2018年高考数学复习培优练习理!

合集下载

2018版高考数学理江苏专用一轮复习练习 第三章 导数及

2018版高考数学理江苏专用一轮复习练习 第三章 导数及

第三章导数及其应用第1讲导数的概念及运算基础巩固题组(建议用时:40分钟)一、填空题1.设y=x2e x,则y′=________.解析y′=2x e x+x2e x=(2x+x2)e x.答案(2x+x2)e x2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)=________.解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,则f′(1)=-1.答案-13.曲线y=sin x+e x在点(0,1)处的切线方程是________.解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0.答案2x-y+1=04.(2017·苏州调研)已知曲线y=ln x的切线过原点,则此切线的斜率为________.解析y=ln x的定义域为(0,+∞),且y′=1x,设切点为(x0,ln x0),则y′|x=x0=1x0,切线方程为y-ln x0=1x0(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为1 e.答案1 e5.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析因为y′=2ax-1x,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x 轴,故其斜率为0,故2a -1=0,解得a =12. 答案 126.(2017·南师附中月考)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.解析 由图形可知:f (3)=1,f ′(3)=-13,∵g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3)=1-1=0. 答案 07.(2017·苏北四市模拟)设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 解析 ∵y ′=-1-cos xsin 2 x ,∴由条件知1a =-1,∴a =-1. 答案 -18.(2016·全国Ⅱ卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x+1)的切线,则b =________.解析 y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2). ∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2. 答案 1-ln 2 二、解答题9.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1, 所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1,所以切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限. (1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1), 即x +4y +17=0.能力提升题组(建议用时:20分钟)11.(2016·山东卷改编)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质,下列函数:①y=sin x;②y=ln x;③y=e x;④y=x3.其中具有T性质的是________(填序号).解析若y=f(x)的图象上存在两点(x1,f(x1)),(x2,f(x2)),使得函数图象在这两点处的切线互相垂直,则f′(x1)·f′(x2)=-1.对于①:y′=cos x,若有cos x1·cos x2=-1,则当x1=2kπ,x2=2kπ+π(k∈Z)时,结论成立;对于②:y′=1x,若有1x1·1x2=-1,即x1x2=-1,∵x1>0,x2>0,∴不存在x1,x2,使得x1x2=-1;对于③:y′=e x,若有e x1·e x2=-1,即e x1+x2=-1.显然不存在这样的x1,x2;对于④:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.答案①12.(2017·合肥模拟改编)点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为________.解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-1x=1,解得x=1或x=-12(舍去),故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y=x-2的距离等于2,∴点P到直线y=x-2的最小距离为 2.答案 213.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x(x>0).∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,即x+1x-a=0有解,∴a=x+1x≥2(当且仅当x=1时取等号).答案[2,+∞)14.已知函数f(x)=x-2x,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.解根据题意有f′(x)=1+2x2,g′(x)=-ax.曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。

高三数学-2018年华南师大附中高三数学培优试题一 精品

高三数学-2018年华南师大附中高三数学培优试题一 精品

培优练习(1)2018-02-24 一、选择题: 1、已知函数)(1x fy -=的图象过(1,0),则)121(-=x f y 的反函数的图象一定过点( ) A .(1,2) B .(2,1) C .(0,2) D .(2,0)2、从P 点引三条射线PA ,PB ,PC ,每两条射线夹角为60°,则平面PAB 和平面PBC 所成二面角正弦值为 ( )A .322 B .36 C .33 D .23 3、已知x ,y 满足不等式组22224222+-++=⎪⎩⎪⎨⎧-≥≤+≤y x y x t y y x xy 则的最小值为( )A .59 B .2 C .3D .24、在斜三棱柱ABC -A 1B 1C 1中,A 0,B 0,分别为侧棱AA 1,BB 1上的点,且知BB 0:B 0B 1=3:2,过A 0,B 0,C 1 的截面将三棱柱分成上下两个部分体积之比为2:1,则 AA 0:A 0A 1= ( ) A .2:3 B .4:3 C .3:2 D .1:1 二、填空题:5、=-++∞→)(lim 2n n n n .6、某气象站天气预报准确率是80%,5次预报中至少有4次准确的概率是(精确到0.01). 7、设a ,b 都是正实数,且2a+b=1,设2242b a ab T --=则当a=______且b=_______时,T 的最大值为_______。

8、如图,矩形ABCD 中,3=DC ,AD=1,在DC 上截取DE=1,将△ADE 沿AE 翻折到 D ′点,当D ′在平面ABC 上的射影落在AE 上时,四棱锥D ′—ABCE 的体积是________;当D ′在平面ABC 上的射影落在AC 上时,二面角D ′—AE —B 的平面角的余弦值是_________。

三、解答题:(过程要完整、表述要规范) 9、(本小题满分12分)是否存在常数c ,使得不等式yx yy x x c y x y y x x +++≤≤+++2222对任意正实数x 、y恒成立?证明你的结论.10、(本小题满分12分) 甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92. (1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差.11、(本小题满分14分)已知),2(|2|lg )1()(2R a a a x a x x f ∈-≠++++=(Ⅰ)若)(x f 能表示成一个奇函数)(x g 和一个偶函数)(x h 的和,求)(x g 和)(x h 的解析式;(Ⅱ)若)(x f 和)(x g 在区间])1(,(2+-∞a 上都是减函数,求a 的取值范 (Ⅲ)在(Ⅱ)的条件下,比较61)1(和f 的大小. 12、(本小题满分12分)已知定义域为[0,1]的函数f (x)同时满足: (1)对于任意x ∈[0,1],总有f (x)≥0; (2)f (1) =1;(3)若01≥x ,02≥x ,121≤+x x ,则有)()()(2121x f x f x x f +≥+。

2018年高考数学 复习培优练习(含解析)文

2018年高考数学 复习培优练习(含解析)文

培优练习高考频度:★★★★★ 难易程度:★★★☆☆典例在线已知抛物线C :y 2=2x ,过点(2,0)的直线l 交抛物线C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.【参考答案】(1)证明略;(2)直线l 的方程为20x y --= ,圆M 的方程为()()223110x y -+-= . 或直线l 的方程为240x y +-= ,圆M 的方程为2291854216x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭ .(2)由(1)可得()21212122,424y y m x x m y y m +=+=++=+ .故圆心M 的坐标为()22,m m + ,圆M 的半径r =由于圆M 过点()4,2P -,因此0AP BP ⋅= ,故()()()()121244220x x y y --+++=, 即()()1212121242200x x x x y y y y -+++++=.由(1)可得12124,4y y x x =-=.所以2210m m --=,解得1m = 或12m =-.当1m =时,直线l 的方程为20x y --=,圆心M 的坐标为()3,1,圆M M 的方程为()()223110x y -+-=.当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91(,)42-,圆M 的半径为4,圆M 的方程为2291854216x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. 【解题必备】直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.中点弦问题,可以利用“点差法”,但不要忘记验证Δ>0或说明中点在曲线内部.学霸推荐1.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1、A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则椭圆C 的离心率为A B C D .132.在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 .1.【答案】A【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0 ,半径r a = ,圆的标准方程为222x y a +=, 直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即:d a ==,整理可得223a b =,即()222223,23a a c a c =-=,从而22223c e a == ,椭圆C 的离心率c===,故选A.ea【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.。

2018高考数学(理)周末培优训练3(导数及其应用)含解析

2018高考数学(理)周末培优训练3(导数及其应用)含解析

1
.故
2
4.设函数 f x ax2 bx c a, b, c R ,若函数 y f x ex ( e 为自然对数的底数 ) 在
x 1 处取得极值,则下列图象不可能为 y f x 的图象的是
A 【答案】 D【解析B NhomakorabeaC
D


y f x ex ex ax2 bx c


y f x ex ex f x ex [ax2 b 2a x b c],当 x 1 时,函数 y f x ex
2018 高考数学(理)周末培优训练 3(导数及其应用)含解析 第 03 周 导数及其应用
(测试时间: 60 分钟,总分: 90 分) 班级:____________ 姓名: ____________ 座号: ____________ 得分:____________ 一、选择题(本题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有
A. 27 2
C. 9 2
【答案】 C
B. 9
D. 27 4
3x2 ,则 k f 1
3 ,则倾斜角为 2 π.故本题答案为 3
D.
3.已知函数 f x 的导函数为 f x ,且满足 f x 3xf 1 lnx ,则 f 1
A. 1 2
C. 1
【答案】 A
1
B.
2 D. e
【解析】 对 x 求导可得 f x
本题答案为 A.
3f 1
1 ,则 f 1
x
3 f 1 1,解得 f 1
取 得 极 值 , 可 得 1 是 方 程 ax2 b 2a x b c 0 的 一 个 根 , 所 以
a b 2a b c 0, c a ,所以函数 f x ax2 bx a ,由此得函数相应方程

【高三数学试题精选】2018届高考数学培优辅导分类讨论思想复习试题(含答案)

【高三数学试题精选】2018届高考数学培优辅导分类讨论思想复习试题(含答案)

2018届高考数学培优辅导分类讨论思想复习试题(含答案)
5
分类讨论思想专题
【例1】问题中含参量或参数的要进行分类讨论
1函数的图象与x轴的交点至少有一个在原点的右侧,则实数的取值范围为()
A B c D
2 设等比数列的比,前项和为.已知,求的通项式.
方法点拨
数学问题中含变量或参数,这些变量或参数取不同值时会导致不同的结果,因而要对参数进行分类讨论。

一般地,含参数的不等式,含参数的函数的单调区间,含参数的函数的最值、定义域或恒成立问题等均要进行分类讨论。

分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整。

【例2】问题给出的条是分类给出的,要分类讨论
3已知函数 ,则的值域是()
(A) (B) (c) (D)
4 在等差数列中,,前项和满足条,
(Ⅰ)求数列的通项式;(Ⅱ)记,求数列的前项和。

方法点拨
运用的数学定理、式、或运算性质、法则是分类给出的,如绝对值的定义,对数函数、指数函数定义,等比数列的前n项和的式等,由于这些概念的定义都有范围或条的限制,当解题过程的变换需要突破这些限制条时常引起分类讨论。

一般地,与分段函数有关的不等式,通项是的数列之和,排列组合中含0的数字排列问题,含绝对值不。

2018版高考数学(理)(全国)一轮复习练习 第三章 导数及其应用 第3讲含答案

2018版高考数学(理)(全国)一轮复习练习 第三章 导数及其应用 第3讲含答案

基础巩固题组(建议用时:40分钟)一、选择题1.(2017·西安调研)定积分错误!(2x+e x)d x的值为()A.e+2B.e+1 C。

e D。

e-1解析错误!(2x+e x)d x=(x2+e x)错误!)=1+e1-1=e。

故选C。

答案C2。

若错误!错误!d x=3+ln 2(a>1),则a的值是( )A.2 B。

3 C。

4 D.6解析错误!错误!d x=(x2+ln x)错误!=a2+ln a-1,∴a2+ln a-1=3+ln 2,则a=2。

答案A3.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v=gt(g为常数),则电视塔高为()A。

错误!g B。

g C。

错误!g D.2g解析 电视塔高h =⎠⎜⎜⎛12gt d t =错误!错误!1=错误!g 。

答案 C4.如图所示,曲线y =x 2-1,x =2,x =0,y =0围成的阴影部分的面积为( )A.错误!|x 2-1|d xB.错误!C 。

错误!(x 2-1)d xD 。

错误!(x 2-1)d x +错误!(1-x 2)d x解析 由曲线y =|x 2-1|的对称性知,所求阴影部分的面积与如下图形的面积相等,即错误!|x 2-1|d x .答案 A5。

若S 1=错误!x 2d x ,S 2=错误!错误!d x ,S 3=错误!e x d x ,则S 1,S 2,S 3的大小关系为( )A 。

S 1〈S 2〈S 3B 。

S 2<S 1<S 3 C.S 2<S 3<S 1 D.S 3〈S 2<S 1解析S2=错误!错误!d x=ln 2,S3=错误!e x d x=e2-e,∵e2-e=e(e-1)>e>错误!>ln 2,∴S2<S1<S3。

答案B二、填空题6.已知t>0,若错误!(2x-2)d x=8,则t=________.解析由错误!(2x-2)d x=8得,(x2-2x)错误!=t2-2t =8,解得t=4或t=-2(舍去)。

2018年高考数学大一轮复习培优讲义全版 课标理科

2018年高考数学大一轮复习培优讲义全版 课标理科

录ቤተ መጻሕፍቲ ባይዱ
.第一章 集合与常用逻辑用语 ................................................................................................................................ 4 考纲链接 ........................................................................................................................................................... 4 1.1 集合及其运算 ....................................................................................................................................... 5 1.2 命题及其关系、充分条件与必要条件.............................................................................................. 11 1.3 简单的逻辑联结词、全称量词与存在量词...................................................................................... 17 单元测试卷 ..............................................................................................

2018版高考一轮总复习数学(理)习题解答题专项训练1含答案

2018版高考一轮总复习数学(理)习题解答题专项训练1含答案

解答题专项训练一1。

设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.解(1)因为f(x)=x e a-x+bx,所以f′(x)=(1-x)e a-x+b.依题设,错误!即错误!解得a=2,b=e。

(2)由(1)知f(x)=x e2-x+e x。

由f′(x)=e2-x(1-x+e x-1)及e2-x>0知,f′(x)与1-x+e x -1同号.令g(x)=1-x+e x-1,则g′(x)=-1+e x-1.所以当x∈(-∞,1)时,g′(x)〈0,g(x)在区间(-∞,1)上单调递减;当x∈(1,+∞)时,g′(x)〉0,g(x)在区间(1,+∞)上单调递增.故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,从而g(x)〉0,x∈(-∞,+∞).综上可知,f′(x)>0,x∈(-∞,+∞).故f(x)的单调递增区间为(-∞,+∞).2.已知函数f(x)=错误!ax2+ln x,其中a∈R.(1)求f(x)的单调区间;(2)若f(x)在(0,1]上的最大值是-1,求a的值.解(1)f′(x)=错误!,x∈(0,+∞).当a≥0时,f′(x)>0,从而函数f(x)在(0,+∞)上单调递增;当a<0时,令f′(x)=0,解得x=错误!或x=-错误!(舍去).此时,f(x)与f′(x)的变化情况如下:错误!错误!错误!(2)①当a≥0时,由(1)得函数f(x)在(0,1]上的最大值为f(1)=错误!.令错误!=-1,得a=-2,这与a≥0矛盾,不合题意.②当-1≤a<0时,错误!≥1,由(1)得函数f(x)在(0,1]上的最大值为f(1)=错误!。

令错误!=-1,得a=-2,这与-1≤a<0矛盾,不合题意.③当a<-1时,0< 错误!<1,由(1)得函数f(x)在(0,1]上的最大值为f错误!.令f错误!=-1,解得a=-e,符合a〈-1.综上,当f(x)在(0,1]上的最大值是-1时,a=-e。

2018年高考题和高考模拟题数学(理)分项版汇编:专题08 复数、算法与选修理(含解析)

2018年高考题和高考模拟题数学(理)分项版汇编:专题08 复数、算法与选修理(含解析)

8.复数、算法与选修1.【2018年理数全国卷II】为计算,设计了下面的程序框图,则在空白框中应填入A. B. C. D.【答案】B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.2.【2018年浙江卷】复数 (i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3.【2018年理新课标I卷】设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.4.【2018年全国卷Ⅲ理】A. B. C. D.【答案】D点睛:本题主要考查复数的四则运算,属于基础题。

5.【2018年理数全国卷II】A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.6.【2018年江苏卷】若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.7.【2018年理数天津卷】已知圆的圆心为C,直线(为参数)与该圆相交于A,B两点,则的面积为___________.【答案】点睛:处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.8.【2018年理北京卷】在极坐标系中,直线与圆相切,则a=__________.【答案】【解析】分析:根据将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a.详解:因为,由,得,由,得,即,即,因为直线与圆相切,所以点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.9.【2018年江苏卷】在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长.【答案】直线l被曲线C截得的弦长为所以.因此,直线l被曲线C截得的弦长为.点睛:本题考查曲线的极坐标方程等基础知识,考查运算求解能力.10.【2018年理新课标I卷】在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】 (1).(2)综上,所求的方程为.详解:(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线的极坐标方程向平面直角坐标方程的转化以及有关曲线相交交点个数的问题,在解题的过程中,需要明确极坐标和平面直角坐标之间的转换关系,以及曲线相交交点个数结合图形,将其转化为直线与圆的位置关系所对应的需要满足的条件,从而求得结果. 11.【2018年全国卷Ⅲ理】在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,详解:(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为.与交于两点当且仅当,解得或,即或.综上,的取值范围是.(2)的参数方程为为参数,.设,,对应的参数分别为,,,则,且,满足.于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,.点睛:本题主要考查直线与圆的位置关系,圆的参数方程,考查求点的轨迹方程,属于中档题。

【高考复习】2018年 高考数学(理数) 课后练习卷(含答案解析)

【高考复习】2018年 高考数学(理数) 课后练习卷(含答案解析)

导数在函数中的应用1.已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求实数a的取值范围.2.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求实数a的取值范围.3.设函数f(x)=ln x +xm ,m ∈R .(1)当m=e(e 为自然对数的底数)时,求f(x)的极小值; (2)讨论函数g(x)=f ′(x)-3x 零点的个数.4.函数f(x)=(ax2+x)e x,其中e是自然对数的底数,a∈R.(1)当a>0时,解不等式f(x)≤0;(2)当a=0时,求整数t的所有值,使方程f(x)=x+2在[t,t+1]上有解.5.设函数f(x)=e 2x-aln x.(1)讨论f(x)的导函数f ′(x)零点的个数; (2)证明:当a >0时,f(x)≥2a +aln a2.6.已知函数f(x)=ax+ln x(a∈R).(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)求f(x)的单调区间;(3)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1]使得f(x1)<g(x2),求a的取值范围.7.已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 3=9. (1)求数列{a n }的通项公式;(2)设等比数列{b n }的前n 项和为T n ,若q>0且b 3=a 5,T 3=13,求T n ; (3)设11+=n n n a a c ,求数列{c n }的前n 项和S n .8.设数列{a n}的前n项之积为T n,且2)1( log2-=n nTn,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=λa n-1(n∈N*),数列{b n}的前n项之和为S n.若对任意的n∈N*,总有S n+1>S n,求实数λ的取值范围.9.已知双曲线12222=-by ax (a >0,b >0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.113922=-yxB.191322=-yx=1 C.1322=-yxD.1322=-yx10.已知椭圆12422=+yx的左、右焦点分别为F 1,F 2,过F 1且倾斜角为45°的直线l 交椭圆于A ,B两点,以下结论:①△ABF 2的周长为8;②原点到l 的距离为1;③|AB|=38.其中正确结论的个数为( )A.3B.2C.1D.011.若点M(2,1),点C 是椭圆171622=+yx的右焦点,点A 是椭圆的动点,则|AM|+|AC|的最小值为________. 12.已知椭圆12222=+by ax (a >b >0)与抛物线y 2=2px(p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若直线PQ 经过焦点F ,则椭圆12222=+by ax 1(a >b >0)的离心率为________.13.已知抛物线C :y 2=2px(p>0)的焦点F(1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点.(1)求抛物线C 的方程; (2)若直线OA ,OB 的斜率之积为-21,求证:直线AB 过x 轴上一定点.参考答案1.解:2.解:3.解:4.解:5.6.解:7.解:8.解:9.答案为:D ;10.答案为:A ;解析:①由椭圆的定义,得|AF 1|+|AF 2|=4,|BF 1|+|BF 2|=4,又|AF 1|+|BF 1|=|AB|,所以△ABF 2的周长为|AB|+|AF 2|+|BF 2|=8,故①正确;②由条件,得F 1(-2,0), 因为过F 1且倾斜角为45°的直线l 的斜率为1,所以直线l 的方程为y=x +2, 则原点到l 的距离d=22=1,故②正确;③设A(x 1,y 1),B(x 2,y 2),由⎪⎩⎪⎨⎧=++=124222yx x y , 得3x 2+42x=0,解得x 1=0,x 2=-324,所以|AB|=1+1·|x 1-x 2|=38,故③正确.11.答案为:8-26; 解析:设点B 为椭圆的左焦点,点M(2,1)在椭圆内,那么|BM|+|AM|+|AC|≥|AB|+|AC|=2a , 所以|AM|+|AC|≥2a -|BM|,而a=4,|BM|=26,所以(|AM|+|AC|)最小=8-26.12.答案为:2-1;解析:因为抛物线y 2=2px(p >0)的焦点F 为(2p ,0),设椭圆另一焦点为E.如图所示,将x=p 2代入抛物线方程得y=±p ,又因为PQ 经过焦点F ,所以P(2p ,2p)且PF ⊥OF.所以|PE|=2p ,|PF|=p ,|EF|=p.故2a=2p +p ,2c=p ,e=ac 22=2-1.13.(1)解:因为抛物线y 2=2px(p>0)的焦点坐标为(1,0),所以2p =1,所以p=2.所以抛物线C 的方程为y 2=4x. (2)证明:①当直线AB 的斜率不存在时,设A(42t,t),B(42t,-t).因为直线OA ,OB 的斜率之积为-21,所以214422-=-⋅tt tt ,化简得t 2=32.所以A(8,t),B(8,-t),此时直线AB 的方程为x=8.②当直线AB 的斜率存在时,设其方程为y=kx +b ,A(x A ,y A ),B(x B ,y B ),联立得⎩⎨⎧+==bkx y x y 42,化简得ky 2-4y +4b=0.根据根与系数的关系得y A y B =kb 4,因为直线OA ,OB 的斜率之积为-21,所以BB AA x y x y ⋅=-21,即x A x B +2y A y B =0.即4422B A y y ⋅+2y A y B =0,解得y A y B =0(舍去)或y A y B =-32.所以y A y B =4bk=-32,即b=-8k ,所以y=kx -8k ,即y=k(x -8).综上所述,直线AB 过定点(8,0).。

[精品]2018版高考数学人教A版理一轮复习真题集训第三章导数及其应用34和答案

[精品]2018版高考数学人教A版理一轮复习真题集训第三章导数及其应用34和答案

真题演练集训1.定积分⎠⎜⎛01(2x +e x )d x 的值为( ) A .e +2 B .e +1 C .e D .e -1答案:C解析:⎠⎜⎛01(2x +e x )d x =(x 2+e x ) 10=(1+e)-(0+e 0)=e ,故选C. 2.直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2 D .4答案:D解析:由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎜⎛2(4x -x 3)d x =⎝ ⎛⎭⎪⎫2x 2-14x 420=4. 3.曲线y =x 2与直线y =x 所围成的封闭图形的面积为________. 答案:16解析:如图,阴影部分的面积即为所求.由⎩⎪⎨⎪⎧y =x 2,y =x ,得A (1,1).故所求面积为S =⎠⎜⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x 2-13x 3|10=16. 4.⎠⎜⎛2(x -1)d x =________.答案:0解析:⎠⎜⎛2(x -1)d x =⎝ ⎛⎭⎪⎫12x 2-x 20=(2-2)-0=0. 5.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为________.答案:1.2解析:建立如图所示的平面直角坐标系.由抛物线过点(0,-2),(-5,0),(5,0),得抛物线的函数表达式为y =225x 2-2,抛物线与x 轴围成的面积S 1=⎠⎛5-5⎝⎛⎭⎪⎫2-225x 2d x =403,梯形面积S 2=+2=16.最大流量比为S 2∶S 1=1.2.课外拓展阅读 探究定积分与不等式交汇问题如图,矩形OABC 内的阴影部分是由曲线f (x )=sin x ;x ∈(0,π)及直线x =a ,a ∈(0,π)与x 轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为14,则a 的值是( )A.7π12 B .2π3C.3π4D .5π6先运用定积分求出阴影部分的面积,再利用几何概型概率计算公式求出概率.由已知S 矩形OABC =a ×6a=6,而阴影部分的面积为S =⎠⎜⎛0asin x d x =(-cos x ) a 0=1-cos a , 依题意有SS 矩形OABC =14,即1-cos a 6=14,解得cos a =-12,又a ∈(0,π),所以a =2π3.故选B. B 方法点睛定积分还可与其他知识交汇,如与二项式定理、数列等知识交汇.。

高考数学培优专题(1)——对数平均不等式的证明与应用(答安详解)

高考数学培优专题(1)——对数平均不等式的证明与应用(答安详解)
对数平均数:对于正数 a , b ,且 a b ,定义 a b 为 a , b 的对数平均数; ln a ln b
对数平均不等式:对于正数 a , b ,且 a b ,则有 ab a b a b ,即几何平均数<对 ln a ln b 2
数平均数<算术平均数,简记为 G a,b L a,b Aa,b .
(ⅱ)若 a 2 ,令 f (x) 0 得, x a a2 4 或 x a a2 4 .
2
2
当 x (0, a
a2 4 )
(a
a2 4 , ) 时, f (x) 0 ;
2
2
当 x(a
a2 4 a ,
a2 4 ) 时, f (x) 0 . 所以 f (x) 在 (0, a
2/6
高考数学培优专题(1)
例 3 (2014 年江苏南通二模)设函数 f (x) ex ax a ,其图像与 x 轴交于 A(x1, 0), B(x2, 0) 两点,且
x1 x2 . (Ⅰ)求实数 a 的取值范围; (Ⅱ)求证: f ( x1x2 ) 0 .
例 4(2011 年辽宁理科)已知函数 f (x) ln x ax2 (2 a)x .
a2 4 ) , (a
a2 4 , ) 单调递
2
2
2
2
减,在 (a
a2 4 a ,
a2 4 ) 单调递增.
2
2
(2)由(1)知, f (x) 存在两个极值点当且仅当 a 2 .
由于 f (x) 的两个极值点 x1 , x2 满足 x2 ax 1 0 ,所以 x1x2 1 ,不妨设 x1 x2 ,则 x2 1 . 由于
高考数学培优专题(1)
对数平均不等式的证明与应用

高考数学培优复习:第2讲 参数方程新题培优练

高考数学培优复习:第2讲 参数方程新题培优练

[基础题组练]1.在平面直角坐标系中,以原点为极点,x 轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C 的极坐标方程为ρ=2cos θ,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos α,y =t sin α(t 为参数,α为直线的倾斜角).(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 有唯一的公共点,求角α的大小.解:(1)当α=π2时,直线l 的普通方程为x =-1; 当α≠π2时,直线l 的普通方程为y =(x +1)tan α. 由ρ=2cos θ,得ρ2=2ρcos θ,所以x 2+y 2=2x ,即为曲线C 的直角坐标方程.(2)把x =-1+t cos α,y =t sin α代入x 2+y 2=2x ,整理得t 2-4t cos α+3=0.由Δ=16cos 2α-12=0,得cos 2α=34, 所以cos α=32或cos α=-32, 故直线l 的倾斜角α为π6或5π6. 2.以极点为原点,以极轴为x 轴正半轴建立平面直角坐标系,已知曲线C 的极坐标方程为ρ=10,曲线C ′的参数方程为⎩⎪⎨⎪⎧x =3+5cos α,y =-4+5sin α,(α为参数). (1)判断两曲线C 和C ′的位置关系;(2)若直线l 与曲线C 和C ′均相切,求直线l 的极坐标方程.解:(1)由ρ=10得曲线C 的直角坐标方程为x 2+y 2=100,由⎩⎪⎨⎪⎧x =3+5cos α,y =-4+5sin α得曲线C ′的普通方程为(x -3)2+(y +4)2=25. 曲线C 表示以(0,0)为圆心,10为半径的圆;曲线C ′表示以(3,-4)为圆心,5为半径的圆.因为两圆心间的距离5等于两圆半径的差,所以圆C 和圆C ′的位置关系是内切.(2)由(1)建立方程组⎩⎪⎨⎪⎧x 2+y 2=100,(x -3)2+(y +4)2=25,解得⎩⎪⎨⎪⎧x =6,y =-8;可知两圆的切点坐标为(6,-8),且公切线的斜率为34, 所以直线l 的直角坐标方程为y +8=34(x -6), 即3x -4y -50=0,所以极坐标方程为3ρcos θ-4ρsin θ-50=0.3.(2019·湘东五校联考)平面直角坐标系xOy 中,倾斜角为α的直线l 过点M (-2,-4),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2cos θ.(1)写出直线l 的参数方程(α为常数)和曲线C 的直角坐标方程;(2)若直线l 与C 交于A ,B 两点,且|MA |·|MB |=40,求倾斜角α的值.解:(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+t cos α,y =-4+t sin α(t 为参数), ρsin 2θ=2cos θ,即ρ2sin 2θ=2ρcos θ,将x =ρcos θ,y =ρsin θ代入得曲线C 的直角坐标方程为y 2=2x .(2)把直线l 的参数方程代入y 2=2x ,得t 2sin 2α-(2cos α+8sin α)t +20=0,设A ,B 对应的参数分别为t 1,t 2,由一元二次方程根与系数的关系得,t 1+t 2=2cos α+8sin αsin 2 α,t 1t 2=20sin 2α, 根据直线的参数方程中参数的几何意义,得|MA |·|MB |=|t 1t 2|=20sin 2α=40,得α=π4或α=3π4. 又Δ=(2cos α+8sin α)2-80sin 2α>0,所以α=π4. 4.(2019·湖北八校联考)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α是参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4= 2. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)设P 为曲线C 1上的动点,求点P 到C 2的距离的最大值,并求此时点P 的坐标.解:(1)曲线C 1的普通方程为x 23+y 2=1, 由ρsin ⎝⎛⎭⎫θ+π4=2,得ρsin θ+ρcos θ=2,得曲线C 2的直角坐标方程为x +y -2=0. (2)设点P 的坐标为(3cos α,sin α),则点P 到C 2的距离为|3cos α+sin α-2|2=⎪⎪⎪⎪2sin ⎝⎛⎭⎫α+π3-22,当sin ⎝⎛⎭⎫α+π3=-1,即α+π3=-π2+2k π(k ∈Z ),α=-5π6+2k π(k ∈Z )时,所求距离最大,最大值为22, 此时点P 的坐标为⎝⎛⎭⎫-32,-12. [综合题组练]1.(2019·郑州市第一次质量测试)在平面直角坐标系xOy 中,直线l 过点(1,0),倾斜角为α,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程是ρ=8cos θ1-cos 2θ. (1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若α=π4,设直线l 与曲线C 交于A ,B 两点,求△AOB 的面积. 解:(1)由题知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数). 因为ρ=8cos θ1-cos 2 θ,所以ρsin 2θ=8cos θ,所以ρ2sin 2θ=8ρcos θ,即y 2=8x . (2)法一:当α=π4时,直线l 的参数方程为⎩⎨⎧x =1+22t ,y =22t(t 为参数), 代入y 2=8x 可得t 2-82t -16=0, 设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=82,t 1·t 2=-16,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2=8 3.又点O 到直线AB 的距离d =1×sin π4=22, 所以S △AOB =12|AB |×d =12×83×22=2 6. 法二:当α=π4时,直线l 的方程为y =x -1, 设M (1,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=8x ,y =x -1,得y 2=8(y +1), 即y 2-8y -8=0,由根与系数的关系得⎩⎪⎨⎪⎧y 1+y 2=8,y 1y 2=-8, S △AOB =12|OM ||y 1-y 2|=12×1×(y 1+y 2)2-4y 1y 2=12×82-4×(-8)=12×46=2 6.2.(2018·高考全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.解:(1)⊙O 的直角坐标方程为x 2+y 2=1.当α=π2时,l 与⊙O 交于两点. 当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点当且仅当⎪⎪⎪⎪⎪⎪21+k 2<1,解得k <-1或k >1,即α∈⎝⎛⎭⎫π4,π2或α∈⎝⎛⎭⎫π2,3π4. 综上,α的取值范围是⎝⎛⎭⎫π4,3π4. (2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α(t 为参数,π4<α<3π4). 设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B 2,且t A ,t B 满足t 2-22t sin α+1=0. 于是t A +t B =22sin α,t P =2sin α. 又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t Psin α, 所以点P 的轨迹的参数方程是⎩⎨⎧x =22sin 2α,y =-22-22cos 2α(α为参数,π4<α<3π4). 3.(2019·惠州市第二次调研)已知曲线C :⎩⎨⎧x =2cos α,y =3sin α(α为参数)和定点A (0,3),F 1,F 2是此曲线的左、右焦点,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系.(1)求直线AF 2的极坐标方程;(2)经过点F 1且与直线AF 2垂直的直线l 交曲线C 于M ,N 两点,求||MF 1|-|NF 1||的值.解:(1)曲线C :⎩⎨⎧x =2cos α,y =3sin α可化为x 24+y 23=1,故曲线C 为椭圆, 则焦点F 1(-1,0),F 2(1,0).所以经过点A (0,3)和F 2(1,0)的直线AF 2的方程为x +y 3=1,即3x +y -3=0, 所以直线AF 2的极坐标方程为3ρcos θ+ρsin θ= 3.(2)由(1)知,直线AF 2的斜率为-3,因为l ⊥AF 2,所以直线l 的斜率为33,即倾斜角为30°,所以直线l 的参数方程为⎩⎨⎧x =-1+32t ,y =12t(t 为参数), 代入椭圆C 的方程中,得13t 2-123t -36=0.因为点M ,N 在点F 1的两侧,所以||MF 1|-|NF 1||=|t 1+t 2|=12313. 4.(综合型)(2019·南昌市第一次模拟)在平面直角坐标系xOy 中,曲线C 1过点P (a ,1),其参数方程为⎩⎨⎧x =a +2t y =1+2t(t 为参数,a ∈R ).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|P A |=2|PB |,求实数a 的值.解:(1)因为曲线C 1的参数方程为⎩⎨⎧x =a +2t y =1+2t, 所以其普通方程为x -y -a +1=0.因为曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0,所以ρ2cos 2θ+4ρcos θ-ρ2=0,所以x 2+4x -x 2-y 2=0,即曲线C 2的直角坐标方程为y 2=4x .(2)设A ,B 两点所对应的参数分别为t 1,t 2,由⎩⎨⎧y 2=4x ,x =a +2t y =1+2t, 得2t 2-22t +1-4a =0.Δ=(22)2-4×2(1-4a )>0,即a >0,由根与系数的关系得⎩⎪⎨⎪⎧t 1+t 2=2t 1t 2=1-4a 2. 根据参数方程的几何意义可知|P A |=2|t 1|,|PB |=2|t 2|,又|P A |=2|PB |可得2|t 1|=2×2|t 2|,即t 1=2t 2或t 1=-2t 2.所以当t 1=2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=3t 2=2t 1t 2=2t 22=1-4a 2,解得a =136>0,符合题意. 当t 1=-2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=-t 2=2t 1t 2=-2t 22=1-4a 2, 解得a =94>0,符合题意. 综上所述,实数a 的值为136或94.。

第2周周末培优-每日一题2018年高考数学(理)二轮复习

第2周周末培优-每日一题2018年高考数学(理)二轮复习

周末培优高考频度:★★★☆☆ 难易程度:★★★☆☆已知函数11()3(12)42x x f x x λ-=-+-≤≤. (1)若32λ=,求函数()f x 的值域; (2)若函数()f x 的最小值是1,求实数λ的值.【参考答案】(1)337[,]416;(2)2. 【试题解析】(1)21111()3()2()3(12)4222x x x x f x x λλ-=-+=-+-≤≤, 设1()2x t =,则21()23(2)4g t t t t λ=-+≤≤.当32λ=时,22331()33()(2)244g t t t t t =-+=-+≤≤. 故max min 13733()(),()()41624g t g g t g ====,则max min 373(),()164f x f x ==. 故函数()f x 的值域是337[,]416.学+【解题必备】求函数的值域,应根据解析式的结构特点,选择适当的方法,常用的方法有:观察法、图象法、配方法、换元法、基本不等式法、单调性法、分离常数法、有界性法等.需要注意的是:“分离常数法”的目的是将“分式函数”变为“反比例函数”类,“换元法”的目的是将函数变为“二次函数”类.即将函数解析式变为已经熟悉的简单函数类型求值域.1.已知函数的值域是,则实数的取值范围是 A .B .C .D . 2.已知函数()12log ,2 23,2x x x f x a a x ≥⎧⎪=⎨⎪-<⎩(其中0a >且1)a ≠的值域为R ,则实数a 的取值范围为_______.2.【答案】1,12⎡⎫⎪⎢⎣⎭【解析】由题意,分段函数的值域为R ,其在R 上是单调函数,由此可知01a <<, 根据图象可知: 212log 223a a ≥- ,解得12a ≥,综上,可得112a ≤<,即答案为1,12⎡⎫⎪⎢⎣⎭.。

[精品]2018版高考数学人教A版理一轮复习真题集训第三章导数及其应用31和答案

[精品]2018版高考数学人教A版理一轮复习真题集训第三章导数及其应用31和答案

真题演练集训1.曲线y=x e x-1在点(1,1)处切线的斜率等于( )A.2e B.eC.2 D.1答案:C解析:y′=e x-1+x e x-1=(x+1)e x-1,故曲线在点(1,1)处的切线斜率为y′|x=1=2.2.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a =( )A.0 B.1C.2 D.3答案:D解析:y′=a-1x+1,由题意得y′|x=0=2,即a-1=2,所以a =3.3.已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是________.答案:y=-2x-1解析:由题意可得,当x>0时,f(x)=ln x-3x,则f′(x)=1x-3,f′(1)=-2,则在点(1,-3)处的切线方程为y+3=-2(x-1),即y=-2x-1.4.若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x +1)的切线,则b=________.答案:1-ln 2解析:设y=kx+b与y=ln x+2和y=ln(x+1)的切点分别为(x1,ln x 1+2)和(x 2,ln(x 2+1)),则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,得⎩⎪⎨⎪⎧1x1=1x 2+1,ln x 1+1=-x2x 2+1+x 2+,解得x 1=12,从而b =ln x 1+1=1-ln 2.5.设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________. 答案:(1,1)解析:y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x(x >0)在点P 处的切线斜率k 2=-1m2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).课外拓展阅读求解导数问题最有效的两种解题方法方法一 公式法利用导数公式和运算法则求导数的方法为公式法,其基本的解题步骤是:第一步,用公式,运用导数公式和运算法则对所给函数进行求导;第二步,得结论; 第三步,解后反思.求函数y =sin 2⎝⎛⎭⎪⎫2x +π3的导数.解法一:y ′=2sin ⎝ ⎛⎭⎪⎫2x +π3⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x +π3′=2sin ⎝ ⎛⎭⎪⎫2x +π3cos ⎝ ⎛⎭⎪⎫2x +π3·⎝ ⎛⎭⎪⎫2x +π3′=4sin ⎝ ⎛⎭⎪⎫2x +π3cos ⎝ ⎛⎭⎪⎫2x +π3=2sin ⎝⎛⎭⎪⎫4x +2π3.解法二:设y =u 2,u =sin v ,v =2x +π3, 则y ′=y u ′·u v ′·v x ′ =2u ·cos v ·2 =4sin v cos v=4sin ⎝ ⎛⎭⎪⎫2x +π3cos ⎝ ⎛⎭⎪⎫2x +π3=2sin ⎝⎛⎭⎪⎫4x +2π3.温馨提示当函数中既有复合函数求导,又有函数的四则运算时,要根据题中给出的表达式决定是先用四则运算还是先用复合函数求导法则,同时需要注意,复合函数的求导原则是从外层到内层进行,不要遗漏. 方法二 构造法有些与函数有关的问题无法直接用导数来处理的,需要构造新的函数进行解决,这样的方法称为构造法,其基本的解题步骤是: 第一步,构造函数,对要求的函数进行变形,或构造一个新的函数; 第二步,运用公式,对变形后的函数或新构造的函数运用导数公式和运算法则进行求导; 第三步,得出结论.证明:当x >1时,有ln 2(x +1)>ln x · ln(x +2).构造辅助函数f (x )=x +ln x(x >1),于是有f ′(x )=x ln x -x +x +x x +2x.因为1<x <x +1, 所以0<ln x <ln(x +1), 即x ln x <(x +1)ln(x +1).则在(1,+∞)内恒有f ′(x )<0, 故f (x )在(1,+∞)内单调递减. 又1<x <x +1, 则f (x )>f (x +1), 即x +ln x>x +x +,所以ln 2(x +1)>ln x ·ln(x +2). 技巧点拨要证明f (x )>g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )>0,则F (x )在(a ,b )内是增函数,同时F (a )≥0,则有x ∈(a ,b )时,F (x )>0,即证明了f (x )>g (x ).同理可证明f (x )<g (x ).但要注意,此法中所构造的函数F (x )在给定区间内应是单调的.混淆“在某点处的切线”与“过某点的切线”致误若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a =( ) A .-1或-2564B .-1或214C .-74或-2564D .-74或7没有对点(1,0)是否为切点进行分析,误认为是切点而出错. 因为y =x 3,所以y ′=3x 2,设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0), 即y =3x 20x -2x 30.又点(1,0)在切线上,所以x 0=0或x 0=32.当x 0=0时,切线方程为y =0,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.综上,a 的值为-1或-2564.A 易错提醒1.对于曲线切线方程问题的求解,对曲线的求导是一个关键点,因此求导公式、求导法则及导数的计算原则要熟练掌握.2.对于已知的点,应先确定其是否为曲线的切点,进而选择相应的方法求解.。

【高三数学试题精选】2018届高考数学培优辅导复习试题(有答案)

【高三数学试题精选】2018届高考数学培优辅导复习试题(有答案)

2018届高考数学培优辅导复习试题(有答案)
5 c 数形结合思想专题
【例1】运用数形结合解决集合问题
(1)
(2)已知, ,若,则的取值范围是。

【例2】运用数形结合解决函数问题
(1)(1,0)∪(1,+∞)时
当x∈(-∞,-1)∪(0,1)时
又x(x- )=(x- )2- ≥- >-1
∴ 成立,则必有0<x(x- )<1,
解之得<x<0或<x<
(3)分析
构造直线的截距的方法求之。

截距。

(3)变式分析由于等号右端根号内t同为一次,故作简单换元,无法转化出一元二次函数求最值,若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元
解设
有共点(如图),相切于第一象限时,取最大值。

(4)解析函数的定义域为开区间,导函数在内的图象如图所示,函数在开区间内有极小值的点即函数由减函数变为增函数的。

2018高考数学(理)周末培优训练2(函数)含解析

2018高考数学(理)周末培优训练2(函数)含解析
【答案】 C
B. c a b D. b c a
【解析】∵ b
0.2
1
20.2 21.2 a, ∴ a b 1 . 又∵ c 2log52 log5 4 1 ,∴
2
c b a ,故本题选 C. 4.已知实数 a, b 满足 2a 3,3b 2 ,则函数 f x
ax x b 的零点所在的区间是
A. 2, 1
2.给定函数:① y
1
x 2 ,② y 1 ,③ y x
π
x 1 ,④ y cos
x ,其中既是奇函数
2
又在区间 0,1 上为增函数的是
A.① C.③ 【答案】 D
B.② D.④
3.已知 a 21.2 , b
0.2
1
, c 2log 5 2 ,则 a, b,c 的大小关系为
2
A. b a c C. c b a
一项是符合题目要求的)
1.已知集合 A { x | 1 <2 x 2}, B { x | ln x 1
2
2
0} ,则 A eR B
A.
B. 1, 1
2
C.
1 ,1
2
【答案】 B
D. 1,1
【解析】 由题意得, A
{ x| 1
,则 A
eR B
2
2
1 1, ,
2
故选 B.
A.函数 f x g x 是奇函数
B.函数 f x g x 是奇函数
C.函数 f g x 是奇函数
【答案】 B
D. g f x 是奇函数
2018 高考数学(理)周末培优训练 2(函数)含解析 第 02 周 函数
(测试时间: 60 分钟,总分: 80 分) 班级:____________ 姓名: ____________ 座号: ____________ 得分:____________ 一、选择题(本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培优练习
高考频度:★★★★☆ 难易程度:★★★☆☆
典例在线
(2017年高考新课标Ⅲ卷)已知椭圆C :22
220)1(x y a b
a b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为
A B
C D .
13 【参考答案】A
【解题必备】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)常见的有两种方法:
①求出a ,c ,代入公式e =c a
; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b a c =-转化为a ,c 的齐次式,然后等式(不
等式)两边分别除以a 或a 2
转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 学霸推荐
1.已知椭圆22
198
x y +=的左、右焦点分别为12,F F ,点P 是椭圆上一点,且1220F F PF ⋅= ,则1PF 等于
A .103
B .53
C .72
D .52
2.分别过椭圆22
221(0)x y a b a b
+=>>的左、右焦点F 1、F 2所作的两条互相垂直的直线l 1、l 2的交点在椭圆上,则此椭圆的离心率的取值范围是
A .(0,1)
B .)2
2,0(
C .[2
D .]2
2,0(
【名师点睛】解答本题的关键是搞清楚焦点三角形是直角三角形,求解时充分借助题设条件,先运用勾股定理建立方程2212||4PF PF -=,再运用椭圆的定义建立方程126PF PF +=,然后再联立这两个方程求得1103
PF =
,从而使得问题获解. 2.【答案】C 【解析】设两直线的交点为M ,令12,MF x MF y ==.由椭圆的定义可得2x y a +=,因为12MF MF ⊥,所以222
4x y c +=. ()()2
222222x y x y xy x y +=++≤+ ,当且仅当x y a ==时取等号,
∴()22424a c ≤,即a ≤,2c a ∴≥,即2e ≥.1e < ,12
e ∴≤<. 故C 正确.。

相关文档
最新文档