《三年高考两年模拟》数学(理科)汇编专题:10.1排列与组合(含答案解析)
专题11-1 排列与组合-3年高考2年模拟1年原创备战2018高考系列之数学理
2017年高考备考之3年高考2年模拟1年原创【三年高考】1. 【2016高考新课标2理】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )(A )24 (B )18 (C )12 (D )92. 【2016年高考四川理】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A )24 (B )48 (C )60 (D )723.【2016高考新课标3理】定义―规范01数列‖{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的―规范01数列‖共有( )(A )18个 (B )16个 (C )14个 (D )12个4.【2016高考江苏卷】(1)求3467–47C C 的值;(2)设m ,n N *,n ≥m , 求证:(m +1)C m m +(m +2)+1C m m +(m +3)+2C m m +…+n –1C m n +(n +1)C mn =(m +1)+2+2C m n .5.【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个6.【2015高考上海,理8】在报名的名男教师和名女教师中,选取人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).7.【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)8.【2014浙江高考理第14题】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).9.【2014辽宁高考理第6题】6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .2410.【2014重庆高考理第9题】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.16811.【2014高考广东卷理第8题】设集合(){}{}12345,,,,1,0,1,1,2,3,4,5iA x x x x x x i =∈-=,那么集合A 中满足条件―1234513x x x x x ≤++++≤‖的元素个数为( )A.60B.90C.120D.130【三年高考命题回顾】纵观前三年各地高考试题,对排列与组合知识的考查均以应用题的形式出现,题型为选择题、填空题,题量多是一道,分值为5分,属于中档题.内容以考查排列、组合的基础知识为主.题目难度与课本习题难度相当,但有个别题目难度较大,重点考查分析问题,解决问题的能力及分类讨论的数学思想方法.【2017年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出 , 排列、组合是高考数学相对独立的内容,也是密切联系实际的一部分.预测2017年高考中,应该注重基本概念,基础知识和基本运算的考查.试题难度不会太大,多以选择、填空的形式出现.排列组合的试题会以现实生活中的生产问题、经济问题为背景,不会仅是人或数的排列.以排列组合应用题为载体,考查学生的抽象概括能力,分析能力,综合解决问题的能力.排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;复习建议:⑪使用分类计数原理还是分步计数原理要根据我们完成某件事情时采取的方式而定,分类来完成这件事情时用分类计数原理,分步骤来完成这件事情时用分步计数原理.怎样确定是分类,还是分步骤?―分类‖表现为其中任何一类均可独立完成所给事件,而―分步骤‖必须把各步骤均完成才能完成所给事情.所以准确理解两个原理的关键在于明确:分类计数原理强调完成一件事情的几类办法互不干扰,彼此之间交集为空集,并集为全集,不论哪一类办法中的哪一种方法都能单独完成事件;分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法.⑫排列与组合定义相近,它们的区别在于是否与顺序有关.⑬复杂的排列问题常常通过试验、画简图、小数字简化等手段使问题直观化,从而寻求解题途径,由于结果的正确性难以直接检验,因而常需要用不同的方法求解来获得检验.⑭按元素的性质进行分类、按事件发生的连续过程分步,是处理组合问题的基本思想方法,要注意题设中―至少‖―至多‖等限制词的意义.⑮处理排列组合的综合性问题,一般思想方法是先选元素(组合),后排列,按元素的性质―分类‖和按事件发生的连续过程―分步‖,始终是处理排列、组合问题的基本方法和原理,通过解题训练要注意积累分类和分步的基本技能.⑯在解决排列组合综合性问题时,必须深刻理解排列与组合的概念,能够熟练确定——问题是排列问题还是组合问题,牢记排列数、组合数计算公式与组合数性质.容易产生的错误是重复和遗漏计数.常见的解题策略有以下几种:①特殊元素优先安排的策略;②合理分类与准确分步的策略;③排列、组合混合问题先选后排的策略;④正难则反、等价转化的策略;⑤相邻问题捆绑处理的策略;⑥不相邻问题插空处理的策略;⑦定序问题除法处理的策略;⑧分排问题直排处理的策略;⑨―小集团‖排列问题中先整体后局部的策略;⑩构造模型的策略.【2017年高考考点定位】本节内容高考的重点就是利用计数原理,排列组合,排列数、组合数计算公式与组合数性质, 重点考查学生的抽象概括能力,分析问题,解决问题的能力及分类讨论的数学思想方法.题型既有选择题也有填空题,难度中等偏下,将排列组合与概率统计相结合是近几年高考的一大热点. 【考点1】计数原理【备考知识梳理】1. 分类加法计数原理(加法原理)的概念一般形式:完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,……,在第n 类方案中有n m 种不同的方法,那么完成这件事共有N=1m +2m +……+n m 种不同的方法.2.分步乘法计数原理(乘法原理)的概念一般形式:完成一件事需要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事共有N=12n m m m ⨯⨯⨯…种不同的方法.3. 两个原理的区别:(1)―每类‖间与―每步‖间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.(2)―每类‖与―每步‖完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.4.切实理解―完成一件事‖的含义,以确定需要分类还是需要分步进行,同时要优先考虑题中的限制条件.【规律方法技巧】1. 计数问题中如何判定是分类加法计数原理还是分步乘法计数原理:如果已知的每类方法中的每一种方法都能单独完成这件事,用分类加法计数原理;如果每类方法中的每一种方法只能完成事件的一部分,用分步乘法计数原理.2.利用分类计数原理解决问题时: (1)将一个比较复杂的问题分解为若干个―类别‖,先分类解决,然后将其整合,如何合理进行分类是解决问题的关键.(2)要准确把握分类加法计数原理的两个特点:①根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;②分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复;③对于分类问题所含类型较多时也可考虑使用间接法.3.利用分步乘法计数原理解决问题时要注意:(1)要按事件发生的过程合理分步,即考虑分步的先后顺序.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这个事件.(3)对完成各步的方法数要准确确定.4. 用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到―不重不漏‖,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到―步骤完整‖,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析,使问题形象化、直观化.(4)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理.5.在解决具体问题时,首先必须弄清楚是―分类‖还是―分步‖,接着还要搞清楚―分类‖或者―分步‖的具体标准是什么.5. (1)分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.(2)分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.6. 分类加法计数原理的两个条件:(1)根据问题的特点能确定一个适合于它的分类标准,然后在这个标准下进行分类;(2)完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.分步乘法计数原理的两个条件:(1)明确题目中的―完成这件事‖是什么,确定完成这件事需要几个步骤,且每步都是独立的.(2)将完成这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成,这是分步的基础,也是关键.从计数上来看,各步的方法数的积就是完成事件的方法总数.7. 应用两种原理解题:(1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,―类‖间互相独立,―步‖间互相联系;(3)有无特殊条件的限制;(4)检验是否有重漏.8. 涂色问题:涂色问题是由两个基本原理和排列组合知识的综合运用所产生的一类问题,这类问题是计数原理应用的典型问题,由于涂色本身就是策略的一个运用过程,能较好地考查考生的思维连贯性与敏捷性,加之涂色问题的趣味性,自然成为新课标高考的命题热点.涂色问题的关键是颜色的数目和在不相邻的区域内是否可以使用同一种颜色,具体操作法和按照颜色的数目进行分类法是解决这类问题的首选方法.涂色问题的实质是分类与分步,一般是整体分步,分步过程中若出现某一步需分情况说明时还要进行分类.涂色问题通常没有固定的方法可循,只能按照题目的实际情况,结合两个基本原理和排列组合的知识灵活处理.【考点针对训练】1. 【2016届陕西省西藏民族学院附中高三期末】将4个颜色互不相同的球全部放入编号为1,2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( )A .52种B .36种C .20种D .10种2. 【2016届河南省洛阳市高三考前练习】如图所示22⨯方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复,若填入A 方格的数字大于B 方格的数字,则不同的填法共有( )A .192种B .128种C .96种D .12种【考点2】排列组合综合【备考知识梳理】1. 排列的相关概念及排列数公式(1)排列的定义:从个不同元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从个不同元素中取出m 个元素的一个排列.(2)排列数的定义:从个不同元素中取出m (m n ≤)个元素的所有不同排列的个数叫做从个不同元素中取出m 个元素的排列数,用m n A 表示.(3)排列数公式:()()()121m n A n n n n m =---+ 这里,n m N ∈æ并且m n ≤ (4)全排列:个不同元素全部取出的一个排列,叫做个元素的一个全排列,()()1221!n n A n n n n =--⋅⋅= (叫做n 的阶乘).排列数公式写成阶乘的形式为()!!m n n A n m =-,这里规定0!1=. 2.组合的相关概念及组合数公式(1)组合的定义:从个不同元素中取出m (m n ≤)个元素合成一组,叫做从个不同元素中取出m 个元素的一个组合.(2)组合数的定义:从个不同元素中取出m (m n ≤)个元素的所有不同组合的个数,叫做从个不同元素中取出m 个元素的组合数,用m n C 表示.(3)组合数的计算公式:()()()()121!!!!m mn nm m n n n n m A n C A m m n m ---+===- ,由于0!1=,所以01n C =.(4)组合数的性质:①m n m n n C C -=;②11m m m n n n C C C -+=+;③11r r n n rC nC --=.3.区分某一问题是排列问题还是组合问题,关键看选出的元素与顺序是否有关.若交换某两个元素的位置对结果产生影响,则是排列问题;若交换任意两个元素的位置对结果没有影响,则是组合问题.也就是说排列问题与选取元素的顺序有关,组合问题与选取元素的顺序无关.4.解决排列组合问题可遵循―先组合后排列‖的原则,区分排列组合问题主要是判断―有序‖和―无序‖,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现―有序‖和―无序‖.5.要能够写出所有符合条件的排列或组合,尽可能使写出的排列或组合与计算的排列数相符,使复杂问题简单化,这样既可以加深对问题的理解,检验算法的正确与否,又可以对排列数或组合数较小的问题的解决起到事半功倍的效果.【规律方法技巧】1. 求解排列、组合问题的思路:排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.具体地说,解排列、组合的应用题,通常有以下途径:(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.2. 解答排列、组合问题的角度:解答排列、组合应用题要从―分析‖、―分辨‖、―分类‖、―分步‖的角度入手.(1)―分析‖就是找出题目的条件、结论,哪些是―元素‖,哪些是―位置‖;(2)―分辨‖就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)―分类‖就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)―分步‖就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.3. 有条件的排列问题大致分四种类型.(1)某元素不在某个位置上问题,①可从位置考虑用其它元素占上该位置,②可考虑该元素的去向(要注意是否是全排列问题);③可间接计算即从排列总数中减去不符合条件的排列个数.(2)某些元素相邻,可将这些元素排好看作一个元素(即捆绑法)然后与其它元素排列.(3)某些元素互不相邻,可将其它剩余元素排列,然后用这些元素进行插空(即插空法).(4)某些元素顺序一定,可在所有排列位置中取若干个位置,先排上剩余的其它元素,这个元素也就一种排法.4. 对于有条件的组合问题,可能遇到含某个(些)元素与不含某个(些)元素问题;也可能遇到―至多‖或―至少‖等组合问题的计算,此类问题要注意分类处理或间接计算,切记不要因为―先取再后取‖产生顺序造成计算错误.5.排列、组合综合应用问题的常见解法:①特殊元素(特殊位置)优先安排法;②合理分类与准确分步;③排列、组合混合问题先选后排法;④相邻问题捆绑法;⑤不相邻问题插空法;⑥定序问题倍缩法;⑦多排问题一排法;⑧―小集团‖问题先整体后局部法;⑨构造模型法;⑩正难则反、等价转化法.6. 在计算排列组合问题时,可能会遇到―分组‖问题,要特别注意是平均分组还是不平均分组.可从排列与组合的关系出发,用类比的方法去理解分组问题,比如将4个元素分为两组,若一组一个、一组三个共有1343C C 种不同的分法;而平均分为两组则有224222C C A 种不同的分法. 【考点针对训练】1. 【2016届山东省临沂十八中高三三模】某大学数学系需要安排名大四同学到A ,B ,C 三所学校实习,每所学校安排名同学,已知甲不能到A 学校,乙和丙不能安排到同一所学校,则安排方案的种数有( )A .24B .36C .48D .722. 【2016届四川省树德中学6月高考适应性测试】某班要从A,B,C,D,E 五人中选出三人担任班委中三种不同的职务,则上届任职的A,B,C 三人都不连任原职务的方法种数为( )(A )30 (B )32 (C )36 (D ) 48【应试技巧点拨】1.求排列应用题的主要方法:(1)对无限制条件的问题——直接法;(2)对有限制条件的问题,对于不同题型可采取直接法或间接法,具体如下:①每个元素都有附加条件——列表法或树图法;②有特殊元素或特殊位置——优先排列法;③有相邻元素(相邻排列)——捆绑法;④有不相邻元素(间隔排列)——插空法;2.组合问题常有以下两类题型变化:(1)―含有‖或―不含有‖某些元素的组合题型:―含‖,则先将这些元素取出,再由另外元素补足;―不含‖,则先将这些元素剔除,再从剩下的元素中去选取.(2)―至少‖或―最多‖含有几个元素的题型:解这类题必须十分重视―至少‖与―最多‖这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.3.解排列、组合的综合应用问题,要按照―先选后排‖的原则进行,即一般是先将符合要求的元素取出(组合),再对取出的元素进行排列,常用的分析方法有:元素分析法、位置分析法、图形分析法.要根据实际问题探索分类、分步的技巧,做到层次清楚,条理分明.区分排列、组合问题主要是判断―有序‖和―无序‖,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现―有序‖和―无序‖.递推公式转化为:)(1t a p t a n n -=-+,其中pq t -=1,再利用换元法转化为等比数列求解. 4.切实理解―完成一件事‖的含义,以确定需要分类还是需要分步进行.分类时要做到不重不漏.对于复杂的计数问题,可以分类、分步综合应用.5.要能够写出所有符合条件的排列或组合,尽可能使写出的排列或组合与计算的排列数相符,使复杂问题简单化,这样既可以加深对问题的理解,检验算法的正确与否,又可以对排列数或组合数较小的问题的解决起到事半功倍的效果.1. 【2016年湖北高三八校联考】甲、乙、丙、丁、戊五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为( )A . 110 B . C . D .2. 【2016年江西四校高三模考】某高中数学老师从一张测试卷的12道选择题、4道填空题、6道解答题中任取3道题作分析,则在取到选择题时解答题也取到的概率为( ) A.11112620332210C C C C C ⋅⋅- B. 111121264126332210C C C C C C C ⋅⋅+⋅- C. 11122112646126332210()C C C C C C C C ⋅⋅++⋅- D. 333221016332210C C C C C --- 3. 【2016年江西南昌高三模考】甲乙两人从4门课程中各选修两门,则甲乙所选的课程中至少有l 门不相同的选法共有(A)30种 (B)36种 (C)60种 (D)72种4. 【2016年江西师大附中等四校联考】某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的名同学中恰有名同学是来自同一年级的乘坐方式共有( )A .24种B .18种C .48种D .36种5. 【2016年厦门一中模考】有一个7人学校合作小组,从中选取4人发言,要求其中甲和乙至少有一人参加,若甲和乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( )A .720种B .600种C .360种D .300种6.【2016年山西四校高三联考】中、美、俄等21国领导人合影留念,他们站成两排,前排11人,后排10人,中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,如果对其他领导人所站的位置不做要求,那么不同的站法共有( )A.1818A 种B.2020A 种C.101031823A A A 种D.181822A A 种 7. 【2016年安徽淮南高三二模】将4本完全相同的小说,1本诗集全部分给4名同学,每名同学至少1本书,则不同分法有( )A .24种B .28种C .32种D .16种8. 【2016年江西九江高三模考】高中数学联赛期间,某宾馆随机安排E D C B A 、、、、五名男生入住个标间(每个标间至多住人),则B A 、入住同一标间的概率为( )A .101 B .51 C .103 D .52 9. 【2016年河北石家庄高三二模】某高校安排名大学生到个单位实习,每名大学生去一个单位,每个单位至少安排一名大学生,则不同的安排方法的种数为_____.(用数字作答)10. 【2016届吉林大学附中高三第二次模拟】一个五位自然数12345{012345}12345i a a a a a a i ∈=,,,,,,,,,,,,当且仅当123a a a >>,345a a a <<时称为―凹数‖(如32014,53134等),则满足条件的五位自然数中―凹数‖的个数为( )(A )110 (B )137 (C )145 (D )14611.【2015届江西高安中学高三命题中心模拟三】将甲、乙等名学生分配到三个不的班级,每个班级至少一人,且甲、乙在同一班级的分配方案共有( )A .72种B .36种C .18种D .12种12.【2015届江西省高安中学高三命题中心模拟押题一】若无重复数字的三位数满足条件:①个位数字与十位数字之和为奇数,②所有位的数字和为偶数.则这样的三位数的个数是( )A.540 B.480 C.360 D.20013.【2015届安徽省马鞍山市高中毕业班第三次质检】某次联欢会要安排个歌舞类节目,个小品类节目和个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.168C.144D.12014.【2015届广东省华南师大附中高三5月三模】数字―2015‖中,各位数字相加和为8,称该数为―如意四位数‖,则用数字0,1,2,3,4,5组成的无重复数字且大于2015的―如意四位数‖有个.15.【2015届辽宁省师大附中高三模拟考试】在2015年高考来临之际,食堂的伙食进行了全面升级.某日5名同学去食堂就餐,有米饭,花卷,包子和面条四种主食.每种主食均至少有一名同学选择且每人只能选择其中一种.花卷数量不足仅够一人食用,甲同学因肠胃不好不能吃米饭,则不同的食物搭配方案种数为.【一年原创真预测】1. 为防止部分学生考试时用搜题软件作弊,命题组指派名教师对数学卷的选择题、填空题和解答题这种题型进行改编,则每种题型至少指派一名教师的不同分派方法种数为()A.150B.180C.200D.2802.某同学有7本工具书,其中语文2本、英语2本、数学3本,现在他把这7本书放到书架上排成一排,要求2本语文书相邻、2本英语书相邻、3本数学书任意两本不相邻,则不同的排法种数为()A.12 B.24 C.48 D.7203.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是.(注:结果请用数字作答)4.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为————.5.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最B,实施时必须不相邻,则实验顺序的编排方法共有种.后一步,程序C6.某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有两个2元,1个3元,1个4元(红包中金额相同视为相同红。
【3年高考2年模拟】(新课标)2016届高考数学一轮复习题组训练10.1计数原理、排列与组合3年高考
【3年高考】(新课标)2016版高考数学一轮复习 10.1计数原理、排列与组合A组2012—2014年高考·基础题组1.(2014四川,6,5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192种B.216种C.240种D.288种2.(2014重庆,9,5分)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.1683.(2012辽宁,5,5分)一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为( )A.3×3!B.3×(3!)3C.(3!)4D.9!4.(2013山东,10,5分)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243B.252C.261D.2795.(2012北京,6,5分)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24B.18C.12D.66.(2012课标全国,2,5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种7.(2013福建,5,5分)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14B.13C.12D.108.(2013浙江,14,4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答).B组2012—2014年高考·提升题组1.(2014安徽,8,5分)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A.24对B.30对C.48对D.60对2.(2014福建,10,5分)用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( ) A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)3.(2014广东,8,5分)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为( )A.60B.90C.120D.1304.(2013四川,8,5分)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( )A.9B.10C.18D.205.(2012陕西,8,5分)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A.10种B.15种C.20种D.30种6.(2012浙江,6,5分)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A.60种B.63种C.65种D.66种7.(2012山东,11,5分)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A.232B.252C.472D.4848.(2012大纲全国,11,5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )A.12种B.18种C.24种D.36种9.(2012安徽,10,5分)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )A.1或3B.1或4C.2或3D.2或410.(2013重庆,13,5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).A组2012—2014年高考·基础题组1.B 若最左端排甲,其他位置共有=120种排法;若最左端排乙,最右端共有4种排法,其余4个位置有=24种排法,所以共有120+4×24=216种排法.2.B 先不考虑小品类节目是否相邻,保证歌舞类节目不相邻的排法共有·=144种,再剔除小品类节目相邻的情况,共有··=24种,于是符合题意的排法共有144-24=120种.3.C 第1步:3个家庭的全排列,方法数为3!,第2步:家庭内部3个人全排列,方法数为3!,共3个家庭,方法数为(3!)3.∴总种数为(3!)×(3!)3=(3!)4,故选C.4.B 由分步乘法计数原理知:用0,1,…,9十个数字组成三位数(可有重复数字)的个数为9×10×10=900,组成没有重复数字的三位数的个数为9×9×8=648,则组成有重复数字的三位数的个数为900-648=252,故选B.5.B 从0,2中选一个数字,1)取0:此时0只能放在十位,再从1,3,5中任取两个数,在个位与百位进行全排列即可,列式为;2)取2:此时2可以放在十位或百位,再从1,3,5中任取两个放在剩余两位进行全排列,列式为2,∴满足条件的奇数的个数为+2=3=3×3×2=18.故选B.6.A 2名教师各在1个小组,给其中1名教师选2名学生,有种选法,另2名学生分配给另1名教师,然后将2个小组安排到甲、乙两地,有种方案,故不同的安排方案共有=12种,选A.7.B 当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,选B.8.答案480解析从左往右看,若C排在第1位,共有排法=120种;若C排在第2位,共有排法·=72种;若C排在第3位,则A、B可排C的左侧或右侧,共有排法·+·=48种;若C排在第4,5,6位时,其排法数与排在第3,2,1位相同,故共有排法2×(120+72+48)=480种.B组2012—2014年高考·提升题组1.C 利用正方体中两个独立的正四面体解题,如图,它们的棱是原正方体的12条面对角线.一个正四面体中两条棱成60°角的有(-3)对,两个正四面体有(-3)×2对.又正方体的面对角线中平行成对,所以共有(-3)×2×2=48对.故选C.2.A 从5个有区别的黑球中取k个的方法数为,故可用(1+c)5的展开式中c k的系数表示.又所有的蓝球都取或都不取用1+b5表示.故由乘法原理知,符合题意的取法可由(1+a+a2+a3+a4+a5)(1+b5)(1+c)5表示.3.D 设t=|x1|+|x2|+|x3|+|x4|+|x5|,t=1说明x1,x2,x3,x4,x5中有一个为-1或1,其他为0,所以有2·=10个元素满足t=1;t=2说明x1,x2,x3,x4,x5中有两个为-1或1,其他为0,所以有×2×2=40个元素满足t=2;t=3说明x1,x2,x3,x4,x5中有三个为-1或1,其他为0,所以有×2×2×2=80个元素满足t=3,从而,共有10+40+80=130个元素满足1≤t≤3.故选D.4.C lg a-lg b=lg ,从1,3,5,7,9中任取两个数分别记为a,b,共有=20种结果,其中lg =lg ,lg =lg ,故共可得到不同值的个数为20-2=18.故选C.5.C 按比赛局数分类:3局时有2种,4局时有2种,5局时有2种,故共有2+2+2=20种,选C.6.D 共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有++=66种.7.C 分两类情况:(1)不取红色卡片,有(-3)种或(+)种.(2)取红色卡片1张,有种或(3+)种.所以不同的取法有-3+=472种,故选C.8.A 从a,b,c中任选两个排在第一行,有种方法,另一个字母在第二行,有种方法,其余则确定,共有·=12种方法,故选A.9.D 由题意及=15知只需少交换2次.记6位同学为A1、A2、A3、A4、A5、A6,不妨讨论①A1少交换2次,如A1未与A2、A3交换,则收到4份纪念品的同学仅为A2、A3 2人;②A1、A2各少交换1次,如A1与A3未交换,A2与A4未交换,则收到4份纪念品的同学有4人,为A1、A2、A3、A4.故选D.10.答案590解析按每科选派人数分3、1、1和2、2、1两类.当选派人数为3、1、1时,有3类,共有++=200(种).当选派人数为2、2、1时,有3类,共有++=390(种).故共有590种.。
-高考数学 试题汇编 第一节 排列与组合 理(含解析)
第一节排列与组合两个计数原理与排列问题1.(2012年全国大纲卷,理11,5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )(A)12种(B)18种(C)24种(D)36种解析:分两步,第一步先排第1列,有种排法;第二步排第2列有两种排法.所以共有×2=12种排法.答案:A.2.(2012年北京卷,理6,5分)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )(A)24 (B)18(C)12 (D)6解析:第一类:若0、2中选0,则0只能在十位,百位、个位从1,3,5中选有=6种方法,即符合条件的奇数有6个;第二类:若0、2中选2,则2可以在百位或十位,有种方法,其余两位从1,3,5中选有种方法.∴选2时,符合条件的奇数有=12个.综上,由加法计数原理,符合条件的奇数有12+6=18个.答案:B.3.(2010年北京卷,理4)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( )(A) (B)(C) (D)解析:解决不相邻问题采用插空法.由于要求2位老师不相邻,故可先排8名学生,共有种排法,然后将2名老师插到9个空中,有种排法,故排法种数为.故选A.答案:A.4.(2010年山东卷,理8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( )(A)36种 (B)42种(C)48种 (D)54种解析:若甲排在第一位,则除甲、丙外的其余4人可任意排列,有种排法;若甲排在第二位,则乙有种排法,除甲、乙、丙外的其余3人可任意排列,共有种排法,所以一共有+=42(种)不同的编排方案,故选B. 答案:B.两个计数原理与组合问题5.(2012年浙江卷,理6,5分)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )(A)60种 (B)63种 (C)65种 (D)66种解析:和为偶数的取法共有++=1+60+5=66,故选D.答案:D.6.(2012年陕西卷,理8,5分)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )(A)10种 (B)15种 (C)20种 (D)30种解析:两人打3局:2=2两人打4局:2=2×3=6两人打5局:2=2·=12故决出胜负的所有可能共有2+6+12=20种可能.答案:C.7.(2012年山东卷,理11,5分)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )(A)232 (B)252 (C)472 (D)484解析:本小题主要考查利用组合数公式解应用题.法一:(直接法)若红色卡片只有1张,则取法有种;若无红色卡片,则取法有-3种,所以满足条件的不同取法的种数为+-3=472种.法二:(间接法)任取3张卡片共有种,其中3张同色的有4种,2张红色的有种,所以满足条件的不同取法的种数为-4-=472种.答案:C.本题难度较大,但思维切入点清晰,既可从条件“不能同色”想到间接法,又可从条件“至多1张”想到分类讨论思想,采用直接法,所以抓住题眼是解决本题的关键.8.(2011年安徽卷,理8)设集合A={1,2,3,4,5,6},B={4,5,6,7,8},则满足S⊆A且S∩B≠的集合S的个数是( )(A)57 (B)56 (C)49 (D)8解析:若集合S满足S⊆A且S∩B≠,则S中的元素至少含有4,5,6中一个,在1,2,3中任意选,由分步计数原理知,有(+++)(++)种选法,故总共有8×7=56(种)选法.故选B.答案:B.9.(2010年全国卷Ⅰ,理6)某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )(A)30种(B)35种(C)42种(D)48种解析:法一:分类讨论:要求两类课程中各至少选一门,则不同的选法有:A类2门,B类1门或A类1门,B类2门,即+=30.法二:由正难则反思想:任选3门有种选法,3门全为A类的或B类的有+种选法,所以两类课程中各至少选一门的选法有--=30.故选A.答案:A.10.(2010年湖南卷,理7)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )(A)10 (B)11 (C)12 (D)15解析:法一:分0个相同、1个相同、2个相同讨论.(1)若0个相同,则信息为:1001,共1个.(2)若1个相同,则信息为:0001,1101,1011,1000.共4个.(3)若2个相同,①若位置一与二相同,则信息为:0101;②若位置一与三相同,则信息为:0011;③若位置一与四相同,则信息为:0000;④若位置二与三相同,则信息为:1111;⑤若位置二与四相同,则信息为:1100;⑥若位置三与四相同,则信息为:1010.共有6个.故与信息0110至多有两个对应位置上的数字相同的信息个数为1+4+6=11.法二:若0个相同,共有1个;若1个相同,共有=4(个);若2个相同,共有=6(个);故共有1+4+6=11(个).故选B.答案:B.11.(2011年北京卷,理12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有 个.(用数字作答)解析:分类讨论:若2出现一次,则四位数有个;若2出现二次,则四位数有个;若2出现3次,则四位数有个,所以共有++=14(个).答案:14排列与组合综合问题12.(2012年新课标全国卷,理2,5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )(A)12种 (B)10种 (C)9种 (D)8种解析:主要考查排列组合的简单应用.法一:先分组再分派,=12, 法二:由位置选元素,先安排甲地,其余去乙地,·=12,故选A.答案:A.13.(2012年辽宁卷,理5,5分)一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为( )(A)3×3! (B)3×(3!)3(C)(3!)4(D)9!解析:9个座位坐3个三口之家,每家人坐在一起,用捆绑法,不同的坐法种数为()=(3!)4.故选C.答案:C.14.(2011年浙江卷,理9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是( )(A)(B)(C)(D)解析:从左到右5个位置可记为1号,2号,3号,4号,5号位置,同一科目不相邻时,①当语文2本在1,5位置,则数学2本在2,4位置,有2×2种排法.②当语文2本在1,4位置,数学2本可在2,5位置或3,5位置,有2×2×2种排法.③当语文2本在1,3位置,数学2本可在2,4位置或2,5位置,有2×2×2种排法.④当语文2本在2,5位置,数学2本可在1,3位置或1,4位置,有2×2×2种排法.⑤当语文2本在2,4位置,数学2本可在1,3位置或1,5位置或3,5位置,有2×2×3种排法.⑥当语文2本在3,5位置,数学2本可在1,4或2,4位置,有2×2×2种排法.∴同一科目不相邻有48种排法,又5本书的总排法共有=120种,∴同一科目不相邻时的概率为=.故选B.答案:B.15.(2012年重庆卷,理15,5分)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).解析:随意排6节课的方法有=720,相邻两节文化课之间至多间隔一节艺术课的对立事件为:相邻两节文化课之间安排3节艺术课或相邻两节文化课之间安排2节艺术课,共有2+=288,所以其概率为1-=.答案:本题考查了两个计数原理,古典概型,考查利用排列组合知识解决实际问题的能力、转化能力,难度适中.16.(2012年湖南卷,理16,5分)设N=2n(n∈N*,n≥2),将N个数x1,x2,…,x N依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…x N.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列P1=x1x3…x N-1x2x4…x N,将此操作称为C 变换,将P1分成两段,每段个数,并对每段作C变换,得到P2.当2≤i≤n-2时,将P i分成2i 段,每段个数,并对每段作C变换,得到P i+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第个位置;(2)当N=2n(n≥8)时,x173位于P4中的第个位置.解析:(1)当N=16时,P0=x1x2x3x4…x15x16,P1=x1x3x5…x15x2x4…x16,P2=x1x5x9x13x3x7x11x15x2x6x10x14x4x8x12x16,所以x7位于P2中的第6个位置.(2)当N=2n时,P0=x1x2…x N,P 1=,173为奇数,x173位于P1的第1段;P 2=173=4×43+1,此时x173位于P2的第1段P 3=P3分成8段,每段共2n-3个数,173=8×21+5,此时x173位于P3的第2段,P 4=P4分成16段,每段共2n-4个数,173=16×10+13,此时x173位于P4的第4段,其第4段的数的下标成等差数列,记作{a n},其中a1=13,d=16.所以a n=13+16(n-1)=16n-3.令a n=173,即16n-3=173,n=11.所以x173位于P4的第4段的第11个位置,故x173位于P4中的第3×2n-4+11个位置.答案:6 3×2n-4+1117.(2010年江西卷,理14)将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有种(用数字作答).解析:由题意可知,分成4组共有种分法,故不同的分配方案有=1080(种).答案:1080。
排列组合总结(含答案)
1.(站队模型)4男3女站成一排:①女生相邻;5353A A ⋅②女生不相邻;4345A A ⋅③女生从高到低排;47A④甲不在排头,乙不在排尾;解析:当甲在排尾时有66A ;当甲不在排尾时有115555A A A ⋅⋅2.(组数模型)由0到9这10个数字组成没有重复数字的四位数: ①奇数;末位有112588A A A②偶数;解析:末位为0,有39A ;末位不为0,有112488A A A ⋅⋅③被5整除的数;解析:末位为0,有49A ;末位为5,有1288A A ⋅④比3257大的数; 解析:首位为4到9时有396A ;首位为3时281749A ⎧⎪⎧⎨⎪⎨⎪⎪⎩⎩百位为到时有6十位为6到9时有4A 百位为2时十位为5时有2 ⑤被3整除的三位数.12333311123322111333332A A A C C C A C C C A ⎧⋅+⎪⎧⋅⋅⋅⎨⎪⎨⎪⋅⋅⋅⎪⎩⎩都从一个集合中选时有含0时有各选一个时有不含0时有3.(分组分配问题)6个不同的小球:①放入三个不同的盒子;解析:63②放入三个不同的盒子,每盒不空;解析:4363321363132226426222:A C C C A C C C ⎧⎪⋅⋅⋅⎨⎪=++⋅⋅⎩6=4+1+1:有C 6=3+2+1:有有③分三组(堆),每组至少一个;解析:41162122321631222642336222:C C A C C C C C C A ⎧⋅⋅⎪⎪⎪⋅⋅⎨⎪⋅⋅⎪=++⎪⎩C 6=4+1+1:有6=3+2+1:有有4.6个相同的小球:①放入三个不同的盒子;解析:相当于分名额,盒子可空:插板法:28C ②放入三个不同的盒子,每盒不空;25C ③恰有一个空盒.解析:相当于两个盒子不空:1253C C ⋅5.6名同学报名三科竞赛:①每人限报一科;63②每科限报一人;366.(选派问题)5男3女:①选2人开会;28C②选正副班长,至少1女;2285A A - ③选4人开会,至多2男;解析:即至少2女,22313535C C C C ⋅+⋅④选4人跑4×100接力,至少2女.解析:()2231435354C C C C A ⋅+⋅⋅。
(三年模拟一年创新)2016届高考数学复习 第十章 第一节 排列与组合 理
第一节排列与组合A组专项基础测试三年模拟精选一.选择题1.(2015·山东滨州模拟)七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙,丙两位同学要站在一起,则不同排法有( )A.240种B.192种C.120种D.96种解析分三步:先排甲,有一种方法;再排乙.丙,排在甲左边或右边各有4种方法;再排其余4人,有A44种方法,故共有2×4×A44=192(种).故选B.答案 B2.(2015·河南信阳模拟)某学校安排甲.乙.丙.丁四位同学参加数学.物理.化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲.乙不能参加同一学科,则不同安排方法有( )A.36种B.30种C.24种D.6种解析从4人中选出两个人作为一个元素有C24种方法,同其他两个元素在三个位置上排列C24A33=36,其中有不符合条件,即学生甲,乙同时参加同一学科竞赛有A33种结果,∴不同参赛方案共有36-6=30,故选B.答案 B二.填空题3.(2015·衡水模拟)20个不加区别小球放入1号,2号,3号三个盒子中,要求每个盒内球数不小于它编号数,则不同放法种数为________.解析先在编号为2,3盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共有C216=120(种)方法.答案1204.(2014·陕西西安二模)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲.乙.丙三人中产生,最后一棒火炬手只能从甲.乙两人中产生,则不同传递方法共有________种(用数字作答).解析甲传第一棒,乙传最后一棒,共有A44种方法.乙传第一棒,甲传最后一棒,共有A44种方法.丙传第一棒,共有C12·A44种方法.由分类加法计数原理得,共有A44+A44+C12·A44=96种方法.答案96一年创新演练5.某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中五名同学打算参加“春晖文学社”“舞者轮滑俱乐部”“篮球之家”“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同参加方法种数为( )A.72B.108C.180D.216解析设五名同学分别为甲.乙.丙.丁.戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:①从乙.丙.丁.戊中选一人(如乙)参加“围棋苑”,有C14种方法,然后从甲与丙.丁.戊共4人中选2人(如丙.丁)并成一组与甲.戊分别分配到其他三个社团中,有C24A33种方法,这时共有C14C24A33种参加方法.②从乙.丙.丁.戊中选2人(如乙.丙)参加“围棋苑”,有C24种方法,甲与丁.戊分配到其他三个社团中有A33种方法,这时共有C24A33种参加方法.综合①②,共有C14C24A33+C24A33=180种参加方法.答案 C6.某大学8名同学准备拼车去旅游,其中大一.大二.大三.大四每个年级各两名,分乘甲.乙两辆汽车.每车限坐4名同学(乘同一辆车4名同学不考虑位置),其中大一孪生姐妹需乘同一辆车,则乘坐甲车4名同学恰有2名同学是来自于同一年级乘坐方式共有( ) A.24种 B.18种 C.48种 D.36种解析若大一孪生姐妹乘坐甲车,则此时甲车中另外2人分别来自不同年级,有C23C12C12=12种;若大一孪生姐妹不乘坐甲车,则2名同学来自一个年级,另外2名分别来自两个年级,有C13C12C12=12种.所以共有24种乘车方式,选A.答案 AB组专项提升测试三年模拟精选一.选择题7.(2015·威海期末)从0,1,2,3,4,5六个数字中任取两个奇数和两个偶数,组成没有重复数字四位奇数,有多少种取法( )A.72B.84C.144D.180解析若不选0,则有C23C12A33=36,若选0,则有C12C23C12C12A22=48,所以共有48+36=84种,所以选B.答案 B二.填空题8.(2014·天津模拟)从-3,-2,-1,0,1,2,3,4八个数字中任取3个不同数字作为二次函数y=ax2+bx+c系数a,b,c取值,则共能组成________个不同二次函数.解析a,b,c中不含0时,有A37个;由于a≠0,当b.c中含有0时,有2A27(个).故共有A37+2A27=294(个)不同二次函数.答案2949.(2014·潍坊检测)张.王两家夫妇各带1个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人入园顺序排法种数为________(用数字作答).解析第一步:将两位爸爸排在两端有2种排法;第二步:将两个小孩视作一人与两位妈妈任意排在中间三个位置上有A33种排法;第三步,将两个小孩排序有2种排法.故总排法有2×2×A33=24(种).答案24三.解答题10.(2014·苏州调研)已知10件不同产品中有4件次品,现对它们一一测度,直至找到所有4件次品为止.(1)若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有多少种不同测试方法?(2)若至多测试6次就能找到所有4件次品,则共有多少种不同测试方法?解(1)若恰在第2次测试时,才测到第一件次品,第8次才找到最后一件次品,若是不放回地逐个抽取测试,第2次测到第一件次品有4种方法;第8次测到最后一件次品有3种方法;第3至第7次抽取测到最后两件次品共有A25种方法;剩余4次抽到是正品,共有A24A25A46=86 400种抽法.(2)检测4次可测出4件次品,不同测试方法有A44种,检测5次可测出4件次品,不同测试方法有4A34A16种;检测6次测出4件次品或6件正品,则不同测试方法共有4A35A26+A66种.由分类计数原理,知满足条件不同测试方法种数为A44+4A34A16+4A35A26+A66=8 520.一年创新演练11.设集合A={1,2,3,4,5,6},B={4,5,6,7,8},则满足S⊆A且S∩B≠∅集合S 个数是( )A.57B.56C.49D.8解析满足S⊆A集合S个数为26=64,满足S⊆A且S∩B=∅集合S个数为23=8,所以集合S个数是64-8=56.答案 B。
2023年高考数学真题分训练 排列组合、二项式定理(理)(含答案含解析)
专题 30 排列组合、二项式定理(理)年 份题号 考 点考 查 内 容2011 理 8 二项式定理 二项式定理的应用,常数项的计算 2023 理 2排列与组合 简单组合问题卷 1 理 9 二项式定理 二项式定理的应用以及组合数的计算 2023卷 2理 5 二项式定理 二项式定理的应用 卷 1 理 13 二项式定理 二项式展开式系数的计算2023卷 2 理 13 二项式定理 二项式展开式系数的计算 卷 1 理 10 二项式定理 三项式展开式系数的计算2023卷 2 理 15 二项式定理 二项式定理的应用卷 1 理 14 二项式定理 二项式展开式指定项系数的计算 卷 2 理 5 排列与组合 计数原理、组合数的计算2023卷 3理 12 排列与组合 计数原理的应用 卷 1 理 6 二项式定理 二项式展开式系数的计算 卷 2 理 6 排列与组合 排列组合问题的解法2023卷 3理 4 二项式定理 二项式展开式系数的计算 卷 1 理 15 排列与组合 排列组合问题的解法2023 卷 3 理 5 二项式定理 二项式展开式指定项系数的计算2023卷 3 理 4 二项式定理 利用展开式通项公式求展开式指定项的系数 卷 1 理 8 二项式定理 利用展开式通项公式求展开式指定项的系数2023 卷 3理 14二项式定理利用展开式通项公式求展开式常数项考点出现频率2023 年预测考点 102 两个计数原理的应用 23 次考 2 次 考点 103 排列问题的求解 23 次考 0 次 考点 104 组合问题的求解23 次考 4 次 考点 105 排列与组合的综合应用 23 次考 2 次 考点 106 二项式定理23 次考 11 次命题角度:(1)分类加法计数原理;(2)分步乘法计数原 理;(3)两个计数原理的综合应用.核心素养:数学建模、数学运算考点102 两个计数原理的应用1.(2023 全国II 理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24 B.18 C.12 D.9(答案)B(解析)由题意可知E →F 有6 种走法,F →G 有3 种走法,由乘法计数原理知,共有6 ⨯ 3 = 18 种走法,应选B.2.(2023 新课标理1 理)4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.18B.3824 - 2 7C.58D.78(答案)D(解析)P ==.24 83.(2023 湖北理)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249 等.显然2位回文数有9 个:11,22,33,…,99.3 位回文数有90 个:101,111,121,…,191,202,…,999.则(Ⅰ)4 位回文数有个;(Ⅱ) 2n +1 (n ∈N+) 位回文数有个.(解析)(Ⅰ)4 位回文数只用排列前面两位数字,后面数字就可以确定,但是第—位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4 位回文数有9 ⨯10 = 90 种.答案:90(Ⅱ)解法一:由上面多组数据研究发觉,2n +1 位回文数和2n + 2 位回文数的个数相同,所以可以算出2n + 2位回文数的个数.2n + 2 位回文数只用看前n +1位的排列情况,第—位不能为0 有9 种情况,后面n 项每项有10 种情况,所以个数为9 ⨯10n .解法二:可以看出2 位数有9 个回文数,3 位数90 个回文数。
三年高考:数学(理)真题分项版解析—— 专题11 排列组合、二项式定理
三年高考(2019-2019)数学(理)试题分项版解析第十一章 排列、组合、二项式定理一、选择题1. 【2019高考新课标2理数】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )(A )24 (B )18 (C )12 (D )9 【答案】B 【解析】试题分析:由题意,小明从街道的E 处出发到F 处最短有24C 条路,再从F 处到G 处最短共有13C 条路,则小明到老年公寓可以选择的最短路径条数为214318C C ⋅=条,故选B.考点: 计数原理、组合.【名师点睛】分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.2. 【2019年高考四川理数】设i 为虚数单位,则6()x i +的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4 【答案】A考点:二项展开式,复数的运算.【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式6()x i +的展开式可以改为6()i x +,则其通项为66r r r C i x -,即含4x 的项为46444615C i x x -=-.3. 【2019高考广东卷.理.8】设集合(){}{}12345,,,,1,0,1,1,2,3,4,5i A x x x x x x i =∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A .60B .90C .120D .130 【答案】D【考点定位】本题考查分类计数原理,属于拔高题【名师点晴】本题主要考查的是分类计数原理,属于难题.解题时一定要注意选出的元素是否与顺序有关,否则很容易出现错误.利用排列组合计数时,关键是正确进行分类和分步,分类时要做到不重不漏,防止出现错误.4. 【 2019湖南4】5122x y ⎛⎫- ⎪⎝⎭的展开式中32y x 的系数是( ) A.20- B.5- C.5 D.20 【答案】A【解析】根据二项式定理可得第1n +项展开式为()55122nn n C x y -⎛⎫- ⎪⎝⎭,则2n =时,()()2532351*********n n n C x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,所以23x y 的系数为20-,故选A. 【考点定位】二项式定理【名师点睛】本题主要考查的是二项式定理,属于容易题,解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n a b -+T =,然后令n 选取恰当的值得到结果.5. 【2019年高考四川理数】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A )24 (B )48 (C )60 (D )72 【答案】D 【解析】试题分析:由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5中之一,其他位置共有随便排共44A 种可能,所以其中奇数的个数为44372A =,故选D. 考点:排列、组合【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.在本题中,个位是特殊位置,第一步应先安排这个位置,第二步再安排其他四个位置..6. 【2019高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k kk n a b -+T =.7. 【2019高考新课标3理数】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共 有( )(A )18个 (B )16个(C )14个(D )12个【答案】C 【解析】试题分析:由题意,得必有10a =,81a =,则具体的排法列表如下:【方法点拨】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.8. 【2019四川,理2】在6(1)x x +的展开式中,含3x 项的系数为( )A .30B .20C .15D .10 【答案】C 【解析】试题分析:623456(1)(161520156)x x x x x x x x x +=++++++,所以含3x 项的系数为15.选C【考点定位】二项式定理.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.10. 【2019四川,理6】六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种 【答案】B 【解析】试题分析:最左端排甲,有5!120=种排法;最左端排乙,有44!96⨯=种排法,共有12096216+=种排法.选B.【考点定位】排列组合.【名师点睛】涉及排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.11. 【2019高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个 【答案】B【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.12.【2019高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.14. 【2019年.浙江卷.理5】在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( ) A.45 B.60 C.120 D. 210 答案:C 解析:由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C考点:二项式系数.【名师点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.求二项展开式中的项的方法:求二项展开式的特定项问题,实质是考查通项1kn kk k n T C ab -+=的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k的取值范围(k =0,1,2,…,n).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程;(3)有理项:令通项中“变元”的幂指数为整数建立方程.特定项的系数问题及相关参数值的求解等都可依据上述方法求解.15.【2019高考重庆理第9题】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168 【答案】B考点:1、分类加法计数原理;2、排列.【名师点睛】本题考查了综合应用排列与组合知识解决实际的计数问题,属于中档题目,根据条件将分类,然后用分类计数原获得结果.16. 【2019湖北卷2】若二项式7)2(x a x +的展开式中31x的系数是84,则实数=a ( ) A.2 B. 54 C. 1 D. 42【答案】C 【解析】试题分析:因为r r r r rrrx a C xa x C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得1=a ,故选C.考点:二项式定理的通项公式,容易题.【名师点睛】本题考查了二项式定理的运用,其解题的关键是根据已知建立方程关系,属容易题.充分体现了方程思想在数学解题中的应用,能较好的考查学生对教材中的基本概念、基本规律和基本操作的识记能力和运算能力.17. 【2019高考湖北,理3】已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A.122 B .112 C .102 D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.【考点定位】二项式系数,二项式系数和.【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:n n n n n n C C C C 2210=+⋅⋅⋅+++,奇数项的二项式系数和与偶数项的二项式系数和相等=⋅⋅⋅++++420n n n C C C 15312-=⋅⋅⋅++++n n n n C C C .18. 【2019辽宁理6】把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .24 【答案】C考点:排列组合.【名师点睛】本题考查简单排列组合应用问题.从近几年高考对这部分内容的考查看,基本是排列与组合相结合,多可以结合图表分析解题途径.本题首先将座位编号,分析任何两人都不相邻的情况,再安排人员就坐,现实背景熟悉,分析形象直观,易于理解.本题是一道基础题,考查排列组合基础知识,同时考查考生的计算能力及分析问题解决问题的能力.19.【2019湖南理2】已知5的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D. 【解析】试题分析:r rr r r x a C T -+-=2551)1(,令1=r ,可得6305-=⇒=-a a ,故选D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r n r b a C T -+=1,即可建立关于a 的方程,从而求解.二、填空题 1. 【2019年高考北京理数】在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 【答案】60. 【解析】试题分析:根据二项展开的通项公式16(2)r r r r T C x +=-可知,2x 的系数为226(2)60C -=,故填:60. 考点:二项式定理.【名师点睛】1.所谓二项展开式的特定项,是指展开式中的某一项,如第n 项、常数项、有理项、字母指数为某些特殊值的项.求解时,先准确写出通项r rn rn r b aC T -+=1,再把系数与字母分离出来(注意符号),根据题目中所指定的字母的指数所具有的特征,列出方程或不等式来求解即可;2、求有理项时要注意运用整除的性质,同时应注意结合n 的范围分析.2.【2019高考新课标1卷】5(2x +的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10考点:二项式定理3. 【2019高考天津理数】281()x x-的展开式中x 2的系数为__________.(用数字作答)【答案】56- 【解析】试题分析:展开式通项为281631881()()(1)rr r r r r r T C x C x x--+=-=-,令1637r -=,3r =,所以7x 的338(1)56C -=-.故答案为56-.考点:二项式定理【名师点睛】1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r );第二步是根据所求的指数,再求所求解的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.4.【2019高考山东理数】若(a x2)5的展开式中x5的系数是—80,则实数a=_______. 【答案】-2【解析】试题分析:因为5102552155()rr r r r rrT C ax C a x---+==,所以由510522r r-=⇒=,因此252 580 2.C a a-=-⇒=-考点:二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项公式,往往是考试的重点.本题难度不大,易于得分.能较好的考查考生的基本运算能力等.5.【2019高考天津,理12】在614xx⎛⎫-⎪⎝⎭的展开式中,2x的系数为 .【答案】15 16【考点定位】二项式定理及二项展开式的通项.【名师点睛】本题主要考查二项式定理及二项展开式的通项的应用.应用二项式定理典型式的通项,求出当2r=时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题.6.【2019高考北京理第12题】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__________.【答案】96【解析】试题分析:连号有4种情况,从4人中挑一人得到连号参观券,其余可以全排列,则不同的分法有4×1343C A=96(种).考点:排列组合.名师点睛:本题考查排列、组合及计数原理有关问题,本题属于中等难度问题,高考每年都会考查这个问题,题目或简或难,由于命题可以很灵活,可以考查简单的计数,也可以考查具体的排列组合基本方法如:相邻问题捆绑法、不邻插空法、分排问题直排法、有序问题用除法、隔板法等,本题为先选后排问题,从4人中挑一人得到连号参观券,其余可以全排列,而得连号有四种可能情况发生,解决这样的问题需要学生不但要有扎实的基本功,还要有分析问题和解决问题的能力.7. 【2019高考北京理第13题】把5件不同产品摆成一排,若产品A 与产品B 相邻, 且产品A 与产品C 不相邻,则不同的摆法有 种. 【答案】36考点:排列组合,容易题.【名师点睛】本题考查排列、组合及计数原理有关问题,本题属于中等难度问题,高考每年都会考查这个问题,题目或简或难,由于命题可以很灵活,可以考查简单的计数,也可以考查具体的排列组合基本方法如:相邻问题捆绑法、不邻插空法、分排问题直排法、有序问题用除法、隔板法等,需要学生不但要有扎实的基本功,还要有分析问题和解决问题的能力.8. 【2019高考北京,理9】在()52x +的展开式中,3x 的系数为.(用数字作答)【答案】40【解析】利用通项公式,5152r r r r T C x -+=⋅,令3r =,得出3x 的系数为325240C ⋅=【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.【名师点睛】本题考查二项式定理,利用通项公式求出指定项的系数,本题属于基础题,要求正确使用通项公式1r n r r r n T C a b -+=,准确计算指定项的系数.9. 【2019高考广东卷.理.11】从0.1.2.3.4.5.6.7.8.9中任取七个不同的数,则这七个数的中位数是6的概率为 . 【答案】16. 【解析】上述十个数中比6小的数有6个,比6大的数有3个,要使得所选的七个数的中位数为6,则应该在比6大的数中选择3个,在比6大的数中也选择3个,因此所求事件的概率为336371016C C P C ==. 【考点定位】本题考查排列组合与古典概型的概率计算,属于能力题.【名师点晴】本题主要考查的是排列组合和古典概型,属于中等题.解题时要抓住重要字眼“中位数是6”,否则很容易出现错误.用排列组合列举基本事件一定要做到不重不漏,防止出现错误.解本题需要掌握的知识点是古典概型概率公式,即()A P A =包含的基本事件的个数基本事件的总数.10. 【2019高考广东,理9】在4)1(-x 的展开式中,x 的系数为 .【答案】6.【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟记二项展开式的通项即展开式的第1r +项为:()*12,r n r rr n T C a b n N n r N -+=∈≥∈且.11. 【2019高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.【解析】依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了24040391560A =⨯=条毕业留言,故应填入1560.【考点定位】排列问题.【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清40人两两彼此给对方仅写一条毕业留言是个排列问题.12.【2019山东.理14】 若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 . 【答案】2【名师点睛】本题考查二项式定理及其通项公式、基本不等式.从近几年高考对二项式定理的考查看,基本是以通项公式为解题的突破口,本题对有理指数幂的运算要求较高,容易出现计算不准而使解答陷入误区.本题是一道小综合题,重点考查二项式定理及其通项公式、基本不等式等基础知识,同时考查考生的计算能力及分析问题解决问题的能力.13.【2019新课标,理13】 ()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 【答案】12【解析】因为10110r r r r T C x a -+=,所以令107r -=,解得3r =,所以373410T C x a ==157x ,解得12a =. 【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的通项公式,属于基础题,利用通项公式写出特定项的系数,是二项式题目的最常见题目.14.【2019高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =. 【考点定位】二项式定理.【名师点睛】本题考查二项式定理,准确写出二项展开式,能正确求出奇数次幂项以及相应的系数和,从而列方程求参数值,属于中档题.15. 【2019高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.16. 【2019高考上海理数】在nx x ⎪⎭⎫⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________. 【答案】112 【解析】 试题分析:因为二项式所有项的二项系数之和为n2,所以n2256=,所以n 8=,二项式展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x --+=-=-,令84r 033-=,得r 2=,所以3T 112=.考点:1.二项式定理;2.二项展开式的系数.【名师点睛】根据二项式展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项式展开式的通项求解. 本题能较好地考查考生的思维能力、基本计算能力等.17. 【2019课标Ⅰ,理13】()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 【答案】20-【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理的应用,考查考生的记忆能力和计算能力.18. 【2019年.浙江卷.理14】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).答案:60解析:不同的获奖分两种,一是有一人获两张将卷,一人获一张,共有223436C A =,二是有三人各获得一张,共有3424A =,因此不同的获奖情况有60种考点:排列组合.【名师点睛】本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要掌握分类讨论的处理方法;解决排列问题的主要方法(1)“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看做一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列.(5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.两类组合问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.19. 【2019高考重庆,理12】53x ⎛ ⎝的展开式中8x 的系数是________(用数字作答). 【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =. 【考点定位】二项式定理【名师点晴】()na b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指k n C ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.20. 【2019,安徽理13】设n a ,0≠是大于1的自然数,na x ⎪⎭⎫⎝⎛+1的展开式为n n x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .【答案】3考点:1.二项展开式的应用.【名师点睛】二项式常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.本题要结合图形给定的条件与二项式展开中各项的表示.21.【2019高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案)【答案】35【解析】由题意,二项式371()x x+展开的通项372141771()()r rr r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =. 【考点定位】1.二项式定理的展开式应用.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.22.【2019高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答) 【答案】80【解析】()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80.【考点定位】二项式定理.【名师点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度. 23.【2019高考江苏卷】(本小题满分10分)(1)求3467–47C C 的值;(2)设m ,n ∈N *,n ≥m ,求证:(m +1)C mm +(m +2)+1C m m +(m +3)+2C m m +…+n –1C m n +(n +1)C mn =(m +1)+2+2C m n .【答案】(1)0(2)详见解析试题解析:解:(1)3467654765474740.3214321C C ⨯⨯⨯⨯⨯-=⨯-⨯=⨯⨯⨯⨯⨯(2)当n m =时,结论显然成立,当n m >时11(1)!(1)!(1)(1)(1),1,2,,.!()!(1)![(k 1)(m 1)]!m m k k k k k k C m m C k m m n m k m m +++⋅++==+=+=++-++-+又因为122112,m m m k k k C C C +++++++=所以2221(1)(1)(),k m 1,m+2,n.m m m k k k k C m C C +++++=+-=+,因此12122222222232432122(1)(2)(3)(n 1)(1)[(2)(3)(n 1)](1)(1)[()()()](1)m m mmm m m nm m mmm m m n m m m m m m m m m m m m n n m n m C m C m C C m C m C m C C m Cm CCCCCCm C +++++++++++++++++++++++++++=+++++++=+++-+-+-=+考点:组合数及其性质【名师点睛】本题从性质上考查组合数性质,从方法上考查利用数学归纳法解决与自然数有关命题,从思想上考查运用算两次解决二项式有关模型. 组合数性质不仅有课本上介绍的111m m m k k k C C C ++++=、=m k mk k C C -,更有11k k n n kC nC --=,现在又有11(1)(m 1),(,1,,)m m k k k C C k m m n +++=+=+,这些性质不需记忆,但需会推导,更需会应用.。
2021版《3年高考2年模拟》高考数学(浙江版理)检测:10.1 排列、组合 Word版含答案
第十章计数原理§10.1排列、组合A组基础题组1.(2021浙江温州一模,3)8名同学和2位老师站成一排合影,2位老师不相邻的排法种数为( )A. B.C. D.2.(2021南昌二模)支配A,B,C,D,E,F六名义工照看甲、乙、丙三位老人,每两位义工照看一位老人.考虑到义工与老人住处距离问题,义工A担忧排照看老人甲,义工B担忧排照看老人乙,支配方法共有( )A.30种B.40种C.42种D.48种3.(2021浙江重点中学协作体摸底)某单位有7个连在一起的车位,现有3辆不同型号的车需要停放,假如要求剩余的4个车位连在一起,则不同的停放方法的种数为( )A.16B.18C.24D.324.(2021浙江调研模拟试卷自选模块三(镇海中学),04(1))4名男生3名女生排成一排,若3名女生需要有2名排在一起,但不能全排在一起,则不同的排法种数为( )A.2880B.3080C.3200D.36005.(2021浙江五校第一次联考)设{a n}是等差数列,从{a1,a2,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列的个数最多为( )A.90B.120C.180D.2006.(2021河南高考适应性测试)3对夫妇去看电影,6个人坐成一排.若女性的邻座只能是其丈夫或其他女性,则坐法的种数为( )A.54B.60C.66D.727.(2022湖北荆门调考,12,5分)含有甲、乙、丙的六位同学站成一排,则甲、乙相邻且甲、丙两人中间恰有两人的站法的种数为( )A.72B.60C.32D.248.(2021浙江诸暨三都综合高中摸底测试)如图,用6种不同的颜色把图中A、B、C、D四块区域涂色,若相邻区域不能涂同一种颜色,则不同的涂法共有( )A.400种B.460种C.480种D.496种9.(2021广东,12,5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)10.(2021浙江重点中学协作体高考摸底)把座位编号为1、2、3、4、5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且某人分得的两张票必需是连号,那么不同的分法种数为.(用数字作答)11.(2021浙江六校联考自选模块,04(1))由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是.12.(2021江苏南京检测,9)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).13.(2021四川南充高三第一次高考适应性考试,13)南充市教科所派出4名调研员到3个县,调研该县的高三复习备考状况,要求每个县至少一名,则不同的安排方案有种.14.(2021河南洛阳模拟,18,12分)有5个同学排队,问:(1)甲、乙2个同学必需相邻的排法有多少种?(2)甲、乙、丙3个同学互不相邻的排法有多少种?(3)乙不能站在甲前面,丙不能站在乙前面的排法有多少种?(4)甲不站在中间位置,乙不站在两端的排法有多少种?15.(2021河北石家庄第一次调研,19,12分)某医科高校的同学中,有男生12名、女生8名在某市人民医院实习,现从中选派5名同学参与青年志愿者医疗队.(1)某男生甲与某女生乙必需参与,共有多少种不同的选法?(2)甲、乙均不能参与,有多少种选法?(3)甲、乙二人至少有一人参与,有多少种选法?(4)医疗队中男生和女生都至少有一名,有多少种选法?B组提升题组1.(2021湖北七市4月联考)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机预备着舰,假如甲、乙两机必需相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法种数为( )A.12B.18C.24D.482.(2021济南模拟)将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两个端点异色,若只有4种颜色可供使用,则不同的染色方法总数有( )A.48种B.72种C.96种D.108种3.(2021兰州双基)从6名男医生、5名女医生中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.60种B.70种C.75种D.150种4.(2021贵州遵义模拟)从6名同学中选3名分别担当数学、物理、化学科代表,若甲、乙2人至少有1人入选,则不同的选法有( )A.40种B.60种C.96种D.120种5.(2021浙江调研模拟试卷自选模块四(绍兴一中),04(1))书架上有不同的数学书与不同的外文书共7本,若取2本数学书,1本外文书借给3位同学,每人一本,共有72种不同的借法,则数学书与外文书的本数分别为( )A.4,3B.3,4C.5,2D.2,56.(2021浙江台州质检,8)从1,2,3,4,5这五个数字中任取3个组成无重复数字的三位数,当三个数字中有2和3时,2需排在3的前面(不肯定相邻),这样的三位数有( )A.51个B.54个C.12个D.45个7.(2022山西八校联考,7,5分)某班班会预备从甲、乙等7名同学中选派4名进行发言,要求甲、乙两人至少有一人参与.当甲、乙同时参与时,他们两人的发言不能相邻.那么不同的发言挨次的种数为( )A.360B.520C.600D.7208.(2021浙江金华调研,6)将A,B,C,D,E排成一列,要求A,B,C在排列中挨次为“A,B,C”或“C,B,A”(可以不相邻),这样的排列数有( )A.12种B.20种C.40种D.60种9.(2021洛阳期末)将5名实习老师安排到4个班级任课,每班至少1人,则不同的安排方案有种.(用数字作答)10.(2022广东八市联考,16,5分)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为.11.(2021浙江名校(金华一中)沟通卷自选模块(六),04(2))某同学期望参与某6所高校中的3所学校的自主招生考试,其中甲、乙两所学校的考试时间相同,因此该同学不能同时报考甲、乙这两所学校,则该同学不同的报考方法种数是(用数字作答).12.(2021北京海淀二模,10)某运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有种不同的抽调方法.13.(2021浙江调研模拟试卷自选模块一(诸暨中学),04(2))A,B,C,D,E,F六位同学和一位数学老师站成一排合影留念,数学老师穿白色文化衫,A,B和C,D分别穿白色和黑色文化衫,E和F分别穿红色和橙色文化衫.若老师站中间,穿着相同颜色文化衫的都不相邻,则不同的站法种数为.14.(2021河南郑州检测,20,12分)有5名男生和3名女生,从中选出5人担当5门不同学科的课代表,分别求符合下列条件的选法数:(1)有女生但人数必需少于男生;(2)某女生肯定要担当语文课代表;(3)某男生必需包括在内,但不担当数学课代表; (4)某女生肯定要担当语文课代表,某男生必需担当课代表,但不但任数学课代表.15.(2021河北唐山模拟,19,12分)某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必需在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?A组基础题组1.A 不相邻问题用插空法,8名同学先排有种排法,产生9个空,2位老师插空有种排法,所以共有·种排法.故选A.2.C 当B照看老人甲时,有=24种支配方法;当B照看老人丙时,有=18种支配方法,所以一共有42种支配方法,故选C.3.C 先排3辆需要停的车有种,排完后有4个空,把4个剩余的车位捆在一起,选一个空放有种,所以共有=24(种).故选C.4.A 不同的排法种数为=2880.5.C 本题难点在于对题意的理解,不妨从特殊状况入手:当取到a1时,由于{a n}是等差数列,所以第三个数只能从{a3,a5,…,a19}共9个中选择,而其次个数由一,三两个数唯一确定;同理,当取到a2时,由于{a n}是等差数列,所以第三个数只能从{a4,a6,…,a20}共9个中选择;同理,当取到的是a3,a4时有8个数列,……,当取到的是a17,a18时有1个,所以共有2××9=90个.又由于交换挨次也可以,所以总共有180个.6.B 当女性有3人相邻时,有2(+1)=36种坐法;当女性只有2人相邻时,有2(1+1)=24种坐法,所以共有36+24=60种坐法,故选B.7.B 由题意知关于甲、乙、丙三人的相对位置共有以下几种站法:乙甲□□丙,丙□□甲乙,甲乙□丙,丙□乙甲,再加上其余三人,站法共有2+2(++)=60种.8.C 从A开头,A有6种方法,B有5种,C有4种,D、A同色有1种,D、A不同色有3种,∴不同的涂法共有6×5×4×(1+3)=480种,故选C.9.答案1560解析∵同学之间两两彼此给对方仅写一条毕业留言,且全班共有40人,∴全班共写了40×39=1560条毕业留言.10.答案96解析共有=96种分法.11.答案108解析先选一个偶数字排在个位,有3种选法;①若5在十位或十万位,则1、3有三个位置可排,有2=24个,②若5排在百位、千位或万位,则1、3只有两个位置可排,有3=12个.算上个位为偶数的排法,共有3×(24+12)=108个.12.答案336解析3个人各站一级台阶有=210种站法;3个人中有2个人站在一级,另一人站在另一级,有=126种站法,共有210+126=336种站法.13.答案36解析依据题意可得有·=36种不同的安排方案,故答案为36.14.解析(1)(捆绑法)先排甲、乙,有种排法,再与其他3名同学排列,共有·=48(种)不同排法.(2)(插空法)先排其他的2名同学,有种排法,消灭3个空,将甲、乙、丙插空,所以共有·=12(种)排法.(3)这是挨次肯定问题,由于乙不能站在甲前面,丙不能站在乙前面,故3人只能按甲、乙、丙这一种挨次排列. 解法一:5人的全排列共有种排法,甲、乙、丙3人全排列有种排法,而3人按甲、乙、丙挨次排列是全排列中的一种,所以共有=20(种)排法;解法二(插空法):先排甲、乙、丙3人,只有一种排法,然后插入1人到甲、乙、丙中,有4种插法,再插入1人,有5种插法,故共有4×5=20(种)排法.(4)(间接法)5个人的全排列有种,其中甲站在中间有种排法,乙站在两端时有2种排法,甲站在中间同时乙站在两端时有2种排法,所以一共有--2+2=60(种)排法.15.解析(1)只需从其他18人中选3人即可,共有=816(种).(2)只需从其他18人中选5人即可,共有=8568(种).(3)分两类:甲、乙中只有一人参与,则有·种选法;甲、乙两人都参与,则有种选法.故共有·+=6936(种).(4)解法一(直接法):男生和女生都至少有一名的选法可分为四类:1男4女;2男3女;3男2女;4男1女.所以共有·+·+·+·=14656(种). 解法二(间接法):由总数中减去5名都是男生和5名都是女生的选法种数,得-(+)=14656(种).B组提升题组1.C 把甲、乙看作1个元素和除甲,乙,丙,丁外的1架飞机全排列,共有=4种方法;再把丙、丁插入到刚才“两个”元素排列产生的3个空位中,有=6种方法,由分步计数原理可得总的方法种数为4×6=24.2.B 如图所示,若点B与D处所染颜色相同,则不同的染色方法有4×3×2×2=48种;若点B与D处所染颜色不相同,则不同的染色方法有4×3×2×1×1=24种.由分类加法计数原理可知不同的染色方法总数为48+24=72种.3.C 从6名男医生中选出2名有=15种不同的选法,从5名女医生中选出1名有=5种不同的选法,依据分步乘法计数原理可得,组成的医疗小组共有15×5=75种不同的选法,故选C.4.C 从6名同学中选3名分别担当数学、物理、化学科代表,没有限制条件时共有=120种选法,甲、乙都没入选相当于从4人中选3人,有=24种选法,故甲、乙2人至少有1人入选的不同的选法有120-24=96种.故选C.5.B 设数学书有n本,则有=72,∴n(n-1)(7-n)=24,检验知B符合.6.A 分三类:第一类,没有2,3,由其他三个数字组成三位数,有=6(个);其次类:只有2或3,需从1,4,5中选两个数字,可组成2=36(个);第三类:2,3均有,再从1,4,5中选一个,由于2需排在3的前面,所以可组成=9(个).故这样的三位数共有51个,故选A.7.C 当甲、乙只有一人参与时,不同的发言挨次的种数为2=480,当甲、乙同时参与时,不同的发言挨次的种数为=120,则不同的发言挨次的种数为480+120=600,故选C.8.C (消序法)五个元素没有限制全排列数为,由于要求A,B,C的次序肯定(按A,B,C或C,B,A),故排列数有×2=40(种).9.答案240解析依题意,满足题意的不同安排方案共有=240种.10.答案472解析分两种状况:(1)不取红色卡片,有(-3)种.(2)取红色卡片1张,有种.所以不同的取法有-3+=472种.11.答案16解析该同学甲、乙这两所学校都不报考,有=4种报考方法;该同学报考甲、乙这两所学校中的一所,有=12种报考方法.故该同学不同的报考方法种数是16.12.答案84解析解法一(分类法):在每个车队抽调1辆车的基础上,还需抽调3辆车.可分成三类:一类是从某1个车队抽调3辆,有种,一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有种;一类是从3个车队中各抽调1辆,有种.故共有++=84(种)抽调方法.解法二(隔板法):由于每个车队的车辆均多于4辆,所以只需将10个份额分成7份.可将10个小球排成一排,在相互之间的9个空中插入6个隔板,即可将小球分成7份,故共有=84(种)抽调方法.13.答案160解析按先排白色,再排黑色,最终排红色和橙色的挨次进行,白色分下面4种状况:白白白此时两个黑色有-1种位置;白白白此时两个黑色有-2种位置;白白白此时两个黑色有种位置;白白白此时两个黑色有-1种位置.所以共有(4-4)=160种排法.14.解析(1)先选后排.符合条件的课代表人员的选法有(+)种,排列方法有种,所以满足题意的选法有(+)·=5400(种).(2)除去该女生后,相当于选择剩余的7名同学担当四科的课代表,有=840(种)选法.(3)先选后排,从剩余的7名同学中选出4名有种选法,排列方法有种,所以选法共有=3360(种).(4)先从除去该男生和该女生的6人中选出3人,有种选法,该男生的支配方法有种,其余3人全排列,有种,因此满足题意的选法共有=360(种).15.解析(1)从余下的34种商品中,选取2种有=561(种),∴某一种假货必需在内的不同取法有561种.(2)从34种可选商品中,选取3种,有=5984(种)或者-==5984(种),∴某一种假货不能在内的不同取法有5984种.(3)从20种真货中选取1种,从15种假货中选取2种,有=2100(种).∴恰有2种假货在内的不同的取法有2100种.(4)选取2种假货有种,选取3种假货有种,共有选取方式+=2100+455=2555(种).∴至少有2种假货在内的不同的取法有2555种.(5)解法一(直接法):有2种假货在内,不同的取法有种;有1种假货在内,不同的取法有种;没有假货在内,有种,因此共有选取方式++=6090(种).解法二(间接法):选取3种假货的种数为,因此共有选取方式-=6545-455=6090(种).∴至多有2种假货在内的不同的取法有6090种.。
高三数学复习排列与组合(含答案)
排列与组合1.排列与组合最根本的区别在于“有序”和“无序”。
取出元素后交换顺序,如果与顺序有关,则是排列;如果与顺序无关,则是组合。
2.排列、组合问题的求解方法与技巧①特殊元素优先安排;②合理分类与准确分步;③排列、组合混合问题要先选后排;④相邻问题捆绑处理;⑤不相邻问题插空处理;⑥定序问题倍缩法处理;⑦分排问题直排处理;⑧“小集团”排列问题先整体后局部;⑨构造模型;⑩正难则反,等价转化。
一、走进教材1.用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为()2.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A.18 B.24二、走近高考3.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种4.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成________个没有重复数字的四位数。
(用数字作答)三、走出误区微提醒:①分类不清导致出错;②相邻元素看成一个整体,不相邻问题采用插空法是解决相邻与不相邻问题的基本方法。
5.从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装计算机和组装计算机各2台,则不同的取法有________种。
6.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种。
考点一简单的排列问题【例1】有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数。
(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻。
【变式训练】(1)某国际会议结束后,中、美、俄等21国领导人合影留念,他们站成两排,前排11人,后排10人,中国领导人站在前排正中间位置,美、俄两国领导人也站前排并与中国领导人相邻,如果对其他国家领导人所站位置不做要求,那么不同的站法共有()A.A1818种B.A2020种C.A23A318A1010种D.A22A1818种(2)甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则不同的坐法有()A.10种B.16种C.20种D.24种考点二组合问题【例2】(1)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种。
高考数学专题《排列与组合》习题含答案解析
专题11.2 排列与组合1.(2021·福建宁德·高三期中)三名学生报名参加校园文化活动,活动共有三个项目,每人限报其中一项,则恰有两名学生报同一项目的报名方法种数有( ) A .6种 B .9种 C .18种 D .36种【答案】C 【分析】根据题意首先从三名学生中选2名选报同一项目,再从三个项目中选2项项目,全排即可. 【详解】由题意可得22233233218C C A ⋅⋅=⨯⨯=,故选:C2.(2021·山东潍坊·高三月考)甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军”,对乙说:“你不会是最差的”,从这两个回答分析,这5人的名次排列所有可能的情况共有( ) A .18种 B .36种 C .54种 D .72种【答案】C 【分析】甲、乙不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有可能是第二、三、四名3种情况;再排甲,也有3种情况;余下的问题是三个元素在三个位置全排列,根据分步计数原理即可得到结果. 【详解】由题意得:甲、乙都不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有可能是第二、三、四名3种情况;再排甲,也有3种情况;余下3人有33A 种排法.故共有33333332154A ⨯⨯=⨯⨯⨯⨯=种不同的情况.故选:C.3.(2021·全国·高三月考(理))某地计划在10月18日至11月18日举办“菊花花会”,如图是某展区的一个菊花布局图,现有5个不同品种的菊花可供选择摆放,要求相邻的两个展区不使用同一种菊花,则不同的布置方法有( )练基础A .240种B .300种C .360种D .420种【答案】D 【分析】先放A ,分B 、D 选则同一种花和不同种花两种情况,再考虑C 、E ,由分步乘法和分类加法原理可得答案. 【详解】先放A ,共有5种选择,若B 、D 选则同一种花,有四种选择,剩下的C 、E 均有三种选择,共5433180⨯⨯⨯=种,若B 、D 选则不同种花,有24A 种选择,剩下的C 、E 均有两种选择,共245A 22240⨯⨯⨯=种,故共有180+240=420种. 故选:D.4.(2021·全国·高二课时练习)某工程队有卡车、挖掘机、吊车、混凝土搅拌车各一辆,将它们全部派往3个工地进行作业,每个工地至少派一辆,则不同的派法种数是( ) A .18 B .9 C .27 D .36【答案】D 【分析】利用捆绑法,先把4辆车分成3组,再把分好的3组分别派给3个工地,即可得到答案; 【详解】先把4辆车分成3组,再把分好的3组分别派给3个工地,则不同的派法共有2343C A 36=(种).故选:D5.(2021·浙江·模拟预测)若从1,2,3,9,这个9个整数中取出4个不同的数排成一排,依次记为a b c d ,,,,则使得a b c d ⨯⨯+为偶数的不同排列方法有( ) A .1224 B .1200 C .1080 D .840【答案】A 【分析】考虑d 为偶数和d 为奇数两种情况,判断a b c ⨯⨯的奇偶性,根据,,a b c 中偶数的个数计算得到答案. 【详解】d 为偶数,则a b c ⨯⨯为偶数,有11221334353533()1104C C C C C C A ++=; d 为奇数,则a b c ⨯⨯为奇数,四个数均为奇数,有45120A =.故共有1224种. 故选:A.6.(2021·福建省漳州第一中学高二月考)将7个相同的球放入4个不同的盒子中,则每个盒子都有球的放法种数为( ) A .22 B .25 C .20 D .48【答案】C 【分析】将7个相同的球放入4个不同的盒子中,即把7个相同的球分成4组,不妨将7个球摆成一排,中间形成6个空,只需在这6个空插入3个隔板将它们隔开,即分成4组,据此即可的解. 【详解】解:将7个相同的球放入4个不同的盒子中,即把7个相同的球分成4组, 因为每个盒子都有球,所以每个盒子至少又一个球,不妨将7个球摆成一排,中间形成6个空,只需在这6个空插入3个隔板将它们隔开,即分成4组,不同插入方法共有3620C =种,所以每个盒子都有球的放法种数为20. 故选:C.7.【多选题】(2021·福建省漳州第一中学高二月考)男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( ) A .1人 B .2人 C .3人 D .4人【答案】BC 【分析】设女生有n 人,则男生有8-n 人,由21830n n C C -⋅=求解.设女生有n 人,则男生有8-n 人, 由题意得:21830n n C C -⋅=, 即()()87302n n n --⋅=,解得2n =或3n =, 故选:BC8.(2021·上海·闵行中学高三期中)从4男2女六名航天员中选出三名作为神舟十四号乘组,则恰好有一名女航天员被选中的选法有______种.(用数字作答) 【答案】12 【分析】利用组合数来计算出选法数. 【详解】依题意可知,选法有214212C C =种.故答案为:129.(2020·新疆·克拉玛依市教育研究所三模(理))新型冠状肺炎疫情发生后,新疆某医院有2名医生,4名护士自愿报名参加援助武汉医疗队,现要将这6名医护人员分成2个小组,分别安排到武汉市的两所方舱医院参加医疗救助活动,每个小组由1名医生和2名护士组成,不同的安排方案共有_________种.(用数字作答) 【答案】12 【分析】先从2名医生中选1名去一所方舱医院,再从4名护士选2名护士去同一所方舱医院,利用分步乘法计数原理即可求出. 【详解】先从2名医生中选1名去一所方舱医院,有122C =种,再从4名护士选2名护士去同一所方舱医院,有246C =种,剩下的1名医生2名护士去另一所方舱医院,则不同的安排方案共有2612⨯=种.故答案为:12.10.(2021·全国·高二课时练习)求下列各式中的正整数n :(1)33210n n A A =;(2)101098765nA =⨯⨯⨯⨯⨯.【答案】 (1)8n = (2)6(1)根据排列数公式列出方程即可求解;(2)根据排列数公式列出方程即可求解; (1)解:因为33210n n A A =,所以()()()()221221012n n n n n n ⨯-⨯-=⨯⨯-⨯-,解得8n =;(2)解:因为101098765nA =⨯⨯⨯⨯⨯,又()10109101n A n =⨯⨯⨯-+,所以1015n -+=,解得6n =.1.(2020·上海市沪新中学高三月考)某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为________(结果用数值表示) 【答案】180 【分析】利用组合和排列的含义分别求出从6名学生中选出四名且甲必须参赛和甲不担任四辩的情况种数,然后按照分步乘法原理计算即可. 【详解】首先从6名学生中选出四名且甲必须参赛共有35C 种情况, 甲不担任四辩的情况共有333A 种,故不同的安排方法种数为33533180C A ⋅=.故答案为:180.2.(2018·浙江·绍兴市柯桥区教师发展中心高三学业考试)为宣传地方特色,某电视台派出3名男记者和2名女记者到民间进行采访.期间工作的任务有A ,B ,C ,D 四项,每项任务至少一人参加,但两名女记者不参加A 任务,则不同的安排方案数共有_______. 【答案】126 【分析】采用分类计数原理,排列组合进行计算可得. 【详解】两名女记者不参加A 任务,由题意分两类情况: ①1男参加A 任务;②2男参加A 任务,其余人员再排列;即:①1男参加A 任务,将3男选1排在A 任务,再将剩下4人选两人打捆,再排在其它3项任务,即11233143108C A C A =种.②2男参加A 任务,将3男选2人排在A 任务,再将剩下的人排在其它3项任务,练提升即233318C A =种,所以选出符合条件参加活动的人员共有: 108+18= 126种, 故答案为: 126种3.(2021·全国·高三月考)某学校安排甲,乙等5位中层干部深入4个班级进行班级课堂教学调研,每班至少安排一位中层干部,若甲、乙不能安排到同一个班级,则不同的安排方法共有______________________种(用数字作答). 【答案】216 【分析】先将5位中层干部分成4组,有1组2人其他3组各1人,除去甲、乙分在一起的情况,所以分组结果有25C 19-=种,再分配到4个班级,由分步乘法计数原理即可求解. 【详解】首先把5位中层干部分成4组,有1组2人其他3组各1人.又甲、乙不能分在一起, 因此有25C 19-=种,再对分好的4组分配到4个班级有44A 24=种,根据分步乘法原理得:924216⨯=种, 故答案为:216.4.利用组合数公式证明111m m m n n n C C C ++++=.【答案】证明见解析 【分析】利用组合数公式分别计算等式左右两边即可证明. 【详解】证明:因为()11(1)!1!()!m n n C m n m +++=+-,()()()1!11!!!(1)!(1)!!()!(1)!()!(1)!()!m mn n n n m m n n n C C n m m m n m m n m m n m +⎡⎤-+++⎣⎦++==--+-+--=+, 所以111m m m nn n C C C ++++=.5.(2021·全国·高二课时练习) 把分别标有1,2,3,4号的4个不同的小球放入3个分别标有1号、2号、3号的盒子中,不许有空盒子且任意一个小球都不能放入标有相同标号的盒子中,则不同的放法共有多少种? 【答案】12 【分析】由于4号球没有限制,所以以4号球分两类讨论:一类是4号球与1,2,3号球中的一个在一个盒子,另一类是4号球单独放在一个盒子,其他3个球放入两个盒子. 【详解】由于4号球没有限制,所以以4号球分类:当4号球与1,2,3号球中的一个在一个盒子时,它们有2个盒子可选,其他两个球只有1种放法,共有11326C C =种放法;当4号球单独放在一个盒子,其他3个球放入两个盒子时,首先在1,2,3号球中先选出两个球占一个盒子有23C 种,再分配剩下那个球与4号球,满足条件的放法种数为22326C A =种,所以共有6612+=种不同放法.6.(2021·福建省漳州第一中学高二月考)为配合国家精准扶贫战略,某省示范性高中安排6名高级教师(不同姓)到基础教育薄弱的甲、乙、丙三所中学进行扶贫支教,每所学校至少1人,因工作需要,其中李老师不去甲校,则分配方案种数为多少种?(请写出分类过程) 【答案】360 【分析】根据题意,按甲校安排的人数分4种情况讨论,求出每种情况下安排方案的数目,由加法原理计算可得答案. 【详解】 分四种情况讨论:甲校安排1名老师,分配方案种数有()11422325542532150C C C A C C A +=,甲校安排2名老师,分配方案种数有()213222543242140C C C A C C +=,甲校安排3名老师,分配方案种数有3122532260C C C A =, 甲校安排4名老师,分配方案种数有41152110C C C = 所以分配方案共有150+140+60+10=360种.7.(2021·全国·高二课时练习)现有编号分别为A ,B ,C ,D ,E ,F ,G 的7个不同的小球,将这些小球排成一排(1)若要求A ,B ,C 相邻,则有多少种不同的排法?(2)若要求A 排在正中间,且B ,C ,D 各不相邻,则有多少种不同的排法? 【答案】(1)720;(2)216. 【分析】(1)利用“捆绑法”可求;(2)分B ,C ,D 中有1个在A 的左侧和有2个在A 的左侧讨论求解. 【详解】(1)把A ,B ,C 看成一个整体与剩余的4个球全排列,则不同的排法有3535A A 720=(种).(2)A 在正中间,所以A 的排法只有1种. 因为B ,C ,D 互不相邻,所以B ,C ,D 不可能同时在A 的左侧或右侧.若B ,C ,D 中有1个在A 的左侧,2个在A 的右侧且不相邻,则不同的排法有22133233C A C A 108=(种),若B ,C ,D 中有2个在A 的左侧且不相邻,1个在A 的右侧,则不同的排法有22133233C A C A 108=(种).故所求的不同排法有108108216+=(种).8.(2021·河北·藁城新冀明中学高二月考)从1到6的六个数字中取两个偶数和两个奇数组成没有重复数字的四位数.试问: (1)能组成多少个不同的四位数?(2)四位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻的四位数有几个?(所有结果均用数值表示) 【答案】 (1)216 (2)108 (3)108 【分析】(1)分三步完成:第一步,取两个偶数,第二步,取两个奇数,第三步,将取出的四个数全排列,最后利用分步计数原理求解;(2)分三步完成:第一步,取两个偶数,第二步,取两个奇数,第三步,将两个偶数看作一个整体与两个奇数排列,最后利用分步计数原理求解;(3分三步完成:第一步,取两个偶数,第二步,取两个奇数,第三步,先将两个奇数排列,再从三个空中选两个空,将两个偶数排列上,最后利用分步计数原理求解. (1)解:分三步完成:第一步,取两个偶数,有23C 种方法, 第二步,取两个奇数,有23C 种方法,第三步,将取出的四个数全排列,有44A 种方法,由分步计数原理得:共能组成423422163A C C ⋅=⋅个不同的四位数;(2)解:分三步完成:第一步,取两个偶数,有23C 种方法, 第二步,取两个奇数,有23C 种方法,第三步,将两个偶数看作一个整体与两个奇数排列,有2323A A⋅种方法,由分步计数原理得:共能组成22232333108C C A A⋅⋅⋅=个不同的四位数;(3)解:分三步完成:第一步,取两个偶数,有23C种方法,第二步,取两个奇数,有23C种方法,第三步,先将两个奇数排列,再从三个空中选两个空,将两个偶数排列上,有2223A A⋅种方法,由分步计数原理得:共能组成22222333108C C A A⋅⋅⋅=个不同的四位数;9.(2021·全国·高二课时练习)甲、乙、丙、丁、戌五名同学参加某项竞赛,决出了第一名到第五名的5个名次.甲、乙两人去询问成绩,组织者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从组织者的回答分析,这五名同学的名次排列共有多少种不同的情况.【答案】54【分析】安排方案可分3步完成,第一步先安排乙,再安排甲,最后安排其他同学完成,由分步乘法原理求满足条件的方案数.【详解】满足要求的方案可分3步完成,第一步先安排乙,乙可以排在第2,3,4位,有3种安排方法,第二步安排甲,有3种安排方法,第三步再安排其他同学,有33A种安排方法,由分步乘法原理满足条件的安排方法有54种.39.(2021·全国·高二课时练习)在3000—7000之间有多少个没有重复数字的5的倍数?【答案】392【分析】分各位数字是0和5两种情况进行讨论即可.【详解】第一类,个位是5时,首位从3,4,6中选,中间两位从0到9的数中,去掉5与首位的数中选2个排列,所以共有1238168C A=个;第二类,个位是0时,首位从3,4,5,6中选,中间两位从0到9的数中,去掉0与首位的数中选2个排列,所以共有1248224C A=个;所以共有168224392+=个.10.(2021·江西·横峰中学高二期中(理))1.如图,已知图形ABCDEF,内部连有线段.(用数字作答)(1)由点A 沿着图中的线段到达点E 的最近路线有多少条? (2)由点A 沿着图中的线段到达点C 的最近路线有多少条? (3)求出图中总计有多少个矩形? 【答案】 (1)20 (2)175 (3)102 【分析】(1)由题意转化条件为点A 需向右移动3次、向上移动3次,结合组合的知识即可得解; (2)设出直线DE 上其它格点为G 、H 、P ,按照A E C →→、A G C →→、A H C →→、A P C →→分类,结合分步乘法、组合的知识即可得解;(3)由题意转化条件为从竖线中选出两条、横线中选出两条组成图形,按照矩形的边在不在CD 上分类,利用分步乘法、组合的知识即可得解. (1)由题意点A 沿着图中的线段到达点E 的最近路线需要移动6次:向右移动3次,向上移动3次,故点A 到达点E 的最近路线的条数为336320C C ⋅=;(2)设点G 、H 、P 的位置如图所示:则点A 沿着图中的线段到达点C 的最近路线可分为4种情况:①沿着A E C →→,共有33263360C C C ⋅⋅=条最近路线; ②沿着A G C →→,共有3222524260C C C C ⋅⋅⋅=条最近路线;③沿着A H C→→,共有32345340C C C⋅⋅=条最近路线;④沿着A P C→→,共有246415C C⋅=条最近路线;故由点A沿着图中的线段到达点C的最近路线有60604015175+++=条;(3)由题意,要组成矩形则应从竖线中选出两条、横线中选出两条,可分为两种情况:①矩形的边不在CD上,共有224690C C⋅=个矩形;②矩形的一条边在CD上,共有124312C C⋅=个矩形;故图中共有9012102+=个矩形.1.(2020·海南省高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种【答案】C【解析】首先从6名同学中选1名去甲场馆,方法数有16C;然后从其余5名同学中选2名去乙场馆,方法数有25C;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C⋅=⨯=种.故选:C2.(2021·全国·高考真题(理))将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种【答案】C【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据练真题乘法原理,完成这件事,共有254!240C ⨯=种不同的分配方案,故选:C.3.(2018·浙江高考真题)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)【答案】1260.【解析】若不取零,则排列数为224534C C A ,若取零,则排列数为21135333C C A A ,因此一共有22421135345333C C A C C A A 1260+=个没有重复数字的四位数. 4.(2017·天津高考真题(理))用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)【答案】1080【解析】41345454A C C A 1080+=5.(2015·上海高考真题(理))在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).【答案】120【解析】①1男4女,1436C C 45=种;②2男3女,2336C C 60=种;③3男2女,3236C C 15=种;∴一共有456015120++=种.故答案为:120.6.(2020·全国高考真题(理))4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种故答案为:36.。
历年高考排列组合试题及其答案
二项式定理历年高考试题荟萃(三))102分共计24题,(一、填空題木大题共52的系数是 _ •(用数字作答)(1+2X)的展开式中X・ __ 的展开式中的第5项为常数项,那么.2的值是正整数•—已知,则、「(的值等于-28的展开式中常数项为)+X (1+2)(lo.4-(用数字作答).展开式中含、5 的整数次幕的项的系数之和为_______ (用数字作答).28的展开式中常数项为)o 1 + 2(X() X-.6-(用数字作答)的二项展开式中常数项是(用数字作、一)•答.26的展开式中常数项是)・(X( +用数字、一)作答.若的二项展开式中、9的系数为,则・(用数字作答)____狄的展开式中含有常数项,x(2则+)若,・n最小的正整数等于・39)+(X.X展开式中的系数是(用•巩数字作答).若,展开式的各项系数之和为32,则其展开式中的常数项为。
(用数字作答).的展开式中宀的系数为•(用数字作答)-55432+ax+a,贝lj a+a+a+a+a 若(x・2)x=a二 _ .+ax+ax+ax 、1450453212314243 的系数为(1-x XX (1+2 展开式中))..—;各项系数之的展开式中常数项为、迥和为・(用数字作答)25的系数是X的二项展开式中)(X2 )用数字作答.( 36展开式中的常数项为)(X+(l+X ). 18 .则若X0,>、19+(2.)(2-)-4.^x-)= .268 k= ______________ .则120,的系数小于,X的展开式中)是正整数(k)(l+kx已知、20.n的展开式中第m)项的系数记(2x+, n2,若为bb = b,则=•畑-35的系数为)的二项展开式中x(x+t )用数字作答_______________ .(2n的展开式中没有常(l+x+x))(x+已知、2 ______________________________ •且2WnW8,则n= ----------------------------------------------- .数项展开式中x的系数为-二项式定理历年高考试题荟萃(三)答案)分102共比题24共木大题(一.填空题.2,・••系数为x(2)C=解析:40T、132 =40.C • 2.解:•••的展开式中的第5项为、“且常数项,・・・,得-256、352345•令则有a+a+a+x+aa+ax+a+a=0, x++:(l —x)=aaxax+asi4423235oio B卩(a+a+a)+(a+a+a)=0; (1) 5123405,=2 aa+ — a — +8=令x — 1,则有一aas302i45 ② a++a)-(+a+( U|J 333・)=2531420.联立①②有(a+a+a)(a+a+a)= —5402138 2=256. — =57. X 1+2 X1:解析57.4.答案:72解析:TT二*(••心0,4,8时展开式中的项为整数次幕,所求系数和为++ =72.答案:一42解析:的通项.6 T=r+1.)X(1+2・•・=,展开式中常数项为42. —二215 解析:、87、—r)2(6XTX=r+l._312巾令12 — 3xr==0.得r=4, /• T=15.=4.答案:2 解析:*.*. 9= =2.3.*.,.-n3)X(2C=T 解析答案:7:、l(Hlrrr=2()C-xx=2 ・Cx令3n-r=0,则有6n=7r,由展开式中有常7.最小值为n所以,数项.84 T=,・•・ 9-2r=3. /. r=3. A nr+i84.n =32.2可得展开式中各项系数之和为x=l令:解析5 10、12.・・・n=5.而展开式中通项为2r()T(x=r+1.5-r=)5r-is.令5r-15=0z xr=3.3 T・••常数项为=C=10.54.7展开式审的)由二项式定理得84 (1-. 项为3第・T(-=3.2=84)・,即84.的系数为s=-32.=(-2)令x=0,则a由二项式定理中的赋值法31解析:…。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节排列与组合A组三年高考真题(2016~2014年)1.(2016·全国Ⅱ,5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.92.(2016·全国Ⅲ,12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个3.(2016·四川,4)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.724.(2016·北京,8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多5.(2015·四川,6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个6.(2014·大纲全国,5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种7.(2014·辽宁,6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.248.(2014·四川,6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种9.(2014·重庆,9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.16810.(2014·安徽,8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对11.(2014·福建,10)用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是() A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5 B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)12.(2014·广东,8)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A 中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.13013.(2015·广东,12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言(用数字作答).14.(2014·北京,13)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C 不相邻,则不同的摆法有________种.15.(2014·浙江,14)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).B组两年模拟精选(2016~2015年)1.(2016·山东济宁模拟)某中学高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现从中任选3人,要求这三人不能全是同一个班的同学,且在三班至多选1人,则不同选法的种数为()A.484B.472C.252D.2322.(2016·四川成都第二次诊断)某微信群中甲,乙,丙,丁,戊五名成员同时抢4个红包,每人最多抢一个红包,且红包全被抢光,4个红包中有两个2元,两个3元(金额相同视为相同红包),则甲乙两人都抢到红包的情况有()A.36种B.24种C.18种D.9种3.(2015·河南信阳模拟)某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()A.36种B.30种C.24种D.6种4.(2015·河南郑州二模)某校开设A类选修课2门;B类选修课3门,一位同学从中选3门,若要求两类课程中至少选一门,则不同的选法共有()A.3种B.6种C.9种D.18种5.(2016·山东枣庄4月模拟)有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地摆成一排,则同一科目的书均不相邻的摆法有________种(用数字作答)6.(2016·广东肇庆模拟)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种(用数字作答).7.(2016·河北石家庄一模)将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的种数为________(用数字作答).8.(2015·衡水模拟)20个不加区别的小球放入1号,2号,3号的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.答案精析A组三年高考真题(2016~2014年)1.B [从E点到F点的最短路径有6种,从F点到G点的最短路径有3种,所以从E 点到G点的最短路径为6×3=18种,故选B.]2.C [第一位为0,最后一位为1,中间3个0,3个1,三个1在一起时为000111,001110;只有2个1相邻时,共A24种,其中110100;110010;110001,101100不符合题意,三个1都不在一起时有C34种,共2+8+4=14.]3.D [由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C13,再将剩下的4个数字排列得到A44,则满足条件的五位数有C13·A44=72.选D.]4.B [取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个;因为红球和黑球个数一样,所以①和②的情况一样多.③和④的情况随机,③和④对B选项中的乙盒中的红球与丙盒中的黑球数没有任何影响,①和②出现的次数是一样的,所以对B选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样.综上选B.]5.B[由题意,首位数字只能是4,5,若万位是5,则有3×A34=72个;若万位是4,则有2×A34个=48个,故40 000大的偶数共有72+48=120个.选B.]6.C[从中选出2名男医生的选法有C26=15种,从中选出1名女医生的选法有C15=5种,所以不同的选法共有15×5=75种,故选C.]7.D[3人中每两人之间恰有一个空座位,有A33×2=12种坐法,3人中某两人之间有两个空座位,有A33×A22=12种坐法,所以共有12+12=24种坐法.]8.B[当最左端排甲时,不同的排法共有A55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C14A44种.故不同的排法共有A55+C14A44=9×24=216种.]9.B[依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为A33A34=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为A22A22A33=24,因此满足题意的排法种数为144-24=120,选B.]10.C[法一直接法:如图,在上底面中选B1D1,四个侧面中的面对角线都与它成60°,共8对,同样A1C1对应的也有8对,下底面也有16对,这共有32对;左右侧面与前后侧面中共有16对.所以全部共有48对.法二间接法:正方体的12条面对角线中,任意两条垂直、平行或成角为60°,所以成角为60°的共有C212-12-6=48.]11.A[分三步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有(1+a+a2+a3+a4+a5)种不同的取法;第二步,5个无区别的蓝球都取出或都不取出,则有(1+b5)种不同取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球中任取0个,1个,…,5个,有(1+c)5种不同的取法,所以所求的取法种数为(1+a+a2+a3+a4+a5)(1+b5)(1+c)5,故选A.]12.D[易知|x1|+|x2|+|x3|+|x4|+|x5|=1或2或3,下面分三种情况讨论.其一:|x1|+|x2|+|x3|+|x4|+|x5|=1,此时,从x1,x2,x3,x4,x5中任取一个让其等于1或-1,其余等于0,于是有C15C12=10种情况;其二:|x1|+|x2|+|x3|+|x4|+|x5|=2,此时,从x1,x2,x3,x4,x5中任取两个让其都等于1或都等于-1或一个等于1、另一个等于-1,其余等于0,于是有2C25+C25C12=40种情况;其三:|x1|+|x2|+|x3|+|x4|+|x5|=3,此时,从x1,x2,x3,x4,x5中任取三个让其都等于1或都等于-1或两个等于1、另一个等于-1或两个等于-1、另一个等于1,其余等于0,于是有2C35+C35C13+C35C23=80种情况.由于10+40+80=130,故答案为D.]13.1 560[依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560条毕业留言.]14.36[将A、B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44=48种摆法,而A、B、C 3件在一起,且A、B相邻,A、C相邻有CAB、BAC两种情况,将这3件与剩下2件全排列,有2×A33=12种摆法,故A、B相邻,A、C 不相邻的摆法有48-12=36种.]15.60[分情况:一种情况将有奖的奖券按2张、1张分给4个人中的2个人,种数为C23C11A24=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为A34=24,则获奖情况总共有36+24=60(种).]B组两年模拟精选(2016~2015年)1.B[若三班有1人入选,则另两人从三班以外的12人中选取,共有C14C212=264种选法.若三班没有人入选,则要从三班以外的12人中选3人,又这3人不能全来自同一个班,故有C312-3C34=208种选法.故总共有264+208=472种不同的选法.]2.C[甲乙两人都抢到红包有三种情况:(1)都抢到2元红包,有C23=3种;(2)都抢到3元红包,有C23=3种;(3)一个抢到2元,一个抢到3元,有C12A23=12种,故总共有18种情况.]3.B [从4人中选出两个人作为一个元素有C24种方法,同其他两个元素在三个位置上排列C24A33=36,其中有不符合条件的,即学生甲,乙同时参加同一学科竞赛有A33种结果,∴不同的参赛方案共有36-6=30,故选B.]4.C [可分以下两种情况:①A类选修课选1门,B类选修课选2门,有C12C22种不同选法;②A类选修课选2门,B类选修课选1门,有C22C13种不同选法.∴根据分类计算原理知不同的选法共有:C12C23+C22C13=6+3=9种.故选C.]5.48 [根据题意,分2步进行分析:①将5本书进行全排列,有A55=120种情况.②其中语文书相邻的情况有A22A44=48种,数学书相邻的情况有A22A44=48种,语文书,数学书同时相邻的情况有A22A22A33=24种,则同一科目的书均不相邻的摆法有120-48-48+24=48种.]6.10 [两种情况:①选2本画册,2本集邮册送给4位朋友,有C24=6种方法;②选1本画册,3本集邮册送给4位朋友,有C14=4种方法,所以不同的赠送方法共有6+4=10(种).]7.8 [甲、乙不能分在同一个班,则不同的分组有甲单独一组,只有1种;甲和丙或丁两人一组,有2种;甲、丙、丁一组,只有1种.然后再把分成的两组分到不同班级里,则共有(1+2+1)A22=8(种).]8.120 [解析先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共有C216=120种方法.]。