43+4k 2,解得k 2=14,∴k =±12,所以直线l 的方程为y =±12x +1,即x -2y +2=0或x +2y -2=0.20.(本小题满分12分)(文)(2014·浙北名校联盟联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1(-1,0),F 2(1,0),且经过点P (1,32).(1)求椭圆C 的方程;(2)设过F 1的直线l 与椭圆C 交于A 、B 两点,问在椭圆C 上是否存在一点M ,使四边形AMBF 2为平行四边形,若存在,求出直线l 的方程,若不存在,请说明理由.[解析] (1)∵c =1,b 2a =32,a 2=b 2+c 2,∴a =2,b =3,∴椭圆C 的方程为x 24+y 23=1.(2)假设存在符合条件的点M (x 0,y 0), 设直线l 的方程为x =my -1,由⎩⎪⎨⎪⎧x =my -1,3x 2+4y 2=12,消去x 得:(3m 2+4)y 2-6my -9=0, 由条件知Δ>0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=6m3m 2+4,∴AB 的中点为(-43m 2+4,3m3m 2+4),∵四边形AMBF 2为平行四边形, ∴AB 的中点与MF 2的中点重合, 即⎩⎪⎨⎪⎧x 0+12=-43m 2+4,y 02=3m3m 2+4.∴M (-3m 2+123m 2+4,6m3m 2+4),把点M 的坐标代入椭圆C 的方程得:27m 4-24m 2-80=0,解得m 2=209,∴存在符合条件的直线l ,其方程为:y =±3510(x +1).(理)(2014·长安一中、高新一中、交大附中、师大附中、西安中学一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,以原点为圆心,椭圆短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的标准方程; (2)过右焦点F 作斜率为-22的直线l 交曲线C 于M 、N 两点,且OM →+ON →+OH →=0,又点H 关于原点O 的对称点为点G ,试问M 、G 、N 、H 四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.[解析] (1)由题意可得圆的方程为x 2+y 2=b 2, ∵直线x -y +2=0与圆相切,∴d =22=b ,即b =1, 又e =c a =22,及a 2=b 2+c 2,得a =2,所以椭圆方程为x 22+y 2=1.(2)∵直线l 过点F (1,0),且斜率为k =-22, ∴l 的方程为y =-22(x -1). 联立方程组⎩⎨⎧x 22+y 2=1,y =-22(x -1),消去y 得2x 2-2x -1=0.设M (x 1,y 1)、N (x 2,y 2),可得 ⎩⎪⎨⎪⎧ x 1+x 2=1,x 1x 2=-12,于是⎩⎪⎨⎪⎧x 1+x 2=1,y 1+y 2=22.又OM →+ON →+OH →=0,得OH →=(-x 1-x 2,-y 1-y 2), 即H (-1,-22), 而点G 与点H 关于原点对称,于是可得点G (1,22). ∴k GH =22. 若线段MN 、GH 的中垂线分别为l 1和l 2,则有l 1:y -24=2(x -12),l 2:y =-2x . 联立方程组⎩⎪⎨⎪⎧y -24=2(x -12),y =-2x .解得l 1和l 2的交点为O 1(18,-28).因此,可求得|O 1H |=(98)2+(328)2=3118, |O 1M |=(x 1-18)2+(y 1+28)2=3118.所以M 、G 、N 、H 四点共圆,且圆心坐标为O 1(18,-28),半径为3118.21.(本小题满分12分)(文)(2014·绵阳市南山中学检测)已知椭圆C:x2a2+y2b2=1(a>b>0)经过(1,1)与(62,32)两点.(1)求椭圆C的方程;(2)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:1|OA|2+1|OB|2+2|OM|2为定值.[解析](1)将(1,1)与(62,32)两点坐标代入椭圆C的方程得,⎩⎨⎧1a2+1b2=1,32a2+34b2=1,解得⎩⎪⎨⎪⎧a2=3,b2=32.∴椭圆C的方程为x23+2y23=1.(2)由|MA|=|MB|知M在线段AB的垂直平分线上,由椭圆的对称性知A、B关于原点对称.①若点A、B是椭圆的短轴顶点,则点M是椭圆的一个长轴顶点,此时1|OA|2+1|OB|2+2|OM|2=1b2+1b2+2a2=2(1a2+1b2)=2.同理,若点A、B是椭圆的长轴顶点,则点M是椭圆的一个短轴顶点,此时1|OA|2+1|OB|2+2|OM|2=1a2+1a2+2b2=2(1a2+1b2)=2.②若点A、B、M不是椭圆的顶点,设直线l的方程为y=kx(k≠0),则直线OM的方程为y=-1k x,设A(x1,y1),B(x2,y2),由⎩⎪⎨⎪⎧y=kx,x23+2y23=1,解得x21=31+2k2,y21=3k21+2k2,∴|OA|2=|OB|2=x21+y21=3(1+k2)1+2k2,同理|OM|2=3(1+k2)2+k2,所以1|OA|2+1|OB|2+2|OM|2=2×1+2k23(1+k2)+2(2+k2)3(1+k2)=2,故1|OA|2+1|OB|2+2|OM|2=2为定值.(理)(2014·浙江台州中学期中)已知焦点在y 轴上的椭圆C 1:y 2a 2+x 2b 2=1经过点A (1,0),且离心率为32. (1)求椭圆C 1的方程;(2)过抛物线C 2:y =x 2+h (h ∈R )上P 点的切线与椭圆C 1交于两点M 、N ,记线段MN 与P A 的中点分别为G 、H ,当GH 与y 轴平行时,求h 的最小值.[解析] (1)由题意可得⎩⎨⎧1b 2=1,ca =32,a 2=b 2+c 2.解得a =2,b =1,所以椭圆C 1的方程为x 2+y 24=1.(2)设P (t ,t 2+h ),由y ′=2x 知,抛物线C 2在点P 处的切线的斜率为k =y ′|x =t =2t ,所以MN 的方程为y =2tx -t 2+h ,代入椭圆方程得4x 2+(2tx -t 2+h )2-4=0,化简得4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0, 又MN 与椭圆C 1有两个交点, ∴Δ=16[-t 4+2(h +2)t 2-h 2+4]>0,①设M (x 1,y 1),N (x 2,y 2),MN 中点G 的横坐标为x 0,则 x 0=x 1+x 22=t (t 2-h )2(1+t 2),设线段P A 的中点H 横坐标为x 3=1+t 2,∵GH 与y 轴平行,∴x 0=x 3,即t (t 2-h )2(1+t 2)=1+t2,②显然t ≠0,∴h =-(t +1t+1),③当t >0时,t +1t ≥2,当且仅当t =1时取得等号,此时h ≤-3不符合①式,故舍去;当t <0时,(-t )+(-1t )≥2,当且仅当t =-1时取得等号,此时h ≥1,满足①式.综上,h 的最小值为1.22.(本小题满分14分)(文)(2014·长沙市重点中学月考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,过右焦点F 的直线l 与C 相交于A 、B 两点,当直线l 的斜率为1时,坐标原点O 到直线l 的距离为22. (1)求椭圆C 的方程;(2)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OP →=OA →+OB →成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.[解析] (1)设F (c,0),当l 的斜率为1时,其方程为x -y -c =0, ∴O 到l 的距离为|0-0-c |2=c2,由已知得,c 2=22,∴c =1. 由e =c a =33,得a =3,∴b =a 2-c 2= 2.∴所求椭圆C 的方程为x 23+y 22=1.(2)假设C 上存在点P ,使得当l 绕F 转到某一位置时,有OP →=OA →+OB →成立, 设A (x 1,y 1),B (x 2,y 2),则P (x 1+x 2,y 1+y 2), 由(1),知C 的方程为x 23+y 22=1.由题意知,l 的斜率一定不为0,故不妨设l :x =ty +1. 由⎩⎪⎨⎪⎧x =ty +1,x 23+y 22=1.消去x 并化简整理得,(2t 2+3)y 2+4ty -4=0. 由韦达定理,得y 1+y 2=-4t2t 2+3, ∴x 1+x 2=ty 1+1+ty 2+1=t (y 1+y 2)+2 =-4t 22t 2+3+2=62t 2+3,∴P (62t 2+3,-4t2t 2+3).∵点P 在C 上,∴(62t 2+3)23+(-4t2t 2+3)22=1,化简整理得,4t 4+4t 2-3=0,即(2t 2+3)(2t 2-1)=0,解得t 2=12.当t =22时,P (32,-22),l 的方程为2x -y -2=0; 当t =-22时,P (32,22),l 的方程为2x +y -2=0. 故C 上存在点P (32,±22),使OP →=OA →+OB →成立,此时l 的方程为2x ±y -2=0.(理)(2014·西安市长安中学期中)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,椭圆的短轴端点与双曲线y 22-x 2=1的焦点重合,过点P (4,0)且不垂直于x 轴的直线l 与椭圆C 相交于A 、B 两点.(1)求椭圆C 的方程; (2)求OA →·OB →的取值范围.[解析] (1)由条件知e =c a =12,b =3,∴a 2=4,b 2=3,故椭圆的方程为x 24+y 23=1.(2)由题意知直线l 的斜率存在,设直线l 的方程为y =k (x -4), 由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 23=1,消去y 得:(4k 2+3)x 2-32k 2x +64k 2-12=0, 由Δ=(-32k 2)2-4(4k 2+3)(64k 2-12)>0得:k 2<14,设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3,∴y 1y 2=k (x 1-4)k (x 2-4)=k 2x 1x 2-4k 2(x 1+x 2)+16k 2,∴OA →·OB →=x 1x 2+y 1y 2=(1+k 2)·64k 2-124k 2+3-4k 2·32k 24k 2+3+16k 2=25-874k 2+3,∵0≤k 2<14,∴-873≤-874k 2+3<-874,∴-4≤OA →·OB →<134,∴OA →·OB →的取值范围是[-4,134).。
2015高考数学一轮总复习课件:专题5 解析几何
第三页,编辑于星期五:十三点 四分。
运算难关,反映在解题上,就是把曲线的几何特征准确地转换为代数形式,根据方程画 出图形,研究几何性质. 学习时应熟练掌握函数与方程思想、数形结合思想、参数思想、 分类与转化思想等,以达到优化解题的目的. 解析几何与其他学科或实际问题的综合,主 要体现在用解析几何知识去解有关问题,具体地说就是通过列出坐标系,列出所研究曲 线的方程,并通过方程求解来解决实际问题. 在这一类问题中“实际量”与“数学量”的转化是 易出错的地方,这是因为在坐标系中的量是“数学量”,不仅有大小还有符号.
第二十五页,编辑于星期五:十三点 四分。
迁移发散3
第二十六页,编辑于星期五:十三点 四分。
题型4 ·直线与圆锥曲线的关系
第二十七页,编辑于星期五:十三点 四分。
第二十八页,编辑于星期五:十三点 四分。
第二十九页,编辑于星期五:十三点 四分。
第三十页,编辑于星期五:十三点 四分。
点评:
直线与圆锥曲线的位置关系问题主要涉及交点个数问题、中点问题、弦长问题、最值与定值
第十五页,编辑于星期五:十三点 四分。
第十六页,编辑于星期五:十三点 四分。
第十七页,编辑于星期五:十三点 四分。
题型2 ·圆锥曲线的标准方程
例2:如图所示,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线l′于点C,若|BC| =2|BF|,且|AF|=3,则此抛物线的方程为________________.
当知道圆锥曲线的类型时,可以设出曲线方程,然后根据已知条件确定方程中的系数,其难点是
高三数学一轮复习【解析几何】练习题
高三数学一轮复习【解析几何】练习题1.已知圆O1的方程为x2+y2=4,圆O2的方程为(x-a)2+y2=1,如果这两个圆有且只有一个公共点,那么实数a的值可以是()A.-1B.1C.3D.5答案ABC解析由题意得两圆内切或外切,∴|O1O2|=2+1或|O1O2|=2-1,∴|a|=3或|a|=1,∴a=±3,或a=±1.故选ABC.2.设椭圆C:x28+y24=1的左、右焦点分别为F1,F2,P是椭圆C上任意一点,则下列结论正确的是() A.|PF1|+|PF2|=4 2B.离心率e=6 2C.△PF1F2面积的最大值为4 2D.以线段F1F2为直径的圆与直线x+y-22=0相切答案AD解析依题意知a=22,b=2,c=2.对于A,由椭圆的定义可知|PF1|+|PF2|=2a=42,所以A正确;对于B,e=ca =222=22,所以B不正确;对于C,|F1F2|=2c=4,当P为椭圆短轴的端点时,△PF1F2的面积取得最大值,最大值为12×2c·b=c·b=4,所以C错误;对于D,以线段F1F2为直径的圆的圆心为(0,0),半径为2,圆心到直线x+y-22=0的距离为222=2,也即圆心到直线的距离等于半径,所以以线段F1F2为直径的圆与直线x+y-22=0相切,所以D正确.故选AD.3.已知双曲线C :x 29-y 216=1,过其右焦点F 的直线l 与双曲线交于两点A ,B ,则( )A.若A ,B 同在双曲线的右支,则l 的斜率大于43 B.若A 在双曲线的右支,则|FA |的最短长度为2 C.|AB |的最短长度为323 D.满足|AB |=11的直线有4条 答案 BD解析 易知双曲线C 的右焦点为F (5,0).设点A (x 1,y 1),B (x 2,y 2),直线l 的方程为x =my +5. 当m ≠0时,直线l 的斜率为k =1m . 联立得方程组⎩⎪⎨⎪⎧x =my +5,16x 2-9y 2=144.消去x 并整理,得(16m 2-9)y 2+160my +256=0,则⎩⎪⎨⎪⎧16m 2-9≠0,Δ=1602m 2-4×256(16m 2-9)=962(m 2+1)>0,解得m ≠34.对于A 选项,当m =0时,直线l ⊥x 轴,则A ,B 两点都在双曲线的右支上,此时直线l 的斜率不存在,A 选项错误;对于B 选项,|FA |min =c -a =5-3=2,B 选项正确;对于C 选项,当直线l 与x 轴重合时,|AB |=2a =6<323,C 选项错误; 对于D 选项,当A ,B 两点在双曲线右支上,且直线与x 轴垂直时,|AB |=323.∵323<11,∴过F 的直线有两条;当A ,B 两点分别在双曲线的两个分支上时,∵a +c =8<11,∴过F 的直线有两条.故满足|AB |=11的直线有4条,D 选项正确.故选BD. 4.已知点O 为坐标原点,直线y =x -1与抛物线C :y 2=4x 相交于A ,B 两点,则( ) A.|AB |=8 B.OA ⊥OBC.△AOB 的面积为2 2D.线段AB 的中点到直线x =0的距离为2 答案 AC解析 设A (x 1,y 1),B (x 2,y 2). 联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,得y 2-4y -4=0,所以y 1+y 2=4,y 1y 2=-4,所以x 1+x 2=y 1+1+y 2+1=6,x 1x 2=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1=-4+4+1=1.对于A ,直线AB 过抛物线的焦点,故|AB |=x 1+x 2+p =6+2=8,故A 正确; 对于B ,OA →·OB →=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=1+(-4)=-3≠0,故B 不正确;对于C ,点O 到直线AB 的距离d =|-1|12+12=22,所以S △AOB =12·|AB |·d =12×8×22=22,故C 正确; 对于D ,线段AB 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,即(3,2),所以线段AB 的中点到直线x =0的距离为3,故D 不正确.选AC.5.已知曲线C :y 2=m (x 2-a 2),其中m 为非零常数且a >0,则下列结论正确的是( )A.当m =-1时,曲线C 是一个圆B.当m =-2时,曲线C 的离心率为22 C.当m =2时,曲线C 的渐近线方程为y =±22xD.当m >-1且m ≠0时,曲线C 的焦点坐标分别为(-a 1+m ,0)和(a 1+m ,0)答案 ABD解析 对于A ,当m =-1时,曲线方程为y 2=-(x 2-a 2),即x 2+y 2=a 2,其是圆心为(0,0),半径为a 的圆,故A 正确;对于B ,当m =-2时,曲线方程为y 2=-2(x 2-a 2),即x 2a 2+y 22a 2=1,其为焦点在y 轴上的椭圆,且长半轴长为2a ,短半轴长为a ,则半焦距为a ,所以离心率e =a 2a =22,故B 正确;对于C ,当m =2时,曲线方程为y 2=2(x 2-a 2),即x 2a 2-y 22a 2=1,其为焦点在x轴上的双曲线,且实半轴长为a ,虚半轴长为2a ,所以渐近线方程为y =±2aa x =±2x ,故C 不正确;对于D ,当-1<m <0时,曲线方程为x 2a 2+y 2-ma 2=1,其为焦点在x 轴上的椭圆,且长半轴长为a , 短半轴长为a-m ,则半焦距为a1+m , 所以焦点坐标为(-a1+m ,0)和(a1+m ,0);当m >0时,曲线方程为x 2a 2-y 2ma 2=1,其为焦点在x 轴上的双曲线,且实半轴长为a ,虚半轴长为a m ,则半焦距为a1+m ,所以焦点坐标为(-a 1+m ,0)和(a 1+m ,0),故D 正确.综上所述,选ABD.6.已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2,过点F 的直线与抛物线交于P ,Q 两点,M 为线段PQ 的中点,O 为坐标原点,则( ) A.C 的准线方程为y =1 B.线段PQ 长度的最小值为4 C.M 的坐标可能为(3,2) D.OP →·OQ→=-3答案 BCD解析 对于A ,因为焦点F 到准线的距离为2,即p =2,所以抛物线C 的焦点为F (1,0),准线方程为x =-1,故A 错误;对于B ,由抛物线性质知当PQ 垂直于x 轴时,|PQ |取得最小值,此时可取P (1,2),Q (1,-2),所以|PQ |=4,故B 正确;对于C ,设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为x =my +1,则由⎩⎪⎨⎪⎧y 2=4x ,x =my +1消去x ,得y 2-4my -4=0,Δ=16m 2+16>0,所以y 1+y 2=4m ,x 1+x 2=m (y 1+y 2)+2=4m 2+2,当m =1时,可得M (3,2),故C 正确;对于D ,因为y 1y 2=-4,x 1x 2=(my 1+1)(my 2+1)=m (y 1+y 2)+m 2y 1y 2+1=1,所以OP →·OQ →=x 1x 2+y 1y 2=-3,故D 正确.综上所述,选BCD.7.已知双曲线C :y 2a 2-x 2=1(a >0),其上、下焦点分别为F 1,F 2,O 为坐标原点.过双曲线上一点M (x 0,y 0)作直线l ,分别与双曲线的渐近线交于点P ,Q ,且点M 为PQ 中点,则下列说法正确的是( ) A.若l ⊥y 轴,则|PQ |=2B.若点M 的坐标为(1,2),则直线l 的斜率为14 C.直线PQ 的方程为y 0ya 2-x 0x =1D.若双曲线的离心率为52,则三角形OPQ 的面积为2 答案 ACD解析由题意知双曲线C的虚轴长为2b=2,半焦距为c=a2+1,双曲线的渐近线方程为y=±ax.A项,当l⊥y轴时,M是双曲线的顶点,从而|PQ|=2b=2,A项正确;将(1,2)代入双曲线方程,得a2=2.设P(x1,y1),Q(x2,y2),且P在直线y=ax 上,则y1=ax1,y2=-ax2,y1-y2=a(x1+x2),易知x1+x2=2,则y1-y2=22,又y1+y2=4,则y1=2+2,x1=2+1,所以k l=y1-2x1-1=1,B错误;C项,易得l的方程为y-y0x-x0·y0x0=a2,整理可得y0ya2-x0x=1,C正确;D项,由e=1+1a2=52,得a=2,所以双曲线方程为y24-x2=1,由C项可知l是双曲线的切线,因为双曲线的切线与两条渐近线相交所成三角形的面积为定值ab,所以三角形OPQ的面积为2,D正确.8.已知抛物线E:y2=4x的焦点为F,准线l交x轴于点C,直线m过C且交E 于不同的A,B两点,B在线段AC上,点P为A在l上的射影.下列命题正确的是()A.若AB⊥BF,则|AP|=|PC|B.若P,B,F三点共线,则|AF|=4C.若|AB|=|BC|,则|AF|=2|BF|D.对于任意直线m,都有|AF|+|BF|>2|CF|答案BCD解析法一如图,由已知条件可得F(1,0),C(-1,0).由抛物线的对称性,不妨设直线m 的方程为y =k (x +1)(k >0),A (x 1,y 1),B (x 2,y 2).依题意x 1>x 2>0,y 1>0,y 2>0, 由⎩⎪⎨⎪⎧y =k (x +1),y 2=4x消y 整理,得k 2x 2+(2k 2-4)x +k 2=0.当Δ=(2k 2-4)2-4k 4=16-16k 2>0, 即0<k <1时,由根与系数的关系, 得x 1+x 2=4-2k 2k 2,x 1x 2=1.对于A 选项,因为直线BF 的斜率为y 2x 2-1,AB ⊥BF ,所以k ·y 2x 2-1=-1,即y 2x 2-1·y 2x 2+1=-1. 又y 22=4x 2,所以x 22+4x 2-1=0,解得x 2=5-2(负值舍去),所以x 1=5+2. 所以|AP |=|AF |=5+3,|PC |=y 1=8+45,故|AP |≠|PC |,故A 错误; 对于B 选项,易得P (-1,y 1), 所以FB →=(x 2-1,y 2),FP →=(-2,y 1).当P ,B ,F 三点共线时,y 1(x 2-1)+2y 2=0, 所以k (x 1+1)(x 2-1)+2k (x 2+1)=0, 两边同时除以k ,得x 1x 2+3x 2-x 1+1=0, 又x 1x 2=1,故可得x 1=3, 所以|AF |=x 1+1=4,故B 正确;对于C 选项,过B 作BQ ⊥l ,垂足为Q ,由已知可得AP ∥BQ ,所以|BQ ||AP |=|BC ||AC |. 又|AB |=|BC |,所以|AP |=2|BQ |.由抛物线的定义,得|AF |=|AP |,|BF |=|BQ |, 因此|AF |=2|BF |,故C 正确;对于D 选项,因为|AF |=x 1+1,|BF |=x 2+1, 所以|AF |+|BF |=x 1+x 2+2≥2x 1x 2+2=4,又x 1≠x 2,|CF |=2,故|AF |+|BF |>2|CF |成立,故D 正确.法二 对于选项A ,假设|AP |=|PC |成立,则△APC 为等腰直角三角形,∠ACP =45°,∠ACF =45°,又AB ⊥BF ,所以△BCF 为等腰直角三角形,则点B 在y 轴上,这与已知条件显然矛盾,故|AP |≠|PC |,故A 错误.其他选项同法一进行判断.9.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,A 为左顶点,P 为双曲线右支上一点.若|PF 1|=2|PF 2|,且△PF 1F 2的最小内角为30°,则( ) A.双曲线的离心率为 3B.双曲线的渐近线方程为y =±2xC.∠PAF 2=45°D.直线x +2y -2=0与双曲线有两个公共点 答案 ABD解析 因为|PF 1|=2|PF 2|,|PF 1|-|PF 2|=2a ,所以|PF 1|=4a ,|PF 2|=2a .又因为2c >2a ,4a >2a ,所以∠PF 1F 2=30°,所以cos ∠PF 1F 2=16a 2+4c 2-4a 22·4a ·2c =32,解得c =3a ,所以e =3,故A 正确;e 2=c 2a 2=a 2+b 2a 2=3,所以b 2a 2=2,即b a =±2,所以渐近线方程为y =±2x ,故B 正确;因为2c =23a ,所以|PF 1|2=|PF 2|2+|F 1F 2|2,所以∠PF 2F 1=90°,又因为|AF 2|=c +a =(3+1)a ,|PF 2|=2a ,所以|AF 2|≠|PF 2|,所以∠PAF 2≠45°,故C 错误;联立直线方程与双曲线方程⎩⎨⎧x +2y -2=0,x 2a 2-y 22a 2=1,化简得7y 2-16y +8-2a 2=0,Δ=(-16)2-4×7×(8-2a 2)=32+56a 2>0,所以直线x +2y -2=0与双曲线有两个公共点,故D 正确.故选ABD. 10.已知{a n }是公比为q 的等比数列,且a 1=1,曲线C n :x 2a n +y 2a n +1=1,n ∈N *,则下列说法中正确的是( ) A.若q >0且q ≠1,则C n 是椭圆B.若存在n ∈N *,使得C n 表示离心率为12的椭圆,则q =43C.若存在n ∈N *,使得C n 表示渐近线方程为x ±2y =0的双曲线,则q =-14 D.若q =-2,b n 表示双曲线C n 的实轴长,则b 1+b 2+…+b 20=6 138 答案 ACD解析 若q >0且q ≠1,则a n >0,a n +1>0且a n +1≠a n ,所以C n 表示椭圆,A 正确;当C n 表示椭圆时,显然q >0且q ≠1,若q >1,则a n +1>a n ,e =a n +1-a na n +1=1-a na n +1=1-1q ,令1-1q =12,解得q =43;若0<q <1,则a n >a n +1,e =a n -a n +1a n =1-a n +1a n=1-q ,令1-q =12,解得q =34,故B 错误;若C n 表示双曲线,显然q <0,故双曲线C n 的一条渐近线方程为y =-a n +1a nx=-qx ,令-q =12,解得q =-14,C 正确;若q =-2,则当n 为偶数时,a n <0,a n +1>0,双曲线C n 的焦点在y 轴上,则b n =2a n +1;当n 为奇数时,则a n >0,a n +1<0,双曲线C n 的焦点在x 轴上,则b n=2a n .所以b 1+b 2+…+b 20=2(a 1+a 3+…+a 19)+2(a 3+a 5+…+a 21)=4(a 1+a 3+…+a 19)-2+2a 21=4×1-2101-2-2+2×1×210=3×211-6=6138,D 正确.。
2015年高考数学(理)一轮总复习课件:专题突破5+高考解析几何问题的求解策略(共34张PPT)
【解】 (1)依题意知 F0,p2,圆心 Q 在线段 OF 的垂直 平分线 y=p4上,
因为抛物线 C 的准线方程为 y=-p2, 所以34p=34,即 p=1. 因此抛物线 C 的方程为 x2=2y.
第三十页,编辑于星期五:十一点 五十四分。
(2)假设存在点 M(x0,x220)(x0>0)满足条件,抛物线 C 在点 M 处的切线斜率为 y′|x=x0=x22′|x=x0=x0,
第三页,编辑于星期五:十一点 五十四分。
【规范解答】 (1)椭圆中心在原点,焦点在 x 轴上. 设椭圆的方程为xa22+by22=1(a>b>0) , 因为抛物线 x2=4y 的焦点为(0,1), 所以 b=1. 由离心率 e=ac= 22,a2=b2+c2=1+c2, 从而得 a= 2,∴椭圆的标准方程为x22+y2=1.
A.x82+y22=1
B.1x22 +y62=1
C.1x62 +y42=1
D.2x02 +y52=1
第七页,编辑于星期五:十一点 五十四分。
【解析】 ∵椭圆的离心率为 23, ∴ac= a2a-b2= 23,∴a=2b. ∴椭圆方程为 x2+4y2=4b2. ∵双曲线 x2-y2=1 的渐近线方程为 x±y=0, ∴渐近线 x-y=0 与椭圆 x2+4y2=4b2 在第一象限的交点 为(2 5 5b,2 5 5b),
所以存在 A,B 满足O→A=12O→B,此时直线 AB 的方程为 y
=±
3 3 x.
第二十七页,编辑于星期五:十一点 五十四分。
【反思启迪】 1.第(2)问求解的关键,依据 O,A,B 三 点共线,利用向量相等,寻找坐标的关系,建立 k 的方程.
2015年湖南高考解析几何专题
解析几何曲线六部曲1.设交点坐标A (x 1,y 1),B (x 2,y 2)2.设直线方程(1.k 不存在;2.k 存在,两种设法)3.联立直线与曲线的方程4.对判别式∆=b 2-4ac 进行讨论5.韦达定理x 1x 2,x 1+x 26.通过题意推导至韦达定理(包括弦长,垂直,定点等关系)(2014湖南)21.如图7,O 为坐标原点,椭圆1:C ()222210x y a b a b +=>>的左右焦点分别为12,F F ,离心率为1e ;双曲线2:C 22221x y a b-=的左右焦点分别为34,F F ,离心率为2e ,已知1232e e =,且2431F F =-. (1)求12,C C 的方程;(2)过1F 点的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于,P Q 两点时,求四边形APBQ 面积的最小值.21.【答案】(1) 2212x y += 2212x y -= (2)4【解析】解:(1)由题可得2212221,1b b e e a a=-=+,且22122F F a b =-,因为1232e e =,且222224F F a b a b=+--,所以22223112b b a a -+=且222231a b a b +--=-2a b ⇒=且1,2b a ==,所以椭圆1C 方程为2212x y +=,双曲线2C 的方程为2212x y -=. (2)由(1)可得()21,0F -,因为直线AB 不垂直于y 轴,所以设直线AB 的方程为1x ny =-,联立直线与椭圆方程可得()222210n y ny +--=,则222A B n y y n +=+,则22mny n =+,因为(),M M M x y 在直线AB 上,所以2222122M n x n n -=-=++,因为AB 为焦点弦,所以根据焦点弦弦长公式可得21222222222M n AB e x n =+=++()224212n n +=+,则直线PQ 的方程为2M M y ny x y x x =⇒=-,联立直线PQ与双曲线可得22202n x x ⎛⎫---= ⎪⎝⎭2284x n ⇒=-,22224n y n =-则24022n n ->⇒-<<,所以,P Q 的坐标为2222228282,,,4444n n n n n n ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,则点,P Q 到直线AB 的距离为22212281441n n n nd n +---=+,22222281441n nn nd n -----=+,因为点,Q P 在直线AB的两端所以()222221222222282244411n n nn n n d d n n ++---+==++,则四边形APBQ 面积()1212S AB d d =+= 22184n n+-25814n =--,因为2440n ≥->,所以当242n n =⇒=±时, 四边形APBQ面积取得最小值为4.。
2015届高考数学(文科)一轮总复习解析几何
2015届高考数学(文科)一轮总复习解析几何第九篇解析几何第1讲直线的方程基础巩固题组(建议用时:40分钟)一、填空题1.直线3x-y+a=0(a为常数)的倾斜角为________.解析直线的斜率为k=tanα=3,又因为α∈0,π),所以α=π3.答案π32.已知直线l经过点P(-2,5),且斜率为-34.则直线l的方程为________.解析由点斜式,得y-5=-34(x+2),即3x+4y-14=0.答案3x+4y-14=03.(2014•长春模拟)若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为________.解析∵kAC=5-36-4=1,kAB=a-35-4=a-3.由于A,B,C三点共线,所以a-3=1,即a=4.答案44.(2014•泰州模拟)直线3x-4y+k=0在两坐标轴上的截距之和为2,则实数k=________.解析令x=0,得y=k4;令y=0,得x=-k3.则有k4-k3=2,所以k=-24.答案-245.若直线(2m2+m-3)x+(m2-m)y=4m-1在x轴上的截距为1,则实数m=________.解析由题意可知2m2+m-3≠0,即m≠1且m≠-32,在x轴上截距为4m-12m2+m-3=1,即2m2-3m-2=0,解得m=2或-12.答案2或-126.(2014•佛山调研)直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足________.①ab>0,bc0,bc>0;③ab0;④ab解析由题意,令x=0,y=-cb>0;令y=0,x=-ca>0.即bc答案①7.(2014•淮阳模拟)直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.解析设直线的斜率为k,如图,过定点A的直线经过点B时,直线l在x轴上的截距为3,此时k=-1;过定点A的直线经过点C时,直线l 在x轴的截距为-3,此时k=12,满足条件的直线l的斜率范围是(-∞,-1)∪12,+∞.答案(-∞,-1)∪12,+∞8.一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解析设所求直线的方程为xa+yb=1,∵A(-2,2)在直线上,∴-2a+2b=1.①又因直线与坐标轴围成的三角形面积为1,∴12|a|•|b|=1.②由①②可得(1)a-b=1,ab=2或(2)a-b=-1,ab=-2.由(1)解得a=2,b=1或a=-1,b=-2,方程组(2)无解.故所求的直线方程为x2+y1=1或x-1+y-2=1,即x+2y-2=0或2x+y+2=0为所求直线的方程.答案x+2y-2=0或2x+y+2=0二、解答题9.(2014•临沂月考)设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.解(1)当直线过原点时,该直线在x轴和y轴上的截距为0,当然相等.∴a =2,方程即为3x+y=0.当直线不过原点时,由截距存在且均不为0,得a-2a+1=a-2,即a+1=1,∴a=0,方程即为x+y+2=0.综上,l的方程为3x+y=0或x+y+2=0.(2)将l的方程化为y=-(a+1)x+a-2,∴-+>0,a-2≤0或-+=0,a-2≤0.∴a≤-1.综上可知a的取值范围是(-∞,-1].10.已知直线l过点M(2,1),且分别与x轴、y轴的正半轴交于A,B 两点,O为原点,是否存在使△ABO面积最小的直线l?若存在,求出直线l的方程;若不存在,请说明理由.解存在.理由如下:设直线l的方程为y-1=k(x-2)(k<0),则A2-1k,0,B(0,1-2k),△AOB 的面积S=12(1-2k)2-1k=124+-+-1k≥12(4+4)=4.当且仅当-4k=-1k,即k=-12时,等号成立,故直线l的方程为y-1=-12(x-2),即x+2y-4=0.能力提升题组(建议用时:25分钟)一、填空题1.(2014•北京海淀一模)已知点A(-1,0),B(cosα,sinα),且|AB|=3,则直线AB的方程为________.解析|AB|=++sin2α=2+2cosα=3,所以cosα=12,sinα=±32,所以kAB=±33,即直线AB的方程为y=±33(x+1),所以直线AB的方程为y=33x+33或y=-33x-33.答案y=33x+33或y=-33x-332.若直线l:y=kx-3与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是________.解析如图,直线l:y=kx-3,过定点P(0,-3),又A(3,0),∴kPA=33,则直线PA的倾斜角为π6,满足条件的直线l的倾斜角的范围是π6,π2.答案π6,π23.已知直线x+2y=2分别与x轴、y轴相交于A,B两点,若动点P(a,b)在线段AB上,则ab的最大值为________.解析直线方程可化为x2+y=1,故直线与x轴的交点为A(2,0),与y 轴的交点为B(0,1),由动点P(a,b)在线段AB上,可知0≤b≤1,且a+2b=2,从而a=2-2b,故ab=(2-2b)b=-2b2+2b=-2b-122+12,由于0≤b≤1,故当b=12时,ab取得最大值12.答案12二、解答题4.如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=12x上时,求直线AB的方程.解由题意可得kOA=tan45°=1,kOB=tan(180°-30°)=-33,所以直线lOA:y=x,lOB:y=-33x,设A(m,m),B(-3n,n),所以AB的中点Cm-3n2,m+n2,由点C在y=12x上,且A,P,B三点共线得m+n2=12•m-3n2,m-0m-1=n-0-3n-1,解得m=3,所以A(3,3).又P(1,0),所以kAB=kAP=33-1=3+32,所以lAB:y=3+32(x-1),即直线AB的方程为(3+3)x-2y-3-3=0.。
2015届高三数学(理)湘教版一轮复习解答题规范专练5 平面解析几何
解答题规范专练(五) 平面解析几何1.(2014·武汉模拟)设点P 是圆x 2+y 2=4上任意一点,由点P 向x 轴作垂线PP 0,垂足为P 0,且0MP =320PP . (1)求点M 的轨迹C 的方程;(2)设直线l :y =kx +m (m ≠0)与(1)中的轨迹C 交于不同的两点A ,B ,若直线OA ,AB ,OB 的斜率成等比数列,求实数m 的取值范围.2.(2014·合肥模拟)已知椭圆:x 2a 2+y 2b2=1(a >b >0)的长轴长为4,且过点⎝⎛⎭⎫3,12. (1)求椭圆的方程;(2)设A ,B ,M 是椭圆上的三点.若OM =35OA +45OB ,点N 为线段AB 的中点,C ⎝⎛⎭⎫-62,0,D ⎝⎛⎭⎫62,0,求证:|NC |+|ND |=2 2.3.(2014·哈师大附中模拟)已知点E (m,0)(m >0)为抛物线y 2=4x 内一个定点,过E 作斜率分别为k 1,k 2的两条直线交抛物线于点A ,B ,C ,D ,且M ,N 分别是AB ,CD 的中点.(1)若m =1,k 1k 2=-1,求△EMN 面积的最小值;(2)若k 1+k 2=1,求证:直线MN 过定点.答 案1.解:(1)设点M (x ,y ),P (x 0,y 0),则由题意知P 0(x 0,0).由0MP =(x 0-x ,-y ),0PP =(0,-y 0),且0MP =320PP ,得(x 0-x ,-y )=32(0,-y 0).∴⎩⎪⎨⎪⎧ x 0-x =0,-y =-32y 0,于是⎩⎪⎨⎪⎧ x 0=x ,y 0=23y .又x 20+y 20=4,∴x 2+43y 2=4.∴点M 的轨迹C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0.∴Δ=(8mk )2-16(3+4k 2)(m 2-3)>0,即3+4k 2-m 2>0.(*)且⎩⎪⎨⎪⎧ x 1+x 2=-8mk 3+4k 2,x 1x 2=4(m 2-3)3+4k 2.依题意,k 2=y 1y 2x 1x 2,即k 2=kx 1+m x 1·kx 2+mx 2.∴x 1x 2k 2=k 2x 1x 2+km (x 1+x 2)+m 2.∴km (x 1+x 2)+m 2=0,即km ⎝⎛⎭⎫-8mk 3+4k 2+m 2=0.∵m ≠0,∴k ⎝⎛⎭⎫-8k 3+4k 2+1=0,解得k 2=34.将k 2=34代入(*),得m 2<6. ∴m 的取值范围是(-6,0)∪(0,6).2.解:(1)由已知可得⎩⎪⎨⎪⎧ a =2,3a 2+14b 2=1,故⎩⎪⎨⎪⎧a =2,b =1, 所以椭圆的方程为x 24+y 2=1. (2)证明:设A (x 1,y 1),B (x 2,y 2),则x 214+y 21=1,x 224+y 22=1. 由OM =35OA +45OB , 得M ⎝⎛⎭⎫35x 1+45x 2,35y 1+45y 2. 因为M 是椭圆C 上一点,所以⎝⎛⎭⎫35x 1+45x 224+⎝⎛⎭⎫35y 1+45y 22=1, 即⎝⎛⎭⎫x 214+y 21⎝⎛⎭⎫352+⎝⎛⎭⎫x 224+y 22⎝⎛⎭⎫452+2×35×45×⎝⎛⎭⎫x 1x 24+y 1y 2=1, 得⎝⎛⎭⎫352+⎝⎛⎭⎫452+2×35×45×⎝⎛⎭⎫x 1x 24+y 1y 2=1,故x 1x 24+y 1y 2=0. 又线段AB 的中点N 的坐标为 ⎝⎛⎭⎫x 1+x 22,y 1+y 22, 所以⎝⎛⎭⎫x 1+x 2222+2⎝⎛⎭⎫y 1+y 222=12⎝⎛⎭⎫x 214+y 21+12⎝⎛⎭⎫x 224+y 22+x 1x 24+y 1y 2=1, 从而线段AB 的中点N ⎝⎛⎭⎫x 1+x 22,y 1+y 22在椭圆x 22+2y 2=1上. 又椭圆x 22+2y 2=1的两焦点恰为 C ⎝⎛⎭⎫-62,0,D ⎝⎛⎭⎫62,0, 所以|NC |+|ND |=2 2.3.解:(1)当m =1时,E 为抛物线y 2=4x 的焦点,∵k 1k 2=-1,∴AB ⊥CD .设AB 的方程为y =k 1(x -1),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k 1(x -1),y 2=4x 得k 1y 2-4y -4k 1=0,y 1+y 2=4k 1,y 1y 2=-4. ∵M ⎝⎛⎭⎫x 1+x 22,y 1+y 22,∴M ⎝⎛⎭⎫2k21+1,2k 1, 同理,点N (2k 21+1,-2k 1),∴S △EMN =12|EM |·|EN |= 12 ⎝⎛⎭⎫2k 212+⎝⎛⎭⎫2k 12·(2k 21)2+(-2k 1)2=2 k 21+1k 21+2≥22+2=4, 当且仅当k 21=1k 21,即k 1=±1时,△EMN 的面积取最小值4. (2)证明:设AB 的方程为y =k 1(x -m ),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k 1(x -m ),y 2=4x 得k 1y 2-4y -4k 1m =0, y 1+y 2=4k 1,y 1y 2=-4m , ∵M ⎝⎛⎭⎫x 1+x 22,y 1+y 22,∴M ⎝⎛⎭⎫2k21+m ,2k 1, 同理,点N ⎝⎛⎭⎫2k 22+m ,2k 2, ∴k MN =k 1k 2k 1+k 2=k 1k 2. ∴MN 的方程为y -2k 1=k 1k 2x -⎝⎛⎭⎫2k 21+m , 即y =k 1k 2(x -m )+2,∴直线MN 恒过定点(m,2).。
【学海导航】2015届高三数学(人教版理B)第一轮总复习同步训练:第10单元《解析几何》
第十单元 解析几何第53讲 直线的方程1.已知过点P (-4,m +1)和Q (m -1,6)的直线斜率等于1,那么m 的值为( )A .1B .4C .1或3D .1或42.(2013·烟台调研)过两点(0,3),(2,1)的直线方程为( )A .x -y -3=0B .x +y -3=0C .x +y +3=0D .x -y +3=03.直线l 与直线y =1,直线x =7分别交于P ,Q 两点,PQ 的中点为M (1,-1),则直线l 的斜率是( )A.13B.23C .-32D .-134.已知直线x =2及x =4与函数y =log 2x 图象的交点分别为A ,B ,与函数y =lg x 图象的交点分别为C 、D 两点,则直线AB 与CD ( )A .相交,且交点在第一象限B .相交,且交点在第二象限C .相交,且交点在第四象限D .相交,且交点在坐标原点5.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是 .6.过点(1,3)作直线l ,若经过点(a,0)和(0,b ),且a ∈N *,b ∈N *,则可作出的直线l 有______条.7.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A (-3,4),且法向量为n =(1,-2)的直线(点法式)方程为1×(x +3)+(-2)×(y -4)=0,化简得x -2y +11=0.类比以上方法,在空间直角坐标系中,经过点A (1,2,3)且法向量为n =(-1,-2,1)的平面(点法式)方程为__________(请写出化简后的结果).8.等腰△ABC 的顶点为A (-1,2),又直线AC 的斜率为3,点B 的坐标为(-3,2),求直线AC 、BC 及∠A 的平分线所在的直线方程.9.已知两点A (-1,2),B (m,3).(1)求直线AB 的方程;(2)已知实数m ∈[-33-1,3-1],求直线AB 的倾斜角α的取值范围.第54讲 两条直线的位置关系与对称问题1.(2013·东城二模)“a =3”是“直线ax +3y =0与直线2x +2y =3平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2013·四川宜宾市高三调研)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( )A .x -2y +4=0B .2x +y -7=0C .x -2y +3=0D .x -2y +5=03.直线l 1:kx +(1-k )y -3=0和l 2:(k -1)x +(2k +3)y -2=0互相垂直,则k =( )A .-3或-1B .3或1C .-3或1D .-1或34.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系是( )A .平行B .垂直C .重合D .相交但不垂直5.(2013·石家庄质检)若函数y =ax +8与y =-12x +b 的图象关于直线y =x 对称,则a +b =______.6.点P 在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则P 点坐标为__________.7.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是 .8.已知直线l 1经过点A (0,-1)和点B (-4a,1),直线l 2经过点M (1,1)和点N (0,-2). (1)若l 1与l 2没有公共点,求实数a 的值;(2)若l 1与l 2所成角为直角,求实数a 的值.9.已知点P (2,-1).(1)求过点P 且与原点距离为2的直线l 的方程;(2)求过点P 且与原点距离最大的直线l 的方程,最大距离是多少?第55讲 圆的方程1.点P (2,-1)为圆(x -1)2+y 2=25内弦AB 的中点,则直线AB 的方程为( )A .x +y -1=0B .2x +y -3=0C .x -y -3=0D .2x -y -5=02.在平面直角坐标系内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,则实数a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)3.已知A 、B 、C 是圆O :x 2+y 2=1上不同的三个点,且OA →·OB →=0,存在实数λ,μ满足OC →=λOA →+μOB →,则点(λ,μ)与圆的位置关系是( )A .在单位圆外B .在单位圆上C .在单位圆内D .无法确定4.圆心在原点且与直线x +2y =4相切的圆的方程是 .5.以抛物线y 2=4x 上的点(x 0,4)为圆心,并过此抛物线焦点的圆的方程是________________________________________________________________________.6.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是____________________.7.若x 2+y 2-4x +2my +m +6=0与y 轴的两交点位于原点的同侧,则实数m 的取值范围是____________.8.已知圆心为C 的圆经过点A (1,1)和B (2,-2),且圆心C 在直线l :x -y +1=0上,求圆心为C 的圆的标准方程.9.在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y +4=0相切.(1)求圆O 的方程;(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|P A →|,|PO →|,|PB →|成等比数列,求P A →·PB→的取值范围.第56讲 直线与圆、圆与圆的位置关系1.直线ax -y +2a =0与圆x 2+y 2=9的位置关系是( )A .相离B .相切C .相交D .不确定2.直线3x +y -23=0与圆O :x 2+y 2=4交于A 、B 两点,则OA →·OB →=( )A .2B .-2C .4D .-43.两圆C 1:x 2+y 2-6x +4y +12=0与圆C 2:x 2+y 2-14x -2y +14=0的位置关系是( )A .相交B .内含C .外切D .内切4.已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 为切点,若四边形P ACB 的最小面积是2,则k 的值为( )A .4B .2 2C .2 D. 25.经过点P (2,-3)作圆x 2+2x +y 2=24的弦AB ,使得点P 平分弦AB ,则弦AB 所在直线的方程为________________________________________________________________________.6.在圆x 2+y 2=4上,与直线l :4x +3y -12=0的距离最小值是________.7.已知直线y =x +b 交圆x 2+y 2=1于A 、B 两点,且∠AOB =60°(O 为原点),则实数b 的值为________.8.已知圆C :(x -1)2+(y -2)2=2,P 点的坐标为(2,-1),过点P 作圆C 的切线,切点为A 、B .(1)求直线P A 、PB 的方程;(2)求过P 点的圆的切线长;(3)求直线AB 的方程.9.在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程;(2)直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点M ,使得四边形OAMB 为菱形?若存在,求出此时直线l 的斜率;若不存在,说明理由.第57讲 椭 圆1.(2013·衡水调研)椭圆x 2a 2+y 2b 2=1(a >b >0)上任一点到两焦点的距离分别为d 1,d 2,焦距为2c .若d 1,2c ,d 2成等差数列,则椭圆的离心率为( )A.12B.22C.32D.342.已知方程x 2k +1+y 23-k=1(k ∈R )表示焦点在x 轴上的椭圆,则k 的取值范围是( ) A .k >1或k <3 B .1<k <3C .k >1D .k <33.(2013·温州五校)椭圆x 225+y 29=1的左焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则|PF 1|=( )A.415B.95C .6D .74.已知点F 1,F 2是椭圆x 2+2y 2=2的两个焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是( )A .0B .1C .2D .2 25.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的三倍,则m 的值为 .6.直线x -2y +2=0经过椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率为________.7.短轴长为5,离心率e =23的椭圆的两焦点为F 1,F 2,过F 1作直线交椭圆于A ,B 两点,则△ABF 2的周长为______. 8.设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3.(1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.9.已知椭圆C 的中心在原点,长轴在x 轴上,经过点A (0, 1),离心率e =22.(1)求椭圆C 的方程;(2)设直线l n :y =1n +1(n ∈N *)与椭圆C 在第一象限内相交于点A n (x n , y n ),记a n =12x 2n ,试证明:对∀n ∈N *,a 1·a 2·…·a n >12.第58讲 双曲线1.双曲线2x 2-y 2=8的实轴长是( )A .2B .2 2C .4D .4 22.若双曲线x 2-ky 2=1的一个焦点是(3,0),则实数k =( )A.116B.18C.14D.123.(2013·四川省成都4月模拟)已知定点A ,B ,且|AB |=4,动点P 满足|P A |-|PB |=3,则|P A |的最小值为( )A.12B.32C.72D .5 4.已知双曲线的渐近线为y =±3x ,焦点坐标为(-4,0),(4,0),则双曲线方程为( ) A.x 28-y 224=1 B.x 212-y 24=1 C.x 224-y 28=1 D.x 24-y 212=1 5.已知双曲线x 2a 2-y 2b2=1的渐近线方程为y =±3x ,则它的离心率为______. 6.已知F 1、F 2是双曲线x 216-y 29=1的焦点,PQ 是过焦点F 1的弦,那么|PF 2|+|QF 2|-|PQ |的值是______.7.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为 .8.求与圆(x +2)2+y 2=2外切,并且过定点B (2,0)的动圆圆心M 的轨迹方程.9.已知两定点F 1(-2,0),F 2(2,0),满足条件|PF 2→|-|PF 1→|=2的点P 的轨迹是曲线E ,直线y =kx -1与曲线E 交于A 、B 两点.(1)求k 的取值范围;(2)如果|AB →|=63,求k 的值.第59讲 抛物线1.抛物线y =4x 2的准线方程为( )A .x =-1B .y =-1C .x =-116D .y =-1162.正三角形一个顶点是抛物线x 2=2py (p >0)的焦点,另两个顶点在抛物线上,则满足此条件的正三角形共有( )A .0个B .1个C .2个D .4个3.如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( )A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x4.若抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程为________.5.抛物线x 2=ay 过点A (1,14),则点A 到此抛物线的焦点的距离为________. 6.(2013·衡水调研卷)设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为________.7.已知抛物线y 2=4x 的焦点为F ,准线与x 轴的交点为M ,N 为抛物线上的一点,且满足|NF |=32|MN |,则∠NMF =______.8.在平面直角坐标系xOy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x轴上.(1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线的方程.9.如图,在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)上横坐标为4的点到该抛物线的焦点的距离为5.(1)求抛物线的标准方程;(2)设点C是抛物线上的动点,若以C为圆心的圆在y轴上截得的弦AB的长为4,求证:圆C过定点.第60讲 直线与圆锥曲线的位置关系1.过点(0,2)与抛物线y 2=8x 只有一个公共点的直线有( ) A .1条 B .2条 C .3条 D .无数条2.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定3.(2013·湖北省武昌区元月调研)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有两个交点,则此双曲线离心率的取值范围是( )A .(1,2)B .(1,2]C .[2,+∞)D .(2,+∞)4.过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF |=3,则△AOB 的面积为( )A.22 B. 2 C.322D .2 2 5.若椭圆x 23+y 2m=1与直线x +2y -2=0有两个不同的交点,则m 的取值范围是 .6.过抛物线y 2=2px (p >0)焦点的直线与抛物线交于A 、B 两点,|AB |=3,且AB 中点的纵坐标为12,则p 的值为__________.7.已知两定点M (-2,0),N (2,0),若直线上存在点P ,使得|PM |-|PN |=2,则称该直线为“A 型直线”,给出下列直线:①y =x +1;②y =3x +2;③y =-x +3;④y =-2x .其中是“A 型直线”的序号是________.8.椭圆ax 2+by 2=1与直线x +y -1=0相交于A 、B 两点,C 是线段AB 的中点.若|AB |=22,直线OC 的斜率为22,求椭圆的方程.9.(2013·西城二模)已知抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若AF →=2FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.第61讲 轨迹问题1.若动点P 到定点F (1,-1)的距离与到直线l :x -1=0的距离相等,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .直线2.实数变量m ,n 满足m 2+n 2=1,则坐标(m +n ,mn )表示的点的轨迹是( ) A .抛物线 B .椭圆C .双曲线的一支D .抛物线的一部分 3.(2013·昌平区期末)一圆形纸片的圆心为点O ,点Q 是圆内异于O 点的一定点,点A 是圆周上一点.把纸片折叠使点A 与Q 重合,然后展平纸片,折痕与OA 交于P 点.当点A 运动时点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线4.已知点A (-1,0)和圆x 2+y 2=2上一动点P ,动点M 满足2MA →=AP →,则点M 的轨迹方程是( )A .(x -3)2+y 2=1B .(x -32)2+y 2=1C .(x -32)2+y 2=12D .x 2+(y -32)2=125.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹方程为________.6.(2013·洛阳模拟)设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP →=2P A →,且OQ →·AB →=1,则点P 的轨迹方程是__________________________.7.(2013·广东高州市模拟)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是________________.8.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过点P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.9.已知圆C 与两圆x 2+(y +4)2=1,x 2+(y -2)2=1外切,圆C 的圆心轨迹方程为L ,设L 上的点与点M (x ,y )的距离的最小值为m ,点F (0,1)与点M (x ,y )的距离为n .(1)求圆C 的圆心轨迹L 的方程;(2)求满足条件m =n 的点M 的轨迹Q 的方程.第62讲 圆锥曲线的综合问题1.已知λ∈R ,则不论λ取何值,曲线C :λx 2-x -λy +1=0恒过定点( ) A .(0,1) B .(-1,1) C .(1,0) D .(1,1)2.若点A 的坐标为(3,2),F 为抛物线y 2=2x 的焦点,点P 在抛物线上移动,为使|P A |+|PF |取最小值,P 点的坐标为( )A .(3,3)B .(2,2)C .(12,1) D .(0,0)3.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)上任意一点P ,引与实轴平行的直线,交两渐近线于M 、N 两点,则PM →·NP →为定值( )A .a 2b 2B .2abC .a 2D .-a 24.若点O 和点F 分别为椭圆x 29+y 25=1的中心和左焦点,点P 为椭圆上任意一点,则OP →·FP →的最小值为( )A.114B .3C .8D .155.双曲线x 2-y 2=4上一点P (x 0,y 0)在双曲线的一条渐近线上的射影为Q ,已知O 为坐标原点,则△POQ 的面积为定值______.6.椭圆x 225+y 216=1和圆x 2+y 2-4x +3=0上最近两点之间的距离为______,最远两点间的距离为________.7.如图,正六边形ABCDEF 的两个顶点A 、D 为椭圆的两个焦点,其余4个顶点在椭圆上,则该椭圆的离心率是________.8.若椭圆x 2a 2+y 2b2=1(a >b >0)与直线x +y -1=0相交于P 、Q 两点,且OP →·OQ →=0(O 为坐标原点).(1)求证:1a 2+1b2等于定值;(2)若椭圆离心率e ∈[33,22]时,求椭圆长轴长的取值范围.9.已知点F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 为椭圆上任意一点,P 到焦点F 2的距离的最大值为2+1,且△PF 1F 2的最大面积为1.(1)求椭圆C 的方程;(2)点M 的坐标为(54,0),过点F 2且斜率为k 的直线l 与椭圆C 相交于A ,B 两点.对于任意的k ∈R ,MA →·MB →是否为定值?若是,求出这个定值;若不是,说明理由.第十单元 解析几何 第53讲 直线的方程1.A 由斜率公式得k =(m +1)-6-4-(m -1)=1,解得m =1,故选A.2.B 由两点式得:y -31-3=x -02-0,即x +y -3=0,故选B.3.D 因为PQ 的中点为M (1,-1), 所以由条件知P (-5,1),Q (7,-3),所以k =-3-17-(-5)=-13,故选D.4.D 由图象可知直线AB 与CD 相交,两直线方程分别为AB :y =12x ,CD :y =lg 22x ,则其交点为坐标原点,故选D.5.k >12或k <-1 设直线l 的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k <3,解不等式可得k >12或k <-1.6.2 由题意1a +3b=1,所以(a -1)(b -3)=3,此方程有两组正整数解⎩⎪⎨⎪⎧ a =2b =6或⎩⎪⎨⎪⎧a =4b =4,有2条. 7.x +2y -z -2=0 所求方程为(-1)×(x -1)+(-2)×(y -2)+1×(z -3)=0,化简即得x +2y -z -2=0.8.解析:由点斜式得直线AC 的方程为y =3x +2+ 3.因为AB ∥x 轴,又△ABC 是以A 为顶点的等腰三角形且直线AC 的倾斜角为π3,所以直线BC 的倾斜角α为π6或2π3.①当α=π6时,直线BC 的方程为y =33x +2+ 3.又∠A 的平分线的倾斜角为2π3,所以∠A 的平分线所在直线的方程为y =-3x +2- 3.②当α=2π3时,直线BC 的方程为y =-3x +2-3 3.又∠A 的平分线的倾斜角为π6,所以∠A 的平分线所在直线的方程为y =33x +2+33.9.解析:(1)当m =-1时,直线AB 的方程为x =-1;当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1).(2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈[-33,0)∪(0,3],所以k =1m +1∈(-∞,-3]∪[33,+∞),所以α∈[π6,π2)∪(π2,2π3].综合①②知,直线AB 的倾斜角α∈[π6,2π3].第54讲 两条直线的位置关系与对称问题1.C 当两条直线平行时,由a ×2-3×2=0,得a =3;当a =3时,两直线显然平行,故选C.2.A 根据已知直线方程知所求直线的斜率为12,所以所求直线方程为y -3=12(x -2),即x -2y +4=0,故选A.3.C 若k =1,直线l 1:x =3,l 2:y =25满足两直线垂直;若k ≠1,直线l 1,l 2的斜率分别为k 1=kk -1,k 2=1-k 2k +3,由k 1·k 2=-1,得k =-3,综上知k =1或k =-3,故选C.4.B 由正弦定理,得a sin A =bsin B,即-sin A a ·b sin B =-1,而-sin A a 与b sin B分别为两条直线的斜率,故两条直线垂直,故选B.5.2 直线y =ax +8关于y =x 对称的直线方程为x =ay +8,所以x =ay +8与y =-12x+b 为同一直线,故得⎩⎪⎨⎪⎧a =-2b =4,所以a +b =2.6.(1,2)或(2,-1) 设P 点坐标为(a,5-3a ),由题意知:|a -(5-3a )-1|2=2,解之得a =1或a =2,所以P 点坐标为(1,2)或(2,-1).7.2 由已知两条直线平行得-34=-6m,解得m =8,所以直线6x +my +14=0为3x +4y +7=0,故两平行线间的距离为|-3-7|32+42=2.8.解析:l 1的斜率k AB =1-(-1)-4a-0=-a2,l 2的斜率k MN =-2-10-1=3.(1)由题意知,l 1∥l 2,所以k AB =k MN ,即-a2=3,所以a =-6.(2)由题意知,l 1⊥l 2,所以k AB ·k MN =-1,即-a 2×3=-1,所以a =23.9.解析:(1)①当l 的斜率k 不存在时显然成立,此时l 的方程为x =2. ②当l 的斜率k 存在时,设l :y +1=k (x -2),即kx -y -2k -1=0,由点到直线的距离公式得|-2k -1|1+k 2=2,解得k =34,所以l :3x -4y -10=0.故所求l 的方程为x =2或3x -4y -10=0.(2)数形结合可得,过点P 且与原点O 距离最大的直线是过点P 且与PO 垂直的直线.由l ⊥OP ,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得直线l 的方程为y +1=2(x -2),即2x -y -5=0,即直线2x -y -5=0是过点P 且与原点O 距离最大的直线,最大距离为|-5|5= 5.第55讲 圆的方程1.C 由圆的方程知圆心坐标为(1,0),圆心与P 点的连线的斜率为-1,所以直线AB 的斜率为1,又过点P (2,-1),所以直线AB 的方程为x -y -3=0,故选C.2.D 曲线C :x 2+y 2+2ax -4ay +5a 2-4=0,即(x +a )2+(y -2a )2=4表示以(-a,2a )为圆心,2为半径的圆,当-a <-2且2a >0,即a >2时,曲线C 上所有的点均在第二象限内,故选D.3.B 因为点A 、B 、C 在单位圆上, 故|OC |=1,于是有|OC |2=1,即(λOA →+μOB →)2=1,展开得λ2+μ2=1, 所以点(λ,μ)在圆x 2+y 2=1上,故选B.4.x 2+y 2=165 由题意,半径R =41+22=45,所以圆的方程为x 2+y 2=165,故填x 2+y 2=165.5.(x -4)2+(y -4)2=25 抛物线的焦点为(1,0),准线为x =-1, 根据点(x 0,4)在抛物线上知42=4x 0, 解得x 0=4,所以圆心为(4,4),半径为x 0+1=5, 故所求圆的方程为(x -4)2+(y -4)2=25.6.(x -2)2+(y +1)2=1 设圆上任一点为Q (s ,t ),PQ 的中点为A (x ,y ),则⎩⎨⎧x =4+s2y =-2+t2,解得⎩⎪⎨⎪⎧s =2x -4t =2y +2,将其代入圆的方程,得(2x -4)2+(2y +2)2=4, 整理得(x -2)2+(y +1)2=1.7.m >3或-6<m <-2 圆方程配方,得(x -2)2+(y +m )2=m 2-m -2,则⎩⎨⎧m 2-m -2>0(0-2)2+(0+m )2>m 2-m -22<m 2-m -2,解得m >3或-6<m <-2.8.解析:由已知求得AB 的垂直平分线l′的方程为x -3y -3=0.圆心C 的坐标是方程组⎩⎪⎨⎪⎧x -3y -3=0x -y +1=0的解,解得⎩⎪⎨⎪⎧x =-3y =-2.半径r =|AC |=(1+3)2+(1+2)2=5.故所求圆的方程为(x +3)2+(y +2)2=25.9.解析:(1)依题设,圆O 的半径r 等于原点O 到直线x -3y +4=0的距离,即r =41+3=2.所以圆O 的方程为x 2+y 2=4. (2)不妨设A (x 1,0),B (x 2,0),x 1<x 2. 由x 2=4即得A (-2,0),B (2,0).设P (x ,y ),由|P A →|,|PO →|,|PB →|成等比数列, 得(x +2)2+y 2·(x -2)2+y 2=x 2+y 2, 即x 2-y 2=2. P A →·PB →=(-2-x ,-y )·(2-x ,-y ) =x 2-4+y 2=2(y 2-1).由于点P 在圆O 内,故⎩⎪⎨⎪⎧x 2+y 2<4x 2-y 2=2,由此得y 2<1.所以P A →·PB →的取值范围为[-2,0).第56讲 直线与圆、圆与圆的位置关系1.C 直线ax -y +2a =0⇒a (x +2)-y =0即直线恒过点(-2,0),因为点(-2,0)在圆内,所以直线与圆相交,故选C.2.A 直线3x +y -23=0与圆O :x 2+y 2=4交于A (1,3),B (2,0),OA →·OB →=2,故选A.3.D 由已知,圆C 1:(x -3)2+(y +2)2=1,圆C 2:(x -7)2+(y -1)2=36,则|C 1C 2|=5=6-1,故选D.4.C 因为四边形P ACB 的最小面积是2,此时切线长为2,所以圆心到直线的距离为5,即d =51+k2=5,解得k =2,故选C. 5.x -y +5=0 点P 在圆内,则过点P 且被点P 平分的弦所在的直线和圆心与P 的连线垂直.又圆心与P 的连线的斜率是-1,则所求直线的斜率为1,且过点P (2,-3),则所求直线方程是x -y -5=0.6.25 圆的半径是2,圆心O (0,0)到l :4x +3y -12=0的距离是d =|12|42+32=125,所以在圆x 2+y 2=4上,与直线l :4x +3y -12=0的距离最小值是d -r =125-2=25.7.±62 如图易得d =32=|b 2|,所以b =±62.8.解析:(1)如图,设过P 点的圆的切线方程为y +1=k (x -2), 即kx -y -2k -1=0.因为圆心(1,2)到切线的距离为2,即|-k -3|1+k2=2, 所以k 2-6k -7=0,解得k =7或k =-1,所以所求的切线方程为7x -y -15=0或x +y -1=0. (2)连接PC ,CA .在Rt △PCA 中,|P A |2=|PC |2-|CA |2=8, 所以过P 点的圆C 的切线长为2 2.(3)由⎩⎪⎨⎪⎧7x -y -15=0(x -1)2+(y -2)2=2,解得A (125,95). 又由⎩⎪⎨⎪⎧x +y -1=0(x -1)2+(y -2)2=2,解得B (0,1), 所以直线AB 的方程为x -3y +3=0.9.解析:(1)设圆O 的半径为r ,因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)因为直线l :y =kx +3与圆O 交于A ,B 两点,所以圆心O 到直线l 的距离d =|3|1+k 2<2,解得k >52或k <-52. 假设存在点M ,使得四边形OAMB 为菱形, 则OM 与AB 互相垂直且平分,所以原点O 到直线l :y =kx +3的距离为 d =12|OM |=1, 所以圆心O 到直线l 的距离d =|3|1+k 2=1,解得k 2=8,即k =±22,经验证满足条件, 所以存在点M ,使得四边形OAMB 为菱形. 第57讲 椭圆1.A 由d 1+d 2=2a =4c ,所以e =c a =12,故选A.2.B 因为方程x 2k +1+y23-k=1(k ∈R )表示焦点在x 轴上的椭圆,所以⎩⎪⎨⎪⎧3-k >0k +1>0k +1>3-k,解得1<k <3,故选B.3.A 由条件知PF 2⊥x 轴,则|PF 2|=b 2a =95,于是|PF 1|=2a -|PF 2|=2×5-95=415,故选A.4.C 由于O 为F 1、F 2的中点, 则|PF 1→+PF 2→|=2|PO →|,而当P 为短轴端点时,|PO →|取得最小值1,所以|PF 1→+PF 2→|的最小值为2,故选C.5.19 由题意得1m =3×1,所以m =19. 6.255由直线方程知椭圆的焦点为(-2,0),顶点为(0,1),则b =1,c =2,所以a =12+22=5,所以e =c a =255. 7.6 由题知⎩⎪⎨⎪⎧ 2b =5c a =23,即⎩⎨⎧ b =52a 2-b 2a 2=49,解得⎩⎨⎧a =32b =52,由椭圆的定义知△ABF 2的周长为4a =4×32=6. 8.解析:(1)设椭圆C 的焦距为2c .由已知可得F 1到直线l 的距离为3c =23,故c =2.所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2).由题意知y 1<0,y 2>0.直线l 的方程为y =3(x -2).联立,得方程组⎩⎪⎨⎪⎧ y =3(x -2)x 2a 2+y 2b 2=1, 消去x ,得(3a 2+b 2)y 2+43b 2y -3b 4=0,解得y 1=-3b 2(2+2a )3a 2+b 2,y 2=-3b 2(2-2a )3a 2+b 2. 因为AF 2→=2F 2B →,所以-y 1=2y 2,即3b 2(2+2a )3a 2+b 2=2×-3b 2(2-2a )3a 2+b 2,得a =3. 而a 2-b 2=4,所以b = 5. 故椭圆C 的方程为x 29+y 25=1. 9.解析:(1)依题意,设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0), 则⎩⎨⎧ 1b 2=1e =c a =a 2-b 2a =22,解得⎩⎨⎧ b =1a =2, 所以椭圆C 的方程为x 22+y 2=1. (2)由⎩⎨⎧x 22+y 2=1y =1n +1,得x 2n =2n (n +2)(n +1)2,a n =12x 2n =n (n +2)(n +1)2, 所以a 1·a 2·…·a n =1×322×2×432×3×542×…×n (n +2)(n +1)2=1×(n +2)2(n +1)>12. 第58讲 双曲线1.C 双曲线的方程2x 2-y 2=8可化为x 24-y 28=1,则a =2,故实轴长2a =4,故选C. 2.B 因为双曲线x 2-ky 2=1的一个焦点是(3,0),故1+1k =9,所以k =18,故选B. 3.C 由|P A |-|PB |=3知P 点的轨迹是以A ,B 为焦点的双曲线一支(以B 为焦点的一支),因为2a =3,2c =4,所以a =32,c =2,所以|P A |min =a +c =72,故选C. 4.D 根据题意设双曲线方程为x 2-y 23=λ(λ>0),即x 2λ-y 23λ=1, 则a 2=λ,b 2=3λ,所以c 2=a 2+b 2=4λ=16⇒λ=4,所以双曲线方程为x 24-y 212=1,故选D. 5.2 由题知b a =3,则(b a )2=3,故e =1+(b a)2=2. 6.16 由双曲线方程得,2a =8.由双曲线的定义得|PF 2|-|PF 1|=2a =8,①|QF 2|-|QF 1|=2a =8,②①+②,得|PF 2|+|QF 2|-(|PF 1|+|QF 1|)=16,所以|PF 2|+|QF 2|-|PQ |=16.7.3215 双曲线右顶点A (3,0),右焦点F (5,0),双曲线一条渐近线的斜率是43,直线FB 的方程是y =43(x -5),与双曲线方程联立解得点B 的纵坐标为-3215,故△AFB 的面积为12×|AF ||y B |=12×2×3215=3215. 8.解析:圆(x +2)2+y 2=2的圆心为A (-2,0),半径为 2.设动圆圆心为M ,半径为r .由已知条件,知⎩⎨⎧ |MA |=r +2|MB |=r⇒|MA |-|MB |=2, 所以点M 的轨迹为以A 、B 为焦点的双曲线的右支,且a =22,c =2,所以b 2=72. 所以M 点的轨迹方程为x 212-y 272=1(x >0). 9.解析:(1)由双曲线的定义可知,曲线E 是以F 1(-2,0),F 2(2,0)为焦点的双曲线的左支,且c =2,a =1,易知b =1,故双曲线E 的方程为x 2-y 2=1(x <0).设A (x 1,y 1),B (x 2,y 2),由题意建立方程组:⎩⎪⎨⎪⎧y =kx -1x 2-y 2=1,消去y 得(1-k 2)x 2+2kx -2=0, 又已知直线与双曲线的左支交于A 、B 两点,有⎩⎪⎨⎪⎧ 1-k 2≠0Δ=(2k )2+8(1-k 2)>0x 1+x 2=-2k 1-k2<0x 1x 2=-21-k 2>0,解得-2<k <-1.(2)因为|AB |=1+k 2·|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·(-2k 1-k 2)2-4·-21-k 2=2(1+k 2)(2-k 2)(1-k 2)2. 依题意得2(1+k 2)(2-k 2)(1-k 2)2=63, 整理后得28k 4-55k 2+25=0,所以k 2=57或k 2=54,但-2<k <-1,所以k =-52. 第59讲 抛物线1.D2.C 由抛物线的对称性可知,另两个顶点一组在焦点的下方,一组在焦点的上方,共有两组,故选C.3.C 分别过A ,B 作准线的垂线,垂足分别为E ,D ,如图.因为|BC |=2|BF |,由抛物线的定义可知|BF |=|BD |,∠BCD =30°.又|AE |=|AF |=3,所以|AC |=6,即F 为AC 的中点,所以p =12|EA |=32, 故抛物线的方程为y 2=3x ,故选C.4.y 2=8x 由条件知-p 2=-2,所以p =4, 故抛物线的方程为y 2=8x .5.54 由已知可得1=14a ,所以a =4,所以x 2=4y . 由抛物线的定义可知点A 到焦点的距离等于A 到准线的距离:y A +p 2=14+1=54. 6.y 2=±8x 由题可知抛物线的焦点坐标为(a 4,0),于是过焦点且斜率为2的直线l 的方程为y =2(x -a 4),令x =0,可得A 点坐标为(0,-a 2),所以S △OAF =12·|a |4·|a |2=4,所以a =±8,故抛物线的方程为y 2=±8x .7.π6过N 作NQ ⊥准线于Q ,则|NQ |=|NF |. 因为|NF |=32|MN |, 所以|NQ |=32|MN |, 所以cos ∠QNM =|QN ||MN |=32, 所以∠QNM =π6, 所以∠NMF =∠QNM =π6. 8.解析:(1)由题意,可设抛物线C 的标准方程为y 2=2px ,因为点A (2,2)在抛物线C 上,所以p =1,所以抛物线C 的标准方程为y 2=2x .(2)由(1)可得焦点F 的坐标为(12,0), 又直线OA 的斜率为1,所以与直线OA 垂直的直线的斜率为-1.所以过点F ,且与直线OA 垂直的直线的方程为y -0=-1(x -12),即x +y -12=0. 9.解析:(1)由抛物线的定义得p 2+4=5,则p =2, 所以抛物线的标准方程为y 2=4x .(2)证明:设圆心C 的坐标为(y 204,y 0),半径为r . 因为圆C 在y 轴上截得的弦长为4,所以r 2=4+(y 204)2, 故圆C 的方程为(x -y 204)2+(y -y 0)2=4+(y 204)2, 整理得(1-x 2)y 20-2yy 0+(x 2+y 2-4)=0,① 对于任意的y 0∈R ,方程①均成立.故有⎩⎪⎨⎪⎧ 1-x 2=0-2y =0x 2+y 2=4,解得⎩⎪⎨⎪⎧x =2y =0. 所以圆C 过定点(2,0).第60讲 直线与圆锥曲线的位置关系1.C 易知y 轴与抛物线切于原点满足条件;直线y =2与抛物线的对称轴平行也满足条件;另外画出图形,易知有一条直线与抛物线切于x 轴上方,故这样的直线有3条.选C. 2.A3.A 双曲线渐近线斜率小于直线的斜率,即b a<tan 60°=3,所以双曲线的离心率e =c a =1+(b a)2<2, 即1<e <2,故选A.4.C 设∠AFx =θ(0<θ<π)及|BF |=m ,则点A 到准线l :x =-1的距离为3,得3=2+3cos θ⇔cos θ=13. 又m =2+m cos(π-θ)⇔m =21+cos θ=32, △AOB 的面积为S =12·|OF |·|AB |sin θ=12×1×(3+32)×223=322,故选C. 5.(14,3)∪(3,+∞) 由⎩⎪⎨⎪⎧x 23+y 2m =1x +2y -2=0消去x 并整理得 (3+4m )y 2-8my +m =0, 根据条件得⎩⎪⎨⎪⎧ m ≠3m >0Δ=64m 2-4m (4m +3)>0,解得14<m <3或m >3. 6.3±54 设直线方程为x =my +p 2, 代入抛物线方程得y 2-2mpy -p 2=0,则⎩⎪⎨⎪⎧y A +y B =2mp =1y A y B =-p 2, 又|AB |=1+m 2·(y A +y B )2-4y A ·y B =1+m 2·1+4p 2, 即⎩⎨⎧2mp =11+m 2·1+4p 2=3⇒p =3±54. 7.①③ 由条件知考虑给出直线与双曲线x 2-y 23=1右支的交点情况,作图易知①③直线与双曲线右支有交点,故填①③.8.解析:设A (x 1,y 1),B (x 2,y 2),代入椭圆的方程并作差,得a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0.而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k OC =22, 代入上式可得b =2a .又|AB |=2|x 2-x 1|=22,即|x 2-x 1|=2,其中x 1、x 2是方程(a +b )x 2-2bx +b -1=0的两根, 则|x 2-x 1|2=(2b a +b )2-4·b -1a +b=4, 将b =2a 代入,得a =13,b =23, 所以所求椭圆的方程是x 23+23y 2=1. 9.解析:(1)依题意F (1,0),设直线AB 方程为x =my +1,将直线AB 的方程与抛物线的方程联立,消去x 得y 2-4my -4=0,设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4m ,y 1y 2=-4,①因为AF →=2FB →,所以y 1=-2y 2,②联立①和②,消去y 1,y 2,得m =±24, 所以直线AB 的斜率是±2 2.(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2S △AOB ,因为2S △AOB =2×12·|OF |·|y 1-y 2| =(y 1+y 2)2-4y 1y 2=41+m 2.所以m =0时,四边形OACB 的面积最小,最小值是4.第61讲 轨迹问题1.D 因为定点F (1,-1)在直线l :x -1=0上,所以轨迹为过F (1,-1)与直线l 垂直的一条直线,故选D.2.D 设x =m +n ,y =mn ,则x 2=(m +n )2=m 2+n 2+2mn =1+2y ,且由于m ,n 的取值都有限制,因此变量x 的取值也有限制,所以点(m +n ,n )的轨迹为抛物线的一部分,故选D.3.B 由条件知|P A |=|PQ |,则|PO |+|PQ |=|PO |+|P A |=R (R >|OQ |),所以点P 的轨迹是椭圆,故选B.4.C 设M (x ,y ),P (x 0,y 0),由2MA →=AP →,则2(-1-x,0-y )=(x 0+1,y 0-0),即(-2-2x ,-2y )=(x 0+1,y 0),所以⎩⎪⎨⎪⎧ x 0=-2x -3y 0=-2y . 又点P (x 0,y 0)在圆x 2+y 2=2上,所以x 20+y 20=2,即(-2x -3)2+(-2y )2=2,化简得(x -32)2+y 2=12,故选C. 5.x +2y -5=0 设C (x ,y ),则OC →=(x ,y ),OA →=(3,1),OB →=(-1,3).因为OC →=λ1OA →+λ2OB →,所以⎩⎪⎨⎪⎧x =3λ1-λ2y =λ1+3λ2. 又λ1+λ2=1,所以x +2y -5=0.6.32x 2+3y 2=1(x >0,y >0) 解析:设A (a,0),B (0,b ),a >0,b >0,由BP →=2P A →,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0. 因为点Q 与点P 关于y 轴对称,所以点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入上式得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).7.(x -2)2+(y +1)2=1解析:设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎨⎧ x =x 1+42y =y 1-22,即⎩⎪⎨⎪⎧ x 1=2x -4y 1=2y +2, 代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.8.解析:(1)设椭圆长半轴长及半焦距分别为a ,c ,由已知得⎩⎪⎨⎪⎧ a -c =1a +c =7,解得⎩⎪⎨⎪⎧ a =4c =3,所以b 2=7, 所以椭圆C 的方程为x 216+y 27=1. (2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4].由已知得x 2+y 21x 2+y 2=e 2. 而e =34,故16(x 2+y 21)=9(x 2+y 2).① 由点P 在椭圆C 上得y 21=112-7x 216,代入①式并化简得9y 2=112, 所以点M 的轨迹方程为y =±473(-4≤x ≤4),轨迹是两条平行于x 轴的线段. 9.解析:(1)两圆半径都为1,两圆心分别为C 1(0,-4)、C 2(0,2),由题意得CC 1=CC 2,可知圆心C 的轨迹是线段C 1C 2的垂直平分线,C 1C 2的中点为(0,-1),直线C 1C 2的斜率等于零,故圆心C 的轨迹是线段C 1C 2的垂直平分线,其方程为y =-1,即圆C 的圆心轨迹L 的方程为y =-1.(2)因为m =n ,所以M (x ,y )到直线y =-1的距离与到点F (0,1)的距离相等,故点M 的轨迹Q 是以y =-1为准线,点F (0,1)为焦点,顶点在原点的抛物线,而p 2=1,即p =2,所以,轨迹Q 的方程是x 2=4y . 第62讲 圆锥曲线的综合问题1.D 由λx 2-x -λy +1=0,得λ(x 2-y )-(x -1)=0.依题设⎩⎪⎨⎪⎧ x 2-y =0x -1=0,即⎩⎪⎨⎪⎧x =1y =1, 可知不论λ取何值,曲线C 过定点(1,1).2.B 如图,根据抛物线的定义可知|PF |等于点P 到准线l 的距离|PQ |.则当A 、P ′、Q ′三点共线时|P A |+|PF |最小,此时,可求得P ′(2,2).3.D 设P (x ,y ),则M (a b y ,y ),N (-a by ,y ), 于是PM →·PN →=(a b y -x,0)·(-a by -x,0) =(a b y -x )(-a b y -x )=1b 2(b 2x 2-a 2y 2) =a 2b 2b 2=a 2, 所以PM →·NP →=-PM →·PN →=-a 2,故选D.4.A 设P (x ,y ),由题意得F (-2,0),所以OP →·FP →=(x +2,y )·(x ,y )=x 2+2x +y 2=49x 2+2x +5 =49(x +94)2+114(-3≤x ≤3), 所以最小值为114,故选A.5.1 如图,双曲线x 2-y 2=4的两条渐近线为y =±x ,即x ±y =0,设P 在另一条渐近线上的射影为R ,则|PQ |=|x 0-y 0|2, |PR |=|x 0+y 0|2, 所以S △POQ =12|PQ ||PR |=|x 20-y 20|4=1. 6.2 8 由题设知圆的圆心为(2,0),半径为1,本题可转化为求椭圆上的点P (x 0,y 0)到定点A (2,0)的最近、最远距离;易求得|P A |min =3,|PA |max =7,从而知所求的最近距离为2,最远距离为8.7.3-1 设正六边形的边长为c ,则焦距为2c ,连接EA ,AD ,则在三角形EAD 中,|EA |+|ED |=2a ,DE ⊥AE ,所以DE 2+AE 2=AD 2,DE =12AD ,解得AE =3c , 所以3c +c =2a ,所以e =3-1.8.解析:(1)证明:由⎩⎪⎨⎪⎧b 2x 2+a 2y 2=a 2b 2x +y -1=0 ⇒(a 2+b 2)x 2-2a 2x +a 2(1-b 2)=0.①由Δ>0⇒a 2b 2(a 2+b 2-1)>0,因为a >b >0,所以a 2+b 2>1.设P (x 1,y 1),Q (x 2,y 2),则x 1,x 2是①的两根,所以x 1+x 2=2a 2a 2+b 2,x 1x 2=a 2(1-b 2)a 2+b 2.② 由OP →·OQ →=0得,x 1x 2+y 1y 2=0,即 2x 1x 2-(x 1+x 2)+1=0,③将②代入③得,a 2+b 2=2a 2b 2,所以1a 2+1b2=2,为定值. (2)由(1)a 2+b 2=2a 2b 2得2-e 2=2a 2(1-e 2),所以a 2=2-e 22(1-e 2)=12+12(1-e 2), 又33≤e ≤22,所以52≤a ≤62,长轴2a ∈[5,6]. 9.解析:(1)由题意可知:a +c =2+1,12×2c ×b =1, 因为a 2=b 2+c 2,所以a 2=2,b 2=1,c 2=1,所以所求椭圆的方程为x 22+y 2=1. (2)设直线l 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),M (54,0), 联立⎩⎪⎨⎪⎧ x 22+y 2=1y =k (x -1),消去y ,得 (1+2k 2)x 2-4k 2x +2k 2-2=0, 则⎩⎨⎧ x 1+x 2=4k 21+2k 2x 1x 2=2k 2-21+2k 2Δ>0. 因为MA →=(x 1-54,y 1),MB →=(x 2-54,y 2), MA →·MB →=(x 1-54)(x 2-54)+y 1y 2 =-54(x 1+x 2)+x 1x 2+2516+y 1y 2 =-54(x 1+x 2)+x 1x 2+2516+k 2(x 1-1)(x 2-1) =(-54-k 2)(x 1+x 2)+(1+k 2)x 1x 2+k 2+2516=-716. 对任意x ∈R ,有MA →·MB →=-716为定值.。
2015高考数学一轮复习知识点:几何
2015年高考数学一轮复习知识点:几何刚升入高三,新高三学生们会面临比以往更繁重的学习任务,学习和生活节奏将变得更快。
小编整理了2015年高考数学第一轮复习解析几何专题,希望为大家提供服务。
(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。
(2)整体平衡,重点突出:对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。
近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:
①求曲线方程(类型确定、类型未定);
②直线与圆锥曲线的交点问题(含切线问题);
③与曲线有关的最(极)值问题;
④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);
⑤探求曲线方程中几何量及参数间的数量特征;
(3)能力立意,渗透数学思想:一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。
(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。
加大与相关知识的联系(如向量、函数、方程、
不等式等),凸现教材中研究性学习的能力要求。
加大探索性题型的分量。
精心整理,仅供学习参考。
2015届高考理科数学第一轮总复习教案14
“平面解析几何”类题目的审题技巧与解题规范[技法概述]在高考数学试题中,一些题目从已知到结论不易证明或解决,可采用逆向分析法,即从要证明的结论出发,逐步寻求每一步结论成立的充分条件.直至最后,把要证明的结论归结为一个明显成立的条件或已知定理为止,[适用题型]以下几种题型常用到此审题技巧与方法: (1)解析几何中证明不等式或定值问题; (2)函数、导数不等式中不等式的证明问题; (3)立体几何中线面平行与垂直问题.[典例] (2013·湖南高考)(本小题满分13分)过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2,且k 1+k 2=2,l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(1)若k 1>0,k 2>0,证明:FM ·FN <2p 2; (2)若点M 到直线l 的距离的最小值为755,求抛物线E 的方程.[解题流程]第一步 将l 方程联立抛物线方程消元后建立点A 、B 坐标关系x 1+x 2,y 1+y 2⇐⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡解:(1)由题意知,抛物线E 的焦点为F ⎝⎛⎭⎪⎪⎫0,p 2,直线l 1的方程为y =k 1x +p 2.(1分)由⎩⎪⎨⎪⎧y =k 1x +p 2,x 2=2py ,得x 2-2pk 1x -p 2=0.设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1,x 2是上述方程的两个实数根,而x 1+x 2=2pk 1,y 1+y 2=k 1(x 1+x 2)+p =2pk 21+p .2分 [失分警示]第二步 求FM ,FN ,FM ·FN ⇐⎣⎢⎢⎢⎢⎢⎡所以点M 的坐标为⎝ ⎛⎭⎪⎪⎫pk 1,pk 21+p 2,同理可得点N 的坐标为⎝ ⎛⎪⎪pk 2,pk 22+p 2 FN =(pk 2,pk 22).于是FM ·FN =p 2(k 1k 2+k 21k 22). (3分) l 1,l 2是成失误只需类比即可得. 第三步逆推分析或直接据条件推证结论⇐⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡法一 要证FM ·FN <2p 2,只要证k 1k 2+k 21k 22<2再证-2<k 1k 2<1由k 1>0,k 2>0,k 1≠k 2,即证0<k 1k 2<1因k 1+k 2=2>2k 1k 2,即0<k 1k 2<1成立法二 因为k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2,所以0<k 1k 2<⎝ ⎛⎭⎪⎫k 1+k 222=1.故FM ·FN <p 2(1+12)=2p 2.(6分)忽视条件≠k 2,从而“=”不成立.[解答题规范专练] 平面解析几何第四步 确定半径求圆M 方程⇐⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡(2)由抛物线的定义得|F A |=y 1+p 2,|FB |=y 2+p 2,所以|AB |=y 1+y 2+p =2pk 21+2p ,从而圆M 的半径r 1=pk 21+p . (7分)故圆M 的方程为(x -pk 1)2+⎝ ⎛⎭⎪⎫y -pk 21-p 22=(pk 21+p )2,化简得x 2+y 2-2pk 1x -p (2k 21+1)y -34p 2=0. (8分)第五步 类比求圆N 方程并求圆M 、N 公共弦所在方程⇐⎣⎢⎢⎢⎢⎡同理可得圆N 的方程为x +y -2pk 2x -p (2k 22+1)y -34p =0.(9分)于是圆M ,圆N 的公共弦所在直线l 的方程为(k 2-k 1)x +(k 22-k 21)y =0.又k 2-k 1≠0,k 1+k 2=2,则l 的方程为x +2y =0.(10分)M 的方N 的方程只,k 2调换即可,再次运算造成丢分.第六步 建立目标函数并求最值⇐⎣⎢⎢⎢⎢⎢⎡因为p >0d =|2pk 21+pk 1+p |5==p ⎣⎢⎢⎡⎦⎥⎥⎤2⎝ ⎛⎭⎪⎪⎫k 1+142+785. (112k 21+k 1中Δ<0所以绝.第七步 确定所求方程⇐⎣⎢⎢⎢⎢⎢⎡故当k 1=-14时,d 取最小值7p 85. (12分)由题设,7p 85=755,解得p =8.故所求的抛物线E 的方程为x 2=16y .(13分)1.(2014·武汉模拟)设点P 是圆x 2+y 2=4上任意一点,由点P 向x 轴作垂线PP 0,垂足为P 0,且0MP =320PP .(1)求点M 的轨迹C 的方程;(2)设直线l :y =kx +m (m ≠0)与(1)中的轨迹C 交于不同的两点A ,B ,若直线OA ,AB ,OB 的斜率成等比数列,求实数m 的取值范围.解:(1)设点M (x ,y ),P (x 0,y 0),则由题意知P 0(x 0,0). 由0MP =(x 0-x ,-y ),0PP =(0,-y 0),且0MP =320PP , 得(x 0-x ,-y )=32(0,-y 0).∴⎩⎨⎧x 0-x =0,-y =-32y 0,于是⎩⎨⎧x 0=x ,y 0=23y .又x 20+y 20=4,∴x 2+43y 2=4.∴点M 的轨迹C 的方程为x 24+y 23=1. (2)设A (x 1,y 1),B (x 2,y 2).联立⎩⎨⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0. ∴Δ=(8mk )2-16(3+4k 2)(m 2-3)>0, 即3+4k 2-m 2>0.(*)且⎩⎨⎧x 1+x 2=-8mk3+4k 2,x 1x 2=4(m 2-3)3+4k 2.依题意,k 2=y 1y 2x 1x 2,即k 2=kx 1+m x 1·kx 2+m x 2.∴x 1x 2k 2=k 2x 1x 2+km (x 1+x 2)+m 2.∴km (x 1+x 2)+m 2=0,即km ⎝ ⎛⎭⎪⎫-8mk 3+4k 2+m 2=0.∵m ≠0,∴k ⎝ ⎛⎭⎪⎫-8k 3+4k 2+1=0,解得k 2=34.将k 2=34代入(*),得m 2<6.∴m 的取值范围是(-6,0)∪(0,6).2.(2014·合肥模拟)已知椭圆:x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,且过点⎝⎛⎭⎪⎫3,12. (1)求椭圆的方程;(2)设A ,B ,M 是椭圆上的三点.若OM =35OA +45OB ,点N 为线段AB 的中点,C ⎝ ⎛⎭⎪⎫-62,0,D ⎝ ⎛⎭⎪⎫62,0,求证:|NC |+|ND |=2 2. 解:(1)由已知可得⎩⎨⎧a =2,3a 2+14b 2=1,故⎩⎪⎨⎪⎧a =2,b =1,所以椭圆的方程为x 24+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),则x 214+y 21=1,x 224+y 22=1.由OM =35OA +45OB ,得M ⎝ ⎛⎭⎪⎫35x 1+45x 2,35y 1+45y 2. 因为M 是椭圆C 上一点,所以⎝ ⎛⎭⎪⎫35x 1+45x 224+⎝⎛⎭⎪⎫35y 1+45y 22=1,即⎝ ⎛⎭⎪⎫x 214+y 21⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫x 224+y 22⎝ ⎛⎭⎪⎫452+2×35×45×⎝ ⎛⎭⎪⎫x 1x 24+y 1y 2=1, 得⎝ ⎛⎭⎪⎫352+⎝ ⎛⎭⎪⎫452+2×35×45×⎝⎛⎭⎪⎫x 1x 24+y 1y 2=1, 故x 1x 24+y 1y 2=0.又线段AB 的中点N 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22, 所以⎝ ⎛⎭⎪⎫x 1+x 2222+2⎝ ⎛⎭⎪⎫y 1+y 222=12⎝ ⎛⎭⎪⎫x 214+y 21+12⎝ ⎛⎭⎪⎫x 224+y 22+x 1x 24+y 1y 2=1, 从而线段AB 的中点N ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22在椭圆x 22+2y 2=1上. 又椭圆x 22+2y 2=1的两焦点恰为C ⎝ ⎛⎭⎪⎫-62,0,D ⎝ ⎛⎭⎪⎫62,0, 所以|NC |+|ND |=2 2.3.(2014·哈师大附中模拟)已知点E (m,0)(m >0)为抛物线y 2=4x 内一个定点,过E 作斜率分别为k 1,k 2的两条直线交抛物线于点A ,B ,C ,D ,且M ,N 分别是AB ,CD 的中点.(1)若m =1,k 1k 2=-1,求△EMN 面积的最小值;(2)若k 1+k 2=1,求证:直线MN 过定点. 解:(1)当m =1时,E 为抛物线y 2=4x 的焦点,∵k 1k 2=-1,∴AB ⊥CD.设AB 的方程为y =k 1(x -1),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k 1(x -1),y 2=4x 得k 1y 2-4y -4k 1=0,y 1+y 2=4k 1,y 1y 2=-4.∵M ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,∴M ⎝ ⎛⎭⎪⎫2k 21+1,2k 1,同理,点N (2k 21+1,-2k 1), ∴S △EMN =12|EM |·|EN |=12 ⎝ ⎛⎭⎪⎫2k 212+⎝ ⎛⎭⎪⎫2k 12·(2k 21)2+(-2k 1)2。
高三数学解析几何试题答案及解析
高三数学解析几何试题答案及解析1.(本小题满分10分)选修4-1:几何证明选讲如图,是圆的直径,是半径的中点,是延长线上一点,且,直线与圆相交于点、(不与、重合),与圆相切于点,连结,,.(Ⅰ)求证:;(Ⅱ)若,求.【答案】(Ⅰ)详见解析(Ⅱ)【解析】(Ⅰ)证明目标可看做线段成比例,即证明思路确定为证明三角形相似:利用切割线定理得:,又由与相似,得;所以(Ⅱ)由(1)知,,与相似,则,所以试题解析:(1)连接,,,为等边三角形,则,可证与相似,得;又,则(2)由(1)知,,与相似,则因为,所以【考点】三角形相似,切割线定理2.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下,圆的方程为.(Ⅰ)求直线的普通方程和圆的圆心的极坐标;(Ⅱ)设直线和圆的交点为、,求弦的长.【答案】(Ⅰ)的普通方程为,圆心;(Ⅱ).【解析】(Ⅰ)消去参数即可将的参数方程化为普通方程,在直角坐标系下求出圆心的坐标,化为极坐标即可;(Ⅱ)求出圆心到直线的距离,由勾股定理求弦长即可.试题解析:(Ⅰ)由的参数方程消去参数得普通方程为 2分圆的直角坐标方程, 4分所以圆心的直角坐标为,因此圆心的一个极坐标为. 6分(答案不唯一,只要符合要求就给分)(Ⅱ)由(Ⅰ)知圆心到直线的距离, 8分所以. 10分【考点】1.参数方程与普通方程的互化;2.极坐标与直角坐标的互化.:的焦点,且抛物线3.(本题满分12分)如图,O为坐标原点,点F为抛物线C1C1上点P处的切线与圆C2:相切于点Q.(Ⅰ)当直线PQ的方程为时,求抛物线C1的方程;(Ⅱ)当正数变化时,记S1,S2分别为△FPQ,△FOQ的面积,求的最小值.【答案】(Ⅰ);(Ⅱ).【解析】第一问要求抛物线的方程,任务就是求的值,根据导数的几何意义,设出切点坐标,从而求得,再根据切点在切线上,得,从而求得,进而得到抛物线的方程,第二问根据三角形的面积公式,利用题中的条件,将两个三角形的面积转化为关于和切点横坐标的关系式,从而有,利用基本不等式求得最值.试题解析:(Ⅰ)设点,由得,,求导,……2分因为直线PQ的斜率为1,所以且,解得,所以抛物线C1的方程为.(Ⅱ)因为点P处的切线方程为:,即,根据切线又与圆相切,得,即,化简得,由,得,由方程组,解得,所以,点到切线PQ的距离是,所以,,所以,当且仅当时取“=”号,即,此时,,所以的最小值为.【考点】导数的几何意义,三角形的面积,基本不等式.4.(本小题满分12分)已知椭圆的左、右焦点分别为F1(-3,0),F2(3,0),直线y=kx与椭圆交于A、B两点.(Ⅰ)若三角形AF1F2的周长为,求椭圆的标准方程;(Ⅱ)若,且以AB为直径的圆过椭圆的右焦点,求椭圆离心率e的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)直接由题意和椭圆的概念可列出方程组,进而可求出椭圆的标准方程即可;(Ⅱ)首先设出点,然后联立直线与椭圆的方程并整理可得一元二次方程,进而由韦达定理可得,再结合可列出等式并化简即可得到等式,最后结合已知,即可求出参数的取值范围,进而得出椭圆离心率e的取值范围即可.试题解析:(Ⅰ)由题意得,得.结合,解得,.所以,椭圆的方程为.(Ⅱ)由得.设.所以,易知,,因为,,所以.即,将其整理为.因为,所以,即,所以离心率.【考点】1、椭圆的标准方程;2、直线与椭圆的相交综合问题;5.(本小题满分12分)椭圆()的上顶点为,是上的一点,以为直径的圆经过椭圆的右焦点.(1)求椭圆的方程;(2)动直线与椭圆有且只有一个公共点,问:在轴上是否存在两个定点,它们到直线的距离之积等于?如果存在,求出这两个定点的坐标;如果不存在,说明理由.【答案】(1);(2)存在两个定点,.【解析】(1)由题设可得①,又点P在椭圆C上,可得②,又③,由①③联立解得c,b2,即可得解.(2)设动直线l的方程为y=kx+m,代入椭圆方程消去y,整理得(﹡),由△=0,得,假设存在,满足题设,则由对任意的实数k恒成立.由即可求出这两个定点的坐标.试题解析:(1),,由题设可知,得①又点在椭圆上,,②③①③联立解得,,故所求椭圆的方程为(2)当直线的斜率存在时,设其方程为,代入椭圆方程,消去,整理得()方程()有且只有一个实根,又,所以,得假设存在,满足题设,则由对任意的实数恒成立,所以,解得,或当直线的斜率不存在时,经检验符合题意.总上,存在两个定点,,使它们到直线的距离之积等于.……12分【考点】1、直线与圆锥曲线的关系;2、椭圆的标准方程.【方法点晴】本题主要考查了椭圆的标准方程的解法,考查了直线与圆锥曲线的关系,综合性较强,属于中档题.处理直线与圆锥曲线的关系问题时,注意韦达定理的应用,同时还得特别注意直线斜率不存在时的情况的验证.6.直线被圆截得的弦长为()A.1B.2C.4D.【答案】C【解析】圆心,圆心到直线的距离,半径,所以最后弦长为.故选C.【考点】点到直线的距离.7.(本小题12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。
2015高考数学解析几何完美版
解析几何总结一、直线1、 直线的倾斜角:一条直线向上的方向与X 轴的正方向所成的最小正角。
2、 范围 0θπ≤<3、 直线的斜率:当倾斜角不是90时,倾斜角的正切值。
tan ()2k παα=≠4、 直线的斜率公式:设111(,)P x y ,222(,)P x y 12()x x ≠ 2121y y k x x -=-5、 直线的倾斜角和斜率关系:(如右图) 02πα≤<;0k >;单调增;2παπ<<,0k <;单调增6、 直线的方程(1)点斜式:11()y y k x x -=- ⑵、斜截式:y kx b =+ (3)两点式:112121y y x x y y x x --=-- ⑷、截距式:1x y a b += ⑸、一般式:220(0)Ax By C A B ++=+≠⑹、参数式: 11cos sin x x t y y t θθ=+⋅⎧⎨=+⋅⎩(t 为参数)参数t 几何意义:定点到动点的向量7、 直线的位置关系的判定(相交、平行、重合)1l :11y k x b =+;2l :22y k x b =+ 1111:0l A x B y C ++=,2222:0l A x B y C ++=平行:12k k =且12b b ≠111222A B C A B C =≠相交:12k k ≠1122A B A B ≠重合:12k k =且12b b =111222A B C A B C == 垂直:121k k ⋅=- 12120A A B B +=8、 到角及夹角(新课改后此部分已删掉)到角:直线1l 依逆时方向旋转到与2l 重合时所有转的角。
2121tan 1k k k k α-=+夹角:不大于直角的从1l 到2l 的角叫1l 与2l 所成的角,简称夹角。
2121tan 1k k k k α-=+9、 点到直线的距离(应用极为广泛)P (00,x y )到1:0l Ax By C ++=的距离d =平行线间距离:11:0l Ax By C ++= 22:0l Ax By C ++=d =10、简单线性规划(确定可行域,求最优解,建立数学模型)⑴、目标函数:要求在一定条件下求极大值或极小值问题的函数。
高三数学解析几何试题答案及解析
高三数学解析几何试题答案及解析1.如图,四边形ABCD内接于⊙,是⊙的直径,于点,平分.(Ⅰ)证明:是⊙的切线(Ⅱ)如果,求.【答案】(Ⅰ)详见解析;(Ⅱ)【解析】(Ⅰ)连结,证得∥,即可证得.(Ⅱ)证得∽根据相似比可求得.因为是⊙的直径,所以,从而可求得,根据切割线定理得,从而可得.试题解析:解:(Ⅰ)连结,则,所以,又,所以,所以∥.因为,所以.所以是⊙的切线.(Ⅱ)由(Ⅰ)可得∽,所以,即,则,所以,从而,所以.由切割线定理,得,所以,所以.【考点】1圆的切线; 2切割线定理.2.(本小题满分10分)选修4—1:几何证明选讲如图,为⊙的直径,直线与⊙相切于,垂直于,垂直于,垂直于,连接,.证明:(Ⅰ);(Ⅱ).【答案】(Ⅰ)(Ⅱ)均见解析.【解析】(Ⅰ)由同弧上的圆周角等于弦切角可得,在直角三角形可证,从而可证结论成立.(Ⅱ)先证Rt△BCE≌Rt△BFE,得BC=BF.,再证Rt△ADE≌Rt△AFE,得AD=AF.由射影定理得EF2=AF·BF,可证结论成立.试题解析:(Ⅰ)由直线与⊙相切,得.由AB为⊙O的直径,得AE⊥EB,从而∠EAB+∠EBF=;又EF⊥AB,得∠FEB+∠EBF=,从而∠FEB=∠EAB. 故∠FEB=∠CEB.(Ⅱ)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE是公共边,得Rt△BCE≌Rt△BFE,所以BC=BF.类似可证,Rt△ADE≌Rt△AFE,得AD=AF.又在Rt△AEB中,EF⊥AB,故EF2=AF·BF,所以EF2=AD·BC.【考点】1.圆的相关知识;2.三角形全等的判定与性质.3.已知是双曲线的左右焦点,若双曲线右支上存在一点与点关于直线对称,则该双曲线的离心率为()A.B.C.2D.【答案】A【解析】由题意过且垂直于的直线方程为,它与的交点坐标为,所以点的坐标为,因为点在双曲线上,,可得,所以选A.【考点】双曲线的性质的应用.4.(本小题满分10分)选修4—4:极坐标与参数方程在直角坐标系中,直线的参数方程为(为参数).再以原点为极点,以正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位.在该极坐标系中圆的方程为.(1)求圆的直角坐标方程;(2)设圆与直线交于点、,若点的坐标为,求的值.【答案】(1);(2).【解析】(1)利用公式可化圆的极坐标方程为直角坐标方程;(2)把直线参数方程化为普通方程,代入圆的方程可求出两点坐标,然后求得,这种方法计算量较大,也可利用参数方程中参数的几何意义,由于点就在直线上,可把直线化为以点为基点的标准参数方程,这样直线上点的参数的几何意义为.把此参数方程代入圆方程得,,于是有,易得.试题解析:(1)由极坐标与直角坐标互化公式得圆的直角坐标方程式为.(2)直线的普通方程为,点在直线上.的标准参数方程为代入圆方程得:设、对应的参数分别为、,则,于是=.【考点】极坐标方程与直角坐标方程的互化,直线参数方程的应用.5.在直角坐标系中,曲线的参数方程为,(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上的动点,求点到上点的距离的最小值.【答案】(1)曲线的普通方程为:,曲线的直角坐标方程为:;(2).【解析】(1)利用,即可将极坐标方程化为平面直角坐标系方程;消去参数即可将曲线的的参数方程化为普通方程;(2)设点P的坐标为,然后由点到直线的距离公式得到,最后运用三角函数求最值即可.试题解析:(1)由曲线:得即:曲线的普通方程为:由曲线:得:即:曲线的直角坐标方程为:(2)由(1)知椭圆与直线无公共点,椭圆上的点到直线的距离为所以当时,的最小值为.【考点】参数方程与普通方程的互化,极坐标方程与直角坐标方程的转化,点到直线的距离.6.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或B.或C.或D.或【答案】D【解析】点关于轴的对称点为,则设反射光线所在直线的方程为,因为反射光线与圆相切,∴圆心到直线的距离,解得或,故选D.【考点】1、直线与圆的位置关系;2、点到直线的距离;3、直线的方程.7.在平面直角坐标系xOy中,已知点,点B是圆上的点,点M为AB中点,若直线上存在点P,使得,则实数的取值范围为________.【答案】【解析】因为点M为AB中点,所以,即点M轨迹为以原点为圆心的单位圆,当PM为单位圆切线时,取最大值,即,从而,因此原点到直线距离不大于2,即【考点】直线与圆位置关系【名师】直线与圆位置关系解题策略1.与弦长有关的问题常用几何法,即利用弦心距、半径和弦长的一半构成直角三角形进行求解.2.利用圆心到直线的距离可判断直线与圆的位置关系,也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系.3.与圆有关的范围问题,要注意充分利用圆的几何性质答题.8.设点在直线上运动,过点作圆的切线,切点为,则切线长的最小值是.【答案】2【解析】圆心到直线的距离,所以.【考点】1、圆的标准方程;2、点到直线的距离.9.已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(Ⅰ)求椭圆的方程;(Ⅱ)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点和,满足(为坐标原点),求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)根据椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形可得,,再根据直线与圆相切可得的一个关系式,解方程组可得的值.(Ⅱ)由题意知直线的斜率存在,设直线方程为,与椭圆方程联立消去整理为关于的一元二次方程,由题意可知其判别式大于0,从而可得的范围.再由韦达定理可得两根之和,两根之积.设,根据可得间的关系式.可解得.将其代入椭圆方程可得的关系式,根据的范围可得的范围.试题解析:解:(Ⅰ)由题意,以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆的方程为,∴圆心到直线的距离(*)∵椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,∴,,代入(*)式得,∴,故所求椭圆方程为(2)由题意知直线的斜率存在,设直线方程为,设,将直线方程代入椭圆方程得:,∴,∴.设,,则,由,当,直线为轴,点在椭圆上适合题意;当,得∴将上式代入椭圆方程得:,整理得:,由知,,所以,综上可得.【考点】1椭圆的方程;2直线与椭圆的位置关系问题.10.在平面直角坐标系中,设点为圆:上的任意一点,点,其中,则线段长度的最小值为()A.B.C.D.【答案】A【解析】显然点是直线上的点,圆心,半径为,圆心到直线的距离为,所以长度的最小值为.故选A.【考点】点到直线的距离.【名师】本题表面上考查两点间距离,实质上由圆的几何性质知,与圆上的点有关的距离的最值问题都要与圆心联系起来,直线与圆相离时,圆心到直线的距离为,圆半径为,则圆上的点到直线的距离的最大值为,最小值为.另外动点问题,要注意的是动点必在某条曲线上,找到这条曲线后可借助曲线的性质分析、解决问题.11.(2015秋•上海月考)若直线l1的一个法向量=(1,1),若直线l2的一个方向向量=(1,﹣2),则l1与l2的夹角θ=.(用反三角函数表示)【答案】arccos【解析】利用向量的夹角公式,即可得出结论.解:由题意,cosθ=||=,∴θ=arccos.故答案为:arccos.【考点】两直线的夹角与到角问题;反三角函数的运用.12.(2015•宜昌校级一模)已知椭圆C:+=1(a>b>0)的下顶点为P(0,﹣1),P到焦点的距离为.(Ⅰ)设Q是椭圆上的动点,求|PQ|的最大值;(Ⅱ)若直线l与圆O:x2+y2=1相切,并与椭圆C交于不同的两点A、B.当•=λ,且满足≤λ≤时,求△AOB面积S的取值范围.【答案】(Ⅰ)2;(Ⅱ)≤S△AOB≤..【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的下顶点为P(0,﹣1),P到焦点的距离为∴b=1,a=2,∴椭圆的方程为设Q(x,y),|PQ|===(﹣1≤y≤1).∴当y=1时,|PQ|的最大值为2.(2)依题结合图形知的斜率不可能为零,设直线l的方程为x=my+n(m∈R).∵直线l即x﹣my﹣n=0与圆O:x2+y2=1相切,∴有:=1得n2=m2+1.又∵A(x1,y1),B(x2,y2),满足:消去整理得(m2+2)y2+2mny+n2﹣2=0,由韦达定理得y1+y2=﹣,y1y2=.其判别式△=8(m2﹣n2+2)=8,∵λ=•=x1x2+y1y2=(1+m2)y1y2+mn(y1+y2)+n2=.∴S△AOB=||||sin∠AOB=|x1y2﹣x2y1|=|n(y2﹣y1)|==•=•,∵≤λ≤,∴≤S△AOB≤.【考点】直线与圆锥曲线的综合问题.13.从圆外一点向这个圆作两条切线,则两切线夹角的余弦值为()A.B.C.D.0【答案】B【解析】圆的圆心为,半径为,从外一点向这个圆作两条切线,则点到圆心的距离等于,每条切线与的夹角的正切值等于,所以两切线夹角的正切值为,该角的余弦值等于,故选B.【考点】直线与圆的位置关系14.在平面直角坐标系中,已知直线与椭圆的一条准线的交点位于轴上,求实数的值.【答案】【解析】利用加减消元得直线普通方程:,利用平方关系消参数得椭圆普通方程,得准线:,因此,即试题解析:解:直线:,椭圆:,准线:由得,【考点】参数方程化普通方程15.(选修4—1:几何证明选讲)如图,为⊙的直径,直线与⊙相切于点,,,、为垂足,连接.若,,求的长.【答案】【解析】由弦切角定理得,从而可得,即,因此可得,即,,再由三角形相似得,解出试题解析:因为与相切于,所以,又因为为的直径,所以.又,所以,所以,所以又,,所以.所以,所以,又,所以.【考点】三角形相似16.已知圆与抛物线的准线相切,则()A.B.C.D.【答案】B【解析】抛物线的准线为,将圆化为标准方程,圆心到直线的距离为.【考点】1.圆的方程;2.抛物线的方程.17.已知两点分别在轴和轴上运动,且,若动点满足.(Ⅰ)求出动点的轨迹对应曲线的标准方程;(Ⅱ)一条纵截距为的直线与曲线交于,两点,若以直径的圆恰过原点,求出直线方程;(Ⅲ)直线与曲线交于、两点,,试问:当变化时,是否存在一直线,使的面积为?若存在,求出直线的方程;若不存在,说明理由.【答案】(Ⅰ);(Ⅱ);(Ⅲ)不存在,理由见解析.【解析】(Ⅰ)由向量的坐标去算及可得到椭圆的标准方程;(Ⅱ)由题意知,直线斜率必存在,设直线为,联立椭圆方程,结合为直径求出的值,从而求得直线方程;(Ⅲ)联立直线与椭圆方程,以及三角形的面积公式得到,从而结合条件求出的值,进而作出判断.试题解析:(Ⅰ)因为,即所以,所以又因为,所以,即,即所以椭圆的标准方程为(Ⅱ)直线斜率必存在,且纵截距为,设直线为联立直线和椭圆方程,得:由,得设,则(1)以直径的圆恰过原点,所以,,即,也即,即将(1)式代入,得,即解得,满足(*)式,所以所以直线的方程为(Ⅲ)由方程组,得设,则所以因为直线过点,所以的面积,则不成立不存在直线满足题意【考点】1、平面向量的坐标运算;2、直线与椭圆的位置关系;3、轨迹方程;4、直线方程.【方法点睛】直接法是求轨迹方程最重要的方法之一,本题用的就是直接法.要注意“求轨迹方程”和“求轨迹”是两个不同概念,“求轨迹”除了首先要求求出方程,还要说明方程轨迹的形状,这就需要对各种基本曲线方程和它的形态的对应关系了如指掌.18.选修4-1:几何证明选讲如图所示,为的直径,为的中点,为的中点.(1)求证:;(2)求证:.【答案】(1);(2)详见解析【解析】(1)欲证,连接,因为为的中点及为的中点,可得,因为为圆的直径,所以,最后根据垂直于同一条直线的两直线平行即可证得结论;(2)欲证,转化为,再转化成比例式.最后只须证明即可.试题解析:证明:(1)连接,因为为的中点,所以.因为为的中点,所以.因为为圆的直径,所以,所以.(2)因为为的中点,所以,又,则.又因为,所以.所以,因此.【考点】与圆有关的比例线段.19.(2015秋•陕西校级期末)已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A,B两点,且AC⊥BC,求实数a的值.【答案】a=0或a=6.【解析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.解:圆的标准方程为(x+1)2+(y﹣2)2=9,圆心C(﹣1,2),半径r=3,∵AC⊥BC,∴圆心C到直线AB的距离d=,即d==,即|a﹣3|=3,解得a=0或a=6.【考点】直线与圆的位置关系.20.(2011•江苏模拟)已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.【答案】(1)2a+b﹣3=0.(2).(3)+=.【解析】(1)由勾股定理可得 PQ2=OP2﹣OQ2=PA2,即(a2+b2)﹣1=(a﹣2)2+(b﹣1)2,化简可得a,b间满足的等量关系.(2)由于 PQ==,利用二次函数的性质求出它的最小值.(3)设⊙P 的半径为R,可得|R﹣1|≤PO≤R+1.利用二次函数的性质求得OP=的最小值为,此时,求得b=﹣2a+3=,R取得最小值为﹣1,从而得到圆的标准方程.解:(1)连接OQ,∵切点为Q,PQ⊥OQ,由勾股定理可得 PQ2=OP2﹣OQ2.由已知PQ=PA,可得 PQ2=PA2,即(a2+b2)﹣1=(a﹣2)2+(b﹣1)2.化简可得 2a+b﹣3=0.(2)∵PQ====,故当a=时,线段PQ取得最小值为.(3)若以P为圆心所作的⊙P 的半径为R,由于⊙O的半径为1,∴|R﹣1|≤PO≤R+1.而OP===,故当a=时,PO取得最小值为,此时,b=﹣2a+3=,R取得最小值为﹣1.故半径最小时⊙P 的方程为+=.【考点】圆的标准方程;圆的切线方程.21.已知双曲线的一条渐近线过点,则,其离心率为.【答案】【解析】由题知:双曲线的渐近线为因为过点,所以所以【考点】双曲线22.选修4—1:几何证明选讲在中,,以为直径作圆交于点.(1)求线段的长度;(2)点为线段上一点,当点在什么位置时,直线ED与圆相切,并说明理由.【答案】(1);(2)是的中点,理由见解析.【解析】(1)由勾股定理易求得的长,可连结,由圆周角定理知,易知相似,可得的比例关系,即可求出的长;(2)当与相切时,由切线长定理知,则,那么和就是等角的余角,由此可证得,即是的中点,在证明时,可连结,证即可.试题解析:(1)解:连结,在直角三角形中,易知,所以,又因为,所以相似,所以, .(2)当点是的中点时, 直线与圆相切.证明如下:连接,因为是直角三角形斜边的中线,所以,所以,因为,所以,所以,所以直线与圆相切.【考点】相似三角形的判定;圆的切线定理的应用.23.已知椭圆()的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)设,过点作与轴不重合的直线交椭圆于,两点,连接,分别交直线于,两点,若直线、的斜率分别为、,试问:是否为定值?若是,求出该定值,若不是,请说明理由.【答案】(1) ;(2)为定值.【解析】(1)由离心率、直线与圆相切列出关于的等量关系即可求出的值,即得到椭圆的标准方程;(2)设出直线的方程为,以及,,由直线方程与椭圆方程联立,得到关于的一元二次方程,由韦达定理得到,,又,,三点共线可知,,由此求出;,用点的坐标表示,并用韦达定理代入,即可求出.试题解析: (1)由题意得,解得,故椭圆的方程为. (2)设,,直线的方程为,由,得.所以,,由,,三点共线可知,,所以;同理可得.所以.因为,所以.【考点】1.椭圆的定义与几何性质;2.直线与椭圆的位置关系.【名师】本题主要考查椭圆的定义及几何性质、直线与椭圆的位置关系,属难题;圆锥曲线中的定点问题或定值问题通常用的解法有:1.引进参数法:即引进动点的坐标或动直线中的系数表示变化量,再研究变化量何时与参数没有关系,找到定点或定值;2.特殊到一般:即根据动点或动直线的特殊情况探索出定点或定值,再证明该定点或定值与变量无关.24. 已知F 1、F 2分别是双曲线C :﹣=1的左、右焦点,若F 2关于渐近线的对称点恰落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线C 的离心率为( ) A . B .3 C .D .2【答案】D【解析】求出F 2到渐近线的距离,利用F 2关于渐近线的对称点恰落在以F 1为圆心,|OF 1|为半径的圆上,可得直角三角形,即可求出双曲线的离心率. 解:由题意,F 1(﹣c ,0),F 2(c ,0),一条渐近线方程为,则F 2到渐近线的距离为=b .设F 2关于渐近线的对称点为M ,F 2M 与渐近线交于A ,∴|MF 2|=2b ,A 为F 2M 的中点 又0是F 1F 2的中点,∴OA ∥F 1M ,∴∠F 1MF 2为直角, ∴△MF 1F 2为直角三角形,∴由勾股定理得4c 2=c2+4b2∴3c2=4(c2﹣a2),∴c2=4a2,∴c=2a,∴e=2.故选D.【考点】双曲线的简单性质.25.已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过A点作AD⊥CD于D,交半圆于点E,DE=1(1)证明:AC平分∠BAD;(2)求BC的长.【答案】(1)证明见解析(2)2【解析】(1)推导出∠OAC=∠OCA,OC⊥CD,从而AD∥OC,由此能证明AC平分∠BAD.(2)由已知推导出BC=CE,连结CE,推导出△CDE∽△ACD,△ACD∽△ABC,由此能求出BC的长.证明:(1)∵OA=OC,∴∠OAC=∠OCA,∵CD是圆的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA故∠DAC=∠OAC,即AC平分∠BAD.解:(2)由(1)得:,∴BC=CE,连结CE,则∠DCE=∠DAC=∠OAC,∴△CDE∽△ACD,△ACD∽△ABC∴,故.【考点】相似三角形的性质.26.如图,椭圆左、右焦点分别为,上顶点轴负半轴上有点,满足,且,若过三点的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若为椭圆上的点,且直线垂直于轴,直线与轴交于点,直线与交于点,求的面积的最大值.【答案】(Ⅰ) (Ⅱ)【解析】(Ⅰ)由题得,即的外接圆圆心为,半径,则由过三点的圆与直线相切可求得,进而得到,则椭圆的方程可求;(Ⅱ)首先证明点恒在椭圆上通过设、直线,利用三角形面积公式化简可知,通过联立直线与椭圆方程后由韦达定理、换元化简可知,,令求出的最大值进而即得结论.试题解析:(Ⅰ)由题得,即,的外接圆圆心为,半径,∵过三点的圆与直线相切,∴,解得:,∴所求椭圆方程为:.(Ⅱ)设,则,∴,与的方程分别为:.则,∵,∴点恒在椭圆上.设直线,则,记,,,令,则,∵函数在为增函数,∴当即时,函数有最小值4,即时,,又∵.故【考点】【名师】本题考查了椭圆离心率,方程的求法,以及直线与椭圆位置关系,属中档题.解题时注意设而不求思想的应用.以及基本不等式的综合应用,难点在于证明点恒在椭圆上27.抛物线y2=4x上任一点到定直线l:x=-1的距离与它到定点F的距离相等,则该定点F的坐标为.【答案】(1,0)【解析】因为,所以,可得,故焦点坐标为,即定点的坐标为(1,0).【考点】抛物线的的定义与运算.28.在平面直角坐标系中,已知抛物线上一点到准线的距离与到原点的距离相等,抛物线的焦点为.(1)求抛物线的方程;(2)若为抛物线上一点(异于原点),点处的切线交轴于点,过作准线的垂线,垂足为点.试判断四边形的形状,并证明你的结论.【答案】(1)(2)菱形.【解析】(1)利用抛物线定义化简条件“点到准线的距离为”得,即(2)先确定点处切线的斜率为,写出切线方程,求出点坐标,又,所以,再由抛物线的定义,得,所以四边形为菱形.试题解析:解:(1)由题意点到准线的距离为由抛物线的定义,点到准线的距离为所以,即点在线段的中垂线上,所以,所以抛物线的方程为由抛物线的对称性,设点在轴的上方,所以点处切线的斜率为所以点处切线的方程为令上式中,得所以点的坐标为,又,所以,所以,所以,又故四边形为平行四边形再由抛物线的定义,得,所以四边形为菱形.【考点】抛物线定义,直线与抛物线位置关系29.【选修4-1:几何证明选讲】如图,是圆的直径,弦的延长线相交于点,过作的延长线的垂线,垂足为,求证:.【答案】详见解析【解析】涉及线段乘积,一般利用三角形相似寻找条件:由△∽△,得,又四点共圆,由相交弦定理得.两式相减得结论试题解析:解:连接,因为为圆的直径,所以,又,则四点共圆,所以.又△∽△,所以,即,所以.【考点】三角形相似,四点共圆,相交弦定理30.已知双曲线(,)与直线有交点,则双曲线的离心率的范围是()A.B.C.D.【答案】C【解析】如图所示,双曲线的渐近线方程为,若双曲线(,)与直线有交点,应有,所以解得故选C.【考点】双曲线的简单几何性质.31.已知椭圆的中心在原点,焦点在轴上,如果直线与椭圆的交点在轴上的射影恰为椭圆的焦点,则椭圆的离心率等于 .【答案】【解析】设椭圆标准方程为,半焦距为,直线与椭圆在第一象限的交点的横坐标为,把代入椭圆标准方程解得,即交点坐标,∵交点在直线上,∴,即,解得.【考点】椭圆的标准方程及有关概念.【方法点晴】解答本题的关键是探求和构建椭圆中关于基本量的等量关系,即建构含的方程,然后通过解方程求出椭圆的离心率,从而使问题巧妙获解.解答本题的难点是如何理解交点在轴上的射影恰为椭圆的焦点,这是解答本题的重要突破口,也就是怎样确定出交点的坐标,其实本题中的这句话就是说交点的横坐标为,再将其代入直线求出其纵坐标,借助交点在椭圆上建立了方程,通过解方程从而使本题获解.32.【选修4-4,坐标系与参数方程】在直角坐标系中,直线的参数方程为(t为参数),在以O为极点,轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为(Ⅰ)求直线的普通方程与曲线C的直角坐标方程;(Ⅱ)若直线与轴的交点为P,直线与曲线C的交点为A,B,求的值.【答案】(1);;(2)3.【解析】本题主要考查参数方程、极坐标方程与直角坐标方程的转化、直线与圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力. 第一问,利用,,转化方程;第二问,将直线方程与曲线方程联立,消参,得到关于的方程,利用两根之积得到结论.试题解析:(Ⅰ)直线的普通方程为,,曲线的直角坐标方程为.(Ⅱ)将直线的参数方程(为参数)代入曲线:,得到:,,.【考点】本题主要考查:1.极坐标方程,参数方程与直角方程的相互转化;2.直线与圆的位置关系.33.如图“月亮图”是由曲线与构成,曲线是以原点O为中心,为焦点的椭圆的一部分,曲线是以O为顶点,为焦点的抛物线的一部分,是两条曲线的一个交点.(Ⅰ)求曲线和的方程;(Ⅱ)过作一条与轴不垂直的直线,分别与曲线,依次交于B,C,D,E四点,若G为CD 的中点、H为BE的中点,问:是否为定值?若是求出该定值;若不是说明理由.【答案】(Ⅰ),;(Ⅱ)是,.【解析】(Ⅰ)设曲线所在抛物线的方程为,将代入可得的值,利用椭圆的定义,可得曲线所在的椭圆方程;(Ⅱ)先设出四点坐标,过作的与轴不垂直的直线方程,在分别与椭圆方程,抛物线方程联立,利用根与系数的关系,求的值,看结果是否为定值.试题解析:(Ⅰ)由题意得抛物线,设椭圆方程为,则,得,故椭圆方程为(Ⅱ)设,,,,把直线代入得,则,.同理将代入得:,,;为定值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;抛物线的标准方程.34.选修4-4:坐标系与参数方程平面直角坐标系中, 圆,曲线的参数方程为为参数), 在以原点, 为极点,轴正半轴为极轴的极坐标系中, 直线的极坐标方程为.(1)求圆的极坐标方程及曲线的普通方程;(2)设与圆相切于点,且在第三象限内交于点,求的面积.【答案】(1),;(2).【解析】(1)运用极坐标、参数方程与直角坐标的互化求解;(2)借助题设条件建立方程求三角形的底边和高,再用面积公式求解.试题解析:(1)把,代入,得,所以圆的极坐标方程为,由曲线的参数方程为为参数),消去,得曲线的普通方程为.(2)联立,得点的极坐标为,曲线的极坐标方程为,联立,可得,可得,点的极坐标为,所以,而点到直线的距离为的面积为.【考点】极坐标、参数方程与直角坐标方程的互化及有关知识的综合运用.35.已知为正实数,直线与圆相切,则的最小值是()A.2B.4C.6D.8【答案】B【解析】,∴当且仅当时取等号,选B.【考点】直线与圆相切,基本不等式求最值【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.36.已知椭圆上的左、右顶点分别为,为左焦点,且,又椭圆过点.(1)求椭圆的方程;(2)点和分别在椭圆和圆上(点除外),设直线的斜率分别为,若,证明:三点共线.【答案】(1);(2)见解析【解析】(1),由椭圆过点可得,由椭圆中关系求出的值即可;(2)由(1)知,,设,由此可得,又因为,,由此可得,同理可得,所以,即可证三点共线.试题解析:(1)由已知可得,又,解得,故所求椭圆的方程为.(2)由(1)知,,设,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 抛物线24(0)y ax a =<的焦点坐标是: ( ) A. 1(,0)4a B. 1(0,)16a C. 1(0,)16a - D. 1(,0)16a2.直线2360x y +-=关于直线0x=对称的直线方程为 ( )A. 2360x y --=B. 2360x y -+=C. 2360x y ++=D. 2360x y +-=3. 点()2,5P关于直线10x y ++=的对称点坐标是 ( ) A. ()4,1-- B. ()5,2-- C. ()6,3-- D. ()4,2--4. 过y 2=2x 的焦点的直线与抛物线交于A(x 1, y 1)、B(x 2, y 2),若x 1+x 2=3,则|AB|等于: ( )(A ) 2 (B ) 3 (C )4 (D ) 55.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等6.3k>是方裎22131x y k k +=--表示双曲线的( )条件。
A.充分不必要;B.充要;C.必要不充分;D.既不充分也不必要7.若22221x y a b-=()0,0a b >>的一条渐近线平行于l :210y x =+,双曲线的一个焦点在l 上,则双曲线的方程为( ) (A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -=8. 00(,)M x y 为圆)0(222>=+a a y x 内异于圆心的一点,则直线200a y y x x =⋅+⋅与该圆的位置关系为: ( )A .相离;B .相交 ;C .相切 ;D .相切或相离9. 已知()2,3A-, ()3,2B --, 直线l 过点()1,1P 且与线段AB 相交,则l 的斜率k 的取值范围是 ( )A. 344k k ≥≤-或 B. 344k -≤≤ C. 15k ≠ D. 344k -≤≤ 10. ),(11y x P 是直线0),(:=y x f l 上一点,),(22y x Q 是直线l 外一点,则方程),(),(),(2211y x f y x f y x f +=表示的直线( ) (A)与l 重合 (B )与l 相交于点P (C )过点Q 与l 平行 (D )过点Q 与l 相交 11.过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为( )(A) 230+-=x y (B) 230--=x y (C) 430--=x y (D) 430+-=x y12.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 则p = (A) 1 (B) 32(C) 2 (D) 313. 12,F F 为:C 2214x y -= 的两焦点,P 在C 上,且 021=⋅PF PF ,则12F PF ∆的面积是: ( )A.1; D.214. 设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( ) A 、 B 、 C 、 D 、15. 过22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN +-=____ __. 16. 已知点M(-2,4),焦点为F 的抛物线281xy =上有一点P 使||||PF PM +的值最小,则点P 的坐标为 。
17.椭圆()01:2222>>=+Γb a by a x 的左右焦点分别为21,F F ,焦距为c 2,若直线()c x y +=3与椭圆的一个交M 点满足12212F MF F MF ∠=∠,则该椭圆的离心率等于_ ____18.已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆ 与AFO ∆面积之和的最小值是19. 已知抛物线的顶点为椭圆22221x y a b+=(0)a b >>的中心,焦点在x 轴上。
椭圆的离心率是抛物线离心率的一半。
又抛物线与椭圆交于点2(,3M ,求抛物线与椭圆的方程.20. 已知圆1C :222x y +=和圆2C ,直线l 与圆1C 相切于点(1,1);圆2C 的圆心在射线20(0)x y x -=≥上,圆2C 过原点,且被直线l 截得的弦长为 (1)求直线l 的方程; (2)求圆2C 的方程.21. 在平面直角坐标系xoy 中,已知圆心在第二象限、半径为C 与直线y x =相切于坐标原点O .椭圆22219x y a+=与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程; (2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.22.已知A 、B 、C 是椭圆W :2214x y +=上的三个点,O 是坐标原点. (I)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积. (II)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.23.设椭圆E :222211x y a a+=-的焦点在x 轴上. (Ⅰ)若椭圆E 的焦距为1,求椭圆的方程; (Ⅱ)设12F F ,分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P 交y 轴与点Q ,并且11P FQ F ⊥,证明:a 当变化时,点P 在某定直线上。
24.设1F ,2F 分别是C:()222210y x a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .25.如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b+=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC .(1)若点C 的坐标为()4133,,且2BF = (2)若1FC AB ⊥,求椭圆离心率e 的值.26.若C :22221x y a b+=(0a b >>)的左焦点为(2,0)F -(Ⅰ)求C 的标准方程; (Ⅱ)设O 为坐标原点,T为直线3x =-上一点,过F 作TF 的垂线交椭圆于P ,Q 。
当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积。
物线C 的两条切线,PA PB ,其中,A B 为切点. (Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.28.设椭圆22221x y a b +=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知12AB F =.(Ⅰ)求椭圆的离心率; (Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过原点的直线l 与该圆相切. 求直线的斜率.29.如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b +=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为2(1)求,a b 的值; (2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l 的方程.30.对于l :0ax by c++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被l 分隔。
若曲线C 与直线l 无公共点,且C 上存在点21P P ,被l 分隔,则称l 为曲线C 的一条分隔线. ⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵ 若直线kx y =是曲线1422=-y x 的分隔线,求实数k的取值范围; ⑶ 动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求证:过原点的直线中,有且仅有一条直线是E 的分割线.BBCCD,AAAAC,ACAB 15.8; 16,1,2(-2); 171;18,3 24. (1)21 (2)72,7==b a25.2212x y +=14.设a 、b 、c 分别是ABC ∆的边长,则直线sin 0A x ay c ⋅++=与 sin sin 0b x B y C -⋅+=的位置关系是 ( ) C (A )平行 (B )重合 (C )垂直 (D )相交但不垂直16. 设21F F ,分别为)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得2212(||-||)3,PF PF b ab =- 则该双曲线的离心率为( ) D A. 2 B.15 C.4 D.1718. 抛物线211:(0)2=>C y x p p 的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M若1C 在点M 处的切 线平行于2C 的一条渐近线,则=p () D (A)(B)(C)(D)19.若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.11-(22=+)y x22. 在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 .49.F 1,F 2C :22221x y a b +=(a >b >0)的左、右焦点,直线l :x =-12将线段F 1F 2分成两段,其长度之比为1 : 3.设A ,B 是C 上的两个动点,线段AB 的中垂线与C 交于P ,Q 两点,线段AB 的中点M(Ⅰ) 求椭圆C 的方程; (Ⅱ) 求22F P F Q ⋅的取值范围.(第49题图)45.(Ⅰ)解:设椭圆的右焦点2F 的坐标为(),0c .由12AB F =,可得2223a b c +=,又222b a c =-,则2212c a =.所以,椭圆的离心率2e =,所以22223a c c -=,解得a =,e =(Ⅱ)解:由(Ⅰ)知222a c =,22b c =.故椭圆方程为222212x y c c +=.设()00,P x y .由()1,0F c -,()0,B c ,有()100,F P x c y =+,()1,F B c c = .由已知,有110FP FB ? ,即()000x c c y c ++=.又0c ¹,故有000x y c ++=. ①又因为点P 在椭圆上,故22002212x y c c +=. ②由①和②可得200340x cx +=.而点P 不是椭圆的顶点,故043c x =-,代入①得03c y =,即点P 的坐标为4,33c c 骣÷ç-÷ç÷ç桫.设圆的圆心为()11,T x y ,则1402323c x c -+==-,12323c c y c +==,进而圆的半径r=.设直线l 的斜率为k ,依题意,直线l 的方程为y kx =.由l 与圆相切,可得r ==,整理得2810k k -+=,解得4k =?46.(1)149.2,335,522=+=====y x b a a c e c 椭圆方程为:得:由(2))点坐标为(,椭圆长轴与短轴的端点两点分别位于、率不存在时,即当两条切线中有一条斜、设两个切点分别为2,3①±±P B A BA )3131-9494042)9()(490△0369189)1818(49149)(y -y )(y -y P k ②02020*******020212120002202002200020202022220000±≠=+=--=∙∴--=∙=-+--⇒-=+⇒==-+-+-++⎪⎩⎪⎨⎧=+-=-=x y x x y k k PB PA x y k k k k PB PA y k y x k x y kx k y y kx x k x x k ky x k y x x x k x x k (化简得互相垂直,、又,则、斜率分别为、设)(,得联立的椭圆切线方程为,过点设椭圆切线斜率为切线斜率均存在时,当两条 .13132,3222020上在圆点上)在(又=+∴=+±±y x P y x P47.(1)14,3,1,2∴,23.1∴)0,1(),0,1-(1-2222222=+===+===+=x y c b a c b a a c b x y 椭圆方程为联立解得又,交于点抛物线 (2))1-(38-.38-,0)2(4-)2,1)(4-,(,0)2k -k - -k,()4k 8- 1,44-(,0∴⊥),0,1-()2k --k ,1--k (,2k --k )1-(,1--k 0,1-k -:1-)4k8-,44-(,4k 8-)1-(,44-04-2-)4(,44)12x -(14),,(),,(),1-()0,1(22222222222211212222222222211x y k k k k k k k k A Q x k y x kx x x y k k k P k x k y k k x k x k x k x x k x y y x Q y x P x k y B ===+=+=•+++=•====++=+++==+==++=++=+=所以,所求直线方程为解得即即即由韦达定理得联立得与即由韦达定理得,即联立得与的直线方程为设过48.49.(Ⅰ) 设F 2(c ,0),则1212c c -+=13, 所以c =1. 因为离心率e2aC 的方程为2212x y +=. (Ⅱ) 当直线AB 垂直于x 轴时,直线AB 方程为x =-12,此时P(2-,0)、Q(2,0) 221F P F Q ⋅=-当直线AB 不垂直于x 轴时,设直线AB 的斜率为k ,M (-12,m ) (m ≠0),A (x 1,y 1),B (x 2,y 2).由 221122221,21,2x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 得(x 1+x 2)+2(y 1+y 2)1212y y x x -⋅-=0,则-1+4mk =0,故k =14m .此时,直线PQ 斜率为m k 41-=,PQ 的直线方程为)21(4+-=-x m m y .即m mx y --=4. 联立⎪⎩⎪⎨⎧=+--=12422y x m mx y 消去y ,整理得2222(321)16220m x m x m +++-=. 所以212216321m x x m +=-+,212222321m x x m -=+.于是=⋅F F 22(x 1-1)(x 2-1)+y 1y 2)4)(4(1)(212121m mx m mx x x x x +++++-= 22122121))(14()161(m x x m x x m +++-++=2222222(116)(22)(41)(16)1321321m m m m m m m +---=+++++22191321m m -=+. 令t =1+32m 2,1<t <29,则tF F 3251321922-=⋅. 又1<t <29,所以221251232F P F Q -<⋅< .综上,F F 22⋅的取值范围为[1-,125232).………… 15分。