2020-2021学年安徽省滁州市高三(上)一模数学试卷(理科) (解析版)
2020-2021学年浙江省杭州市高三(上)期末数学试卷 (解析版)
2020-2021学年浙江省杭州市高三(上)期末数学试卷一、选择题(共10小题).1.若集合A={x|1≤x≤3},B={x|(x﹣1)(x﹣2)≥0},则A∪B=()A.{x|1≤x≤2}B.{x|2≤x≤3}C.{x|1≤x≤3}D.R2.已知a∈R,若(2+ai)(a﹣2i)=﹣4i(i为虚数单位),则a=()A.﹣1B.0C.1D.23.某几何体的三视图如图所示,则该几何体的体积为()A.1B.C.D.4.若a>0,b>0,则“a>b”是“lna﹣b>lnb﹣a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数f(x)=(﹣1)cos x(其中e为自然对数的底数)图象的可能是()A.B.C.D.6.已知随机变量ξ满足P(ξ=x)=ax+b(x=﹣1,0,1),其中a,b∈R.若E(ξ)=,则D(ξ)=()A.B.C.D.7.已知(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),则a1=()A.﹣30B.30C.﹣40D.408.已知实数a,b满足|b|≤2﹣a,且a≥﹣1,则2a+b的最小值为()A.﹣7B.﹣5C.﹣3D.﹣19.设函数f(x)=lnx﹣﹣2mx+n,若不等式f(x)≤0对x∈(0,+∞)恒成立,则的最大值为()A.B.C.e D.2e10.设数列{a n}满足a1=3,a2=6,a n+2=(n∈N*),()A.存在n∈N*,a n∉QB.存在p>0,使得{a n+1﹣pa n}是等差数列C.存在n∈N*,a n=D.存在p>0,使得{a n+1﹣pa n}是等比数列二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.计算lg2﹣lg=;4=.12.在△ABC中,A=,b=4,a=2,则B=,△ABC的面积等于.13.若a>0,b>0,且a+b=1,则a2+b2的最小值等于,+的最大值等于.14.已知tanα=cosα,则cos2α+cos4α=,=.15.一排11个座位,现安排2人就座,规定中间的3个座位不能坐,且2人不相邻,则不同排法的种数是.16.平面向量,的夹角为60°,且|﹣|=1,则•(+2)的最大值为.17.在棱长为的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知函数f(x)=sin(ωx+)cos(ωx+)(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在锐角△ABC中,若sin A sin C﹣sin2C=sin2A﹣sin2B,求f(B)的值.19.已知函数f(x)=x2﹣ax﹣|ax﹣2|(a>0).(Ⅰ)若a=2,解不等式f(x)<0;(Ⅱ)设x1,x2,x3,x4是函数y=f(x)+1的四个不同的零点,且x1<x2<x3<x4.问是否存在实数a,使得x2,x3,x4成等差数列?若存在,求出所有a的值;若不存在,说明理由.20.在三棱锥A﹣BCD中,△BCD为等腰直角三角形,点E,G分别是线段BD,CD的中点,点F在线段AB上,且BF=2FA.若AD=1,AB=,CB=CD=.(Ⅰ)求证:AG∥平面CEF;(Ⅱ)求直线AD与平面CEF所成的角.21.在数列{a n}中,a1=1,a2k﹣1,a2k,a2k+1(k∈N*)成等比数列,公比为q k>0.(Ⅰ)若q k=2,求a1+a3+a5+…+a2k﹣1;(Ⅱ)若a2k,a2k+1,a2k+2(k∈N*)成等差数列,公差为d k,设b k=.①求证:{b n}为等差数列;②若d1=2,求数列{d k}的前k项和D k.22.已知函数f(x)=xlnx﹣a(x+1)2,a∈R恰好有两个极值点x1,x2(x1<x2).(Ⅰ)求证:存在实数m∈(),使0<a<m;(Ⅱ)求证:﹣<f(x1)<﹣.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|1≤x≤3},B={x|(x﹣1)(x﹣2)≥0},则A∪B=()A.{x|1≤x≤2}B.{x|2≤x≤3}C.{x|1≤x≤3}D.R解:∵A={x|1≤x≤3},B={x|x≤1或x≥2},∴A∪B=R.故选:D.2.已知a∈R,若(2+ai)(a﹣2i)=﹣4i(i为虚数单位),则a=()A.﹣1B.0C.1D.2解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,则有4a=0,a2﹣4=﹣4,解得a=0.故选:B.3.某几何体的三视图如图所示,则该几何体的体积为()A.1B.C.D.解:由三视图知几何体是一个四棱锥,四棱锥的底面是一个平行四边形,有两个等腰直角三角形,直角边长为1组成的平行四边形,四棱锥的一条侧棱与底面垂直,且侧棱长为1,∴四棱锥的体积是.故选:B.4.若a>0,b>0,则“a>b”是“lna﹣b>lnb﹣a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当a>0,b>0时,若a>b,则lna>lnb,此时a+lna>b+lnb成立,即充分性成立,设f(x)=x+lnx,当x>0时,f(x)为增函数,则由a+lna>b+lnb得f(a)>f(b),即a>b,即必要性成立,则“a>b”是“a+lna>b+lnb”的充要条件,故选:C.5.函数f(x)=(﹣1)cos x(其中e为自然对数的底数)图象的可能是()A.B.C.D.解:f(x)=•cos x=•cos x,则f(﹣x)=•cos x=•cos x=﹣f(x),则f(x)是奇函数,排除A,C,当0<x<时,f(x)<0,排除B,故选:D.6.已知随机变量ξ满足P(ξ=x)=ax+b(x=﹣1,0,1),其中a,b∈R.若E(ξ)=,则D(ξ)=()A.B.C.D.解:由已知可得:P(ξ=﹣1)=﹣a+b,P(ξ=0)=b,P(ξ=1)=a+b,则﹣a+b+b+a+b=1,即b=,又E(ξ)=﹣1×(﹣a+b)+0×b+1×(a+b)=,所以a=,所以ξ的分布列如下:ξ﹣101P所以D(ξ)=,故选:B.7.已知(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),则a1=()A.﹣30B.30C.﹣40D.40解:∵(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),令f(x)=(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),则f′(x)=2x=a1+a2(x﹣1)1+…+a9(x﹣1)8,f′(x)=2x•(2x﹣1)7+(x2+1)•14(2x﹣1)6,∴a1=f′(1)=2×1+2×14×(2﹣1)6=30故选:B.8.已知实数a,b满足|b|≤2﹣a,且a≥﹣1,则2a+b的最小值为()A.﹣7B.﹣5C.﹣3D.﹣1解:不等式|b|≤2﹣a可化为﹣2+a≤b≤2﹣a,且a≥﹣1,所以约束条件为,画出约束条件表示的平面区域,如阴影部分所示:设z=2a+b,平移目标函数知,当目标函数过点A时,z取得最小值;由,求得A(﹣1,﹣3),所以z=2a+b的最小值为z min=2×(﹣1)+(﹣3)=﹣5.故选:B.9.设函数f(x)=lnx﹣﹣2mx+n,若不等式f(x)≤0对x∈(0,+∞)恒成立,则的最大值为()A.B.C.e D.2e解:不等式f(x)≤0对x∈(0,+∞)恒成立,即为lnx﹣﹣2mx+n≤0,即lnx﹣≤2m(x﹣)对x>0恒成立,设g(x)=lnx﹣,由g′(x)=+>0,可得g(x)在(0,+∞)递增,且g(e)=0,当x→0时,g(x)→﹣∞;x→+∞,g(x)→+∞,作出y=g(x)的图象,再设h(x)=2m(x﹣),x>0,可得h(x)表示过(,0),斜率为2m的一条射线(不含端点),要求的最大值,且满足不等式恒成立,可求的最大值,由于点(,0)在x轴上移动,只需找到合适的m>0,且与g(x)=lnx﹣切于点(,0),如图所示:此时=e,即有的最大值为2e,故选:D.10.设数列{a n}满足a1=3,a2=6,a n+2=(n∈N*),()A.存在n∈N*,a n∉QB.存在p>0,使得{a n+1﹣pa n}是等差数列C.存在n∈N*,a n=D.存在p>0,使得{a n+1﹣pa n}是等比数列解:由a n+2=(n∈N*),可得①,则②①﹣②可得,a n+2a n﹣a n+1a n﹣1=a n+12﹣a n2,所以a n(a n+2+a n)=a n+1(a n+1+a n﹣1),则,由此可得,,所以,则a n+2=3a n+1﹣a n且a1=3∈Z,a2=6∈Z,所以a n∈Z,故选项A,C错误;由a n+3=3a n+2﹣a n+1,可得a n+3﹣a n+2=5a n+1﹣2a n不是常数,所以不存在p>0,使得{a n+1﹣pa n}是等差数列,故选项B错误;假设存在p>0,使得{a n+1﹣pa n}是等比数列,公比为q,则有a n+1﹣pa n=q(a n﹣pa n﹣1),所以a n+1=(p+q)a n﹣pqa n﹣1,由a n+2=3a n+1﹣a n,则,解得,所以存在,使得{a n+1﹣pa n}是等比数列,故选项D正确.故选:D.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.计算lg2﹣lg=1;4=9.解:lg2﹣lg=lg2+lg5=lg10=1;4==9.故答案为:1;9.12.在△ABC中,A=,b=4,a=2,则B=,△ABC的面积等于2.解:因为在△ABC中,A=,b=4,a=2,由正弦定理,可得=,可得sin B=1,因为B∈(0,π),则B=,所以c===2,所以S△ABC=ac==2.故答案为:,2.13.若a>0,b>0,且a+b=1,则a2+b2的最小值等于,+的最大值等于.解:∵a>0,b>0,a+b=1,∴,,∴,∴a2+b2的最小值等于;∵,∴,∴的最大值等于.故答案为:.14.已知tanα=cosα,则cos2α+cos4α=1,=1.解:因为tanα==cosα,可得sinα=cos2α,则cos2α+cos4α=cos2α+sin2α=1,=====1.故答案为:1,1.15.一排11个座位,现安排2人就座,规定中间的3个座位不能坐,且2人不相邻,则不同排法的种数是44.解:根据题意,分2种情况讨论,①两个都在左边的4个座位或右边的4个座位就坐,有2×A22×3=12种排法,②两个人一人在左边4个座位,一个在右边4个座位就坐,有2×CA41×C41=32种排法,则一共有12+32=44种不同的排法,故答案为:4416.平面向量,的夹角为60°,且|﹣|=1,则•(+2)的最大值为.解:设||=a,||=b,则由|﹣|=1,平方得||2+||2﹣2•=1,即a2+b2﹣2ab×=1,即a2+b2﹣ab=1,则•(+2)=||2+2•=a2+ab,∵a2+ab===,令m=,则m>0,则原式==,再设t=1+m,则t>1,则m=t﹣1.则===≤===,当且仅当t=,即t=时,取等号,即•(+2)的最大值为,故答案为:.17.在棱长为的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于.解:连结BD交AC于点O,连结OD1,B1D交于点H,设G为CD1的中点,因为AC⊥BD,AC⊥BB1,BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D,因为B1D⊂平面BB1D,所以B1D⊥AC,同理可证B1D⊥AD1,又AC∩AD1=A,AC,AD1⊂平面ACD1,所以B1D⊥平面ACD1,即点B1在平面ACD1的投影为H,且D1H=2HO,同理,点E,F在面ACD1的投影分别为O,G,所以△EFB1在平面ACD1的投影为△OGH,又,所以,所以点Q的轨迹所组成的图形的面积S=.故答案为:.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知函数f(x)=sin(ωx+)cos(ωx+)(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在锐角△ABC中,若sin A sin C﹣sin2C=sin2A﹣sin2B,求f(B)的值.解:(I)函数f(x)=sin(ωx+)cos(ωx+)=(sinωx+cosωx)(cosωx﹣sinωx)=cos2ωx﹣sin2ωx=×﹣×=cos2ωx﹣,因为函数f(x)最小正周期为π,由T==π,且ω>0,解得ω=1,所以f(x)=cos2x﹣,令2kπ﹣π≤2x≤2kπ,k∈Z,解得kπ﹣≤x≤kπ,k∈Z,可得函数f(x)的单调递增区间为:[kπ﹣,kπ],k∈Z.(II)由sin A sin C﹣sin2C=sin2A﹣sin2B得:ac﹣c2=a2﹣b2,即a2+c2﹣b2=ac,∴cos B===,又B为锐角,可得B=,∴f(B)=cos﹣=﹣=.19.已知函数f(x)=x2﹣ax﹣|ax﹣2|(a>0).(Ⅰ)若a=2,解不等式f(x)<0;(Ⅱ)设x1,x2,x3,x4是函数y=f(x)+1的四个不同的零点,且x1<x2<x3<x4.问是否存在实数a,使得x2,x3,x4成等差数列?若存在,求出所有a的值;若不存在,说明理由.解:(Ⅰ)当a=2时,不等式f(x)<0,即x2﹣2x﹣|2x﹣2|=|x﹣1|2﹣2|x﹣1|﹣1<0,所以0≤|x﹣1|<,解得,故不等式f(x)<0的解集为{x|};(Ⅱ)因为f(x)=x2﹣ax﹣|ax﹣2|(a>0),则,又y=f(x)+1有四个不同的零点,所以△=4a2﹣12>0且,解得,因为x1<x2<x3<x4,当时,f(x)+1=x2﹣1=0,可得x1=﹣1,x2=1,所以x3,x4是x2﹣2ax+3=0的两个根,若x2,x3,x4成等差数列,则,所以,代入方程x2﹣2ax+3=0可得,,解得或﹣2(舍),综上可知,存在使得x2,x3,x4成等差数列.20.在三棱锥A﹣BCD中,△BCD为等腰直角三角形,点E,G分别是线段BD,CD的中点,点F在线段AB上,且BF=2FA.若AD=1,AB=,CB=CD=.(Ⅰ)求证:AG∥平面CEF;(Ⅱ)求直线AD与平面CEF所成的角.【解答】(Ⅰ)证明:连接BG交EC于H,连接FH,则点H为△BCD的重心,有,∵,∴FH∥AG,且FH⊂平面CEF,AG⊄平面CEF,则AG∥平面CEF;(Ⅱ)解:∵BF=,BE=1,∠ABD=30°,∴EF2=BF2+BE2﹣2BE•BF•cos∠ABD==,故BF2=BE2+EF2,∴BE⊥EF,又由已知,CE⊥BD,CE∩EF=E,则BD⊥平面CEF,过F作AD的平行线FP,交BD于P,则PE⊥CEF,故∠PFE为直线AD与平面CEF所成的角,且FP=,EP=,∠FEP=90°,∴sin,得直线AD与平面CEF所成的角为.21.在数列{a n}中,a1=1,a2k﹣1,a2k,a2k+1(k∈N*)成等比数列,公比为q k>0.(Ⅰ)若q k=2,求a1+a3+a5+…+a2k﹣1;(Ⅱ)若a2k,a2k+1,a2k+2(k∈N*)成等差数列,公差为d k,设b k=.①求证:{b n}为等差数列;②若d1=2,求数列{d k}的前k项和D k.【解答】(Ⅰ)解:因为a1=1,a2k﹣1,a2k,a2k+1(k∈N*)成等比数列,公比为q k>0,所以,则a1+a3+a5+…+a2k﹣1==;(Ⅱ)①证明:因为a2k,a2k+1,a2k+2(k∈N*)成等差数列,所以2a2k+1=a2k+a2k+2,即,则,即b k+1﹣b k=1,所以数列{b n}为等差数列,公差为1;②解:若d1=2,所以a3=a2+2,则有,所以a2=2或a2=﹣1;当a2=2时,q1=2,所以b1=1,则b k=1+(k﹣1)×1=k,即,解得,所以,则=,所以,则d k=a2k+1﹣a2k=k+1,故;若a2=﹣1时,q1=﹣1,所以,则,即,解得,则=,则,所以d k=a2k+1﹣a2k=4k﹣2,故.综上所述,或.22.已知函数f(x)=xlnx﹣a(x+1)2,a∈R恰好有两个极值点x1,x2(x1<x2).(Ⅰ)求证:存在实数m∈(),使0<a<m;(Ⅱ)求证:﹣<f(x1)<﹣.【解答】证明:(Ⅰ)f′(x)=lnx+1﹣a(x+1),x>0,结合题意,lnx+1﹣a(x+1)=0,即lnx+1=a(x+1)存在2个不同正根,先考虑y=a(x+1)与y=lnx+1相切,记切点横坐标为x0,则,解得:,记g(x)=xlnx﹣1,x>0,则g′(x)=1+lnx,令g′(x)=0,解得:x=,故y=g(x)在(0,)递减,在(,+∞)递增,且g(1)=﹣1<0,g(2)=ln4﹣1>0,故存在唯一x0∈(1,2),使得x0lnx0=1成立,取m=∈(,1),则0<a<m时,f(x)恰有2个极值点,得证;(Ⅱ)由(Ⅰ)知:f′(x1)=lnx1+1﹣a(x1+1),且<x1<x0<2,故a=,代入f(x1),得f(x1)=(x1lnx1﹣x1﹣lnx1﹣1),设h(x)=(xlnx﹣x﹣lnx﹣1),h′(x)=(lnx﹣),<x<2,由h′(x0)=0,得lnx0=,即x0lnx0=1,则x∈(,x0)时,h′(x)<0,x∈(x0,2),h′(x)>0,故h(x)在(,x0)递减,在(x0,2)递增,h(x)>h(x0)=(x0lnx0﹣lnx0﹣x0﹣1)=(1﹣﹣x0﹣1)=﹣(x0+),∵x0∈(1,2),∴x0+∈(2,),∴h(x0)∈(﹣,﹣1),故h(x)>﹣,即f(x1)>﹣,而h(x)<h()=﹣>h(2)=(ln2﹣3),故:﹣<f(x1)<﹣.。
2020-2021学年安徽省高考数学一模试卷(理科)及答案解析
安徽省高考数学一模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.若复数z满足zi=1+2i,则复数z的共轭复数=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i2.已知集合A、B是非空集合且A⊆B,则下列说法错误的是()A.∃x0∈A,x0∈B B.∀x0∈A,x0∈B C.A∩B=A D.A∩(∁u B)≠∅3.已知数列{a n}为等差数列,a1+a8+a15=π,则cos(a4+a12)则的值为()A.﹣B.C.D.4.某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则至少有1名优秀工人的概率为()A.B.C.D.5.执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.6.已知函数的图象经过点,且f(x)的相邻两个零点的距离为,为得到y=f(x)的图象,可将y=sinx图象上所有点()A.先向右平移个单位长度,再将所得点的横坐标变为原来的倍,纵坐标不变B.先向左平移个单位长度,再将所得点的横坐标变为原来的倍,纵坐标不变C.先向左平移个单位长度,再将所得点的横坐标变为原来的2倍,纵坐标不变D.先向右平移个单位长度,再将所得点的横坐标变为原来的2倍,纵坐标不变7.定义在R上的可导函数f(x)的导函数为f′(x),已知函数y=2f′(x)的图象如图所示,则函数y=f(x)的单调递减区间为()A.(1,+∞)B.(1,2)C.(﹣∞,2)D.(2,+∞)8.在△ABC外,分别以AC、BC、AB为边作正方形,得到三个正方形的面积依次为S1、S2、S3,若S1+S2=S3=8,则△ABC的面积最大值是()A.2 B.C.4 D.9.设关于x、y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,则a的取值范围是()A.(﹣∞,﹣)B.(﹣∞,﹣)C.(﹣∞,)D.(﹣∞,)10.已知边长为1的等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,若A、B、C、D、E在同一球面上,则此球的体积为()A.2πB.πC.πD.π11.设函数f(x)=sin2x+acosx在(0,π)上是增函数,则实数a的取值范围为()A.[﹣1,+∞)B.(﹣∞,﹣1] C.(﹣∞,0)D.(0,+∞)12.已知直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A、B,线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C.分别过A、B作抛物线的切线交于点E,则关于点C、D、E三点横坐标x c、x D,x E的表述正确的是()A.x D<x C<x E B.x C=x D>x E C.x D=x c<x E D.x C=x D=x E二、填空题(共4小题,每小题5分,满分20分)13.已知二项式(x2+)n的展开式的二项式系数之和为32,则展开式中含x项的系数是______.14.抛物线y2=﹣12x的准线与双曲线﹣=1的两条渐近线所围成的三角形的面积等于______.15.已知某四棱锥的三视图所示,其中俯视图和左视图都是腰长为4的等腰直角三角形,主视图为直角梯形,则几何体的体积是______.16.正12边形A1A2…A12内接于半径为1的圆,从、、、…、这12个向量中任取两个,记它们的数量积为S,则S的最大值等于______.三、解答题(共5小题,满分60分)17.设函数.(1)求函数f(x)最小正周期;(2)设△ABC的三个内角A、B、C的对应边分别是a、b、c,若,,,求b.18.第五届全国绿色运动健身大赛于2015年10月24日在安徽池州开赛.据了解,本届绿运健身大赛以“绿色池州、绿色运动、绿色生活”为主题.为调查某社区年轻人的周末生活状况,研究这一社区年轻人在周末的休闲方式与性别的关系,随机调查了该社区年轻人80人,得到下面的数据表:休闲方式逛街上网合计性别男10 50 60女10 10 20合计20 60 80(1)根据以上数据,能否有99%的把握认为“周末年轻人的休闲方式与性别有关系”?(2)将此样本的频率估计为总体的概率,随机调查3名在该社区的年轻男生,设调查的3人在这一段时间以上网为休闲方式的人数为随机变量X,求X的分布列和数学期望.参考公式:K2=,其中n=a+b+c+d参考数据:P(K2≥k0)0.15 0.10 0.05 0.025 0.010k0 2.072 2.706 3.841 5.024 6.63519.如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB1﹣A1的正弦值.20.已知椭圆C:=1(a>b>0)的离心率为,以原点O为圆心,椭圆C的长半轴为半径的圆与直线2x﹣y+6=0相切.(1)求椭圆C的标准方程;(2)已知点A,B为动直线y=k(x﹣2)(k≠0)与椭圆C的两个交点,问:在x轴上是否存在点E,使2+•为定值?若存在,试求出点E的坐标和定值,若不存在,说明理由.21.设函数f(x)=(x+1)lnx﹣a(x﹣1).(1)若函数f(x)在x=e处的切线与y轴相交于点(0,2﹣e)求a的值;(e为自然对数的底数,e=2.781828…);(2)当a≤2时,讨论函数f(x)的单调性;(3)当1<x<2时,证明:.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分..[选修4-1:平面几何选讲]22.如图,A,B,C,D四点共圆,BC,AD的延长线交于点E,点F在BA的延长线上,(1)若的值;(2)若EF2=FA•FB,证明:EF∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,直线l的参数方程为,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为.(1)写出直线l的普通方程及圆C 的直角坐标方程;(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小.[选修4-5:不等式选讲]24.设函数f(x)=|x+1|+|2x﹣1|的最小值为a.(1)求a的值;(2)已知m,n>0,m+n=a,求的最小值.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.若复数z满足zi=1+2i,则复数z的共轭复数=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i【考点】复数代数形式的乘除运算.【分析】由zi=1+2i,得,然后利用复数代数形式的乘除运算化简复数z,则复数z的共轭复数可求.【解答】解:由zi=1+2i,得,则复数z的共轭复数=2+i.故选:D.2.已知集合A、B是非空集合且A⊆B,则下列说法错误的是()A.∃x0∈A,x0∈B B.∀x0∈A,x0∈B C.A∩B=A D.A∩(∁u B)≠∅【考点】特称命题.【分析】利用元素与集合之间的关系、集合的运算性质即可判断出正误.【解答】解:∵集合A、B是非空集合且A⊆B,∴∃x0∈A,x0∈B;∀x0∈A,x0∈B;A∩B=A;A∩(∁u B)=∅.因此A,B,C,正确,D错误.故选:D.3.已知数列{a n}为等差数列,a1+a8+a15=π,则cos(a4+a12)则的值为()A.﹣B.C.D.【考点】等差数列的通项公式.【分析】由等差数列的性质得到,cos(a4+a12)=cos(2a8)=cos,由此能求出结果.【解答】解:∵数列{a n}为等差数列,a1+a8+a15=3a8=π,∴,∴cos(a4+a12)=cos(2a8)=cos=﹣cos=﹣.故选:A.4.某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则至少有1名优秀工人的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率;茎叶图.【分析】由茎叶图可得工人加工的零件数,可得优秀工人数,列举法和概率公式可得.【解答】解:由茎叶图可知6名工人加工零件数为:17,19,20,21,25,30,平均值为:(17+19+20+21+25+30)=22,优秀的为25,30有2人,从该车间6名工人中,任取2人共有15种取法:(17,19)(17,20)(17,21)(17,25)(17,30)(19,20)(19,21)(19,25)(19,30)(20,21)(20,25)(20,30)(21,25)(21,30)(25,30).其中至少有1名优秀工人的共有9种取法:(17,25)(17,30)(19,25)(19,30)(20,25)(20,30)(21,25)(21,30)(25,30).由概率公式可得P==,故选:C.5.执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.【考点】循环结构.【分析】框图首先给累加变量S和循环变量i分别赋值0和2,在输入n的值为10后,对i的值域n的值大小加以判断,满足i≤n,执行,i=i+2,不满足则跳出循环,输出S.【解答】解:输入n的值为10,框图首先给累加变量S和循环变量i分别赋值0和2,判断2≤10成立,执行,i=2+2=4;判断4≤10成立,执行=,i=4+2=6;判断6≤10成立,执行,i=6+2=8;判断8≤10成立,执行,i=8+2=10;判断10≤10成立,执行,i=10+2=12;判断12≤10不成立,跳出循环,算法结束,输出S的值为.故选A.6.已知函数的图象经过点,且f(x)的相邻两个零点的距离为,为得到y=f(x)的图象,可将y=sinx图象上所有点()A.先向右平移个单位长度,再将所得点的横坐标变为原来的倍,纵坐标不变B.先向左平移个单位长度,再将所得点的横坐标变为原来的倍,纵坐标不变C.先向左平移个单位长度,再将所得点的横坐标变为原来的2倍,纵坐标不变D.先向右平移个单位长度,再将所得点的横坐标变为原来的2倍,纵坐标不变【考点】函数y=Asin(ωx+φ)的图象变换.【分析】直接求出函数的周期T,利用周期公式可求ω,通过函数经过的特殊点求出φ,得到函数的解析式,利用图象平移的规律:左加右减,加减的单位是自变量x的变化的单位;图象伸缩变换的规律:横坐标变为坐标系x乘的数的倒数;纵坐标变为三角函数前面乘的数倍,即可得解.【解答】解:(1)由题意可知,T=×2=π,ω==2,∵sin[2•(﹣)+φ]=0,∴φ=kπ+,k∈Z,∵0<φ<,∴φ=,可得:f(x)=sin(2x+).∴将y=sinx的图象先向左平移个单位长度,再将所得点的横坐标变为原来的倍,纵坐标不变,得到y=f(x)的图象.故选:B.7.定义在R上的可导函数f(x)的导函数为f′(x),已知函数y=2f′(x)的图象如图所示,则函数y=f(x)的单调递减区间为()A.(1,+∞)B.(1,2)C.(﹣∞,2)D.(2,+∞)【考点】函数的图象.【分析】结合图象及指数函数的性质可判断f′(x)的正负,从而确定函数的单调性.【解答】解:结合图象可知,当x∈(﹣∞,2]时,2f′(x)≥1,即f′(x)≥0;当x∈(2,+∞)时,2f′(x)<1,即f′(x)<0;故函数y=f(x)的单调递减区间为(2,+∞),故选D.8.在△ABC外,分别以AC、BC、AB为边作正方形,得到三个正方形的面积依次为S1、S2、S3,若S1+S2=S3=8,则△ABC的面积最大值是()A.2 B.C.4 D.【考点】基本不等式.【分析】由题意可得:a2+b2=c2=8,可得C=90°,于是S△=,再利用基本不等式的性质即ABC可得出.【解答】解:由题意可得:a2+b2=c2=8,∴C=90°,△ABC是直角三角形,∴S△=≤=2,当且仅当a=b=2时取等号.ABC故选:A.9.设关于x、y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,则a的取值范围是()A.(﹣∞,﹣)B.(﹣∞,﹣)C.(﹣∞,)D.(﹣∞,)【考点】简单线性规划.【分析】作出不等式组对应的平面区域,要使平面区域内存在点P(x0,y0)满足x0﹣2y0=2,则平面区域内必存在一个点在直线x﹣2y=2的下方,由图象可得a的取值范围.【解答】解:作出不等式组对应的平面如图:直线x﹣2y=2的斜率为斜截式方程为y=x﹣1,要使平面区域内存在点P(x0,y0)满足x0﹣2y0=2,直线y=x﹣1经过交点A的坐标为(,)的下方,B(,a)的上方,即﹣1>a,解得a<﹣.故a的取值范围是:(﹣∞,﹣).故选:B.10.已知边长为1的等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,若A、B、C、D、E在同一球面上,则此球的体积为()A.2πB.πC.πD.π【考点】球的体积和表面积.【分析】找出二面角的平面角,设球的半径为R,则R2=(﹣R)2+()2,求出R,即可求出球的体积.【解答】解:作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,CH=,OH=,CO=结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,设球的半径为R,则R2=(﹣R)2+()2,∴R=∴V==.故选:D.11.设函数f(x)=sin2x+acosx在(0,π)上是增函数,则实数a的取值范围为()A.[﹣1,+∞)B.(﹣∞,﹣1] C.(﹣∞,0)D.(0,+∞)【考点】利用导数研究函数的单调性;三角函数中的恒等变换应用.【分析】首先利用函数的导数求函数的单调区间,进一步分离参数法,构造辅助函数,利用导数的求得函数的最小值,即可求出函数中a的取值范围.【解答】解:f(x)=sin2x+acosx在(0,π)上是增函数,∴f′(x)=cos2x﹣asinx≥0,∴1﹣2sin2x﹣asinx≥0,设t=sinx,t∈(0,1],即﹣2t2﹣at+1≥0,t∈(0,1],∴a≤﹣2t+,令g(t)=﹣2t+,则g′(t)=﹣2﹣<0,∴g(t)在(0,1]递减,∴a≤g(1)=﹣1,∴a≤﹣1.故选:B.12.已知直线l:y=kx+b与抛物线x2=2py(常数p>0)相交于不同的两点A、B,线段AB的中点为D,与直线l:y=kx+b平行的切线的切点为C.分别过A、B作抛物线的切线交于点E,则关于点C、D、E三点横坐标x c、x D,x E的表述正确的是()A.x D<x C<x E B.x C=x D>x E C.x D=x c<x E D.x C=x D=x E【考点】抛物线的简单性质.【分析】设A,B.直线方程与抛物线方程联立,化为:x2﹣2pkx﹣2pb=0,利用根与系数的关系、中点坐标公式可得x D.对抛物线x2=2py两边求导可得:y′=.可得切线方程,进而得到交点E的横坐标,由题意可得:k=,即可得出结论.【解答】解:设A,B.联立,化为:x2﹣2pkx﹣2pb=0,△>0,∴x1+x2=2pk,可得x D==pk.对抛物线x2=2py两边求导可得:y′=.可得经过点A的切线方程:y﹣=(x﹣x1),经过点B的切线方程:y﹣=(x﹣x2),联立解得x E==x D.经过点C的切线的斜率为,由题意可得:k=,∴x C=pk.综上可得:x C=x E=x D.故选:D.二、填空题(共4小题,每小题5分,满分20分)13.已知二项式(x2+)n的展开式的二项式系数之和为32,则展开式中含x项的系数是10 .【考点】二项式定理.【分析】先求得n=5,以及二项式展开式的通项公式,再令x的幂指数等于1,求得r的值,即可求得含x的项的系数.【解答】解:由题意可得2n=32,n=5,展开式的通项公式为T r+1=•x10﹣2r•x﹣r=•x10﹣3r.令10﹣3r=1,r=3,故展开式中含x项的系数是=10,故答案为10.14.抛物线y2=﹣12x的准线与双曲线﹣=1的两条渐近线所围成的三角形的面积等于.【考点】双曲线的简单性质.【分析】根据抛物线的方程算出其准线方程为x=3,由双曲线的方程算出渐近线方程为y=±x,从而得到它们的交点M、N的坐标,再利用三角形的面积公式算出△OMN的面积,可得答案.【解答】解:∵抛物线方程为y2=﹣12x,∴抛物线的焦点为F(﹣3,0),准线为x=3.又∵双曲线﹣=1的渐近线方程为y=±x.∵直线x=3与直线y=±x相交于点M(3,),N(3,﹣),∴三条直线围成的三角形为△MON,以MN为底边、O到MN的距离为高,可得其面积为S=×|MN|×3=×[﹣(﹣)]×3=3.故答案为:.15.已知某四棱锥的三视图所示,其中俯视图和左视图都是腰长为4的等腰直角三角形,主视图为直角梯形,则几何体的体积是.【考点】由三视图求面积、体积.【分析】几何体是四棱锥,判断几何体的结构特征,结合直观图求相关几何量的数据,代入棱锥的体积公式计算.【解答】解:由三视图知:几何体是四棱锥,如图:其中SA⊥ABCD,底面ABCD为直角梯形,AB=AD=4,BC=1,SA=4,∴几何体的体积V=××4×4=.故答案为:.16.正12边形A1A2…A12内接于半径为1的圆,从、、、…、这12个向量中任取两个,记它们的数量积为S,则S的最大值等于.【考点】平面向量数量积的运算.【分析】由题意画出图形,求出正12变形的边长,在由题意可得,从、、、…、这12个向量中任取两个,使它们的数量积最大,则两向量夹角最小,则两向量为相邻两向量,由此可得答案.【解答】解:如图,由多边形内角和定理可知,正12边形A1A2…A12内角和为(12﹣10)×180°=1800°,则每一个内角为,∠A1OA2=30°,在△A1OA2中,又OA1=OA2=1,由余弦定理可得:,由题意可知,、、、…、的模相等,从、、、…、这12个向量中任取两个,使它们的数量积最大,则两向量夹角最小,则两向量为相邻两向量,不妨取、,则S==.故答案为:.三、解答题(共5小题,满分60分)17.设函数.(1)求函数f(x)最小正周期;(2)设△ABC的三个内角A、B、C的对应边分别是a、b、c,若,,,求b.【考点】三角函数的周期性及其求法;同角三角函数基本关系的运用;正弦定理.【分析】(1)本题考查三角函数的性质,首先要把原式进行整理,用两角和的余弦公式展开,合并同类项,变为y=Asin(ωx+φ)的形式,再用周期的公式得到结果.(2)本题结合三角形的问题求解,注意三角形本身的隐含条件,先根据上一问的结果做出角C 的正弦值,角B的正弦值,最后应用正弦定理解出要求的边长.【解答】解:(I)=+==.∵ω=2,∴.∴f(x)的最小正周期为π.(II)由(I)得f(x)=,∴=.又,∴=,∴,∵△ABC中,,由正弦定理,得,∴.18.第五届全国绿色运动健身大赛于2015年10月24日在安徽池州开赛.据了解,本届绿运健身大赛以“绿色池州、绿色运动、绿色生活”为主题.为调查某社区年轻人的周末生活状况,研究这一社区年轻人在周末的休闲方式与性别的关系,随机调查了该社区年轻人80人,得到下面的数据表:休闲方式逛街上网合计性别男10 50 60女10 10 20合计20 60 80(1)根据以上数据,能否有99%的把握认为“周末年轻人的休闲方式与性别有关系”?(2)将此样本的频率估计为总体的概率,随机调查3名在该社区的年轻男生,设调查的3人在这一段时间以上网为休闲方式的人数为随机变量X,求X的分布列和数学期望.参考公式:K2=,其中n=a+b+c+d参考数据:P(K2≥k0)0.15 0.10 0.05 0.025 0.010k0 2.072 2.706 3.841 5.024 6.635【考点】独立性检验的应用;离散型随机变量及其分布列;离散型随机变量的期望与方差.【分析】(1)根据提供的列联表,计算观测值K2,比较数表即可得出正确的结论;(2)以题意,得出随机变量X的可能取值与每个男性在周末以上网为休闲方式的概率,【方法一】计算X对应的概率值,写出X的分布列,计算数学期望值.【方法二】根据题意得X~B(3,),写出P(X=k)与数学期望值.【解答】解:(1)根据提供的列联表得,K2===≈8.889>6.635,所以有99%的把握认为“周末年轻居民的休闲方式与性别有关”;(2)以题意,随机变量X的取值为0、1、2、3,且每个男性在周末以上网为休闲方式的概率为P=;【方法一】根据题意得,P(X=0)=•=,P(X=1)=••=,P(X=2)••=,P(X=3)=•=;所以X的分布列为:X 0 1 2 3P所以数学期望EX=0×+1×+2×+3×=.【方法二】根据题意得,X~B(3,),所以P(X=k)=••,k=0,1,2,3;数学期望EX=np=3×=.19.如图,在斜三棱柱ABC﹣A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB1﹣A1的正弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(1)连接AC1,CB1,取CC1的中点O,则CC1⊥OA,CC1⊥OB1,从而CC1⊥平面OAB1.由此能证明CC1⊥AB1.(2)以O为原点,以OB1,OC1,OA所在直线为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角C﹣AB1﹣A1的正弦值.【解答】证明:(1)连接AC1,CB1,则△ACC1和△BCC1皆为正三角形.取CC1的中点O,连接OA,OB1,则CC1⊥OA,CC1⊥OB1,又OA∩OB1=O,所以CC1⊥平面OAB1.又AB1⊂平面OAB1,所以CC1⊥AB1.解:(2)由(1)知,,又,所以OA⊥OB1.如图所示,以O为原点,以OB1,OC1,OA所在直线为x轴,y轴,z轴建立空间直角坐标系,则,设平面CAB1的一个法向量为,因为,所以取.设平面A1AB1的一个法向量为,因为,所以取.则,∴sin<>==.所以二面角C﹣AB1﹣A1的正弦值是.20.已知椭圆C:=1(a>b>0)的离心率为,以原点O为圆心,椭圆C的长半轴为半径的圆与直线2x﹣y+6=0相切.(1)求椭圆C的标准方程;(2)已知点A,B为动直线y=k(x﹣2)(k≠0)与椭圆C的两个交点,问:在x轴上是否存在点E,使2+•为定值?若存在,试求出点E的坐标和定值,若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)求得圆O的方程,由直线和圆相切的条件:d=r,可得a的值,再由离心率公式,可得c的值,结合a,b,c的关系,可得b,由此能求出椭圆的方程;(2)由直线y=k(x﹣2)和椭圆方程,得(1+3k2)x2﹣12k2x+12k2﹣6=0,由此利用韦达定理、向量的数量积,结合已知条件能求出在x轴上存在点E,使•为定值,定点为(,0).【解答】解:(1)由离心率为,得=,即c=a,①又以原点O为圆心,椭圆C的长半轴长为半径的圆为x2+y2=a2,且与直线相切,所以,代入①得c=2,所以b2=a2﹣c2=2.所以椭圆C的标准方程为+=1.(2)由,可得(1+3k2)x2﹣12k2x+12k2﹣6=0,△=144k4﹣4(1+3k2)(12k2﹣6)>0,即为6+6k2>0恒成立.设A(x1,y1),B(x2,y2),所以x1+x2=,x1x2=,根据题意,假设x轴上存在定点E(m,0),使得为定值,则有=(x1﹣m,y1)•(x2﹣m,y2)=(x1﹣m)•(x2﹣m)+y1y2=(x1﹣m)(x2﹣m)+k2(x1﹣2)(x2﹣2)=(k2+1)x1x2﹣(2k2+m)(x1+x2)+(4k2+m2)=(k2+1)•﹣(2k2+m)•+(4k2+m2)=,要使上式为定值,即与k无关,则应3m2﹣12m+10=3(m2﹣6),即,此时=为定值,定点E为.21.设函数f(x)=(x+1)lnx﹣a(x﹣1).(1)若函数f(x)在x=e处的切线与y轴相交于点(0,2﹣e)求a的值;(e为自然对数的底数,e=2.781828…);(2)当a≤2时,讨论函数f(x)的单调性;(3)当1<x<2时,证明:.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求函数的导数,根据导数的几何意义即可求出函的切线斜率,即可求得a的值;(2)求导数,构造辅助函数g(x)=lnx++1﹣a,求导,令g′(x)=0,求得g(x)的最小值,判断f′(x)≥0,可判断函数的单调性;(3)由(2)知f(x)在(1,2)上是增函数,可知(x+1)lnx>2(x﹣1),即<利用函数的单调性,求得﹣<,根据对数函数的运算即可证明不等式成.【解答】解:(1)f′(x)=lnx++1﹣a,x∈(0,+∞)由题意可知:=f′(e),整理得:e+1﹣a(e﹣1)﹣(2﹣e)=e(1++1﹣a),解得a=2;(2))f′(x)=lnx++1﹣a,记g(x)=lnx++1﹣a,g′(x)=,令g′(x)=0,x=1,∴g(x)min=g(1)=2﹣a,∵a≤2,∴2﹣a≥0,∴g(x)≥g(1)=0,f′(x)≥0,∴函数f(x)的定义域上为增函数;(3)证明:由(2)知当a=2时,f(x)在(1,2)上是增函数,∴f(x)>f(1)=0,即(x+1)lnx>2(x﹣1),∴<,①∵1<x<2,∴0<2﹣a<1,,∴<=,即﹣<,②①+②得:﹣<+=∴原式成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分..[选修4-1:平面几何选讲]22.如图,A,B,C,D四点共圆,BC,AD的延长线交于点E,点F在BA的延长线上,(1)若的值;(2)若EF2=FA•FB,证明:EF∥CD.【考点】与圆有关的比例线段;相似三角形的性质.【分析】(1)推导出△EDC∽△EBA,由此能求出的值.(2)推导出△FAE∽△FEB,从而∠FEA=∠EBF,再由四点共圆,能证明EF∥CD.【解答】解:(1)∵A、B、C、D四点共圆,∴∠ECD=∠EAB,∠EDC=∠B,∴△EDC∽△EBA,∴,==,∴=.证明:(2)∵EF2=FA•FB,∴,∵∠EFA=∠BFE,∴△FAE∽△FEB,∴∠FEA=∠EBF,∵A、B、C、D四点共圆,∠EDC=∠EBF,∴∠FEA=∠EDC,∴EF∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,直线l的参数方程为,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为.(1)写出直线l的普通方程及圆C 的直角坐标方程;(2)点P是直线l上的,求点P 的坐标,使P 到圆心C 的距离最小.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)由已知得t=x﹣3,从而y=,由此能求出直线l的普通方程;由,得,由此能求出圆C的直角坐标方程.(2)圆C圆心坐标C(0,),设P(3+t,),由此利用两点间距离公式能求出点P的坐标,使P到圆心C 的距离最小.【解答】解:(1)∵在直角坐标系xOy中,直线l的参数方程为,∴t=x﹣3,∴y=,整理得直线l的普通方程为=0,∵,∴,∴,∴圆C的直角坐标方程为:.(2)圆C:的圆心坐标C(0,).∵点P在直线l:=0上,设P(3+t,),则|PC|==,∴t=0时,|PC|最小,此时P(3,0).[选修4-5:不等式选讲]24.设函数f(x)=|x+1|+|2x﹣1|的最小值为a.(1)求a的值;(2)已知m,n>0,m+n=a,求的最小值.【考点】绝对值不等式的解法;基本不等式.【分析】(1)由条件化简函数的解析式,再利用函数的单调性求得函数f(x)的最小值.(2)根据=(+)•,利用基本不等式求得它的最小值.【解答】解:(1)函数f(x)=|x+1|+|2x﹣1|=,故函数的减区间为(﹣∞,],增区间为(,+∞),故当x=时,函数f(x)取得最小值为a=.(2)已知m,n>0,m+n=a=,∴=(+)•=[1+++4]=+(+)≥+•2=6,当且仅当=时,取等号,故的最小值为6.。
专题12 利用导数解决函数的单调性-学会解题之高三数学万能解题模板【2022版】(原卷版)
专题12 导数与函数的单调性问题【高考地位】在近几年的高考中,导数在研究函数的单调性中的应用是必考内容,它以不但避开了初等函数变形的难点,定义法证明的繁杂,而且使解法程序化,优化解题策略、简化运算,具有较强的工具性的作用. 导数在研究函数的单调性中的应用主要有两方面的应用:一是分析函数的单调性;二是已知函数在某区间上的单调性求参数的取值范围.在高考中的各种题型中均有出现,其试题难度考查相对较大.类型一 求无参函数的单调区间万能模板 内 容使用场景 知函数()f x 的解析式判断函数的单调性 解题模板第一步 计算函数()f x 的定义域; 第二步 求出函数()f x 的导函数'()f x ;第三步 若'()0f x >,则()f x 为增函数;若'()0f x <,则()f x 为减函数.例1 【河北省衡水市枣强中学2020届高三下学期3月调研】已知函数()ln xx af x e+=. (1)当1a =时,判断()f x 的单调性;【变式演练1】函数,的单调递增区间为__________.【来源】福建省三明第一中学2021届高三5月校模拟考数学试题【变式演练2】已知函数,则不等式的解集为___________.【来源】全国卷地区“超级全能生”2021届高三5月联考数学(文)试题(丙卷)【变式演练3】【黑龙江省哈尔滨六中2020届高三高考数学(文科)二模】已知函数()2sin f x x x =-+,若3(3)a f =,(2)b f =--,2(log 7)c f =,则,,a b c 的大小关系为( ) A .a b c <<B .b c a <<C .c a b <<D .a c b <<【变式演练4】【湖南省湘潭市2020届高三下学期第四次模拟考试】定义在R 上的连续函数()f x ,导函数为()f x '.若对任意不等于1-的实数x ,均有()()()10x f x f x '+->⎡⎤⎣⎦成立,且()()211x f x f x e -+=--,则下列命题中一定成立的是( )A .()()10f f ->B .()()21ef f -<-C .()()220e f f -<D .()()220e f f ->类型二 判定含参数的函数的单调性万能模板 内 容使用场景 函数()f x 的解析式中含有参数解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步 讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0; 第三步 根据导函数的符号变换判断其单调区间.例2 【黑龙江省大庆市第四中学2020届高三下学期第四次检测】已知函数()()2ln 21f x x x ax a R =+-+∈.(1)讨论()f x 的单调性;【变式演练5】(主导函数是一次型函数)【福建省三明市2020届高三(6月份)高考数学(文科)模拟】已知函数()=1,f x nx ax a R -∈.(1)讨论函数f x ()的单调性;()2sin sin 2f x x x =⋅0,2x π⎡⎤∈⎢⎥⎣⎦()()2ln 1x xf x x e e -=+++()()2210f x f x --+≤【变式演练6】(主导函数为类一次型)【山东省威海荣成市2020届高三上学期期中考试】已知函数()x f x e ax -=+.(I )讨论()f x 的单调性;【变式演练7】(主导函数为二次型)【2020届山西省高三高考考前适应性测试(二)】已知函数()2ln af x x a x x=--,0a ≥. (1)讨论()f x 的单调性;【变式演练8】(主导函数是类二次型)【山西省太原五中2020届高三高考数学(理科)二模】已知函数2()(1)x f x k x e x =--,其中k ∈R.(1)当k 2≤时,求函数()f x 的单调区间;【变式演练9】已知函数,若在区间上单调递增,则的取值范围是( )A .B .C .D .【来源】江西省南昌市新建区第一中学2020-2021学年高三上学期期末考试数学(文)试题类型三 由函数单调性求参数取值范围万能模板 内 容使用场景 由函数单调性求参数取值范围解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 根据题意转化为相应的恒成立问题; 第三步 得出结论.例3.【江苏省南通市2019-2020学年高三下学期期末】若()()21ln 242f x x b x =-++在()2,-+∞上是减函数,则实数b 的范围是( ) A .(],1-∞-B .(],0-∞C .(]1,0-D .[)1,-+∞【变式演练11】(转化为任意型恒成立)【四川省绵阳市2020高三高考数学(文科)三诊】函数2()(2)x f x e x ax b =-++在(1,1)-上单调递增,则2816a b ++的最小值为( )A .4B .16C .20D .18()22ln f x x x =-()f x ()2,1m m +m 1,14⎡⎫⎪⎢⎣⎭1,4⎡⎫+∞⎪⎢⎣⎭1,12⎡⎫⎪⎢⎣⎭[)0,1【变式演练12】(转化为变号零点)【山西省运城市2019-2020学年高三期末】已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是( ) A .[)2,8B .[]2,8C .(][),28,-∞+∞ D .()2,8【变式演练13】(直接给给定单调区间)【辽宁省六校协作体2019-2020学年高三下学期期中考试】已知函数()32113f x x mx nx =+++的单调递减区间是()3,1-,则m n +的值为( ) A .-4B .-2C .2D .4【变式演练14】(转化为存在型恒成立)【四川省仁寿第一中学北校区2019-2020学年高三月考】若f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,则a 的取值范围是( )A .(﹣∞,0]B .(﹣∞,0)C .[0,+∞)D .(0,+∞)【高考再现】1.(2021·全国高考真题(理))设2ln1.01a =,ln1.02b =, 1.041c =-.则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<2.(2021·全国高考真题(理))已知且,函数.(1)当时,求的单调区间;(2)若曲线与直线有且仅有两个交点,求a 的取值范围. 3.已知函数. (1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:. 【来源】2021年全国新高考Ⅰ卷数学试题 4.【2017山东文,10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =5.【2017江苏,11】已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,0a >1a ≠()(0)a x x f x x a=>2a =()f x ()y f x =1y =()()1ln f x x x =-()f x a b ln ln b a a b a b -=-112e a b<+<则实数a 的取值范围是 ▲ .6.【2020年高考全国Ⅰ卷文数20】已知函数()()e 2xf x a x =-+.(1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.7.【2020年高考全国Ⅰ卷理数21】已知函数()2e xf x ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围. 8.【2020年高考全国Ⅱ卷文数21】已知函数()2ln 1f x x =+. (1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.9.(2018年新课标I 卷文)已知函数f (x )=ae x −lnx −1∈ (1)设x =2是f (x )的极值点.求a ,并求f (x )的单调区间; (2)证明:当a ≥1e 时,f (x )≥0∈10.【2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)】已知函数f(x)=1x −x +alnx ∈ (1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x 1,x 2,证明:f (x 1)−f (x 2)x 1−x 2<a −2.【反馈练习】1.【2020届广东省梅州市高三总复习质检(5月)】已知0x >,a x =,22xb x =-,()ln 1c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<2.【2020届山东省威海市高三下学期质量检测】若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为( )A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.【河南省十所名校2019—2020学年高三毕业班阶段性测试】若函数()sin24sin f x x x m x =--在[0,2π]上单调递减,则实数m 的取值范围为( ) A .(2,2)-B .[2,2]-C .(1,1)-D .[1,1]-4.【黑龙江哈尔滨市第九中学2019-2020学年高三阶段验收】函数()3f x x ax =+,若对任意两个不等的实数()1212,x x x x >,都有()()121233f x f x x x ->-恒成立,则实数a 的取值范围是( ) A .()2,-+∞B .[)3,+∞C .(],2-∞-D .(),3-∞5.【湖北省武汉市新高考五校联合体2019-2020学年高三期中检测】若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______. 6.【四川省宜宾市2020届高三调研】若对(]0,1t ∀∈,函数2()(4)2ln g x x a x a x =-++在(,2)t 内总不是单调函数,则实数a 的取值范围是______7.【河南省南阳市第一中学校2019-2020学年高三月考】若函数()22ln f x x x =-在定义域内的一个子区间()1,1k k -+上不是单调函数,则实数k 的取值范围______.8.若函数在区间是增函数,则的取值范围是_________.【来源】陕西省宝鸡市眉县2021届高三下学期高考模拟文科数学试题 9.已知函数,若对任意两个不同的,,都有成立,则实数的取值范围是________________【来源】江西省景德镇市2021届高三上学期期末数学(理)试题10.【黑龙江省哈尔滨师范大学附属中学2020-2021学年高三上学期开学考试】(1)求函数()sin cos (02)f x x x x x π=+<<的单调递增区间;()cos 2sin f x x a x =+,62ππ⎛⎫⎪⎝⎭a ()()1ln 1xf x x x+=>1x 2x ()()1212ln ln f x f x k x x -≤-k(2)已知函数2()ln 43f x a x x x =-++在1,22⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的范围.11.【黑龙江省哈尔滨三中2020届高三高考数学(文科)三模】函数()()21ln 1x f x x x -=-+. (1)求证:函数()f x 在()0,∞+上单调递增; (2)若m ,n 为两个不等的正数,求证ln ln 2m n m n m n->-+. 12.【湖北省黄冈中学2020届高三下学期适应性考试】已知函数()()ln 1ln f x ax x a x =-+,()f x 的导数为()f x '.(1)当1a >-时,讨论()f x '的单调性; (2)设0a >,方程()3f x x e =-有两个不同的零点()1212,x x x x <,求证121x e x e+>+. 13.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】已知函数()()()ln 12f x a x x a =+-∈R .(1)讨论()f x 的单调性;(2)当0x ≥时,()1xf x e ≥-,求实数a 的取值范围.14.【2020届山西省高三高考考前适应性测试(二)】已知函数()xf x ae ex =-,()()ln 1xg x x b x e =--,其中,a b ∈R .(1)讨论()f x 在区间()0,∞+上的单调性; (2)当1a =时,()()0f x g x ≤,求b 的值.15.【河南省2020届高三(6月份)高考数学(文科)质检】已知函数2()22ln ()f x x ax x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--. 16.【山东省2020年普通高等学校招生统一考试数学必刷卷】已知实数0a >,函数()22ln f x a x a x x=++,()0,10x ∈.(1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x ,()()22,Q x f x ()12xx <处的切线分别为12,l l ,且12,l l 在y 轴上的截距分别为12,b b .若12//l l ,求12b b -的取值范围.17.【福建省2020届高三(6月份)高考数学(理科)模拟】已知函数()()()2ln 222f x x a x x =++++,0a >.(1)讨论函数()f x 的单调性; (2)求证:函数()f x 有唯一的零点.18.【山东省潍坊市五县2020届高三高考热身训练考前押题】已知函数()f x 满足222(1)()2(0)2x f f x x f x e -'=+-,21()(1)24x g x f x a x a ⎛⎫=-+-+ ⎪⎝⎭,x ∈R . (1)求函数()f x 的解析式; (2)求函数()g x 的单调区间;(3)当2a ≥且1≥x 时,求证:1ln ln x e x e a x x--<+-.19.【陕西省商洛市商丹高新学校2020届高三下学期考前适应性训练】已知函数3()ln ()f x x a x a R =-∈.∈1)讨论函数()f x 的单调性∈∈2)若函数()y f x =在区间(1,]e 上存在两个不同零点∈求实数a 的取值范围.20.【2020年普通高等学校招生全国统一考试伯乐马模拟考试】已知函数()()22xxf x ax a e e =-++.(1)讨论函数()f x 的单调性; (2)若函数()()()2212x x g x f x ax x a e e =-++-存在3个零点,求实数a 的取值范围. 21.【金科大联考2020届高三5月质量检测】已知函数()()()()()22224ln 2144f x x ax x a x a a x a =--+++∈R .(∈)讨论函数()f x 的单调性;(∈)若0a ≤,证明:函数()f x 在区间)1,a e -⎡+∞⎣有且仅有一个零点.22.已知函数.(1)若,求函数的单调区间; (2)求证:对任意的,只有一个零点.【来源】全国Ⅱ卷2021届高三高考数学(理)仿真模拟试题 23.已知函数. (1)当时,判断的单调性;(2)若有两个极值点,求实数的取值范围.【来源】安徽省合肥六中2021届高三6月份高考数学(文)模拟试题 24.已知函数. (1)求的单调性;(2)设函数,讨论的零点个数. 【来源】重庆市高考康德卷2021届高三模拟调研卷数学试题(三) 25.已知函数, (1)讨论的单调性;(2)若,,,用表示,的最小值,记函数,,讨论函数的零点个数.【来源】山东省泰安肥城市2021届高三高考适应性训练数学试题(二) 26.已知() (1)讨论的单调性;(2)当时,若在上恒成立,证明:的最小值为. 【来源】贵州省瓮安中学高三2021届6月关门考试数学(理)试题27.已知函数.(1)讨论的单调性;()321()13f x x a x x =--+2a =-()f x a ∈R ()f x ()21ln 2f x x ax x ax =-+1a =()f x ()f x a ()()cos sin ,0,2f x x x x x π=-∈()f x ()()(01)g x f x ax a =-<<()g x ()ln()xf x x a x a=+-+a R ∈()f x 4a =()1cos (2sin )2g x x x mx x =++0m >}{min ,m n m n }{()min ()()h x f x g x =,[],x ππ∈-()h x ()ln f x x ax =+a R ∈()f x 1a =()()1f x k x b ≤++()0,∞+221k b k +--1e -+2()2ln ,()f x x ax x a R =+++∈()f x(2)若恒成立,求的最大值.【来源】广东省佛山市五校联盟2021届高三5月数学模拟考试试题 28.已知函数. (1)若,证明:在单调递增; (2)若恒成立,求实数的取值范围.【来源】黑龙江省哈尔滨市第三中学2021届高三五模数学(理)试题 29.已知函数. (1)若在上为增函数,求实数a 的取值范围;(2)设,若存在两条相互垂直的切线,求函数在区间上的最小值.【来源】四川省达州市2021 届高三二模数学(文)试题 30.已知函数. (1)如果函数在上单调递减,求的取值范围; (2)当时,讨论函数零点的个数.【来源】内蒙古赤峰市2021届高三模拟考试数学(文)试题 31.已知函数. (1)若在R 上是减函数,求m 的取值范围;(2)如果有一个极小值点和一个极大值点,求证 有三个零点. 【来源】安徽省淮南市2021届高三下学期一模理科数学试题32.已知函数.(1)若函数在上为增函数,求实数的取值范围; (2)当时,证明:函数有且仅有3个零点. 【来源】重庆市第二十九中学校2021届高三下学期开学测试数学试题()xf x e ≤a ()ln x f x xe ax a x =--0a ≤()f x ()0,∞+()0f x ≥a 21()cos 2f x x ax x =++()f x [0,)+∞21()()2g x f x x =-()g x sin ()1()x g x F x x -+=,2ππ⎡⎤⎢⎥⎣⎦1()ln(1)1f x a x x =-+-()()22g x f x x =-+(1,)+∞a 0a >()y f x =21()e 1()2x f x x mx m =+-+∈R ()f x ()f x 1x 2x ()f x ()e sin 1xf x ax x =-+-()f x ()0,∞+a 12a ≤<()()()2g x x f x =-11/ 11。
2020-2021学年安徽省滁州市殷涧中学高三数学理联考试卷含解析
2020-2021学年安徽省滁州市殷涧中学高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若A. B. C. D.参考答案:D2. 对于集合A,如果定义了一种运算“⊕”,使得集合A中的元素间满足下列4个条件:(Ⅰ)?a,b∈A,都有a⊕b∈A(Ⅱ)?e∈A,使得对?a∈A,都有e⊕a=a⊕e=a;(Ⅲ)?a∈A,?a′∈A,使得a⊕a′=a′⊕a=e;(Ⅳ)?a,b,c∈A,都有(a⊕b)⊕c=a⊕(b⊕c),则称集合A对于运算“⊕”构成“对称集”.下面给出三个集合及相应的运算“⊕”:①A={整数},运算“⊕”为普通加法;②A={复数},运算“⊕”为普通减法;③A={正实数},运算“⊕”为普通乘法.其中可以构成“对称集”的有( )A.①②B.①③C.②③D.①②③参考答案:B考点:元素与集合关系的判断.专题:计算题;集合.分析:根据新定义,对所给集合进行判断,即可得出结论.解答:解:①A={整数},运算“⊕”为普通加法,根据加法运算可知满足4个条件,其中e=0,a、a′互为相反数;②A={复数},运算“⊕”为普通减法,不满足4个条件;③A={正实数},运算“⊕”为普通乘法,根据乘法运算可知满足4个条件,其中e=1,a、a′互为倒数.故选:B.点评:本题考查新定义,考查学生分析解决问题的能力,属于基础题.3. (理)不等式4x2-7x-2<0成立的一个必要不充分条件是A. B. ∪(2,+∞) C. D.(-1,2)参考答案:A4. 复数满足,则()A. B. C. D.参考答案:A试题分析:,故选A.考点:复数的运算性质5. 点P(x,y)在函数的图像上,且x、y满足,则点P到坐标原点距离的取值范围是A. B. C. D.参考答案:D因为点P在上,且x、y满足,由图象可知,点P位于线段上,显然点P到坐标原点距离最小值为0,当点P位于B点时,距离最大,此时由得,即,所以,所以最大值为,所以点P到坐标原点距离的取值范围是,选D.6. 将函数的图像向左平移个单位,所得曲线的一部分如图所示,则,的值为A.,-B.,-C.,D. ,参考答案:A略7. 在等差数列{a n}中,,则()A.8 B.12 C.16 D.20参考答案:A由题意,数列为等差数列,结合等差数列通项公式的性质得,,则,所以.故选A.8. 设{a n}的首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1=()A.2 B.﹣2 C.D.﹣参考答案:D【考点】等比数列的性质;等差数列的性质.【分析】由等差数列的前n项和求出S1,S2,S4,然后再由S1,S2,S4成等比数列列式求解a1.【解答】解:∵{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,∴S1=a1,S2=2a1﹣1,S4=4a1﹣6,由S1,S2,S4成等比数列,得:,即,解得:.故选:D.9. 在空间,下列命题正确的是()A. 若三条直线两两相交,则这三条直线确定一个平面B. 若直线m与平面内的一条直线平行,则m//C. 若平面,则过内一点P与l垂直的直线垂直于平面D. 若直线a//b,且直线,则参考答案:D略10. 已知正项数列为等比数列且的等差中项,若,则该数列的前5项的和为()A. B.31 C. D.以上都不正确参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 已知,,,,且∥,则=.参考答案:试题分析:由∥知,,那么原式.考点:平行向量间的坐标关系.12. 已知函数有9个零点,且函数满足,则______参考答案:略13. 已知中,点的坐标分别为则的面积为参考答案:14. 有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含一个数{1},第二组含两个数{3,5},第三组含三个数{7,9,11},第四组含四个数{13,15,17,19},…,现观察猜想每组内各数之和为a n与其组的编号数n的关系为.参考答案:【考点】归纳推理.【分析】由题意先计算第一、二、三组内各数之和与其组的编号数的关系,再猜想.【解答】解:由题意,1=13,3+5=23,7+9+11=33,…故可得每组内各数之和与其组的编号数n的关系为n3,故答案为:.15. 不等式对一切非零实数x,y均成立,则实数a的取值范围为.参考答案:【知识点】含绝对值不等式基本不等式E2 E6∵,其最小值为2,又∵的最大值为1,故不等式| 恒成立,有,解得,故答案为【思路点拨】由对勾函数的性质,我们可以求出不等式左边的最小值,再由三角函数的性质,我们可以求出的最大值,若不等式恒成立,则,解这个绝对值不等式,即可得到答案.16. 函数的最大值是__________.参考答案:5略17. 若直角坐标平面内的两点、同时满足下列条件:①、都在函数的图象上;②、关于原点对称. 则称点对是函数的一对“友好点对”(注:点对与看作同一对“友好点对).已知函数则此函数的“友好点对”有_____对。
2021-2022学年安徽省滁州市定远县高二(普通班)上学期期末考试数学(理)试题 解析版
OP AB(O为原点)AC,EC⊥平面ABCD,AB【解析】解法一:由解得71141767482141314722S a d S a d ⨯⎧=+=⎪⎪⎨⨯⎪=+=⎪⎩1408492449a d ⎧=⎪⎪⎨⎪=-⎪⎩所以;21408212024217249249S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭解法二:,,7127S a a a =++⋅⋅⋅+1478914777S S a a a S d -=++⋅⋅⋅+=+⨯,所以,,成等差数21141516217714S S a a a S d -=++⋅⋅⋅+=+⨯7S 147S S -2114S S -列,公差为,由等差中项定义得,即49d ()147721142S S S S S -=+-,解得.故选:B()21272484872S ⨯-=+-2172S =6.【答案】A【解析】因为PF ⊥x 轴,所以P .又OP ∥AB ,所以,即b =c .2b b a a =于是b 2=c 2,即a 2=2c 2.所以.22c e a ==7.【答案】C【解析】因为△ABF 2的周长为8,所以|AB |+|AF 2|+|BF 2|=8⇒|AF 1|+|BF 1|+|AF 2|+|BF 2|=8⇒(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=8,由椭圆的定义可知,|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,所以2a +2a =8⇒a =2,由题意可得,23ab ππ=解得,3b =因为椭圆的焦点在x 轴上,所以C 的标准方程为.22143x y +=8.【答案】C【解析】设点,由题意知,(),P x y 222122222223y y y y b k k a y x a x a x a ab ⋅=⋅====-+-所以其渐近线方程为,故选C.3y x =±9.【答案】D【解析】由得,22214b e a =+=3ba =则双曲线的渐近线方程为,3y x =±即,抛物线的焦点坐标为,30x y ±=2C 0,2p ⎛⎫⎪⎝⎭则有,解得,22p =8p =故抛物线C 2的方程为x 2=16y .10.【答案】A11.【答案】C【解析】∵|AB |∶|BF 2|∶|AF 2|=3∶4∶5,不妨令|AB |=3,|BF 2|=4,|AF 2|=5,∵|AB |2+|BF 2|2=|AF 2|2,∴∠ABF 2=90°,又由双曲线的定义得|BF 1|-|BF 2|=2a ,|AF 2|-|AF 1|=2a ,∴|AF 1|+3-4=5-|AF 1|,∴|AF 1|=3,∴2a =|AF 2|-|AF 1|=2,∴a =1,|BF 1|=6.在Rt △BF 1F 2中,|F 1F 2|2=|BF 1|2+|BF 2|2=36+16=52,又|F 1F 2|2=4c 2,∴4c 2=52,13,13c e ∴=∴=12.【答案】D【解析】设点P (x 0,y 0),由于点P 是抛物线x 2=8y 上任意一点,则x =8y 0(y 0≥0),∵点A (0,3),则|PA |2=x +(y 0-3)2=8y 0+(y 0-3)2=y +2y 0+9,由于点Q 是圆x 2+(y -2)2=1上任意一点,要使的值最小,∴2||PA PQ则的值要最大,即点到圆心的距离加上圆的半径为的最大值,PQP PQ则,()()222max 00000||218213PQ x y y y y =+-+=+-+=+.()()()222000000003431229||1234333y y y y PA y PQ y y y +-++++∴≥==++-+++,经检验满足条件,()()()000012123234333y y y y ++≥+⋅=++ 的最小值为.2||PA PQ∴434-【解析】如图,抛物线焦点为联立消去y 得x 2-2px -p 2=0,∴x 1=(1+)p ,x 2=(1-)p .2,22,p y x x py ⎧=+⎪⎨⎪=⎩22∴|AD |+|BC |=y 1+y 2=x 1++x 2+=2p +p =3p ,|CD |=|x 1-x 2|=2p .2p 2p2由S 梯形ABCD =(|AD |+|BC |)·|CD |=·3p ·2p =12,解得p 2=4,∴p =±2.121222∵p >0,∴p =2.17.【答案】(1)方程m :(a +2)x +(1-2a )y +4-3a =0可化为a (x -2y -3)+(2x +y +4)=0,要使a 有无穷多个解,必须有解得230,240,x y x y --=⎧⎨++=⎩1,2.x y =-⎧⎨=-⎩无论a 取何值,(-1,-2)都满足方程,故直线m 过定点M (-1,-2).(2)设直线n :,1x ya b +=则解得121,14,2a b ab --⎧+=⎪⎪⎨⎪=⎪⎩2,4,a b =-⎧⎨=-⎩故直线n :,即2x +y +4=0.124x y+=--所以当直线n 为2x +y +4=0时,三角形的面积为4.18.【答案】(1)设A (x 1,y 1),B (x 2,y 2),由得4x 2+4(m -1)x +m 2=0,22,4,y x m y x =+⎧⎨=⎩由根与系数的关系,得x 1+x 2=1-m ,x 1·x 2=,24m ∴|AB |=|x 1-x 2|=21k +()22121214k x x x x ++-==,222+()22144m m --⨯()512m ⨯-∵|AB |=3,∴=3,解得m =-4.5()512m -5(2)设P (a ,0),P 到直线AB 的距离为d ,则d ==,()2220421a --+-225a -又S △ABP =|AB |·d ,则d =,∴=,122ABP S AB ⋅ 225a -2935⨯∴|a -2|=3,∴a =5或a =-1,故点P 的坐标为(5,0)或(-1,0).19.【解析】(1)由题意得S n =n 2+2n ,当n >1时,a n =S n -S n -1=(n 2+2n )-[(n -1)2+2(n -1)]=2n +1;当n =1时,a 1=S 1=3,满足上式,所以a n =2n +1(n ∈N *).(2)由题意得b n =3n -1,又由(1)可知a n =2n +1,故a n b n =(2n +1)3n -1,所以T n =3×30+5×31+7×32+…+(2n +1)×3n -1,3T n =3×31+5×32+7×33+…+(2n +1)×3n ,两式相减,得-2T n =3+2(31+32+33+…+3n -1)-(2n +1)×3n=3+2×-(2n +1)×3n ,-13(1-3)1-3n =-2n ·3n所以T n =n ·3n .20.【答案】解(1)设点F (c ,0),因为直线AF 的斜率为,A (0,-2),233所以,.2233c=3c =又因为,b 2=a 2-c 2,32c a=解得a =2,b =1,所以椭圆E 的方程为.2214x y +=(2)设P (x 1,y 1),Q (x 2,y 2),由题意可知直线l 的斜率存在,设直线l 的方程为y =kx -2,联立消去得,221,42,x y y kx ⎧+=⎪⎨⎪=-⎩y ()221416120k x kx +-+=当,即时,.()2Δ16430k =->234k >1212221612,1414k x x x x k k +==++所以()22121214PQ k x x x x =++-∴·=0,∴AC⊥BF.=2(a n +a n -1)-1,=2(a n +1+a n )-1,2-1n c 2n c 两式相减得,=2[(a n +1-a n )+(a n -a n -1)]=2(c n +c n -1),得c n -c n -22-1n n c c -1=2(n ≥2).故{a n +1-a n }是等差数列.(2)因为(a 2-a 1)2=2(a 2+a 1)-1,a 1=1,且a 2>a 1,所以a 2=4,故c 1=a 2-a 1=3,所以c n =c 1+(n -1)×2=2n +1,n ∈N *,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(2n -1)+(2n -3)+…+3+1=n 2.故b n =-,222211(1)n n n n +=+21(1)n +b 1+b 2+…+b n =+…+-.222211111223-+-21n 221(2)(1)(1)n n n n +=++。
2020-2021学年安徽省滁州市高三(上)期末数学试卷(理科)(一模)
2020-2021学年安徽省滁州市高三(上)期末数学试卷(理科)(一模)一、单选题(本大题共12小题,共60.0分)1. 已知集合A ={x|x >x 2−6},B ={x|2x <4√2},则A ∩B =( )A. (−3,52)B. (−2,52)C. (−3,2)D. (−2,2)2. 已知复数a+i2−i 是纯虚数(i 是虚数单位),则实数a 等于( )A. −2B. 2C. 12D. −13. 执行如图所示的程序框图,则输出S 的结果为( )A. 16B. 25C. 36D. 494. 为了解学生参加“阳光体育”活动的情况,某学校随机统计了学生的“阳光体育”活动时间(单位:分钟),已知所得样本数据都在区间[10,110]内,样本频率分布直方图如图所示,则该样本数据的中位数的估计值为( )A. 60B. 65C. 66.25D. 72.255. 设m ,n 是不同的直线,α,β是不同的平面,则( )A. 若m//α,n ⊂α,则m//nB. 若α∩β=m ,n ⊂β,n ⊥m ,则n ⊥αC. 若m//α,n//β,m//n ,则α//βD. 若m ⊥α,n ⊥β,n ⊥m ,则α⊥β6. 在“学宪法、讲宪法”活动中,将甲、乙、丙、丁四位法律老师分配到A 、B 、C 、D 四个班级进行宣讲,每个班级分配一位老师.若甲不分配到A 班,丁不分配到D 班,则分配方案的种数为( )A. 12B. 14C. 16D. 247. 已知函数f(x)=√3sin(ωx +φ)(ω>0,φ∈(0,π))的最小正周期为π2,若将f(x)的图象向右平移π6个单位长度后,所得图象对应的函数为偶函数,则φ=( )A. π6B. π3C. π2D. 2π38. 已知a =(23)13,b =(49)15,c =log 93,则( )A. a <b <cB. c <b <aC. b <c <aD. b <a <c9. 已知点M 为抛物线x 2=8y 准线上一点,点F 为焦点,O 为坐标原点,A 在抛物线上,且|AF|=10,则|MA|+|MO|的最小值为( )A. 16B. 8√2+2C. 4√13D. 8√210. 已知函数f(x)={x +1x ,x <0lnx,x >0,则方程f(f(x))+3=0的解的个数为( )A. 3B. 4C. 5D. 611. 在等差数列{a n }中,a8a 7<−1,且它的前n 项和S n 有最小值,则当S n <0时,n 的最大值为( )A. 7B. 8C. 13D. 1412. 已知函数f(x)=e −x −e x−2+12x ,则不等式f(2020+x)+f(2021−2x)≤1的解集是( )A. (−∞,4039]B. [4039,+∞)C. (−∞,4042]D. [4042,+∞)二、单空题(本大题共4小题,共20.0分)13. 已知向量a ⃗ =(1,−3),b ⃗ =(4,3),则|a ⃗ −b ⃗ |= ______ .14. 在平面直角坐标系xOy 中,点P(x 0,y 0)是单位圆O 上第一象限内的点,∠xOP =α,若cos(α+π3)=−1114,则x 0的值为______ . 15. 已知双曲线x 24−y 28=1的左、右焦点分别为F 1,F 2,过F 2的直线与双曲线右支交于A ,B 两点,且∠F 1AB =π3,则△ABF 1的面积为______ .16. 已知正方形ABCD 的边长为4,E 是BC 的中点,沿DE 把△DCE 折起,使点C 到达点F 的位置,且BE ⊥FE ,则三棱锥F −ABE 的外接球的表面积为______ . 三、解答题(本大题共7小题,共82.0分)17. 已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,满足2sin 2B +sin 2C =2sin 2A .(1)若B =π3,c =2,求△ABC 的面积; (2)求tanAtanB 的值.18.智慧课堂是指一种打破传统教育课堂模式,以信息化科学技术为媒介实现师生之间、生生之间的多维度互动,能有效提升教师教学效果、学生学习成果的新型教学模式.为了进一步推动智慧课堂的普及和应用,A市现对全市中小学智慧课堂的应用情况进行抽样调查,统计数据如表:从城市学校中任选一个学校,偶尔应用或者不应用智慧课堂的概率是1.4(1)补全2×2列联表,判断能否有99.5%的把握认为智慧课堂的应用与区域有关,并说明理由;(2)在偶尔应用或者不应用智慧课堂的学校中,按照农村和城市的比例抽取6个学校进行分析,然后再从这6个学校中随机抽取2个学校所在的地域进行核实,记其中农村学校有X个,求X的分布列和数学期望.,n=a+b+c+d.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)19.如图,已知三棱锥S−ABC中,△ABC是边长为2的等边三角形,SB=SC=4,点D为SC的中点,DA=2.(1)求证:平面SAB⊥平面ABC;(2)求二面角S−AB−D的正弦值.20.已知椭圆C:x2a2+y2b2=1(a>b>0),右焦点为F(4,0),短轴长为4.(1)求椭圆C的方程;(2)若过点T(0,1)的直线l与椭圆C交于A,B两点,线段AT中点为P,线段BT中点为Q,且|OP|=|OQ|(O为坐标原点),求所有满足条件的直线l方程.21.已知函数f(x)=e x+ax(其中e≈2.718为自然对数的底数).(1)讨论函数f(x)的单调性;(2)当0≤a≤1,证明:f(x)+12x2+732>0.参考数据:ln2≈0.693.22. 平面直角坐标系xOy 中,直线C 1的参数方程为{x =t +2y =−t +4(t 为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2(2−cos2θ)=3. (1)求直线C 1的普通方程与曲线C 2的直角坐标方程; (2)求曲线C 2上的动点到直线C 1距离的取值范围.23. 已知函数f(x)=2|x −1|+|x +2|.(1)求不等式f(x)≥6的解集;(2)若f(x)≥m +2m 对任意x ∈R 恒成立,求实数m 的取值范围.答案和解析1.【答案】B【解析】解:∵集合A={x|x>x2−6}={x|−2<x<3},B={x|2x<4√2}={x|x<52},∴A∩B={x|−2<x<5}=(−2,5).故选:B.求出集合A,B,利用交集能求出A∩B.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【答案】C【解析】【分析】直接利用复数代数形式的乘除运算化简,再由实部等于0且虚部不等于0求解即可得答案.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.【解答】解:∵a+i2−i =(a+i)(2+i)(2−i)(2+i)=2a−1+(a+2)i5=2a−15+a+25i是纯虚数,∴{2a−1=0a+2≠0,解得a=12.故选:C.3.【答案】B【解析】解:S=0,n=0,第一次执行循环体后,a=1,S=1,n=1,不满足退出循环的条件;第二次执行循环体后,a=3,S=4,n=2,不满足退出循环的条件;第三次执行循环体后,a=5,S=9,n=3,不满足退出循环的条件;第四次执行循环体后,a=7,S=16,n=4,不满足退出循环的条件;第五次执行循环体后,a=9,S=25,n=5,满足退出循环的条件;故输出S值为25,故选:B.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,得出正确的结论,是基础题.4.【答案】C【解析】解:由频率分布直方图得:[10,60)的频率为(0.004+0.012)×25=0.4,[60,85)的频率为0.016×25=0.4,∴该样本数据的中位数的估计值为:×25=66.25.60+0.5−0.40.4故选:C.由频率分布直方图得[10,60)的频率为0.4,[60,85)的频率为0.4,由此能求出该样本数据的中位数的估计值.本题考查该样本数据的中位数的估计值的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.5.【答案】D【解析】解:由m,n是不同的直线,α,β是不同的平面,知:在A中,若m//α,n⊂α,则m与n平行或异面,故A错误;在B中,若α∩β=m,n⊂β,n⊥m,则n与α相交但不一定垂直,故B错误;在C中,若m//α,n//β,m//n,则α与β相交或平行,故C错误;在D中,若m⊥α,n⊥m,则n和α平行或n在α内,又n⊥β,则α⊥β,故D正确.故选:D.在A中,m与n平行或异面;在B中,n与α相交但不一定垂直;在C中,α与β相交或平行;在D中,由面面垂直的判定理得α⊥β.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.6.【答案】B【解析】解:根据题意,分2种情况讨论:①若甲分配到D班,剩下三人全排列即可,有A33=6种情况,②若甲不分配到D班,甲的分配方法有2种,丁不能分配到D 班,其分配方法有2种,剩下2人安排到剩下的2个班级,有2种分配方法, 此时有2×2×2=8种分配方法, 则一共有6+8=14种不同的分配方法, 故选:B .根据题意,按甲的分配方法分2种情况讨论,由加法原理计算可得答案. 本题考查排列的应用,注意要按甲是否分到D 班进行讨论,属于基础题.7.【答案】A【解析】解:函数f(x)=√3sin(ωx +φ)(ω>0,φ∈(0,π))的最小正周期为π2, 则2πω=π2, 解得ω=4.将f(x)=√3sin(4x +φ)的图象向右平移π6个单位长度后, 得到g(x)=√3sin(4x −2π3+φ),由于所得图象对应的函数为偶函数, 故−2π3+φ=kπ+π2,整理得φ=kπ+7π6,当k =−1时,φ=π6. 故选:A .直接利用正弦型函数的性质和函数的图象的平移变换的应用求出结果.本题考查的知识要点:三角函数的平移变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.8.【答案】B【解析】解:∵1=(23)0>a =(23)13>b =(49)15=(23)25>23,c =log 93=12, ∴c <b <a . 故选:B .利用指数函数、对数函数的单调性直接求解.本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.9.【答案】C【解析】解:由抛物线的方程可得:F(0,2),准线方程为:y =−2, 设点A 的坐标为(x,y),则由|AF|=10=y +2,所以y =8,代入抛物线方程可得:x =±8,不妨设A(8,8), 原点O 关于准线的对称点为N(0,−4), 则|MA|+|MO|=|MA|+|MN|,当A ,M ,N 三点共线时,|MA|+|MN|最小, 最小值为|AN|=√82+(8+4)2=4√13, 故选:C .求出抛物线的准线方程,求出原点关于准线的对称点N ,由抛物线的定义求出点A 的坐标,再利用三点共线即可求解.本题考查了抛物线的性质,涉及到线段和的最小值问题,考查了学生的数形结合思想,属于中档题.10.【答案】C【解析】解:∵函数f(x)={x +1x ,x <0lnx,x >0, 由f(x)=−3,当x >0,即lnx =−3,解得x =1e 3,当x <0时,则有x +1x =−3,解得x =−3±√52,∵f(f(x))+3=0即f(x)=1e 3,或f(x)=−3±√52, 由f(x)=1e 3,可得lnx =1e 3,此方程只有一个根, 又x <0时,f(x)=x +1x ≤−2,故f(x)=−3+√52仅在x >0时有一个根,f(x)=−3−√52在x <0时有两个根,在x >0时有一个根,综上,方程f(f(x))+3=0有五个根,故选:C .先研究f(x)=−3时方程根的情况,从而推测出f(f(x))+3=0内层f(x)的值,然后研究相关方程得出根的个数.本题考查函数的零点与方程根的关系,研究出函数f(x)的性质,是解答本题的关键,本题考查了转化的思想,方程的思想,对数函数与对勾函数的性质,综合性强,较难.11.【答案】C【解析】解:因为等差数列{a n }的前n 项和S n 有最小值,则d >0,又a8a 7<−1,所以a 7<0,a 8>0,所以a 7+a 8>0, 又S 13=13(a 1+a 13)2=13a 7<0,S 14=14(a 1+a 14)2=7(a 7+a 8)>0,所以当S n <0时,n 的最大值为13. 故选:C .利用前n 项和S n 有最小值,得到d >0,再结合a8a 7<−1,可得到a 7<0,a 8>0,a 7+a 8>0,利用求和公式以及等差数列的性质可得S 13<0,S 14>0,从而得到答案.本题考查了等差数列的前n 项和公式、等差数列的性质,解题的关键是熟练掌握等差数列的公式以及相关性质,属于中档题.12.【答案】A【解析】解:∵f(x)=e −x −e x−2+12x ,∴f(2−x)=e −(2−x)−e (2−x)−2+12(2−x)=e x−2−e −x +1−12x , 则f(x)+f(2−x)=1,即是f(x)关于(1,12)对称,由f(2020+x)+f(2021−2x)≤1得f(2021−2x)≤1−f(2020+x)=f(2−(2020+x))=f(−x −2018),f′(x)=−e −x −e x−2+12,令g(x)=f′(x)=−e −x −e x−2+12,g′(x)=e −x −e x−2,为减函数,且当x <1时,g′(x)>0,f′(x)单调递增, 当x >1时,g′(x)<0,f′(x)单调递减,即当x =1时,f′(x)取得极大值f′(1)=−2e −1+12<0, 即f′(x)<0恒成立,则f(x)在R 上是减函数,则不等式f(2021−2x)≤f(−x−2018),等价为2021−2x≥−x−2018,即x≤2021+2018=4039,即不等式的解集为(−∞,4039],故选:A.根据条件得到f(x)+f(2−x)=1,然后将把不等式进行转化,求函数的导数,研究函数的单调性,结合函数的单调性将不等式进行转化求解即可.本题主要考查不等式的求解,结合条件得到f(x)+f(2−x)=1,以及求函数的导数,研究函数的单调性,利用函数的单调性将不等式进行转化是解决本题的关键,是中档题.13.【答案】3√5【解析】【分析】本题考查向量的坐标计算,涉及向量模的计算公式,属于基础题.根据题意,求出a⃗−b⃗ 的坐标,由向量模的计算公式计算可得答案.【解答】解:根据题意,向量a⃗=(1,−3),b⃗ =(4,3),则a⃗−b⃗ =(−3,−6),则|a⃗−b⃗ |=√9+36=3√5,故答案为:3√5.14.【答案】17【解析】解:因为点P(x0,y0)是单位圆O上第一象限内的点,∠xOP=α,所以α是第一象限角,且x0=cosα,y0=sinα,因为cos(α+π3)=−1114<0,所以α+π3为第二象限角,所以sin(α+π3)=√1−cos2(α+π3)=5√314,故x0=cosα=cos[(α+π3)−π3]=cos(α+π3)cosπ3+sin(α+π3)sinπ3 =−1114×12+5√314×√32=17.故答案为:17.利用点P(x0,y0)是单位圆O上第一象限内的点,∠xOP=α,从而确定α为第一象限角,利用同角三角函数关系求出sin(α+π3)的值,再利用任意角的三角函数的定义得到x0=cosα,结合角的变换,将α转化为已知的角α+π3表示,运用两角差的余弦公式求解即可得到答案.本题考查了三角函数的求值问题,涉及了任意角三角函数的定义、同角三角函数关系的应用、两角差的余弦公式的应用,解题的关键是将α转化为已知的角α+π3表示,属于中档题.15.【答案】16√3【解析】解:由题意知,|F1F2|=2√4+8=4√3,设|AF2|=m,由双曲线的定义知,|AF1|−|AF2|=2a=4,∴|AF1|=m+4,在△AF1F2中,由余弦定理知,cos∠F1AB=|AF1|2+|AF2|2−|F1F2|22|AF1|⋅|AF2|=(m+4)2+m2−(4√3)22(m+4)⋅m=cosπ3,化简得,m2+4m−32=0,解得m=4或−8(舍负),∴|AF2|=4,|AF1|=8,∴|AF2|2+|F1F2|2=|AF1|2,即AB⊥F1F2,∴|AB|=2|AF2|=8,∴△ABF1的面积为12|F1F2|⋅|AB|=12×4√3×8=16√3.故答案为:16√3.设|AF2|=m,由双曲线的定义可得|AF1|=m+4,在△AF1F2中,由余弦定理列得关于m的方程,解之后,再由勾股定理的逆定理可推出AB⊥F1F2,故S=12|F1F2|⋅|AB|,得解.本题考查双曲线的定义与几何性质,还运用了余弦定理,考查学生的逻辑推理能力和运算能力,属于中档题.16.【答案】20π【解析】解:以C 为坐标原点,CD ,CB 为x 轴,y 轴建立空间直角坐标系,则E(0,2,0),D(4,0,0),B(0,4,0),A(4,4,0),F(x,y ,z), 由折叠性质可得,|EF|=2,|FD|=4,DF ⊥EF ,BE ⊥EF ,则有{x 2+(y −2)2+z 2=4(x −4)2+y 2+z 2=16x(x −4)+y(y −2)+z 2=0−2(y −2)=0,解得x =1,y =2,z =√3, 设三棱锥F −ABE 的外接球的半径为r ,球心为(a,b ,c),则有{ (a −4)2+(b −4)2+c 2=r 2a 2+(b −4)2+c 2=r 2a 2+(b −2)2+c 2=r 2(a −1)2+(b −2)2+(c −√3)2=r2, 解得a =2,b =3,c =0,r 2=5,所以三棱锥F −ABE 的外接球的表面积为S =4πR 2=20π. 故答案为:20π.建立空间直角坐标系,设F(x,y ,z),利用折叠性质可得|EF|=2,|FD|=4,DF ⊥EF ,BE ⊥EF ,然后列出方程组求出F 的坐标,设三棱锥F −ABE 的外接球的半径为r ,球心为(a,b ,c),利用球心到各顶点的距离等于半径,列出方程组,求解即可得到半径,利用球的表面积公式求解即可.本题考查了球的理解和应用,涉及了三棱锥外接球的求解、空间两点间距离公式的应用,解题的关键是掌握球的相关性质,属于中档题.17.【答案】解:(1)因为满足2sin 2B +sin 2C =2sin 2A ,由正弦定理,2b 2+c 2=2a 2, 即a 2−b 2=12c 2, 若B =π3,由余弦定理b 2=a 2+c 2−2accosB , 得b 2=a 2+c 2−ac , 所以ac =32c 2, 由于c =2, 所以ac =6,所以S△ABC=12acsinB=3√32.(2)由a2−b2=12c2,所以tanAtanB =sinAcosBsinBcosA=a⋅c2+a2−b22acb⋅b2+c2−a22bc=a2+c2−b2b2+c2−a2=32c212c2=3.【解析】本题考查的知识要点:三角函数关系的变换,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.(1)直接利用正弦定理和余弦定理的应用求出三角形的面积;(2)利用三角函数的关系式的变换和余弦定理的应用求出结果.18.【答案】解:(1)因为从城市学校中任选一个学校,偶尔应用或者不应用智慧课堂的概率是14,所以经常应用智慧课堂的概率是34,又城市学校中经常应用智慧课堂的有60所学校,所以城市学校共有6034=80所以所以得2×2列联表,K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=160(20×40−40×60)2100×60×80×80=323=10.667>7.879.所以有99.5%的把握认为认为智慧课堂的应用与区域有关;(2)在偶尔应用或者不应用智慧课堂的学校中,农村和城市的比例是2:1,所以抽取的6个样本有4个是农村学校,2个是城市学校,从中抽取2个,则X的可能取值为0,1,2.P(X=0)=C40C22C62=115,P(X=1)=C41C21C62=815,P(X=2)=C42C2C62=25.所以X的分布列为:X 的数学期望E(X)=0×115+1×815+2×25=43.【解析】本题考查离散型随机变量的分布列以及期望的求法,独立检验思想的应用,是中档题. (1)利用已知条件填写列联表,求出K 2,即可判断是否有99.5%的把握认为认为智慧课堂的应用与区域有关. (2)X 的可能取值为0,1,2.求出概率,得到分布列,然后求解期望即可.19.【答案】(1)证明:因为SC =4,点D 为SC 的中点,所以SD =DC =2,又AC =DA =2,所以△ADC 是等边三角形,所以∠DCA =π3, 由余弦定理可得SA =2√3,所以SC 2=SA 2+AC 2,SA ⊥AC . 又△SAB ≌△SAC ,得SA ⊥AB , 又AB ∩AC =A ,AB 、AC ⊂平面ABC , 所以SA ⊥平面ABC ,又SA ⊂平面SAB ,所以平面SAB ⊥平面ABC .(2)解:以A 为坐标原点,AB 为x 轴,在平面ABC 内过点A 垂直于AB 的直线为y 轴,AS 为z 轴,建立空间直角坐标系.则A(0,0,0),B(2,0,0),C(1,√3,0),S(0,0,2√3),所以D(12,√32,√3),AB ⃗⃗⃗⃗⃗ =(2,0,0),AD ⃗⃗⃗⃗⃗⃗ =(12,√32,√3), 设m⃗⃗⃗ =(x,y ,z)为平面ABD 的法向量, 由{m ⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =2x =0m ⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ =12x +√32y +√3z =0,令z =1,得m⃗⃗⃗ =(0,−2,1). 而平面SAB 的一个法向量n ⃗ =(0,1,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=−2√55. 设二面角S −AB −D 的平面角为θ,则二面角S −AB −D 的正弦值为sinθ=2√55)=√55.【解析】本题考查面面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)推导出SA ⊥AC ,SA ⊥AB ,从而SA ⊥平面ABC ,由此能证明平面SAB ⊥平面ABC .(2)以A 为坐标原点,AB 为x 轴,在平面ABC 内过点A 垂直于AB 的直线为y 轴,AS 为z 轴,建立空间直角坐标系,利用向量法能求出二面角S −AB −D 的正弦值.20.【答案】解:(1)由题意得{ c =42b =4a 2=b 2+c 2,解得{c =4b =2a =20,所以椭圆C 的方程为:x 220+y 24=1 (2)因为直线l 过点T(0,1),若l ⊥x 轴,则A 、B 是C 的短轴端点,显然不满足条件, 所以设直线l 方程为:y =kx +1,设A(x 1,y 1),B(x 2,y 2),x 1≠x 2, 则有y 1=kx 1+1,y 2=kx 2+1,先把C 的方程化为x 2+5y 2=20,再联立方程得,{x 2+5y 2=20y =kx +1⇒(1+5k 2)x 2+10kx −15=0⇒x 1+x 2=−10k1+5k 2, 由|OP|=|OQ|,和中点坐标公式得,(x12)2+(y 1+12)2=(x22)2+(y 2+12)2, 所以(x 1−x 2)(x 1+x 2)=−(y 1−y 2)(y 1+y 2+2)⇒(x 1−x 2)(x 1+x 2)=−k(x 1−x 2)[k(x 1+x 2)+4],所以(x 1+x 2)+k 2(x 1+x 2)+4k =0⇒−10k1+5k 2−10k 31+5k 2+4k =0,解得k 1=0,k 2=√155,k 3=√155, 所以l 方程为:y =1、y =√155x +1和y =−√155x +1.故答案为:(1)椭圆C 的方程为:x 220+y 24=1,(2)直线l 方程为:y =1、y =√155x +1和y =−√155x +1.【解析】本题考查用待定参数法求椭圆方程和直线方程,考查了直线与椭圆位置关系问题,属中档题. (1)用待定参数法求解,(2)设直线方程,联立方程组,利用|OP|=|OQ|以及中点坐标公式,解方程组,用待定系数法解求解直线方程.21.【答案】(1)解:函数f(x)的定义域为R ,f′(x)=e x +a ,①当a ≥0时,f′(x)>0,则f(x)在R 上单调递增; ②当a <0时,由f′(x)=0,解得x =ln(−a), 当x <ln(−a)时,f′(x)<0,所以f(x)单调递减;当x>ln(−a)时,f′(x)>0,所以f(x)单调递增.综上所述,当a≥0时,f(x)在R上单调递增;当a<0时,f(x)在(−∞,ln(−a))单调递减,在(ln(−a),+∞)单调递增,(2)证明:①当x≥0时,显然有f(x)+12x2+732>0;②当x<0时,令g(a)=f(x)+12x2+732=xa+e x+12x2+732,则函数g(a)在0≤a≤1时单调递减,所以只需证明g(1)>0,即e x+12x2+x+732>0,令ℎ(x)=e x+12x2+x+732(x<0),则φ(x)=ℎ′(x)=e x+x+1,显然φ(x)单调递增,又φ(−2)<0,φ(−1)>0,所以存在唯一x0∈(−2,−1),使φ(x0)=0,当x∈(−∞,x0)时,φ(x)<0,ℎ(x)单调递减;当x∈(x0,+∞)时,φ(x)>0,ℎ(x)单调递增,所以ℎ(x)≥ℎ(x0),因为φ(x0)=0,所以e x0+x0+1=0,即e x0=−(x0+1),所以ℎ(x)≥ℎ(x0)=e x0+12x02+x0+732=−(x0+1)+12x02+x0+732=12x02−2532,又因为ln4=2ln2=2×0.693>54,所以e54<4,所以φ(−54)=1e54−14>0,从而x0∈(−2,−54),所以12x02−2532>12×(−54)2−2532=0,则ℎ(x)>0,故待证不等式成立.【解析】(1)求出函数f(x)的定义域,求出导函数,对a的取值进行分类讨论,分别研究导函数的正负判断函数的单调性;(2)构造关于a的函数g(a)=f(x)+12x2+732=xa+e x+12x2+732,利用其单调性,将问题转化为证明g(1)>0,构造函数ℎ(x)=e x +12x 2+x +732(x <0),利用导数研究其单调性,可得存在唯一x 0∈(−2,−1),ℎ(x)≥ℎ(x 0),利用e x 0=−(x 0+1),结合ln4=2ln2=2×0.693>54,得到e 54<4,从而确定x 0∈(−2,−54),分析可证明12x 02−2532>12×(−54)2−2532=0,从而得出证明. 本题考查了导数的综合应用,涉及了利用导数研究函数的单调性的应用、利用导数构造函数证明不等式问题,综合性强,对学生的思维能力要求很高,属于难题.22.【答案】解:(1)∵直线C 1的参数方程为{x =t +2y =−t +4(t 为参数),∴消去参数t ,得C 1的普通方程为x +y −6=0. ∵曲线C 2的极坐标方程为ρ2(2−cos2θ)=3, ∴2ρ2−ρ2(cos 2θ−sin 2θ)=3,∴C 2的直角坐标方程为2(x 2+y 2)−(x 2−y 2)=3, 即x 23+y 2=1.(2)曲线C 2的参数方程为{x =√3cosαy =sinα(α为参数),设C 2上的动点为M(√3cosα,sinα), 则C 2上的动点到C 1距离d =√3cosα+sinα−6|√2=|2sin(α+π3)−6|√2.∵2sin(α+π3)∈[−2,2],则C 2上的动点到C 1距离的最大值是4√2,最小值是2√2,∴C 2上的动点到C 1距离的取值范围是[2√2,4√2].【解析】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数之间的关系式的应用,主要考察学生的运算能力和转换能力,属于中档题.(1){x =t +2y =−t +4(t 为参数),消去参数t ,得C 1的普通方程.曲线C 2的极坐标方程,通过极坐标与直角坐标的互化,化为普通方程即可.(2)曲线C 2的参数方程为{x =√3cosαy =sinα(α为参数),设C 2上的动点为M(√3cosα,sinα),利用点到直线的距离,结合三角函数的最值求解最值,得到范围即可.23.【答案】解:(1)由不等式f(x)≥6,可得f(x)=2|x −1|+|x +2|≥6,所以{x ≤−22−2x −x −2≥6或{−2<x <12−2x +x +2≥6或{x ≥12x −2+x +2≥6解得x ≤−2或x ≥2,所以原不等式的解集为(−∞,−2]∪[2,+∞).(2)因为f(x)=2|x −1|+|x +2|={−3x,x ≤−2−x +4,−2<x <13x,x ≥1,所以f(x)在(−∞,1)上单调递减,在[1,+∞)上单调递增, 所以f(x)min =f(1)=3,要f(x)≥m +2m 对任意x ∈R 恒成立,只需3≥m +2m ,即m 2−3m+2m≤0,所以{(m −1)(m −2)≤0m >0或{(m −1)(m −2)≥0m <0,解得1≤m ≤2或m <0,所以实数m 的取值范围为(−∞,0)∪[1,2].【解析】本题考查不等式恒成立,绝对值不等式的解法,考查转化思想以及计算能力,是中档题. (1)由不等式f(x)≥6,利用零点分段法解不等式即可.(2)将f(x)写为分段函数的形式,然后求出f(x)的最小值,f(x)≥m +2m 对任意x ∈R 恒成立,只需3≥m +2m ,转化求解m 的范围即可.。
安徽省滁州市2020-2021学年高三上学期第一次教学质量监测理科数学答案
安徽省滁州市2020-2021学年高三上学期第一次教学质量监测理科数学试题参考答案1.B 【思路点拨】首先解出两个集合,再根据交集的定义求A B【解析】22660x x x x >-⇔--<,解得:23x -<<, 即{}23A x x =-<<,5222x<=,解得:52x <,即52B x x ⎧⎫=<⎨⎬⎩⎭,52,2AB ⎛⎫∴=- ⎪⎝⎭.故选:B2.D 【思路点拨】由复数除法化简复数为代数形式,然后由复数的分类求解.【解析】2()(2)222122(2)(2)555a i a i i a ai i i a a i i i i ++++++-+===+--+,它为纯虚数, 则2105a -=且205a +≠,解得12a =. 故选:D .3.B 【思路点拨】模拟程序运行,确定变量的值,判断循环条件得出结论.【解析】程序运行时变量值在循环体变化如下:1,1,1a S n ===,判断不满足4?n >;3,4,2a S n ===,判断不满足4?n >;5,9,3a S n ===,判断不满足4?n >;7,16,4a S n ===,判断不满足4?n >;9,25,5a S n ===,满足4?n >,输入25S =.故选:B .4.C 【思路点拨】频率分布直方图中求出频率0.5对应的数值即可得.【解析】由频率分布直方图在区间[10,60)上的频率为(0.0040.012)250.4+⨯=,中位数在[60,85)上,设中位数为x ,600.50.4250.01625x --=⨯,解得66.25x =. 故选:C .5.D 【思路点拨】根据空间中直线与直线、直线与平面、平面与平面位置关系,即可判断各选项是否正确.【解析】对于A ,若//m α,n ⊂α,则直线,m n 可以平行,也可以异面,所以A 错误; 对于B ,因为αβ⊥不一定能成立,所以当m αβ=,n β⊂,n m ⊥时,n α⊥不一定成立,所以B 错误;对于C ,若//m α,//n β,//m n ,则//αβ,或平面α与平面β相交,所以C 错误; 选项D :若m α⊥,n β⊥,n m ⊥,则αβ⊥成立,所以D 正确. 故选:D.【名师指导】本题考查了空间中直线与平面、平面与平面的位置关系判断,对空间想象能力要求较高,属于中档题.6.B 【思路点拨】先分配甲,按甲分到D 班和不分到D 班分类讨论.再分配丁,最后考虑乙和丙即可得.【解析】甲分到D 班,有336A =种方法;甲分到B 或C 班,有方法数1122228C C A =,总共有方法数为6814+=种. 故选:B .【名师指导】关键点点睛:本题考查排列组合的综合运算,解题关键是确定完成事件的方法,对于特殊元素特殊位置需优先安排.本题完成分配方案可先安排甲,然后安排丁,最后安排乙和丙,安排甲时需分类讨论:甲安排在D 班时,另外三人随便安排即可,甲安排在BC 两班之一,由丁只有两个班可安排,最后再安排乙丙,由此应用乘法原理和加法原理可得结论. 7.B 【思路点拨】由函数()()x f x ωϕ=+()()0,0,ωϕπ>∈的最小正周期为2π可计算出4ω=,然后根据三角函数图象的平移变换规律及三角函数的图象与性质得到关于ϕ的方程,即可得解. 【解析】由题意得242πωπ==,故()()4f x x ϕ=+,将()f x 的图象向右平移6π个单位长度,得到函数24463y x x ππϕϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,由243y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数得232k ππϕπ-+=+,k ∈Z 得76k πϕπ=+,k ∈Z , ()0,ϕπ∈,6π=ϕ,故选:B .【名师指导】本题是基础性题目,属于课程学习情境,具体是数学推理学习情境.考查逻辑思维能力和运算求解能力. 8.B 【思路点拨】计算出12c =,然后由指数函数和幂函数的性质比较,a b 与12的大小.【解析】91log 32c ==,121553422933b a ⎛⎫⎛⎫⎛⎫==<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又11554119322b ⎛⎫⎛⎫=>= ⎪ ⎪⎝⎭⎝⎭,∴c b a <<. 故选:B .【名师指导】本题考查幂和对数的大小,掌握对数函数、指数函数、幂函数的单调性是解题关键.能利用函数单调性的利用单调性比较,不能利用函数的单调性的或不同类型的数的可以与中间值如0或1等比较,本题对数值为12,然后把幂与12比较可得. 9.C 【思路点拨】由10AF =求出A 点坐标,求出O 关于准线的对称点P ,线段PA 的长就是所求最小值.【解析】易知抛物线28x y =的焦点为(0,2)F ,准线为:2l y =-,设(,)A x y ,不妨设0x >,210AF y =+=,8y =,则2864x y ==,8x =,O 关于准线l 的对称点为(0,4)P -,MA MO MA MP AP +=+≥,当且仅当,,A M P 三点共线时,等号成立,AP ==所以|MA |+|MO |的最小值为 故选:C .【名师指导】关键点点睛:本题考查抛物线的性质,考查直线上动点到两定点距离和的最小值问题,根据是平面上两点间线段最短,解题方法是利用对称性求出其中一个定点关于定直线的对称点,然后求出这个对称点与另一定点的距离即为最小值.10.C 【思路点拨】确定函数()f x 的性质,作出函数()f x 的图象,解方程(())30f f x +=时,先确定()3=-f t 的解t ,并确定解的范围,然后再研究()f x t =的解,这样可得结论.注意数形结合思想的应用.【解析】作出函数()f x 的图象,0x <时,1()2f x x x=+≤-(1x =-时取等号),(,1)-∞-上()f x 递增,(1,0)-上()f x 递减,(0,)+∞上()f x 递增,由图象可知()3=-f t 有三个解123,,t t t ,不妨设12310t t t <-<<<,由于1(2)232f -=-->-,因此12t <-, 于是1()f x t =有3个解,2()f x t =有1个解,3()f x t =有一个解,共5个解. 故选:C .【名师指导】关键点点睛:本题考查方程的根与函数零点个数问题,解题方法是用换元法把方程的解的个数转化转化为函数图象与直线交点个数,转化是解决这类问题的关键.11.C 【思路点拨】分析出等差数列{}n a 的公差大于零,由87<1a a -分析出70a <,780a a +>,可得出130S <,140S >,进而可得出结果.【解析】设等差数列{}n a 的公差为d ,87<1a a -,所以,8787710a a aa a ++=<,可得()7780a a a +<,由于等差数列的前n 项和n S 有最小值,且2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,则02>d,即0d >, 所以,78a a <,若70a >,则870a a >>,这与()7780a a a +<矛盾,所以,70a <,780a a +>, 则()113137131302a a S a +==<,()()114147814702a a S a a +==+>,因此,当0n S <时,n 的最大值为13.故选:C.【名师指导】方法点睛:对于等差数列前n 项和的最值,可以利用如下方法求解: (1)将n S 表示为有关n 的二次函数,结合二次函数图象的开口方向与对称轴来处理; (2)从项的角度出发:①若n S 有最大值,只需将数列{}n a 中所有的非负项全部相加; ②若n S 有最小值,只需将数列{}n a 中所有的非正项全部相加.12.A 【思路点拨】利用导数确定函数是减函数,证明()(2)1f x f x +-=,这样不等式可化为12()()f x f x ≤形式再利用单调性可解.【解析】22111()()22x xx x e f x eee e --'=--+=-++,212x x e e e e+≥=,(当且仅当21xx e e e=,即1x =时等号成立), 所以21()02f x e '≤-+<.所以()f x 是减函数.2211()(2)(2)22x x x x f x f x e e x e e x ---+-+-=-++-+-1=,即1()(2)f x f x -=-, 不等式(2020)(20212)1f x f x ++-≤化为(20212)1(2020)(22020)f x f x f x -≤-+=--,又()f x 递减,所以2021222020x x -≥--,解得4039x ≤. 故选:A .【名师指导】方法点睛:本题考查解函数不等式,解题关键是确定函数的性质,首先利用导数确定函数的单调性,然后对函数式进行变形得()(2)1f x f x +-=,这是解题的关键.由此性质不等式可化为(20212)(2018)f x f x -≤--,这样再利用单调性解出不等式.13【思路点拨】求出a b -,再由模的坐标表示计算.【解析】由题意(3,5)a b -=--==14.17【思路点拨】设角α为锐角,利用同角三角函数的基本关系可求得sin 3πα⎛⎫+ ⎪⎝⎭,再利用两角差的余弦公式可求得0cos x α=的值. 【解析】不妨设α为锐角,即02πα<<,所以,5336πππα,所以,sin 314πα⎛⎫+==⎪⎝⎭ 所以,01cos cos cos 33233x ππππαααα⎡⎤⎛⎫⎛⎫⎛⎫==+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦11112147⎛⎫=⨯-= ⎪⎝⎭. 故答案为:17.15.【思路点拨】设12,AF m AF n ==,由余弦定理得出,m n 的一个关系式,然后由双曲线的定义又得一个,两者结合可求得mn ,从而得三角形面积.【解析】由已知224,8a b ==,所以4823c =+=,即12(23,0),(23,0)F F -,设12,AF m AF n ==,∵1,3F AB π∠=所以22222122cos483F F m n mn m n mn π=+-=+-=,而24m n a -==,所以2()48m n mn -+=,248432mn =-=, 12113sin 32832322AF F S mn π==⨯⨯=△. 故答案为:83.【名师指导】关键点点睛:本题考查双曲线的几何性质,由于涉及到焦点三角形问题,可设焦半径为,m n ,利用余弦定理,双曲线的定义可求得,m n (只要求得mn ),然后由面积公式计算出面积.16.20π.【思路点拨】证明EF ⊥平面ADF ,从而得EF AF ⊥,再由90ABE ∠=︒,得AE 的中点O 是三棱锥F ABE -的外接球的球心,求出球半径后可得表面积.【解析】∵BE EF ⊥,//AD BE ,∴EF AD ⊥,又EF FD ⊥,AD FD D =,,AD FD ⊂平面ADF ,∴EF ⊥平面ADF ,∵AF ⊂平面ADF ,∴EF AF ⊥,而90ABE ∠=︒,∴AE 的中点O 到四点,,,A B E F 的距离相等,即为三棱锥F ABE -的外接球的球心,AE 为球直径,又22224225AE AB BE =+=+=,∴外接球表面积为()22445202AE S πππ⎛⎫=⨯=⨯= ⎪⎝⎭.故答案为:20π.【名师指导】关键点点睛:本题考查求三棱锥外接球表面积,解题关键是找到外接球球心,求得球的半径.一般三棱锥外接球球心一定在过三棱锥各面外心且与此面垂直的直线上.如果三棱锥的面是直角三角形,则外心更易找到,从而外接球球心也易找到. 17.【思路点拨】(1)首先根据正弦定理,边角互化,可得22212a b c -=,再结合余弦定理求得ac ,最后计算ABC 的面积;(2)首先将正切化为正余弦,再利用正余弦定理化为边,最后代入22212a b c -=,化简求值. 【解析】(1)因为2222sin sin 2sin B C A +=,由正弦定理,22222b c a +=,即22212a b c -=,若3B π=,由余弦定理2222cos b a c ac B =+-,得222b a c ac =+-,又22212a b c -=,所以232ac c =,而2c =,所以6ac =,所以1sin 22ABCSac B ==. (2)由22212a b c -=,知222222222222223tan sin cos 2231tan sin cos 22a c b c A A B a a c b ac b c a B B A b b c a c bc+-+-=====+-+-. 【名师指导】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.18.【思路点拨】(1)首先计算城市中,偶尔应用或者不应用智慧课堂的学校个数,再补全22⨯列联表,并根据参考数据计算2K ,和临界数据比较,作出判断;(2)首先根据列联表分析,在偶尔应用或者不应用智慧课堂的学校中,农村和城市的比例是2:1,再利用超几何分析求分布列和数学期望.【解析】(1)设城市中,偶尔应用或者不应用智慧课堂的学校个数为n ,则1604n n =+,解得:20n =,再根据22⨯列联表依次补全表格()22160204040603210.6677.8791006080803K ⨯-⨯==≈>⨯⨯⨯.所以有99.5%的把握认为认为智慧课堂的应用与区域有关.(2)在偶尔应用或者不应用智慧课堂的学校中,农村和城市的比例是2:1,所以抽取的6个样本有4个是农村学校,2个是城市学校,从中抽取2个,则X 的可能取值为0,1,2.()0242261015C C P X C ===,()1142268115C C P X C ===,()204226225C C P X C ===. 所以X 的分布列为:X 的数学期望()1824012151553E X =⨯+⨯+⨯=. 【名师指导】关键点点睛:本题第二问的关键是根据列联表,可知偶尔应用或者不应用智慧课堂的学校中,农村和城市的比例是2:1,然后可知抽取的6人中的农村和城市学校个数,再按照超几何分布列表计算.19.【思路点拨】(1)要证明面面垂直,首先SAC 中求SA ,利用边长证得SA AC ⊥,再利用三角形全等,可证明SA ⊥平面ABC ;(2)方法一,向量坐标法,以A 为坐标原点,如图建立空间直角坐标系,分别求平面ABD 和SAB 的法向量,m n,利用公式cos ,m n m n m n⋅=求解;方法二,几何法,利用垂直关系作出二面角的平面角,直接求正弦值.【解析】(1)因为4SC =,点D 为SC 的中点,所以2SD DC ==,又2AC DA ==,所以ADC 是等边三角形,所以3DCA π∠=,所以SA =,所以222SC SA AC SA AC =+⊥,.又SAB SAC ≌,得SA AB ⊥,又AB AC A ⋂=,所以SA ⊥平面ABC ,又SA ⊂平面SAB ,所以平面SAB ⊥平面ABC .(2)以A 为坐标原点,AB 所在直线为x 轴,在平面ABC 内过点A 垂直于AB 的直线为y 轴,AS 所在直线为z 轴,建立空间直角坐标系.则(0,0,0)A ,(2,0,0)B ,3,0)C ,3)S ,所以13(3)22D ,, 所以(2,0,0)AB =,13322AD =(,). 设(,,)m x y z =为平面ABD 的法向量,由0,0.m AB m AD ⎧⋅=⎨⋅=⎩,20,1330.22x yx z =⎧⎪⎨++=⎪⎩, 令1z =,得()0,2,1m =-.而平面SAB 的一个法向量(0,1,0)n =,所以25cos ,5m n m n m n⋅==-. 设二面角S AB D --的平面角为θ,则5sin 5θ=. 方法2:取AC 中点E ,连接DE ,则DE ⊥平面ABC ,过点E 作EF AB ⊥于F ,连接DF ,DFE ∠为二面角D AB C --的平面角.在Rt DEF △中,3DE =32EF =,152DF =,所以5cos EF DEF DF ∠==, 因为二面角S AB D --的平面角与二面角D AB C --的平面角互余, 所以二面角S AB D --5【名师指导】方法点睛:本题考查面面垂直的证明,本题的关键是第一问,不管证明面面垂直还是证明线面垂直,关键都需转化为证明线线垂直,一般证明线线垂直的方法包含1.矩形,直角三角形等,2.等腰三角形,底边中线,高重合,3.菱形对角线互相垂直,4.线面垂直,线线垂直.20.【思路点拨】(1)分别求,b c ,再利用222a b c =+,求椭圆方程;(2)首先设直线l 方程为:+1y kx =,与椭圆方程联立,得到根与系数的关系,利用两点间距离表示22221122112222x y x y ++⎛⎫⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再化简,代入根与系数的关系求k . 【解析】(1)由已知得24b =,得2b =,4c =,22220a b c =+=,所以椭圆C 的方程为221204x y +=. (2)易知直线l 斜率存在,设直线l 方程为:+1y kx =. 联立2212041x y y kx ⎧+=⎪⎨⎪=+⎩,消去y 得22(15)10150k x kx ++-=,则2400600k ∆=+>.设11(,)A x y ,22(,)B x y ,则1221015k x x k +=-+,1221515x x k =-+. ∵OP OQ =,∴22221122112222x y x y ++⎛⎫⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 即:[]12121212()()()()4x x x x k x x k x x -+=--++.∵12x x ≠,∴21212()()40x x k x x k ++++=, ∴3221010401515k k k k k --+=++,解得10k =,2k =,3k = 所以满足条件的直线l 方程为:1y =、1y x =+和1y x =+. 【名师指导】关键点点睛:本题考查直线与圆锥曲线相交问题,常规步骤是直线与椭圆联立后得到根与系数的关系后,利用两点距离得到22221122112222x y x y ++⎛⎫⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化简是关键,利用平方差公式和点在直线上化简,求值.21.【思路点拨】(1)求出导函数()'f x ,按0a ≥和0a <分类讨论确定()'f x 的正负,得单调区间;(2)0x ≥时不等式成立,在0x <时,首先217()232f x x ++作为a 的函数是递减的,只要证明1a =时不等式成立即可,为此令()217232x h x e x x =+++(0x <),求出导函数()h x ',为了确定它的正负,需要对其进行再次求导(再引入一个函数,求导),由零点存在定理确定()h x '的零点0x 的范围,得min 0()()h x h x =,再证明最小值0()0h x >,可能要对0x 进一步缩小,才可得证.【解析】(1)解:函数()f x 的定义域为R ,()e xf x a '=+. ①当0a ≥时,()0f x '>,则()f x 在R 上单调递增;②当0a <时,由()0f x '=得()ln x a =-,且()ln x a <-时()0f x '<,()f x 单调递减;()ln x a >-时()0f x '>,()f x 单调递增.综上,0a ≥时,()f x 在R 上单调递增;0a <时,()f x 在()(),ln a -∞-单调递减,在()()ln ,a -+∞单调递增. (2)证明:①当0x ≥时,显然有()2170232f x x ++>; ②当0x <时,令()()221717232232x g a f x x xa e x =++=+++在01a ≤≤时单调递减,所以只需证明()10g >,即2170232x e x x +++>. 令()217232x h x e x x =+++(0x <),则()()1x x h x e x ϕ'==++,显然()x ϕ单调递增(()10xx e ϕ'=+>),()20ϕ-<,()10ϕ->,所以存在唯一()02,1x ∈--,使()00x ϕ=,且()0,x x ∈-∞时()0x ϕ<,()h x 单调递减;()0,x x ∈+∞时()0x ϕ>,()h x 单调递增,所以()()0h x h x ≥.因为()00x ϕ=,所以0010x e x ++=,即()001xe x =-+, 所以()()()0222000000017171251232232232x h x h x e x x x x x x ≥=+++=-++++=-. 又因为5ln 42ln 220.6934=≈⨯>,所以544e <,所以54511044e ϕ⎛⎫-=-> ⎪⎝⎭,从而052,4x ⎛⎫∈-- ⎪⎝⎭, 所以220125152502322432x ⎛⎫->⨯--= ⎪⎝⎭. 所以()0h x >,故待证不等式成立.【名师指导】关键点点睛:本题考查用导数研究函数的单调性,证明不等式成立.解题关键是转化.首先分类,0x ≥时不等式恒成立,在0x <时,先把参数a 作为主元,讨论后发现只要1a =时不等式成立即可,1a =时,引入新函数,求其最小值,证明最小值大于0,证明时由于最小值点不能求出,因此设为0x ,由零点存在定理得出0x 的范围,然后证明出结论.22.【思路点拨】(1)把参数方程化为普通方程,由cos sin x y ρθρθ=⎧⎨=⎩化极坐标方程为直角坐标方程;(2)设2C上的动点为,sin M αα),求出点M 到直线的距离,利用三角函数知识可得取值范围.【解析】(1)∵直线1C 的参数方程为24x t y t =+⎧⎨=-+⎩(t 为参数), ∴消去参数t ,得1C 的普通方程为60x y +-=.∵曲线2C 的极坐标方程为2(2cos 2)3ρθ-=,22222cos sin )3ρρθθ∴--=(,2C ∴的直角坐标方程为22222)()3x y x y +--=(,即2213x y +=. (2)曲线2C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),设2C上的动点为,sin M αα), 则2C 上的动点到1C距离|2sin()6|d πα+-==.∵[]2sin()2,23πα+∈-,则2C 上的动点到1C距离的最大值是∴2C 上的动点到1C距离的取值范围是⎡⎣. 【名师指导】方法点睛:本题参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,涉及到椭圆上的点到定直线的距离的最值问题时可用椭圆的参数方程,设出点的坐标(对22221x y a b+=可设cos ,sin x a y b αθ==),由点到直线的距离公式把问题转化为三角函数的最值.23.【思路点拨】(1)根据绝对值的定义分类讨论去掉绝对值符号后可解不等式;(2)分类讨论去绝对值符号后求得函数()f x 的最小值,然后解关于m 的不等式,注意按分母m 的正负分类求解.【解析】(1)由不等式()6f x ≥可得:()2|1||2|6f x x x =-++≥,可化为:22226x x x ≤-⎧⎨---≥⎩或212226x x x -<<⎧⎨-++≥⎩或12226x x x ≥⎧⎨-++≥⎩解得:2x -≤或2x ≥,所以原不等式的解集为(][),22,-∞-+∞.(2)因为()3,2212=4,213,1x x f x x x x x x x -≤-⎧⎪=-++-+-<<⎨⎪≥⎩,所以()f x 在(),1-∞上单调递减,在[)1+∞,上单调递增, 所以min ()(1)3f x f ==.要()2f x m m ≥+对任意R x ∈恒成立,只需23m m ≥+,即:2320m m m-+≤, 所以()()1200m m m ⎧--≤⎨>⎩或()()1200m m m ⎧--≥⎨<⎩,解得:12m ≤≤或0m <, 所以,实数m 的取值范围为()[],01,2-∞⋃.【名师指导】方法点睛:本题考查解含绝对值的不等式,绝对值不等式恒成立问题.解含绝对值的不等式的常用方法是利用绝对值的定义分类讨论去绝对值符号,然后解不等式.而不等式恒成立,在解关于参数m 的不等式时注意分式不等式的分类讨论求解.。
2020-2021学年合肥市高一上学期期末数学试卷(附答案解析)
2020-2021学年合肥市高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分)1.已知集合A={x|x=2n,n∈N∗},B={x|x=2n,n∈N∗},则下列不正确的是()A. A⊆BB. A∩B=AC. B∩(∁z A)=ΦD. A∪B=B2.已知f(x)是以5为周期的奇函数,f(−3)=4且sinα=√32,则f(4cos2α)=()A. 4B. −4C. 2D. −23.设tan1234°=a,那么sin(−206°)+cos(−206°)的值为()A. 1+a√1+a2B. −1+a√1+a2C. a−1√1+a2D. 1−a√1+a24.设|a⃗|=1,|b⃗ |=2,且a⃗、b⃗ 夹角为23π,则|2a⃗+b⃗ |等于()A. 2B. 4C. 12D. 2√35.如图,有一个“鼓形”烧水壶正在接水.水壶底部较宽,口部较窄,中间部分鼓起.已知单位时间内注水量不变,壶中水面始终为圆形,当注水t=t0时,壶中水面高度ℎ达到最高ℎ0.在以下图中,最能近似的表示壶中水面高度ℎ与注水时间t的关系是()A. B.C. D.6.下面有命题:①y=|sinx−12|的周期是π;②y=sinx+sin|x|的值域是[0,2];③方程cosx=lgx有三解;④ω为正实数,y=2sinωx在[−π3,2π3]上递增,那么ω的取值范围是(0,34];⑤在y=3sin(2x+π4)中,若f(x1)=f(x2)=0,则x1−x2必为π的整数倍;⑥若A 、B 是锐角△ABC 的两个内角,则点P(cosB −sinA,sinB −cosA 在第二象限; ⑦在△ABC 中,若AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ >0,则△ABC 钝角三角形.其中真命题个数为( )A. 2B. 3C. 4D. 57.已知sin(α+π3)+sinα=√33,则sin(2α−π6)的值是( )A. 79B. −79C. 29D. −298.已知函数f(x)=|log 3x|,若函数y =f(x)−m 有两个不同的零点a ,b ,则( )A. a +b =1B. a +b =3mC. ab =1D. b =a m9.函数f(x)=ax 2+(2+a)x +1是偶函数,则函数的单调递增区间为( )A. [0,+∞)B. (−∞,0]C. (−∞,+∞)D. [1,+∞)10. 化简cos50°+cos70°−cos10°的结果为( )A. 0B. 2cosl0°C. −2cosl0°D. 2sinl0°11. 已知函数f(x)={log 3(x +2)+a,x ≥1e x −1,x <1,若f[f(ln2)]=2a ,则f(a)等于( )A. 12B. 43C. 2D. 412. 已知向量=(),=(1,)且,其中,则等于( )A.B.C.D.二、单空题(本大题共4小题,共20.0分)13. 已知向量|a ⃗ |=√5,b ⃗ =(1,0),c ⃗ =(3,4),若a ⃗ ⋅b ⃗ =1,(a ⃗ +λb ⃗ )//c ⃗ ,则实数λ= ______ . 14. 计算2sin50°−√3sin20°cos20°=______.15. 在长方形区域{(x,y)|0≤x ≤2,0≤y ≤1}中任取一点P ,则点P 恰好取自曲线y =cosx(0≤x ≤π2)与坐标轴围成的区域内的概率为______ .16. 14、已知是定义在上的函数,并满足,当时,,则。
安徽省滁州市2020-2021学年度上学期期末试卷数学(理科)试题(含答案)
安徽省滁州市2020-2021学年度上学期期末试卷数学(理科)试题(含答案)安徽省滁州市2020-2021学年度上学期期末试卷⾼⼆(理科)数学考⽣注意:1、本试卷分为选择题和⾮选择题。
考试时间:120分钟,满分150分。
2、本卷命题范围:选修2-1、选修2-2第⼀章。
第I卷选择题(60分)⼀、选择题(共12⼩题,每⼩题5分,共60分。
在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.) 1.设集合U={(x,y)|x∈R,y∈R},若A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},则点P(2,3)∈A∩(?U B)的充要条件是( )A.m>-1,n<5 B.m<-1,n<5 C.m>-1,n>5 D.m<-1,n>52.已知p:?x0∈R,mx+1≤0,q:?x∈R,x2+mx+1>0,若p∨q为假命题,则实数m的取值范围为( )A.m≥2 B.m≤-2 C.m≤-2或m≥2 D.-2≤m≤23.已知椭圆C:+=1(a>b>0)及点B(0,a),过B与椭圆相切的直线交x轴的负半轴于点A,F为椭圆的右焦点,则∠ABF等于( )A.60° B.90° C.120° D.150°4.已知两点A(,0),B(-,0),点P为平⾯内⼀动点,过点P作y轴的垂线,垂⾜为Q,且·=22,则动点P的轨迹⽅程为( )A.x2+y2=2 B.y2-x2=2C.x2-2y2=1 D.2x2-y2=15.函数f(x)=sin2x的导数f′(x)等于( )A.2sin x B.2sin2x C.2cos x D.sin 2x6.已知F1,F2分别是双曲线E:-=1(a>0,b>0)的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离⼼率为( )A. B. C. D.27.已知抛物线C:x2=16y的焦点为F,准线为l,M是l上⼀点,P是直线MF与C 的⼀个交点,若=3,则|PF|等于( )A. B. C. D.8.已知f′(x)是函数f(x)的导函数,f(x)的图象如图所⽰,则不等式f(x)·f′(x)>0的解集为( )A.(0,2) B.(-∞,0)∪(2,3)C.(-∞,0)∪(3,+∞) D.(0,2)∪(3,+∞)9.已知函数f(x)=x3-ax2+4,若f(x)的图象与x轴正半轴有两个不同的交点,则实数a的取值范围为( )A.(1,+∞) B.(,+∞)C.(2,+∞) D.(3,+∞)10.若函数f(x)在(0,+∞)上可导,且满⾜f(x)>xf′(x),则⼀定有( )A.函数F(x)=在(0,+∞)上为增函数B.函数F(x)=在(0,+∞)上为减函数C.函数G(x)=xf(x)在(0,+∞)上为增函数D.函数G(x)=xf(x)在(0,+∞)上为减函数11.设函数f(x)=ax3-x+1(x∈R),若对于任意x∈[-1,1]都有f(x)≥0,则实数a的取值范围为( )A.(-∞,2] B.[0+∞) C.[0,2] D.[1,2]12.设函数f(x)=x-ln x(x>0),则y=f(x)( )A.在区间(,1),(1,e)内均有零点B.在区间(,1),(1,e)内均⽆零点C.在区间(,1)内有零点,在区间(1,e)内⽆零点D.在区间(,1)内⽆零点,在区间(1,e)内有零点第II卷⾮选择题(90分)⼆、填空题(共4⼩题,每⼩题5分,共20分)13.已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线3x+y=0平⾏,若f(x)在区间[t,t+1]上单调递减,则实数t的取值范围是________.14. 已知a,b是空间两个向量,若|a|=2,|b|=2,|a-b|=,则cos〈a,b〉=________.15.已知F1,F2是椭圆C的左,右焦点,点P在椭圆上,且满⾜|PF1|=2|PF2|,∠PF1F2=30°,则椭圆的离⼼率为________.16.f(x)是定义在区间[-c,c]上的奇函数,其图象如下图所⽰.令g(x)=af(x)+b,则下列关于函数g(x)的结论:①若a<0,则函数g(x)的图象关于原点对称;②若a=-1,-2③若a≠0,b=2,则⽅程g(x)=0有两个实根;④若a≠0,b=2,则⽅程g(x)=0有三个实根.其中,正确的结论为________.三、解答题(共6⼩题 ,共70分。
2020-2021学年安徽省滁州市青洛中学高三数学理联考试题含解析
2020-2021学年安徽省滁州市青洛中学高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合A={x|x≥3或x≤1},B={x|x2﹣6x+8<0},则(?R A)∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)参考答案:C【考点】交、并、补集的混合运算.【分析】解不等式求出集合B,根据补集与交集的定义写出(?R A)∩B.【解答】解:集合A={x|x≥3或x≤1},B={x|x2﹣6x+8<0}={x|2<x<4},则?R A={x|1<x<3},所以(?R A)∩B={x|2<x<3}=(2,3).故选:C.2. 已知函数=,其中e为自然对数的底数,若关于x的方程有三个不同的实数根,则的零点个数为A.1 B.2 C.3 D.以上都有可能参考答案:.试题分析:由关于x的方程有三个不同的实数根,可得:的零点个数为3个,,故应选.考点:1、函数与方程;2、分段函数;3. 一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为().A. B.C. D.参考答案:C略4. 已知实数m、n,则“mn>0”是“方程mx2+ny2=1代表的曲线是椭圆”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】先根据mn>0看能否得出方程mx2+ny2=1的曲线是椭圆;这里可以利用举出特值的方法来验证,再看方程mx2+ny2=1的曲线是椭圆,根据椭圆的方程的定义,可以得出mn >0,即可得到结论.【解答】解:当mn>0时,方程mx2+ny2=1的曲线不一定是椭圆,例如:当m=n=1时,方程mx2+ny2=1的曲线不是椭圆而是圆;或者是m,n都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程mx2+ny2=1的曲线是椭圆时,应有m,n都大于0,且两个量不相等,得到mn>0;由上可得:“mn>0”是“方程mx2+ny2=1的曲线是椭圆”的必要不充分条件.故选B.5. 函数的定义域为A.[0,+)? ? B.[1,+)? ? C.(-,0]? D.(-,1]参考答案:A【知识点】函数的定义域与值域【试题解析】要使函数有意义,需满足:即所以函数的定义域为:.故答案为:A6. 若二次项的展开式中常数项为280,则实数()A.2 B.C.D.参考答案:C考点:二项式定理的应用.【名师点睛】二项式展开式的通项公式为,由这个通项公式可求展开式中的特定项,求某一项的系数,二项式系数等等,这个公式是解题的关键之一.7. 某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到所示联表:附:K2=,则下列结论正确的是()A.在犯错误的概率不超过1%的前提下,认为“该校学生能否做到‘光盘’与性别无关”B.有99%以上的把握认为“该校学生能否做到‘光盘’与性别有关”C.在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”D.有90%以上的把握认为“该校学生能否做到‘光盘’与性别无关”参考答案:C【考点】独立性检验.【专题】概率与统计.【分析】通过图表读取数据,代入观测值公式计算,然后参照临界值表即可得到正确结论【解答】解:由2×2列联表得到a=45,b=10,c=30,d=15.则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100.代入K2=,得k2的观测值k=.因为2.706<3.030<3.841.所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”.即在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”故选C.【点评】本题是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关,此题是基础题.8. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A. B.C. D.参考答案:试题分析:根据三视图可知,该几何体是三棱锥,如图所示,其中面平面,面平面,在上的正射影恰是的中点.由图中给定数据,较长的棱是.计算得.连,则且,所以,故选.考点:1.空间的距离;2.几何体的特征;3.三视图.9. 已知i是虚数单位,则复数在复平面内所对应的点位于(A)第四象限 (B)第三象限 (C)第二象限 (D)第一象限参考答案:【知识点】复数运算;复数的几何意义. L4D解析:因为=,所以此复数在复平面内所对应的点位于第一象限.【思路点拨】先把复数化为a+bi形式,再由复数的几何意义得结论.10. ,若,则=A. B.C. D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知向量a和b的夹角是60°,。
安徽省滁州市2020-2021学年高二第一学期期末联考(理科)数学试题
9.若如图所示的程序框图的输出结果为二进制数 化为十进制数(注: ),那么处理框①内可填入( )
A. B. C. D.
10.在正方体 中,点 , 分别是 , 的中点,则直线 与平面 所成角的正弦值是( )
A. B. C. D.
11.设双曲线 的左焦点为 ,右顶点为 ,过点 与 轴垂直的直线与双曲线的一个交点为 ,且 ,则此双曲线的离心率为( )
(1)求选取的市民年龄在 内的人数;
(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在 内的概率.
19.商品的销售价格与销售量密切相关,为更精准地为商品确定最终售价,商家对商品 按以下单价进行试售,得到如下数据:
(1)求销量 关于 的线性回归方程;
2.C
【解析】
【分析】
根据全称命题的否定是存在性命题,即可得到命题的否定形式,得到答案.
【详解】
根据全称命题的否定是存在性命题,可得命题“ ”,
则 ,故选C.
【点睛】
本题主要考查了含有一个量词的否定,其中解答中熟记全称命题与存在性命题的关系是解答的关键,属于基础题.
3.A
【解析】
【分析】
由给定的茎叶图得到原式数据 ,再根据中位数的定义,即可求解.
安徽省滁州市2020-2021学年高二第一学期期末联考(理科)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若集合 ,则 ( )
A.(0,2)B.[0,2]C. D.
2.已知命题 : , ,则 是( )
安徽省示范高中培优联盟2020-2021学年高二上学期冬季联赛 数学(理科)试题+答题卡+答案
三( . 19)(12 分)
(Ⅰ)
第(19)题图
(Ⅱ)
考点
姓名
班级
学校
请在各题目的答题区域内作答,超出答题区域的答案无效
请在各题目的答题区域内作答,超出答题区域的答案无效
准考证号
安徽省示范高中培优联盟 2020 年冬季联赛(高二)
数学答题卡(理科)
请在各题目的答题区域内作答,超出答题区域的答案无效 (Ⅱ)
装 订
贴条形码区
考号
姓名
[0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5] [6] [6] [6] [6] [6] [6] [6] [6] [6] [6] [6] [7] [7] [7] [7] [7] [7] [7] [7] [7] [7] [7] [8] [8] [8] [8] [8] [8] [8] [8] [8] [8] [8] [9] [9] [9] [9] [9] [9] [9] [9] [9] [9] [9]
2020年安徽省滁州市城北中学高三数学理联考试卷含解析
2020年安徽省滁州市城北中学高三数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图所示是一个几何体的三视图,则这个几何体外接球的体积为()A.36πB.πC.8πD.π参考答案:B【考点】由三视图求面积、体积.【分析】如图所示,该几何体为四棱锥P﹣ABCD,侧面PAB⊥底面ABCD,底面ABCD是正方形,其对角线AC∩BD=O,取AB的中点E,OE⊥AB,OE⊥侧面PAB,PE=2,AB=4.则点O为其外接球的球心,半径R=2.即可得出.【解答】解:如图所示,该几何体为四棱锥P﹣ABCD,侧面PAB⊥底面ABCD,底面ABCD是正方形,其对角线AC∩BD=O,取AB的中点E,OE⊥AB,OE⊥侧面PAB,PE=2,AB=4.则点O为其外接球的球心,半径R=2.∴这个几何体外接球的体积V==π.故选:B.2. 若函数在(-∞,a]上的最大值为4,则a的取值范围为A.[0,17]B.(-∞,17 ]C. [1,17]D. [1,+∞)参考答案:C3. 已知p:2+2=5,q:3≥2,则下列判断中,错误的是( )A.p或q为真,非q为假B.p或q为真,非p为真C.p且q为假,非p为假D.p且q为假,p或q为真参考答案:C【考点】复合命题的真假.【专题】简易逻辑.【分析】对于命题p:2+2=5,是假命题;对于q:3≥2,是真命题.利用复合命题的真假判定方法即可判断出.【解答】解:对于命题p:2+2=5,是假命题;对于q:3≥2,是真命题.∴p∨q为真命题,p∧q是假命题,¬p为真命题,¬q为假命题.∴C是假命题.故选:C.【点评】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.4.表示等差数列的前项和,若,,,则的值为()A.28B.23C.21D.19参考答案:答案:C5. 已知复数z满足,且,则z=()A. 3B. 3iC. ±3D. ±3i参考答案:C【分析】设,则,利用和求得,即可.【详解】设,则,因为,则,所以,又,即,所以,所以,故选:C【点睛】本题考查复数的乘法法则的应用,考查共轭复数的应用.6. 函数y=tan的定义域是()A.{x|x≠,x∈R} B.{x|x≠﹣,x∈R}C.{x|x≠kπ+,k∈Z,x∈R}D.{x|x≠kπ+,k∈Z,x∈R}参考答案:D【考点】正切函数的定义域.【分析】由正切函数的定义知x﹣≠kπ+,解出x不满足的范围即可.【解答】解:∵函数y=tan=﹣tan(x﹣)∴x﹣≠kπ+,∴x≠kπ+π,k∈Z.故选 D7. 已知函数,则下列说法错误的是()A.的最小正周期是πB.关于对称C.在上单调递减D.的最小值为参考答案:D8. 设U={1,2,3,4},且M={x∈U|x2-5x+P=0},若C U M={2,3},则实数P的值为()A.-4 B.4 C.-6 D.6参考答案:B略9. 命题:若,则与的夹角为钝角。
2020-2021学年安徽省皖西南联盟高三(上)期末数学试卷(文科) (解析版)
2020-2021学年安徽省皖西南联盟高三(上)期末数学试卷(文科)一、选择题(共12小题).1.(1﹣i)(4+i)=()A.3+5i B.3﹣5i C.5+3i D.5﹣3i2.设集合A={x|(x﹣7)(x+12)<0},B={x|x+6>0},则A∩B=()A.{x|﹣6<x<12}B.{x|﹣6<x<7}C.{x|x>﹣12}D.{x|6<x<7} 3.函数f(x)=sin4x cos4x的最小正周期与最小值分别为()A.B.C.D.4.正八边形在生活中是很常见的对称图形,如图1中的正八边形的U盘,图2中的正八边形窗花.在图3的正八边形A1A2A3A4A5A6A7A8中,向量与的夹角为()A.B.C.D.5.若函数的极大值点与极小值点分别为a,b,则()A.a<b<a+b B.a<a+b<b C.b<a+b<a D.a+b<b<a6.在新冠肺炎疫情防控期间,某大型连锁药店开通网上销售业务,每天能完成600份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该药店某日积压800份订单未配货,预计第二天新订单超过1000份的概率为0.02.志愿者每人每天能完成35份订单的配货,为使第二天完成积压订单及当日订单配货的概率不小于0.98,则至少需要志愿者()A.32名B.33名C.34名D.35名7.若双曲线C:的实轴长与虚轴长的乘积等于离心率,则C的离心率为()A.B.C.D.8.已知一个扇形的圆心角为α(0<α<2π),弧长为,半径为2.若tanβ=2,则tan(α+2β)=()A.B.7C.D.﹣79.在正方体ABCD﹣A1B1C1D1中,E,F分别是棱A1B1,BC的中点,现有下列四个结论:①A,E,F,C1四点共面;②平面ACE⊥平面BDD1B1;③FC1∥平面ADD1A1;④FC1与平面ABCD所成角为60°.其中正确的结论的个数是()A.1B.2C.3D.410.设x,y满足约束条件,且z=ax+by(a>0,b>0)的最大值为1,则的最小值为()A.64B.81C.100D.12111.设函数f(x)=sin x﹣log3x,g(x)=3x﹣log0.5x,h(x)=sin x﹣log0.5x的零点分别为a,b,c,则()A.a>c>b B.c>b>a C.c>a>b D.a>b>c12.已知点P(m,n)是抛物线上一动点,则的最小值为()A.4B.5C.D.6二、填空题(共4小题).13.若从集合{1,2,3,5,7,8,10}中任选一个元素,则这个元素是奇数的概率为.14.在△ABC中,若,,AC=2,则AB=.15.已知f(x)是周期为4的奇函数,当0≤x≤1时,f(x)=x,当1<x≤2时,f(x)=﹣2x+4.若直线y=a与f(x)的图象在[﹣4,5]内的交点个数为m,直线与f(x)的图象在[﹣4,5]内的交点个数为n,且m+n=9,则a的取值范围是.16.在正方体ABCD﹣A1B1C1D1中,AB=2,E,F分别为棱AB,AA1的中点,则该正方体被平面CEF所截得的截面面积为,四面体BCEF外接球的表面积为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题;共60分.17.已知数列{a n}的前n项和.(1)证明:{a n}是等比数列.(2)求数列{log3a n}的前n项和.18.某企业投资两个新型项目,投资新型项目A的投资额m(单位:十万元)与纯利润n (单位:万元)的关系式为n=1.7m﹣0.5(m=1,2,3,4,5),投资新型项目B的投资额x(单位:十万元)与纯利润y(单元:万元)的散点图如图所示.(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,若A,B两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线的斜率和截距的最小二乘估计分别为=,=﹣.19.如图,在直四棱柱(侧棱垂直底面的棱柱称为直棱柱)ABCD﹣A1B1C1D1中,底面是边长为2的菱形,且∠DAB=60°,AA1=AB,点E,F分别为DD1,CC1的中点,点G在D1F上.(1)证明:BG∥平面ACE;(2)求三棱锥B﹣ACE的体积.20.已知椭圆的离心率为,且焦距为8.(1)求C的方程;(2)设直线l的倾斜角为,且与C交于A,B两点,点O为坐标原点,求△AOB面积的最大值.21.已知函数f(x)=x3﹣6x2+9x+1.(1)求曲线y=f(x)在点(0,1)处的切线方程;(2)证明:(x+1﹣lnx)f(x)>2cos x对恒成立.(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C的参数方程为(α为参数,a<0),且曲线C经过坐标原点O.以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为4ρcosθ﹣12ρsinθ+3a=0.(1)求C的极坐标方程;(2)设P是曲线C上一动点,l与极轴交于点A,求|PA|的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a3|+|x+3a|(a>0).(1)当a=1时,求不等式f(x)<6的解集;(2)若f(x)的最小值为4,且,证明:.参考答案一、选择题(共12小题).1.(1﹣i)(4+i)=()A.3+5i B.3﹣5i C.5+3i D.5﹣3i解:(1﹣i)(4+i)=1×4+1×i﹣i×4﹣i2=5﹣3i.故选:D.2.设集合A={x|(x﹣7)(x+12)<0},B={x|x+6>0},则A∩B=()A.{x|﹣6<x<12}B.{x|﹣6<x<7}C.{x|x>﹣12}D.{x|6<x<7}解:∵A={x|﹣12<x<7},B={x|x>﹣6},∴A∩B={x|﹣6<x<7}.故选:B.3.函数f(x)=sin4x cos4x的最小正周期与最小值分别为()A.B.C.D.解:,则,可得.故选:C.4.正八边形在生活中是很常见的对称图形,如图1中的正八边形的U盘,图2中的正八边形窗花.在图3的正八边形A1A2A3A4A5A6A7A8中,向量与的夹角为()A.B.C.D.解:因为正八边形的内角和为(8﹣2)π=6π,所以与的夹角为,故选:B.5.若函数的极大值点与极小值点分别为a,b,则()A.a<b<a+b B.a<a+b<b C.b<a+b<a D.a+b<b<a解:,当,f'(x)>0,当或时,f'(x)<0,故的极大值点与极小值点分别为,,则,,所以b<a+b<a,故选:C.6.在新冠肺炎疫情防控期间,某大型连锁药店开通网上销售业务,每天能完成600份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该药店某日积压800份订单未配货,预计第二天新订单超过1000份的概率为0.02.志愿者每人每天能完成35份订单的配货,为使第二天完成积压订单及当日订单配货的概率不小于0.98,则至少需要志愿者()A.32名B.33名C.34名D.35名解:由题意可知,第二天需要完成的订单数为800+1000=1800,因为.所以至少需要志愿者35名.故选:D.7.若双曲线C:的实轴长与虚轴长的乘积等于离心率,则C的离心率为()A.B.C.D.解:双曲线的标准方程为,依题意可得,解得,则.故选:C.8.已知一个扇形的圆心角为α(0<α<2π),弧长为,半径为2.若tanβ=2,则tan(α+2β)=()A.B.7C.D.﹣7解:因为tanβ=2,所以,又扇形的圆心角为α(0<α<2π),弧长为,半径为2,可得:,所以.故选:A.9.在正方体ABCD﹣A1B1C1D1中,E,F分别是棱A1B1,BC的中点,现有下列四个结论:①A,E,F,C1四点共面;②平面ACE⊥平面BDD1B1;③FC1∥平面ADD1A1;④FC1与平面ABCD所成角为60°.其中正确的结论的个数是()A.1B.2C.3D.4解:如图,因为AF与EC1异面,所以A,E,F,C1四点不共面,故①错误.在正方体中,AC⊥BD,AC⊥BB1,BD∩BB1=B,BD、BB1⊂平面BDD1B1,所以AC⊥平面BDD1B1,因为AC⊂平面ACE,所以平面ACE⊥平面BDD1B1,故②正确.因为平面BCC1B1∥平面ADD1A1,且FC1⊂平面BCC1B1,所以FC1∥平面ADD1A1,故③正确.因为FC1与平面ABCD所成角为∠C1FC,且tan∠C1FC=2,故④错误,所以正确的命题个数为2个,故选:B.10.设x,y满足约束条件,且z=ax+by(a>0,b>0)的最大值为1,则的最小值为()A.64B.81C.100D.121解:作出约束条件表示的可行域如图,∵a>0,b>0,∴当直线z=ax+by经过点(5,6)时,z取得最大值,则5a+6b=1,∴,当且仅当时,等号成立,∴的最小值为121.故选:D.11.设函数f(x)=sin x﹣log3x,g(x)=3x﹣log0.5x,h(x)=sin x﹣log0.5x的零点分别为a,b,c,则()A.a>c>b B.c>b>a C.c>a>b D.a>b>c解:设函数f1(x)=sin x,f2(x)=log3x,f3(x)=log0.5x,,则a是f1(x)与f2(x)图象交点的横坐标,b是f3(x)与f4(x)图象交点的横坐标,c是f1(x)与f3(x)图象交点的横坐标.在同一坐标系中,作出f1(x),f2(x),f3(x),f4(x)的图象,如图所示.由图可知a>c>b.故选:A.12.已知点P(m,n)是抛物线上一动点,则的最小值为()A.4B.5C.D.6解:由,得x2=﹣4y.则的焦点为F(0,﹣1).准线为l:y=1.几何意义是:点P(m,n)到F(0,﹣1)与点A(4,﹣5)的距离之和,根据抛物线的定义点P(m,n)到F(0,﹣1)的距离等于点P(m,n)到l的距离,所以的最小值为1﹣(﹣5)=6.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.若从集合{1,2,3,5,7,8,10}中任选一个元素,则这个元素是奇数的概率为.解:题中的集合里共有7个元素,其中4个是奇数,故所求概率为.故答案为:.14.在△ABC中,若,,AC=2,则AB=.解:因为=,可得cos C=,又sin2C+cos2C=1,所以,因为,AC=2,由正弦定理得,可得.故答案为:.15.已知f(x)是周期为4的奇函数,当0≤x≤1时,f(x)=x,当1<x≤2时,f(x)=﹣2x+4.若直线y=a与f(x)的图象在[﹣4,5]内的交点个数为m,直线与f(x)的图象在[﹣4,5]内的交点个数为n,且m+n=9,则a的取值范围是.解:依题意可作出f(x)在[﹣4,5]上的图象,如图所示.因为a<a+,由图可知,解得﹣≤a<0,故a的取值范围是.故答案为:.16.在正方体ABCD﹣A1B1C1D1中,AB=2,E,F分别为棱AB,AA1的中点,则该正方体被平面CEF所截得的截面面积为,四面体BCEF外接球的表面积为14π.解:因为平面CEF与平面CDD1C1的交线为CD1,所以截面为四边形CEFD1,而四边形CEFD1为等腰梯形,且,,故其面积为.设线段CE的中点为G,四面体BCEF外接球的球心为O,则OG⊥平面BCE.设球O的半径为R,则R2=OG2+EG2=AG2+(OG﹣AF)2.因为,所以,从而,故球O的表面积为4πR2=14π.故答案为:;14π.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题;共60分.17.已知数列{a n}的前n项和.(1)证明:{a n}是等比数列.(2)求数列{log3a n}的前n项和.【解答】(1)证明:当n≥2时,,又a1=S1=9,所以{a n}的通项公式为.因为,所以{a n}是首项为9,公比为3的等比数列.(2)解:因为,所以log3a n=n+1,所以数列{log3a n}的前n项T n=2+3+…+n+1==.18.某企业投资两个新型项目,投资新型项目A的投资额m(单位:十万元)与纯利润n (单位:万元)的关系式为n=1.7m﹣0.5(m=1,2,3,4,5),投资新型项目B的投资额x(单位:十万元)与纯利润y(单元:万元)的散点图如图所示.(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,若A,B两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线的斜率和截距的最小二乘估计分别为=,=﹣.解:(1)由散点图可得,,,=,,则y关于x的线性回归方程为;(2)当m=6时,n=1.7×6﹣0.5=9.7(万元),当x=6时,(万元).∵9.7>8,∴A项目收益更好.19.如图,在直四棱柱(侧棱垂直底面的棱柱称为直棱柱)ABCD﹣A1B1C1D1中,底面是边长为2的菱形,且∠DAB=60°,AA1=AB,点E,F分别为DD1,CC1的中点,点G在D1F上.(1)证明:BG∥平面ACE;(2)求三棱锥B﹣ACE的体积.【解答】(1)证明:连接BD交AC于点O,则O为BD的中点,连接BF,OE,BD1,则BD1∥OE.∵BD1⊄平面ACE,OE⊂平面ACE,∴BD1∥平面ACE.∵ED1∥CF,ED1=CF,∴四边形D1ECF为平行四边形,∴D1F∥EC.又∵D1F⊄平面ACE,EC⊂平面ACE,∴D1F∥平面ACE.∵BD1∩D1F=D1,BD1⊂平面BD1F,D1F⊂平面BD1F,∴平面BD1F∥平面ACE,∵BG⊂平面BD1F,∴BG∥平面ACE.(2)解:在△ABC中,AB=BC=2,∠CAB=30°,则AC边上的高为1,,∴.又点E到平面ABC的距离为DE,且DE=1,,∵V B﹣ACE=V E﹣ABC,∴.20.已知椭圆的离心率为,且焦距为8.(1)求C的方程;(2)设直线l的倾斜角为,且与C交于A,B两点,点O为坐标原点,求△AOB面积的最大值.解:(1)依题意可知,解得a=2,b=2,c=4故C的方程为.(2)依题意可设直线l的方程为,联立,整理得,则△=300m2﹣64(5m2﹣20)>0,解得﹣8<m<8.设A(x1,y1),B(x2,y2),则,,,原点到直线l的距离,则△AOB的面积,当且仅当m2=32,即时,△AOB的面积有最大值,且最大值为2.21.已知函数f(x)=x3﹣6x2+9x+1.(1)求曲线y=f(x)在点(0,1)处的切线方程;(2)证明:(x+1﹣lnx)f(x)>2cos x对恒成立.解:(1)f′(x)=3x2﹣12x+9,则f′(0)=9,故曲线y=f(x)在点(0,1)处的切线方程为:y=9x+1;(2)证明:令f′(x)>0,解得:x>3或x<1,令f′(x)<0,解得:1<x<3,故f(x)在(,1)递增,在(1,3)递减,在(3,+∞)递增,∵f()>f(3)=1,故f(x)在(,+∞)上的最小值是f(3)=1,设函数g(x)=x+1﹣lnx,则g′(x)=(x>0),令g′(x)>0,解得:x>1,令g′(x)<0,解得:x<1,故g(x)在(,1)递减,在(1,+∞)递增,故g(x)≥g(1)=2;从而(x+1﹣lnx)f(x)≥2,但由于f(x)≥1与g(x)≥2的取等条件不同,故(x+1﹣lnx)f(x)>2,∵2cos x≤2,∴(x+1﹣lnx)f(x)>2cos x对恒成立.(二)选考题:共10分.请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C的参数方程为(α为参数,a<0),且曲线C经过坐标原点O.以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为4ρcosθ﹣12ρsinθ+3a=0.(1)求C的极坐标方程;(2)设P是曲线C上一动点,l与极轴交于点A,求|PA|的取值范围.解:(1)由曲线C的参数方程为(α为参数,a<0),得x2+(y﹣a)2=16,即x2+y2﹣2ay=16﹣a2,因为曲线C经过坐标原点O,所以16﹣a2=0,又a<0,所以a=﹣4.故C的极坐标方程为ρ2+8ρsinθ=0,即ρ+8sinθ=0(或ρ=﹣8sinθ).(2)因为l的极坐标方程为4ρcosθ﹣12ρsinθ+3a=0,即4ρcosθ﹣12ρsinθ﹣12=0,所以l的直角坐标方程为x﹣3y﹣3=0.令y=0,得x=3,则A的直角坐标为(3,0),由(1)知,曲线C表示圆心为C(0,﹣4),半径为4的圆且|AC|=5,故|PA|的取值范围为[1,9].[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a3|+|x+3a|(a>0).(1)当a=1时,求不等式f(x)<6的解集;(2)若f(x)的最小值为4,且,证明:.【解答】(1)解:当a=1时,由f(x)<6,得|x﹣1|+|x+3|<6.当x≤﹣3时,﹣2x﹣2<6,则﹣4<x≤﹣3;当﹣3<x<1时,4<6,则﹣3<x<1;当x≥1时,2x+2<6,则1≤x<2.故不等式f(x)<6的解集为(﹣4,2).(2)证明:因为f(x)=|x﹣a3|+|x+3a|≥|x﹣a3﹣(x+3a)|=|a3+3a|,且a>0,所以f(x)的最小值为a3+3a=4.因为函数g(a)=a3+3a为增函数,且g(1)=4,所以a=1.从而,因为m>0,n>0,所以由柯西不等式得,即,所以(当且仅当,时等号成立)。
2020-2021学年安徽省合肥市庐阳区七年级(上)期末数学试卷 (解析版)
2020-2021学年安徽省合肥市庐阳区七年级第一学期期末数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣8的绝对值是()A.﹣8B.8C.±8D.﹣2.下列各组整式中,是同类项的有()A.3m3n2与﹣n3m2B.yx与3xyC.53与a3D.2xy与3yz23.已知x=2是关于x的方程2x﹣a=3的解,则a的值是()A.﹣1B.7C.2D.14.为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了80名学生,下列说法正确的是()A.此次调查属于全面调查B.1000名学生是总体C.样本容量是80D.被抽取的每一名学生称为个体5.已知代数式x﹣2y的值是3,则代数式4y+1﹣2x的值是()A.﹣5B.﹣3C.﹣1D.06.在所给的:①15°、②65°、③75°、④115°、⑤135°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④7.某种商品每件进价为a元,按进价增加50%出售,现“双十二”打折促销按售价的八折出售,每件还能盈利()A.0.12a元B.0.2a元C.1.2a元D.1.5a元8.已知线段AB=6cm,在直线AB上取一点C,使BC=2cm,则线段AB的中点M与AC 的中点N的距离为()A.1cm B.3cm C.2cm或3cm D.1cm或3cm 9.七年级学生在参加校外实践活动中,有m位师生乘坐n辆客车.若每辆客车乘42人,则还有8人不能上车,若每辆客车乘45人,则最后一辆车空了16个座位.在下列四个方程:①42n﹣8=45n+16;②=;③=;④42n+8=45n﹣16中,其中正确的有()A.①③B.②④C.①④D.③④10.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…,那么:71+72+73+…+72022的末位数字是()A.0B.6C.7D.9二、填空题(每小题5分,共20分)11.据统计,2020年上半年安徽省实现生产总值(GDP)17551亿元.将17551亿用科学记数法表示为.12.时钟在14点30分时,这时刻钟面上时针与分针夹角的度数为.13.有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|的值为.14.已知点P是射线AB上一点,当=2或=时,称点P是射线AB的强弱点,若AB=6,则PA=.三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣32+2×(﹣1)3﹣(﹣9)÷(﹣)2.16.解方程:﹣=4.四、(本大题共2小题,每题8分,满分16分)17.先化简,再求值:3(x2y+xy)﹣2(x2y﹣xy)﹣4x2y,其中x=﹣1,y=2.18.作图题:已知∠α,线段m、n,请按下列步骤完成作图.(不需要写作法,保留作图痕迹)(1)作∠MON=∠α.(2)在边OM上截取OA=m,在边ON上截取OB=n.(3)作直线AB.五、(本大题共2小题,每题10分,满分20分)19.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子去量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.20.“精准扶贫”这是新时期党和国家扶贫工作的精髓和亮点,某校团委随机抽取七年级部分学生,对他们是否了解关于“精准扶贫”的情况进行调查,调查结果有三种:A、了解很多;B、了解一点;C、不了解.团委根据调查的数据进行整理,绘制了尚不完整的统计图如图,图1中C区域的圆心角为36°,请根据统计图中的相关的信息,解答下列问题(1)求本次活动共调查了名学生;图1中,B区域的圆心角的度数是;(2)补全条形统计图.(3)若该校七年级有2100名学生,请估算该校不是“了解很多”的学生人数.六、(本题满分12分)21.如图数表是由1开始的连续自然数组成的,观察规律并完成各题的解答:(1)第8行的最后一个数是;(2)第n行的第一个数是,第n行共有个数;(3)数字2021排在第几行?从左往右数,第几个?请简要说明理由.七、(本题满分12分)22.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是我市的电价标准(每月).(1)已知小明家5月份用电252度,缴纳电费158.4元,6月份用电340度,缴纳电费220元,请你根据以上数据,求出表格中的a,b的值.(2)7月份开始用电增多,小明家缴纳电费285.5元,求小明家7月份的用电量.阶梯电量x(单位:度)电费价格一档0<x≤180a元/度二档180<x≤350b元/度三档x>3500.9元/度八、(本题满分14分)23.如图,∠AOB=150°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每秒6°;射线OD从OB开始,绕点O顺时针旋转,旋转的速度为每秒14°,OC和OD同时旋转,设旋转的时间为t 秒(0≤t≤25).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,∠COD=90°;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC、OB 与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请直接写出所有满足题意的t的取值,若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣8的绝对值是()A.﹣8B.8C.±8D.﹣解:∵﹣8<0,∴|﹣8|=8.故选:B.2.下列各组整式中,是同类项的有()A.3m3n2与﹣n3m2B.yx与3xyC.53与a3D.2xy与3yz2解:A、相同字母的指数不同,不是同类项,故此选项不符合题意;B、符合同类项的定义,是同类项,故此选项符合题意;C、所含字母不同,不是同类项,故此选项不符合题意;D、所含字母不同,不是同类项,故此选项不符合题意.故选:B.3.已知x=2是关于x的方程2x﹣a=3的解,则a的值是()A.﹣1B.7C.2D.1解:∵x=2是关于x的方程2x﹣a=3的解,∴2×2﹣a=3,解得a=1.故选:D.4.为了调查某校学生的视力情况,在全校的1000名学生中随机抽取了80名学生,下列说法正确的是()A.此次调查属于全面调查B.1000名学生是总体C.样本容量是80D.被抽取的每一名学生称为个体解:A、此次调查属于抽样调查,故本选项不合题意;B、1000名学生的视力情况是总体,故本选项不合题意;C、样本容量是80,正确;D、被抽取的每一名学生的视力情况称为个体.故本选项不合题意.故选:C.5.已知代数式x﹣2y的值是3,则代数式4y+1﹣2x的值是()A.﹣5B.﹣3C.﹣1D.0解:∵x﹣2y=3,∴4y+1﹣2x=﹣2(x﹣2y)+1=﹣6+1=﹣5.故选:A.6.在所给的:①15°、②65°、③75°、④115°、⑤135°的角中,可以用一副三角板画出来的是()A.②④⑤B.①②④C.①③⑤D.①③④解:①45°﹣30°=15°,可以用一副三角板画出来;②65°不可以用一副三角板画出来;③45°+30°=75°,可以用一副三角板画出来;④115°不可以用一副三角板画出来;⑤90°+45°=135°,可以用一副三角板画出来;综上所述,可以用一副三角板画出来的有:①③⑤.故选:C.7.某种商品每件进价为a元,按进价增加50%出售,现“双十二”打折促销按售价的八折出售,每件还能盈利()A.0.12a元B.0.2a元C.1.2a元D.1.5a元解:依题意可得,a×(1+50%)×0.8﹣a=0.2a(元).故选:B.8.已知线段AB=6cm,在直线AB上取一点C,使BC=2cm,则线段AB的中点M与AC 的中点N的距离为()A.1cm B.3cm C.2cm或3cm D.1cm或3cm 解:①当C在线段AB上时,∵AB=6cm,M是AB的中点,∴AM=AB=×6=3cm,又∵BC=2cm,∴AC=AB﹣BC=6﹣2=4cm,∵N是线段AC的中点,∴AN=AC=×4=2cm,∴MN=AM﹣AN=3﹣2=1cm;②当C在线段AB的延长线上时,∵AB=6cm,M是AB的中点,∴AM=AB=×6=3cm,又∵BC=2cm,∴AC=AB+BC=6+2=8cm,∵N是线段AC的中点,∴AN=AC=×8=4cm,∴MN=AN﹣AM=4﹣3=1cm,综上:MN=1cm.故选:A.9.七年级学生在参加校外实践活动中,有m位师生乘坐n辆客车.若每辆客车乘42人,则还有8人不能上车,若每辆客车乘45人,则最后一辆车空了16个座位.在下列四个方程:①42n﹣8=45n+16;②=;③=;④42n+8=45n﹣16中,其中正确的有()A.①③B.②④C.①④D.③④解:根据总人数列方程,应是:42n+8=45n﹣16,根据客车数列方程,应该为:=;故选:D.10.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…,那么:71+72+73+…+72022的末位数字是()A.0B.6C.7D.9解:∵71=7,72=49,73=343,74=2401,75=16807,76=117649,…,∴71=7,71+72=56,71+72+73=399,71+72+73+74=2800,71+72+73+74+75=19607,…,由上可得,以上式子的和的末位数字依次以7,6,9,0循环出现,∵2022÷4=505…2,∴71+72+73+…+72022的末位数字是6,故选:B.二、填空题(每小题5分,共20分)11.据统计,2020年上半年安徽省实现生产总值(GDP)17551亿元.将17551亿用科学记数法表示为 1.7551×1012.解:17551亿=1755100000000=1.7551×1012.故答案为:1.7551×1012.12.时钟在14点30分时,这时刻钟面上时针与分针夹角的度数为105°.解:根据题意得:360÷12×3.5=105°,则时钟14点30分时,时针和分针的夹角的度数是105°.故答案为:105°.13.有理数a、b、c在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|的值为b+c.解:根据数轴上点的位置得:c<0<a<b,且|a|<|c|,则a﹣b<0,a+c<0,则原式=﹣(a﹣b)+(a+c)=﹣a+b+a+c=b+c.故答案为:b+c.14.已知点P是射线AB上一点,当=2或=时,称点P是射线AB的强弱点,若AB=6,则PA=2或4或12.解:①如图,AB=6,当=时,∴PA=AB=×6=2;②如图,AB=6,当=2且P在线段AB上时,∴PA=AB=×6=4;③如图,AB=6,当=2且P在线段AB的延长线上时,∴PA=2AB=2×6=12;综上:PA=2或4或12.故答案为:2或4或12.三、解答题(本大题共2小题,每小题8分,共16分)15.计算:﹣32+2×(﹣1)3﹣(﹣9)÷(﹣)2.解:﹣32+2×(﹣1)3﹣(﹣9)÷(﹣)2=﹣9+2×(﹣1)+9÷=﹣9+(﹣2)+9×9=﹣9+(﹣2)+81=70.16.解方程:﹣=4.解:去分母,可得:3(4﹣x)﹣2(2x+1)=24,去括号,可得:12﹣3x﹣4x﹣2=24,移项,可得:﹣3x﹣4x=24﹣12+2,合并同类项,可得:﹣7x=14,系数化为1,可得:x=﹣2.四、(本大题共2小题,每题8分,满分16分)17.先化简,再求值:3(x2y+xy)﹣2(x2y﹣xy)﹣4x2y,其中x=﹣1,y=2.解:原式=3x2y+3xy﹣2x2y+2xy﹣4x2y=﹣3x2y+5xy,当x=﹣1,y=2时,原式=﹣3×(﹣1)2×2+5×(﹣1)×2=﹣6﹣10=﹣16.18.作图题:已知∠α,线段m、n,请按下列步骤完成作图.(不需要写作法,保留作图痕迹)(1)作∠MON=∠α.(2)在边OM上截取OA=m,在边ON上截取OB=n.(3)作直线AB.解:(1)如图,∠MON即为所求作.(2)如图,线段OA,OB即为所求作.(3)如图,直线AB即为所求作.五、(本大题共2小题,每题10分,满分20分)19.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子去量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.解:设绳索长x尺,竿长y尺,依题意,得:,解得:.答:绳索长20尺,竿长15尺.20.“精准扶贫”这是新时期党和国家扶贫工作的精髓和亮点,某校团委随机抽取七年级部分学生,对他们是否了解关于“精准扶贫”的情况进行调查,调查结果有三种:A、了解很多;B、了解一点;C、不了解.团委根据调查的数据进行整理,绘制了尚不完整的统计图如图,图1中C区域的圆心角为36°,请根据统计图中的相关的信息,解答下列问题(1)求本次活动共调查了200名学生;图1中,B区域的圆心角的度数是108°;(2)补全条形统计图.(3)若该校七年级有2100名学生,请估算该校不是“了解很多”的学生人数.解:(1)本次活动共调查了:20÷=200名学生,B区域的圆心角度是:360°×=108°,故答案为:200,108°;(2)调查结果为B的学生有:200﹣120﹣20=60(人),补全的条形统计图如右图所示;(3)2100×=840(人),即估算该校不是“了解很多”的学生有840人.六、(本题满分12分)21.如图数表是由1开始的连续自然数组成的,观察规律并完成各题的解答:(1)第8行的最后一个数是64;(2)第n行的第一个数是n2﹣2n+2,第n行共有(2n﹣1)个数;(3)数字2021排在第几行?从左往右数,第几个?请简要说明理由.解:(1)由图中的数据可知,第n的行的最后一个数据是n2,每一行中的数据都是按照从小到大排列的,每行的数字个数依次为1,3,5,…,是一些连续的奇数,故第8行的最后一个数是82=64,故答案为:64;(2)由题意可得,第n行的第一个数是:(n﹣1)2+1=n2﹣2n+1+2=n2﹣2n+2,第n行共有(2n﹣1)个数,故答案为:n2﹣2n+2,(2n﹣1);(3)2021是第45行从左往右数第85个数.理由:∵2021<2025=452,∴2021排在第45行,第45行共有2×45﹣1=89个数,∴2025是第45行从左往右数第89个数,∴2021是第45行从左往右数第85个数.七、(本题满分12分)22.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是我市的电价标准(每月).(1)已知小明家5月份用电252度,缴纳电费158.4元,6月份用电340度,缴纳电费220元,请你根据以上数据,求出表格中的a,b的值.(2)7月份开始用电增多,小明家缴纳电费285.5元,求小明家7月份的用电量.阶梯电量x(单位:度)电费价格一档0<x≤180a元/度二档180<x≤350b元/度三档x>3500.9元/度解:(1)依题意得:,解得:.答:a的值为0.6,b的值为0.7.(2)若一个月用电量为350度,电费为180×0.6+(350﹣180)×0.7=227(元),∵285.5>227,∴小明家7月份用电量超过350度.设小明家7月份用电量为x度,依题意得:180×0.6+(350﹣180)×0.7+(x﹣350)×0.9=285.5,解得:x=415.答:小明家7月份的用电量为415度.八、(本题满分14分)23.如图,∠AOB=150°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每秒6°;射线OD从OB开始,绕点O顺时针旋转,旋转的速度为每秒14°,OC和OD同时旋转,设旋转的时间为t 秒(0≤t≤25).(1)当t为何值时,射线OC与OD重合;(2)当t为何值时,∠COD=90°;(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC、OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请直接写出所有满足题意的t的取值,若不存在,请说明理由.解:(1)由题意可得,14t+6t=150,解得t=7.5,即t=7.5秒时,射线OC与OD重合;(2)由题意得,14t+6t=150°﹣90°或14t+6t=150°+90°或150+270=20t,解得t=3或t=12或t=21;即当t=3秒或t=12秒或t=21秒时,射线OC⊥OD;(3)存在,由题意得,150﹣6t=2×14t或2(150﹣6t)=14t;解得:t=或t=.即当以OD为角平分线时,t的值为秒;当以OC为角平分线时,t的值为秒.。
2020-2021学年高三数学(理科)第一次高考模拟考试试题及答案解析
2020-2021学年⾼三数学(理科)第⼀次⾼考模拟考试试题及答案解析@学⽆⽌境!@绝密★启⽤前试卷类型:A 最新第⼀次⾼考模拟考试数学试卷(理科)本试卷分选择题和⾮选择题两部分,共4页,满分150分,考试时间120分钟。
注意事项:1.答卷前,考⽣要务必填写答题卷上的有关项⽬。
2.选择题每⼩题选出答案后,⽤2B 铅笔把答案填在答题卡相应的位置上。
3.⾮选择题必须⽤⿊⾊字迹的钢笔或签字笔作答,答案必须写在答题卷各题⽬指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使⽤铅笔和涂改液. 不按以上要求作答的答案⽆效。
4.考⽣必须保持答题卷的整洁,考试结束后,将答题卷交回。
第Ⅰ卷(选择题,共60分)⼀.选择题:本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的. 1.复数i215-(i为虚数单位)的虚部是()A. 2iB. 2i -C. 2-D. 22. 下列函数在其定义域上既是奇函数⼜是减函数的是()A .()2x f x =B .()sin f x x x =C .1()f x x =D .()||f x x x =- 3.已知()=-παcos 12,πα-<<,则tan α=()A.B.C. D.4.设双曲线2214y x -=上的点P到点的距离为6,则P点到(0,的距离是()@学⽆⽌境!@A .2或10 B.10 C.2 D.4或85. 下列有关命题说法正确的是()A. 命题p :“sin +cos =2x x x ?∈R ,”,则?p 是真命题 B .21560x x x =---=“”是“”的必要不充分条件 C .命题2,10x x x ?∈++的否定是:“210x x x ?∈++D .“1>a ”是“()log (01)(0)a f x x a a =>≠+∞,在,上为增函数”的充要条件6. 将函数-=32sin )(πx x f 的图像向右平移3π个单位得到函数)(x g 的图像,则)(x g 的⼀条对称轴⽅程可以为() A. 43π=x B. 76x π= C. 127π=x D. 12π=x 7.2015年⾼中⽣技能⼤赛中三所学校分别有3名、2名、1名学⽣获奖,这6名学⽣要排成⼀排合影,则同校学⽣排在⼀起的概率是()A .130 B .115 C .110 D .158.执⾏如图8的程序框图,若输出S 的值是12,则a 的值可以为()A .2014B .2015C .2016D .20179.若某⼏何体的三视图(单位:cm )如图所⽰,则该⼏何体的体积()A.310cmB.320cmC.330cmD.340cm10.若nx x ??? ?-321的展开式中存在常数项,则n 可以为() A .8 9 C .10 D. 11 11.=∠=?==?C CA A B CA BC ABC 则中在,60,6,8, ()A .?60B .C .?150D .?120 12. 形如)0,0(||>>-=b c cx by 的函数因其图像类似于汉字中的“囧”字,故我们把其⽣动地称为“囧函数”.若函数()()2log 1a f x x x =++)1,0(≠>a a 有最⼩值,则当,c b 的值分别为⽅程222220x y x y +--+=中的,x y 时的“囧函数”与函数||log x y a =的图像交点个数为().A .1B .2C .4D .6第Ⅱ卷(⾮选择题,共90分)⼆.填空题:本⼤题共4⼩题,每⼩题 5分,共20分.13.⼀个长⽅体⾼为5,底⾯长⽅形对⾓线长为12,则它外接球的表⾯积为@学⽆⽌境!@14.如图,探照灯反射镜的纵截⾯是抛物线的⼀部分,光源在抛物线的焦点F 处,灯⼝直径AB 为60cm ,灯深(顶点O 到反射镜距离)40cm ,则光源F 到反射镜顶点O 的距离为15.已知点()y x P ,的坐标满⾜条件>-+≤≤02221y x y x ,那么()221y x ++的取值范围为 16.CD CB AD AC AD AB ,AB D ABC 3,,3,===?且的⼀个三等分点为中在,则B cos =三.解答题:本⼤题共5⼩题,每题12分共60分.解答应写出⽂字说明,证明过程或演算步骤.17.(本⼩题满分12分)已知{}n b 为单调递增的等差数列,168,266583==+b b b b ,设数列{}n a 满⾜n b n n a a a a 2222233221=++++(1)求数列{}n b 的通项; (2)求数列{}n a 的前n 项和n S 。
2020-2021学年安徽省九年级(上)月考数学试卷(二)(附答案详解)
2020-2021学年安徽省九年级(上)月考数学试卷(二)一、选择题(本大题共10小题,共40.0分)1.已知2a=3b,则a−bb的值为()A. 12B. −12C. 13D. −132.若反比例函数y=2−kx的图象分布在第二、四象限,则k的取值范围是()A. k<−2B. k<2C. k>−2D. k>23.如图,点D在△ABC的边AB上,DE//BC,DE交AC于点E,EF//AB交BC于点F,下列比例式不成立的是()A. ADDB =BFFCB. ADAB =BFBCC. DEBC =EFABD. DBAB =CFBC4.把二次函数y=−2x2+4x−1配方成顶点形式y=−2(x+ℎ)2+k,则h,k的值分别为()A. ℎ=−1,k=1B. ℎ=−1,k=−2C. ℎ=1,k=1D. ℎ=1,k=−35.如图,CD是Rt△ABC斜边AB上的中线,过点C作CE⊥CD交AB的延长线于点E,添加下列条件仍不能判断△CEB与△CAD相似的是()A. ∠CBA=2∠AB. 点B是DE的中点C. CE⋅CD=CA⋅CBD. CECA =BEAD6.肚脐眼是人上下身的分界点,已知某人的肚脐眼恰好是他的身高的黄金分割点,且他的上身比下身长,若该人的身高约为1.8米,则他的上身长度约为()(精确到0.1米)A. 0.9米B. 1.0米C. 1.1米D. 1.2米7.如图,在矩形ABCD中,AB=24,AD=10,将矩形ABCD沿某直线折叠,使点A与点C重合,折痕与AB交于点M,与CD交于点N,则线段MN的长是()A. 5B. 12C. 6512D. 6568.已知抛物线y=−x2−4x+5,下列说法正确的是()A. 抛物线与y轴的交点位于y轴的负半轴上B. 当x>−2时,函数值y随x的增大而减小C. 若2≤x≤5,则函数一定有最大值是9D. 抛物线与x轴的交点坐标是(−1,0)和(5,0)9.如图,△ABC中,CA=CB=5cm,AB=8cm,直线l经过点A且垂直于AB,现将直线l以1cm/s的速度向右匀速移动,直至经过点B时停止移动,直线l与边AB交于点M,与边AC(或CB)交于点N.若直线l移动的时间是x(s)、△AMN的面积为y(cm2),则y与x之间函数关系的图象是()A. B.C. D.10.如图,△ABC中,∠ACB=90°,CA=CB=3√2,点D、E分别在边AB,BC上,且∠CDE=45°,下列结论中:①△CAD∽△DBE;②若点D是AB的中点,则点E也是BC的中点;③若点D是AB的三等分点,则BE的长是4√2,其中正确的结3论有()A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共4小题,共20.0分)11.已知a=3,b=6,则a,b的比例中项是______.12.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则a+b+c______0(填“>”或“=”或“<”).13.如图,点A(2,4)在第一象限,点B(b,3)在第二象限,且OA⊥OB,反比例函数y=(k≠0)的图象经过点B,则k的值为______.−kx14.如图,在矩形ABCD中,点E是边CD上一点,连接BE,过点C作CG⊥BE于G,CG的延长线交AD于F,连接DG并延长交BC于H,且点H恰好是BC的中点.(1)若∠CBE=35°,则∠CDH=______°.(2)若CE=6,DE=2,则DF的长是______.三、解答题(本大题共9小题,共90.0分)15.已知a:b:c=2:3:4,求a−3b−c的值.b16.如图,抛物线y=2x2+bx−2过点A(−1,m)和B(5,m).(1)求b和m的值;(2)若抛物线与y轴交于点C,求△ABC的面积.17.如图,小明为了测量大树AB的高度,在离B点21米的N处放了一个平面镜,小明沿BN方向后退1.4米到D点,此时从镜子中恰好看到树顶的A点,已知小明的眼睛(点C)到地面的高度CD是1.6米,求大树AB的高度.18.如图,在10×10网格中,点O是格点,△ABC是格点三角形(顶点在网格线交点上),且点A1是点A以点O为位似中心的对应点.(1)画出△ABC以点O为位似中心的位似图形△A1B1C1;(2)△A1B1C1与△ABC的位似比是______.19.已知△ABC的面积为S,点D,E分别在边AB,AC上,且DE//BC.【填空】(1)如图1,若AD:DB=1:1,则四边形DECB的面积a1=______(用含S的式子表示,下同);(2)如图2,若AD:DB=1:2,则四边形DECB的面积a2=______;(3)如图3,若AD:DB=1:3,则四边形DECB的面积a3=______;以此类推,…【猜想】根据上述规律猜想,若AD :DB =1:n ,则四边形DECB 的面积a n =______;【应用】计算a 1⋅a 2⋅a 3…a 10.20. 喷洒酒精能有效杀灭“新型冠状肺炎”病毒.根据实验知道喷洒酒精在教室内空气中的浓度y(单位:mg/m 3)与时间x(单位:ℎ)的函数表达式为y ={2x(0<x <m)−x 2+6x −4(x ≥m).其大致图象如图所示.请根据以上信息解答下列问题: (1)试确定点A 的坐标;(2)根据经验,当教室空气中的药物浓度不低于1mg/m 3时,杀灭“新型冠状肺炎”病毒的效果最佳,请通过计算说明单次喷洒酒精杀灭“新型冠状肺炎”病毒的效果处于最佳状态的时间为多少小时?(mk≠0)的图象相交于点A(1,6)和点21.已知一次函数y=kx+b与反比例函数y=mxB(n,−2).(1)试确定一次函数与反比例函数的表达式;(2)若点P在x轴上,且△PAB的面积为12,求点P的坐标;(3)结合图象直接写出不等式kx+b>m的解集.x22.如图,在平面直角坐标系xOy中,直线l:y=x−2与x轴、y轴分别交于点A和点B,抛物线y=x2+bx+c经过点B,且与直线l的另一个交点为C(6,n)(1)求n的值和抛物线的解析式;(2)已知点P是抛物线上位于点B、C之间的一动点(不与点B,C重合),设点P的横坐标为a.当a为何值时,△APC的面积最大,并求出其最大值;(3)在y轴上是否存在点M,使△BMC与△BAO相似?若存在,直接写出点M的坐标(不用说理);若不存在,请说明理由.23.如图,四边形ABCD和四边形AEFG都是正方形,C,E,F三点在一条直线上,连接FA并延长交边CB的延长线于点H.(1)求证:△HCA∽△HFC;(2)求CF的值;BE(3)若HC=6,HB=2,求正方形AEFG的边长.答案和解析1.【答案】A【解析】解:∵2a=3b,∴ab =32,∴a−bb =ab−1=32−1=12;故选:A.根据已知条件得出ab =32,再把要求的式子化成ab−1,再代值计算即可得出答案.此题考查了比例的性质,熟练掌握比例的性质是解题的关键.2.【答案】D【解析】解:∵反比例函数y=2−kx的图象分布在第二、四象限,∴2−k<0,解得k>2,故选:D.根据反比例函数的图象和性质,由2−k<0即可解得答案.本题考查了反比例函数的图象和性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.3.【答案】C【解析】解:∵DE//BC,∴ADBD =AECE,∵EF//AB,∴AECE =BFCF,∴ADBD =BFCF,故A正确,不符合题意;∵DE//BC,∴ADAB =AEAC,∵EF//AB,∴AEAC =BFBC,∴ADAB =BFBC,故B正确,不符合题意;∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,∵EF//AB,∴△CEF∽△CAB,∴EFAB =CEAC,∴C错误,符合题意;∵DE//BC,∴DBAB =CEAC,∵EF//AB,∴CEAC =CFBC,∴DBAB =CFBC,故D正确,不符合题意;故选:C.利用平行线分线段成比例和相似三角形的判定与性质,逐一进行判断即可.本题主要考查了平行线分线段成比例,以及相似三角形的判定与性质,熟记平行线分线段成比例是解题的关键.4.【答案】A【解析】解:∵二次函数y=−2x2+4x−1=−2(x−1)2+1,∴ℎ=−1,k=1,故选:A.将题目中的函数解析式化为顶点式,即可得到h、k的值,本题得以解决.本题考查二次函数的性质、二次函数的三种形式,解答本题的关键是明确题意,利用二次函数的性质解答.5.【答案】D【解析】解:∵CE⊥CD,∴∠EDC=90°,∵∠BCA=90°,∴∠BCE=∠DCA=90°−∠BCD,∵CD是Rt△ABC斜边AB上的中线,∴DC=DB=DA,∴∠DAC=∠A,∴∠BCE=∠DCA=∠A,∵∠CBA=2∠A,∠CBA+∠A=90°,∴∠A=∠BCE=∠DCA=30°,∠CBA=60°,∴∠E=∠CBA−∠BCE=30°,∴∠BCE=∠DCA=∠E=∠A,∴△CEB∽△CAD,∴A不符合题意,∵点B是DE的中点,∴BE=BC,∴∠BCE=∠E,∴∠BCE=∠E=∠DCA=∠A,∴△CEB∽△CAD,∴B不符合题意,∵CE⋅CD=CA⋅CB,∴CECA =CBCD,∵∠BCE=∠DCA,∴△CEB∽△CAD,∴C不符合题意.由CECA =BEAD,由于∠E和∠A不能判断相等,故不能判断△CEB与△CAD相似,∴D符合题意,故选:D.根据相似三角形的判定方法一一判断即可.本题考查相似三角形的判定,直角三角形斜边中线的性质,直角三角形30度角的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握相似三角形的判定方法,属于中考常考题型.6.【答案】C【解析】解:∵某人的肚脐眼恰好是他的身高的黄金分割点,且他的上身比下身长,该人的身高约为1.8米,∴他的上身长度约为√5−12×1.8≈0.618×1.8≈1.1(米),故选:C.直接根据黄金分割的定义求解即可.本题主要考查了黄金分割以及近似数.关键是明确黄金分割所涉及的线段的比值.7.【答案】D【解析】解:∵矩形ABCD中,AB=24,AD=BC=10,∠B=90°,∴AC=√AB2+BC2=√242+102=26,由折叠可得,MN垂直平分AC,∴AO=CO=13,又∵CD//AB,∴∠NCO=∠MAO,∠CNO=∠AMO,∴△CON≌△AOM(AAS),∴MO=NO,∵∠AOM=∠B=90°,∠MAO=∠BAC,∴△ABC∽△AOM,∴OMBC =AOAB,即OM10=1324,解得OM=6512,∴MN=2OM=656.故选:D.先判定△CON≌△AOM,即可得到MO=NO,再根据△ABC∽△AOM,即可得到OM=6512,进而得出MN=2OM=656.本题主要考查了折叠问题、相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.8.【答案】B【解析】解:A、由于c=5>0,所以抛物线与y轴的交点位于y轴的正半轴上,故本选项不符合题意.B、由于y=−x2−4x+5=−(x+2)2+9的开口方向向下,对称轴是直线x=−2,所以当x>−2时,函数值y随x的增大而减小,故本选项符合题意.C、由于y=−x2−4x+5=−(x+2)2+9的顶点坐标是(−2,9),且开口方向向下,所以当x=−2时,函数一定有最大值是9,故本选项不符合题意.D、由于y=−x2−4x+5=−(x+5)(x−1),所以抛物线与x轴的交点坐标是(1,0)和(−5,0),故本选项不符合题意.故选:B.根据二次函数解析式化为顶点式,判断抛物线的开口方向,计算出对称轴顶点坐标以及增减性判断得出答案即可.此题考查二次函数的性质,抛物线与x轴的交点,正确判定开口方向,求得对称轴与顶点坐标是解决问题的关键.9.【答案】C【解析】解:过点C作CD⊥AB于D,在等腰△ABC中,AC=5,AD=12AB=4,则CD=3,在Rt△ACD中,tanA=CDAD =34=tanB,(1)当0≤x≤4,如图1,∵tan∠A=MNAM =34=MNx,即MN=34x,y=12×AM⋅MN=12x×34x=38x2,该函数为开口向上的抛物线,且对称轴为y轴,位于y轴的右侧抛物线的一部分;(2)当4<x≤8时,同理:y=12x×34(8−x)=−38x2+3x,该函数为开口向下的抛物线的一部分,对称轴为x=4,故选:C.用面积公式,分段求出△AMN的面积即可求解.本题考查的是动点图象问题,涉及到解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.10.【答案】D【解析】解:∵∠ACB=90°,CA=CB=3√2,∴∠A=∠B=45°.∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,∠CDE=45°,∴∠ACD=∠BDE,∴△CAD∽△DBE,故①正确;∵CA=CB=3√2,∴AB=√CA2+CB2=6,当点D是AB的中点时,BD=AD=12AB=3,由①结论可得:CADB =ADBE,即3√23=3BE,解得:BE=3√22=12BC,故点E为BC的中点,故②正确;若点D是AB的三等分点,则AD=2或4,由①中结论可得:CADB =ADBE,∴3√24=2BE或3√22=4BE,解得:BE=4√23.故③正确.综上,正确的共有3个.故选:D.根据外角定理结合已知条件可得∠CDB=∠A+∠ACD=∠CDE+∠BDE,从而可得∠ACD=∠BDE,又∠A=∠B=45°,故可判定△CAD∽△DBE,则①正确;根据勾股定理可得AB=6,当D为AB中点时,由由①结论可得:CADB =ADBE,可得BE=3√22=12BC,则可判断②正确;若点D是AB的三等分点,则AD=2或4,由①结论可得:CADB =ADBE,进而可得到BE=4√23.故③正确.本题考查了相似三角形的判定与性质、等腰三角形的性质,推出△CAD∽△DBE是解本题的关键.11.【答案】±3√2【解析】解:设c是a,b的比例中项,则c2=ab,∵a=3,b=6,∴c2=18,解得c=±3√2.故答案为:±3√2.首先设c是a,b的比例中项,根据比例中项的定义,即可得c2=ab,又由a=3,b=6,即可求得a,b的比例中项的值.此题考查了比例中项的定义.此题比较简单,解题的关键是熟记比例中项的定义.12.【答案】<【解析】解:∵抛物线对称轴为直线x=−1,抛物线与x轴的一个交点在−2、−3之间,∴另一个交点在0、1之间,∴当x=1时,y<0,则a+b+c<0,故答案为<.根据二次函数的对称性求得抛物线与x轴的另一个交点在0、1之间,即可判断当x=1时,y<0,即a+b+c<0.本题主要考查二次函数图象与系数之间的关系,熟练掌握二次函数的性质是解题的关键.13.【答案】18【解析】解:如图,作BD⊥x轴,AC⊥x轴.∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴ODAC =BDOC,∵A(2,4),B(b,3),∴OC=2,AC=4,OD=−b,BD=3,∴−b4=32,∴b=−6,∴B(−6,3),∵设反比例函数y=−kx(k≠0)的图象经过点B,∴−k=−6×3=−18,∴k=18,故答案为18.作AC⊥x轴,BD⊥x轴.易得△ACO∽△ODB,根据比例式求出OD,可得出点B的坐标,代入y=−kx(k≠0)即可求出k的值.本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.14.【答案】20 4【解析】解:(1)∵CG⊥BE,H是BC的中点,∴HB=HC=HG=12BC,∴∠CBE=∠HGB,∵∠CBE=35°,∴∠HGB=35°,∴∠CHD=∠CBE+∠HGB=70°,在矩形ABCD中,∠BCD=90°,∴∠CDH=90°−∠CHD=20°,故答案为:20;(2)由(1)得∠HBG=∠HGB,∵∠HGB=∠DGE,∴∠HBG=∠DGE,∵∠BCE=90°,∴∠DCG+∠BCG=90°,∵CG⊥BE于G,∴∠HBG+∠BCG=90°,∴∠DCG=∠HBG,∴∠DGE=∠DCG,∵∠D=∠D,∴△DGE∽△DCG,∴DGDC =DEDG,∴DG2=DE⋅DC,∵HC=HG,∴∠HCG=∠HGC,∵AD//BC,∴∠HCG=∠GFD,∵∠HGC=∠DGF,∴∠GFD=∠DGF,∴DG=DF,∴DF2=DE⋅DC=2×(2+6)=2×8=16,∴DF=4,故答案为:4.(1)根据直角三角形斜边上的中线性质得出∠CBE=∠HGB=35°,再根据三角形外角性质得出∠CHD=70°,最后根据直角三角形两锐角互余即可得解;(2)由(1)得∠HBG=∠HGB,再根据直角三角形的两锐角互余可求得∠DGE=∠DCG,即可判定△DGE∽△DCG,可得出DG2=DE⋅DC,再根据矩形的性质及对顶角相等可求得DG=DF,即可得解.此题考查了矩形的性质,根据矩形的性质得出∠CBE=∠HGB及DG=DF是解题的关键.15.【答案】解:由a:b:c=2:3:4可设a=2k,b=3k,c=4k,则原式=2k−9k−4k3k =−113.【解析】根据比例设a=2k,b=3k,c=4k,然后代入比例式进行计算即可得解.本题考查了比例的性质,利用“设k法”表示出a、b、c求解更简便.16.【答案】解:(1)∵点A(−1,m)和B(5,m)是抛物线y=2x2+bx−2上的两点,∴−b2×2=−1+52,解得,b=−8,∴抛物线解析式为y=2x2−8x−2,把A(−1,m)代入得,m=2+8−2=8;(2)由y=2x2−8x−2可知,抛物线与y轴交点C的坐标为(0,−2),∴OC=2,∵A(−1,8)和B(5,8),∴AB=6,∴S△ABC=12×6×(2+8)=30.【解析】(1)根据点A(−1,m)和B(5,m)是抛物线y=2x2+bx−2上的两点,可以得到b 的值,即可得到函数解析式,把A(−1,m)代入解析式即可求得m的值;(2)求得C的坐标,然后根据三角形面积公式即可求得.本题考查了二次函数图象上点的坐标特征、三角形的面积,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】解:∵AB⊥DB,DC⊥DB,∴∠CDN=∠ABN=90°,∵∠CND=∠ANB,∴△CDN∽△ABN.∴CDDN =ABBN,即1.61.4=AB21,∴AB=1.6×21÷1.4=24(m),答:大树AB的高度为24m.【解析】由图不难得出,△CDN∽△ABN,再利用相似三角形对应边成比例,进而可求解线段的长.此题主要考查了相似三角形的应用,根据已知得出△CDN∽△ABN是解题关键.18.【答案】3【解析】解:(1)如图所示,△A1B1C1即为所求.(2)△A1B1C1与△ABC的位似比=OA1OA=3,故答案为:3.(1)连接OB、OC,分别延长OB、OC到点B1、C1,使OB1OB =OC1OC=OA1OA,再首尾连接即可;(2)由位似比=OA1OA可得答案.本题主要考查作图−位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.19.【答案】34S89S1516S n(n+2)(n+1)2【解析】解:(1)∵AD:DB=1:1,∴ADAB =12,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =14,∴S△ADES =14,∴S△ADE=14S,∴a1=S−S△ADE=34S,故答案为:34S;(2)∵AD:DB=1:2,∴ADAB =13,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =19,∴S△ADES =19,∴S△ADE=19S,∴a2=S−S△ADE=89S,故答案为:89S;(3)∵AD:DB=1:3,∴ADAB =14,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =116,∴S△ADES =116,∴S△ADE=116S,∴a3=S−S△ADE=1516S,故答案为:1516S;【猜想】∵AD:DB=1:n,∴ADAB =1n+1,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =1(n+1)2,∴S△ADES =1(n+1)2,∴S△ADE=1(n+1)2S,∴a n=S−S△ADE=[1−1(n+1)2]S=(n+1)2−1(n+1)2S=n(n+2)(n+1)2S,故答案为:n(n+2)(n+1)2S;【应用】由【猜想】知,a n=n(n+2)(n+1)2S,∴a1⋅a2⋅a3…a10=1×322⋅2×432⋅3×542⋅4×652⋅5×762…⋅10×12112=12×12112=6121.(1)先算出ADAB =12,再判断出△ADE∽△ABC,得出S△ADES△ABC=14,进而得出S△ADE=14S,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论;【猜想】同(1)的方法,即可得出结论;【应用】先得出a1⋅a2⋅a3…a10=1×322⋅2×432⋅3×542⋅4×652⋅5×762…⋅10×12112,即可得出结论.此题是四边形综合题,主要考查了相似三角形的判定和性质,得出a n=n(n+2)(n+1)2S是解本题的关键.20.【答案】解:(1)由题意可得A为函数y=2x与y=−x2+6x−4的交点,所以2x=−x2+6x−4,解得x1=x2=2,代入y=2x得y=4,可得A(2,4).(2)当教室空气中的药物浓度不低于1mg/m3时,杀灭“新型冠状肺炎”病毒的效果最佳,由(1)得m=2,当0<x<2时,令y=1,2x=1,x=12;当x≥2时,令y=1,−x2+6x−4=1整理得x2−6x+5=0解得x1=1(不合题意,舍去),x2=5,所以x=5,所以单次喷洒酒精杀灭“新型冠状肺炎”病毒的效果处于最佳状态的时间为(5−12)= 4.5小时.【解析】(1)点A是一次函数与二次函数的交点,令函数值相等即可求解;(2)教室空气中的药物浓度不低于1mg/m3,分别令一次函数与二次函数等于1,求得相应的X值,再根据取值范围确定解,进而算出处于最佳状态的时间.本题考查了二次函数的应用:能把实际的问题转化为数学问题,建立函数模型.注意在自变量和函数值的取值上的实际意义.也考查了一次函数.21.【答案】解:(1)把A(1,6)代入y =mx 得m =1×6=6;∴反比例函数解析式为y =6x ,把B(n,−2)代入y =6x 得−2=6n ,解得n =−3, ∴B(−3,−2),把A(1,6),B(−3,−2)分别代入y =kx +b 得{k +b =6−3k +b =−2, 解得{k =2b =4,∴一次函数解析式为y =2x +4;(2)y =2x +4中,令y =0,则2x +4=0, 解得x =−2,∴一次函数y =2x +4的图象与x 轴的交点C 的坐标为(−2,0). ∵S △PAB =12,∴12PC ×6+12PC ×2=12. ∴PC =3,∴点P 的坐标为(−5,0)、(1,0).(3)由图象可知不等式kx +b >mx 的解集为:−3<x <0或x >1.【解析】(1)把A 点坐标代入y =mx 得m =6,则反比例函数解析式为y =6x ,再利用反比例函数解析式确定B 点坐标;进而利用待定系数法求出一次函数解析式;(2)首先求得AB 与x 轴的交点,设交点是C ,然后根据S △ABP =S △ACP +S △BCP 即可列方程求得P 的坐标;(3)结合函数图象,写出反比例函数图象在一次函数图象上方所对应的自变量的范围即可.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.22.【答案】解:(1)对于y =x −2,令x =0,则y =−2,令y =x −2=0,解得x =2,当x =6时,y =x −2=4=n ,故点A 、B 、C 的坐标分别为(2,0)、(0,−2)、(6,4);将点B 、C 的坐标代入抛物线的表达式得{c =−24=36+6b +c ,解得{b =−5c =−2,故抛物线的表达式为y =x 2−5x −2;(2)如图,过点P 作y 轴的平行线交AB 于点H ,设点P 的坐标为(a,a 2−5a −2),则点H(a,a −2),则△APC 的面积=S △PHA +S △PHC =12×PH ×(x C −x A )=12×(a −2−a 2+5a +2)×(6−2)=−2a 2+12a ,∵−2<0,故△APC 的面积存在最大值,当a =3时,△APC 的面积的最大值为18;(3)存在,理由:由点A 、B 的坐标知,△ABO 为等腰直角三角形,当△BMC 与△BAO 相似时,则△BMC 为等腰直角三角形, ①当∠BM′C 为直角时,则点M′的纵坐标与点C 的纵坐标相同,故点M′(0,4);②当∠BCM为直角时,则点M′是BM的中点,故点M(0,10);故点M的坐标为(0,4)或(0,10).【解析】(1)用待定系数法即可求解;(2)由△APC的面积=S△PHA+S△PHC,即可求解;(3)分∠BM′C为直角、∠BCM为直角两种情况,利用数形几何即可求解.本题是二次函数综合题,主要考查了一次函数的性质、等腰直角三角形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.23.【答案】(1)证明:∵四边形ABCD和四边形AEFG都是正方形,∴∠BCA=∠AFE=45°,即∠HCA=∠HFC=45°,又∠CHA=∠FHC,∴△HCA∽△HFC;(2)解:∵四边形ABCD和四边形AEFG都是正方形,∴∠ABC=90°,由勾股定理可得AC=√2AB,同理可得:AF=√2AE,又∠FAE=∠BAC,∴∠FAE+∠EAC=∠BAC+∠EAC,即∠FAC=∠BAE,∴AFAE =ACAB=√2,∴△FAC∽△EAB,∴CFBE =ACAB=√2.(3)解:∵HC=6,HB=2,∴BC=6−2=4.由勾股定理得:AH=√AB2+HB2=2√5,由(1)得△HCA∽△HFC,∴HCHF =HAHC,即6HF =2√56,解得:HF=18√55,∴AF=HF−AH=18√55−2√5=8√55.设正方形AEFG的边长为x,在直角三角形AEF中,由勾股定理有:2x2=(8√55)2,解得:x=4√105.即正方形AEFG的边长为4√105.【解析】(1)由四边形ABCD和四边形AEFG都是正方形,所以∠BCA=∠AFE=45°,即∠HCA=∠HFC=45°,又∠CHA=∠FHC,所以△HCA∽△HFC;(2)由四边形ABCD和四边形AEFG都是正方形,所以AC=√2AB,AF=√2AE,可证明∠FAC=∠BAE,结合AFAE =ACAB=√2,可判定△FAC∽△EAB,所以CFBE=ACAB=√2;(3)因为BC=6−2=4,由勾股定理可得AH=2√5,由(1)得△HCA∽△HFC,所以HCHF=HA HC ,可得HF=18√55,所以AF=HF−AH=8√55.设正方形AEFG的边长为x,在直角三角形AEF中,由勾股定理得方程2x2=(8√55)2,解出x即可得答案.本题考查了正方形的性质,相似三角形的判定与性质,勾股定理,关键是要学会综合运用这些知识.。
2021-2022学年安徽省六校教育研究会高三(上)第一次素质测试数学试卷(理科)(解析版)
2021-2022学年安徽省六校教育研究会高三(上)第一次素质测试数学试卷(理科)一、选择题(共12小题,每小题5分,共60分).1.设集合A={x∈N|x2﹣8x+12<0},B={x|log2(x﹣1)<2},则A∩B=()A.{x|3≤x<5}B.{x|2<x<5}C.{3,4}D.{3,4,5}2.复数,则|z|=()A.B.4C.D.3.一个至少有3项的数列{a n}中,前n项和S n=n(a1+a n)是数列{a n}为等差数列的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.下列说法正确的是()A.经过三点确定一个平面B.各个面都是三角形的多面体一定是三棱锥C.各侧面都是正方形的棱柱一定是正棱柱D.一个三棱锥四个面可以都为直角三角形5.二项式(x+1)n(n∈N*)的展开式中x3的系数为20,则n=()A.7B.6C.5D.46.将点A(﹣,)绕原点逆时针旋转得到点B,则点B的横坐标为()A.B.−C.D.7.已知抛物线y2=2px(p>0),A和B分别为抛物线上的两个动点,若∠AOB=(O 为坐标原点),弦AB恒过定点(4,0),则抛物线方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=16x8.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的,如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自白色部分的概率为()A.B.C.D.9.把1、2、3、4、5、6、7这七个数随机地排成一列组成一个数列,要求该数列恰好先减后增,则这样的数列共有()A.20个B.62个C.63个D.64个10.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,…,9填入3×3的方格内,使三行、三列、对角线的三个数之和都等于15.如图所示.一般地,将连续的正整数1,2,3,…,n2填入n×n个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形叫做n阶幻方.记n阶幻方的对角线上的数的和为N n,如图三阶幻方记为N3=15,那么N11的值为()A.670B.671C.672D.67511.已知双曲线的左、右焦点为F1、F2,过F2的直线交双曲线于M,N两点(M在第一象限),若ΔMF1F2与ΔNF1F2的内切圆半径之比为3:2,则直线MN的斜率为()A.B.2C.D.212.设,,,则()A.c<a<b B.b<c<a C.a<c<b D.c<b<a二、填空题(本大题共4小题,每题5分,共20分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年安徽省滁州市高三(上)期末数学试卷(理科)(一模)一、选择题(共12小题).1.已知集合A={x|x>x2﹣6},B={x|2x<4},则A∩B=()A.(﹣3,)B.(﹣2,)C.(﹣3,2)D.(﹣2,2)2.已知复数是纯虚数(i是虚数单位),则实数a等于()A.﹣2B.2C.D.﹣13.执行如图所示的程序框图,则输出S的结果为()A.16B.25C.36D.494.为了解学生参加“阳光体育”活动的情况,某学校随机统计了学生的“阳光体育”活动时间(单位:分钟),已知所得样本数据都在区间[10,110]内,样本频率分布直方图如图所示,则该样本数据的中位数的估计值为()A.60B.65C.66.25D.72.255.设m,n是不同的直线,α,β是不同的平面,则()A.若m∥α,n⊂α,则m∥nB.若α∩β=m,n⊂β,n⊥m,则n⊥αC.若m∥α,n∥β,m∥n,则α∥βD.若m⊥α,n⊥β,n⊥m,则α⊥β6.在“学宪法、讲宪法”活动中,将甲、乙、丙、丁四位法律老师分配到A、B、C、D四个班级进行宣讲,每个班级分配一位老师.若甲不分配到A班,丁不分配到D班,则分配方案的种数为()A.12B.14C.16D.247.已知函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))的最小正周期为,若将f (x)的图象向右平移个单位长度后,所得图象对应的函数为偶函数,则φ=()A.B.C.D.8.已知a=(),b=(),c=log93,则()A.a<b<c B.c<b<a C.b<c<a D.b<a<c9.已知点M为抛物线x2=8y准线上一点,点F为焦点,O为坐标原点,A在抛物线上,且|AF|=10,则|MA|+|MO|的最小值为()A.16B.8C.4D.810.已知函数f(x)=,则方程f(f(x))+3=0的解的个数为()A.3B.4C.5D.611.在等差数列{a n}中,<﹣1,且它的前n项和S n有最小值,则当S n<0时,n的最大值为()A.7B.8C.13D.1412.已知函数f(x)=e﹣x﹣e x﹣2+x,则不等式f(2020+x)+f(2021﹣2x)≤1的解集是()A.(﹣∞,4039]B.[4039,+∞)C.(﹣∞,4042]D.[4042,+∞)二、填空题(共4小题).13.已知向量=(1,﹣3),=(4,3),则||=.14.在平面直角坐标系xOy中,点P(x0,y0)是单位圆O上第一象限内的点,∠xOP=α,若cos()=﹣,则x0的值为.15.已知双曲线=1的左、右焦点分别为F1,F2,过F2的直线与双曲线右支交于A,B两点,且∠F1AB=,则△ABF1的面积为.16.已知正方形ABCD的边长为4,E是BC的中点,沿DE把△DCE折起,使点C到达点F的位置,且BE⊥FE,则三棱锥F﹣ABE的外接球的表面积为.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.已知△ABC的内角A,B,C的对边分别是a,b,c,满足2sin2B+sin2C=2sin2A.(1)若B=,c=2,求△ABC的面积;(2)求的值.18.智慧课堂是指一种打破传统教育课堂模式,以信息化科学技术为媒介实现师生之间、生生之间的多维度互动,能有效提升教师教学效果、学生学习成果的新型教学模式.为了进一步推动智慧课堂的普及和应用,A市现对全市中小学智慧课堂的应用情况进行抽样调查,统计数据如表:经常应用偶尔应用或者不应用总计农村40城市60总计10060160从城市学校中任选一个学校,偶尔应用或者不应用智慧课堂的概率是.(1)补全2×2列联表,判断能否有99.5%的把握认为智慧课堂的应用与区域有关,并说明理由;(2)在偶尔应用或者不应用智慧课堂的学校中,按照农村和城市的比例抽取6个学校进行分析,然后再从这6个学校中随机抽取2个学校所在的地域进行核实,记其中农村学校有X个,求X的分布列和数学期望.附:K2=,n=a+b+c+d.P(K2≥k0)0.10.0500.0100.0050.001 k0 2.706 3.841 6.6357.87910.828 19.如图,已知三棱锥S﹣ABC中,△ABC是边长为2的等边三角形,SB=SC=4,点D为SC的中点,DA=2.(1)求证:平面SAB⊥平面ABC;(2)求二面角S﹣AB﹣D的正弦值.20.已知椭圆C:=1(a>b>0),右焦点为F(4,0),短轴长为4.(1)求椭圆C的方程;(2)若过点T(0,1)的直线l与椭圆C交于A,B两点,线段AT中点为P,线段BT 中点为Q,且|OP|=|OQ|(O为坐标原点),求所有满足条件的直线l方程.21.已知函数f(x)=e x+ax(其中e≈2.718为自然对数的底数).(1)讨论函数f(x)的单调性;(2)当0≤a≤1,证明:f(x)>0.参考数据:ln2≈0.693.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.平面直角坐标系xOy中,直线C1的参数方程为(t为参数),以坐标原点O 为极点,x轴非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2(2﹣cos2θ)=3.(1)求直线C1的普通方程与曲线C2的直角坐标方程;(2)求曲线C2上的动点到直线C1距离的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=2|x﹣1|+|x+2|.(1)求不等式f(x)≥6的解集;(2)若f(x)≥m+对任意x∈R恒成立,求实数m的取值范围.参考答案一、选择题(共12小题).1.已知集合A={x|x>x2﹣6},B={x|2x<4},则A∩B=()A.(﹣3,)B.(﹣2,)C.(﹣3,2)D.(﹣2,2)解:∵集合A={x|x>x2﹣6}={x|﹣2<x<3},B={x|2x<4}={x|x<},∴A∩B={x|﹣2<x<}=(﹣2,).故选:B.2.已知复数是纯虚数(i是虚数单位),则实数a等于()A.﹣2B.2C.D.﹣1解:∵==是纯虚数,∴,解得a=.故选:C.3.执行如图所示的程序框图,则输出S的结果为()A.16B.25C.36D.49解:S=0,n=0,第一次执行循环体后,a=1,S=1,n=1,不满足退出循环的条件;第二次执行循环体后,a=3,S=4,n=2,不满足退出循环的条件;第三次执行循环体后,a=5,S=9,n=3,不满足退出循环的条件;第四次执行循环体后,a=7,S=16,n=4,不满足退出循环的条件;第五次执行循环体后,a=9,S=25,n=5,满足退出循环的条件;故输出S值为25,故选:B.4.为了解学生参加“阳光体育”活动的情况,某学校随机统计了学生的“阳光体育”活动时间(单位:分钟),已知所得样本数据都在区间[10,110]内,样本频率分布直方图如图所示,则该样本数据的中位数的估计值为()A.60B.65C.66.25D.72.25解:由频率分布直方图得:[10,60)的频率为(0.004+0.012)×25=0.4,[60,85)的频率为0.016×25=0.4,∴该样本数据的中位数的估计值为:60+=66.25.故选:C.5.设m,n是不同的直线,α,β是不同的平面,则()A.若m∥α,n⊂α,则m∥nB.若α∩β=m,n⊂β,n⊥m,则n⊥αC.若m∥α,n∥β,m∥n,则α∥βD.若m⊥α,n⊥β,n⊥m,则α⊥β解:由m,n是不同的直线,α,β是不同的平面,知:在A中,若m∥α,n⊂α,则m与n平行或异面,故A错误;在B中,若α∩β=m,n⊂β,n⊥m,则n与α相交但不一定垂直,故B错误;在C中,若m∥α,n∥β,m∥n,则α与β相交或平行,故C错误;在D中,若m⊥α,n⊥β,n⊥m,则由面面垂直的判定理得α⊥β,故D正确.故选:D.6.在“学宪法、讲宪法”活动中,将甲、乙、丙、丁四位法律老师分配到A、B、C、D四个班级进行宣讲,每个班级分配一位老师.若甲不分配到A班,丁不分配到D班,则分配方案的种数为()A.12B.14C.16D.24解:根据题意,分2种情况讨论:①若甲分配到D班,剩下三人全排列即可,有A33=6种情况,②若甲不分配到D班,甲的分配方法有2种,丁不能分配到D班,其分配方法有2种,剩下2人安排到剩下的2个班级,有2种分配方法,此时有2×2×2=8种分配方法,则一共有6+8=14种不同的分配方法,故选:B.7.已知函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))的最小正周期为,若将f (x)的图象向右平移个单位长度后,所得图象对应的函数为偶函数,则φ=()A.B.C.D.解:函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))的最小正周期为,则,解得ω=4.将f(x)=的图象向右平移个单位长度后,得到g(x)=,由于所得图象对应的函数为偶函数,故,整理得,当k=﹣1时,φ=.故选:A.8.已知a=(),b=(),c=log93,则()A.a<b<c B.c<b<a C.b<c<a D.b<a<c解:∵1=>a=()>b=()=()>,c=log93=,∴c<b<a.故选:B.9.已知点M为抛物线x2=8y准线上一点,点F为焦点,O为坐标原点,A在抛物线上,且|AF|=10,则|MA|+|MO|的最小值为()A.16B.8C.4D.8解:由抛物线的方程可得:F(0,2),准线方程为:y=﹣2,设点A的坐标为(x,y),则由|AF|=10=y+2,所以y=8,代入抛物线方程可得:x=±8,不妨设A(8,8),原点O关于准线的对称点为N(0,﹣4),则|MA|+|MO|=|MA|+|MN|,当A,M,N三点共线时,|MA|+|MN|最小,最小值为|AN|=,故选:C.10.已知函数f(x)=,则方程f(f(x))+3=0的解的个数为()A.3B.4C.5D.6解:∵函数f(x)=,由f(x)=﹣3,当x>0,即lnx=﹣3,解得x=,当x<0时,则有x+=﹣3,解得x=,∵f(f(x))+3=0即f(x)=,或f(x)=,由f(x)=,可得lnx=,此方程只有一个根,又x<0时,f(x)=x+≤﹣2,故f(x)=仅在x>0时有一个根,f(x)=在x<0时有两个根,在x>0时有一个根,综上,方程f(f(x))+3=0有五个根,故选:C.11.在等差数列{a n}中,<﹣1,且它的前n项和S n有最小值,则当S n<0时,n的最大值为()A.7B.8C.13D.14解:因为等差数列{a n}的前n项和S n有最小值,则d>0,又<﹣1,所以a7<0,a8>0,所以a7+a8>0,又,,所以当S n<0时,n的最大值为13.故选:C.12.已知函数f(x)=e﹣x﹣e x﹣2+x,则不等式f(2020+x)+f(2021﹣2x)≤1的解集是()A.(﹣∞,4039]B.[4039,+∞)C.(﹣∞,4042]D.[4042,+∞)解:∵f(x)=e﹣x﹣e x﹣2+x,∴f(2﹣x)=e﹣(2﹣x)﹣e(2﹣x)﹣2+(2﹣x)=e x﹣2﹣e﹣x+1﹣x,则f(x)+f(2﹣x)=1,即是f(x)关于(1,)对称,由f(2020+x)+f(2021﹣2x)≤1得f(2021﹣2x)≤1﹣f(2020+x)=f(2﹣(2020+x))=f(﹣x﹣2018),f′(x)=﹣e﹣x﹣e x﹣2+,[f(x)]'=e﹣x﹣e x﹣2,为减函数,且当x<1时,[f‘(x)]'>0当x>1时,[f‘(x)]''<0,即当x=1时,f‘(x)取得极大值f′(1)=﹣2e﹣1+<0,即f′(x)<0恒成立,则f(x)在R上是减函数,则不等式f(2021﹣2x)≤f(﹣x﹣2018),等价为2021﹣2x≥﹣x﹣2018,即x≤2021+2018=4039,即不等式的解集为(﹣∞,4039],故选:A.二、填空题:本题共4小题,每小题5分,共20分。